Deligne homology, Hodge-D-conjecture,

and motives

Uwe Jannsen

In §1 of this paper we review the definition and the
properties of Deligne homology as given by Beilinson [Be 1]
and Gillet [Gi 2] . For a complex variety X , HZ(X,A(b))

(A =%Z, R,...) 1is the extension of two groups described in
terms of the Borel-Moore homology HV(X,-) , the deRham
homology HER(X) , and its Hodge filtration. Most of the other
properties - functorialities, relative sequences, products -
are summarized by the fact that Deligne cohomology and homo-
logy form a twisted Poincaré duality theory in the sense of
Bloch and Ogus [BO]. Here the usual Poincaré duality in form
of a non-degenerate pairing - which does not exist for the
Deligne cohomology - is replaced by a duality isomorphism for
smooth X .

HG(X,A(3) 3 Hgd_i(X,A(d—j)) , d=dim X .

Since homology is covariant for proper morphisms, this still
suffices to define the Gysin morphisms needed for the operation
of algebraic correspondences. Another application of homology
is the easy definition of cycle classes, leading directly to
the Abel-Jacobi map.

The construction of Deligne homology is based on currents
and C”-chains and follows the lines of Deligne's basic papers
[De 2], [De 3): For smooth varieties one works with smooth
compactifications and logarithmic singularities, and for
arbitrary ones with "simplicial resolutions", i.e., by

replacing a variety by a suitable simplicial one with the same
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(co)homology. By this method any situation U<cX>Y , where X
is proper, UcX 1is open and Y = X~U 1is the closed comple-
ment, can be transformed into a simplicial situation, where

X. 1is smooth and proper, hence U. 1is smooth, and where Y.
is a divisor with normal crossings, so that the technique of
logarithmic singularities applies.

For the proofs and the understanding of Deligne homology
one needs the Hodge theory of Borel-Moore homology. Since I
could not find good references, I have given a short but
complete treatment of this in §2, based on Deligne's theory of
mixed Hodge complexes. These also lead naturally to Beilinson's
absolute Hodge cohomology, which gives a refinement and new
interpretation of Deligne cohomology, by relating it to
morphisms and extensions of mixed Hodge structures.

Beilinson has not only defined Chern maps and characters

i .
c,ch & Ky, i (X) = Hp(X,0(3))

but also homological counterparts
D
. 1
T Ka—Zb(X) - Ha(X,Q(b)) '

which together with <c¢ch form a Riemann-Roch theorem as in
[Gi 1]. Since many constructions in the K-theory, like Gysin
maps or the Quillen spectral sequence, are defined via the
K'-groups, this is very useful for calculations, even if one

is mainly interested in the regulator maps

- . (3) | 4i -
r=ch : sz_i(x) Hp (X, R(3))

for a smooth and proper variety X . Beilinson's conjecture on
the surjectivity of r ® IR and results of Suslin and Soulé on
the Adams eigenspaces sz_i(X)(j) < sz_i(x)G>Q lead to a
conjecture on the coniveau filtration of H;(X,Zm(j)) . This
is the Hodge-D-conjecture. We review all this in §3 and
illustrate it by an example, proving a formula of Beilinson
for the regulator on K1(X) .

In §4 we recall Beilinson's conjecture for motives with
coefficients, i.e., for Dirichlet series with coefficients in
a number field E #Q , and report on some ideas of P. Deligne
written down in the letter [De 5]. Among other things Deligne
reformulates Beilinson's conjecture in terms of L-values in the

range of convergence and a different rational structure on
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H%(X,Zm(j)) , and moreover he interpretes the conjecture in the
setting of a - conjectural - category of mixed motives.

I would like to thank the DFG and the MSRI (Berkeley) for
their support during part of this work.

§1 Deligne homology

Let X be a smooth proper analytic space over € or over
IR, of dimension d. Define

Qp;,q = sheaf of C*-(p,q)-forms on X (often called Ag,q),
X
'Qp;? = sheaf of distributions over Q—p;_q

X X
sheaf of currents of type (d+p,d+g) on X (often

called ,Di+p,d+q)

Thus an element of 'Qp’q(U) for U < X open is a continuous

X
linear functional on PC(U,Q'E"q)
X

1.1. Examples a) Each Cw-(p,q) form w gives a section of
lQp_dlq_d by
Xw

! 3 Ju' Aw
)

w'r ——
(27v/=T X

Here the choice of -1 determines an orientation on all
complex analytic spaces X (such that on X = € with the
coordinate z = x + V=1 y the differential dx A dy is a
volume form), and the factor in front of the integral makes
the expression independent of the choice of v-1 and the
association compatible with the action of the involution o
in the case of a real analytic space X (see below).

b) An L1-function f gives a section of 'Q—i’—d by
X
' 1 '
R A —- | J £ w .
(2n/-1)" X

c) A smooth oriented topological c®-r-chain M < X gives an
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element § in ] 'Qp;q(x) by integration:

M ptg=r X
wl»le
M
Qk; and 'Qk; form double complexes in a natural way; let

Qim and ’Qim be the associated simple complexes and F' be

the first filtration on these

1 ' v
p(gn = g (P
X pt+tg=n X
p>i

We normalize the differential on 'ng such that dD( w)
(_1)deg D

369, but we also have interchanged w and ' in 1.1 a)

D(dw) . This differs from the convention in [GH] p.

compared with [GH] . By our choices the pairing

@ (X)) ® 'Q’ _(X) - 'Q"_(X)
is a morphism of complexes and induces a left operation of
Q° on 'Q° .

(o]

X X

1.2. Lemma The natural embeddings

(2,85 o (ar_,rh) L18) (g r2a1,pt 7Y
X X
are filtered quasi-isomorphisms.

Proof It is clear that the filtrations are transformed as
indicated, and on the graded pieces we have quasi-isomorphisms
o R Qi,‘ R ,Qi—d,°—d

X oo ©

X X

ul af af

i i o,* i -4, +--d
R, ®, 0 - QL ®, Qo - QL 8, ' ,
X OX X X OX X X OX X
which follow from the case i=0 ( 3- and Jd-lemma), since
i,
Qx is flat over OX

For a subring Z < AcR and k€Z let C.(X,A(k)) be

the complex of singular C -chains on X with coefficients in

A(k) = A(ZNV:T)k , and let 'C°(X,A(k)) be the associated
. T -
cohomological complex: et o= C_; and (rct < 'Cl+1) =
i
(c_, =174

-3 -————9C_i_1).Thesignismostnaturallyobtainedbyregarding
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a chain complex in an abelian category A as a cochain complex
in the dual category A° , and then applying the sign con-
vention of [SGA 4] XVII 1.1.5 to the contravariant functor
id: A° 5 A . Also it is necessary for making the evaluation
map

C*(X,A) ® 'C"(X,A(k)) ~» A(k)

a morphism of complexes, where C*(X,A) 1is the complex of
c”®-cochains with values in A and the usual differential
df(c) = f(dc) . Finally, with our sign conventions 1.1 c) de-
fines a morphism of complexes

€: '"C (X,A(k)) - 'Q°_(X)

If X 1is an analytic space over IR , which by definition
is a complex analytic space with an antiholomorphic involu-
tion F_ : X » X , the sheaves F on X wused above are

equipped with involutions o over F_ (i.e., morphisms
T wl0)

o: F » (F),F such that F 3 (F_),F ———— (FJ),F = F is

the identity), by sending a differential w to FXw and a

<

distribution D to F_,D . The induced involution on the

group F(X) of global sections will also be denoted by o .

There is also an involution o on 'C®(X,A(k)) , such that
o(a[M]) = &[FwM] , and all maps above then are c-equivariant.
1.3. Definition With the inclusion 1: Fk'Q o (X) <--»'Q'W(X)
) X X

define

'c)(X,A(K)) = Cone('C’(X,A(k)) @ et 0 £ et x))0-11,

X X

and call 'Hé(X,A(k)) = Hz('Cb(X,A(k))) the 2-th Deligne

homology group of X (2€2Z2) . If X 1is an analytic space
over R let 'Hj(X,A(k)) = 'HJ(X/R,A(K)) =H"(<0>/Cs (X, A(K)

(group hypercohomology) .

We now consider smooth, not necessarily proper varieties
by introducing logarithmic singularities. Let U<X be an
open subspace such that the complement Y = XNU 1is a divisor
with normal crossings. Then the complex Qk<Y> of holomorphic
differentials with logarithmic singularities along Y is de-
fined and has locally free components [De 2] 3.1. Let Fi be
the naive descending filtration on Qk<Y> , as in [De 2] 3.2.2.
Then the complexes Qg<Y> and Q°_ are filtered bi-modules

over the anticommutative differen%ial graded algebra Qg (by
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the exterior product), and by functoriality there is an in-

duced bi-module structure on Q"
X

1.4 Definition Define the complexes of c®-forms, resp.

currents, with logarithmic singularities along Y by

Q7 <Y> = Q2<Y> .. Q°

’
X" X O %%
resp. QT _<Y> = Qé<¥>®Q. QT
X X X

and define filtrations F- on these by
Ft oot <y Ft Qg<Y> @, Q°
® Qo
X X X
resp. rlrgs <y> =it cys g . o
o X Q ©
X X X
The grading in the tensor products is given by the sum of the

degrees in Qg <Y> and (')Q‘

= , and the differentials are as

in the tensor product of chain complexes: d(a®8) = da®8
+ (=199 @ 4 gap
1.5. Lemma The inclusions Qoéq c Q' and 'Q_i'q < '

' X X X X
induce isomorphisms of 0 «-Modules

X
o P>, 02°09 5 " <y>
X 0 o £ '
ptg=n X X

o oPtdeys ®, g4 d 3 agh oy
0 (o°]

pta=n X X X

Proof If we forget about the differentials, 1.2 gives an iso-
morphism of graded modules over the graded algebra Qg

X
.o o
Q= Q ®, Q%"
X X X
.o -d,"
'Q = Q. ® QL
X® X 0y g
hence the result follows by tensoring with Qi<Y> over Qi

The isomorphisms above induce natural bigradings on
Q' <y> and 'Q° <Y> , such that oPr9cys = Qp<Y> ® )q and
<« 5] @ 0
X X X X X
P d p+d -d,q .
= <Y> = Q <Y> ®0 'OX“’ . The differential on these can
be computed by the follow1ng "twisting" formula.
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1.6, Lemma If for a local section D of 'Q-i’q

X
3D =2 w'! ® D!
3 J J
as local section of 'Q—i+1’q = Q; ®OX Q-i’q , with local
X X
sections w! of Q; and D! of Q—i'q , then for a local
X

section w of Q§<Y> one has

deg W

d(w®D) = 3w®D + (-1) w®3 + Z(wAaw!) ® Dﬁ)

r j
(similarly for o°/9)
X

This is clear from the definition.

1.7. Lemma The embeddings

d

(25<¥>,FY) (@7 _<¥>,F) < ('07_<v>[-2a],F %)
X X

are filtered quasi-isomorphisms.

Proof Via the isomorphisms in 1.5 we have

i ~ i O,*-1i
Gr, Q° <Y> = Q_<Y> ® Q! ’
Eoge X Oy ¥
Gr;-d'Q WS> = Q;<Y> 8 'Q‘i"-l_d ,
X X X

and the formula of 1.6 shows that these are isomorphisms of
complexes, if on the right we take the differentials induced
by the 3-maps, which are OX-linear. Hence the quasi-iso-
morphisms follow from those in 1.2 (for i=0) by tensoring with
the locally free OX-module Qi<Y> .

1.8. Remarks a) With respect to the mentioned bigradings one

has ' '
pk )an<y> = o )Qp;q<Y>
X p+q=n X
pzk

which is the definition of the Hodge filtrations in [Ki].
There is an inclusion

i v . j i ' .
oo F Mg < Fl(+d)Qk<Y> 8.0, = F' Mo «vs,
X X X X X

which however may be strict: for X = A1 = Spec C[t] and Y =

{t=0} the element %} ® 1 1is contained in the stalk at t=0
of the right hand side for i=1 , but not in the stalk of the
left hand side. Probably the definition of the Hodge filtration

Q§<Y> ®
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by the latter in [Be 1] 1.8 is a misprint.

b) For each (p,q) , the sheaf Qp;q<Y> can be realized as a
sheaf of differentials, namely asXa subsheaf of j*Qp;q ,
where j: U < X 1is the open immersion. This gives gn embed-
ding of complexes Q' <Y> < j,Q°
morphism, cf. [De 2]X§3.

c) By a result of King [Ki] 1.3.12, each sheaf 'Qp;q<Y> is

a guotient of ,Qp;q , and can be realized as a shéaf of dis-

, which is a quasi-iso-

[-<)

tributions. Namel?, there is a certain subsheaf Qp;q(null Y)
of oPr?  (the forms "vanishing holomorphically onX Y ") such

<

that for the sheaf 0(2P/%(null Y) ) of distributions over it,

the obvious map 'oPrcys = Qd+p<Y> ® 'Q_d'q-»D(Qp’q(nullY))
Xco X 0 X Xoo o
is an isomorphism and the restriction map .Qp;q -

0(2P’9(null ¥)) is surjective. All this is cBmpatible with
thexdifferentials.

Let 'CQ(X,A(k)) c 'C*(X,A(k)) be the subcomplex given by
© - .
the singular C -chains on X with support on Y , and define
'C*(X,Y,Aa(k)) = 'C'(X,A(k))/'CQ(X,A(k)) . Integration as in
1.1 ¢) induces a map ¢€: 'C"(X,Y,A(k)) - 'Q° <¥>(X) (compare
X
1.8 c)).

1.9. Definition Let 'Cb(X,Y,A(k)) = Cone('C" (X,Y,A(k)) @&
P10 <vs(x) £5% '@t <v>(x)) [-1] , and call 'Hé(X,Y,A(k)) =
X X

HQ('Cb(X,Y,A(k))) the 2-th Deligne homology of the pair
(X,Y) .

1.10. Let T

e *

(X,Y) as above - X a smooth proper analytic space and

be the category whose objects are pairs

YcX a divisor with normal crossings - and whose morphisms
are proper morphisms f: X-X' with £(Y¥) €Y' and

f(X~Y) < X'~\Y' . Then the cochain complexes in 1.9 are co-
variant functors on ?* . Hence the same is true for the
Deligne homology, and moreover, we can define a complex
'Cb(w,A(k)) for any diagram ¢ in ?* (= covariant functor
9: I » m, from a small category I into ?* ) by

'Cphle,A(k)) =L l%m 'Cb(Xi,Yi,A(k)) .
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Here (Xi,Yi) = @(1) for i€ob(I) , and L l%m is the left

derivative of the direct limit lim : EQQ(I,Ab) - Ab , making
'Cb(w,A(k)) well defined in the gerived category of the cate-
gory Ab of abelian groups. In certain cases we have canoni-
cal representatives for L lim of a diagram of complexes and
define 'Cb(w,A(k)) by these. For example, for a simplicial
object (X.,Y¥.) in ?* (I =2° , where A 1is the category of
standard simplices [De 3]1§5) we have

'Cb((X.,Y.),A(k)) = s'N'Cb(X.,Y.,A(k)) '

where 'N 1is the canonical functor transforming a simpli-
cial abelian group A. into the cochain complex 'NA. with
(‘NA.)_i = A, and di = alternating sum of the face maps, and
sC'® 1is the associated simple complex of a bi-complex C°° .

In any case the Deligne homology of a diagram ¢ 1is defined by
L .
"Hp(0,A(k)) = H('Cp(0,A(K)) .

The case of relative cohomology is not directly included in
this picture. One either has to start with I = .-». and then
pass to filtered derived categories as in [Be 1], or one may
simply define
'Cb(f,A(k)) =Cone('Cb(X,Y,A(k)) a'Cb(X',Y‘,A(k))),
2 .
Hy (£,A()) = BY('C) (£, AK)))

for a morphism f: (X,Y) - (X',Y¥') in ?* .

For analytic spaces over IR all complexes have a o-action,
and as in 1.3 one defines the Deligne homologies over IR by

replacing the homology of the 'Cb—complexes by their <o>-
hypercohomology.

1.171., Lemma The homology of 'C*(X,Y,Z) 1is canonically iso-
morphic to the Borel-Moore homology of U = X~\Y .,

Proof 1In both the original paper by Borel and Moore [BM] and
the reformulation by Verdier [Ve] 1.2 (Borel-Moore) homology
is defined as the hypercohomology

BM - =i .

Hi (X,2Z2) = HBM(X,Z) = H (X,TX)

of a complex of sheaves Tg on X , called the (differential

graded) homology sheaf in [BM] (and written in homological
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notation) and defined as the dualizing complex RE' z for
f: X » Spec € in [Ve]. Ti is only defined up to quasi-iso-
morphism, i.e., in the derived category, and from both
approaches can be described as follows (loc. cit. and (Bor] Vv
§7). For any complex of abelian groups A° let DA" =
Hom'(A°,[Q@-Q/ Z]) , where [Q~-Q/Z] is the complex with
Q@ 1in degree O, @Q/Z in degree 1, zero elsewhere, and
Q - Q/Z the canonical projection. Since this is an injective
resolution of the group Z , DA® represents RHom(A",Z) in
the derived category.

Let F° be a fine resolution of the constant sheaf Z on
X , then the presheaf

VP T%(V) := D TC(V,F')
is a complex of sheaves. It has flabby components, hence
HY(x,Ty) = BY (T, () .

Finally, since D respects quasi-isomorphisms, Tk does not
depend on the choice of F° up to guasi-isomorphism.

In particular, we may take for F° the complex of sheaves
8& associated to the presheaf

Ve C(V,Z)

of singular c®-chains with coefficients in % , see [Wal5.31.
We use the following three facts. The map Cé(V,Z) - FC(V,Ek)
is a quasi-isomorphism [Wal 5.32, 5.46. For a complex of abe-
lian groups A° the canonical morphism A° - DDA® is a quasi-
isomorphism, if the homology groups of A® are of finite type
over Z . Finally, Cé(v, Z) < C°(X,Z) can be identified with
Hom('C* (X,X~V,Z) ,%Z) < Hom('C"(X,%Z),Z) . Altogether we have
canonical quasi-isomorphisms

T (V) = Drc(v,é'}'() + DC(V,2Z) = D Hom('C'(X,X\V,%),Z
+

'C*(X,X\V,Z ) -DD'C" (X,X~V,Z )

for each open V< X . The map ¢ 1is a quasi-isomorphism, since
Z is quasi-isomorphic to [@ -» @/Z ] and 'C'(X,X~V,Z ) is
a free Z -module. Taking the homology gives the result.
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1.12. Remarks a) The equality T (definition as above) =

X
Rf!Z is shown in [Bor] V §7. The equality of the cohomology
follows immediately from Verdier duality: Hl(X,TX) = Hl(TX(X))
. . ) \
= H (DI (X,F")) = H (R Hom(Rf % ,Z)) = H (R Hom(Z ,Rf Z)) =

Y (X,RE'Z )
b) The finite generation of the homology of 'C’(X,X\V,Z)
can be deduced from the proof of 1.15 below.

c) In the following we rather write '"HX - Betti homology -

. B
instead of 'H;M , since these groups define the (unique) ho-
mology theory associated to the Betti (= singular) cohomology

Hg in the sense of Bloch and Ogus [BO]

1.13. Corollary a) The Deligne homology defined in 1.9 only

depends on U and not on the pair (X,¥Y) in T with X~\Y=U,
and 'HD(U,A(k)) := 'Hé(X,Y,A(k)) is a well-defined functor
on the category sEh* of smooth varieties over C€ (resp.
over IR) with proper morphisms.

b) There is a long exact sequence

4 vt
DR“”Q HD (U,A(k)-..,

functorial for proper morphisms, where 'Hg(U,A(k)) is the

,Z ,ﬁ k|Z St
.+ .= "H(U,A(K) ) "H (U, A (k) ) OF HDR(UF» H

Borel-Moore homology with coefficients in A(k) (which is
simply 'Hé(U,Z ) ® A(k) since A(k) is flat over Z),
'H£ (U) is the £-th deRham homology of U , and

DR
et (0) = (U) is the k-th step of the Hodge filtration.

]
DR Hpr

Proof The deRham homology of U 1is by definition the homo-

logy of 'Q'w(U) , which is isomorphic to the homology of
U
'Q7 <¥>(X) via the quasi-isomorphisms of fine sheaves
X
Ja'07 3807 [2d] « Q7 _<y>[2d4] » 'Q°  <Y> .
U U X X
The subspace Fk'HﬁRéU) is defined as the image of the map
ot (e _av>(x)) - BR (0
and theXcorresponding reéult for the deRham cohomology [De 2]
3.2.13 ii). Hence 1.11 and the definition of 'Cb(X,Y,A(k))

as a cone immediately give the exact sequence in b) with

»<¥>(X)) , which is injective by 1.2
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‘Hb(X,Y,A(k)) instead of 'Hb(U,A(k)) . This implies a) . L.
fact, by Hironaka's resolution of singularities any U 1in
Sch, can be represented as U = X~Y for (X,Y) in 7, -
where we identify smooth varieties X over € (resp. 1R)
with the smooth analytic spaces X(C) by GAGA (resp. X(Q)
with Fwi X(€) - X(€) induced by the complex conjugation).
Hence by the same arguments as in [De 2] 3.2.C we only have
to show that for any morphism f: (X,Y) - (X',Y') in 7,
which is the identity on X\Y = U = X'~\Y' , the induced map
'Hg(X,Y,A(k)) - 'Hg(x',Y',A(k)) is an isomorphism. This fol-
lows from the long exact sequence proved above and the five-
lemma.

1.14. Remark A more canonical way to define the Deligne ho-
mology of U is

'HG(U,AK)) = 1im HS(X,Y,A(K))

where the limit is taken over the projective system of (X,Y)
in ?* with X~NY = U (note that the limit is taken over a

system where all transition morphisms are isomorphisms).

1.15. Theorem For a smooth connected variety U over &€ or
IR there are canonical isomorphisms between Deligne homology
and cohomology

whw,am)) 2 B A

where d = dim U

Proof Choose (X,Y) 1in F* with U = XN\Y , and let 'EEX )
be the complex of sheaves on X associated to the complex of
presheaves

Vi 'CT(X,YU(XNV) ,Z)
If j: Ue X 1is the open immersion, one obviously has

~

- - 0 -*'~c .*'N. - 4*|~.
Cix,vy) = 33 Clx,yy  @nd 0 3FCIy vy = 3Gk

1N _ N . .
where CX = C(X,Q) is the sheaf associated to

Vi 'C(X,XNV,Z)
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If 'Ek > I 1is a quasi-isomorphism into a complex of inject-

ive sheaves, we get a commutative diagram with exact rows

o - FY(X,I') - I(x,1") - Tr(Uu,I1°) -» O
¢B1 +82 ¢B3
(1.15.1) 0 > T.(x,'Cy) » T(x,'Cy) - r(u,'cy)
+a1 +a2 +a3

o - ‘cyX,z) > 'CT(X,Z) > 'CT(X,Y,Z) >0 -

Since 'Ek is homotopically fine (compare [Ve] 1.1.1 and

[sw] p. 88/89), 81,82 and 83
since X 1is compact, oy and o, are quasi-isomorphisms

(see loc. cit.). Hence oy is a quasi-isomorphism.

are gquasi-isomorphisms, and

But 'é; is canonically a resolution of % (d) [2d]: the

i-th homology has stalks (

. o] i # -2d4
lim HY ('C" (X,X\V,Z))=H_, (X,x~{x},Z) =
xEV zZ i = -2d

at x € X , and for V <X

B 290 (%,X,0)) = Hyy (X,XV,0) = Hom(H22(V,0),0) ¥ 0(d)

Haq !
. 24 24

by the canonical trace map Hc (V,0(d)) - H (X,0(d)) - @

mapping the cycle class of a point to 1 . These normalizations

make the diagram

z (d)[2a] — c¢l2a] -2, @ (x)[2d]
X
(1.15.2) l 11.1. a)
"CT(X,Z ) 1.1 ¢) QT (X)
X
commute (the composition maps 21/ MY to o' w [ w' , where
X 1is oriented by the choice of /-1) . X
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By the quaii-isomorphisms 'EiX,Y) = j*j*'Ek - JJi*T’
we see that 'CiX,Y represents Rj,(Z (d)|U)[2d] in the
derived category D (X) of sheaves on X , and from 1.15.2
we see that the map 'EQX,Y) - 'Q‘G§Y> induced by integration
over cycles (1.1 c) and 1.8 c)) Can be identified with the
canonical map Rj,Z (d)IU[Zd] - Rj*Qé[Zd] via the quasi-iso-
morphisms Rj*Qé «JQQ<Y> - 'Q;®<Y>[—2d]

If we replace Z by the coefficients A(k) in the above,
so that 'EiX,Y)(A(k)) is the sheaf associated to V &
'CT(X,X~N(VNnU) ,A(k)) , then together with 1.7. we obtain quasi-
isomorphisms between

" (x, g (AR i= Cone('Tiy o) BRI gv>407<Y>) [-1]

X X
and

A(k+d)Dl(XIU)[2d]=Cone(Rj*A(k+d)9Fk+d

g <Y>-R3,07) [2d-1]

By definition, the £-th hypercohomology group of the latter
complex of sheaves on X is Hgd+£(U,A(d+k)) . On the other
hand, the £-th hypercohomology of 'Eb’(xly)(A(k))_ is the
£-th homology of 'Tp (y vy (AK))(X) , since he Fhrod_<y>
are soft and 'CEX,Y)(A(k))(X) = 'Ck(A(k))(U)-»F(U,I‘(A(k)))
is a quasi-isomorphism. Finally the map o3 induces a quasi-

isomorphism between 'Cp(X,Y,A(k)) and 'Eb,(X,Y)(A(k))(X)

1.16. Remarks a) In several expositions the twists Z (d) do
not occur, e.g. in [Ve]l and [Bor)] Vv §7, but it is more ca-
nonical to introduce them. The normalizations depend on that
of the cycle map, which is determined by the case of divisors.
So our choice is fixed by defining the first cycle map (Chern
class) to be the connecting morphism

Pic(x) = H' (X,05) - HX(X,Z (1))

associated to the exponential sequence
0+ w2t/ T o0, PO 40,

which does not depend on the choice of V-1 . In terms of
trace maps our normalization corresponds to the commutative
diagram
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24 tr
4

H™ 7 (X,0(d)) Q
N l
129 (x, ) oo
24 I tr : 1
HZS (X, @) — 5 ¢ , w'p—— 1w,
DR (Zn/:T)d X

compare 1.1 a) and 1.15.2. Via the canonical comparison iso-
morphisms these are also compatible with the canonical trace
maps in étale or algebraic deRham cohomology, cf [DMOS] p.22.
In particular, all maps become o-invariant for varieties over
IR, and tr w' € ¢ for X and w' defined over

b) The proof of 1.15 shows that one has canonical isomor-
phisms of long exact sequences

-1 vl vl k,..£
DR(U)-» HD(U,A(k))» HB(U,A(k))eF Hogr

7 kY4 R 2

4 €= 1,448
..»'H (U) "> HDR(U)a...

23+L

2d+2-1 2 24+L 28+4L .. £=1
R (U)-»HDR (U)~...

ot (U)+de+£ (0, A2 U, A ark) )eFd”'kuD

with the classical isomorphisms for the Betti and deRham theo-
ries (cf. [BO] §2).

c) I could not prove that j*|EEX,Y) and 'Eg (case Y = @)
are flabby as stated in [Be 1] , proof of 1.8.5, and have

some doubts whether it is true.

1.17. We now define the Deligne homology of arbitrary schemes
and simplicial schemes by "simplicial resolutions", see [De 3]
and [SGA 4] Vbis for the proofs of the following statements.
If Z is a scheme which is separated and of finite type

over € or IR , there is a smooth simplicial scheme U. and
an augmentation U. 8§z (i.e., a morphism Uo - Z , or, equi-
valently, a morphism into the constant simplicial scheme de-
fined by Z) such that

n-

a) the maps Un - (cosk:_1sk 1U.)n are proper and surjec-
tive for all n (i.e., U. - Z 1is a proper hypercovering),

b) there is an open immersion U.< X. into a smooth proper
simplicial scheme such that the complement Y. is a di-
visor with normal crossings.
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By a) , U. » Z has cohomological descent, i.e., the map
F - Ra,a*F

is a quasi-isomorphism for all sheaves F on Z . Note that
Ra,a*F can be represented by s N(a.),I: , if I! 1is a re-
solution of a*F with components Iﬁ injective on Un , and
N is the normalization functor transforming cosimplicial ob-
jects in any abelian category A 1into cochain complexes in

A . Since the maps a: Un -» Z are necessarily proper for all
n > 0 , we also have descent for cohomology with compact sup-
port, i.e.,

Rl (Z,F) - RTC(U.,a*F) = s NFC(U.,I:)

ot
is a quasi-isomorphism. By taking F = Z and applying

R Hom(-,Z ) we deduce that the morphism a also has descent
for the Borel-Moore homology: for U. this is by definition

the homology of R Hom(RFc(U.,Z }.,Z ), for 2 compare remark
1.12 a)

More generally, if 2. 1is a simplicial scheme whose compo-
nents are separated and of finite type over € (or cver TR) ,
and whose face and degeneration maps are all proper, there is
a smooth simplicial scheme U. and a morphism U. - Z. such
that

a') U. » 2. induces an isomorphism in the Borel-Moore homology,

and such that b) holds for U. : for example , take a

smooth proper hypercovering U.. - Z. such that the analogue
of b) holds for U.. , and let U. = AU.. be the diagonal.
The first case is included in this by taking for 2. a con-

stant simplicial scheme.

In both cases we may regard (X.,Y.) as a simplicial ob-

ject in ?* , and we define
HG (2., A00)="HS ((X.,¥.),a00) " <%/ (s ey (x., YL, a00)
(= 'H%(Z,A(k)) in the first case).

1.18. Theorem a) This is well defined, i.e., independent of
the choice of (X.,Y.), and makes 'H%(Z,A(k)) (resp.
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‘H%(Z.,A(k))) a functor on the category Sch, of separated
schemes of finite type over € (or over 1IR) and proper mor-
phisms (resp. on the category of simplicial objects in Sch,).
b) There is a long exact sequence
ia 'a e £=-1 +1
o Hp(2,800)-'HS (2,800 68 B 2) Y e @ z,a00) -

functorially associated to Z in Sch, (similarly for simpli-
cial objects).
c) The canonical map € induces an isomorphism

£ £
L} ]
HB(Z,A(k))®A¢ 2 'Hpg
phism in the Borel-Moore homology, it induces an isomorphism

(z) . If f: 2 - Z' induces an isomor-

between the long exact sequences of b) (similarly for simpli-

cial objects in Sch, )

Proof If (X.,Y.) is chosen for Z. as indicated above, the

deRham homology of Z. is defined as

(1.18.1) 'HgR(Z.) = Hz(s 'N'Qéw<Y.>(X.)) ’

with the Hodge filtration step Fk being the image of

ut Kigr <v.>x.)) » o (s'n07 <> (X))

X. X.

(1.18.2) 1 (s'NF

- same definition for the case of a (constant simplicial)
scheme Z , which we shall not treat separately in the follow-
ing. On the other hand it follows from the descent condition
a') and 1.11, that the Borel-Moore homology of Z. can be
computed as

'Hé‘(z.,A(k)) = 'Hé(U.,A(k)) = H!'(s'N'C'(X.,Y.,A(k))).

If we tensor these groups with € , we obtain the groups
in 1.18.1, by the quasi-isomorphisms
'C'(Xn,Yn,Z ) & ¢ ~» 'Q%§<Yn>(xn) ’ n>0,
proved in 1.15 and applying s'N to the corresponding simpli-
cial diagram. This shows the first claim in <c¢) , and that the

deRham homology groups are well-defined by 1.18.1.

By Hodge theory (see 2.9), 1 1is injective, hence we obtain
the sequence of b) for (X.,Y.) instead of 2. : note that
s'N Cone(K: + L:) = Cone(s'NK. -» s'NL.) for a morphism KI-L:

of complexes of simplicial abelian groups. Again by Hodge theo-
ry (see 2.9), a morphism £f.: (X.,Y.) - (X!,Y!) 4induces a
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morphism in the deRham homology which is strictly compatible
with the Hodge filtration. In particular, if £f. induces an
isomorphism in the Borel-Moore homology, it induces an iso-
morphism for 'HBR and Fk'HBR , too, hence for 'HE by
the five-lemma. For the remaining statements we now may pro-
ceed as for 1.13 - here we have to use the following fact.
Any morphism Z. 9 2! can be extended to a commutative dia-
gram

X.NY. =V H V! o= XINY!
at va'
z. g 2!
where (X.,Y.) and (X!,¥!) are simplicial objects in ?*,

f is induced by a morphism f: (X.,Y.) - (X!,Y!) , and v
and v' have descent for the Borel-Moore homology: for exam-
ple, take the diagonals in suitable hypercoverings V.. = Z.

and V!. » 2! (cf. [De 3] 6.28).

The following theorem summarizes a good part of the pro-
perties of Deligne cohomology and homology.

1.19. Theorem Let F be IR or € . The functors

2> X e Hp o (X,A(3) L1, €m,
’
X v HO(X,A(D)) 1= 'HR(X,A(-b)), a,b€Z

form a twisted Poincaré duality theory in the sense of Bloch
and Ogus [BO] 1.3 on the category of all schemes which are se-
parated and of finite type over F

Proof Parts of the proof can be found in Beilinson's paper
[Be 1] , and the result was also announced by Gillet in

[Gi 2] (for F = €¢) . As an illustration we shall sketch the
proof for the existence of a long exact sequence

D

D D D
(1.19.1)...4Ha(Y,A(b))*Ha(X,A(b))»Ha(U,A(b))aHa~1(Y,A(b))é...

for a closed immersion Y<» X with open complement U = X\Y
(see [Be 1] 1.8.4, but also 2.11 4) below).
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First assume that X 1is smooth and proper and that Y is
a divisor with normal crossings. Then it is shown in 2.9 that
there is an exact triangle (k € Z)

(1.19.2) s'N'Cb(?VA(k)) 22 'Cb(X,A(k)) - 'Cb(X,Y,A(k)) -,
where the complexes compute the Deligne homology of Y,X and
U , respectively, so 1.19.1 is obtained as the associated homo-
logy sequence.

Next assume that X and Y are proper but otherwise
arbitrary. Then there exists a smooth proper simplicial scheme
augmented to X , X. 3 X , such that Y. = m 1Y) is a divisor
with normal crossings in X. and 1m satisfies the condition
1.17 a). Then Y. - Y and U. = X.~Y. -» U also satisfy homo-
logical descent, hence X. , Y. and (X.,Y.) can be used to
compute the Deligne homology of X,¥Y and U , respectively,
and we use the simplicial version of 1.19.2.

Now assume that X is smooth and Y 1is a divisor with nor-
mal crossings. There exists a smooth compactification X of
X such that X~X and (XX) UY = 2 are divisors with normal
crossings on X . Let Y be the closure of Y in X , and let
Y. and Y. be the coskeletons of the normalizations of ¥
and Y , respectively (cf. 2.9). Then s'N'Cb(?.,?.\?.,A(k))
computes the Deligne homology of Y , so we have to show that
in the commutative diagram

s'n'ch (Y., ¥NF. ,a) A 'C (X, RN EIN 'c;)(X,2)

TOH I

o ® —2yrtcp(E)
the natural map T induces a quasi-isomorphism with ker aj .
But ker o, and ker o, compute the Deligne homology of
XN\X and Z , respectively, by step 1, so ker oy =
coker (ker oy = ker az) in fact computes the Deligne homology
of Z~(X~X) =Y by step 2.

For arbitrary X and Y there exists a smooth proper sim-
plicial scheme X. , an open subscheme X.c<X. , and an augmen-
tation X. 5 X satisfying 1.17 a), such that Y. = ),
X.~X. and (X.~X.)UY. = Z. are divisors with normal crossings.
Thus, everything reduces to a simplicial version of the smooth

situation, and we are done.
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Deligne cohomology with support in a closed subscheme Y cX

is defined as relative Deligne cohomology of j: U=X~\Y <& X ,

i.e.,
(1.19.3) H5 ,(x,a()) =n" (Cone (RT(x,a(k)) 35 RT(U,a(0)) [-1)),
where RFD(X,A(k)) and RFD(U,A(k)) are suitable complexes

of abelian groups which compute the Deligne cohomology of X

and U , respectively. This immediately gives the long exact

sequence
L 2 2
(1.19.4) u.*HD’Z(X,A(k))-»HD’Y(X,A(k))-+HD,Y\Z(X\Z,A(k))»
241
#HD,Z(X,A(k)) > e

for ZcYcX . The Poincaré duality isomorphism for smooth X,

(1.19.5) HS (x,A(3)) 3 B (Y,A(d-3)) , d=dimX ,

2d-1i
follows from 1.15, the construction of 1.19.1, and the commu-

tative diagram

kv 1'15 1 (X ' ' e
RT(XQ,A(k+d)DI(-)E-O,Xo\ﬂ;1y))[2d] - 'Cpx sZ2 A(K)) & s'N'CH(X.,Z.,A(K))

[z £ [

[}
1.15

RF(XO,A(k+d)D,(§O,XO))[2d] = 'C (XO,XO\XO,A(k))e S'N‘CD(X.,X.\X.,A(R))
T“; L(ﬂo)* é{ﬁgf/
— 1.15 , . ==
Rr(x,A(k+d)D,&,X))[2d] —o> 'Cp X 0X,A(K))

which expresses the compatibility of 1.15 with covariance for
open immersions of both sides. Here = denotes a quasi-iso-
morphism, X.-X and X. are as above, with Xo\ﬁ;1Y Su,

and X is a smooth compactification of X such that X\X is a di-

visor with normal crossings and ﬂo extends to (io,io\xo)a(i,i\x).

The maps on the left and on the right induce 3j* in cohomology and
homology,respectively, j* being defined like o5 above. Note that
by this construction the Poincaré duality is compatible with 1.19.1

and 1.19.4, in the obvious sense.

For the definition of the capproduct
i . D D -
HD,Y(X’A(J)) ® Ha(Y,A(b)) - Uy -5 (Y,A(b=3))

we refer the reader to [Be 1] 1.8.6.

The canonical class Ny € Hgd(X,A(d)) for X irreducible

of dimension d is by definition the image of 1 €A under

the isomorphism in the following lemma.
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1.20 Lemma Let X Dbe separated and of finite type over €

or R, and let d=dim X . Then HE(X,A(b)) = 'H;a(X,A(-b)),
PR (x) := 'u23(x) and HY(X,A(b)) wvanish for a>24d , and
a DR a
D ~ B ~
€p ¢ H2d(X,A(d)) - sz(X,A(d)) = ® A
x€X (a)

is an isomorphism, where X(d) = {x €Xldim {xJ = d} T set of

irreducible components of dimension d of X

Proof The vanishing is known for the Borel-Moore homology,
and hence follows for the other homology theories by 1.18 b)
and c). For the isomorphism we may assume X to be reduced -
by 1.18 c) and the fact that the Borel-Moore homology only
depends on the underlying reduced complex analytic space. Then
there is a smooth open subvariety ¢ #UcX , which is of pure
dimension d and dense in every irreducible component of di-
H,q (U,A(d))
are isomorphisms for the Betti and the Deligne homology by

mension d , and the restriction maps HZd(X,A(d)) -

1.19.1, the Betti analogue of it, and the above vanishing re-
sult. Hence it suffices to prove the claim for U , but by

1.15 we have canonically
€

D A B
Hyq(U,A(d)) —— H,4(U,A(d))

§ £
€
H} (U, A) A HQ(U,A) = ®a
conn.comp. of U

0,,0 _ .0
(note that F HDR(U) = HDR(U))

1.21. Let Zn(X) be the group of cycles of dimension n on

X , i.e., the free abelian group on the irreducible reduced
subschemes ZcX of dimension n . As for any twisted Poin-
caré duality theory, the canonical class provides us with a
cycle map

D
cly: 2 (X) - Hy (X,A(n))
. D D
(2] & image of n, wunder H, (Z,A(n)) -H, (X,A(n)).
Since n, by definition is compatible with the canonical class
in the Betti homology, the composition clB = €5 ch is the
usual cycle map into the Betti homology. If X 1is smooth,

then, by applying the Poincaré duality 1.15, we obtain a cycle
map
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m 2m
ch : Z(X) - HD (X,A(m))

on the group Zm(X) of cycles of codimension m = dim X-n .
We sketch the proof that this cycle map agrees with the
one defined in [EV]. Let 4 cX be of codimension m . There

are canonical morphisms of functors

o+ Hy , (X, B(3)) = Hy (X, By ),

Z D,an

and we have to show that ¢ maps the relative class given in

D
D z(X Z(m)) > ol

by n, to the relative cycle class defined in [EV] 7.1. The

(2, Z(n))

maps ¢ are compatible with the cupproducts as are the rela-
tive cycle classes ([EV] 7.4 and [Ve]3.5 for H (X Z (m)) 5
2m
HZ (
[EV] 6.2) we are reduced to the case of divisors. If m = 1,let

X, Z(m)) . By this and localizing (compare the argument in

Z' >Z be a divisor such that 2z = div(f) is principal on U=

X~NZ', then the claim follows from the commutative diagram

o 1 1 1 1 2
HO(U,Q) & H (U, Z(1)) - Hy, (X,Q,) 8H,, (X,Z(1))

(dW 1 f
0(u)* >~ ", e, ) —  HA (X2 )

D,an D,an

U To T@

x . 1 2

( 8§ the connecting morphism for 0 -Z(1) - 0 35270x - 0),

since f is mapped to the cycle classes in both theories (cf.
2 2

[EV] 6.2 and 3.1.2 below) and HZ(X, Z(1)D,an) - Hy, (X, Z(T)D,an

is injective ([EV] 6.1 b) and the corresponding result for the

)

Betti cohomology) .
Now let X be smooth and proper, and let Zm(X)o = Ker clB
m(X) be the subgroup of cycles which are homologically
equivalent to zero (for the Betti cohomology). By the cohomolo-

gical analogue of 1.18 b) we have a commutative diagram

0 - M - BMX, zZm) - H"EX) - 0
Tclb TClD jCIB
m I m m
o - "X, - 2™ (%) - 2 /2", » o,
where
Mx) = BV x,0 zen®™ VN (x, z(m + P BT (%,0)
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is the m-th intermediate Jacobian [GH] p. 331, and
™x) =HNX, 2 () n e FREAM(x,c) = HE™(X, Z(m)) ne T/

is the group of Hodge cycles of codimension m on X .

1.22. Lemma The map clb coincides with the Abel-Jacobi map
as defined by Griffiths and Weil.

Proof By definition, the complex 'cb(x, Z(k)) 1is given by
cpx, Z(0)) = 'ctix, zk)) @ Bt (0 e ' )
X X
(cgrcpicq)
(d Cgr d Cpr "€ Cp* 1 Cp -d CQ)
eyl x, z0) = Mz e B z*’(X)e ol ) .
X" X

The class of an algebraic cycle y of codimension m is the
class of (yg,¥p,0) , where y, = (ZWV:T)—nytop for a topo-
logical C™-claim y. . in ¢ (x,%) , n = dim X-m , which
represents y and is oriented according to the choice of

V=1 (cf. 1.1 a)), and where vp € F-n'Q_in(x) is the distri-
bution ' » (2my=1)" " Ireg

choosing a resolution o% singularities 72 5 2 for each 2z in

w' . This caft easily be seen by

the support of y and observing that the fundamental class
nmy of 2 is mapped to n, via 7 and hence to cl(z) via

782 — x . 1f y is homologous to zero, there are elements
s€'c? N x,z(-n)) and f € F-n'Q-in_1(X) with ds = yg
and df = Yp - Hence (yB,yF,O) is homologous to (GO,es-1£f) ,
i.e., cl'(y) € J(X) is given by the class of ¢€s-1f in
-2n- 1( (X)) = H2m—1
definitioé of the Abel-Jacobi map: if we evaluate this class
against forms w € F7 L 2:H(X) via the Poincaré pairing, we

obtain the integral of }ug over s, since the product with f vanishes.

(X,C) . This is exactly the classical

1.23. Remark Using only Betti cohomology, the definition of
fundamental classes in HS Z(X 7 hn))”H; Z(X Z (m)) is easier
than in HS™(X,Z Un)v an ), where non-trivial facts of deRham the-
ory are needed The blject1v1ty of € follows from 1.19.4 and the
version with support of [EV] 2.10b). Here one uses F HéR Z(X)
and not ™(x,F Q ); this would also simplify the proof of [EV]

7.11.
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§2 Hodge theory for homology, and absolute Hodge cohomology

We recall the following definition due to Deligne, [De 3]

§8.

2.1 Definition Let A be a noetherian subring of IR , then

a mixed (polarizable) A-Hodge complex K is a diagram

.0 . B .
(2.1.1) K, = (KAQQ,W) = (K@,W,F)

such that
a) KA is a complex of A-modules, bounded below, such that
the homology groups are finitely generated as A-modules,
b) (KAQQ’W) is a complex of A®QP-modules with an ascending
filtration W , and o 1is a morphism in the derived category
D+(A) of bounded below complexes of A-modules such that
KA ®Q - KA@Q is a guasi-isomorphism ,
c) (KC,W,F) is a bounded below complex of C-vector spaces
with an ascending filtration W and a descending filtration
F , and B 1is a morphism in the derived category D+F(A®Q)
of bounded below filtered complexes of A®Qp-modules such that
(KAGQ @AG,W) - Ké,w) is a filtered quasi-isomorphism,
d) for all m € Z

W, . W

GrmKAQQ - (Grch,F)

is a (polarizable) A®Q-Hodge complex of weichtm,i.e. the differen-
tials of erKé are strictly compatible with the induced
filtration F , and F 1induces a pure (polarizable) A®Q-Hodge
structure of weight m+n on Hn(erKAQQ) for n € Z .

The construction of mixed A-liodge complexes is equivalent
to the construction of mixed A-Hodge structures, as follows
from the following fundamental result of Deligne and the beauti-

ful converse proved by Beilinson, recalled in 2.3 below.

2.2. Theorem ([De 3] 8.1.9 (ii) and (v)) If K° 1is a mixed
(polarizable) A-Hodge complex, then for all n€Z W[n] and F
induce a mixed (polarizable) A-Hodge structure on Hn(KA), and

the spectral sequence associated to F degenerates, i.e.,
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we see that Hﬁ(K') - HRW(K’) is an isomorphism, if the

weights are <O (WOH =HH) for the mixed A-Hodge structures

H = H£—1,H£

2.6. Finally, for k € Z the k-th Tate twist K'(k) of a

mixed A-Hodge complex XK' is defined as

. k -
KA®Q @Q Q(2m/=-1) ( K¢,W[2k])

a1§ff3///a Kk\\£i§®id , (k) “i\B

K; 8, Z(zn/:T‘)k (K A@(Dmg(zm/_'1 ,WI2k D) (K¢ w[2k] F(k]1) ,

where 81(k) is induced by multiplication, and W[2k] and

F[k] are the shifted filtrations (w[2k]. = W etc.). If
K* = ¢(C") , this corresponds to tensoring C° by the Hodge
structure Z (k) ([De 2] 2.1.13).

2.7. We apply all this to the Hodge theory of algebraic
varieties. It is the basis of Hodge theory that for a smooth,

proper variety X over €
K (X, Z) : RI'(X, Z) -» (RT(X,Q"),F)

with the Hodge filtration F 1is a pure Hodge complex of
weight O. It can be represented by <C°(X, Z) - (Q'w(X),F) or

by the mixed Z-Hodge complex X
C™(X,Q) (C*(X,C) ,W)
K* (X, Z): C/// R\\d L///a <\\}ntegration
c' (X, z) C’ (X,Q) ,W) Q* _(x),W,F)
X

with trivial weight filtrations: w_1 =0 , WO==everything. If
we define K'(X,A) in an analogous way, then by 2.5 and 2.6
we have canonical isomorphisms

~

[ ~ 2 .
HD(X,A(k)) = HHW(K (x,n) (k)) ,

(note that the Tate twist changes r° to Fk ). Since HQ(X,A)

has a pure Hodge structure of weight 2, we have isomorphisms

0 u¥ 1(x)/en Lix,a)) +r5 H%(X,A(k)) > 5Y(x,a 000 EX - 0

(2.7.1 Tg TS !

0-Extl (a HQ—I(X a) (k) - HQ(K'(X A) (k)) - Hom (a HZ(X a)(k)) » O
A-MH 7 ' H ! A-MH '’ !
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provided 2-2k < O .

Similarly, we define the mixed A-Hodge complex

'C* (X, A80) ('Q° _(X) W)
'K*(X,A) : e <.id 1.1 02 Sua
'C*(X,A) ('C* (X,A80) ,W) ('° _(X) W,F)
X

(trivial weight filtrations), and have

L

] L = 'K*
HD(X,A(k)) = HHw( K* (X,Aa) (k))

by the canonical quasi-isomorphism
'C; (X, (k) =Cone('C* (X,A(K)) @F 0" _(x) £5 '0°_(x))(-1]
X X

= RFH'K'(X,A)(k)
To see that 'K®(X,A) is indeed a mixed A-Hodge complex, we

may use the quasi-isomorphism

K°(X,a) (d)[2d] = 'K* (X,A)
proved in 1.15.

It turns out that one can rather simply define the mixed
Hodge structure on the cohomology and homology of simplicial

schemes with smooth and proper components.

2.8. Proposition Let X.,Y. be simplicial schemes over ¢
with smooth and proper components, and let f: X. - Y. be a
morphism.

(")

)
a) The map Hé(x.,A) ®A¢ - ( )HgR(X.) is an isomorphism,

)
and there is a canonical mixed A-Hodge structure on ( )Hé(x.,A)
such that

i) the Hodge filtration is given by the Hodge filtration on

(") ,p , k(') .2 ) . . .
HDR(X.) , i.e., F HDR(X.) is the image of the injective
map 2 k(") 2 ") (") 2
H”(X.,F Q" ) - H'(X., Q) = HDR(X.)
[ I~
it s e (o ot e _xany
X. X.

ii) the weight filtrations are the ascending filtrations (those

for which Grr = E;’r) associated to the spectral sequences

(2.8.1) gbrd = 'Hg(x_p,A) = 'uE* 9 (x. ,a)
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n, i ., ~ _in, _. n, .
(2.2.1) H (F KG) - F'H (K¢) < H (K¢)

under the map induced by the inclusion FlKé c K&
By the definition of morphisms in derived categories, 2.1.1

is represented by actual morphisms of complexes

'Kag ('K /W

)

where oy is a quasi-isomorphism, 81 is a filtered morphism,
and 82 is a filtered quasi-isomorphism, and we rather call
these diagrams mixed A-Hodge complexes, or A-p-Hodge complexes
if they are polarizable (cf.[Be 2]3.9). There is an obvious
notion of morphisms and quasi-isomorphisms between them, and
by inverting the latter ones one obtains the category DﬁplA of
A-p-Hodge complexes up to quasi-isomorphism. It becomes a tri-
angulated category by the cone construction ([Be 2]3.10).

If C° is a bounded below complex in the category A-MH of
mixed A-Hodge structures,there is an obvious mixe@ A-Hodge com-
plex K'=¢(C’% with K;=C’(with filtration W. defined by

N~ n
WmK = wm+nK ) .

2.3 Theorem ([Be 2] 3.11) The functor C’' »>¢(C") induces an
. b
equivalence of triangulated categories between D (a-MaP) , the
derived category of bounded complexes of mixed, polarizable
b +
A-Hodge structures, and the subcategory DWP,A of DWPIA

formed by bounded complexes.

.4 The absolute (Hodge) cohomology Hﬁ(K') of a mixed A-Hodge
complex K' is defined as the £-th homology of the complex

RT, K" =Cone (K;@W_K; o OW _MFOK; (@Blig: oW Ky (=11,

H AQQ o C A Q

(a,B)( A,kQ kc) = (a1kA-a2kQ,B1kQ—82kc), W. = (Dec W). the

"filtration decalée" (see [Be 2] p. 51), which up to quasi-
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isomorphism does not depend on the choice of lKQ@A and 'Ké,
i.e., only depends on K' as given in 2.1.1.If C° is a com-
plex in A-MH and K' = ¢(C"), RI, K’ represents RHom, .. (A,C"),

where A 1is the trivial (pure of weight O) A-Hodge structure,
hence Hﬁ(x')coincideswith the hyperext-group Exti_MH(A,C‘).
Moreover, via ¢ the mixed Hodge structure on Hh(ct)  is

Deligne's mixed Hodge structure on Hn(KA) , hence the hyperext

spectral sequence gives a spectral sequence

(2.4.1) BBr9 = mxel k) = Bl k)

where Extg_MH is the Yoneda Ext-group, see [SGA 4%][C.D.]
p. 298. On the other hand, we obtain for a mixed A-Hodge

structure H

Hne ! (W, nF°H ¢ /p=0 ,

P _yuyP _
Exty MH(A,H) HH(¢(H)) Coker (H®W HQew nF°H —>HQ®W HQJ p=1 ,
(204-2) O Ip_?_2 ’

where €: H - Hc is the canonical map (in reality, Beilinson

has to show this formula by other means to prove 2.3).

2.5, Beilinson defines the weak absolute cohomology of K by
forgetting the weight filtration W , i.e., by letting ij(K')
be the 2-th homology of
- . . O, . (O‘IB) Vi e 1 -
RI‘HWK —Cone(KAéBKAQQG)F Ke —= KA@QQ KG:)[ 11.
In the derived category D+(A) this complex is isomorphic to

. O, . €—-1 .
(2.5.1) COne(KA e F KC —_— KC)[ 1)

with € =8a and 1 the inclusion, so by property 2.2.1 we ob-

tain a long exact sequence

7

(2.5.2) .o HX (K7) -»HQ(K')eaFOHQ(K £oy yt (Kg )-»1-1 (1< ) -.
HW A

and induced short exact sequences

=1, - o, =1, . 9
(2.5.3) 0-H (Kc)/ €H (K Y+F H (Kc) —>HHw

1

(K) -

_,HQ(KZ;)ne FOHQ(K ) - 0

Comparing this with the short exact sequences

1 =1 . [
(2.5.4) 0=Ext, . (AH~ ' (K;)) > Hy(K") > Hom, .0

obtained from 2.4.1 and the vanishing of Extg_MH for p>2

(A,I{E(K}'\)) -0

’

¢

g
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(2.8.2) BP9 = wlx ) = Hg+q(X.,A)-

p

b) After tensoring with Q, the spectral sequences above dege-

' s
nerate at E2 , giving Gr‘g+r ( )Hé(x.,A®Q) as the subquotient
E—r,l+r of E—r,£+r.

2 1
c) There is a commutative diagram of canonical pairings
2 v
wDR’ HDR(X.) x HDR(X.) - C
(2.8.3) Te 1e ul
v 2 HY(X.,B) x 'H_Y(X.,A) - A
B,A" B ! B o

the upper one perfect, the lower one perfect after tensoring
with @ , such that via these

-i,.-2
(2.8.4) F ’HDR

(X.) 3 Hom (HX_ (x.) /ptt]

¢ ‘Hpr @)

-2 ~ L

'

(2.8.5) wW__'H " (X.,A8Q) > Homy g0 (Hp (X. ,A8Q) /W, _,,A8Q) ,

i.e., 'H;Z(X.,A®Q) is the dual of the mixed Hodge structure
L

HB(X.,A®Q)

d) The diagram

3 -2
Hg(X.,A) x 'HZ (X.,A) - A

£x] Iz, |

Hé(Y.,A) x 'H;K(Y.,A) - A

is commutative, and f, and f* are morphisms of mixed A-
Hodge structures. In particular, they are strictly compatible
with the weight and the Hodge filtrations.

Proof a) For the homology we only have to prove that

s'N'C" (X.,A) > (s'N'C" (X.,A8Q,W) —>(s'N'Q" _(X.),W,F)
S'N'K' (X,A): l1.10 X

'CT ((X.),A)
is a mixed A-Hodge complex, where the weight filtrations are
given by the second ascending filtrations of the double com-
plexes:

W (s'N'C’ (X.,A8Q)) & 'c’(x_,,A8Q) ,

tim
Ye€ZZ
. _ r
Wm(s'N'Q m(X)) = & 'Q w(X_t) ,
X t<m X_t
rez
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and the Hodge filtration is induced by the Hodge filtration
of the 'Q° (X))
X2 P

P
Fis Nt (X)) = e Pt (x
X. r,t€® X_

But this is clear, since Grﬁ:s'N'K'(X,A) is the Hodge complex

of weight m
'Cr(x_,A) [m] - ('Q7_(X_

X—m

For the cohomology the complex considered by Deligne in [De 3]

) [m],F)

m m

8.1.19 is guasi-isomorphic to

SNC” (X. ,A®Q) (sNC* (X.,C) ,W)
SNK* (X. ,A): U/ﬂ T\\id (//7l Q\integration
SNC* (X. ,A) (sNC* (X.,A®Q) ,W) (sNQ° w(X.),W,F),
X.

where N 1is the cohomological analogue of 'N above, mapping

a cosimplicial abelian group A. to the cochain complex NA.
. i _ i _iEr, 4,V

with (NA.)™ = Ai and d— = vgo( 1) 6V , and where

W_(sNC'(X.,A8Q)) = @& Cc'(X ,A8Q) ,
t>m
r€Z
similarly for @ , and
Fsne _(x)) = e FRRT_(xy)
X. r,tem X

so that G{zf;NK'(X.,A) is gquasi-isomorphic to

C‘(Xm,c)[-m]

///ﬂ K\}ntegration

cr(x ,A) [-m] (@ Lx -l F) .
X
L) ] ) 1)
vote that nY(x.,F*(ar ) =t wr N Mo xyy ,
X. X.
1
since the sheaves Grg( )qu are fine and hence acyclic.
X
P

b) By the definition of the spectral sequences 2.8.1 and 2.8.2
(cf. [De 3] 5.2.3), they agree with those given by the weight
filtration, as defined above, hence the claim follows from a
general property of mixed Hodge complexes ([De 3] 8.1.9(iv)).
c) For a smooth and proper scheme X over € we have a com-

mutative diagram of pairings
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X X

(2.8.6) <l e I

WC : C°(X,C) x 'C°(X,q) »C
defined by evaluation and by integration (M,w) b Iw as in
1.1 ¢). In the induced commutative diagram M

v
ar () —y  Hom (@' (X),0)
X X

el v v

et (x,0) —C Homg, (C* (X, @) ,©)

the morphisms wc,e and k" are quasi-isomorphisms, hence
the same is true for WQ
For a morphism f: X -» Y of smooth and proper schemes the
diagram
C*(X,A) x 'C°(X,A) - A

(2.8.7) £ I I

c*(y,A) x 'C*(y,A) -~ A

commutes by definition, hence wm and wQ are functorial in

X . This gives analogous quasi-isomorphisms wm and wQ for
our simplicial scheme X. , since sIJHomc(BZ,G) =Homc(s'NB:,¢)
for a simplicial complex B. of C-vector spaces. Moreover,

w¢ comes from a pairing

WA : sNC*(X.,A) x sNC*(X.,A) -» A ,

and we may define the pairings 2.8.3 by the latter and wQ .
Since wQ is a quasi-isomorphism, wDR

is perfect, and this
implies the perfectness of and then of

e YB,g © . Vp,a09  Pe”
cause the HJ (X.,Q) are finite-dimensional vector spaces
and we have ('?Hé(x.,Q) oc (')H]‘;R(x.) ana ulix.,ne) T
ulx.,06me0) .

Obviously, the pairings Y are compatible with the fil-
trations F and W (w(wi®wj) < Wi+j etc.), if we endow A
and € with the trivial filtrations , i.e., wB,A is a pairing
of mixed A-Hodge structures into the trivial Hodge structure A.
Hence we obtain the morphisms 2.8.4 and 2.8.5, which must be
isomorphisms by the non-degeneracy and the strictness of
morphisms of mixed Hodge structures.
d) The functoriality is clear from the diagram 2.8.7 and its

simplicial analogue, and £, and f* are morphisms of mixed
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A-Hodge structures since they are induced by morphisms of mixed
A-Hodge complexes.

2.9. We want to apply this to prove the Hodge theoretic state-
ments in the proof of 1.18.

Let X be smooth and proper over € or IR , and let YcX

be a divisor with normal crossings. Let ¥ = Y1 1L...1LYr be
the normalization of Y ( Yi the irreducible components of

Y , which are smooth and proper), and let Y. = cost Y be

the coskeleton of Y/X (see [De 3] 5.1). This is the same as
the nerve of the covering Y = UYi , 1.e., Ym consists of

the (m+1)-fold intersections of the Yi . Then Y. - Y is a
proper hypercovering, and hence has descent for the Borel-Moore
homology. Since 'CQ(X, 7Z) computes the Borel-Moore homology

of Y (compare 1.14.1 and [BM] 3.5 b)), we see that the map

ﬂC in the following commutative diagram is a quasi-isomorphism
0 - 'Q" (on ¥)(X) - '@’ _(X) % »<Y>(X) -0
A X X
| T
s'N'el (Y.
Y.
(2.9.1) qu- ey € (%, 9)

s'N'c’ (Y. ,A(k))

bre

0 - 'Cy(X,Aa(k)) - 'CT(X,A(k)) - 'C(X,¥Y,A(k)) » O

On the other hand, if we let ‘Qém(on Y)(X) = Ker a as indi-
cated, L is a filtered quasi-isomorphism for the Hodge fil-
tration by [Ful3.7.1 (the statement for Ny<¥>,cf. 2.11 g) below)

Together we obtain canonical quasi-isomorphisms BC,BF and
BQ sitting in a commutative diagram
B
C
Cone(s'N'C'(Y.,A(k)) -» s'N'C"(X,A(k)) -~ 'C°(X,Y,A(k))
) ® B ®
Cone (s'NFX'@ . (¥.) - s'NF ' L)) F FXrta<v> (x)
Y. X X
2.9.2)  Jemr ! A
Cone(s'N'Q (Y.) - s'N'Q° (X)) Ry 0 <Y>(X)
o~ o (==}
Y. X X

More generally, let (X.,Y.) be a simplicial object in
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?* . Then for each n we get a proper hypercovering ?n."*Yn
as above, hence a bi-simplicial scheme Y.. and a morphism
of simplicial schemes u : AY.. - Y. - X. , where 2. = a¥.. is
the diagonal of ¥.. (see [De 316.4). By looking at the sim-
plicial analogue of 2.9.2, applying the normalization functor
'N and then the Eilenberg-Zilber guasi-isomorphism, we now

obtain a commutative diagram with quasi-isomorphisms B8

Uy B
Cone(s'N'C"(2.,A(k)) —> s'N'C" (X.,A(k))) —C> s'N'C*(X.,Y.,A(k))

® ®
K Uk k Bp Ky
Cone(s'NF"'Q" _(Z.) —s'NF 'Q" _(X.)) —>s'NF 'Q" _<Y>(X.)
Z. X. X.
2,9.3
con ;.
Cone(s'N'Q" o(Z.) ——s'N'Q° (X)) — s'N'Q" <Y > (X)) .
Z. X. X.
Here the left column is the diagram Ké & FOKé - Ké for the
mixed A-Hodge complex
Uy
K* = 'K° (u) = Cone(s'N'K"(2.,A) (k) — s'N'K" (X.,A) (k)) ,

z. and X. having smooth and proper components, hence we can
apply all properties of mixed A-Hodge to the right column.
In particular, the map 1 of 1.18.2 is injective by 2.2.1,
and, since the above quasi-isomorphisms are functorial in
(X.,Y¥.) , a morphism f: (X.,Y¥.) - (X!,¥!) will induce mor-
phisms in the deRham homology, which are strictly compatible
with the Hodge filtration, since they come from morphisms of

mixed Hodge structures f, : H*('K"(u),) - H*('K'(u’) , with

A)
u': AY!. » X! defined as above.
In fact, by using the canonical guasi-isomorphisms BC,BF

and BQ

mixed A-Hodge structures on the homology of 'C*® ((X.,Y.),A)

for "transport de structure", we can put canonical

= g'N'C’ (X.,Y.,A) , varying functorially in (X.,Y¥.) , such
that the Hodge filtration is given by the Hodge filtration of
H*(s'N'Q °°<Y.>(X.)) = H*(s'N'C'(X.,Y.,A))@AQ . By the same

constructions and arguments as in 1.17 and the proof of 1.18,

we obtain the following result.
2.10 Theorem a) Let Z be a separated scheme of finite type
over C€ , then there is a canonical mixed A-Hodge structure

on the Borel-Moore homology 'Hé(X,A) , & € Z , such that the
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Hodge filtration is the Hodge filtration of 'HgR(Z) =
'Hé(Z,A)@AG and for a proper morphism f: Z2 - Z' the maps

fu: 'HB(Z,A) - 'Hé(Z',A) are morphisms of mixed A-Hodge struc-
tures.

b) For the twisted Poincaré duality theory given by

i

H (X,A) (j) as mixed A-

i
<
VA X MH B,Z

B,2

(X,A(3))

X~ HO(X,A(b))

HE(X,A)(—b) Hodge structures

where Hi(X,A(b)) = 'H;a(X,A(-b)) , all morphisms occurring in
the axioms ([BO] 1.3) are morphisms of mixed A-Hodge struc-
tures.

