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The title refers to the following problem. For a smooth, projective variety X 

over a local or global field k, we study Galois cohomological properties of the 

etale cohomology groups H ^ X , ^ / I ^ ( n ) ) , where X = X x ^ k for a separable 

closure k of k. In particular, we are interested in the coranks of the groups 

H ^ G a l t R / k ) , H i C X , ^ / I ^ ( I i ) ) ) . 

For v = 2 the global question can be reduced to the local one, but for v - 1 

the situation is more difficult, and there are very few results. In the local case one 

knows a lot more, especially in the case of good reduction, but the general question 

is unsolved here, too. 

In [Ja 3] we discuss the known results and some conjectures, which would 

imply that the coranks in question have a simple description in a certain "stable 

range", in particular, for | n| » 0. Such a description for almost all ne I was 

announced in [Sou 3], but there is a gap in the proof. Also, we are interested in the 

precise bounds for the stable range. 

The conjectures about this are motivated partly by the function field case, 

where they can proved to a big extent, partly by conjectures about K—theory and 

I— adic cohomology, which are related to those of Quillen and Beilinson. For 

certain subspaces K m ( X , Q ^ /I^ ) ^ of the K-groups with coefficients, Quillen's 

conjecture would imply that the I -adic Chern class maps 

1 W x ^ Ih )(n) —1 Ih <n» 



have kernels and cokernels of finite exponent for n » 0, while Beilinson's 

conjecture suggests a formula for the corank of ^n-J^k £ ^or n > > ^ 

and a number field k. Again we are interested in the precise bounds for n, 

thereby sharpening Quillen 1 s conjecture in the number field case. 

In the following we review the main points of the paper [Ja 3], to which we 

refer for more details and results, for example the relation with Iwasawa theory. 

During this work I had helpful discussions with several people, in particular I 

am indebted to K . Kato, P. Schneider and K . Wingberg. 

Q 
Notations : For a pro—finite group G and a topological G—module A let A 
and A Q be the modules of invariants and co—invariants, respectively. For an 

* 
^—primary torsion group A let A be its Pontrjagin dual. Recall that the corank 

(or dimension) of A can be defined as the I^ -rank of A . 

L - Conjectures and questions 

Fo ra f i e ld k we always let k be a separable closure and G^= Gal(R/k) be 

its absolute Galois group. Let X be a smooth, projective variety over k and let 

X = X x k k. We are interested in the G^—modules 

K\XA, /lp (n)) = I i m H*(X,Z/ / (n) ) , H i C X j Z - (n)) = I i m El{XJ/l r(n)) and 

H 1 ( X 5 Q ^ n ) ) = H i ( X 5 Z ^ n ) ) ® z , where E\xj/£v(n)) is the etale 

cohomology group of the sheaf l/£T(n) = (i ® n , // being the sheaf of ^ r - t h 

roots of unity (I a prime different from the characteristic of k), cf. [Mi 1] p. 164. 

Conjecture 1. 

Let k be a number field and let S be a finite set of places of k, containing 

all places above £ and oo , and all primes where X has bad reduction. Let 

Gg= Gal(kg/k) , where kg is the maximal S-ramified extension of k. Then 

o : a) i+1 < n 
Ez{G^E1 {X^ JlJn)) is finite if or 

a 1 1 b) i+1 > 2n 



This can be reformulated in various ways. Since Gg has the property 

(F^ ) : H ^ ( G g j A ) is finite for every finite ^-primary Gg-module A , one easily 

deduces that Gg,H 1(X jC)^ /1^ (n))) is of cofinite type (i.e. its Pontrjagin dual is 

of finite type over lg) and the continuous cohomology Hu(G^iR1 {XJLg (n))) is of 

finite type over , and that 

corank Eu {G ̂ E1 {X^ £/Ii (n))) = rankj H ^ G g . H ^ X ^ (n))). 

Moreover, this is the same as the -dimension of the continuous cohomology 

H ^ G S J H 1 C M j (n))) * H ^ G g . H ^ X ^ (n))) ® , and an equivalent formulation 

of conjecture 1 is the vanishing of these numbers for v = 2 and (i,n) as in a) or 

b). Also, one can reformulate everything in terms of the first cohomology group : 

Lemma 1. 

