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Abstract. We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice
QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link.
Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum
densities.
Keywords: transverse momentum; parton distribution functions; lattice; QCD
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INTRODUCTION

Generalized parton distribution functions (GPDs) and transverse momentum dependent parton distribution functions
(TMDs) provide us with a picture of the internal quark distributions in a nucleon at the instant of an interaction, see
illustration Fig. 1 a). GPDs and TMDs have their natural interpretation at large nucleon momentum P= (0,0,Pz). The
quark momentum k in terms of light cone coordinates k± ≡ (k0± k3)/√2, k⊥ = (kx,ky) scales like k+ : k⊥ : k− ∼
P+ : 1 : (P+)−1 with the large momentum component P+ of the nucleon. TMDs resolve the dependence on x≡ k+/P+

and transverse momentum k⊥, but not on the suppressed component k−. In spin-polarized channels at leading twist,
TMDs encode dipole- or quadrupole-shaped deformations of the nucleon in the k⊥-plane. We have studied such
deformations in first explorative lattice QCD calculations [1, 2, 3], see Fig. 1 and our discussion below. These studies
have been motivated by a history of successful lattice computations of x-moments of GPDs, providing images of the
nucleon in the impact parameter, b⊥-, plane, see [4] for a review. A remaining theoretical problem concerns the precise
form of the correlator defining TMDs in the continuum, see [5, 6] and references therein. In its basic form, it is given
by [7]

Φ[Γ]
q (x,k⊥;P,S;C )≡

∫
dk−

∫ d4l
(2π)4

e−ik·l
1
2
〈P,S| q̄(l)Γ U [Cl ] q(0) |P,S〉︸ ︷︷ ︸

Φ̃[Γ]
q (l,P,S;C )

∣∣∣
k+=xP+

=
1
P+

∫ d(l·P)

2π
e−i(l·P)x︸ ︷︷ ︸∫

X

∫ d2l⊥
(2π)2

eil⊥·k⊥︸ ︷︷ ︸∫
M

Φ̃[Γ]
q (l,P,S;C )

∣∣∣
l+=0

(1)

where Γ is a Dirac matrix. The Wilson line U [Cl ] running along a continuous path Cl from l to 0 ensures gauge
invariance of the expression. For the SIDIS and Drell-Yan scattering process, the Wilson line extends to infinity along
a direction v that needs to be chosen (almost) lightlike, such that the cross section factorizes into hard, perturbative
parts and soft contributions, see, e.g., Ref. [8]. Based on its symmetry transformation properties, the above correlator
can be parametrized in terms of TMDs [9, 10, 11], for example

2ρ (q)
TL ≡Φ[γ++λ γ+γ5]

q = f1,q+ λ
k⊥ ·S⊥
mN

g1T,q+

[
S jε jiki
mN

f⊥1T,q

]
odd

, (2)
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FIGURE 1. a) Illustration of quark degrees of freedom in the nucleon at large momentum. b) Dipole-deformed x-integrated
densities obtained with straight gauge links at a pion mass mπ ≈ 500MeV. The insets display the spin polarization of the quarks
(red arrow) and of the nucleon (blue arrow).

a) b)

FIGURE 2. a) Representation of a straight Wilson line (dashed line) as a step-like product of link variables. b) Amplitude
Ã2(l2,0) for up quarks at a pion mass mπ ≈ 500MeV, using straight gauge links.

Here λ is the longitudinal quark polarization, and Λ and S⊥ are longitudinal and transverse nucleon polarization,
respecively. The leading-twist TMDs f1,q, g1T,q, f⊥1T,q are real-valued functions of x and k2⊥. The “naively time-reversal
odd” function f⊥1T,q switches sign when comparing the SIDIS- with the Drell-Yan process, because the direction v of
the Wilson line changes from future- to past-pointing [12].

STRAIGHT LINK TMDS FROM THE LATTICE

In light of the uncertainties about the precise form of the continuum correlator, and to develop our methods, our first
lattice studies employ a simple operator geometry that does not relate to a specific scattering process: We connect the
quark fields with a direct, straight Wilson line. For the resulting “process-independent” TMDs, the T-odd functions
such as the Sivers function f⊥1T,q vanish exactly.
In our approach, we calculate matrix elements 〈P,S|O |P,S〉 from ratios of three- and two-point functions using

the same techniques as GPD calculations by the LHP collaboration in Ref. [13]. We also use the same sequential
propagators and quark propagators, calculated by LHPCwith domain-wall valence fermions on top of asqtad-improved
staggered MILC gauge configurations [14, 15, 16] with 2+1 quark flavors at a lattice spacing a ≈ 0.12fm. The
difference with respect to GPD calculations is that we directly insert the non-local operator O ≡ q̄(l)ΓU [Cl ]q(0) in
our three-point function. TheWilson lineU [Cl] is approximated as a step-like product of HYP-smeared link-variables
as illustrated in Fig. 2 a). See also Ref. [2, 3].
The connection between the matrix elements Φ̃[Γ] and TMDs is established through a parametrization in terms of

