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Abstract

Interspecific mating can cause severe fitness costs due to the fact that hybrids are often non-viable or less fit. Thus, theory
predicts the selection of traits that lessen reproductive interactions between closely related sympatric species. Males of the
parasitic wasp Nasonia vitripennis differ from all other Nasonia species by an additional sex pheromone component, but the
ecological selective forces underlying this pheromone diversification are unknown. Here we present data from lab
experiments suggesting that costly interspecific sexual interactions with the sympatric species N. giraulti might have been
responsible for the pheromone evolution and some courtship-related behavioural adaptations in N. vitripennis. Most N.
giraulti females are inseminated already within the host, but N. giraulti males still invest in costly sex pheromones after
emergence. Furthermore, they do not discriminate between N. vitripennis females and conspecifics during courtship.
Therefore, N. vitripennis females, most of which emerge as virgins, face the risk of mating with N. giraulti resulting in costly
all-male broods due to Wolbachia-induced cytoplasmic incompatibility. As a counter adaptation, young N. vitripennis
females discriminate against N. giraulti males using the more complex conspecific sex pheromone and reject most of them
during courtship. With increasing age, however, N. vitripennis females become less choosy, but often compensate mating
errors by re-mating with a conspecific. By doing so, they can principally avoid suboptimal offspring sex ratios, but a
microcosm experiment suggests that under more natural conditions N. vitripennis females cannot completely avoid fitness
costs due to heterospecific mating. Our study provides support for the hypothesis that communication interference of
closely related sympatric species using similar sexual signals can generate selective pressures that lead to their divergence.
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Introduction

Sexual interactions with heterospecifics are often costly for

sexually reproducing organisms. Mating with a sexual partner

from another species, for instance, may result in dramatic fitness

losses because hybrids may be non-viable or less fit than offspring

resulting from intraspecific fertilization [1]. Therefore, theory

predicts the selection of traits that lessen costly reproductive

interactions with sympatric heterospecifics thus favouring assorta-

tive mating between conspecifics. Depending on the communica-

tive channels involved in mate finding and pre-copulatory sexual

signalling, this process is typically accompanied by a divergence of

visual, acoustic, tactile and olfactory traits, which mediate

premating isolation and may thus contribute to speciation [2,3].

In insects, the chemical sense is of particular importance for

sexual communication and many of them use volatile sex

pheromones to attract potential mates from a distance whereas

less volatile compounds are used at close range for mate

recognition and to elicit receptivity during courtship [2,4]. Many

congeneric species share the same sex pheromone components [5],

which in sympatry may lead to costly interference of sexual

communication. Thus, interspecific divergence of chemical traits

has been reported for a number of sympatric species (reviewed by

[2]), but the causal link between diverged chemical traits and the

ability of species to discriminate against heterospecifics is often

missing. Furthermore, the genetic mechanisms as well as the

ecological selective forces underlying signal diversification have

hitherto been studied only in relatively few species mostly from the

orders Lepidoptera and Diptera [2].

In the present study, we investigated interspecific sexual

interactions in the parasitic wasp genus Nasonia. The genus

comprises four species, i.e. N. vitripennis (Nv), N. giraulti (Ng), N.

longicornis and N. oneida, which parasitise pupae of numerous fly

species [6,7]. Nv is a cosmopolitan species whereas the occurrence

of Ng and N. longicornis is restricted to the eastern (Ng) and western

(N. longicornis) part of North America [8]. N. oneida has hitherto only

been reported from the state of New York [6] where it co-occurs

with N. vitripennis and N. giraulti [6,9]. The typical natural habitat of

Nasonia wasps is nests of hole-breeding birds [8]. Nasonia wasps are

haplodiploid species with female offspring developing from

fertilised eggs and male offspring from unfertilised ones. In nature,

Nasonia females typically mate only once in their lifetime [10] and

subsequently disperse to search for new host patches. The mating

system of Nasonia species is characterised by local mate competition

[11] with a high degree of sib mating at the natal patch. Therefore,
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females exploiting a given host patch alone produce only the

minimum number of sons necessary to fertilise all their sisters.

With increasing number of foundresses, offspring sex ratios are

shifted in favour of sons because of increasing competition

between non-sib males [12]. In natural habitats, however, typically

strongly female-biased sex ratios are found [13,14]. Hence, any

factors constraining females to produce more males than necessary

or even all-male broods imply fitness costs and should be selected

against. One such factor in Nasonia is interspecific mating, which is

possible in principle, but hybrids are not formed in most

combinations due to Wolbachia-mediated cytoplasmic incompati-

bility. Females mating with a heterospecific male produce all-male

broods because of improper condensation of the paternal

chromosomes [15]. Hence, the evolution of mechanisms that

reduce the risk of interspecific mating between sympatric Nasonia

species is expected.

Males of all Nasonia species produce sex pheromones in their

rectal vesicle to attract virgin females [16–18]. In Nv, the response

of females to the male sex pheromone depends on their mating

status. Mated females no longer respond to the male sex

pheromone [16,19], but it is unknown whether this behavioural

switch occurs also after heterospecific mating. The composition of

the male sex pheromone varies between the Nasonia species [18].

All species produce the two sex pheromone components (4R,5S)-5-

hydroxy-4-decanolide (RS) and 4-methylquinazoline (MQ), but

only Nv has evolved a third component, (4R,5R)-5-hydroxy4-

decanolide (RR). Nv females use RR to discriminate between the

three-component pheromone of Nv males and the less complex

blend of the other species [18]. Three genes coding for short chain

dehydrogenases/reductases (SDRs) [20] are responsible for the

pheromone difference between Nv and the other Nasonia species.

The SDRs are assumed to invert the stereochemistry at carbon

atom five of 5-hydroxy4-decanolide (HDL) and knock-down of the

genes by RNAi results in the loss of RR in the Nv pheromone blend

[18]. Hence, the genetic and biochemical basis for the pheromone

diversification in Nv have been widely clarified, but the selective

ecological forces which have driven the evolution of RR are only

poorly understood.

Like most parasitoids, Nasonia species perform stereotypic

courtship behaviour prior to mating, in which at least two further

pheromones are involved. When perceiving the female cuticular

hydrocarbons (CHCs), males are arrested, subsequently mount the

female and show so-called head nodding behaviour [21], which

serves the release of a still unknown aphrodisiac pheromone from

an oral gland. The release of this pheromone is a prerequisite for

females to become receptive [22,23]. Semiochemical-based mate

recognition during courtship appears to be one mechanism of

premating isolation in Nasonia because mating rates of interspecific

couples are typically much lower than those of intraspecific ones

[24,25]. However, given that interspecific mating occurs, neither

the female CHCs nor the male aphrodisiac appear to convey

information in a strictly species specific manner. In accordance

with this assumption, a varying degree of male cross responsive-

ness to female cuticular extracts has been found in interspecific

mate recognition trials [9].

In the present study, we tested the hypothesis that costs

associated with interspecific mating among sympatric Nasonia

species might have caused the chemical diversification in the Nv

sex pheromone blend. In our experiments, we focused on

reproductive interactions between Nv and Ng because these two

species are regularly found micro-sympatrically in eastern North

America, i.e., they regularly develop within the same hosts

[8,13,24]. Furthermore, the two species differ in an important

detail of their reproductive behaviour in that Ng shows a high

degree of within-host mating whereas the majority of Nv females

are inseminated outside the host [26]. Considering that male and

female Ng eclose very close to each other within the host and also

mate at this site, we predict that the male sex pheromone is widely

dispensable for mate finding in Ng. We demonstrate that Ng males

invest nonetheless in pheromone production and hypothesise that

this has led to communication interference with Nv in ancestral

times resulting in pheromone diversification in Nv males and a

species-specific pheromone response in females. We predict

furthermore the evolution of courtship-related behavioural adap-

tations in Nv females to avoid interspecific mating with Ng males

both within multiparasitised hosts and shortly after emergence

outside the host. We tested these predictions in a comprehensive

series of lab experiments combining chemical analyses, phero-

mone bioassays and mating trials.

Materials and Methods

Insects
Nv originated from the inbred strain Phero01; Ng originated

from the inbred strain NGVA2 and were kindly provided by

Thomas Schmitt (University of Würzburg, Germany). Both species

were reared on freeze-killed puparia of the green bottle fly Lucilia

caesar [21]. To obtain wasps of defined age and mating status for

the experiments, parasitoid pupae were excised from host puparia

1–2 days prior to eclosion and kept singly in 1.5 ml microcen-

trifuge tubes until emergence.

Degree of within Host Mating in Ng and Nv
In this experiment we tested the degree of within host mating in

the two Nv and Ng strains used for this study. Owing to the

haplodiploidy in Nasonia, the presence of daughters in the offspring

of a given female indicates her successful insemination. Females of

either species (n = 20 per species) were collected in the moment of

emergence from the host. Mating outside the host was carefully

prevented. Hence, insemination of the females, if any, must have

taken place inside the host. Subsequently, females were individ-

ually exposed to two hosts for 48 h and the emerging offspring

were checked for the presence of daughters. Ratios of within host

mating were compared by 262 X2-test.

Pheromone Quantification
To investigate whether Nv and Ng differ in their investment in

pheromone production, we analysed HDL titres of 2-d-old males

(n = 10 for each species). Male wasps were frozen (220uC) and

dissected abdomens were extracted for 30 min with 25 ml

dichloromethane containing 10 ng ml21 methyl undecanoate as

an internal standard. Quantification of HDL was done by gas

chromatography coupled to mass spectrometry (GC-MS) using the

protocol and instrumentation described previously [27]. To

determine the earliest possible point in time when Ng males may

use their abdominal sex attractant, we investigated the age

dependency of pheromone production in Ng males by analysing

newly emerged (referred to as 0-d), 1-d, 2-d and 3-d-old males

(n = 5 per group) using the same method. Finally, we investigated

whether Ng males release HDL inside the host during the period of

within host mating. For this purpose, we analysed Ng-parasitised

host puparia from which all wasps had emerged (n = 20) with the

method described above, but used 50 ml of the internal standard

solution for extraction. Total HDL amounts in Ng and Nv males

were compared by a t-test for independent data. Age dependency

of HDL titres was analysed by a Kruskal-Wallis H-test followed by

Holm-corrected multiple Mann-Whitney U-tests for individual

comparisons.

Pheromone Evolution in Nasonia
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Preparation of Pheromone Extracts for the Bioassays
Sex pheromone extracts of either species were obtained by

extracting batches of 40–100 abdomens of 2-d-old frozen males

with 20 ml per abdomen for 30 min. Raw extracts were

concentrated to 500 ml and cleaned-up by adsorption chromatog-

raphy as described elsewhere [16]. Fractions were adjusted to a

final concentration of 50 ng ml21 and kept at 220uC before being

used in the bioassays.

Pheromone Bioassays
General design of the bioassay. The responses of Ng and

Nv females to con- or heterospecific sex pheromone extracts were

examined using a dual-choice olfactometer [18] (Figure S1). It

consisted of a round glass arena (9 cm diameter) with an hole

(3 mm diameter) in the centre to release the wasps, four

symmetrically arranged spherical cavities (1 cm diameter, 4 mm

depth, 3 cm distance from the central hole) for sample storage and

a plastic rim (2 mm height) as distance holder. Two ml of

pheromone extract (representing 100 ng of total HDL) or the pure

solvent (control) was applied to discs of filter paper (5 mm

diameter). After an evaporation time of one minute, paper discs

were put into two opposing cavities of the olfactometer (the

remaining two cavities remained unused in these tests), a female

wasp was released into the central hole and the arena was covered

with a glass plate. To avoid the influence of optical stimuli, an

open grey plastic cylinder (11 cm diameter, 6 cm height) was

placed around the arena and the set-up was illuminated from

above with a lamp. Residence time spent in test and control cavity

was recorded for 5 min using The Observer XT 9.0 observational

software (Noldus, Wageningen, The Netherlands) (n = 20 for each

test). Residence times of females spent in test and control cavities

were analysed by a Wilcoxon matched-pairs test. Wasps were

tested only once. The olfactometer was thoroughly cleaned with

ethanol after every replicate.

Bioassay 1. This test aimed at investigating whether Ng

females respond to the sex pheromone of conspecific males. The

response of three types of Ng females to the Ng pheromone extract

was tested: (a) virgin, (b) mated under controlled conditions with a

conspecific male or (c) collected in the moment of emergence from

the host.

Bioassay 2. This test was done to investigate whether Nv

females are attracted to the sex pheromone of Ng males. Thus, the

test was carried out exactly like Bioassay 1 but using Nv females.

Bioassay 3. The results of Bioassay 2 (see below) suggested

that the attraction of Nv females to the Ng pheromone is age-

dependent. To verify this under controlled conditions, the

response of virgin Nv females of different ages (0-d, 1-d and 2-d)

to an Ng pheromone extract was tested as described above.

Bioassay 4. This test aimed at investigating whether mating

with Ng males and the occurrence of Ng males within the same host

influence the attraction of Nv females to their own pheromone.

The response of three types of Nv females to an Nv pheromone

extract was tested: (a) virgin; (b) mated under controlled conditions

with an Ng male; (c) collected in the moment of emergence from

the host that contained only conspecifics; (d) collected in the

moment of emergence from the host that contained conspecifics

and additionally Ng males. For experiment (b), pairs of 2-d-old

virgin Nv females and Ng males were observed in an observation

chamber until mating occurred. Couples that did not mate within

the first 5 minutes were discarded. To obtain hosts in which Nv

females and Ng males develop at the same time for experiment (c),

we exposed pairs of two hosts simultaneously to one mated Nv and

one virgin Ng female each. After 24 h, the females were removed

and hosts were kept at rearing conditions until parasitoid

emergence. Nv females were collected in the moment of emergence

from the host as described above.

Mate Recognition Bioassay
This experiment aimed at elucidating whether Ng males are

likely to involve Nv females in interspecific courtship in zones of

sympatry. Courtship behaviour in Nasonia can be initiated by

exposing males to freshly killed females (‘‘dummies’’) [9,21]. To

test whether courting Ng males discriminate between conspecific

and Nv females, we tested their response to 1-d-old Ng and Nv

females, which had been killed by freezing and thawed for 30 min

at room temperature. Dummies were fixed in an upright position

on a piece of white paper using a droplet of non-toxic superglue

(Pattex, Henkel AG, Düsseldorf, Germany). Responses of Ng males

were tested toward single dummies (no choice) or pairs of two

(choice between Ng and Nv) in a round observation arena (10 mm

diameter63 mm height). The residence time of males on the

dummies and copulation attempts were recorded for an observa-

tion time of 5 min. When pairs were tested, it was additionally

noted which of the two dummies was mounted first (first choice).

Residence time was analysed by a t-test for independent (no-choice

test) and dependent samples (choice test), respectively; first choice

was analysed by a X2-test for the goodness of fit (assuming equal

distribution as null hypothesis) and the proportion of males

showing copulation attempts by a two-sided Fisher’s exact test

(n = 20).

Mating Trials
This experiment was performed to investigate the influence of

age on the readiness of Nv females to accept Ng males as mates and

to study whether interspecific mating influences their tendency to

re-mate with a conspecific male. We isolated virgin Nv females of

two age groups: (a) 0–1-d-old, representing newly eclosed females

that might have to face mating attempts by Ng males inside a

multiparasitised host and (b) 2-d-old, representing females that

might encounter courting Ng males after emergence outside the

host. In the first part of the experiment, we observed pairs of one

Nv female and one Ng male for 5 minutes and noted whether they

mated or not. Those females that mated with an Ng male, were

subsequently put together with a conspecific Nv male and re-

mating events were recorded for another 5 minutes. For control,

the same experiment was done using Nv males for both matings.

The readiness to mate with an Ng male and to re-mate with a

conspecific was analysed by 262 X2-tests. To investigate whether

prior mating with an Ng male has any detrimental effects on clutch

size and offspring sex ratio we allowed double-mated (first Ng and

then Nv) and single mated Nv females (Nv only) to parasitise 10

hosts for 48 h. Subsequently, females were removed and hosts

were kept at rearing conditions until the next generation emerged.

Offspring sex ratios and clutch sizes were determined and

compared by a Mann-Whitney U-test (n = 20 per treatment).

Dispersion Experiment
This experiment was performed to investigate whether intra-

and interspecific mating influences the dispersion behaviour in Nv

females. Previous studies have demonstrated that Nv females

exhibit an increased flight and general locomotor activity after

mating [28,29]. We therefore expected faster dispersion in mated

females. As a proxy for natal patch dispersion we recorded the

time Nv females needed to leave a 150 ml Erlenmeyer flask

containing a parasitised host puparium, from which all wasps had

emerged as a source of olfactory host cues. Three types of 2-d-old

Nv females were tested: (a) virgin, (b) mated with an Nv male and (c)

mated with an Ng male (n = 20 per treatment). Females were

Pheromone Evolution in Nasonia
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mated under controlled conditions (treatments b and c) and

released singly into open 1.5 ml microcentrifuge tubes together

with the empty host puparia. The tubes were transferred into the

Erlenmeyer flasks, which were put into transparent plastic boxes

(20 cm length620 cm width69 cm height). Subsequently, the

females were observed for a maximum of 60 min. Dispersion time

was defined as the time until the females reached the rim of the

Erlenmeyer flask. Dispersion times of virgin and mated females

were compared by a Kruskal-Wallis H-test followed by Bonfer-

roni-corrected multiple Mann-Whitney U-tests.

Microcosm Experiment
The mate recognition and mating trials described above were

performed in small observation chambers and thus interactions

between the sexual partners were favoured in these experiments by

the experimental design. To study under more realistic conditions

whether the presence of Ng males on a patch imposes fitness costs

on Nv females by influencing the offspring sex ratio, we performed

a microcosm experiment. For this purpose, we exposed six 2-d-old

virgin Nv females per replicate for 24 h to two unmated males in a

Petri dish. Three combinations of males were chosen, (a) Nv+Nv,

(b) Nv+Ng and (c) Nv+Ng* (n = 20 per combination). The asterisk

indicates a constrained Ng male, which was able to court the

females but was prevented from inseminating them by sealing the

abdominal tip with a drop of non-toxic super glue. This control

experiment was performed to test whether the single uncon-

strained Nv male in treatment (b) is in principle able to sire the

same number of offspring than the two Nv males in treatment (a)

and whether sex ratio effects in treatment (b) are due to the

presence of an Ng male rather than to sperm depletion of the Nv

male [30]. After the male-exposure period, females were exposed

singly to 10 hosts in a clean Petri dish and allowed to oviposit for

48 h. Offspring sex ratios produced by each female were

determined 19–20 days after oviposition. In some replicates,

individual females died during the male-exposure or oviposition

period. Only those replicates were considered for statistical

analysis in which at least three of the females ( = 50% of the six

females per replicate) produced offspring. Mean sex ratios were

calculated per replicate and treatments were compared by a

Kruskal-Wallis H-test followed by Holm-corrected multiple Mann-

Whitney U-tests for individual comparisons. Additionally, we

analysed the proportion of all-male broods for the three treatments

by Holm-corrected multiple 262 X2 tests.

Data Accessibility
Original data are available from the Dryad Digital Repository:

http://dx.doi.org/10.5061/dryad.n6sk3.

Results

Degree of within Host Mating in Ng and Nv
All Ng females collected in the moment of emergence from the

host produced female offspring whereas 16 out of 20 Nv females

produced all-male broods. Hence, the degree of within host

mating differed significantly between the studied strains of the two

species (X2 = 26.67, p,0.001).

Pheromone Quantification
Total HDL amounts found in the extracts of 2-d-old males of

both species did not differ significantly (t = 20.49021, p = 0.6299;

Figure 1). Hence, both species invest equally in pheromone

production. As previously reported [18], however, the pheromones

of Ng and Nv differ qualitatively with Ng producing only RS and Nv

producing both RS and RR. Like in Nv [16], pheromone titres of

Ng males are age-dependent (Kruskal-Wallis test: H = 14.87,

p = 0.0017, Figure S2). Ng males do not have any HDL in their

abdomen immediately after eclosion, but pheromone titres

increase within the first two days and then remain stable on day

three. In 18 out of 20 host puparia from which Ng males had

emerged, RS was undetectable and in two cases it was detected

only in very low amounts (19 and 23 ng/host). We therefore

conclude that Ng males do not use the pheromone immediately

after eclosion within the host but rather after emergence outside of

the host.

Pheromone Bioassays
Bioassay 1. Ng females were attracted to the conspecific

pheromone as virgins (Z = 3.237, p = 0.0012), whereas mated

females (Z = 1.609, p = 0.1077) and those collected in the moment

of emergence from the host (Z = 0.6639, p = 0.5068) did not

respond (Figure 2a). This confirms that the vast majority of Ng

females mate inside the host and do not need the conspecific

pheromone for mate finding outside the host.

Bioassay 2. Two-day-old virgin Nv females were attracted to

the Ng pheromone (Z = 3.421, p,0.001), whereas mated Nv

females (Z = 2.43, p = 0.0151) even avoided the heterospecific

pheromone (Figure 2b). Nv females collected in the moment of

emergence from the host were also unresponsive to the hetero-

specific pheromone (Z = 0.8519, p = 0.3943) although the vast

majority of them emerge as virgins (see above). This led us to

assume that the response of virgin Nv females to the congeneric Ng

sex pheromone is age-dependent.