For an I -primary Gg-module N of cofinite type let 

3 

X ( G q j N ) = X ( - I J 1 W a n k H " ( G Q j N ) . Then 

A G 

X ( G g j N ) = -[k:Q].corank N + corank(Ind£ N ) °°, 

where G^ C G Q is a decomposition group at oo. In particular, 

^ G g ^ X , ^ ( n ) ) ) = - d i n ^ H ^ q . K ) ^ - 1 ) =: X j n ( X ) 1 

where H \ X ( C ) , f R ) ^ n - 1 ^ is the subspace of the singular cohomology of X(C), 

where the involution induced by the complex conjugation acts by (—l) n 

This follows from Tate's computation of the Euler—Poincare characteristic of 

G c as in Soule's paper [Sou 3] 1.4. 



Lemma 2. 

i - G k i -
/ / i # 2n, then H'(X,Q^ (n)) = O = H'(X,<^ ( n ) ) Q and, moreover, 

K 
Q 

H 1(X jI)^ (n)) O = H 1 ( X 1 ^ ( I i ) ) Q for every decomposition group G ^ c G j c at 

a prime p i S. 

The first statement is implied by the second one, which follows via smooth 

and proper base change from the Weil conjectures, cf. [Sou 3] lemma 1. Hence 

conjecture 1 is equivalent to saying that H ^ G g j H ^ X , ^ /1^ (n))) has corank 

- x-x n ( X ) for i + 1 < n or i + 1 > 2n. Equivalent is also that 

H ^ G ^ H ^ X , ^ /lg (n))) has this corank, by the following result, also observed by 

P. Schneider and W. Raskind. 

Lemma 3. 

a) / / i / 2 (n- l ) , then via the inflation 

H 1 ( G k , H i ( X , ^ Ill (n))) H 1 ( Q k , H i ( X , Q / / Z , (n))) 

the maximal £ -divisible subgroups of these groups coincide. 

b) The inflation H ^ G ^ X ^ n J J l ^ H ^ G ^ t X ^ n ) ) ) is an 

isomorphism f or i ^ 2(n- l ) . 

The first statement follows from the sequence on p. 117 of [Sou 3] and the 

Weil conjectures (in form of lemma 1 loc. cit.). The proof of the second one is 

similar. 

Conjecture 1 is partly motivated by another one on the £ -adic Chern 

character maps from Quillen's higher algebraic K-groups K f ( X ) into continuous 

etale cohomology 

1 W x ) — < H c o n t ( X ' ¥ n ) ) 

(see [Sou 2] for the definition of these maps). Following Beilinson, we define the 

motivic cohomology by H ^(X,Q(n)) = K 2 ( X ) ( n \ the subspace of 



k D K 2 n _ ^ ( X ) « > Q, where the Adams operators ip act like multiplication by k . 

Then by the Hochschild-Serre spectral sequence ([Ja 1] 3.4) 

= H P ( G k , H < l ( X ^ ( n ) ) ) = * H ^ X , ^ (n)) 

and lemma 2 we get maps 

(1) r : R]/1 ( X ' « K n ) ) » H ^ G ^ H ^ X , ^ (n))), i + 1 ± 2n. 

These can be considered as t -adic analogues of Beilinson's regulator maps 

(i +1 i 2n) 

(2) r : RIJ-1 (X,Q(n)) > H i ( X ( C ) , C ) + / ( H i ( X ( C ) , K ( 2 V = T ) n ) + + F n ) , 

where F* is the Hodge filtration and H 1 ( X ( C ) , - ) + is the space fixed by F Q Q ^ c , 

c the complex conjugation ([Bei]). In fact, it is easy to show that the target of (1) 

describes extensions of the G^-representations and H 1(X jI)^ (n)), while the 

target of (2) describes extensions of the "real Hodge structures with F O O " IR and 

H*(X(C), (R)(n). Beilinson's conjectures (loc. cit. 2.4.2 and 3.4) would imply that 

(3) r : R1JR 1 (X,«(n)) * K > H i ( X ( C ) , C ) + / H i ( X ( C ) , K ( 2 V ^ V 

is an isomorphism for i - f K n (note that F N = O in this range). 

Conjecture 2. 

r : H ^ + 1 (X,Q(n))® ^ » H ^ G ^ H ^ X , ^ W ) ) is an isomorphism for 

i + 1 < n. 

The relation between these conjectures is as follows : Beilinson's conjecture 

would imply 

dim^ H j / 1 (X,Q(n)) = - ^ n ( X ) for i + K n, 



since this is the dimension of the target of (3). By lemmas 1, 2, 3 this is the 

dimension of H ^ G ^ H ^ X , ^ (n))) if and only if H ^ G ^ H ^ X , ^ (n))) = 0. 

Moreover, if the map r in conjecture 2 is surjective, Beilinson's conjecture would 

imply its bijectivity, since always d i m ^ H ^ G ^ H ^ X ^ (n))) > - ^ n ( X ) 

(lemma 1). There are strong arguments for the surjectivity of r, since by results of 

Thomason [Tho] (generalizing work of his with Dwyer, Friedlander and Snaith) the 

analogous Chern character maps 

K 2 n ^ 1 ( X 1 Q Z N ) . H ^ G ^ X ^ n ) ) ) 

on the K-groups with coefficients are surjective for n » 0. The question, whether 

the natural map 

K 2 n - W x ^ H — - K 2 n - i - l ( X ^ ) ( n ) 

is an isomorphism, is related to conjectures of Bass on the finite generation of 

K—groups. 

We now come to the local conjecture. 

Conjecture 3. 

* - G k 
If k is a local field, then H J ( X , Q ^ (n)) j- 0 at most for 0 < n < ^ in 

general, and at most for i = 2n, if X has good reduction (over the ring of 

integers of k). 

Tate's local duality theorem [Ta] gives a duality 

G 
(4) H 2 ( G k , H i ( X ^ / 2 ^ ( n ) ) ) % H 2 d - i ( X ^ ( d + l - n ) ) k , 

where we have used Poincare duality 

H ^ X ^ Ill (n))*S H 2 d - j ( X ^ (d-n)), 



assuming (without restriction) that X has pure dimension d. Hence an 
2 i -

equivalent formulation of conjecture 3 is that H (G^ ,H (X,(), /Ii (n))) is finite for 

i + 1 < n or i + 1 > 2n. If X is defined over a number field, the local conjecture 

is implied by the global one -except for the case n = . This follows from the 

exact sequence for N = H ] ( X , Q , /Ii (n)) 

H 2 ( G S , N ) > e H 2 ( G D , N ) > N ( - 1 ) Q >0 
PES ^ u S 

coming from Tate's global duality theorem (loc. cit.). Here G ^ is a decomposition 

group at p in G ^ ; hence G^ = G^ for the p-adic completion of k. 

Conversely, the global conjecture 1 would follow from the local one, if the following 

question had a positive answer. 

Question A . Is the kernel of the localization map 

E2(GSlEl(X^/Ii(U))) . e H 2 ( G H i C X l Q , / Z , ( n ) ) ) 
PES 

finite for i ^ 2n — 1 ? 

Since Gg and the G ^ satisfy property ( F , ) , we get an equivalent question 

if /Ii (n) is replaced by (n). Still equivalent, by Tate's duality theorem, is 

the question whether the localization maps 

El(G^El(X^/Ii(Xi))) > e H 1 I G / ( X ^ / Z ^ n ) ) ) 
peS 

have finite kernels for n / , or the same question for Ii (n). 

Let k be a finite extension of dĵ  , and let £± p. If X has potentially good 

reduction, then conjecture 3 is true by base change and the Weil conjectures (same 

argument as for lemma 2). Otherwise, it is equivalent to the well-known 

conjecture that the local L-factor 



de t ( l -Fr q - s | H I P C ^ ) [ ) 

(I C G ^ the inertia group, Fr a geometric Frobenius in G ^ / I , and q = p the 

cardinality of the residue field of k) considered at integral places s = m E l has 

poles at most for O < m < ^ . This would follow from the more precise conjecture 

that the quotients G r ^ H * ( X , Q , ) of the monodromy filtration M . on H*(X,Q^) 

are pure of weight r -f i (see [De 1]), and that G r ^ H J ( X , Q , ) = O for | r| > i as 

in the geometric case, cf. below (note that H*(X,Q, )* c MQ H*(X,Q, ) by definition 

of M. ) . 

Now let £ = p. If X has good reduction, then Fontaine's crystalline 

conjecture ([Fo] appendix) would imply a canonical isomorphism 

Q 

tffX,^ (m)) k H {v 6 H ^ r i s ( X s / W ( « ) ) • k° | <j» v = p m v) n F m . 

Here H* . (X /W(«) ) is the crystalline cohomology of the reduction X of X ens s s 

with values in the ring of Wit t vectors of the residue field K of k, 

k 0 = Quot(W(«)) , (|) is the crystalline Frobenius, and F ' is the Hodge filtration, 

induced by the canonical isomorphism 

H c r i s ( V W W ) ® k = H D R ( X / k ) -

By the Weil conjectures for the crystalline Frobenius (see [KM]) this would prove 

conjecture 3 in this case. The crystalline conjecture has been proved by Fontaine 

and Messing for k = k̂  and p > min (i,dim X ) [FM], and has been announced 

by Faltings for k = k̂  and arbitrary p. 

If X has bad reduction, then H 1(X 5Qp) can neither be expected to be 

crystalline, nor to have a suitable monodromy filtration, as was observed by 

Mazur, Tate and Teitelbaum ([MTT] II § 15). Moreover, while the dimensions of 

i - G k 
H 1 ( X 5 Q ^ m ) ) *, for ^ p , should all be the same, there are examples where 

i - G k dim H A (X,Q p (m)) K is smaller, see [Ja 3] § 5. 



This suggests looking for a monodromy filtration on the crystalline side, and 

in [Ja 3] I propose a conjecture which would imply a formula 

• _ G, , 
H 1 ( X i y m ) ) k * {ve D|())v = p m v , Nv = 0} 0 F m 

for a finite extension k ' of k. Here D is a certain filtered module over k ' ([Fo] 

5.1), equipped with a nilpotent homomorphism N : D —> D satisfying 

.(j)-1N(|) = p N (no compatibility with F ' assumed). If M . is the monodromy 

filtration associated to N , then <|) should have the same characteristic 

polynomial on Gr 1 ^ 1 D as F r 7 has on G r ^ H 1 ( X ^ ) 1 1+ p ( f and F r 7 being 

defined for k ' like f and Fr are for k). Together with the conjecture on the 

1 -adic monodromy this would imply conjecture 3 for H ] ( X , Q , ) . I do not have a 

precise definition for D yet, but I would expect a relation with the crystalline 

cohomology of the special fibre in the case of semi-stable reduction. 

2 - Results 

For X = Spec k, where we consider H°(Spec k, /l^ (n)) = ^flf (n), 

conjecture 1 claims that 

9 a) n > 1 
H ( G Q , Q, /Z , (n) ) is finite for or 

b 1 1 b) n < 1 

For 1$ 2 or k totally imaginary this means that the considered groups actually 

vanish for n ^ 1, and this has been conjectured by P. Schneider [Sch]. In fact, 

conjecture 1 can be regarded as a generalization of his conjecture to 

higher-dimensional varieties. 

Theorem 1. 

Let X = Spec k, or a form of the standard cellular varieties (IP£, Grj c ^ 7 . . . ) -

Then conjecture la) , conjecture 2 and conjecture 3 are true for X . 

In fact, all conjectures are true, if they are true over a finite extension of k. 

Hence we may assume that H ^ X , ^ ) is zero for i odd and consists of copies of 



Q ( - i ) for i even. Thus conjecture 1 and 3 are immediately reduced to the case 
P ^ 

X = Spec k. Conjecture 2 can also be reduced to Spec k, by considering 

stratifications by affine spaces and formulating and proving conjecture 2 also for 

these, see [Ja 2]. For X = Spec k, conjecture 3 is trivial, and the other conjectures 

follow directly from work of Soule, see [Sou 1]. 

Remark 1. 

a) Quite generally, part b) of conjecture 1 seems to be more mysterious than 

part a), partly because of the lacking connection with K—theory. For X = Spec k 

it contains the Leopoldt conjecture, which is the case n = 0, cf. [Sch] § 7. 

b) Schneider's conjecture amounts to determinating the coranks of 

H r ( S p e c k , ^ / Z , ( n ) ) . 

There are two obvious ways to generalize this to higher—dimensional varieties X . 

First, one may replace Spec k by X and study 

H r ( X , Q , /Z , (n ) ) , 

the cohomology of X over k. This is done in [Sou 3] (but see [Ja 3] for a 

necessary correction). In our approach, we have replaced the coefficients 

/Ii (n) = H°(Spec k, /Ii (n)) by H*(X, ^ /Ii (n)) and studied 

H r(Spec k, H i CX, ^1II1 (n))). 

Of course, both approaches are closely connected by the Hochschild-Serre spectral 

sequence, but the second one is better suited for the considerations of motives and 

their L-functions - for example the L-function of the G^-representation 

H*(X, ^ i ) . Also the bounds for the vanishing of the cohomology groups can be 

made more precise. In fact, the basic idea is that the vanishing is governed by 

"motivic" properties of the representations H ! ( X , like purity, weight, 

entireness, etc., compare the function field case below. 



Theorem 2. 

a) Conjecture 3 is true for i = 1. 

b) Let E be an elliptic curve over an imaginary quadratic field k with 

complex multiplication by k. / / I is a regular prime for E 5 then 

H ^ G ^ H ^ E ^ n ) ) ) = 0 for all nG I. 

Since H ^ X , ^ (1)) ^ T^ A 5 the Tate module of the abelian variety 

A = E i £ x / k ' p a r t a ) ^ o w s fr°m t n e r e s u ^ s m S G A 7 I and IX . Namely, by 

loc. cit. the monodromy conjecture is true for ^ p, and there is even a p-adic 

monodromy filtration M . on H 1 ( X 5 Q p ( I ) ) = T p ( A ) ^ Q p 5 such that the quotients 

are crystalline ([Fo]) and such that the crystalline Frobenius on the associated 

filtered modules has the same characteristic polynomial as the geometric Frobenius 

has on the ^-adic counterparts Gr^? H 1 (X)Q^ (1)) for 1$ p. Moreover, it 

G 
follows from S G A 7 IX 5.8 that H 1 ( X 5 Q p M ) k C M 0 H 1 ( X 1 Q p M ) , so one can 

proceed as in the case of good reduction, by using the Weil conjectures. 

Part b) has been proved by K . Wingberg [Wi]. 

Remark 2. Since H ! (A,Q^ ) ^ A 1 H ^ A , Q ^ ) for an abelian variety A over a field k 

and all primes £ ± char k, the monodromy conjecture - and hence conjecture 3 -

is also true for this cohomology group, if 1$ P = residue characteristic of the local 

field. For H 1 ( A 5 Q p ) one also gets a filtration, with crystalline quotients of a known 

nature, but the missing thing is the proof that H 1 (A 5 Q p ) ) C _ M Q H 1 ( A 5 Q p ) . Of 

course, this would follow from the generalized crystalline conjecture mentioned 

above. 

Theorem 3. 

Let k be a global field of characteristic i I and let V be a 

finite-dimensional Q^-representation of G ^ which is pure of weight $ O (see 

[De 2] 6.1.1, for example this is the case for H ] (X,Q^ (n)), i # 2n). Let A c V be 

a Ig-lattice respected by G ^ , and for every place v of k let G y C G k be a 

decomposition group at v. Then 



a) G 1 (A) : H 1 ( G k 5 A ) - ^ - » | | H 1 ( G y 5 A ) is injective, 

b) aJA') : H 2 ( G , , A ' ) © H 2 ( G . A ' ) is injective, 
i K y v 

for \'= Horn (A,ji ) = A * ( l ) , 

c) l i m H 2 ( G k , A + / / r ) > Il H 2 ( G y 5 A + ) has a finite kernel, for 
r v 

A + = Hom(A,2, (1)) = Hom(A,2^ )(1). 