Lorentz-invariant amplitudes Ãi(l2, l·P). For straightWilson lines, we obtain in analogy to the parametrization in terms
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a) b)

FIGURE 3. a) Static quark potential fromMILC lattices at several lattice spacings a, matched to the string potential at r≈ 0.7fm.
b) Test of the renormalization procedure with straight Wilson lines on a gauge fixed ensemble.

of amplitudes Ai(k2,k·P) in Ref. [9] (here our sign conventions follow Ref. [11] with the substitution rule k→ im2Nl):

Φ̃[γμ ] = 2Pμ Ã2+2imN2 lμ Ã3 , Φ̃[γμ γ5] =−2mN Sμ Ã6−2imN Pμ(l ·S) Ã7+2mN3 lμ(l ·S) Ã8 .
The TMDs are then obtained by

f1(x,k2⊥) = 2
∫
X

∫
M Ã2(l2, l·P) , g1T (x,k2⊥) = 4m2N∂k2⊥

∫
X

∫
M Ã7(l2, l·P) .

In the equations above,
∫
X only acts on l·P, while ∫

M only acts on l2. Thus x↔ l·P and k2⊥ ↔ l2 are pairs of conjugate
variables. Our Euclidean lattice approach is restricted to the determination of amplitudes Ãi for l0 =−il4= 0, i.e., to the
region l2 < 0, |l·P| ≤

√
−l2|P|, whereP is the selected three-momentumof the nucleon on the lattice. The limited range

in |l·P| prohibits us from a direct evaluation of ∫X . However, first studies of x- and k⊥- correlations are possible [17, 3].
Moreover, x-integrated TMDs and densities are directly accessible: Integrating Eq. (1) with respect to x removes

∫
X and

sets l·P to zero. Correspondingly, the x-integral of, e.g., f1 becomes
∫ 1
−1 dx f1(x,k2⊥) ≡ f [1]1 (k2⊥) = 2

∫
M Ã2(l2,0). In

Fig. 2 b), open symbols correspond to unrenormalized lattice data for Ã2(l2,0).
To obtain results independent of our lattice spacing a and our lattice action, we must renormalize our data. The

Wilson line U [Cl ] introduces a length dependent renormalization factor exp(−δm
√
−l2) [18, 19, 20]. To fix δm,

we follow the strategy of Refs. [21, 22], and match the renormalized static quark potential V ren(r) = V (r) + 2δm
to the string potential Vstring = σr− π/(12r) [23] at a matching point r = 1.5r0 ≈ 0.7fm. In Fig. 3 a), we test the
method for several lattice spacings a on four MILC lattices with similar pion massesmπ ≈ 500MeV. The renormalized
lattice data agree very well with each other and are approximated well by the string potential (red dashed curve) near
the matching point, indicated by a vertical dashed line. The procedure implements a gauge-invariant renormalization
condition that we can formulate as the demand that the static quark potential asymptotically approach a straight line σr
through the origin (shown as a red dashed line). In connection with TMDs, we lack at present an interpretation of this
renormalization condition as a physical renormalization or factorization scale. In Figure 3 b), we check the applicability
of the approach to Wilson lines by plotting Y renline(l) = ln(Ul−a/2/Ul+a/2)/a+ δm, whereUl is the expectation value of
the color trace of a straight Wilson line of length l evaluated on a Landau gauge fixed ensemble, and where the
length dependent renormalization has been carried out with the values δm obtained from the static quark potential.
Only at short lengths, l � 0.25fm, we find significant differences between lattice data from different lattice spacings,
a sign of lattice cutoff effects. For our TMD calculations discussed below we exclude data obtained in this region
from our fits. For l � 0.25fm, we assume that renormalization of the lattice operator can be carried out as in the
continuum, Oren = Z−1Ψ,z exp(−δm

√
−l2)O, where the renormalization constants Z−1Ψ,z and δm are independent of the

Dirac structure Γ [19].
Figure 2 b) shows the renormalized lattice data for Ã2(l2,0) as solid data points. The curve and statistical error band

correspond to a Gaussian fit to this data in the range
√
−l2 ≥ 0.25fm. Note that the renormalization constant Z−1Ψ,z has

been fixed (in the isovector, u−d-channel) such that the x-k⊥-integrated Gaussian density of unpolarized quarks yields
the correct total number of valence quarks,

∫
d2k⊥ f

[1]
1,u−d = 1. Similar fits for Ã7 enable us to calculate the “worm-gear”

function g[1]
1T , and correspondingly, the dipole deformed x-integrated density ρ (q)[1]

