PROGNOSE DES PRIMÄREN UND METASTASIERENDEN MALIGNEN MELANOMS /EINE 10- JAHRES- ANALYSE/

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Zahnmedizin

der Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Martha Fischer

2013
PROGNOSE DES PRIMÄREN UND METASTASIERENDEN MALIGNEN MELANOMS
/EINE 10- JAHRES- ANALYSE/

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Zahnmedizin
der Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Martha Fischer

2013
Dekan: Prof. Dr. Dr. Thorsten E. Reichert

1. Berichterstatter: Prof. Dr. med. Rolf-Markus Szeimies

2. Berichterstatter: Prof. Dr. med. Thomas Kühnel

Tag der mündlichen Prüfung:

02. August 2013
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Epidemiologie</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Weltweiter Vergleich der Inzidenz und Mortalität des malignen Melanoms</td>
<td>7</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Ätiologie und Pathogenese</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Die Typen des malignen Melanoms</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Klinisch histologische Subtypen</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Weitere Sonderformen</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Das maligne Melanom im Kopf-Hals-Bereich</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Diagnostik</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Klinische Diagnostik/ ABCD-Regel</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Histopathologische Diagnostik</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Tumordicke nach Breslow</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Weitere diagnostische Maßnahmen</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>TNM-Klassifikation und Stadieneinteilung</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Therapie</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Primäre Therapie / Operative Verfahren</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Empfohlene Sicherheitsabstände bei der Primär-OP</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1.3</td>
<td>Adjuvante Therapie</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1.4</td>
<td>Adjuvante Immuntherapie</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1.5</td>
<td>Therapie mit Interferon alpha</td>
<td>18</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Sekundäre Therapie</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2.1</td>
<td>Resektion von Fernmetastasen</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2.2</td>
<td>Chemotherapie und Chemoimmunotherapy</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2.3</td>
<td>„Targeted“ Therapien</td>
<td>23</td>
</tr>
<tr>
<td>1.5.2.4</td>
<td>Weitere Therapiemöglichkeiten</td>
<td>25</td>
</tr>
<tr>
<td>1.5.2.5</td>
<td>Besonderheiten beim metastasierten Uveamelanom</td>
<td>25</td>
</tr>
<tr>
<td>1.6</td>
<td>Nachsorge und Prävention bei Patienten mit malignem Melanom</td>
<td>27</td>
</tr>
</tbody>
</table>
2. Fragestellung .. 29
3. Material und Methoden.. 29
4. Ergebnisse ... 30
4.1 Häufigkeiten der verschiedenen histologischen Subtypen des malignen Melanoms pro Jahr ... 30
4.2 Prozentualer Anteil und medianes Alter vom malignen Melanom .. 31
4.3 Die verschiedenen Melanomsubtypen in der 10-Jahres-Übersicht ... 32
4.4 Geschlechtsspezifische Daten von 1660 Melanompatienten... 33
4.5 Tumorlokalisationen der verschiedenen histologischen Subtypen bei Männern und Frauen getrennt .. 33
4.6 Lokalisationen ... 34
4.6.1 Lokalisationen der histologischen Subtypen [Kopf / Hals] (m/w) ... 34
4.6.2 Lokalisationen der histologischen Subtypen [Rumpf] (m/w) ... 35
4.6.3 Lokalisationen der histologischen Subtypen [Obere Extremitäten (Arm/Hand)] (m/w) 36
4.6.4 Lokalisationen der histologischen Subtypen [Untere Extremitäten (Bein/Fuß)] (m/w) 37
4.6.5 Lokalisationen der histologischen Subtypen [Hand] (m/w) ... 38
4.6.6 Lokalisationen der histologischen Subtypen [Fuß] (m/w) ... 39
4.6.7 Melanomlokalisationen [Hand/Fuß] in Zusammenhang mit dem akrotentiginösen malignen Melanom ... 40
4.7 Stadieneinteilungen der 1660 Melanompatienten .. 42
4.7.1 Stadieneinteilungen (TNM-Klassifikationen) bei 1660 Patienten ... 42
4.7.2 Stadieneinteilungen bei Patienten bei denen Metastasen innerhalb von 6 Monaten aufgetreten sind .. 43
4.8 Tumordicke .. 44
4.8.1 Tumordicke und Sicherheitsabstand bei der Exzision ... 44
4.8.2 Tumordicke nach Breslow ... 44
4.8.3 Mortalitätsrate in Zusammenhang mit der Tumordicke .. 46
4.8.4 10-Jahres-Überlebensrate in Abhängigkeit von der Tumordicke ... 47
4.9 Tumorstatus nach Erst- und Rezidiv-OP ... 48
4.10 Krankheitsfreies Intervall nach Primär-OP bis weitere Erkrankungen (Metastasen) aufgetreten sind .. 49
4.10.1 Auftreten von Metastasen (Zeitintervall) .. 49
4.10.2 Auftreten von Metastasen [Lokalisationen innere Organe, Haut, Knochen und Lymphknoten] ... 51
4.10.3 Weitere Aufteilung der Lokalisationen der Metastasen in den Lymphknoten ... 52
4.10.4 Metastasierungsverhalten der verschiedenen histologischen Subtypen des malignen Melanoms in den inneren Organen sowie regionäre und ferne Lymphknoten ... 53
4.10.5 Weitere Aufteilung des Metastasierungsverhaltens der verschiedenen histologischen Subtypen des malignen Melanoms in den inneren Organen...... 54
4.10.6 Auftreten von Metastasen in sonstigen Organen .. 57
4.11 Aufteilung der verschiedenen histologischen Subtypen verstorbener Patienten ... 58
4.12 Andere Todesursachen .. 60
4.13 Zeitintervall zwischen Erstdiagnose und Tod der Patienten 61
5. Diskussion ... 62
6. Zusammenfassung ... 71
7. Stellungnahme .. 75
8. Literaturverzeichnis .. 77
Prognose des primären und metastasierenden malignen Melanoms

Abschließende Auswertung des geschlossenen Patientenkollektivs (einschließlich Oberpfalz) von Januar 1992 bis Dezember 2002 an der Universitätsklinik Regensburg / Dermatologie

1 Einleitung

Das Metastasierungsverhalten der verschiedenen Melanomarten wurde in der Fachliteratur bisher nur wenig erwähnt. Nach Darstellung der klinisch-histologischen Subtypen wird weiterhin anhand der Tumordicke auf die Prognose und auf die Sterberaten der verschiedenen Tumortypen eingegangen.

Ziel dieser Arbeit ist es, die Prognose der malignen Melanome und ihr Metastasierungsmuster besser zu verstehen und im Hinblick auf die Prognoseabschätzung und die zu erwartende Entwicklung im Verlauf der Erkrankung zukünftig zu verbessern.
Das **maligne Melanom** gehört zu den in ihrer Häufigkeit am stärksten zunehmenden bösartigen Tumoren der Haut. Es geht von den Pigmentzellen (Melanozyten) aus und ist für einen Großteil der Sterbefälle an Hautkrebs verantwortlich. Es tritt in unterschiedlichen klinischen Erscheinungsformen auf. Manche Melanome wachsen langsam in die Fläche, während andere sich sehr schnell und in die Tiefe ausbreiten. Mehr als 90% der malignen Melanome entwickeln sich auf der freien Haut, sie können aber auch an allen übrigen Bereichen des Körpers auftreten. Auch die behaarte Kopfhaut, die Schleimhäute und die Haut unter Fuß- und Fingernägeln können betroffen sein. Seltener kommt es an den Schleimhäuten (oral, oesophagial, anorektal und urogenital), an Hirnhäuten (Leptomeningen), am Auge (Uvea, Retina und Konjunktiva) und im Innenohr (Chochlea und vestibuläres System) vor. Die relative 5-Jahres-Überlebenswahrscheinlichkeit beträgt ca. 75% (55).

1.1 Epidemiologie

Im Jahr 2000 traten in Deutschland ca. 11500 Erkrankungen an malignem Melanom auf, etwa 5350 bei Männern und 6150 bei Frauen. Das mittlere Erkrankungsalter liegt entsprechend bei 56 Jahren für Frauen sowie bei 68 Jahren für Männer und ist damit vergleichsweise niedrig. Während die meisten Krebserkrankungen mit zunehmendem Alter relevant werden und gehäuft erst in einem Alter von über 60 Jahren diagnostiziert werden, wird das maligne Melanom bereits bei jüngeren Personen in großer Zahl entdeckt. Selten tritt das maligne Melanom bereits im Kindes- und
Jugendalter auf (79). Etwa 2 % der Melanompatienten sind heute schon jünger als 20 Jahre (70).

1.1.2 Inzidenz

Die weltweite Inzidenz liegt derzeit bei 1,6 pro Jahr und 100.000 Einwohnern. In Deutschland betrug die Inzidenz in den 70er Jahren ca. 3 je 100.000 Einwohner / Jahr und ist in den 90er Jahren auf 10-12 je 100.000 Einwohnern / Jahr angestiegen (116). Auffällig ist die Inzidenz- und Mortalitätszunahme in Australien bei Männern und Frauen. Die Inzidenz beträgt bei Männern 39,88 % und die Mortalität 4,88 %. Bei den Frauen im Vergleich zu den Männern etwas weniger: Inzidenz 32,32 % und Mortalität 2,62 % (79).

Die Zunahme der Inzidenz des malignen Melanoms in den letzten 30 Jahren ist höher als die aller anderen Tumoren (1, 76, 79).

1.1.3 Ätiologie und Pathogenese

Genetische Ursachen des Malignen Melanoms

Mutationen in der Erbinformation sind die Ursache für die Entstehung von Tumoren, dies gilt auch für das maligne Melanom.

Wenn diese Mutationen Gene betreffen, die für die Aufrechterhaltung des intakten Gewebeverbandes verantwortlich sind, kann dies zu einem unkontrollierten Wachstum und unkontrollierter Ausbreitung der Tumorzellen führen. Die Mutationen sind entweder im Genom einzelner somatischer Zellen eines Organismus oder durch Vererbung in Keimzellen erworben.
Die entsprechenden Mutationen werden dann im letzteren Fall an alle somatischen Zellen eines Organismus weitergegeben. Während Keimbahnmutationen zu familiären Tumorerkrankungen führen, wenn sie weitervererbt werden, können somatische Mutationen in Onkogenen oder Tumorsuppressorgenen bei allen sporadischen Tumorerkrankungen nachgewiesen werden. Da Mutationen in Onkogenen mit einer geregelten Embryogenese meist nicht vereinbar sind, spielen bei der Entstehung familiärer Tumoren überwiegend Mutationen in Tumorsuppressorgenen eine Rolle.

Dies ist die Erklärung dafür, dass familiäre Tumoren meist in deutlich früherem Lebensalter auftreten als sporadische und dass oft multiple Tumoren bei diesen Patienten entstehen. Oft sind zudem weitere Familienangehörige betroffen, wenn die Keimzellen verändert sind (116,117,118).

Weitere Risikofaktoren sind intermittierende (zeitweise) UV-Exposition, Sonnenbrände in der Kindheit und Jugend, Hauttyp I oder II, mehr als 40 bis 50 gewöhnliche Pigmentmale, atypische Pigmentmale und angeborenes großes Pigmentmal.
Ethnische Faktoren, geschlechtsspezifische Faktoren sowie Umweltfaktoren werden neben den genetischen Faktoren ebenso für die Entstehung von malignen Melanomen verantwortlich gemacht.

1.2 Die Typen des malignen Melanoms

1.2.1 Klinisch-histologische Subtypen

Tabelle 1 Klinisch-histologische Subtypen maligner Melanome / Zentralregister Malignes Melanom (2009)

| Superfiziell spreitendes malignes Melanom (SSM) |
| Noduläres (knotiges) malignes Melanom (NMM) |
| Lentigo-maligna- Melanom (LMM) |
| Akrolentiginöses Melanom (ALM) |
| Nichtklassifizierbares Melanom (UCM) |
| Sonstige |
Das **superfiziell spreitende Melanom (SSM)** beginnt mit einer intraepidermalen horizontalen Ausbreitungsphase zunächst als Fleck, entwickelt sich dann invasiv flach erhoben, häufig mit farblicher Vielfalt, hellen Regressionszonen und sekundär knotigen Anteilen. Histologisch charakteristisch ist ein pagetoides Muster der intraepidermalen Tumorkomponente im Randbereich. Das mediane Alter ist 51 Jahre und seine Häufigkeit unter den 4 Subtypen beträgt in Deutschland 57,4 %. Die bevorzugte Lokalisation ist der Rumpf.

Das **Lentigo-maligna-Melanom (LMM)** entsteht oft nach vielen Jahren auf dem Boden einer Lentigo maligna. Prädilektionsstellen sind zu 70 % das Gesicht und bei älteren Frauen zusätzlich die Unterschenkel. Es wächst zunächst als langsam auslaufender Fleck mit unterschiedlichen Brauntonen. Das mediane Alter ist 68 Jahre und die Häufigkeit unter den 4 Haupttypen beträgt im deutschen Sprachraum 8,8 %.

Das **akrolentiginöse maligne Melanom (ALM)** ist meistens an Handflächen, Fußsohlen sowie an den Phalangen lokalisiert, aber auch sub- oder periungual. Ehe die knotigen Anteile das invasive Wachstum signalisieren, zeichnet sich dieser Tumor meist unscharf begrenzt in seiner intraepidermalen Frühphase ab. Die Häufigkeit des akrolentiginösen malignen Melanoms (ALM) beträgt in Deutschland nur 4,0 % und das mediane Alter ist 63 Jahre. In Asien und Afrika ist dieser Melanomtyp jedoch die häufigste Form maligner Melanome (55,121).

Das **nichtklassifizierbare Melanom (UCM)** ist eine Melanomart, bei der ein Primärtumor nicht zu finden ist. Bei diesem Tumor werden zuerst Metastasen diagnostiziert, deshalb werden solche Melanome als primär okkulte Melanome bezeichnet (121).

Seltene **Subtypen (Sonderformen)** des Melanoms sind: **das Melanom auf großem kongenitalen Nävus** (Läsionen, die mindestens 20 cm aufweisen oder mindestens 5 % der Körperoberfläche bedecken), **das desmoplastisches Melanom** (die Diagnose kann nur histologisch gestellt werden und typisch ist ihr Neurotropismus), **das Ballonzellmelanom** (mehrkernige Ballonriesenzellen können vorhanden sein), **das**
nävoides Melanom (besteht aus kleinen Melanozyten, die in Nestern bei oft organoider Konfiguration angeordnet sind), das Melanom mit Zügen des Spitz-Nävus („spitzoides Melanom“, gutartige melanozytäre Neubildung, die histologisch eine Ähnlichkeit mit einem Melanom aufweist. Auch als „juveniles Melanom“ bezeichnet) und das maligne blaue Nävus (häufigstes Lokalisation ist der behaarte Kopf, bei der Diagnosestellung häufig schon 1-4 cm groß) (121).

1.2.2 Weitere Sonderformen des malignen Melanoms sind: das amelanotische Melanom (röthlicher Primärtumor, völlig melaninfrei), das Schleimhautmelanom (bei stärker pigmentierten Rassen häufiger als bei Weißen, mit schlechterer Prognose, da oft spät erkannt; Sitz oral, genital und anal), das verruköse maligne Melanom (sehr selten, klinisch schwer zu diagnostizieren, oft fehlendes Pigment- und Palpationsbefund, ähnelt einem Dermatofibrom).