Proof. Let p = I m ( G k > Aut A) , then, by an argument of Serre ([Se] 2), 

Ru(p,A.) is finite for all v> 0. From the long exact cohomology sequence 

associated to the exact sequence 0 > A —» A > A/£ » 0 we see that 
1 r 

H [p,A/£ ) is finite, of an order bounded independently of r. Hence the same is 

true for Rl(p,A/£T), where pT = I m ( G k » A u t ( A / * r ) ) - Considerthe 
commutative exact diagram 

o - Ifc1(Jf rv^ r) - IWipvMt1) - Ifc1(HrylA^r) 
v > V V ' 

0 - Rl(?vM£v) - H 1 ( G k 5 A ^ r ) - H 1 ( H r s A ^ r ) 

where H = ker(G v-> Au t (Ay^ r ) ) , and fr = Im(G v -» tf) and H = H n G v 

are the decomposition groups in p^ and H r , respectively. By definition, H f 

acts trivially on A/£T, so the right vertical map is injective by Ceboratev's 

theorem. Hence the kernels of the left vertical maps are the same, and by passing 

to the limit over r we get 

ker C^ 1 (A )C H 1 ( ^ A ) . 

G 

On the other hand, there is a decomposition group G y with A v = 0, since A 

is of weight ± 0 (same argument as for lemma 2). The commutative diagram 



CJ 0 r 
O = A v > (A/iT) v > H 1 ( G y 5 A ) C H 1 ( G y 5 A ) 

0 = A ° k > ( A / ^ r ) G k » H 1 ( G k 5 A ) ^ H 1 ( G k 5 A ) 

then shows that ker ^ 1 ( A ) is torsion free, hence zero. 

Statement b) follows from a) via the duality theorem of Tate and Poitou. So 

does c) : Since A*/I1 2 Hom(A/ / r

5 /z ), the duality theorem gives an 

r 
isomorphism ker a 2 ( A + / / r ) ^ ker a^A/i1) , and the latter group has an order 

bounded independently of r by the above. 

Remark 3. In contrast to the local case, I im H ( G k , A / / ) is not in general the 
r 

continuous cohomology of A + . V i a the exact sequence 

0 — . H m 1 H 1 ( G k 5 A + ^ r ) — H 2 ( G j f 5 A + ) — I i m H 2 ( G k , A + / / r ) — O5 

r r 

1 1 4- r 
the group I i m H ( G i 1 A / / ) is the subgroup of / -d iv i s ib le elements in 

r k 

H ( G k , A ) ([Ja 1] 5.16). It is mapped to zero under the localization map since 

H 2 ( G y 5 A + ) = H m H 1 ( G k l A - f Z Z r ) is /-complete, 
r 

The following result provides part of the motivation for the conjectures of 

chapter 1. 

Theorem 4. 

a) If k is a global function field, then the analogue of conjecture 1 is true, 

and the analogue of question A has a positive answer for i ^ 2 n - l , 2n-2. 

b) Conjecture 3 is true for globally defined varieties over local fields of 

positive characteristic. 

Let us indicate the proof of the theorem and at the same time explain what 

"analogue" and "globally defined" means. Let F be a finite field, let Y be a 



smooth, projective curve over F , let j : U «=—• Y be an open, affme part, and 

let £ $ char(F^) be a prime. Let n - Spec k be the generic point of U and let 

7 T j ( U , 7 ) ) be the fundamental group of U with base point Tj = Speck. Then U 

and Tr 1 (U j T)) are the analogues respectively, of the spectrum of (the ring of 

S—integers) and Gg= T r 1 (Spec Of^ Spec k) in the number field case. 