TL defined in Eq. (2) and shown in
Fig. 1 b). While the widths of our distributions depend strongly on our renormalization condition for δm, the average
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transverse quark momentum shift can be expressed in terms of ratios of the Gaussian amplitudes at l2=0:

〈kx〉TL ≡
∫
d2k⊥kx ρ [1]

TL∫
d2k⊥ρ [1]

TL

∣∣∣∣∣λ=1,
S⊥=(1,0)

= mN
∫
d2k⊥ k2⊥/(2m2N) g[1]

1T (k⊥)∫
d2k⊥ f

[1]
1 (k⊥)

=−mN Ã7(0,0)
Ã2(0,0)

=

{
67(5)MeV (up)

−30(5)MeV (down)

(errors statistical only). In these ratios, renormalization factors largely cancel. Reference [24] reveals a remarkable
similarity of our results with a light-cone constituent quark model [25], despite the unphysically large quark masses
employed in our lattice calculation: They find 〈kx〉TL = 55.8MeV for up-, and 〈kx〉TL =−27.9MeV for down-quarks.

CONCLUSIONS AND OUTLOOK

We have performed first lattice studies of TMDs using non-local operators with a simplified, straight gauge link.
Resulting average momentum shifts 〈kx〉TL corroborate model results. An ongoing project with staple-shaped gauge
links can potentially address TMDs specific to SIDIS or the Drell-Yan process, including T-odd functions responsible
for single-spin asymmetries.

ACKNOWLEDGMENTS

We are grateful to the LHP and MILC collaborations, for providing us gauge configurations and propagators. We
thank Vladimir Braun, Meinulf Göckeler, Gunnar Bali, Markus Diehl, Alexei Bazavov, and Dru Renner for helpful
discussions. Our software uses the Chroma-library [26], and we use USQCD computing resources at Jefferson
Lab. We acknowledge support by the Emmy-Noether program and the cluster of excellence “Origin and Structure
of the Universe” of the DFG (Ph.H. and B.M.), SFB/TRR-55 (A.S.) and the US Department of Energy grant DE-
FG02-94ER40818 (J.N.). Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-
06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce this manuscript for U.S. Government purposes.

REFERENCES

1. P. Hägler, et al., Europhys. Lett. 88, 61001 (2009), 0908.1283.
2. B. U. Musch, Phd thesis, TU München (2010), 0907.2381.
3. B. U. Musch, P. Hägler, A. Schäfer, and J. W. Negele (tbp).
4. P. Hägler, Phys. Rept. 490, 49–175 (2010), 0912.5483.
5. J. Collins, PoS LC2008, 028 (2008), 0808.2665.
6. I. Cherednikov, A. Karanikas, and N. Stefanis (2010), 1004.3697.
7. J. C. Collins, and D. E. Soper, Nucl. Phys. B194, 445 (1982).
8. X.-d. Ji, J.-p. Ma, and F. Yuan, Phys. Rev. D71, 034005 (2005), hep-ph/0404183.
9. P. J. Mulders, and R. D. Tangerman, Nucl. Phys. B461, 197–237 (1996), hep-ph/9510301.
10. D. Boer, and P. J. Mulders, Phys. Rev. D57, 5780–5786 (1998), hep-ph/9711485.
11. K. Goeke, A. Metz, and M. Schlegel, Phys. Lett. B618, 90–96 (2005), hep-ph/0504130.
12. J. C. Collins, Phys. Lett. B536, 43–48 (2002), hep-ph/0204004.
13. P. Hägler, et al., Phys. Rev. D77, 094502 (2008), 0705.4295.
14. C. W. Bernard, et al., Phys. Rev. D64, 054506 (2001), hep-lat/0104002.
15. C. Aubin, et al., Phys. Rev. D70, 094505 (2004), hep-lat/0402030.
16. A. Bazavov, et al. (2009), 0903.3598.
17. B. U. Musch, et al., PoS LC2008, 053 (2008), 0811.1536.
18. N. S. Craigie, and H. Dorn, Nucl. Phys. B185, 204 (1981).
19. H. Dorn, Fortsch. Phys. 34, 11–56 (1986).
20. P. Boucaud, C. L. Lin, and O. Pene, Phys. Rev. D40, 1529 (1989).
21. M. Cheng, et al., Phys. Rev. D77, 014511 (2008), 0710.0354.
22. A. Bazavov, et al., Phys. Rev. D80, 014504 (2009), 0903.4379.
23. M. Lüscher, K. Symanzik, and P. Weisz, Nucl. Phys. B173, 365 (1980).
24. B. Pasquini, S. Boffi, A. Efremov, and P. Schweitzer (2009), 0912.1761.
25. B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D78, 034025 (2008), 0806.2298.
26. R. G. Edwards, and B. Joo, Nucl. Phys. Proc. Suppl. 140, 832 (2005), hep-lat/0409003.

300

Downloaded 16 Oct 2012 to 132.199.199.67. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions


