1. Introduction

About one hundred years ago, August von Liebig, a chemistry professor at the University of Göttingen, published a theory that all chemical reactions are accompanied by a change in energy. This theory, known as Liebig's law of the minimum, has been a cornerstone of chemical thermodynamics. It states that the rate of a chemical reaction is limited by the slowest step in the reaction pathway.

2. Methods

Brenner's Paradox: Individual flies walk for 48 hours in the arena. Two basic laws are postulated: The direction of the pass can be predicted by the behavior of the flies. They may be foraging as they approach the arena wall. The presence of the roof alters the behavior of the flies.

3. Results

Buridan's paradox: The flies are not by nature frugal. The flies seem to have a fixed behavior. They do not alter their behavior with regard to light/dark stimuli any further.

4. Conclusions

Plasticity means 'simple' behaviors are not so simple. Simple face behaviors are contingent on modulated visual stimuli. The awareness of the signal output via developmentally determined neuronal connections. Examples of such simple behaviors include the photo-activated fixation behavior of the PKC delta flies is independent of the visual stimuli on the arena wall. Thus, stripe fixation but not centrophobism in wild-type flies appears increased. The status of this monitor determines the attractiveness of the flies. The results so far prompt us to formulate the following working hypothesis: Flies possess an online flight-ability monitor.