Bioassay 3. We therefore studied the age dependency of the

Nv pheromone response under controlled conditions and found

that newly eclosed Nv females were in fact unresponsive to the Ng

pheromone (Z = 0.4107, p = 0.6813) but became increasingly

responsive after one day (Z = 2.556, p = 0.0106) and two days

(Z = 3.421, p,0.001, Figure 2c), respectively.

Bioassay 4. In contrast to the previous experiment, virgin Nv

females (Z = 3.724, p,0.001), as well as those collected in the

moment of emergence from the host (Z = 3.845, p,0.001), were

strongly attracted to the Nv pheromone (Figure 2d). Hence, Nv

females discriminate between the heterospecific and the more

Figure 1. Pheromone titres of male Nasonia vitripennis and N.
giraulti. Mean amounts (+SE) of (4R,5R)-+(4R,5S)-HDL 5-hydroxy-4-
decanolide (HDL) in abdomen extracts from 2-d-old males of Nasonia
vitripennis (Nv) and N. giraulti (Ng) (data analysis by a t-test for
independent samples, n = 10) (see also Figure S2).
doi:10.1371/journal.pone.0089214.g001
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complex conspecific pheromone blend when leaving the host.

Previous experiments have shown that this is enabled by the novel

pheromone component RR [18]. Remarkably, also Nv females

which had emerged from multiparasitised hosts containing both Nv

and Ng males were attracted to the conspecific pheromone

(Z = 3.479, p,0.001). Nv females which had been experimentally

mated with Ng males outside the host, however, no longer

responded to the conspecific pheromone (Z = 1.362, p = 0.1731) as

is the case after mating with conspecifics [16,19]. This demon-

strates that the vast majority of Nv females leave their host as

virgins even when Ng males are present within the host suggesting

that they resist possible mating attempts by Ng males inside the

host. Results of the next experiments demonstrate this explicitly.

Mate Recognition Tests
Ng males neither discriminated between female Ng and Nv

dummies in a choice situation (residence time: t = 0.6350,

p = 0.5293; copulation attempts: X2 = 1.13, p = 0.4801, Figures 3

and S3a) nor in a no-choice situation (residence time: t = 20.0802,

p = 0.9369; copulation attempts: X2 = 2.67, p = 0.1908). Also, the

number of dummies mounted first by Ng males in the choice

experiment was independent of the species (X2 = 0.10, p = 0.7515,

Figure 2. Pheromone response of Nasonia females in a two-choice olfactometer. Residence times of (A) Nasonia giraulti (Ng) and (B–D) N.
vitripennis (Nv) females in the two odour fields of a static two-choice olfactometer (see also Figure S1) when given the choice between a solvent
control (Con) and a pheromone extract (representing 100 ng total HDL) of either Ng (PNg, grey boxes) or Nv (PNv, black boxes) males. Tested females
were either virgin, mated with a con- or heterospecific male under controlled conditions or collected in the moment of emergence from the host.
Hosts were either infested by one species only (Ng, Nv) or multiparasitised by both species (Ng/Nv). Apart from panel (C), tested females were 1–
2 days old. Box-and-whisker plots show median (horizontal line), 25–75 percent quartiles (box), maximum/minimum range (whiskers) and outliers
(u .1.56 above box height; * .36 above box height) (data analysis by a Wilcoxon matched-pairs test; n = 20).
doi:10.1371/journal.pone.0089214.g002
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Figure S3b). Hence, Ng males of our lab strain are equally

motivated to engage in courtship with con- and heterospecific

females.

Mating Trials
Similar to the pheromone responses of Nv females (see above),

we found an age effect also in their mating behaviour. Only 6.5%

of 0–1-d-old Nv females were willing to mate with an Ng male

whereas the proportion of interspecific mating increased to 52%

after two days (X2 = 17.05, p,0.001) (Figure 4a). Zero to one-day-

old Nv females are not generally unreceptive because 19 out of 20

signalled receptivity when courted by conspecific males

(X2 = 39.35, p,0.001). The tendency of 2-d-old Nv females to

re-mate with a conspecific male was significantly higher when they

had previously mated with an Ng male compared to those that had

previously mated with an Nv male (X2 = 10.62, p = 0.0015;

Figure 4b). Neither offspring sex ratios (U = 133.5, p = 0.7431,

Figure 4c) nor clutch sizes (U = 120, p = 0.4173, Figure 4d) differed

between females that had mated twice (first Ng, then Nv) and those

that had mated only once with an Nv male. These results indicate

that Nv females discriminate against Ng males much stronger when

they are young and the risk of heterospecific mating is high (i.e.

after eclosion within the host and shortly after emergence outside

the host). Older Nv females having erroneously mated with an Ng

male are principally able to decrease fitness costs by re-mating

with a conspecific male.