A smooth (= twisted-constant) -sheaf F on U corresponds to the 

Tr 1 (U,T))—representation V = F - (stalk in 7 7 ) , and we have a long exact sequence 

and identifications 

(5) 

r * r V r 
H r(Tr 1(U 1Sj) lV) © H r ( G V) 

1 y e Y \ U y 

I 

H r ( Y , j . F ) ^ H r ( U 5 F ) - © H r ( Y J l F ) - H m ( Y j l F ) • 
y e Y \ U y ' 

where G y C G ^ is a decomposition group at y e Y , and Cvf is the localization 

map, induced by the restriction (see [Mi 2] II 1.1 and 2.9). Recall that F is called 

pure of weight i , if for every closed point xe U the eigenvalues a of the 

geometric Frobenius F r x on the stalk F - are algebraic numbers with 

I a\ = (Nx) for every archimedean absolute value | | , where Nx is the 

cardinality of the residue field /c(x) of x. F is called entire, if the a are 

algebraic integers. Then the following is a reformulation of results of Deligne in 

[De 2] 1.8 and 1.10. 

Lemma 4. 

Fix y e Y \ U , and let M . be the monodromy filtration on the 

G^-representation V (loc. cit 1.7). If F is pure of weight i , then 

G r ^ 1 V = M j V / i M ^ V is pure of weight r-fi (in the sense of loc. cit 1.7). If in 

addition F is entire, then G r ^ V is entire, in particular, G r ^ V = 0 for 

Irl > i . 



CoroUary 1. 

/ / F is entire of weight i , then V y C M Q V is mixed, with weights 

w 6 {0,1,...,i} (here I Y C G y is the inertia group). In particular, 

G 

V(m) y = 0 for m < 0 or i < 2m, 

where V(m) = V® Z^ ( i f m is the Tate twist of V . 

We may apply this to V = H 1 (Xj fy ) , for a smooth and proper variety X 

over k. In fact, for a suitable U —» Y there is a smooth and proper model 

f : J2T—>U of X , and then F - * H i ( ^ f y ) for F = R*f*Q^ and X E U by 

smooth and proper base change (see, e.g., [Mi 1] V I 4.2), S being the fibre of f 

at x. Hence F - = V , and F is entire of weight i by Deligne's proof of the Weil 

conjectures. Similarly, V ^ H 1 (X* ^ k y , f y ) for the completion k^ of k at y, so 

lemma 4 and corollary 1 prove the analogues of the monodromy conjecture and 

conjecture 3 for X x ^ k y » l-e-» ^ o r smooth and proper varieties over k y that are 

defined over global function fields k (i.e., are obtained via base change to the 

completion). 

For question A , we have to consider the vanishing of the map 0T in (5), 

which factorizes through H r ( Y j * F ) . The Hochschild-Serre spectral sequence gives 

short exact sequences 

O > H r " 1 ( Y , j * F ) r > H r ( Y j * F ) > H r ( Y , j * F ) F > 0, 

where T = Gal ( f^ /F^) , and Deligne has proved that H r ( Y j 5 i c F ) is pure of weight 

w+r, if F is pure of weight w ([De 2] 3.2.2). Therefore 

H 2 ( Y J * F ) = 0 if w * - 1 , - 2 . 



CoroUaxy 2. 

The localization map 

H 2 ( * J ( U J ^ V ) ® H 2 ( G V ) 

is infective for every n^(U,7))-representation V w/u'c/i is pure of weight 

- 1 , - 2 . In particular, this is the case for V = H 1(X 5)I^ (n)), X smooth and 

proper over k and having good reduction over U 5 provided i# 2n—1, 2n-2. 

Since Tate's local duality (4) is also valid for local fields of positive 

characteristic p ± I, corollaries 1 and 2 together imply 

o . a) i+1 < n 
H 2 ( ^ ( U 5 T ) ) 5 H 1 ( X ^ C n ) ) ) = O if or 

1 1 b) i+1 > 2n, 

which is the function field analogue of conjecture 1. 

Corollary 2 is also true for w = - 2 , if V ( - l ) p = 0 or if V is 
u k 

semi—simple, see [Ja 3] § 6, but, by looking at the example of abelian varieties, one 

can show that w = —1 (and, similarly, i = 2n—1 in question A) has definitively 

to be excluded. 

Added in proof: In a letter to the author (November 1987), J . - M . Fontaine 

proposed a precise formulation for the p-adic monodromy conjecture stated at the 

end of § I 5 and proved it for abelian varieties. 

(*) p. 165 : partially supported by D F G 5 MSRI (Berkeley) and M P I (Bonn). 
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