Das maligne Melanom entwickelt sich auf klinisch normaler Haut oder bei 20-30 % der Patienten auf einem präexistenten melanozytären Nävus, kongenitalen Nävus oder auf einem Nävus spilus (121).

1.2.3 Maligne Melanome im Kopf-Hals-Bereich

Dazu gehört das maligne Melanom der Mundschleimhaut (bevorzugte Lokalisation ist der Weich- oder Hartgaumen und der Oberkiefer- Alveolarfortsatz), das maligne Melanom der Nasennebenhöhlen und das maligne Melanom des Auges (85 % primär in der Aderhaut, der Rest in Ziliarkörper und Iris lokalisiert. Metastasiert immer hämatogen und in 95-99 % in die Leber).

1.3 Diagnostik

1.3.1 Klinische Diagnostik (Dermatoskopische Diagnostik/ABCD-Regel)

Zur klinischen Diagnosestellung wurde in den 80-er Jahren die ABCD-Regel aufgestellt, mit der auch Frühformen des malignen Melanoms erkannt werden können.

Tabelle 2 ABCD-Regel / Abbasi et al. 2004; Friedman et al. 1985 /

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Asymmetrie (vorhanden)</td>
</tr>
<tr>
<td>B</td>
<td>Begrenzung (unregelmäßig)</td>
</tr>
<tr>
<td>C</td>
<td>Colorit (Farbe wechselnd in der Läsion)</td>
</tr>
<tr>
<td>D</td>
<td>Durchmesser (>5 mm)</td>
</tr>
</tbody>
</table>

Die Dermatoskopie sollte immer herangezogen werden. Wie eine Metaanalyse von 22 Studien mit 9004 pigmentierten Hautläsionen zeigt, erreichen Experten im Vergleich zur klinischen Diagnostik mit der Dermatoskopie einen 35-prozentigen Anstieg der diagnostischen Treffsicherheit und damit eine Sensitivität von 89 % und eine Spezifität von 79 % (121).

1.3.2 Histopathologische Diagnostik

Die klinische Verdachtsdiagnose eines Melanoms muss immer histologisch bestätigt werden.

Zu den Standards der histologischen Befundung maligner Melanome gehört die Malig-nitätsdiagnostik. Hier werden beurteilt die asymmetrische Architektur, die pagetoide Durchwanderung, die fehlende Reifung zur Tiefe hin, die diffuse Invasion an der Basis, das lymphohistiozytäres Infiltrat, die Regulationsphänomene, die Verschiebung der Kern- Plasma-Relation, die Hyperchromasie und Polymorphie der Kerne und das
Vorhandensein von Mitosen. Bei histologisch unklaren Tumoren, amelanotischen Tumoren oder vermuteten Melanommetastasen kann eine immunophänotypische Charakterisierung (S-100 Protein, HMB-45 Antigen, Melan A, MIB-1 als Proliferationsmarker) hilfreich sein (55,121).
Die zusätzlich erforderlichen diagnostischen Parameter sind die Tumordicke nach Breslow, der histologische Subtyp, das Vorhandensein von Ulceration, das Vorhandensein von Regression und die Nävusassoziation (121).

1.3.2.1 Tumordicke nach Breslow
Ein wichtiger prognostischer Faktor ist die am histologischen Präparat gemessene Tumordicke nach Breslow, denn mit zunehmender Tumordicke steigt die Metastasierungswahrscheinlichkeit. Es gelten dabei folgende 10-Jahres-Überlebensraten:

<table>
<thead>
<tr>
<th>Tumordicke nach Breslow</th>
<th>10-Jahres-Überlebensrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>weniger oder gleich 0,75 mm</td>
<td>97 %</td>
</tr>
<tr>
<td>0,76 bis 1,5 mm</td>
<td>90 %</td>
</tr>
<tr>
<td>1,51 bis 4,0 mm</td>
<td>65 %</td>
</tr>
<tr>
<td>Größer als 4,0 mm</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Weitere wichtige prognostische Faktoren sind die Lokalisation, also der Ort des Auftretens des Tumors (ungünstigere Prognosen bei Lokalisation am oder nahe des Körperstamms), das Geschlecht (schlechtere Prognose für Männer), das Vorhandensein einer Geschwürbildung (Ulzeration) sowie eine erhöhte Mitoserate (noduläre Melanome enthalten häufig eine höhere Zahl von Mitosen) (121).

1.3.2.2 Weitere diagnostische Maßnahmen sind; die Ausbreitungsdiagnostik [umfasst eine Lymphknotensonographie des regionären Abflussgebietes, eine Röntgen-Thorax-Aufnahme (2 Ebenen), die Sonographie des Abdomens einschließlich Becken und Retroperitoneum], die Diagnostik durch hochauflösende Sonographie der Haut [mittels hochfrequenter Sonographie kann eine Tumordickenmessung erfolgen, die für den Sicherheitsabstand bei der Exzision oder für die Durchführung einer Wächter-lymphknotenbiopsie von Bedeutung ist] und die Wächter- Lymphknotenbiopsie (ELND)
[sie wurde entwickelt, um selektiv den ersten drainierenden Lymphknoten der regionären Lymphabstromstation darzustellen] (55).

1.4 TNM - Klassifikation und Stadieneinteilung des malignen Melanoms der Haut (AJCC 2009)

Für das maligne Melanom wurde vom AJCC 2009 eine neue TNM- Klassifikation und Stadieneinteilung vorgeschlagen, die inzwischen auch von der UICC akzeptiert worden ist (4). Diese neue Einteilung wird jetzt der Klassifikation des malignen Melanoms zugrunde gelegt und ist in den folgenden Tabellen zusammengefasst.
Tabelle 4 TNM-Klassifikation und Stadieneinteilung des Malignen Melanoms der Haut (AJCC 2009*)

<table>
<thead>
<tr>
<th>T</th>
<th>Tumordicke (mm)</th>
<th>Ulzerationsstatus/Mitoserate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tis</td>
<td>n. z.</td>
<td>n. z.</td>
</tr>
<tr>
<td>T1</td>
<td>≤ 1,00</td>
<td>a) Ohne Ulzeration, Mitoserate <1/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Mit Ulzeration o. Mitoserate ≤ 1/mm²</td>
</tr>
<tr>
<td>T2</td>
<td>1,01 - 2,00</td>
<td>a) Ohne Ulzeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Mit Ulzeration</td>
</tr>
<tr>
<td>T3</td>
<td>2,01 - 4,00</td>
<td>a) Ohne Ulzeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Mit Ulzeration</td>
</tr>
<tr>
<td>T4</td>
<td>> 4,00</td>
<td>a) Ohne Ulzeration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Mit Ulzeration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Zahl der befallenen Lymphknoten</th>
<th>Ausmaß der Lymphknotenmetastasierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>0</td>
<td>n. z.</td>
</tr>
<tr>
<td>N1</td>
<td>1</td>
<td>a) Mikrometastasen**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Makrometastasen†</td>
</tr>
<tr>
<td>N2</td>
<td>2 - 3</td>
<td>a) Mikrometastasen**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Makrometastasen†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) in-Transit-Metastasen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satellitenmetastasen</td>
</tr>
<tr>
<td>N3</td>
<td>4 oder mehr Lymphknoten befallen, oder verbackene Lymphknoten, oder In-Transit-Metastasen/ Satellitenmetastasen mit Lymphknotenbeteiligung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>Lokalisation</th>
<th>Serum-I-123-Gradienten-Spiegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Keine Fernmetastasen</td>
<td>n. z.</td>
</tr>
<tr>
<td>M1a</td>
<td>Fernmetastasen der Haut, der Subcutis oder der Lymphknoten</td>
<td>unauffällig</td>
</tr>
<tr>
<td>M1b</td>
<td>Lungenmetastasen</td>
<td>unauffällig</td>
</tr>
<tr>
<td>M1c</td>
<td>Alle anderen Organmetastasen Jede Art von Fernmetastasen</td>
<td>unauffällig</td>
</tr>
</tbody>
</table>

* Balch et al. JCO 2009
** Diagnose nach Wächterlymphknotenbiopsie.
† Definiert als klinisch nachweisbare Lymphknotenmetastasen, die histologisch bestätigt wurden.
Abkürzungen: n. z. = nicht zutreffend und LDH = Laktatdehydrogenase
Tabelle 5: Anatomische Stadieneinteilung des malignen Melanoms der Haut (AJCC 2009*)

<table>
<thead>
<tr>
<th>Klinisches Stadium*</th>
<th>Pathologisches Stadium†</th>
</tr>
</thead>
<tbody>
<tr>
<td>T N M</td>
<td>T N M</td>
</tr>
<tr>
<td>0 Tis N0 M0</td>
<td>0 Tis N0 M0</td>
</tr>
<tr>
<td>IA T1a N0 M0</td>
<td>IA T1a N0 M0</td>
</tr>
<tr>
<td>IB T1b N0 M0</td>
<td>IB T1b N0 M0</td>
</tr>
<tr>
<td>T2a N0 M0</td>
<td>T2a N0 M0</td>
</tr>
<tr>
<td>II A T2b N0 M0</td>
<td>II A T2b N0 M0</td>
</tr>
<tr>
<td>T3a N0 M0</td>
<td>T3a N0 M0</td>
</tr>
<tr>
<td>II B T3b N0 M0</td>
<td>II B T3b N0 M0</td>
</tr>
<tr>
<td>T4a N0 M0</td>
<td>T4a N0 M0</td>
</tr>
<tr>
<td>IIC T4b N0 M0</td>
<td>IIC T4b N0 M0</td>
</tr>
<tr>
<td>III Jedes T N>0 N0 M0</td>
<td>IIIA T1-4a N1a M0</td>
</tr>
<tr>
<td></td>
<td>IIIB T1-4b N1a M0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIC</td>
</tr>
<tr>
<td></td>
<td>T1-4a N2a M0</td>
</tr>
<tr>
<td></td>
<td>T1-4b N2a M0</td>
</tr>
<tr>
<td></td>
<td>T1-4a M1b M0</td>
</tr>
<tr>
<td></td>
<td>T1-4a N2B M0</td>
</tr>
<tr>
<td></td>
<td>T1-4a N2c M0</td>
</tr>
<tr>
<td></td>
<td>Jedes T N3 M0</td>
</tr>
<tr>
<td>IV Jedes T Jedes N M1</td>
<td>IV Jedes T Jedes N M1</td>
</tr>
</tbody>
</table>

* Die klinische Stadieneinteilung beinhaltet das Mikrostaging des primären Melanoms sowie die klinische/radiologische Evaluierung auf Metastasen. Die klinische Stadieneinteilung erfolgt traditionell im Anschluss an die vollständige Exzision des Primärtumors und die klinische Beurteilung auf das Vorliegen von regionären Metastasen oder Fernmetastasen.

† Die pathologische Stadieneinteilung beinhaltet das Mikrostaging des primären Melanoms unter Einbeziehung feingeweblicher Befunde zu den regionären Lymphknoten nach partieller (d. h. Wächterlymphknotenbiopsie) oder vollständiger Lymphadenektomie. Die pathologischen Stadien 0 und IA stellen Ausnahmen dar; in diesen Stadien ist eine feingewebliche Evaluierung der Lymphknoten nicht erforderlich.
1.5 Therapie

1.5.1 Primäre Therapie / Operative Verfahren /

Wenn Exzisionsbiopsien technisch möglich sind, werden Inzisionsbiopsien nicht durchgeführt. Bei eindeutigem Verdacht auf ein malignes Melanom, sollte ein primärer Sicherheitsabstand von 1 cm gewählt werden (55).

1.5.1.1 Empfohlene Sicherheitsabstände bei der Primäroperation

Tabelle 6 Empfohlene Sicherheitsabstände bei der Primäroperation (Balch et al, 2001a,b; Garbe C et al, 2006)

<table>
<thead>
<tr>
<th>Tumordicke nach Breslow</th>
<th>Sicherheitsabstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>in situ</td>
<td>0,5 cm</td>
</tr>
<tr>
<td>bis 2 mm</td>
<td>1 cm</td>
</tr>
<tr>
<td>> 2 mm</td>
<td>2 cm</td>
</tr>
</tbody>
</table>

Bei Melanomen im Gesicht, in akraler Lokalisation und anogenital kann statt der Einhaltung eines lateralen Sicherheitsabstandes die histologisch kontrollierte Chirurgie mit Sicherstellung der vollständigen Exzision aller Tumoranteile empfohlen werden.
Die histographische Chirurgie kann darüber hinaus auch bei akral-lentiginösen Melanomen an den Händen und Füßen eingesetzt werden, um in diesen schwierigen anatomischen Lokalisationen den Sicherheitsabstand zu reduzieren (25,26).

Zu den Therapiemöglichkeiten neben der Exzision des Primärtumors oder Enukleation des Auges, gehören die Ausräumung der dem Tumor benachbarten Lymphabflußgebiete; die sentinel-Lymphadenektomie, die elektive Lymphknotendissektion (ELND / Wächterlymphknotenbiopsie) und die selektive Neck-Dissektion.

1.5.1.2 Adjuvante Therapie
Dazu gehören die adjuvante Immuntherapie und die adjuvante Chemotherapie.
Bei Melanompatienten mit einem erhöhten Metastasierungsrisiko (TD > 1,5 mm und / oder reg. Lymphknotenmetastasen) besteht ein erhebliches klinisches Interesse an einer vorbeugenden (= adjuvanten) Therapie zur Verbesserung der Prognose. Da adjuvante Therapien die Lebensqualität einschränken können sind an ihre Indikation und Durchführung hohe Ansprüche zu stellen (55,69).

1.5.1.3 Adjuvante Immuntherapie

1.5.1.4 Therapie mit Interferon-alpha
Interferon-alpha ist die erste Substanz, die in prospektiven randomisierten Studien in der adjuvanten Therapie des malignen Melanoms zu einem signifikanten Vorteil für die Behandelten geführt hat.
Die zur Verfügung stehenden Interferone heißen Interferon-alpha 2a (Roferon A) und Interferon-alpha 2b (Intron A). In ihrer molekularen Struktur unterscheiden sie sich nur in zwei Aminosäuren. Sie sind in ihrer Wirksamkeit und ihrer Nebenwirkungen als weitgehend äquivalent anzusehen.
Die Anwendung von pegyliertem Interferon-alpha 2b (Peg-Intron) in der adjuvanten Therapie des Melanoms befindet sich noch in der Überprüfung durch die amerikanischen Gesundheitsbehörden.

In Schweden wurde 2006 für die adjuvante Melanombehandlung ein natürliches Interferon-alpha (Multiferon) zugelassen, welches bei Patienten mit einer Unverträglichkeit gegenüber rekombinanten Interferonen die Therapie der Wahl bei verschiedenen Indikationen ist (111, 117, 121).

<table>
<thead>
<tr>
<th>Schemata</th>
<th>Dosierung</th>
<th>Frequenzen</th>
<th>Behandlungsdauer</th>
<th>Indikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrigdosisschema</td>
<td>3 Mio. IU subkutan</td>
<td>Tage 1, 3 und 5 jeder Woche</td>
<td>18-24 Monate</td>
<td>Stadien II-III</td>
</tr>
<tr>
<td>Hochdosisschema: Initierung</td>
<td>20 Mio. IU/m² KOF intravenös als Kurzinfusion</td>
<td>Tage 1-5 jeder Woche</td>
<td>4 Wochen</td>
<td>Stadium III</td>
</tr>
<tr>
<td>Hochdosisschema: Erhaltung</td>
<td>10 Mio. IU/m² KOF subkutan</td>
<td>Tage 1, 3 und 5 jeder Woche</td>
<td>11 Monate</td>
<td>Stadium III</td>
</tr>
</tbody>
</table>
1.5.1.5 Adjuvante Chemotherapie

Die systemische adjuvante Chemotherapie ergab in prospektiven randomisierten Studien im Gegensatz zu ersten Untersuchungen mit historischen Kontrollkollektiven keinen signifikanten Vorteil für die behandelten Patienten im Vergleich zu unbehandelten. Eine der umfangreichsten Untersuchungen der Central Oncology Group (COG) aus den USA weist sogar schlechtere Überlebensraten in der Chemotherapie-Gruppe im Vergleich zu unbehandelten Kontrollen auf (55).

Tabelle 8 Aktive prospektiv randomisierte Multicenterstudien der Arbeitsgemeinschaft Dermatologische Onkologie (ADO) u. d. EADO zur adjuvanten Therapie des malignen Melanoms (Szeimies R-M et al 2010)

<table>
<thead>
<tr>
<th>Studienleiter</th>
<th>Kontakte</th>
<th>Melanomstadien</th>
<th>Medikamente</th>
<th>Protokolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. C. Garbe (ADO)</td>
<td>Hausklinik der Universität Tübingen; Tel.: 07071/298-7110; Fax: 295187 (Rekrutierung beendet)</td>
<td>IIa (T3a) bis IIIB</td>
<td>Interferon α2a (Roferon A) versus Peginterferon α2a Pegylax</td>
<td>3-mal 3 Mio. IE Interferon α2a/Woche subkutan für 2 Jahre versus Peginterferon α2a in einer Dosisierung von 180 μg/Woche subkutan für 2 Jahre</td>
</tr>
<tr>
<td>Dr. P. Mohr</td>
<td>Hausklinik der Elbeklinik Barmbek; Tel.: 04041/705-0 Fax: 705-6445 (Rekrutierung noch möglich)</td>
<td>IIa-C</td>
<td>intermittierende Hochdosischemotherapie mit Interferon α2b (Intron A) als Hochdosischemotherapie</td>
<td>Hochdosierte Interferon α2b-Standardtherapie nach Kirkwood (20 Mio. IE/m² KOI intravenös an den Tagen 1-5 über 4 Wochen, alle 10 Wochen wiederholt, für 1 Jahr) versus 20 Mio. IE/m² KOI intravenös an den Tagen 1-5 über 4 Wochen, folgt von 48 Wochen mit einer Dosisierung von 3-mal 10 Mio. IE/m² KOI/Woche subkutan</td>
</tr>
<tr>
<td>Prof. Dr. C. Girbe (EADO)</td>
<td>Hausklinik der Universität Tübingen; Tel.: 07071/298-7110; Fax: 295187 (Rekrutierung beendet)</td>
<td>IIa bis IIIB</td>
<td>Peginterferon α2b (Peginteron) versus Interferon α2b (Intron A)</td>
<td>100 μg Peginterferon α2b/Woche über 36 Monate versus 3-mal 3 Mio. IE Interferon α2b/Woche über 18 Monate</td>
</tr>
</tbody>
</table>
1.5.2 Sekundäre Therapie

1.5.2.1 Resektionen von Fernmetastasen
Beim Vorliegen von mit R0-Intention operablen Metastasen möglichst an nur einem inneren Organ (z.B. Lunge oder Gehirn) sollte die operative Exstirpation der Metastase(n) als Therapie der ersten Wahl angestrebt werden (bei Hirnmetastasierung gleichwertig mit stereotaktischer Bestrahlung). Die Möglichkeit einer vorherigen adjuvanten Therapie bleibt zu prüfen.

1.5.2.2 Chemotherapie und Chemoimmuntherapie
Prinzipielle Indikationen zur systemischen Chemotherapie/Chemoimmuntherapie sind inoperable Rezidivtumoren, inoperable regionäre Metastasen sowie Fernmetastasen (Stadium IV). Da die Behandlungen überwiegend unter palliativen Gesichtspunkten erfolgen, sind die therapeutischen Bemühungen im Hinblick auf die Erhaltung der Lebensqualität kritisch zu würdigen (55,121).

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Dosierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochemothapien</td>
<td></td>
</tr>
</tbody>
</table>
| Dacarbazin | • 250 mg/m² KOF intravenös an den Tagen 1-5 (alle 3-4 Wochen)
- 300-1200 mg/m² KOF intravenös an Tag 1 (alle 3-4 Wochen) |
| Temozolomid | • 150-200 mg/m² KOF oral an den Tagen 1-5 (alle 4 Wochen)
- 150 mg/m² KOF oral an den Tagen 1-7, dann 7 Tage Pause (Biweekly Schema) |
| Fotemustine | 100 mg/m² KOF intravenös an den Tagen 1, 8 und 15 (Gabe nur an den Tagen 1 und 8, wenn eine andere Chemotherapie vorausgegangen ist), dann 5 Wochen Pause (Fortsetzung alle 3 Wochen) |
| Vinorelin | • 3 mg/m² KOF intravenös (alle 2 Wochen) bis zu einer Höchstdosis von 5 mg absolut |
| Interferon α | • 9-18 Mio. IE/m² KOF intravenös 3-mal wöchentlich (kontinuierliche Gabe)
- Peginterferon α2a: 180-450 µg/Woche |
| Interleukin 2 | 600000 IU/kg KG als 15-minütige intravenöse Kurzinfusion alle 8 Stunden an den Tagen 1-5 (maximal 14 Einzeldosen), Wiederholungszyklus an Tag 14 |
| **Chemo-Immum-Therapien** | |
| Dacarbazin (Temozolomid) plus Interferon α | • Dacarbazin: 850 mg/m² KOF intravenös an Tag 1 (bzw. Temozolomid: 150 mg/m² KOF oral an den Tagen 1-5)
- Interferon α2a/α2b: 3 Mio. IE/m² KOF subkutan an den Tagen 1-5 (oder 5 Mio. IE/m² KOF subkutan 3-mal/Woche in den Wochen 2-4)
- Wiederholung alle 4 Wochen |
| Temozolomid plus pegyliertes Interferon α | • Temozolomid: 200 mg/m² oral an den Tagen 1-5 alle 4 Wochen
- pegyliertes Interferon α: 100 µg subkutan pro Woche |
| Vinorelin plus Interferon α | • Vinorelin: 3 mg/m² KOF intravenös an Tag 1
- Interferon α2a/α2b: 5 Mio. IE/m² KOF subkutan 3-mal/Woche
- Wiederholung alle 2 Wochen |
| Dacarbazin/Cisplatin plus Interferon α | • Dacarbazin: 250 mg/m² KOF an den Tagen 1 und 3
- Cisplatin: 30 mg/m² KOF an den Tagen 1 und 3
- Interferon α: 10 Mio. IE/m² KOF subkutan an den Tagen 1-5
- Wiederholung alle 4 Wochen |
| **Polychemothapien** | |
| DVP-Schema | • Dacarbazin: 250 mg/m² KOF intravenös an den Tagen 1-5
- Vinorelin: 3 mg/m² KOF intravenös an Tag 1
- Cisplatin: 100 mg/m² KOF intravenös an Tag 1
- alle 3-4 Wochen |
| • Dacarbazin: 450 mg/m² KOF intravenös an den Tagen 1 und 8
- Vinorelin: 3 mg/m² KOF intravenös an den Tagen 1 und 8
- Cisplatin: 50 mg/m² KOF intravenös an den Tagen 1 und 8
- alle 3-4 Wochen |
| BOLD-Schema | • Bleomycin: 15 mg intravenös an den Tagen 1 und 4
- Vincristin: 1 mg/m² KOF intravenös an den Tagen 1 und 5
- CCNU: 80 mg/m² KOF per os an Tag 1
- Dacarbazin: 200 mg/m² KOF intravenös an den Tagen 1-5
- alle 4-6 Wochen |
| BHD-Schema | • BCNU: 150 mg/m² KOF intravenös an Tag 1, nur jeden zweiten Zyklus
- Hydroxyurea: 1500 mg/m² KOF per os an den Tagen 1-5
- Dacarbazin: 150 mg/m² KOF intravenös an den Tagen 1-5
- alle 4 Wochen |
| DBCT-Schema | • Dacarbazin: 220 mg/m² KOF intravenös an den Tagen 1-3
- BCNU: 150 mg/m² KOF intravenös an Tag 1, nur jeden zweiten Zyklus
- Cisplatin: 25 mg/m² KOF intravenös an den Tagen 1-3
- Tamoxifen: 2-mal 10 mg/d per os
- alle 3-4 Wochen |
1.5.2.3 “Targeted“ Therapien

Die sogenannte targeted (zielerichtete) Therapie zielt auf die Blockade molekularer Zielstrukturen, die eine Apoptoseinhibition, eine Migration oder eine Penetration maligner Zellen bedingen.

Tabelle 10 Auswahl von targeted Therapien in der klinischen Prüfung beim malignen Melanom ab Phase II (Szeimies R-M et al 2010)

<table>
<thead>
<tr>
<th>Wirkstoffgruppen</th>
<th>Substanzen</th>
<th>Targets</th>
<th>Phasen der klinischen Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosinkinaseinhibitoren</td>
<td>Sorafenib (Nexavar)</td>
<td>Raf, MEK, VEGFR-2/3, PDGFR, EGFR, p38, Flt-3, c-KIT</td>
<td>II, III</td>
</tr>
<tr>
<td></td>
<td>Suavitelib (Sutent)</td>
<td>VEGFR-2, PDGFR, Flt-3, c-KIT</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Imatinib (Gleevec)</td>
<td>Bcr/Abl, c-KIT, PDGFR</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Cediranib (Recepta)</td>
<td>VEGFR-1/2/3, PDGFR, c-KIT</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>AZD 6244</td>
<td>MEK</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Dasatinib (Sprycel)</td>
<td>Bcr/Abl, SRC, c-KIT, EPHA2, PDGFR-8</td>
<td>II</td>
</tr>
<tr>
<td>Monoklonale Antikörper</td>
<td>Bevacizumab (Avastin)</td>
<td>VEGF</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>CNTO 95</td>
<td>ανβ3, ανβ5, αβ3, und αβ5-Integrin</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Velociximab</td>
<td>αβ-Integrin</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Ipilimumab</td>
<td>CTLA-4</td>
<td>II, III</td>
</tr>
<tr>
<td></td>
<td>Tremelimumab</td>
<td>CTLA-4</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>rM28</td>
<td>CD 28, melanomassoziertes Proteoglykan</td>
<td>II</td>
</tr>
<tr>
<td>mTOR-Antagonisten</td>
<td>Temsirolimus (Torisel)</td>
<td>mTOR, PTEN/PI3-K/Akt-Signalweg</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Everolimus (Certican)</td>
<td>mTOR, PTEN/PI3-K/Akt-Signalweg</td>
<td>II</td>
</tr>
<tr>
<td>Proteasominhibitor</td>
<td>Borotalozib (Velcade)</td>
<td>NFκB</td>
<td>II</td>
</tr>
<tr>
<td>Poly-ADP-Ribose Polymerase-Inhibitor</td>
<td>INO 1001</td>
<td>Poly-ADP-Ribose Polymerase</td>
<td>II</td>
</tr>
<tr>
<td>Anilindioneacetazetlasen inhibitor</td>
<td>Vorinostat (Zolinza)</td>
<td>Histoneacetazetase</td>
<td>II</td>
</tr>
<tr>
<td>Heparanesinhibitor</td>
<td>PI-99</td>
<td>Heparanesin, Heparanesin</td>
<td>II</td>
</tr>
<tr>
<td>Immunotoxine</td>
<td>LMB-2</td>
<td>CD 25</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Denileukin D10 (Ontak)</td>
<td>Denileukin D10 (Ontak)</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>RFS-1dGA</td>
<td>Denileukin D10 (Ontak)</td>
<td>II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADP: Adenosindiphosphat</th>
<th>CTLA: cytotoxic T Lymphocyte Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR: Epidermal Growth Factor Receptor</td>
<td>EPHA2: Eph Receptor Tyrosine Kinase A2</td>
</tr>
<tr>
<td>Flt-3/ FMS-like Tyrosine Kinase 3</td>
<td>MEK: Mitogen-activated Protein Kinase</td>
</tr>
<tr>
<td>mTOR: mammalian Target of Rapamycin</td>
<td>NFκB: nukleärer Faktor β</td>
</tr>
<tr>
<td>PDGFR: Platelet-derived Growth Factor Receptor</td>
<td>SRC: Osteogen aus dem Rous Sarcoma Virus</td>
</tr>
<tr>
<td>VEGF: Vascular endothelial Growth Factor</td>
<td></td>
</tr>
</tbody>
</table>

Das auf dem ASCO-Kongress 2009 vorgestellte PLX 4032 (Zelboraf® (Vemurafenib) 2012 in Europa zugelassen) erzielte das spektakulärste Studienergebnis. PLX 4032 ist ein selektiver Inhibitor von mutagenem B-Raf, das bei etwa 60% aller Primärtumoren eines Melanoms und Metastasen gefunden wird.

In einer Pilotstudie zeigten 70% der behandelten Patienten eine partielle oder komplette Remission, wenn bei ihnen eine V 600E-Mutation des B-Raf-Gen vorkam und sie nachfolgend mit PLX 4032 als Monotherapeutikum behandelt wurden.

In Einzelfällen führte die lokale Therapie mit Imiquimod zur partiellen oder kompletten Remission (77,131).

Eine lokoregionäre Lymphknotenmetastasierung konnte trotz eines guten Therapieansprechens von Satelliten-und Intransitmetastasen jedoch nicht verhindert werden.

Fazit: Die Behandlung des fortgeschrittenen malignen Melanoms hat sich in den vergangenen Jahrzehnten nicht wesentlich verbessert. Aufgrund große Fortschritte der molekularen Medizin ist damit zu rechnen, dass in den kommenden Jahren zahlreiche neue, vielversprechende “targeted“ Therapeutika für die Onkologie entwickelt werden. Mit den CTLA-4 Antikörpern, dem Raf-Kinase-Inhibitor (Sorafenib) und dem TLR-Agonist (Imiquimod) befinden sich drei “targeted“ Therapeutika beim malignen
Melanom derzeit in Prüfung, wobei Ergebnisse aus laufenden klinischen Studien noch ausstehen (70,121).

1.5.2.5 Besonderheiten beim metastasierten Uveamelanom

Fällen auch eine komplette Remission der Lebermetastasen. Eventuell kann das Verfahren mit einer Chemoembolisation verbunden werden (55).

Tabelle 11 Medikamentöse Therapie des fortgeschrittenen Uveamelanoms

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Dosierung</th>
<th>Ansprechrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotemustin</td>
<td>Induktionszyklus 100 mg/m² intraarteriell über 4 Std. (A. Hepatica) wöchentlich über 4 Wochen anschließend 5 Wochen Pause, dann Fortführung der Therapie in 3-wöchentl. Abständen</td>
<td>28,6 %</td>
</tr>
<tr>
<td>[Egerer et al. 2001]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treosulfan/Gemcitabin</td>
<td>Treosulfan 5 g/m² i.v. Tag 1 Gemcitabin 1 g/m² i.v. Tag 1 Wiederholung alle 3-4 Wochen</td>
<td>28,6 %</td>
</tr>
<tr>
<td>[Pföhler et al. 2003]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.6. Nachsorge und Prävention

Tabelle 12 Empfehlungen für die Nachsorge kutaner maligner Melanome (Intervalle in Monaten) [Garbe & Schadendorf 2003]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I, ≤ 1mm</td>
<td>6</td>
<td>12</td>
<td>Keine</td>
<td>Keine</td>
<td>Keine</td>
</tr>
<tr>
<td>I+II, > 1 mm</td>
<td>3</td>
<td>6 - 12</td>
<td>6</td>
<td>3 - 6</td>
<td>Keine***</td>
</tr>
<tr>
<td>III *</td>
<td>3</td>
<td>6</td>
<td>3 - 6</td>
<td>3 - 6</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>Individuell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Das Stadium III umfaßt alle Formen der lokoregionären Metastasierung. Das neue AJCC-Stadium IIC (> 4 mm Tumordicke + Ulzeration) sollte wie Stadium III behandelt werden, da die Prognose vergleichbar ist.

** Für die Rezidiverkennung ist allein Protein S100 geeignet.

*** Abdomen-Sonografie und Röntgen-Thorax-Untersuchung, oder CT bzw. MRT oder PET

**** Im Rahmen adjuvanter Therapien werden bildgebende Untersuchungen in 6 – 12 monatlichen Abständen empfohlen.
Die Melanomnachsorge beinhaltet die Feststellung der Tumorfreiheit bzw. Früh-
erkennung einer Progression sowie die Überwachung des Pigmentsystems zur
Früherkennung von Melanomvorläufern und Zweitmelanomen. Weiterhin wichtig ist
die psychosoziale Betreuung und Dokumentation der Krankheitsverläufe sowie die
Durchführung und Überwachung einer adjuvanten Therapie.

Im Rahmen der psychosozialen Nachsorge kann bei Patienten auch eine Rehabi-
litationsmaßnahme in entsprechenden Fachkliniken durchgeführt werden. Die "Rehabi-
litationsnachsorge" hat das Ziel, den richtigen Umgang mit der Tumorerkrankung und
den damit verbundenen körperlichen und psychischen Störungen zu vermitteln, um
einer Desintegration im sozialen und beruflichen Umfeld vorzubeugen. Darüber hinaus
sollen funktionelle Störungen durch entsprechende Maßnahmen in der Rehabilitation
verbessert oder beseitigt werden (52,55).
2. Fragestellung

Die vorliegende Studie möchte dazu beitragen, die notwendige engmaschige Nachsorge mit gezielter Suche nach diesem bösartigen Tumor und dessen Metastasen zu erleichtern. Durch die Beachtung der unterschiedlichen Metastasierungsmuster verschiedener histologischer Subtypen in die jeweiligen Organe, die hier auch besprochen werden, könnte man zum Wohle der Patienten bei der Metastasensuche schnellere und bessere Ergebnisse erzielen.

3. Material und Methoden

Die Exzision der malignen Melanome erfolgte mit einem Sicherheitsabstand von 1 bis 5 cm nach den jeweils gültigen internationalen Richtlinien, mit wenigen Ausnahmen aufgrund schwieriger anatomischer Lokalisationen.

4. Ergebnisse

4.1 Häufigkeiten der verschiedenen klinisch-histologischen Subtypen des malignen Melanoms pro Jahr

Tabelle 13 Häufigkeiten Melanomsubtyp pro Jahr

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>HistoKürzel</th>
<th>SSM</th>
<th>NMM</th>
<th>LMM</th>
<th>ALM</th>
<th>AM unbek. Tumor</th>
<th>Aderhautm.</th>
<th>Gesamtergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
<td>29</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>71</td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td>73</td>
<td>18</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td>77</td>
<td>28</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td>65</td>
<td>26</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td>101</td>
<td>25</td>
<td>6</td>
<td>13</td>
<td>3</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>99</td>
<td>21</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>108</td>
<td>40</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>109</td>
<td>41</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>130</td>
<td>29</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>108</td>
<td>35</td>
<td>22</td>
<td>9</td>
<td>6</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Gesamtergebnis</td>
<td></td>
<td>999</td>
<td>278</td>
<td>112</td>
<td>77</td>
<td>38</td>
<td>282</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2 Prozentualer Anteil und medianes Alter vom malignen Melanom

Tabelle 14

<table>
<thead>
<tr>
<th>Histologischer Typ</th>
<th>Kürzel Nr.:</th>
<th>Anzahl Patienten</th>
<th>Medianes Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>1</td>
<td>899</td>
<td>54,2% 52 Jahre</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>2</td>
<td>278</td>
<td>16,7% 57 Jahre</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>3</td>
<td>112</td>
<td>6,7% 70 Jahre</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>4</td>
<td>77</td>
<td>4,6% 62 Jahre</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>5</td>
<td>30</td>
<td>1,8% 60,5 Jahre</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>6</td>
<td>262</td>
<td>15,6% 57 Jahre</td>
</tr>
<tr>
<td>Aderhautmelanom</td>
<td>7</td>
<td>2</td>
<td>0,1% 43,5 Jahre</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>1660</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 1

Abbildung der verschiedenen klinisch-histologischen Subtypen vom malignen Melanom von insgesamt 1660 Patienten.
Der häufigste Melanomtyp war, von insgesamt 1660 Patienten, dem superfiziell spreitendem malignem Melanom (SSM) mit 899 Fällen (54,2 %) zuzuordnen. Gefolgt von dem nodulären malignen Melanom (NMM) 278 (16,7 %), von dem Lentigo-maligna-Melanom (LMM) 112 (6,7 %), von dem akrolentiginösen malignen Melanom (ALM) 77 (4,6 %) und von dem amelanotischen Melanom (AM) 30 (1,8 %). Mit unbekanntem Primärtumor waren 262 (15,8 %) Fälle registriert. Das mediane Alter betrug bei (SSM) 52 Jahre, bei (NMM) 57 Jahre, bei (LMM) 70 Jahre, bei (ALM) 62 Jahre, bei (AM) 61,5 Jahre und beim Aderhautmelanom 43,5 Jahre. Bei Patienten mit unbekanntem Primärtumor betrug das mediane Alter 57 Jahre.

4.4 Geschlechtsspezifische Daten von 1660 Melanompatienten

Abbildung 3 Geschlechtsspezifische Verteilung der Fälle von 1660 Melanompatienten.

Von den insgesamt im Zeitraum von Jan. 1992 bis einschließlich Dez. 2001 im Tumorzentrum Regensburg gemeldeten Patienten, waren 761 (46 %) männlich und 899 (54 %) weiblich.

Die Lokalisationen von den Melanomen waren bei beiden Geschlechtern unterschiedlich verteilt.

4.5 Tumorlokalisationen der verschiedenen histologischen Subtypen bei Männern und Frauen getrennt

Melanomlokalisationen bei 1660 Patienten

Abbildung 4 Melanomlokalisationen Männer und Frauen
Während bei der Tumorlokalisation im Kopf-Hals Bereich ähnliche Daten vorlagen, unterschieden sich auffällig die Lokalisationen: Rumpf/m. (48,8 %) w.(25,8 %)/, obere Extremität /m. (9,5 %) w. (16,6 %)/ und untere Extremität /m. (13,7 %) w. (28,3 %)/.
Auffällig auch die Unterteilung der oberen- und unteren Extremitäten. Hand überwog bei den Männern (1,3 %) gegenüber den Frauen (0,7 %). Fuß überwog bei den Frauen (9,9 %) gegenüber den Männern (7,0 %).
Bei den Männern überwog die Lokalisation am Rumpf 48,8 %) gegenüber den Frauen (25,8 %).

4.6 Lokalisationen

4.6.1 Lokalisationen der verschiedenen klinisch-histologischen Subtypen [Kopf / Hals] (m+w)

Tabelle 15 Melanomsubtyp und Lokalisation [Kopf / Hals]

<table>
<thead>
<tr>
<th>Gesamtpatienten</th>
<th>1660 Patienten mit Melanomlokalisation Kopf / Hals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>272 16%</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>91 33%</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>42 15%</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>87 32%</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>3 1%</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>6 2%</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>41 15%</td>
</tr>
<tr>
<td>keine Angaben</td>
<td>2 1%</td>
</tr>
</tbody>
</table>

Abbildung 5 Melanomlokalisationen Kopf/Hals (m+w)
Von den 1660 Patienten waren es 272 Patienten, bei denen das maligne Melanom in der Kopf/Hals Region diagnostiziert wurde. Von den Melanomarten war das superfiziell spreitende Melanom (SSM) mit 91 Patienten (33 %) in der Mehrzahl vorhanden, gefolgt von dem Lentigo-maligna-Melanom (LMM) von insgesamt 87 Patienten (32 %), dem nodulären malignen Melanom (NMM) mit 42 Patienten (15 %) und dem malignen Melanom mit unbekanntem Primärtumor mit 41 Patienten (15 %). Das amelanotische Melanom (AM) mit nur 6 (2 %) und das akrolentiginöse Melanom (ALM) mit nur 3 Patienten (1%) waren im Verhältnis zu den anderen Melanomarten wenig vertreten.

4.6.2 Lokalisationen der verschiedenen klinisch-histologischen Subtypen
[Rumpf] (m+w)

<table>
<thead>
<tr>
<th>Tabelle 16 Melanomarten und Lokalisation [Rumpf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtpatienten</td>
</tr>
<tr>
<td>Patienten mit Melanomlokalisation Rumpf</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
</tr>
</tbody>
</table>

Abbildung 6 Melanomlokalisationen Rumpf (m+w)
Am Rumpf war von den insgesamt 603 Patienten das superfiziell spreitende maligne Melanom (SSM) mit 383 Fällen (64 %), das noduläre maligne Melanom (NMM) mit 105 Fällen (17 %) und das maligne Melanom mit unbekanntem Primärtumor 94 Fällen (16 %) vorhanden. Das Lentigo-maligna-Melanom (LMM) ist mit 10 (2 %), das amelanotische Melanom (AM) mit 8 (1 %) Fällen und das akrolentiginöse Melanom (ALM) mit 3 (0,3%) Fällen diagnostiziert worden.

4.6.3 Lokalisationen der verschiedenen klinisch-histologischen Subtypen [obere Extremitäten (Arm / Hand)] (m+w)

Tabelle 17 Melanomsubtyp und Lokalisation [obere Extremitäten]

<table>
<thead>
<tr>
<th>Gesamtpatienten</th>
<th>1660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten mit Melanomlokalisation obere Extremitäten</td>
<td>237</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>123</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>50</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>4</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>12</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>7</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>41</td>
</tr>
</tbody>
</table>

Abbildung 7 Der prozentuale Anteil von Melanomsubtyp nach Vergleich untereinander (obere Extremitäten)

Das superfiziell spreitende Melanom (SSM) überwog bei den insgesamt 237 Patienten in der Lokalisation obere Extremitäten mit 123 (52 %) Fällen. Das noduläre maligne Melanom (NMM) war mit 50 (17 %) Fällen, das maligne Melanom mit unbekanntem Primärtumor mit 41 (17 %) und das akrolentiginöse Melanom (ALM) mit 12 (5 %) Fällen überwiegend vorhanden. Das amelanotische Melanom (AM) mit 7 (3 %) und das Lentigo-maligna-Melanom (LMM) mit 4 (2 %) waren weniger vertreten.
4.6.4 Lokalisationen der verschiedenen klinisch-histologischen Subtypen
[untere Extremitäten (Bein/Fuß)] (m+w)

Tabelle 18 Melanomsubtypen und Lokalisation [untere Extremitäten]

<table>
<thead>
<tr>
<th>Gesamtpatienten</th>
<th>1660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten mit Melanomlokalisation [untere Extremitäten]</td>
<td>500</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>276</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>76</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>10</td>
</tr>
<tr>
<td>Akroventiginöses Melanom (ALM)</td>
<td>59</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>6</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>73</td>
</tr>
</tbody>
</table>

Abbildung 8 Melanomlokalisationen untere Extremitäten

Von den insgesamt 500 Patienten, bei denen an den unteren Extremitäten das maligne Melanom diagnostiziert wurde, war das superfiziell spreitende Melanom (SSM) mit 276 (55 %) Patienten vertreten. Gefolgt von dem nodulären malignen Melanom (NMM) 76 (15 %), von dem malignen Melanom mit unbekanntem Primärtumor 73 (15 %) und von dem akroventiginösen malignen Melanom (ALM) 59 (12 %). Das Lentigo-maligna-Melanom (LMM) wurde in 10 (2 %) und das amelanotische maligne Melanom in 6 (1%) Fällen diagnostiziert.
4.6.5 Lokalisationen der verschiedenen klinisch-histologischen Subtypen [Hand] (m+w)

Tabelle 19 Melanomsubtyp und Lokalisation [Hand]

<table>
<thead>
<tr>
<th>Gesamtpatienten</th>
<th>Patienten mit Melanomlokalisation Hand</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1660</td>
<td>16</td>
<td>1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Melanomlokalisation</th>
<th>Fallzahl</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>10</td>
<td>63%</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>1</td>
<td>6%</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>1</td>
<td>6%</td>
</tr>
</tbody>
</table>

Abbildung 9 Melanomlokalisationen / Hand

Außer dem akrolentiginösen malignen Melanom (ALM) traten an der Hand und am Fuß noch andere Melanomarten auf. An der Hand war das akrolentiginöse Melanom (ALM) von insgesamt 16 Patienten mit 10 Fällen (63 %) überwiegend beteiligt. Gefolgt von dem superfiziell spreitenden Melanom (SSM) mit 4 Fällen (25 %), von dem amelanotischen malignen Melanom (AM) und von dem malignen Melanom mit unbekanntem Primärtumor mit je einem Fall (6 %). Das noduläre maligne Melanom (NMM) und das Lentigo-maligna-Melanom (LMM) kamen an der Hand nicht vor.
4.6.6 Lokalisationen der verschiedenen klinisch-histologischen Subtypen [Fuß] (m+w)

Tabelle 20 Melanomsubtyp und Lokalisation [Fuß]

<table>
<thead>
<tr>
<th>Gesamtpatienten</th>
<th>1660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten mit Melanomlokalisation Fuß</td>
<td>142</td>
</tr>
<tr>
<td>Gesamtfälle</td>
<td>142</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>39</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>17</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>6</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>58</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>2</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>20</td>
</tr>
</tbody>
</table>

Abbildung 10 Tumorlokalisationen des malignen Melanoms am Fuß

Bei den insgesamt 1660 Patienten wurden 142 Melanomfälle am Fuß diagnostiziert. Das akrolentiginöse Melanom (ALM) überwog mit 58 Fällen (41%). Gefolgt von dem superfiziell spreitendem Melanom (SSM) mit 39 Fällen (27%), vom unbekannten Primärtumor mit 20 Fällen (14%), vom nodulären Melanom (NMM) mit 17 Fällen (12%), vom Lentigo-maligna-Melanom (LMM) mit 5 Fällen (4%) und von dem amelanotischem Melanom (AM) mit 2 Fällen (1%).
4.6.7 Melanomlokalisationen [Hand/Fuß] in Zusammenhang mit dem akrolentiginösen malignen Melanom (ALM)

Tabelle 21 Melanomlokalisation Hand und Fuß

<table>
<thead>
<tr>
<th>Lokalisation</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopf/Hals</td>
<td>272</td>
<td>16,4%</td>
</tr>
<tr>
<td>Rumpf</td>
<td>603</td>
<td>36,3%</td>
</tr>
<tr>
<td>Extremitäten:</td>
<td>738</td>
<td>44,5%</td>
</tr>
<tr>
<td>obere Extremität</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>davon Hand</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>davon Typ ALM</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>davon männlich</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>davon weiblich</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>untere Extremität</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>davon Fuß</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>davon Typ ALM</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>davon männlich</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>davon weiblich</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Sonstige</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>unbekannte Lokalisation</td>
<td>42</td>
<td>2,5%</td>
</tr>
</tbody>
</table>

Abbildung 11 Melanomlokalisationen in Zusammenhang mit dem akrolentiginösen malignen Melanom (ALM) von 738 Tumorpatienten.
Bei den Melanomlokalisationen (alle histologischen Subtypen) von 1660 Patienten überwogen die Extremitäten mit insgesamt 738 Patienten (44,5 %), gefolgt vom Rumpf mit 603 (36,3 %) und Kopf/Hals mit 272 (16,4 %) Fällen.
An den Extremitäten aufgeteilt (m + w) waren an der oberen Extremität (Arm/Hand) 237 und an der unteren Extremität (Bein/Fuß) 500 Melanome vorhanden.
Die Auswertung der Erkrankungsfälle, weiter aufgeteilt auf die oberen und unteren Extremitäten in Hand und Fuß ergab, dass 16 Fälle an den oberen Extremitäten (Hand) und 142 Fälle an den unteren Extremitäten (Fuß) vorkamen.
Das akrolentiginöse Melanom (ALM) war insgesamt 10 mal (1 %) an der Hand (8 männlich, 2 weiblich) und 58 mal (8 %) am Fuß (37 weiblich, 21 männlich) vorhanden.
4.7 Stadieneinteilungen der 1660 Melanompatienten / 1992-2001/

Die Stadieneinteilungen, die den Primärtumor nach der Tumordicke nach Breslow, den regionären Lymphknotenmetastasen sowie den regionären und Fernmetastasen erfassen, sind in den folgenden Diagrammen festgehalten.

4.7.1 Stadieneinteilungen (TNM – Klassifikation / AJCC 2009 /) bei 1660 Patienten

Tabelle 22 Stadieneinteilungen mit prozentualen Anteilen bei der Erstdiagnose.

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Patienten</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>86</td>
<td>5%</td>
</tr>
<tr>
<td>Ia</td>
<td>243</td>
<td>15%</td>
</tr>
<tr>
<td>Ib</td>
<td>116</td>
<td>7%</td>
</tr>
<tr>
<td>II</td>
<td>27</td>
<td>2%</td>
</tr>
<tr>
<td>IIa</td>
<td>110</td>
<td>7%</td>
</tr>
<tr>
<td>IIb</td>
<td>35</td>
<td>2%</td>
</tr>
<tr>
<td>III</td>
<td>17</td>
<td>1%</td>
</tr>
<tr>
<td>IIIa</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>IIIb</td>
<td>38</td>
<td>2%</td>
</tr>
<tr>
<td>IV</td>
<td>64</td>
<td>4%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>915</td>
<td>55%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1660 Patienten</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 12 Patientenzahl und Stadieneinteilungen von insgesamt 745 Patienten.
Bei den insgesamt 1660 Patienten waren statistisch 745 (45 %) auswertbar. Mit keinen Angaben waren insgesamt 915 (55 %) vorhanden. Es überwog Stadium I a mit 243 (15 %) Patienten, gefolgt von Stadium I b mit 116 (7 %) und Stadium II a mit 110 (7 %) Fällen. Stadium I mit 86 (5 %) und Stadium IV mit 64 (4 %) Patienten waren weniger vertreten. Noch weniger waren die Stadien III b mit 38 (2 %), Stadium II b mit 35 (2 %), Stadium III mit 17 (1 %) und Stadium III a mit 9 (1 %) Fällen vorhanden.

4.7.2 Stadieneinteilung bei Patienten, bei denen Metastasen innerhalb von 6 Monaten aufgetreten sind

Tabelle 23 Stadieneinteilungen bei Metastasierung innerhalb von 6 Monaten

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Fälle</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Ia</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Ib</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>IIa</td>
<td>6</td>
<td>6%</td>
</tr>
<tr>
<td>IIb</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>IIIa</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>IIIb</td>
<td>19</td>
<td>19%</td>
</tr>
<tr>
<td>IV</td>
<td>26</td>
<td>25%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>36</td>
<td>35%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>102</td>
<td>100%</td>
</tr>
</tbody>
</table>

Abbildung 13 Stadieneinteilung und Patientenzahl
Von 102 Patienten, bei denen Metastasen innerhalb von 6 Monaten diagnostiziert wurden, waren 36 (35 %) ohne Angaben. Von den 66 Patienten überwog Stadium IV mit 26 (25 %) und Stadium III b mit 19 (19 %) Patienten. Die Stadien II a mit 6 (6 %) und Stadium I b, II b mit je 4 Fällen (4 %) waren wenig vertreten.

4.8 Tumordicke

4.8.1 Tumordicke und Sicherheitsabstand bei der Exzision

In der nachfolgenden Tabelle sieht man die Zusammenhänge zwischen Tumordicke und Sicherheitsabstand bei der Exzision der Primärtumore. Je größer die Tumordicke gewesen ist, desto größerer Sicherheitsabstand war bei der Primär- OP notwendig.

Tabelle 24 Mediane Tumordicke und Sicherheitsabstand bei der Exzision der Melanome

<table>
<thead>
<tr>
<th>Mittelwert Tumordicke</th>
<th>Mediane Tumordicke</th>
<th>Sicherheitsabstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,59 mm</td>
<td>0,40 mm</td>
<td>bis 0,5 cm</td>
</tr>
<tr>
<td>0,96 mm</td>
<td>0,50 mm</td>
<td>bis 1,0 cm</td>
</tr>
<tr>
<td>1,81 mm</td>
<td>1,20 mm</td>
<td>bis 2,0 cm</td>
</tr>
<tr>
<td>2,17 mm</td>
<td>1,54 mm</td>
<td>bis 3,0 cm</td>
</tr>
<tr>
<td>2,82 mm</td>
<td>2,00 mm</td>
<td>über 4,0 cm</td>
</tr>
</tbody>
</table>

4.8.2 Tumordicke nach Breslow

Ein sehr wichtiger Melanomparameter ist die Tumordicke nach Breslow, mit dem sich die Prognose und das Metastasierungsrisiko vorhersagen lassen.

Tabelle 25 Tumordicke nach Breslow

<table>
<thead>
<tr>
<th>Tumordicke</th>
<th>männlich</th>
<th>weiblich</th>
<th>gestorben (m+w)</th>
<th>% Sterberate</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,76 mm</td>
<td>656 Patienten</td>
<td>264</td>
<td>40%</td>
<td>392</td>
</tr>
<tr>
<td>0,76 - 1,5 mm</td>
<td>380 Patienten</td>
<td>183</td>
<td>48%</td>
<td>197</td>
</tr>
<tr>
<td>1,51 - 4,0 mm</td>
<td>329 Patienten</td>
<td>167</td>
<td>51%</td>
<td>162</td>
</tr>
<tr>
<td>> 4,0 mm</td>
<td>105 Patienten</td>
<td>55</td>
<td>45%</td>
<td>47</td>
</tr>
<tr>
<td>keine Daten / fehlender Eintrag</td>
<td>190 Patienten</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1660 Patienten</td>
<td></td>
<td></td>
<td>199</td>
</tr>
</tbody>
</table>
Abbildung 14 Tumordicke nach Breslow von insgesamt 1660 Patienten

Mit einer Tumordicke von < 0,76 mm wurden 656 Patienten registriert, von denen 264 (40 %) männlich und 392 (60 %) weiblich waren. Eine Tumordicke von 0,76 - 1,5 mm wiesen 380 Patienten auf, davon 183 (48 %) männlich und 197 (52 %) weiblich. Tumordicken von 1,4 bis 4,0 mm wurden bei 329 Patienten diagnostiziert, davon 167 (51 %) männlich und 162 (49 %) weiblich. Mit einer Tumordicke > 4 mm wurden 105 Patienten, davon 58 (55 %) männlich und 47 (45 %) weiblich, erfasst.

Abbildung 15 Mortalitätsrate in Zusammenhang mit der Tumordicke bei der Erstdiagnose

Bei der Mehrzahl der Patienten, insgesamt 656 (39,5 %), die in dem Zeitraum von 1992-2001 mit einer Tumordicke von < 0,76 mm diagnostiziert wurden, waren 392 männlich und 264 weiblich. Davon starben 19 Patienten (3 %) (m + w).
Eine Tumordicke von 0,76 - 1,5 mm wurde bei 380 (22 %) Patienten festgestellt, von denen 183 (m) und 197 (w) waren. Gestorben sind 29 Patienten (8 %) (m + w).
Eine Tumordicke von 1,51 - 4,0 mm war bei 329 (19,8 %) Patienten vorhanden, von denen 167 (m) und 162 (w) waren. Gestorben sind in dem Beobachtungszeitraum von 10 Jahren 78 Patienten (24 %) (m + w).
Die größte Tumordicke > 4 mm wurde bei 105 (6,3 %) Patienten diagnostiziert. Davon waren 58 (m) und 47 (w). Gestorben sind davon 23 Melanompatienten (22 %) (m + w).

Abbildung 16 10-Jahres-Überlebensrate in Abhängigkeit von der Tumordicke bei der Erstdiagnose

In den 10 Jahren haben mit der Tumordicke < 76 mm als Anfangsdiagnose 97 % der Melanompatienten überlebt. Mit der Tumordicke von 0,76-1,5 mm 92 % der Patienten. Die Überlebensrate sank erheblich bei einem Tumordicke über 1,51-4,0 mm und zwar auf 76 %. Ähnlich waren auch die prozentualen Anteile bei der Tumordicke > 4,0 mm, die Überlebensrate betrug in diesem Fall (78 %).
4.9 Tumorstatus nach Erst-OP und Rezidiv-OP

Tabelle 26 Tumorstatus und Progression

<table>
<thead>
<tr>
<th>ausgewertete Patienten</th>
<th>1660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorfrei nach Primär OP</td>
<td>1220</td>
</tr>
<tr>
<td>Tumorfrei nach Rezidiv OP</td>
<td>1358</td>
</tr>
<tr>
<td>Progression</td>
<td>174</td>
</tr>
<tr>
<td>unbekannter Status / keine Angaben</td>
<td>128</td>
</tr>
</tbody>
</table>

Abbildung 17 Prozentuale Anteile/ Tumorfrei und Progression

Tumorfrei waren von 1660 Patienten im Zeitraum von 1992-2001 nach der ersten OP und nach Rezidiv-OP 1358 (81,8 %) Patienten. 174 (10,5 %) wurden mit fortgeschrittener Progression registriert. Mit unbekanntem Status/ keine Angaben/ waren 128 (7,7 %) Patienten erfasst.
4.10 Krankheitsfreies Intervall nach Primär-OP bis weitere Erkrankungen (Metastasen) aufgetreten sind.

Tabelle 27 Krankheitsfreies Intervall nach primär OP

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Patienten</th>
<th>in % von allen Patienten</th>
<th>in % von 440 erkrankten Pat.</th>
<th>davon Frauen</th>
<th>davon Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 Monate</td>
<td>94</td>
<td>5,7%</td>
<td>21,4%</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>6-12 Monate</td>
<td>51</td>
<td>3,1%</td>
<td>11,6%</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>12-24 Monate</td>
<td>70</td>
<td>4,2%</td>
<td>15,9%</td>
<td>26</td>
<td>44</td>
</tr>
<tr>
<td>>24 Monate</td>
<td>96</td>
<td>5,8%</td>
<td>21,8%</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>keine Angaben / unbekannter Status</td>
<td>129</td>
<td>7,8%</td>
<td>29,3%</td>
<td>80</td>
<td>49</td>
</tr>
<tr>
<td>keine weitere Erkrankung</td>
<td>1220</td>
<td>73,5%</td>
<td>26,5%</td>
<td>692</td>
<td>528</td>
</tr>
</tbody>
</table>

4.10.1 Auftreten von Metastasen / Zeitintervall

Abbildung 18 Zeitintervall, in dem Metastasen aufgetreten sind; Anzahl der Patienten
Wie oben erwähnt sind in den 10 Jahren (1992-2001) bei 440 Melanompatienten Metastasen aufgetreten. Bei 94 (21,4 %) Patienten traten die Metastasen innerhalb von 6 Monaten nach der Exzision des Primärtumors auf. Davon waren 54 (m) und 40 (w). Zwischen 6-12 Monaten wurden 51 (11,6 %) Patienten, von denen 35 (m) und 16 (w) gewesen sind, registriert. In dem Zeitintervall von 12-24 Monaten waren es 70 (15,9 %) Patienten, bei denen Metastasen diagnostiziert wurden. Davon waren 44 (m) und 26 (w). Nach über 2 Jahren sind bei 96 (21,8 %) Patienten, 55 davon männlich und 41 weiblich, Metastasen aufgetreten.

Abbildung 19 Auftreten von Metastasen /Zeitintervall und prozentualer Anteil/

Die überwiegende Zahl der Metastasen bei den Patienten trat in 96 Fällen (22 %) nach einem Intervall von 24 Monaten auf, gefolgt von 94 (21 %) innerhalb von 6 Monaten nach der Primär-OP. Zwischen 6 bis 12 Monaten wurden 51 (12 %) und zwischen 12 bis 24 Monaten 70 (16 %) Patienten registriert, bei denen Metastasen aufgetreten sind.
4.10.2 Auftreten von Metastasen /Lokalisationen innere Organe, Haut, Knochen und Lymphknoten/

Tabelle 28 Auftreten von Metastasen

<table>
<thead>
<tr>
<th>Lokalisation innere Organe (bei Befall mehrerer =1)</th>
<th>Patienten</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunge</td>
<td>118</td>
<td>26,8%</td>
</tr>
<tr>
<td>Leber</td>
<td>94</td>
<td>21,4%</td>
</tr>
<tr>
<td>Hirn</td>
<td>75</td>
<td>17,0%</td>
</tr>
<tr>
<td>Niere</td>
<td>20</td>
<td>4,5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lokalisation Haut</th>
<th>Patienten</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>113</td>
<td>25,7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lokalisation Knochen</th>
<th>Patienten</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td>10,2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lokalisation Lymphknoten regionäre und ferne</th>
<th>Patienten</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>regionäre</td>
<td>245</td>
<td>55,7%</td>
</tr>
<tr>
<td>ferne</td>
<td>86</td>
<td>19,5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige Lokalisation</th>
<th>Patienten</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96</td>
<td>21,8%</td>
</tr>
</tbody>
</table>

Lokalisationen

Abbildung 20 Lokalisationen der Metastasen

Am häufigsten traten Metastasen in den Lymphknoten (regionäre und ferne), nämlich bei 256 (58,2 %) und in den inneren Organen bei 179 (40,7 %) Patienten auf. Hautmetastasen wurden bei 113 (25,7%), Knochenmetastasen bei 45 (10,2 %) Patienten registriert.
4.10.3 Weitere Aufteilung der Lokalisationen der Metastasen in die Lymphknoten bei 440 Metastasepatienten

Abbildung 21 Metastasen in den inneren Organen

Abbildung 22 Metastasen in den Lymphknoten

Bei einem Auftreten von Metastasen in den inneren Organen bei insgesamt 179 (40,7%) Patienten kommt die überwiegende Anzahl der Metastasen in der Lunge 118 (26,8 %) und der Leber 94 (21,4 %) vor. Gefolgt von Gehirn 75 (17 %) und Niere 20 (4,5 %).

Auffällig ist die überwiegende Lokalisation der Metastasen in den regionären und in den fernen Lymphknoten bei insgesamt 256 (58,2 %) Patienten, sowie nur in die regionäre Lymphknoten bei insgesamt 245 (55,7%) Patienten. Mit Fernlymphknotenmetastasen waren 86 (19,5 %) Patienten dokumentiert.
4.10.4 Metastasierungsverhalten der verschiedenen histologischen Subtypen des malignen Melanoms in die inneren Organe, regionäre und ferne Lymphknoten

Tabelle 29 Melanomsubtypen und Metastasierungsmuster

<table>
<thead>
<tr>
<th>Anzahl Patienten: 1660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
</tr>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
</tr>
<tr>
<td>Akro lentiginöses Melanom (ALM)</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
</tr>
<tr>
<td>GESAMT</td>
</tr>
</tbody>
</table>

Das Aderhautmelanom wurde mit nur 2 Patienten in 10 Jahren hier nicht berücksichtigt.

Abbildung 23 Prozentualer Anteil und Metastasierungsmuster für die verschiedenen Melanomtypen

Auffällig ist, dass das noduläre maligne Melanom (NMM) mit insgesamt 278 Patienten die zweitaggressivste Melanomart darstellt, da es in 81 Fällen (29, 1%) in die regionären, in 22 (7,9 %) Fällen in die fernen Lymphknoten und in 53 Fällen (19,1 %) in die inneren Organe metastasiert. Das akro lentiginöse Melanom (ALM) war die aggressivste Melanomart, da es bei insgesamt nur 77 Patienten in 27 (35,1%) Fällen in die regionären, in 14 Fällen (18,2 %) in die fernen Lymphknoten und bei 20 (26,0 %) Fällen in die inneren Organe metastasiert. Das superfiziell spreitende Melanom (SSM) zeigte im Verhältnis zu den andern Tumorarten bei insgesamt 899 Patienten weniger Metastasenbildung als im Vergleich zu den Patientenzahlen der vorherigen beiden Tumorarten. Nämlich in 58 Fällen (6,4 %) in den regionären, in 17 Fällen (1,9 %) in den fernen Lymphknoten und in 42 Fällen (4,7 %) in den inneren Organen.
Nebenstehendes Diagramm zeigt, dass das Lentigo-maligna-Melanom (LMM) der Tumorart darstellt, die am wenigsten metastasiert. Bei den insgesamt 112 Patienten metastasierte es in 8 (7,1 %) Fällen in die regionären, in 4 (3,6 %) Fällen in die fernen Lymphknoten und in weiteren 4 (3,6 %) Fällen in die inneren Organe.

4.10.5 Metastasierungsverhalten der verschiedenen klinisch-histologischen Subtypen des malignen Melanoms weiter aufgeteilt in die inneren Organe

Tabelle 30 Organ- und Knochenmetastasen von den verschiedenen Melanomsubtypen

<table>
<thead>
<tr>
<th>Subtyp</th>
<th>Lunge</th>
<th>Leber</th>
<th>Hirn</th>
<th>Niere</th>
<th>Knochen</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>23</td>
<td>22</td>
<td>18</td>
<td>8</td>
<td>10</td>
<td>81</td>
</tr>
<tr>
<td>NMM</td>
<td>44</td>
<td>27</td>
<td>23</td>
<td>6</td>
<td>11</td>
<td>111</td>
</tr>
<tr>
<td>LMM</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ALM</td>
<td>11</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>AM</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>unbekannt</td>
<td>33</td>
<td>24</td>
<td>22</td>
<td>13</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>Primärer Tumor</td>
<td>9,4%</td>
<td>6,8%</td>
<td>6,3%</td>
<td>3,7%</td>
<td>4,6%</td>
<td>118</td>
</tr>
<tr>
<td>Adenhalte Melanom</td>
<td>0,0%</td>
<td>1,1%</td>
<td>0,9%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>94</td>
</tr>
<tr>
<td>Gesamt</td>
<td>118</td>
<td>94</td>
<td>74</td>
<td>20</td>
<td>45</td>
<td>351</td>
</tr>
</tbody>
</table>

Welcher Tumortyp metastasiert vorw. in welche Organe?

Abbildung 24 Metastasierungs muster der verschiedenen Melanomsubtypen in die inneren Organe und Knochen von 1660 Patienten
In die **Lunge** metastasierte überwiegend das noduläre maligne Melanom (NMM) in 44 Fällen (12,5 %) bei 111 Metastasenpatienten, gefolgt vom malignen Melanom mit unbekanntem Primärtumor in 33 (9,4 %) Fällen bei 100 ausgewerteten Patienten. Weitere Metastasen kamen beim superfiziell spreitenden malignen Melanom (SSM) in 23 (6,6 %) Fällen bei 81 Patienten vor. Von dem akrolentiginösen Melanom (ALM) mit 11 (3,1 %) Fällen bei 37 Patienten und von dem amelanotischen Melanom (AM) in 6 (1,7%) Fällen bei 15 Patienten, waren weniger Metastasen vorhanden. Das Lentigo-maligna-Melanom (LMM) mit nur einem Fall (0,3 %) von insgesamt 6 Melanompatienten setzte am wenigsten Metastase in die Lunge.

In die **Leber** metastasierte überwiegend das noduläre maligne Melanom (NMM) in 27 (7,7 %) Fällen von 111 Metastasenpatienten, gefolgt von dem malignen Melanom mit unbekanntem Primärtumor in 24 (6,8 %) Fällen von 100 Patienten. Weitere Metastasen traten von dem superfiziell spreitenden Melanom (SSM) in 22 (6,3 %) Fällen von 81 Patienten auf. Das akrolentiginöse Melanom (ALM) in 13 (3,7 %) Fällen von 37 Patienten und von dem amelanotischen Melanom (AM) in 4 (1,1 %) Fällen von 15 Patienten waren weniger Metastasen vorhanden. Vom Lentigo-maligna-Melanom (LMM) in 3 (0,9 %) Fällen bei 6 Metastasenpatienten traten am wenigsten Metastasen in der Leber auf.

Ins **Gehirn** metastasierte überwiegend das noduläre maligne Melanom (NMM) in 23 Fällen (6,6 %) von 111 Patienten, gefolgt von dem malignen Melanom mit unbekanntem Primärtumor in 22 (6,3 %) Fällen bei 100 Patienten und von dem superfiziell spreitenden Melanom (SSM) in 18 (5,1 %) Fällen von 81 Patienten. Das akrolentiginöse Melanom in 5 (1,4 %) Fällen von 37 Patienten und das amelanotische Melanom (AM) bei 4 (1,1 %) Fällen von 15 Melanompatienten waren weniger vertreten. Beim Lentigo-maligna-Melanom (LMM) in 2 (0,6 %) Fällen von 6 Patienten traten kaum Metastasen im Gehirn auf.
In die **Niere** metastasierte vorwiegend das superfiziell spreitende Melanom (SSM) in 8 (2,3 %) Fällen von 81 Patienten, gefolgt von dem nodulären malignen Melanom (NMM) in 6 (1,7 %) Fällen von 111 Patienten. Das maligne Melanom mit unbekanntem Primärtumor in 5 (1,4 %) Fällen von 100 Patienten und das akro lentiginöse Melanom (ALM) bei einem (0,3 %) Fall von 37 Patienten. Keine Metastasen traten bei dem amelanotischen Melanom (AM) und beim Lentigo-maligna-Melanom (LMM) in der Niere auf.

Im **Knochen** waren von dem malignen Melanom mit unbekanntem Primärtumor in 16 (4,6 %) Fällen Metastasen bei 100 Patienten, gefolgt von dem nodulären malignen Melanom (NMM) in 11 (3,1 %) Fällen bei 111 Metastasenpatienten und von dem superfiziell spreitenden Melanom (SSM) in 10 (2,8 %) Fällen bei 81 Tumorpatienten vorhanden. Von dem akro lentiginösen Melanom (ALM) in 7 (2,0 %) Fällen Metastasen bei 37 Patienten und von dem amelanotischen malignen Melanom (AM) mit nur einem Fall (0,3%) von 15 Patienten Metastasen vorhanden. Das Lentigo-maligna-Melanom (LMM) hat keine Knochenmetastase verursacht.
4.10.6 Auftreten von Metastasen in sonstigen Organen

Tabelle 31 Auftreten von Metastasen in sonstigen inneren Organen

<table>
<thead>
<tr>
<th>Organ</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebenniere</td>
<td>10</td>
<td>0,60%</td>
</tr>
<tr>
<td>Parotis</td>
<td>10</td>
<td>0,60%</td>
</tr>
<tr>
<td>Muskeltgewebe</td>
<td>6</td>
<td>0,36%</td>
</tr>
<tr>
<td>Meningen</td>
<td>2</td>
<td>0,12%</td>
</tr>
<tr>
<td>Milz</td>
<td>19</td>
<td>1,14%</td>
</tr>
<tr>
<td>Nasennebenhöhle</td>
<td>4</td>
<td>0,24%</td>
</tr>
<tr>
<td>Harnleiter</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Harnröhre</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Harnblase</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Darm</td>
<td>20</td>
<td>1,20%</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>19</td>
<td>1,14%</td>
</tr>
<tr>
<td>Pleura</td>
<td>6</td>
<td>0,36%</td>
</tr>
<tr>
<td>Weichteilmetastasen</td>
<td>12</td>
<td>0,72%</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>8</td>
<td>0,48%</td>
</tr>
<tr>
<td>Pankreas</td>
<td>9</td>
<td>0,54%</td>
</tr>
<tr>
<td>Iris</td>
<td>2</td>
<td>0,12%</td>
</tr>
<tr>
<td>Ovarien</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Gaumenschleimhaut</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Schildrüse</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Scrotum</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Magen</td>
<td>2</td>
<td>0,12%</td>
</tr>
<tr>
<td>Pericard</td>
<td>1</td>
<td>0,06%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>137</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 25 Metastasierungen in den sonstigen Organen

Bei insgesamt 137 Patienten waren noch andere Metastasierungsorte vorhanden. Auffällig ist die überwiegende Metastasierung in Darm, Milz und Peritonium.

4.11 Aufteilung der verschiedenen klinisch-histologischen Subtypen verstorbener Patienten (1992-2001)

Tabelle 32 Verstorbene Patienten, nach den verschiedenen klinisch-histologischen Subtypen aufgeteilt

<table>
<thead>
<tr>
<th>Subtyp</th>
<th>Patienten erkrankt</th>
<th>davon gestorben</th>
<th>entspricht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>899</td>
<td>59</td>
<td>7%</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>278</td>
<td>50</td>
<td>18%</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>112</td>
<td>14</td>
<td>13%</td>
</tr>
<tr>
<td>Akrolientiginöses Melanom (ALM)</td>
<td>77</td>
<td>18</td>
<td>23%</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>30</td>
<td>6</td>
<td>20%</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>262</td>
<td>51</td>
<td>19%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1658</td>
<td>198</td>
<td>12%</td>
</tr>
</tbody>
</table>

Das Aderhautmelanom wurde mit nur 2 Patienten in 10 Jahren hier nicht berücksichtigt, deshalb 1658 statt 1660 Patienten.

Abbildung 26 Patientenzahlen und prozentuale Anteile der verschiedenen klinisch-histologischen Subtypen verstorbener Patienten
Insgesamt starben 198 Patienten im Zeitraum von 1992 – 2001 (+ 1 Patient mit Aderhautmelanom). Auffällig ist die hohe Mortalität bei dem akrolentiginösen malignen Melanom (ALM) 18 Patienten (23 %) von nur 77 Erkrankungsfällen, gefolgt vom amelanotischen malignen Melanom (AM) 6 Patienten (20 %) von 30 Erkrankungsfällen und dem malignen Melanom mit unbekanntem Primärtumor mit 51 Patienten (19 %) von 262 Erkrankungsfällen. Weiterhin hoch war die Mortalität beim nodulären malignen Melanom mit 50 (18 %) verstorbenen Patienten in 278 Erkrankungsfällen. Das Lentigo-maligna-Melanom (LMM) mit 14 (13 %) Sterbefällen bei 112 Erkrankungsfällen und das superficial spreitende Melanom (SSM) mit 59 (7 %) verstorbenen Patienten waren weniger vertreten. Insgesamt betrug die Mortalität 12 %.

Tabelle 33 Verstorben nach den verschiedenen klinisch-histologischen Subtypen aufgeteilt (m + w)

<table>
<thead>
<tr>
<th>Sterberate nach Tumortypen und Geschlecht</th>
<th>Gestorben</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfiziell spreitendes Melanom (SSM)</td>
<td>59</td>
<td>30%</td>
<td>38</td>
</tr>
<tr>
<td>Noduläres Melanom (NMM)</td>
<td>50</td>
<td>25%</td>
<td>28</td>
</tr>
<tr>
<td>Lentigo maligna Melanom (LMM)</td>
<td>14</td>
<td>7%</td>
<td>5</td>
</tr>
<tr>
<td>Akrolentiginöses Melanom (ALM)</td>
<td>18</td>
<td>9%</td>
<td>10</td>
</tr>
<tr>
<td>Amelanotisches Melanom (AM)</td>
<td>6</td>
<td>3%</td>
<td>2</td>
</tr>
<tr>
<td>unbekannter Primärtumor</td>
<td>52</td>
<td>26%</td>
<td>29</td>
</tr>
<tr>
<td>Gesamt verstorben</td>
<td>199</td>
<td>100%</td>
<td>112</td>
</tr>
<tr>
<td>Gesamtpatienten</td>
<td>1660</td>
<td>12%</td>
<td>56%</td>
</tr>
</tbody>
</table>

Abbildung 27 Aufteilung der verstorbenen Patienten nach den verschiedenen klinisch-histologischen Subtypen (m + w) von 199 verstorbenen Patienten.
Von den 199 (12 %) insgesamt verstorbenen Patienten in den 10 Jahren waren 59 (7 %) (38 m; 21 w) dem superfiziell spreitenden Melanom (SSM) zugeordnet, gefolgt vom malignen Melanom mit unbekanntem Primärtumor 52 (19 %) (29 m; 23 w) Patienten. Das noduläre maligne Melanom (NMM) mit 50 (18 %) (28 m; 22 w), das akrolentiginöse maligne Melanom (ALM) mit 18 (23 %) (10 m; 8 w) und das Lentigo-maligna-Melanom (LMM) mit 14 (13 %) (5 m; 9 w) Patienten waren ebenso vertreten. Das amelanotische Melanom wurde mit 6 (20 %) (2 m; 4 w) Patienten diagnostiziert.

4.12 Andere Todesursachen

Tabelle 34 Andere Todesursachen als durch das maligne Melanom

<table>
<thead>
<tr>
<th>Todesursachen</th>
<th>Anzahl Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestorben ohne bekannte Ursachen (aber Anfangsdiagnose MM)</td>
<td>54</td>
</tr>
<tr>
<td>Gestorben wegen anderer Ursachen (kein MM)</td>
<td>9</td>
</tr>
<tr>
<td>kein Todesdatum vorhanden, aber fortgeschrittene Progression</td>
<td>65</td>
</tr>
<tr>
<td>Gestorben, als Ursache malignes Melanom (MM)</td>
<td>71</td>
</tr>
</tbody>
</table>

Gesamt 136 mit MM = Sterberate 8,1%

Abbildung 28 Andere Todesursachen / Patientenzahl und prozentualer Anteil /

Von den 199 (12 %) Melanompatienten, die gestorben sind, sind 54 (27 %) ohne bekannten Ursachen und 9 (5 %) Patienten wegen anderer Ursachen gestorben. Darunter waren 2 Patienten mit Mamma- Ca, 2 Patienten mit Herzversagen und je 1 Patient mit Magen- Ca, Rectum- Ca, Apoplex, Morbus Hodgkin oder Pneumonie. Bei 65 Melanompatienten war kein Sterbedatum eingetragen, aber Progression im fortgeschrittenen Stadium vorhanden. Somit ist davon auszugehen, dass auch diese Patienten verstorben sind.

Tabelle 35 Zeitdifferenz zwischen Erstdiagnose und Tod der Patienten bei denen Metastasen aufgetreten sind

<table>
<thead>
<tr>
<th>Patienten gestorben: 199 von 1660 = 12%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Sterberate</td>
</tr>
<tr>
<td>Gestorben innerhalb von:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

199 Patienten 100,0 %

Die mittlere Nachbeobachtungszeit betrug 70 Monate. Innerhalb eines Jahres starben 26 (13,1 %) Patienten, nach 3 Jahren waren 92 (46,2 %) Patienten verstorben. Nach 5 Jahren waren 43 (21,6 %) Patienten und nach 10 Jahren 38 (19,1 %) Patienten verstorben. Die Überlebenswahrscheinlichkeit betrug im ersten Jahr 87,4 %, nach drei Jahren 53,8 %, nach 5 Jahren 78,4 % und nach 10 Jahren 80,9 %.

Abbildung 29 Zeitdifferenz zwischen Erstdiagnose und Tod der Patienten durch das maligne Melanom
5. Diskussion

Unsere Auswertungen nach den Melanomsubtypen ergab in dieser Studie, dass der häufigste Tumortyp von insgesamt 1660 auswertbaren Patientendaten das superfiziell spreitende maligne Melanom (SSM) bei 899 (54,2 \%) Patienten gewesen ist. Das zweithäufigste war das noduläre maligne Melanom (NMM) mit 278 gefolgt von dem Lentigo-maligna-Melanom mit 112 Patienten. Ähnliche Angaben sind auch in der Literatur zu finden, wo bei allen Melanompatienten als die am häufigsten vorkommende Tumorart das superfiziell spreitende Melanom (SSM) aufgeführt wird (116, 121,119).
Eine ähnliche Verteilung findet sich auch bei der Analyse von Inzidenzraten in der USA (119).

Bei den Tumorlokalisationen aller histologischen Subtypen von 1660 Patienten (m+w) überwogen in Regensburg für die Extremitäten mit insgesamt 738 (44,5 %) Patienten. Gefolgt vom Rumpf mit 603 (36,3 %) und Kopf/Hals mit 272 (16,4 %) Fällen. Die Erkrankungsfälle weiter aufgeteilt zusammen an den Extremitäten ergaben bei uns, dass an den oberen Extremitäten (Arm/Hand) 238 und an der unteren Extremitäten (Bein/Fuß) 500 Melanomfälle vorkamen. Weitere Aufteilungen auf die Hand und den Fuß ergaben, dass 16 Fälle an der Hand und 142 Fälle am Fuß vorkamen. Nach Geschlechtern verteilt waren die Tumorlokalisationen bei uns im Kopf-Hals-Bereich bei beiden Geschlechtern ähnlich verteilt, nämlich m. (16,8 %) und w. (16 %).

Auch in der Literatur besteht Übereinstimmung darin, dass die meisten Melanome bei den Männern überwiegend am Rumpf und bei den Frauen überwiegend an den Unterschenkeln zu finden sind (20, 44, 119, 51, 52).
Die Häufigkeitsverteilungen von den Melanomsubtypen \((m + w)\) wurden von einigen Autoren in die folgende Reihenfolge angegeben: Fuß > Rumpf > Kopf/Hals > Unterschenkel > obere Extremitäten > Oberschenkel \((9, 11, 100, 121)\).

Bei uns in Regensburg war die Reihenfolge \((m + w)\): Extremitäten (obere/untere) > Rumpf > untere Extremität (Bein/Fuß) > Kopf/Hals > obere Extremität (Arm/Hand) > Fuß > Hand.

Somit ist ersichtlich, dass das maligne Melanom überwiegend an den unteren Extremitäten, am Rumpf und im Kopf/Hals-Bereich vorkommt, das mit unseren Daten auch übereinstimmte und durch andere Autoren auch bestätigt wurden \((119, 121)\).

Das häufigste im Kopf-Hals-Bereich \((16,4 \%)\) vorkommende Melanomart war bei uns das superfiziell spreitende Melanom \((SSM)\) 33 \%, gefolgt von dem Lentigo-maligna-Melanom 32 \% und von dem nodulären malignen Melanom 15 \%. Ergebnisse anderer Studien zeigen ähnliche Daten, die auch diese Reihenfolge der prozentualen Anteile der verschiedenen klinisch-histologischen Subtypen in diesem Bereich angeben \((115, 121)\).

Am Rumpf \((36,3 \%)\) überwog auch das superfiziell spreitende Melanom \((SSM)\) 64 \%, gefolgt von dem nodulären malignen Melanom \((NMM)\) mit 17 \%.

An den oberen Extremitäten \((Arm/Hand)\) \((14,3 \%)\) war in Regensburg ebenso das superfiziell spreitende Melanom mit 52 \% überwiegend vorhanden. Das zweithäufigste war das noduläre maligne Melanom mit 21 \%.

An den unteren Extremitäten \((Bein/Fuß)\) \((30,1 \%)\) waren bei uns auch ähnliche Daten vorhanden. Das superfiziell spreitende Melanom 55 \% und das noduläre maligne Melanom 15 \% waren auf diesem Gebiet überwiegend vertreten. Auffällig hoch war das Vorkommen des aktolentiginösen Melanoms an den unteren Extremitäten 12 \% verglichen mit den oberen Extremitäten 5 \%, da es wie schon erwähnt bei den Europäern selten auftritt \((12, 18, 93)\).

Dem Tumortyp ALM wurden bei uns insgesamt 10 Fälle an der Hand \((8 \text{ männlich}, 2 \text{ weiblich})\) und 58 Fälle \((21 \text{ männlich}, 37 \text{ weiblich})\) am Fuß zugeordnet.

Wir fanden in dieser Studie, dass das akrolentiginöse Melanom \((ALM)\) am Fuß überwiegend bei den Frauen und an der Hand überwiegend bei den Männern auftritt. Es sind noch kaum Literaturangaben vorhanden, wo die Geschlechtsverteilung mit den Lokalisationen in Zusammenhang mit dem akrolentiginösen malignen Melanom ausgewertet wurde.

Von den 1660 Patienten waren bei den Stadien-Einteilungen 45 \% auswertbar. Bei 55 \% Patienten waren keine Stadien-Angaben vorhanden. Auffällig war die hohe
Patientenzahl 15 % bei der Erstdiagnose, die schon in den frühen Stadium Ia diagnostiziert wurden. Mit Stadium IV bei der Erstdiagnose waren nur 4 % festgehalten. In der Literatur wird die Häufigkeit des Stadium IV zwischen 1,0 und 10,0 % angegeben (15, 58). Somit stimmen auch unsere Daten auch in diesem Bereich mit den Literaturangaben überein.

Im Wesentlichen hängt die Überlebenszeit der Patienten zu jeder Zeit entscheidend von den Tumordicken ab.

Bei der Mehrzahl von 1660 Patienten, insgesamt 39,5 %, wurde in Regensburg das maligne Melanom im frühen Stadium mit einer Tumordicke von < 0,76 mm diagnostiziert. Mit einer Tumordicke > 4,0 mm waren 6,3 % registriert. Die größte Tumordicke betrug 20,5 mm.

Unsere Analyse ergab, dass die 10-Jahres-Überlebensrate bei einer Tumordicke von bis zu < 0,76 mm 97 %, bei Jenen mit einem Tumordicke von 0,76-1,5 mm 92 %, bei Tumordicken von 1,5-4,0 mm 76 % und bei einem Tumordicke > 4,0 mm 78 % betrug. Ähnliche Angaben sind in dem Datensatz des Klinikregisters an der Universitätsklinik Tübingen auch zu finden (118). Nur die 10 Jahres Überlebensrate bei einer Tumordicke > 4,0 mm weicht von unseren Daten ab und wird dort mit 55 % angegeben. Unsere Überlebensrate betrug 78 % bei diesem Tumordicke. Verglichen man die bei uns ermittelten Überlebensraten mit dem Schrifttum, so liegt eine außerordentlich günstige Prognose vor. Dieses Ergebnis ist eventuell auf die verbesserten Aufklärungsmaßnahmen in der Bevölkerung und auf die verbesserten diagnostischen Maßnahmen in den letzten Jahren zurückzuführen.

Die Mortalitätsrate stieg in Regensburg überwiegend im Stadium III und IV mit einer Tumordicke von 1,50- 4,0 mm (24 %) und > 4,0 mm (22 %) erheblich höher an als bei den anderen Tumordicken. Der wichtigste Grund für die Stabilisierung der Mortalitätsraten bei nach wie vor steigenden Inzidenzraten dürfte in der besseren Frühdiagnostik von prognostisch günstigeren Tumoren liegen. Auch für die USA und Australien wurde eine Stabilisierung der Mortalitätsraten beschrieben (119).

In unserer Analyse in Regensburg hat sich auch bestätigt, dass die größere Zahl der Melanompatienten schon früh z.B. bei einer Tumordicke von < 0,76 mm zum Arzt geht. Von den 1660 Melanompatienten waren es 656, bei denen diese Tumordicke...
diagnostiziert wurde. Davon waren 60 % Frauen und 40 % Männer. Diese Daten bestä
tigen außerdem, dass Frauen eher rechtzeitig zum Arzt gehen als Männer.

In dieser Studie wurde auch bestätigt, dass die Tumordicke eine entscheidende Rolle
bei der Erstdiagnose in Zusammenhang mit der Exzision spielte. Je größer die
Tumordicke gewesen ist, desto größerer Sicherheitsabstand war bei der Exzision
notwendig.

Ein Trend zur Erstdiagnosestellung bei kleineren Tumoren und Tumordicken wurde in
mehreren Ländern beschrieben (51).

Auch von weiteren Autoren wird auf die genaue Bestimmung der Tumordicke großen
Wert gelegt, da dadurch die Prognose und das Metastasierungsrisiko statistisch
vorausgesagt werden kann (10, 11, 31, 59, 93, 99, 119). Die mediane Tumordicke
betrug bei uns zwischen 0,4-2,0mm.

Mit zunehmender Tumordicke steigt das Risiko von Satellitenmetastasen in der
unmittelbaren Umgebung des Primärtumors. Daraus abzuleiten ist, dass mit einem
kleineren Sicherheitsabstand das Risiko für das Auftreten derartiger Satelliten-
metastasen zunimmt (55, 119, 123).

Wie von einigen Autoren auch angegeben wurde findet man bei 90 % aller Melanome
bei der Erstdiagnose der Erkrankung keine erkennbare Metastasierung. Haben sich
Tumorzellen bereits in die umliegenden Lymphknoten ausgebreitet, sinkt die 10-Jahres
Überlebensrate auf 15-30 %. Treten Fernmetastasen auf, verschlechtern sich die
Überlebensaussichten wesentlich (55). Bei uns in Regensburg sank die 10-Jahres-
Überlebensrate auf 21 %.

In großen heterogenen Patientenkollektiven liegt die Metastasierungsrate zwischen 30
und 40 % (9, 32, 97, 107, 114).

In unserem Patientenkollektiv lag die Metastasierungsrate von 440 Metastasenpatienten
bei 26,5 %, was etwas niedriger als der obige Wert ist. Vielleicht liegt es an den
verbesserten Nachsorgemaßnahmen.

Wie auch schon von anderen Autoren angegeben wurde, ist die Ausbreitung des
Melanoms an den lymphatisch-venösen Abflusses des Primärtumors gebunden (15).
Ergebnisse frühere Arbeiten zeigen, dass das häufigere Auftreten regionärer Lymph-
knoten-, in-transit- sowie Satellitenmetastasen für eine bevorzugte Ableitung der
Melanomzellen über die Lymphgefäße spricht, wobei sich regionäre Hautmetastasen
oft erst nach Manifestation von Lymphknotenmetastasen zeigen (128).
In früheren Studien wurde auch belegt, dass die ungünstigste Prognose bei den Rumpfmelanomen besteht, da bei diesem häufiger regionäre Lymphknotenmetastasen, Fernlymphknotenmetastasen und Organmetastasen auftraten (18).

In unserer Studie sah man auch, dass die Melanome überwiegend in die Lymphknoten metastasierten, nämlich in 58,2 % der Fälle. Davon 55,7 % in die regionäre Lymphknoten und 19,5 % in die fernen Lymphknoten. Diese Angaben decken sich auch mit den Ergebnissen anderer Autoren (115, 121). Weitere Metastasen gab es in den inneren Organen (40,7 %), Haut (25,7 %) und Knochen (10,2 %), was auch die Bösartigkeit dieses Tumors bestätigt.

Bei der Metastasierung in die inneren Organe von insgesamt 179 Patienten kam die überwiegende Anzahl der Metastasen in der Lunge vor 26,8 %. Gefolgt von der Leber 21,6 %, Hirn 17 % und Niere 4,5 %.

Das Metastasierungsverhalten der verschiedenen klinisch-histologischen Subtypen ergab in dieser Studie, dass das ALM (4,6 %) die aggressivste Tumorart darstellte, da es in 35,1 % in die regionären, in 18,2 % in die fernen Lymphknoten und in 26,0 % in die inneren Organe metastasierte.