Dispersion Experiment
Mated Nv females dispersed significantly faster from the artificial

natal patch than virgin females irrespective of whether they had

mated with a conspecific or heterospecific male (H = 25.57, P,

0.001, virgin vs. Nv-mated: U = 44, p,0.001; virgin vs. Ng-mated:

U = 34, p,0.001; Nv mated vs. Ng mated: U = 189.5, p = 0.7867,

Figure 5). Consequently, both intra- and interspecific mating equally

increase the motivation of Nv females to leave the natal patch.

Microcosm Experiment
The presence of Ng males in the microcosm experiment shifted

the mean offspring sex ratio produced by Nv females in favour of

sons (Figure 6a, statistical data given in Table 1). This was due to

an increased production of all-male broods (Figure 6b). A

comparison of the Nv/Ng treatment with the control treatment

Nv/Ng* allowed differentiation of effects caused by unmated and

Ng-mated females, respectively. This comparison clearly indicated

that a significant number of Nv females had mated with the Ng

male in the Nv/Ng treatment and that these females had not re-

mated with an Nv male.

Discussion

Heterospecific Sexual Interactions between Nv and Ng
are Likely to occur in Nature

Based on previous field data [8,13] and the results presented

here, it is reasonable to assume that heterospecific sexual

interactions between Nv and Ng occur in natural habitats. In a

comprehensive field study performed in New York State,

Grillenberger et al. [13] sampled more than 2000 host pupae

from 64 nest boxes at three different regions. In 29% of the

sampled nests both Nv and Ng were found confirming previous

data for two other sampling sites [8]. Remarkably, Grillenberger

et al. [13] never found Ng without Nv and in three nests that were

analysed in more detail using microsatellites, more than 40% (35

out of 84) of the hosts were multiparasitised by Nv and Ng [13].

This confirms a previous study stating that Nv and Ng occur micro-

sympatrically over much of their ranges [24] and suggests that Nv

females and Ng males are likely to encounter each other both

within the same host habitat and host, respectively. The data

presented here demonstrate that Ng males of our lab strain do not

discriminate between conspecific and Nv females during courtship

(Figures 3 and S3) suggesting an interspecific interference of

CHCs, which are used as mate recognition cues in Nasonia and

many other parasitic wasps [9,21,31]. In a recent study [9], males

of another Ng lab strain responded even exclusively to hetero-

specific female dummies (Nv and N. oneida) and extracts thereof but

were unresponsive to conspecifics. Given that mating with Nv

females results in zero fitness for Ng males due to Wolbachia-

mediated cytoplasmic incompatibility [15], it remained somewhat

unclear in the cited study why Ng males should evolve to respond

to sexual cues from micro-sympatric Nv females and ignore

conspecific ones. Nonetheless, these results corroborate that Nv

females are likely to be involved in interspecific sexual interactions

with Ng males in zones of sympatry.

Heterospecific Mating is Costly for Nv Females
Due to the Wolbachia-induced loss of male chromosomes [15],

Ng-mated Nv females produce all-male broods. Hence, females

mating with a heterospecific male can principally produce

offspring but at clearly suboptimal sex ratios. Nv males are

flightless and unable to disperse. Therefore, they depend on

mating opportunities at the natal patch (local mate competition

[12,32]), which would be missing on patches exploited by a single

virgin foundress. Therefore, Nv females dispersing after mating

with Ng only, face the risk of a reproductive dead end. A recent

field study performed on two European Nv populations demon-

strated that host patches exploited by single foundresses are not

rare in Nv. Five out of 18 nest boxes containing parasitised hosts

had been exploited by one female only [10]. Even on host patches

parasitised by more than one female, offspring sex ratios are

typically female-biased [10,33] and thus females producing all

male broods face fitness costs under this scenario as well.