2.11. Remarks a) To prove 2.10 b) for the connecting morphisms
of the long exact sequences 1.1.1 and 1.2.3 in [BO] , note that
the latter come from exact triangles of mixed A-Hodge complexes
K% - Ké - Ké - , and hence the connecting morphisms come from
morphisms of mixed A-Hodge complexes ,Ké - Ki[1]

b) All constructions for Deligne cohomology and homology can
be made on the level of mixed Hodge complexes. Thus, Beilinson
in [Be 2] defines mixed Hodge complexes K° and 'K' for ar-
bitrary varieties, and obtains absolute Hodge (co)homology or
Deligne (co)homology by applying RFH or RT w o these (see
2.4 and 2.5). One could and perhaps should prgve all state-
ments about Deligne (co)homology along these lines. In [Be 2]
Beilinson defines the homological complexes as duals of com-
plexes with compact support Ké , but one may also define the
'K'-complexes by starting from 'K°(X,A) as defined in 2.7

and use the complex 'K'(u) 1in 2.9 for arbitrary schemes.

c) By only working with simplicial schemes with smooth and
proper components in 2.8 and 2.9, we have avoided putting weight
filtrations on (complexes quasi-isomorphic to) 'CT(X,Y,3)

and 'Q°_<Y>(X) and then using the more difficult result of
Deligne% [De 3] 8.1.15, that applying sN (resp. s'N) to a
cosimplicial (resp. simplicial) mixed Hodge complex again gives
a mixed Hodge complex.

d) In [Be 1] 1.8.4, Beilinson seems to assert that m, and =

c Q
in 2.9.1 above are embeddings, which obviously cannot be true.
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e) The diagram 2.8.6 commutes with our sign conventions, but
not with the ones in [DMOS] pp. 13,14.

f) The considerations in 2.9 show that Gillet's definition

of Deligne homology [Gi 2] leads to the same groups as here.
g) The notations used for currents in the literature are quite
diverse. For the convenience of the reader we compare our no-
tation with that of Fujiki [Ful] and King [Ki], for a smooth
proper variety X and a divisor with normal crossings

i: ¥ - X , with open complement j: U < X(d = dim X) .

here King Pujiki quasi-isomorphic to
Q° A E, C
X X X
Q <¥> Ay (log ) - Rj,j*C
X
. . . Lk
me(null Y) AX(null Y) EXY/X 3,3 c
Yo T . V-
Q*_[-24] 'DX DX c
X
o %% on v) | 10z DS <Y i Ri'C
w (Oon ¢ (on Y) x <¥> i,Ri
g 2%y 'D: (log Y) 10:/Di<y> | Rji*C
< X XX *J

§3 Riemann-Roch and Hodge-D-conjecture

For a field F , let (% be the category of reduced, quasi-

projective schemes over F , called varieties in this section.
Recall that for a scheme X one has the Quillen spectral
sequence of homological type [QuilS.4

1
3.0 E = o K X E = K'
( ) p.q xEX( | p+q(K( )) = ptq ptq
p
where K' denotes Quillen's K-theory of coherent sheaves on X,X

(X)

(p)

is the set of points of X of dimension p, and k(x) is the re-
sidue field of x € X .

3.1. Lemma If X 1is a variety of dimension d over
F =R or € , there is a canonical isomorphism
o: B2 ._(X) =Ker(® k(x0*%Y% o z) Sul. (x/F,m(a-1),
d,1-4 2d-1
xEx(d) xex(d_1)

; 1-q 1s the divisor map [Quil5.14, [Gray].
’
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Proof First assume that X 1is smooth of pure dimension d

Then we have canonical isomorphisms

2 - g ! 1.15, D
Eq,1-¢X¥) = 0(X) = Hp(X, Z(1)) —=> Hyy_4

X

alg
see [EV] 2.12 ¢) for o

(X, Z(a-1)) ,

In general, X contains a smooth open subvariety U of
pure dimension d such that the complement Y = X~U 1is of
smaller dimension. From the long exact homology sequence
1.19.1 and the vanishing result in 1.20 we obtain a commutative
exact diagram

D D D
o - sz"1 (X/ Z{(d-1)) - HZd_-I (U, Z(d-1)) - sz_2<Y, Z(d-1))

(3.1.1) 1 q (%) Ti.20
2 x div
O-»Ed,1_d(X) "O(U)alg —> o Z
Y€¥ (a-1)

defining the dotted isomorphism we need. Since everything is
functorial, it does not depend on the choice of U . The
commuting of (%) <can be seen as follows. By passing to the
normalization and using the covariance for finite morphisms

we may assume that X 1is normal, hence regular in codimension
one. By removing subvarieties of Y of dimension < d-1 we
may assume that X 1is smooth and hence pass to Deligne coho-
mology. By 1.20 we may restrict to Betti cohomology and
finally have to check that for smooth X

1 2
Hg(U, Z(1) = HE (X, Z(1)
(3.1.2) T TclB
o X, 4% ® @
alg €y
Y= (a-1)
is commutative, where clB is the relative cycle map. This is

well-known, in fact, more or less the definition of the latter
(compare [SGA 4%][cycle]2.1).

3.2, By the definition of the Chern classes and characters
with values in the Deligne cohomology
(3.2.1) c,ch : K (X) - o H2I™(x,a(5))
m . D
JE€EZZ
(see [Be 1] 2.3 and [Sch] §4), for smooth X the composite

3.2.2  x,x 25 o 8 Hy(X, Z(1))

X
alg
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coincides with SRR =ch1 ;- We now shall show that for gene-
4 17

ral X of dimension d the composite

. 2 0 D
(3.2.3) Kj(X) - Ed,1—d(X) 2 Hoqo1 (X, 2(a-1)) ,

where the first map comes from the spectral sequence 3.0, has
a similar interpretation.

The Riemann—-Roch theorem as formulated by Grothendieck
[SGA 6], using Chern classes, Ko and Ké , has been reformu-
lated and extended by Baum, Fulton and MacPherson [BFM] by
using certain natural transformations 1 between Ké and homo-
logy. Gillet has shown how to extend this to higher algebraic
K-theory, if one has a twisted Poincaré duality theory satis-
fying certain further properties [Gi 1].

Beilinson has written down another set of axioms which
assures the existence of the wanted transformations, and he
has proved that the Deligne (co-)homology satisfies these
axioms, the main points being the following ones.

The Deligne cohomology can be obtained as the Zariski

hypercohomology of certain complexes

A €7ZZ
(p)D,Zar (p )
on the big Zariski site of u¢ , see [Be 1] 1.6.5, and [EV]
5.5 for a slightly weaker statement. The Poincaré duality iso-
morphisms

2d a

D 7 (X,A(d-b)) 5 H (z,A(b)) ; a,b € Z ,

for Z <closed in a smooth variety X of pure dimension d

is induced by quasi-isomorphisms
- 3 o -
(3.2.4) RFZ(X,A(d b)D,Zar) d CD(Z,A( b)) ’ bez ,

which follow from the corresponding quasi-isomorphisms for X
and j: XNZ = U< X and the commutative diagram

~

RF(X,A(d—b)D Zar) - ’Cb(x,A(-b))

j* v +j*

%

lc‘

(d—b)D gar U,A(~-Db))

by the cone construction (cf. 1.15 and1.19.3). Finally,
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these data satisfy the conditions a) - £) in [Be 1] 2.3;

for d) compare the proof of 3.1 above.

The axioms of Beilinson and Gillet do not imply each other:
While the homology groups of Gillet do not necessarily arise
from (functorially given) complexes in D+(Ab) , the Gysin iso-
morphism and its properties ([Gi 1] 1.2 vi) and vii)) are po-
stulated by Beilinson only for the complexes of global sections
Rl (x,-) . As far as I can see, this suffices for all theorems
proved by Gillet in [Gi 1] , however the compatibility of the
Poincaré quasi-isomorphism (cf. 3.2.4 above) with open immers-
ions should probably be included in Beilinson's axioms to ob-
tain a canonical restriction map in homology and property iii)
of [Gi 1] 4.1

In any case, the Deligne (co-)homology satisfies all the

axioms, hence for the universal case A = @ we obtain:

3.3. Theorem There are homomorphisms for X in VF , F=1R
or C ,
D
T: K'(X) » & H__., (X,0(b)) , m > O,
m bem M 2b

compatible with the covariance for proper morphisms and contra-
variance for open immersions of both sides such that T([OX])

= Td(X) N ng , where ng is the fundamental class in the De-
ligne homology and Td(X) € v& sz(X,Q(v)) is the Todd class
of X , and such that for a closed immersion Z< X the
following diagram is commutative

2j-m D n D

(® H (X,0(3))) ® (® H__ ., (X,0(b))) > ® H , __,(Z,0(c)
jez D,2 bem D 2b ceg MmN Zé
(3.3.1) ch®T T
Z ' n '
Km(X) ® Kn(X) - Km+n(z) ,

where ch 1is the Chern character 3.2.1 with support (cf.
[Gi 1] (2.34 ii))

For smooth X the canonical isomorphism K&(Z):Ki(x)
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can be obtained as capproduct with [OX] € Ké(X) , so that

3.3.1 implies a commutative diagram

2 2j-m .
Km(X) — © HD,Z (X,9(3)) UTd (X)
JjEZZ
23-m .
(3.3.2)n00,] ntqo,1) o 1, ™(X,0(3))
X" [ X jezzv'z
/“J

D(Poincaré

: D
Kp(2) ——  ® Ho o (X,0(b)) N ny g0 fe8rs

pez ™ 2P
Conversely, the proof of the theorem consists in showing that

one may define 1 by this diagram .

3.4. Example Since Td(U) = 1 + terms in & H%J(U,Q(j)) '
we have a commutative diagram 3>0

D D .15 1
Hygoq (X,@(a-1)) — Hyy (U,e(a-1)) L2 mjw,00))

Ta-1 OTT T3-1 OTT Tch1,1

K1 (X) —> K} (U) c—o— K (0)

where nd_1 is the projection onto sz_1(-,Q(d-1)) . Compa-

rison with 3.1.1 shows that 3.2.3 coincides with Tg-1 97T

after tensoring with @

3.5. Recall that the Q-rational motivie (or absolute) cohomo-
logy and homology of a variety X over a field F can be de-
fined as

(3)

Kyy_g (X) ,

Hy (X,0(3))
(3.5.1)

M o a _ — ' ('b)
i (x,0(0)) Hy? (X,0(-b)) = Kl (X)

where Km(X)(j) denotes the subspace of Km(X)Q =

Km(X) QZ:Q , on_which the Adams operator wk acts as multi-

plication by k3  for every k > O , similarly for K!'

Note that the definition of the Adams operators 'wk on

K&(X) (called ¢k in [Sou ] 7.2) requires the embedding of

X 1into a smooth variety W and then changing the Adams oper=

ations on the relative K-groups Kﬁ(W) = K&(X) by multipli-
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cation with cannibalistic classes of Q&/k to make everything

independent of W .

3.6.Lemma Let W be smooth of pure dimension d , X € W be
a closed immersion, and n& € H d(W,Q(d)) = cHd(W)Q (cf. 3.8
a) below) be the fundamental class of W , corresponding to
the cycle class of W . Then the following holds.

a) eh ) ) < W Mw.eG))
(b) D
b) TR (X) ) < Hp_,p(X,0(-b))
c) the capproduct with nx induces a commutative diagram
. oyt - = (3) ch i )
rD B HM,X(W'Q(])) = 2J ]_(W) —ﬁ HD,X(W'O(J))
M S . . .

(3.6.1) n Ny Poincaré duality

' . g (3-4) T D »

rp ¢ 2 (X Q(d-i))= sz l(X) _—> H2d—i(X’Q(d 7))

Proof The first property is proved in [Sch] §4 (the proof

there also works with supports), and by [Sou] 7.2 iv) one has

Ké(w)(j) n nx c K%(X)(j—d) . By 3.3.1 and [Sou] 7.2 we have
a commutative diagram
erd x_(w, <& x w3 b y2I My g9y
F m Q ~ m DIX P24
(3.6.2) N[0 ]ls nan J/ﬂr(n )
. W W W
FY o, © iy (3-A) T D
Grd_ij(X)Qw K (X) —_— \)gzzmz\)(x QD))

with the graded terms for the y-filtrations on the left. The
isomorphisms ¢ are induced by the inclusions Km(w)(j) c

F%Km(W) and Kﬁ(x)(“) cF K (x) , and the left square is
commutative since [Ow] = n; + terms in Fg 1K (w) . Since

M
T(nw) = ClD({W]) = ng € Hgd(W,Q(d)), see 3.8 b) below, and the

capproduct with it gives the Poincaré duality isomorphism, the

remaining claims follow.
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3.7. The difference between 3.6.1 and 3.3.2 is explained by

the fact that the capproduct with does not coincide with

M
. .
0 - Km(X)Q . The latter is not

even compatible with the Adams operators as remarked above.

the canonical isomorphism Kﬁ(w)

However, one has the commutative diagram 3.6.2, and can use
the isomorphisms ¢ 1in it to describe the motivic cohomology
via the Y-filtrations. This is done by Soulé in [Sou 1] , and

he proves that

2o X by Hy L (X,0(3)) , i,j ez,
’

X sy Hg(X,A(b)) , a,b €z,
defines a twisted Poincaré duality on VF , With the re-
striction that H; Z(X,Q(j)) has so far only been defined
for X smooth. Then 3.6 c) can be interpreted by saying that
the maps rp and ‘rD in 3.6.1 , which Beilinson calls the

regulator maps, are morphisms between twisted Poincaré duali-

ties, in the obvious sense.

3.8. Lemma a) After tensoring with @ , the spectral sequence
3.0 degenerates at E2 on the lines p+gq = 0,1 and gives ca-
nonical isomorphisms Hg.(X,Q(j)) = E? .(X) ., = CH.(X),. and

M ] ~ 2 J J,-3] ) J (]

Hyseq (X,0(3) T B, (X))
b) Via the isomorphisms in a) , T: ng(X,Q(j)) - ng(X,Q(j))
is given by the cycle map.

Proof a) has been proved by Soulé [Sou 1] 5.2, and b)
follows from the case j = dim X by functoriality. In this

case it amounts to the equality T( M) = nz , which can be

n
X
checked in the Betti homology by 1.20, where it is well known.

3.9. In view of 3.8 b) and 3.4, 1.20 and 3.1 imply that

, LM ~ D
rp ¢ H2d(X'Q(d)) - HZd(X,Q(d))
(3.9.1)
ro : HY . (x,0(a-1) SHY, . (X,0(a-1))
D T2a-1"7 2@-1""
are isomorphisms for X of dimension d over 1R or C

Similar isomorphisms cannot exist in general, because Beilinson
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has proved that for a smooth variety X the image of the re-
gulator map
rp: Hy(X,0(3)) = Hp(X,0(3))

is countable for i < j or Jj > d+1 ([Be 1] 2.3.4)!

Note, however, that Beilinson's conjectures in particular
would imply, that for a smooth and proper variety X over Q
the map

(3.9.2) r) = ch: Hy(X,@(})) 8 R = Hp(X,R ()

is surjective for i < 2j . This follows immediately from the
statement of these conjectures ([Be 1] 3.4 and [Sch] §5) for
i < 2j-1, for i = 2j-1 note that the image of

. cl . . . . .
a:23 71 (x) 5 B3 %, mi3-1)) 0 2k, 00 P2k, R (39)) 47 n2) T (x, RG))

is contained in the image of the map above, by the commutative
diagram

D . 23-1 . 23-

o s ey

M . 25-1 . 25-1 .
HZd_zj_-l(ZlQ(d J)) é‘:‘ HM,Z (X/Q(J)) —_ﬁHM (XIQ(J))

Y%, R (3

for 2Z<5 X of codimension j=1 and the fact, that a([Z])
€ Im i, by functoriality.
The surjectivity of 3.9.2 would have a remarkable conse-

quence, by the following property of the motivic cohomology.