Die zweitaggressivste Melanomart war das NMM (16,7 %), was in 29,1 % in die regionäre, in 7,9 % in die fernen Lymphknoten und in 19,1 % in den inneren Organen Metastasen setzte.

Das SSM (54 %) zeigte im Verhältnis zu den anderen Tumorarten weniger Metastasenbildung im Vergleich zu den Patientenzahlen der vorherigen beiden Tumorarten. Es metastasierte in 6,5 % in die regionäre, 1,9 % in die fernen Lymphknoten und in 4,7 % in die inneren Organe.

Ähnliche Angaben sind auch in der Literatur zu finden, wo auch das SSM mit einer Häufigkeit von 50-60 % seltener metastasieren soll als das in ca. 20-30 % der Fälle diagnostizierte noduläre maligne Melanom (NMM) (23, 73).

Weitere Ergebnisse früherer Arbeiten zeigten, dass das Lentigo-maligna-Melanom (LMM) eine Tumorart darstellt, die am wenigsten metastasiert (119,121). Das LMM (6,7 %) metastasierte bei uns mit 7,1 % in die regionären, mit 3,6 % in die fernen Lymphknoten und mit 3,6 % in die inneren Organe.

In dieser Studie in Regensburg wurde festgestellt, dass die verschiedenen Tumortypen des malignen Melanoms ein bestimmtes Metastasierungs muster in die inneren Organe
aufweisen, was in der Literatur noch wenig erwähnt wurde. Ausgewertet wurden bei uns in Regensburg insgesamt 351 Patienten nach den verschiedenen klinisch-histologischen Subtypen, bei denen Metastasen in den inneren Organen z.B. Lunge, Leber, Gehirn, Niere und Knochen aufgetreten sind.

In die **Lunge** metastasierte überwiegend bei uns das noduläre maligne Melanom (NMM) 12,5 % bei 111 Metastasenpatienten, gefolgt von dem malignen Melanom mit unbekanntem Primärtumor 9,4 % bei 100 ausgewerteten Patienten. Weitere Metastasen kamen von dem superfiziell spreitenden malignen Melanom (SSM) 6,6 % bei 81 Patienten. Von dem akrolentiginösen Melanom (ALM) 3,1 % bei 37 Patienten und von dem amelanotischen Melanom (AM) 1,7 % bei 15 Patienten waren weniger Metastasen vorhanden. Das Lentigo-maligna-Melanom (LMM) 0,3 % von insgesamt 6 Melanompatienten setzte am wenigsten Metastase in die Lunge.

In die **Leber** metastasierte überwiegend das noduläre maligne Melanom (NMM) 7,7 % von 111 Metastasenpatienten, gefolgt von dem malignen Melanom mit unbekanntem Primärtumor 6,8 % von 100 Patienten.

Weitere Metastasen traten von dem superfiziell spreitenden Melanom (SSM) 6,3 % von 81 Patienten auf. Das akrolentiginöse Melanom (ALM) 3,7 % von 37 Patienten und von dem amelanotischen Melanom (AM) 1,1 % von 15 Patienten waren weniger Metastasen vorhanden. Von der Lentigo-maligna-Melanom (LMM) 0,9 % bei 6 Metastasenpatienten traten am wenigsten Metastasen in die Leber auf.

Ins **Gehirn** metastasierte in unsere Studie überwiegend das noduläre maligne Melanom (NMM) 6,6 % von 111 Patienten, gefolgt vom malignen Melanom mit unbekanntem Primärtumor 6,3 % bei 100 Patienten und von dem superfiziell spreitenden Melanom (SSM) 5,1 % von 81 Patienten. Das akrolentiginöse Melanom (ALM) 1,4 % von 37 Patienten und das amelanotische Melanom (AM) 1,1 % von 15 Melanompatienten waren weniger vertreten. Beim Lentigo-maligna-Melanom (LMM) 0,6 % von 6 Patienten traten kaum Metastasen im Gehirn auf.

In die **Niere** metastasierte vorwiegend das superfiziell spreitende Melanom (SSM) 2,3 % von 81 Patienten, gefolgt von dem nodulären malignen Melanom (NMM) 1,7 % von 111 Patienten. Das maligne Melanom mit unbekanntem Primärtumor 1,4 % von 100 Patienten und das akrolentiginöse Melanom (ALM) 0,3 % von 37 Patienten. Keine Metastasen traten bei uns von dem amelanotischen Melanom (AM) und von dem Lentigo-maligna-Melanom (LMM) in der Niere auf.
Im Knochen waren von malignen Melanom mit unbekanntem Primärtumor 4,6 % bei 100 Patienten, gefolgt von dem nodulären malignen Melanom (NMM) 3,1 % bei 111 Metastasenpatienten und von dem superfiziell spreitenden Melanom (SSM) 2,8 % bei 81 Tumorpatienten Metastasen vorhanden. Weitere Metastasen traten von dem akrolentiginösen Melanom (ALM) 2,0 % bei 37 Patienten und von dem amelanotischen malignen Melanom (AM) 0,3 % bei 15 Patienten auf.

Das Lentigo-maligna-Melanom (LMM) hat keine Knochenmetastasen bei uns verursacht.

Die mittlere Nachbeobachtungszeit betrug in Regensburg 70 (6 Jahre) Monate. Insgesamt betrug die krankheitsbedingte Mortalität 12 %, was annähernd mit anderen Patientenkollektiven übereinstimmte (105). Der Mittelwert lag hier bei 38 Monate nach der Erstdiagnose. Die Mehrzahl der Patienten insgesamt 92 (46 %) ist spätestens nach 3 Jahren nach der Erstdiagnose verstorben. Im 10. Jahr sind 38 Patienten (19,1 %) gestorben.

In dem gesamten Beobachtungszeitraum vom 01.01.1992 bis zum 31.12.2001 ergab sich eine 5-Jahres-Überlebenswahrscheinlichkeit von 78,4 %. Dieser Wert entspricht den Angabe der Fachliteratur, wo die relative 5-Jahres-Überlebenswahrscheinlichkeit mit ca. 75 % angegeben wird (55, 129).

Auffällige prozentuale Ähnlichkeit bestand bei uns bei der 5-Jahres- Überlebenswahrscheinlichkeit 78,4 % und der 10-Jahres- Überlebenswahrscheinlichkeit mit 80,9 %. Anhand von Analysen des Patientengutes der Universitätshautklinik Regensburg lässt sich für Patienten, die innerhalb einer 4-Wochen-Grenze radikal nachoperiert wurden,
eine signifikant bessere Überlebenswahrscheinlichkeit nachweisen, was sich auch mit den Literaturangaben deckt (129).

Zusammenfassung

Das mediane Alter war in Regensburg zur Zeitpunkt der Diagnosestellung 54 Jahre.

Weiter ist auffällig, dass das Lentigo-maligna-Melanom (LMM) überwiegend im Kopf/Hals-Bereich (8-mal häufiger als am Rumpf) auftritt. Das noduläre maligne Melanom (NMM) kommt hauptsächlich am Rumpf (2-mal häufiger als im Kopf/Hals-Bereich) vor. Das superficial spreitende Melanom (SSM) ist zwar am Kopf/Hals und Rumpf statistisch an erster Stelle, aber am Rumpf tritt es 4-mal häufiger als im Kopf/Hals-Bereich auf.

Auf die Geschlechter aufgeteilt war bei uns das ALM bei den Männern überwiegend am Fuß zu finden. Es gibt noch kaum Literaturangaben, bei dem das ALM nach Geschlechtern ausgewertet worden wäre. Das NMM und das LMM kamen in dieser Studie in Regensburg an der Hand nicht vor. Bei der Erstdiagnose wurde bei der Mehrzahl der Patienten in Regensburg Stadium I a (15 %) diagnostiziert. Mit Stadium IV wurden nur 4 % der Patienten diagnostiziert. Es wurde auch in dieser Auswertung in Regensburg bestätigt, dass die Tumordicke eine entscheidende Rolle bei der Erstdiagnose spielt. Je größer der Tumordicke gewesen ist, desto größerer Sicherheitsabstand war bei der Exzision notwendig. Mit größerer Tumordicke stieg auch die Metastasierungsrisiko und die Mortalitätsrate.

Die 10 Jahres Überlebensrate betrug in einem früherem Stadium (Tumordicke <0,76mm) 97 % und sank in dieser Studie ab einer Tumordicke zwischen 1,5-4.0 mm auf 76 %.
Die Mortalitätsrate stieg auch bei unserer Analyse ab einer Tumordicke von < 0,76 mm (3 %) bei der Erstdiagnose rapide an. Von einer Tumordicke von 1,51-4,0 mm stieg es auf (24 %) und von einer Tumordicke > 4,0 mm auf (22 %).

Bei 440 Patienten traten in Regensburg Metastasen auf, die überwiegend in den Lymphknoten insgesamt bei 256 Fällen gefunden wurden.

Bei 245 Patienten waren Metastasen bei uns in den regionären Lymphknoten vorhanden. Hautmetastasen wurden bei 113 und Knochenmetastasen bei 45 Patienten registriert.

Weitere Metastasen gab es auch in den inneren Organen in dieser Studie bei 179 Melanompatienten, die überwiegend in die Lunge, Leber, Hirn und Niere vorkamen.

Erstmals wurde in Regensburg in dieser Studie festgestellt, dass die verschiedenen Melanomsubtypen ein bestimmtes Metastasierungsmuster in die inneren Organe aufweisen, was in der Literatur noch nicht erwähnt wurde.

Die Reihenfolge der prozentualen Anteile war in dieser Studie in Regensburg wie folgt.

An der 3. Stelle war das SSM, das in erster Linie ebenso in die Lunge 6,6 % und Leber 6,3 %, gefolgt von Gehirn, Knochen und Niere metastasierte.

An der 5. Stelle war das amelanotische Melanom, der überwiegend in die Lunge 1,7 %, gefolgt mit gleichem prozentualen Anteil von 1,1 % in der Leber und Gehirn. Im Knochen waren kaum und in der Niere keine Metastasen vorhanden.

An der 6. Stelle kam das LMM, das am wenigsten metastasierte. Metastasen gaben in erster Linie in der Leber 0,9 % und im Gehirn 0,6 %, gefolgt von der Lunge 0,3 %. Es gaben keine Metastasen des LMM in der Niere und im Knochen.

Überwiegend in der Leber kamen auch vom NMM Metastasen vor. Der zweithäufigste histologische Subtyp war das maligne Melanom mit unbekanntem Primärtumor, gefolgt von dem SSM und von dem ALM. Das amelanotische Melanom und das LMM metastasiert ebenso weniger in dieses Organ.

Zusammenfassend waren die Ergebnisse, dass das NMM den aggressivsten Melanomsubtyp darstellt, weil es nach einer Metastasierung in die regionäre und ferne Lymphknoten überwiegend in den inneren Organe und überwiegend in die Lunge metastasiert. In die Lunge metastasiert es zweimal häufiger als das SSM und viermal häufiger als das ALM.

Das akro lentiginöse Melanom (ALM) ist der zweitaggressivste Tumorart, weil es wie oben nach einer Metastasierung in den regionären und ferne Lymphknoten überwiegend in den inneren Organen und überwiegend in der Leber metastasiert.

In der Mehrzahl der an malignem Melanom verstorbenen Patienten, insgesamt 199, war das ALM 23 % als Ursache diagnostiziert worden. Gefolgt von dem amelanotischen Melanom 20 %, von dem malignen Melanom mit unbekannter Primärtumor 19 % und von dem NMM 18 %. Das LMM war in 13 % der Fälle und zum Schluss der SSM mit nur in 7% als Ursache für den Tod der Patienten verantwortlich. Von den 199 verstorbenen Patienten waren 122 männlich und 87 weiblich. Die Sterberate betrug bei uns im Durchschnitt 12 %.

Die 5-Jahres-Überlebenswahrscheinlichkeit betrug in Regensburg 78,4%, die 10-Jahres-Überlebenswahrscheinlichkeit 80,9 %. Dieses Ergebnis lässt auf eine verbesserte Nachsorge bei dem malignen Melanom schließen.

7. Stellungnahme

Bedenkt man die eingeschränkten Therapiemöglichkeiten des Melanoms im metastasierten Stadium der Erkrankung, so bleibt die Früherkennung das wichtigste Werkzeug zur Verringerung der Mortalität. Die wichtigste Aufgabe der Melanomnachsorge ist die Feststellung der Tumorfreiheit und die Früherkennung einer Tumorprogression.

Das Beachten des Metastasierungsverhaltens bei den verschiedenen histologischen Subtypen auch in die inneren Organe könnte zukünftig im Hinblick auf die zu erwartende Lokalisation der Metastasen die Prognoseabschätzung und die zu erwartende Entwicklung im Verlauf der Erkrankung bei einem Patienten erleichtern. In den Nachuntersuchungen bei den verschiedenen histologischen Subtypen könnte man gezielter nach den Metastasen in den inneren Organen suchen.

8. Literaturverzeichnis

101. Rassner G., D’ Hoedt, B., Stroebel, W., Stutte, H.: Lymphknotensonographie in
der Melanomnachsorge. In: Braun-Falco, O., Meurer, M. (Hrsg.): Fortschritte der

102. Rassner G., D’ Hoedt, B., Stroebel, W., Stutte, H.: Melanomnachsorge:
Integriertes Nachsorgekonzept der Tübinger Hautklinik sowie Ergebnisse einer
Umfrage zur Melanomnachsorge an deutschen Hautkliniken. Hautarzt 41 (1990)
Soppl.X. S.94-97.

Melanom, Therapiestrategien und Nachsorgekonzepte. Editiones «Roche», Basel
(1993) S. 35-44.

and anti-self responsesin a phase 1 trial with the anti-citotoxic T lymphocyte-
23:8968-77.

106. Route Chr. / ZMK Zahnheilkunde / Was der Hauszahnarzt über Melanome der
Mundhöhle und des Rachenraumes wissen sollte / Ausgabe 9, September 2008.

108. Schadendorf, D., Binting, S., Henz-Czarnetzki, B.M.: Prognose des primären und
metastasierten malignen Melanoms – Abschließende Auswertung des
geschlossenen Patientenkollektivs an der Hautklinik des Virchow Klinikums
837.

Gesichtschir. 4 (Suppl 1): 177-186.

110. Sondergaard K:Histological Type and biological behavior of primary cutaneous
malignant melanoma 2. An analysis of 86 cases located on so-called acral regions
as plantar, palmar, and sub-/parungual areas. Virchows Arch 1983; 401: 333-343.

111. Stadler R, Luger T, Bieber T et al. Long-term survival benefit after adjuvant
treatment of cutaneous melanoma with Dacarbazine and low dose natural

treatment of cutaneous melanoma metastases. Am J Acad dermatol.2000; 43: 555-
556.

113. Stingluff, C.L. Jr., Seigler, H.F.;Immuntherapy for malignant Melanoma with a

115. Streit E. / Maligne Melanome im Kopf- Hals- Bereich / Poliklinik für Dermatologie und Venerologie der Martin-Luther-Universität Halle-Wittenberg 2009