3.10 Lemma For a smooth varlety X, HM(X ®(j)) has support
in codimension > i-j , i.e. Nl JHl(X ,0(3)) = HM(X Q(3))
for the coniveau filtration Nv of HM , defined by

v i ] . ' . . . . X ]

N (X,@(3))= U Im(Hy o (X,0(5))5Hy (X,2(3)))= U Ker (Hy (X,2(3))~Hy (1°2,2(3) ,
Z=X closed of 2<X closed of
codimension > V codimension > V

compare [BO]

Proof For smooth X the spectral sequence 3.0 is usually
written in cohomological notation (X(p) = {x €X|codim x = p})
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(k(x)) » P = g x) ,

(3.10.1) EP'%x) = @ K___ .
1 xex (P} Tp-q p-q

n

via the isomorphism K%(X) Km(X) and reindexing. Soulé has
proved that 3.10.1 induces a spectral sequence

3.10.2) B2 4(x)(§) = @, K k(x)) 7P} LgPH(4) =k 09
( ) BY ) (9 2o Cpmg (K1) (3) =K_,_,(X)
see [Sou] 5.2. On the other hand, for a field F one has

(v)

Km(F) =0 for v>m,

by results of Suslin {[Sul] (see [Soul] Thm. 2 and 5 ii). This
implies EY’¥(%)(3) =0 for j-p>-p-q . For -p-q = 2j-i
we see that E?’q(x)(j) =0 for p<i-j, hencg the part of
the spectgal sequence 3.10.2 contributing to H;(X,Q(j)) =
K2j—i(X)(]) lives in codimension >i-j (note that 3.10.2 is
compatible with restrictions to open subvarieties and that
lim E?’q(x—z)(j) = O where Z runs over all subvarieties of

codimension <p ).

Beilinson thinks that the map 3.9.2 is also surjective for
a smooth and proper variety X over IR ; by 3.10 this would
imply

3.11. Hodge-D-conjecture (Beilinson [Be 1] 1.10) If X is a

smooth and proper variety over C and 1i<23j , then H;(x,nujn
has support in codimension i-j , i.e., for every element x

in H;(X,IR(j)) there is a closed subvariety %z cX of codimen-
sion i-j such that x lies in the image of H;IZ(X,ZR(j)) .
3.12. Remarks a) Note that, if we regard X as a scheme over
R via pg: X 8 spec € - Spec R , then canonically Hﬁ(Xéﬂh-..)
= Hg(xéc,...) . °

b) Recall that the usual Hodge conjecture is equivalent to
saying that the elements in Héj(X,Q(j)) n Hj’j are supported
in codimension j . In fact, Beilinson's formulation [Be 1]
1.10.1 combines both conjectures and includes the case i =23,
c) In [Be 2] Beilinson generalizes the Hodge-D-conjecture to
arbitrary smooth varieties, but at least a part of this is dis-
proved in [Jal]. Namely for non-proper varieties X there are

counterexamples against the surjectivity of the map
k,(x) 3 - (21T»/:‘1‘)3w2jﬁl_§3’1 x,0)nelu?d " (x,0,
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already for dim X = 2 and j = 2. In view of this, it would be
very interesting to test conjecture 3.11 for proper surfaces
and (i,j) = (3,2) (see the example below).

3.13. Example Let us consider the case 1i=2j-1 . By the
standard sequence for Deligne cohomology (see 2.7.1) we have
isomorphisms

2

12372 (x, m(3-1)) nuI 7371 3 w2372 (x,0) /822 (x, () ) +FI S

1%

23-1 .
HDJ (X, R(3)) ,

but no similar isomorphism with support in a subvariety 2Z ,
since the Hodge theory is different. Hence the conjecture does
not assert that the cycles in the left group are supported in
codimension 3j-1 1in the Betti sense (which is false, compare
3.12 b)), but one really has to work with the Deligne (co)homo-

logy. The commutative diagram (d = dim X)

D . ~ 25-1 Gy L g2i-? .
sz_sz(Z,IR(d 3)) = Hp g (X, R(3)) Hy (X, R(3))
(3.13.1) 'rD T 'rD T TrD
M . ~ 29-1 . 23-1 ‘
Hyg-24+1(2,2(d=3))8p R = H =) " (X,0(3))8y R » Hy~ " (X,0(3))8; R
3.8ﬁ ﬁ3.8
E2 (2)® R x E2 (X)® R
d-3+1,-d+j d-j+1,-d+]
for 12 % X of codimension j-1 , in which the surjectivity of

the map 'rD on the left follows as in 3.1, shows that for
i=2j-1 conjecture 3.11 is actually equivalent to the surjec-
tivity of the regulator map rp on the right.

If ZSing is the singular locus of Z , one has a commu-
tative diagram
D . « D sing oy gl sing
Hyg-24+1 (2, R(d-3j)) <= Hyg-2941 (z2~2 +R(d-3)) =Hp(2~2 yIR(1))
(3.13.2) 'rDT rDT To
2 2 sing ~ sing, X
Ba—g41,5-a(8) ™ Bgogyq,5-¢(232777) = 0022 g g

similarly for x~z°'"9 | in which « is injective by 1.20. By
the description of p in [EV] 2.12 ii), 2.16 b) and 2.17 we

have a commutative diagram for a smooth variety U
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~

HY(U, R(1)) 2 {c €C™(U, R |oe ec% <p> (0) }

Re log f = loglfl T&:=Rew
(3.13.3) o I (€T (U,6/ R(1) 1do € af <D> (D) }
f = expo Tcan.
x - 1 -
O(U)alg lo€r(u,0/ Z (1)) lde €95 <D>(U) } ,
if U 1is a good compactification of U = UND (i.e., U is

smooth and proper, and D is adivisor with normal crossings).
Similar to [EV] 2.14, there is a description of the real Deligne
homology 'H%(U,Zm(k)) as the 2-th homology of the complex
m ol
(3.13.4)  come(F*'e’_<>@ —=ls 'si-1) () [-1]
U

where 'Sb is the complex of real-valued currents and

is the projection

k-1

'Qﬁw<D>(U) —>'QI'J°°(U) = 'SL']®G: - ’sé@ R(k=-1) := 'SI‘J(k-1)
induced by the decomposition € = IR(k) ® IR(k-1) . This is co-

variant in (U,D) € ob(F*) , and one has the Poincaré duality

1.1a) ,
_—

quasi-isomorphism She )[-2d] . Using this for suit-

able good compactifications of z~251n9  ang  x~zS5N9 , 3.13.3
for 2~25'"9, and 3.13.1 for 2~2°*"9 ana x~2z°'"9 , one ob-
tains the following.

e . . 2 )

Via xrp , a family (fa) in Ed 5+1, —d+j(X) (i.e., fa
€ c(xa) , codlmX(X ) = j-1 , and Z le(fa) = 0 ) 1is mapped
to the class in 23 2(X R(j=1) nHj 1,31 represented by the
current

1
f: wp —mM— % Il 5 loglfulw.

—yd=3+1 o sing
(2mV~T) Zu\Za

This has to be interpreted in an appropriate way, since this

current is not closed as it stands. Via 3.13.4, the image of

(f,) 1is the class of the closed current f+1rj b= £+
To+3en3T 5 i w272, mG-1) /827200 RG-1)0 (FI+pd)
< H_J'z(x R(j=1))N yi~1,3-1 , where Y is an element of

Fi'g (X) with df=-7.
X% 371

f , if we integrate against (d-j+1,d-j+1)-forms. Since a cycle

dy . This gives the same result as

of degree 2j-2 in FJ+F) is a sum of cycles in Fj and F%
the above class only depends on f and coincides with the class
constructed by Beilinson in [Be 2] 6.
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Concluding, Beilinson's Hodge-D-conjecture in this case
23_Z(X,:Il‘<(j-1) nud™1 371 g generated
by such currents. Here the singularities of supp(f) are

amounts to saying thatH

essential: if 2 = U Za is smooth, all fa are necessarily
constant, so f 1is an IR-linear combination of the cycle
classes of the 2 and in particular lies in

#2372 (x,0(3-1)) n w3713 o w .

4 Beilinson's conjectures for motives with coefficients
J

and a reformulation

Both for the introduction of coefficients and for Deligne's
reformulation and interpretation of Beilinson's conjecture the
language of motives is essential, so we shall briefly recall
the definition.

4.1. Beilinson applies Grothendieck's general procedure to the
full Chow groups. So for a field k and a number field E he
starts with a category C(k,E) , whose objects are symbols EX
for each smooth projective variety X over k , and whose ho-
momorphism sets are the E-vector spaces

Hom(EX,EY) = CHIM™ Y(xxv)@E ,
with composition defined by the intersection product: for
f € Hom(EX,,EX,) and g € Hom(EX, EX;) one has go f =
Py3x (PY,f:P359) where Pigi XyxXyxXy ~ XyxXy  are the pro-
jections. Note that XMsEX then becomes a covariant functor,
by sending f: X » Y to the graph of f in X x Y . Then the
category M(k,E) of motives over k with coefficients in E
is obtained from C(k,E) by formally adjoining images of pro-

jectors and inverting the Lefschetz object E(-1) defined by

the unique decomposition EIIP1 = E Spec @ ® E(-1) . Hence every
motive M in M(k,E) is given by a triple

M = (X,p,r) ,
with X smooth and projective over k , p ECHdim X(XXX)@E =
End(EX) an idempotent, and r € Z . For N = (Y,qg,t) one has
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dim Y+r-t

Hom(M ,IN) = g Hom(EX(r),EY(t))p = gCH (XxY)p,

note that Hom(EX(r),EY(t)) = cHUI™ YFI~t v, v)eE is a left

End(EY)- and a right End(EX)-module, EX(r) = EX@E(HQ’r =
(X,id,r)

By replacing the Chow groups by other groups with similar
formal properties, other notions of motives are possible and
will in fact be needed later. Hence we call the objects of

M(k,E) Chow motives to distinguish them.

4.2. If one has a twisted Poincaré duality theory (H*,H,)

on V with a éupproduct in the cohomology such that the

k
cycle map is compatible with this product structure, then one
can extend H* to M(k,E) as follows. Let

(4.2.1) B (EX(r),3) = B 2T (X, 54r) @, E

and for f € Hom(EX(r),EY(t)) define
£* : HY(BY(t),3) » BL(EX(r),3)

by f*(u)_= (ﬁx)* (cl(f) U n;(a)) . Here tbe Gysin map
(M) x gt*2dift Y g y.v) (r-t),j+dim Y) - HY (EX(r),3) for the
projection ﬂx{ XxY -» X is defined via the Poincaré duality
isomorphism and the covariance of homology for proper mor-
phisms. This extends to M(k,E) in an obvious way by letting
at(mM,j) = p*ut(EX(r).5) for M= (X,p,r).
Examples for k = @ , which we shall.always assume in the

. i . _
following, are HDR ' Het , HD' e.g., HD(14®HR,A(3)) =

J"+2r(X6IR,A(j+}:)) ®ZZE] . We can also apply this to the

p*[H
motigic cohomology, and by the compatibility of the Chern
character with the product structure the regulator maps
Ip ¢ Ht(x,@(j)) - H%(Xinmqlm(j)) are compatible with the
action of correspondences p , hence can be defined for motives.
Recall that one obtains motives for absolute Hodge cycles
by replacing the Chow groups above by the groups of absolute
Hodge cycles ZKH(_) of the same codimension [De 4] 0.9, and
then passing to the dual category, to obtain agreement with
loc. cit.. Thus the cycle maps CHT (XxY) - 2%_(xxY) define

AH .
a contravariant functor from M(Q,E) to this category. In
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particular, for i € Z we can define E-motives for abso-
lute Hodge cyclgs Hiﬂ(lﬁ? = p*[Higzr(X)(r) Q E] , having
realizations H;R(Iﬁ) , Hgt(ld®§,wz) and Hé(ld@@,@) with
the induced comparison isomorphisms [De 4] §0

The numberings are such that everywhere where classically
stands an X we can write a Chow motive M . Conversely, if
a reader wants to follow the rest of this chapter without
caring for Chow motives, he may read X where we have written
an M.

4.3. The i-th L-function of a Chow motive M is defined as
an Euler product
(4.3.1) L' (M,s) = TTL;(M,s) .

P

where for £ # p

i _ i _ 1
(4.3.2) Lp(14,S)—Lp(Hét(lﬁbQ,Ql),S)

_ -S| i Ip,’
det(1-Fr p | HE (M20,0) ™)
Ip an inertia group at p in Gal(®/®) and Frp a geo-

metric Frobenius in the corresponding decomposition groups.
Note that Hét(l4® Q,QE) is indeed a free Q,8 E-module, as
follows from the comparison isomorphisms with Hé(l&@@,@)@Qﬂ.
By the usual conjectures on L-functions (see [Se] and [De 4])
s
]

the above determinants are in E[p , independent of £ % p,

and the Euler product converges for Re s > ER , giving an

2
analytic function with values in € ® E or, equivalently, an
array (...,Lé(md,s),...) , indexed by o0 € Hom(E,C) , of

C-valued L-functions, by the isomorphism € ® E = cHom(E,¢)

(cf. [De 4] 2.2.2). By the Weil conjectures proved by Deligne
this is true for M= (X,id,r), if we remove the factors L;
for those p , where X has bad reduction. By specialization
of cycles and the Lefschetz trace formula this extends to ar-
bitrary M= (X,q,r)

Conjecturally, Li(ld,s) has a meromorphic continuation
and a functional equation

(4.3.3) (r_-mt(m,s) = (e-e)t(m,s) - (1 1) TH

MY ,1-s) ,

(X,qt,dim X-r) . Here the anti-
gdim X(xxX) ® E is the map in-

with the Chow motive ™Y
involution t on End(EX) = C

duced by transposition of the two factors of XxX . The e-
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factors ¢ as the L-factors L© only depend on the i-th

£-adic realizations Hét(ml®6,Q£)=p*[Hé:2r(XxQ@,Q£(r))@E]
as Q2®E-Gal(®/Q)—modules , and Qi(]w,s) and ei(lﬁ,s) are
determined by the i-th Betti realization Hé(l&@@,ﬂz) =
p*[H;+2r(XxQG,E{(r))®E] as R ® E-Hodge structure with "in-
finite Frobenius" (see [De 4] §5)
The following lemma shows the agreement with the formu-
lation given in [De 4] §5 , since by definition l(m,s) =
J
L(HAH(I4),S)
i

HAH

4 4. Lemma One has canonically H;;(MV) = (M)" (E-dual).

Proof For a field R and finite-dimensional R-vector spaces

A,B one has a commutative diagram of canonical isomorphisms

(A®E, BOE) tr, H ((BEE)” , (a8E)" )

OMR®E

L i

treidg Y
HomR(A,B) QRE \ HomR(B JAT) ®RE ,

HomR®E

V' the dual for R8E

and R , respectively. Hence it suffices to show, that for

where tr denotes the transposition and

varieties X and Y of dimension d4 and e , respectively,
and a correspondence f € Hom(QX,QY) = CHe(XxY)Q the corres-
te CH® (¥xX) = Hom(QY¥(e) ,@X(d)) induces the

transposed maps via Poincaré duality in the realizations, i.

pondence f

e., that with the canonical trace morphisms tr_ the diagram

. . tr
elov,R) x m2®Tl(y,R(e)) - B2 (Y,R(e)) —5 R

f*J/ T(ft)*

plx, R x w297 (x,r(@)) - ¥ x,R(@) =B R
commutes , ? = DR , ét and B , and R = Q,Q, and Q , re-
spectively. This follows from the formula

* = * *
trX(pX*(pY(y) Ucl(f)) U x) trXxY(pY(y)Ucl(f)UpX(x))
t t
= * * = *
trYxX(PY(Y)UpX(x)Ucl(f )) trY(Y U PY*(PX(X)Ucl(f 1)),

where we have used the relations try px* = try,y T tryex Yy
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and Y,¢* = id , for ¢: XxY » ¥xX the transposition.
Beilinson postulates the existence of a Chow motive M°

with

(4.4.1) L Hmv,s)

(4.4.2) 1t s

LH(m® L i+s)
H(MC ,i+s)
oo

(The equality 4.4.2 follows from [Be 1] 3.1 and the results
4.14 apd 4.15 below, and the equality (L-Lm)_iCMV,s) =
(L-Lw)l(lf)i+s) follows by comparing 4.3.3 with Beilinson's
functional equation). For ™M = EX one can take MO = EX, too,
by the hard Lefschetz isomorphism

. d-i
i . L 24d-1
(4.4.3) HAH(X)(l) —< Hay (X) (d)

for i <d = dim X (without restriction), which depends on i
and a class of an ample divisor £ € CH1(X) . Since 4.4.3 is
not compatible with the action of correspondences, I see no
way to define M° in general. Of course, we have LiCMo,s) =
L((q*)OHiH(X),s) for M= (X,q,0) , where (q*)o is defined
by the commutative diagram
d-i

i 2 2d-i .
HygXg — > Hyy "X (@-i)g
(4.4.4) (a%)° j/ J/q*
d-i
i 2 2d-i .
S SN - ;
Han (X g ~ Hag ~ (X0 (d-i)g

the problem is to show that (q*)o = (qo)* for some idempo-

tent qO € CHd(XxX)E so that one can take ™M° = (X,qO,O)

Since we only need the L-functions 4.4.1 and 4.4.2, which
in any case can be computed from M via 4.4, we may and shall

. . v
write everything with the more canonical motive M .

4.5. Recall that for n > % + 1 we have canonical isomor-

phisms
H;” (XxR, R(n))

[

HiDR(XxIR )/HliB(XxIR,]R(n) )+FnH]i)R(xxJR )

(4.5.1) i
DR

1K

HL (XxR, R(n-1)) /FHS (XxR)
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used in the formulation of Beilinson's conjecture for X

[sch] §5 . since then also n+r > 1%§£ + 1 , and everything is

compatible with the action of correspondences, we obtain the same iso-

morphisms with M™M= (X,q,r) instead of X . Finally, if the

"integral part" H*(Xz;,Q(*)) c Hﬁ(x Q(*)) (see [Be 1] 2.4.2.1)

1s compatible w1th Gysin maps, one can define similar subspaces
(]WZ,Q(j)) c H (M ,Q(3)), and then Beilinson's conjecture for

a Chow motive 14 over @ with coefficients in E can be sta-

ted as follows

4.6 Conjecture Let n > % + 1 be an integer.

_ -i v . o s
a) Let pi,n = ords=1_nL (M ,s) be the multiplicity of
L-]'(ZMv ,s) at s = 1-n , then p, = dim ]Hl+1(JM®IR R (n))
i,n R
i+1 i+1

b) The regulator map rDQIR: Hy (:ME,Q(n))GIR-»HD (MR, IR(n))
is an isomorphism.

i+1
IR®LHD (MR, R(n))

(M)] - , via the

c) Let R(i,n) Dbe the E-structure on det
defined by det H;(MeR,R (n-1))®ldet F"
exact sequence

DR

o - " H R(MER) - Hé(]M@ R, R(n-1)) - HliDH(]M@ R, R(n))-0

R R

n, i i
F HDR]M) ® R HB(]M® R,®(n-1)) ® IR
- P, :
and let L™°(mMY,1-n)* = lim (s-(1-n)) *'"L*(mMY,s) be the
s-1-n
leading coefficient of L~ i(mY ,8) at s = 1-n . Then
+1
rp(detgiy™ (M ,0(m))) Y(mY,1-n) %R (i,n)
For n = % + 1 or 3%1 we refer the reader to [Be 1]

3.7 and 3.8. If also the Euler factors Li(n4,s) at primes

p of bad reduction are non-zero for Re s > % + 1 , conjecture
4.5 a) follows from the functional equation ard the known multi-
plicities of the Li , cf. [Be 1] 3.3. and 4.15 below.

4.7. Examples a) Let X = Spec F for a number field F
which is Galois over @ . The Galois group G = Gal(F/Q@) acts
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on F from the left and hence on X from the right. For
0 € G denote by Oy the corresponding automorphism of X
and the induced element in End(EX) = CHO(XxX) ® E . One easi-
ly checks that o » Iy induces an E-algebra isomorphism

E[G]°P 3 End(EX) ,

E[G]0p being the opposite algebra of the group ring E[G]. For
a cohomology theory H* the assignment o0 & 0;: H* (EX) - H*(EX)

gives the usual left action of G obtained by functoriality,
1

and (OX)* is the action of O ' . Any idempotent p € E[G]
defines a motive ™M = (EX,p) =(EX,p,0), and in this manner
one obtains the category of Artin motives. Let V = E[G]pt =
HomE(E[G]p,E) , where (ZaOO)t = Zaod_1 . This is a left G-
module, hence a left GQ = Gal((®/®)-module via the canonical
projection T: GQ G . I claim that

1°(M,s) = L(V,s) ,
where L(v,s) = TTLp(V,s) is formed as in 4.3.2, via the geo-

metric Frobenius elements. In fact, if we use an embedding
a: F e 6 to identify

T_(Xx_0) = =
o = ~ o Q' _ X(Q) _ _Hom(F,Q) ~
f: nO(XxQé) -0, FUVINN Tf (Im(Spec ao xid))o

GQ acts via 7m as left multiplication, and for 1T € G

acts as right multiplication by T—1 . Hence HO(E4®@,QQ)

’

e A

QQ ® E[G]pt as GQ—module, so the result follows by 4.3.2.
Now Beilinson has shown that the regulator maps
(i =0, n>1)

:
rp®R : Hy(EX, ,@(n)) ® R =~ H(EX®8R R (n))

I 2
Kyno10p) ® E 8@ R - H (@R, R(n-1)3(R (n-1)% (@ 17ex
0.*
K2n_1(¢) -» R (n-1), for
a € Hom(F,€), as defined by Borel (see [Be 1] A 5.2). Here
0 is the ring of integers in F , and * denotes the fixed

F
space for the involution ¢ acting via the complex conju-

are induced by the maps K2n—1(OF)

gation in IR (n-1) and X(C€) = Hom(F,C) . Furthermore the

number ¢, _ € (R® E)*/E* such that

1

rD(detEKZn-1(OF) ® E) = ¢

_1y X(C) .+
1-n detpl@(n-1) ] ®E
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can be determined by choosing an E[G]-isomorphism

X(G)]+

$: W:= [Q(n-1) ® ES K 0p) ® E =: K

2n—1(
and taking the determinant of (rD ® IR) o (¢ ® idﬂ{) with
respect to an E-basis of W . Thus, by the commutative dia-
gram

G ¢®ideid G r)®R ®id G
[WoV] @R ———> [KOV]'®R — 5 [WeV] @R
(4.7.1) %&weid %Kma ZLOLWQId
9@id r,® R ;
pWw ® R —— PK ® R ———> pW @ R,

where a.: [W @ E[G]pt]G s HomE(E[G]p,W)G 5 pW etc. are the
canonical E[G]-isomorphisms, we see that Beilinson's conjecture
in this case amounts to that of Gross (see [Neul): the leading
C . _ v _ +O0,V o4l

coefficient of LArtin(V,s) = L(V ,s) = L (M ,s)v at s = 1-n
should be thedeterminant of the map 4.7.1. Here V' = Hom(V,E)

~ . _ t .

= E[Glp is the dual of V = E[G]p~ , and LArtin(V’s) is the

Artin L-series, defined via the arithmetic Frobenius elements.

b) Let M™M= (X,p,r) be a Chow motive. Say that (M ,i,m) is
critical, if neither Li(n4,s) nor L;i(MV,1-s) has a pole
at s = m . This means that m is critical for the associated
motive for absolute Hodge cycles HzH(Id) [De 41 2.3., and by
4.15 it implies that H51+1(IF/®H1,Ei(1—m)) vanishes provided
m < % . Then Bei}inson's conjecture has to be interpreted in
the way that L—l(ld,m) € (R® E)/E" is the determinant of
the isomorphism

1-m_-i
F HDR(M

Yy eRr 3 H;i(JMVQ R ,0(-m))®R

ﬂ
ot (M ® R, (-n) 8@ (1-m) TR/ H;l (MY @R ,0(1-m))

with respect to the indicated E-structures. By 4.4 this map is
dual to

H;(JM@JR,Q(m))@IR > H]iDR(JM)/FmH]iDR(m) ® R.
Hence we may compute the determinant of the latter ([De 4]
5.1.3), which by definition is the period c+(HiH(Id)(m)).
We conclude that Beilinson's conjecture for critical (M ,i,m),
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m< 3, is equivalent to Deligne's conjecture [De 4] 2.8 for

H;H(I4)(m) . It is not difficult to extend this to m =.%
and i%l (if this is entire and critical), and for m>l21

one has to invoke the functional equation (compare below).

4.8. Remark The above description of motives with coefficients
in E corresponds to the "language B" in [DE 4] §2. In the
often used "language A" one talks of motives M with @-coeffi-
cients together with a ring morphism E » End(M ). Via the cor-
respondence between these two (loc. cit.) EX corresponds to

X ® E; note that for such objects the L-functions always have
Q-rational coefficients. One has to be careful with the dual:
the relation X' = X(dim X) does not carry over to E e« End(X)
in general. For example, for an elliptic curve X with complex
multiplication by a CM-field E the dual is given by the con-
jugate action. Of course, the relation 4.4 does not depend on
the chosen language.

4.9. The E-structure R(i,n) of H%+1(I4,Ez(n)) given by the
exact sequence in 4.6 c) is very convenient for the above for-
mulation of Beilinson's conjecture, but it used the somewhat

ad hoc @-structure @(n-1) of C¢/IR (n) . Another, perhaps more

canonical E-structure DR(i,n) can be obtained by using the

first canonical isomorphism in 4.5.1, i.e., the exact sequence
: . "
0 » H(MOR, R (n)) - Hy, (MOR)/F" - Hp " (M8R,R (n)) ~» O

and the E-structures Hé(]M@]R,(D(n)) and H];R(M)/ F! .

In [De 5] Deligne has observed that this E-structure is
related to a formulation of Beilinson's conjecture in terms of
L-values at integers n > 1%1 , i.e., to the right of the
central point.

First let us compare the E-structures. Fgr this let M =
HiH(M)(n) and HB(M)i = part of Hy(M):= Hi(M8C,0(n))
where o acts as +1 . Then HB(M)+ = HE(IG@IR,Q(n?) ’

HY (MR, Q(n-1)) = 5oy Hy (M)~ and FOH (M) = FHpp (M)
(note that the Tate twist shifts the filtration). We have a

commutative diagram
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h

0 - (FPH__ (e, (M) ) OR »(s——r H_ (M) "@H_(M)")®R - H, > O
DR B Z7/-T Hp B )

. [ JIr I
O -» (F HDR(M)QHB(M) J®IR —— HDR(M)QBQ _— HD - 0

o 1 -
(o] ind FHDR(M)QJR"' WHB(M)QR—H HD—’O

in which the first two rows give Beilinson's and the last one
. i+ .
Deligne's E-structure on Hp = H% 1(l\d,lR(n)). This shows

(4.9.1) DR(i,n) = (2n/<1)"9 My « R(i,n) ,

where 4a (M) = dimEHB(M)- and ¢6(M) is the determinant of

the canonical comparison isomorphism (cf. [De 4] 0.4.1)

I =1I(M) : HB(M)®¢ - HDR(M)®¢

Next we relate L-values on the different sides of the
functional equation, writing a ~ b for two numbers a,b €

(C®E)* , if ab | € E .

4.170. Lemma For a Chow motive M and i,n € Z we have

) . . i o
tm,n)* ~ LY, 1-n) el (m,n) (21/57) T (M - (E-2n)dT (M) /2

or, equivalently

LM * ~ L(M(1))*e (M) (2n/=7) ¢ (MI-w(M)d(M)/2

where M = H;H(IU (n) and L(M)* is the leading coefficient
of L(M,s) at s =0 . Here 4a (M) = dimH (M) =

. _ i o i _
dlmEHDR(Ml = dEM) o 4 (M) = dim Ho (MOR,Q(n+1)) =
dimEHB(M) =d (M) , and w(M) = i-2n is the weight of M .

Proof Since L' (M ,n+s) = L(Hy (M),n+s) = L(Hr (M) (n),s =
L(M,s) and  L(M(1),s) = L(H “(M¥)(1-n),s) = L - (M",1-n+s)
by 4.4, and similarly for L_,e and ¢€_ , the equivalence is
clear. Hence, as leading coefficients are multiplicative, the

claim follows from the functional equat18$1and the formulae

- P:q p,p,(-1) -
e ) =TT 1(@PFDRTIE b Yip= ti d7-wd/2
p+tgq=w
w=2p
p<q

where hP’9 = qim Hp’q(M) and hp'p’f=dim Hp'p(M)n(Hép(M)i®¢),

and

d” - wd/2

T o oen” .

L (M(1))*L_ (M) %~

359



The first formula follows from the definitions [De 415.3, and
the second is proved in [De 4]15.4 (the proof extends to the

leading coefficients in the non-critical case).

Now we further investigate the e-term. In [De 4]5.5 Deligne
has proved
(4.11.1) e(M) ~ e(det M)

d (M)
where det M = AE M , and in [De 4] 6.6 he has conjectured

that motives of rank one are the ones we know:

4.11. Conjecture det M = [x])(-w(M)d(M)/2) for a Dirichlet
character x: Gal(Q/Q) - E® (note that w(M)d(M) 1is the
weight of det M ).

Here [x] denotes the Artin motive for which Gal(Q/Q)
acts via X on the f&-adic realizations; we do not have to
distinguish between Chow motives and motives for absolute
Hodge cycles here, since for Artin motives Ho gives an anti-equi-

valence of categories. By [De 4] 6.5, 5.19 we have
(4.11.2)  e(Ix]1(x)) ~ e(Ix D~ ([xD~2n/=1) T 8 ([x] (x))
Hence 4.11 would imply

(4.11.3) (M) ~ (2m/=T)WM A /24

since obviously d&(det M) ~ &(M) . Assuming 4.11.3 we would
obtain

(4.11.8) L(M)* ~ L(M(1))*(2n/=T) "¢ M5y

from 4.10. A comparison with 4.9.1 for M = H" (M) (n) gives
the following reformulation of Beilinson's conjecture 4.6 c).
4.12. Conjecture If M 1is a Chow motive and n > % + 1,
then
i+1 _Li .
r,(det Hy (M, ,Q(n))) =L (M ,n)-DR(i,n) .

Note that n lies in the range of convergence, so that
no meromorphic continuation is needed and we work with an
actual L-value instead of a leading coefficient, and that more-

over no dualization is involved in this formulation. For
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n = % + 1 one has to pass to the "thickend" regulator (cf.

[Be 1] 3.7) involving the group Nn-1(n4) of algebraic cycles
of codimension n-1 modulo homological equivalence, and to the
leading coefficient Li(nd,n)* (compare that by Tate's con-
jecture the pole order of LG-z(na,s) at s = n equals the

rank of Nn_1(]m)) .

We now come to the motivic interpretation of Beilinson's
conjecture as formulated by Deligne in the letter [De 5] . For
this recall from 2.7, that for a variety over € one can in-
terprete its Deligne cohomology in terms of morphisms and ex-
tensions of mixed Hodge structures. There is a similar inter-

pretation for a variety X over IR.

4.13. Lemma Let MHIR be the category of mixed IR -Hodge struc-
tures over IR: objects are mixed IR-Hodge structures H with
an "infinite Frobenius", i.e., an involution Fw: H->H re-
specting the weight filtration such that F_: H®C - H®C re-
spects the Hodge filtration, and morphisms are morphisms of
mixed IR-Hodge structures compatible with F_ . Then for an

object H of MH]R we have

a) Homg (R ,H) WOH+ n r°uec)” (by £ w» £(1)) ,
IR

{3

1 ~ + + o) +
b) Ext . (IR ,H) = (W_HEC) /WOH + F (H®TC) ,
c) Exti‘m (IR,H) =0 for i>2 ,
R
where IR 1is the trivial Hodge structure over 1R (F_ = id) ,

and * denotes the fixed space under Fm .

We do not prove the lemma here - it can be obtained by si-
milar methods as for 2.4.2. We only remark that the second iso-
morphism sends

o-H 3 E B ®mr - o
to the class of (res) (1) , where s 1is a section of
WOE ® ¢ B ¢ that is compatible with the Hodge filtration and

with Fm , and where r 1is a section of WOH 3 WOE that is
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compatible with F_ (compare [Car] , lemma 4, for the situa-
tion without F_ )

If X 1is a variety over IR , then Hé(x XIRC’ R) 1is a
mixed IR-Hodge structure over IR , with F_  being the map in-

duced by the antiholomorphic map F_: X xmc - X x__C

r , and we

have isomorphisms

HY(Xx €, R) (07 = B (%/R, R(K))

(4.13.1)

L + % A
(Hy (X x € ,R) (k) ® Q) Hp (X/IR,€) = Hyp(X/R) ,

since Tate twist (k) by definition changes F_ by (—1)k
and since Fm corresponds to the deRham-complex conjugation
(see [De 4] 1.4 for the smooth, projective case). If X 1is
smooth and proper, then Hé(x x€C,IR) is of weight & , hence
for 2-2k < O the standard sequence for Deligne cohomology
([EV] 2.10 a) ) gives a short exact sequence

o~uizlx/m) /uE T (/R R(K0)+FF S B (X/IR, R (K) ) HY (X/R, RENF-0

(4.13.2) 4
1

Ext (IR ,H

i Txx¢,m) (X)) Hom (m,Hé(ch,IR) (%))

Q,_
R MH

Everything can be extended to coefficients in a number field

E , i.e., to the category MH of pairs (H,1) with H in

R,E

MH and 1: E - End (H) a ring homomorphism. Then for a
IR MH]R

Chow motive M in M(Q,E) we get an exact sequence for

L < 2k

(4.13.3) 0 = Ext:,m (R® E,Hé_1(m® ¢/ R(K)) »Hy (MOR, R (k)
R,E B
~ Homy,  (R®E ,HY (M8 ¢,R(k)) - O
R,E

Before we go on, we mention the following relation with the
functions Lj;(]M,s) = L@(Hé(]M@ R,IR),s) , which are defined
for every pure IR-Hodge structure H over IR of weight i
by

+1

hPrq hP:p,(-1)p hPrP,(—1)p
L(H,s) = TITy(s-p) (T (s-p) IR (s=p+1) )
p<q

(4.14.1) ptq=i if i=2p

cf. [De 4] 5.3 and [Schl§1. For coefficients by E these are
C ® E-valued functions or arrays (...,Lm(o,H,s),...) , with

L (o,H,s) defined via hp’q(c,H) = dim. HP'9 g
% C (
hplpl:(c'ﬁ) - dimc HP:P:i

eoE) ,o¢ and

®(¢®E) ,cc for o € Hom(E,C)
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4.14. Lemma Let H,H' Dbe IR-Hodge structure over IR of
weight i , then

- g1 1 ¥
a) ords=me(H,s) = dlm]REXtMH]R (IR ,H(1-m)) for m€Z ,
b) the following statements are equivalent:
i) H=H',
ii) L (H,s) = L_(H',s)

i
iii) ords=mL°°(H,s) = ords=mL°°(H,s) for all m€Z , m < 5 -

Proof a) By the known multiplicities of T and T we have

C R
m
(4.14.2) ord__ L_(#,5) = £ P34 PR 71T
m<p<q if m<p,
p+tg=i 2p=i
cf. [Sch] §1, in particular this is zero for m>% . On the

2
other hand, since the weight of K = ﬁ(1-m) is =-i=-2+2m , the
1 .
group EXtMH

(IR ,K) vanishes for m2%+1 (note that mixed
IR -Hodge strﬁlétures of weight zero are semisimple). For

i-2+2m <0 we have

kK'nrPxen)  cx*nrPxea)t n FPxeae)t =0,
hence EthllH (IR ,K) has dimension
IR
. + ) + ) o +
dlm]R (kee) -~ dlmIRKF dlmIRF (K®CT)
— 3 - 4 ® p— 3 o
= dlmq:K@(E dlmc(KQG) dlmc F (K®C)
= aimpx - (£ WP I + PP )y -z nPrdk)
p<q 1-m >0
= aimgu - (z hP 9@ + PP D Ty - 5 nPr9)
p>q n p<m
= 3z w9 + @PP Dy,
m<p<q
where we have used hP'¥'*(f) = hP"9* () and ©nP'9" " (H(x))

-1 L
- pPrEearr, s -DE

b) For the non-trivial implication iii) = i) note that by 4.12.2
the hP’? anda nP’P’* can be deduced from i and the multi-
plicities for m_<_% , and that these numbers determine a IR-
Hodge structure with F_ (we remark that for both statements

the knowledge of i 1is necessary).

4.15. Corollary For a Chow motive M in M(Q,E) and m_<_%
one has ords=mL°l°(JM ,8) = dimIR@E H51+1 (]M‘:IR(1-m)) .
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Proof First we note that all considered modules over IRQ®E
are free over IR®E Dby the comparison isomorphisms (compare
[De 4] 2.5), and that tbe Li(o,nms) are independent of

0 € Hom(E,E) , hence L;(DLS) can be regarded as a function
into €C < C®E . The claim then follows from 4.14 a) and
4.13.3.

4.16. It was Grothendieck's idea that various cohomology
groups Hi(x) of a smooth projective variety X over a field
k should'just be realizations of a motive Hi(X) . Grothen-
dieck's category of motives Mk,E is constructed as in 4.2,
replacing the Chow groups by their gquotients modulo numerical
equivalence. The existence of the Grothendieck motives Hi(X) -
as direct factors of the motive (X,id,0) - then depends on the
so-called standard conjectures, which also imply that numerical
equivalence equals homological equivalence and that Mk,E is
an abelian and semi-simple category. The first property cannot
be expected from the category M(k,E) of Chow motives, and the
second one is definitely false: for example for a curve X the
radical of End(EX) = CH (XxX), = Pic(XxX); is Pic®(XxX)p.
Deligne proposes that the Chow motives MM should rather be
regarded as objects in a derived category of motives, so that
only the cohomology objects Hi(nﬂ give Grothendieck motives.
In the realizations this corresponds to the fact that a variety
X £ Spec k gives rise to objects Rf*QQ in Db(Spec k,QQ) =
Db(Ql—Gal(E/k)—mOdules) and K'(X,A) in pP(a-MH) (for k=C ).
whose i-th cohomology is HY (X % E’Ql) as Gal (k/k)-module
and H;(X,A) as (mixed) A-Hodge structure, respectively, and
this carries over to Chow motives M .

Now the derived category of a semi-simple abelian category
is again semi-simple, so no radicals would appear. But Deligne
points out that one would get a coherent picture if one be-
lieves that Mk,E can be embedded in a certain abelian cate-
gory of mixed motives MMk,E and thgt M can be regarded as
an object in the derived category D (MMk,E) of MMk,E , de-
note this associated object by R(IM) (for M=X it has reali-
zations Rf,Q,,K"(X,A),...) .

Mixed motives should be the motivic analogues of mixed Hodge

structures, being successive extensions of pure (i.e., Grothen-
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dieck) motives. These extensions are in general non-trivial;
again this could not happen in a semi-simple category. Now the
motivic cohomology should be the motivic analogue of Deligne
(or absolute Hodge) cohomology, so comparison with the results

cited in 2.4 suggest the formula

i . _ i .
Hy(11,@(5) = Exty ) (E(0), R (5)
(4.16.1) !
Hom (E(0) ,R(M) (3)[i]) ,
D(MMk,E)
where E(O) = R(ESpec k) 1is the Grothendieck motive HO(ESpec 9]
sitting in degree zero. By the formula
_ r _ 2r _ .0
Homy gy (M,ESpec k) = CH (X)pp =p*Hj" (X,Q(r)) g =Hy (M,0(0)
for M = (X,p,r) , we obtain agreement with the embedding of

M(k,E) in Db(MMk’E) , 1f as for the motives for absolute
Hodge cycles we define Mk,E as in 4.2 but in a dual way, so
that M ~sR(IM) 1is a contravariant functor (as are the functors
xv~>Rf*Q2,K’(X,A),... ; as a general rule Chow motives behave
like varieties and Grothendieck motives like a (universal) cohc-
mology theory). In fact, we can deduce the embedding from
4,16.1 in the following way. Recall that the category M(k,E)
has duals (defined above), a tensor product (M® N =

(X xY,p%xXp-p§xyq,r+t) for M = (X,p,r) and W = (Y,q,t))

and an internal Hom (Hom (4, N) = m?b:m) . If we assume the

same formalism for MM and hence for Db(MM ) , we get
k ,E k,E

_ o v
HomM(k’E)(]M,]N) = Hy(Me N7,2(0))
4.16.1 v
Hom (E(0) ,R(M® N ))
(4.16.2) D~ (MM L)
= Hom (E(0) ,RHom (RIN , RIM) )
DT (MM, )
= Hom (R(IN) ,R(IM)) ,
D (MMk,E)
assuming R(IM") = RHom(M,E(0)) (cf. 4.4), R(IM® N) =
R(IM) ® R(IN) and Rl_io_rl\(m,m) = RH_o_rB(lM,E(O)) ® IN. We mention
that the relation Hy(M(r),(3)) = Hi'?Y(M,Q(j+r)) together
with 4.16.1 suggests the formula R(M(r)) = R(M) (r)[2r], in

agreement with the principle 4.2.1.
For k=€ the regulator map from motivic cohomology to De-
ligne cohomology should just be "passing to the realizations”,

in particular, it should map the hyperext spectral sequence

365



(4.16.3)  EB'd = ExtP (E(0), 1% (m) (5) = Y T(M, 0(9))

,E
to the spectral sequence 2.4.1 for K*'(IM, A) (3) (cf. 2.7).
Now for k=@ Beilinson's conjecture 4.6 b) gives a close re-
lation between HE(IM,Q(j)) and H%(]M@]R,]R(j)) ; in view
of 4,13 c) this leads Deligne to assume
(4.16.4) Extl  (E(0),-) =0 for i»2,
MM -—
Q,E

so that 4.16.3 gives short exact sequences

(4.16.5) o-»sxt:m (E(0) ,H’L'l (M) (3)) - Hﬂﬁ(M,Q(j)) >Hom, ~ (E(0) ,HQ(]M) (30 -0

QIE QIE

mapping to 4. 13.3 via the regulator map. Then the induced maps
. (E()H (@) () - Extl.  (ReE,H(Mec, R (n))
Q,E R,E

just associate to an extension of motives the extension of

(4.16.6) Ext

their real realizations, i.e., their corresponding Hodge
i+ i+1

structures over IR . For n > = the wgight of H (M) (n)
is i¥1-2n<0 , so that HomMMQ'E(E(O) L ) () =
HomMQ,E(E(O) ,HlH(JM) (n)) wvanishes. The same is true for the
real realization, hence 4.16.6 then coincides with

(4.16.7) Httm, 0m)) - a5t (Me R, R(n)) .

For n = # by definition Hom, (E(0) JH2D (M) (n)) = NP (M)

is the quotient modulo numerical gqgivalence of Hﬁn(]M,Q(n))

= CHn(]M) = Hom (IM(n) ,ESpe¢ Q) , and the cycle map

]I:IE

in fact maps a correspondence M - ESpecQ to its real reali-

M(@,E)

cE™ (™M) - N*(M) - Hom (R® E,H:"(Me €, R(n))

zation.

4.17. It is sometimes convenient to write everything in terms
of cohomology - recall the formula Ext;(zz ,F) = Hl(X,F) for
a sheaf F on a space X . Hence we may set

i

i _ )
HM(M) = ExtMMk (E(0) ,M) for M in MMk,E ,
,BE
i B i .
HH(H) = ExtMHIR B(IR®]-3,H) for H in MHIR,E R
7

to obtain a commutative diagram for i+1-2n<0 and k=Q
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0~ H;(Hi(mm,mtn))) - Hzi;l(m&m,m(n)) - Hﬁ(ni”(mm,m(n)) -0

Irb I:D T cl

0 > H;l(Hl(IM) ) — H;”m,@(n)) — H;(Hi+1(m) (n)) —— 0 .

4.18. Example So for there is no description of a category of
mixed motives, not even a conjectural one. Only for so-called
1-motives there exists a definition [De 3] 10.1, and we illu-
strate the above philosophy at this example. Let A be an abe-
lian variety over @ , and consider the case i=1,n=1 ; then
we can identify

1 1 2 2
O-»ExtMMQ(Q(O) AER) (1)) > Hy (A, 201) ->H0mMMQ(Q(O) JHE(A) (1)) »0
(4.18.1) Y]z cal(a) [2

(o] s 2
0 ——— pic%(B) ) ——— Pic(h)y———> NS(A)g ———0

By the formula of Weil-Barsotti-Rosenlicht

(4.18.2) Pic®(a) = Ext;lg_grps.(A,Gm)

every element x in Pico(A) in fact gives rise to an exten-
sion

(4.18.3) O-»Gm->E—>A—*O

of 1-motives. This induces the extension of mixed Hodge struc-

tures over 1R

0~H (AxC, R(1) »H (Ex¢, R(1)) - H (6 xC, R(1)) »0 ,

R
IR

and one can show this extension is the image of x under the
regulator map via the identification in 4.18.3. Note that the
definition of 1-motives given in [De 3] 10.1 is a "homological"
one; passing to the dual category and indicating this by
writing H1 , 4.18.3 corresponds to an extension

0 - H(a) » H (E) —>H1(Gm) -0 .

Since one should have H1(Gm) = Q(-1) , we get the isomorphism
Y by combining 4.18.2 with
Ext'(a,6) T Exty, (@(-1),H'(2) ¥ Ext'(o,u' (@) (1) ,
]

and see that the regulator map then really becomes "passing
to the Hodge realization".
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4.19. Assuming that Hb(IMZ,Q(j)) < Hh(n4,®(j)) can be des-
cribed similarly, by using a category of mixed motives over
7Z , Deligne now formulates the following principles under-
lying Beilinson's conjecture (Note that for N==H_i(B@§(1—n)
we have §(1) = Hi(nﬂ(n), and that the weight w(N) of N
is =i-2+42n ).

Let N be a Grothendieck motive, let p = ordszOL(N,s)
and L(N)* = lim s_pL(N,s) be the leading coefficient.

S-0

Principle 1 If w(N) >-1 ( » 0 < central point of the func-

torial equation), then L (N)* mod E” can be described in
terms of ﬁ(l) .

Principle 2 If w(N) >0 and N contains no direct factor
©(0) , then o = dim H:{(HB(NH))@]R).

Principle 3 Under the hypotheses of principle 2, L(N)* is a
. 1
regulator for H& (3.N(1))eR - HH(HB(ﬁ(1))®Ei),
Z

where Jj: Spec Q@ -» Spec Z is the inclusion.

4.20. Remarks a) By Deligne's reformulation 4.12 , one may also
rewrite principles 1 and 3 only in terms of M = N(i)

b) A consequence of principle 1 is: if an L-function only de-
pends on the i-th cohomology of a variety X , all its proper-
ties should also be describable in terms of the i-th cohomolo-
gy (i.e., the motive Hi(X)) , perhaps involving the dual. Of
course, L(N,s) and hence L(N)* are defined only in terms
of N , hence of ﬁ(1) . The non-trivial statement is that
also every other description should only depend on N(1) and/
or N . Generally speaking, Deligne cohomoclogy and motivic
cohomology do not factorize through the category of Grothen-
dieck motives (this can only be expected from "geometric"
theories having a Kinneth formula). But the kernels and co-
kernels in the exact sequences 4.13.3 ard 4.16.5 do, and in fact,
only they are involved in Beilinson's conjecture. For w(N) =0

the thickened regulator only uses H& (j*ﬁ(1)) and HE(N),
and for w(N) = -1 (the central pointhBeilinson's conjecture

s 1 g
involves HM(N(1)) and HL (N). However, in this case one
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also needs a height pairing between these groups [Be 1]3.8.

Deligne points out that so far there does not exist a motivic
interpretation of the latter.

c) Let X(1) = Hi(X)(n) for a smooth projective variety X
over @ . By conjectures in K-theory (see [Be 1] 2.4) one
expects )

.Y _ 1 .
HMZZ(j*N(1)) = H ) for =n > i+l

by the above this concerns the value of Li(X,s)=L(Hi(X),s) =
L(a24 ™1 (4) (@imx) ,s) = L(N,s+n-i-1) at s=i+l-n=:m<O .
Deligne remarks that the remaining part, ijnf%-, is by con-
jectures on the local Euler factors L;(X,s) exactly.the
region where these can contribute to the zeroes of Ll(X,s) .
Moreover, for n1<% only the Li(X,s) for primes p of bad
reduction should contribute,andin the motivic cohomology the
picture is the same: ﬁx‘m<%,i.eq i+1<2n-1, conjecturally only the

K-groups of the bad fibres contribute to the difference between
i+1 i+1

Hy, (XZZ ,0(n)) and Hy (X,0(n)) . In view of this, Deligne

asks whether there is a Beilinson conjecture for partial L-

functions LS(N,S) = T Lp(N,s) involving motives (or K-
pé€sS

groups) over Spec Z~S and regulators with values in a suit-
able modification of Deligne cohomology.
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