Our data show that Nv females can principally avoid fitness costs

due to interspecific mating by re-mating with a conspecific male

(Figure 4b). Neither offspring sex ratio nor clutch size differed

Figure 3. Behavioural response of Nasonia giraulti males to
female dummies. Mean residence times (+ SE) of Nasonia giraulti (Ng)
males spent on dead Ng and N. vitripennis (Nv) females; female cadavers
were offered either simultaneously (choice) or singly (no choice) for five
minutes in an observation chamber (data analysis by a t-test for
independent samples; n = 20) (see also Figure S3a–b).
doi:10.1371/journal.pone.0089214.g003
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between re-mated Nv females when compared to those mated only

once with a conspecific (Figure 4c–d). However, our microcosm

experiment suggests that Ng males can nonetheless impose fitness

costs on Nv females because not all of them re-mated in the more

spacious environment (Figure 6b). The results of two of our

experiments suggest that the degree of intraspecific re-mating

might be even lower under natural conditions with females having

the chance to disperse after mating. Ng-mated Nv females (a) no

longer respond to the conspecific sex pheromone (Fig. 2d) and (b)

show a dramatically increased tendency to disperse from the patch

compared to virgin Nv females (Fig. 5) corroborating previous

studies that demonstrated a mating-induced increase of flight and

general locomotor activity in Nv females [28,29]. Hence, despite

the general motivation of mismated Nv females to re-mate with a

conspecific male, their re-mating rate in nature might be much

lower than in our lab experiments, in which encounters with

conspecific males were enforced by the experimental design.

Therefore, field tests are necessary to determine the re-mating rate

of Ng-mated Nv females under natural conditions.

Why do Ng Males Invest in the Production of a Sex
Attractant?

Our results demonstrate that Ng males produce as much HDL

as Nv males even though the stereochemical composition differs

between both species (Fig. 1). Hence, Nv and Ng invest equal

amounts of linoleic acid (LA) in the production of the sex

attractant. The twofold unsaturated fatty acid LA is the precursor

of HDL biosynthesis in Nasonia [27]. Polyunsaturated fatty acids

including LA affect the sperm production in many animals [34]

and the availability of LA has been shown to co-vary with fertility

in Nv [27]. This suggests a trade-off between pheromone and

sperm production in Nasonia. Therefore, the high investment of Ng

males in pheromone production is somewhat surprising given that

they inseminate most of their females within the host where a sex

attractant is dispensable. Furthermore, mated Ng females and

those collected in the moment of emergence from the host did not

respond to the conspecific pheromone in our experiments (Fig. 2a).

There are two possible explanations for these findings. First, Ng

males might invest in pheromone biosynthesis to attract and mate

with females of the competing sympatric species Nv to increase the

Figure 4. Mating and re-mating behaviour of Nasonia vitripennis females and resulting offspring. (A) Proportion of Nasonia vitripennis
(Nv) females of different age that mated with N. giraulti (Ng) males in the mating trials and (B) proportion of 2-d-old Nv females that re-mated with an
Nv male after a first mating with either an Ng or an Nv male. Digits on the columns represent numbers of replicates in the individual experiments
(data analysis with a 262 X2-test). (C) Offspring sex ratios and (D) clutch size produced by Nv females after sequential double mating with an Ng and
an Nv male (Ng/Nv) or after mating with an Nv male only (data analysis with a Mann-Whitney U-test, n = 20).
doi:10.1371/journal.pone.0089214.g004

Figure 5. Influence of the mating status on the dispersion
behaviour of Nasonia vitripennis females. Recorded time needed by
virgin and mated (with either an Nv or an Ng male) Nv females to leave
an artificial natal host patch. Box-and-whisker plots show median
(horizontal line), 25–75 percent quartiles (box), maximum/minimum
range (whiskers) and outliers (u .1.56above box height; * .36above
box height). Different lowercase letters indicate significant differences
between treatments at p,0.001 (data analysis by a Wilcoxon matched-
pairs test; n = 20).
doi:10.1371/journal.pone.0089214.g005
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reproductive success of conspecific females inseminated previously

by them within the host. However, individual fitness benefits for Ng

males pursuing this strategy are difficult to conclude because Ng

and Nv females inseminated by a given Ng male would need to

arrive at the same host patch after dispersal and compete there for

the same hosts. This is somewhat unlikely and furthermore, Ng-

mated Nv females, albeit constrained to produce all-male broods,

are able to produce offspring, which, like dual sex broods, might

compete with the Ng offspring for nutritional resources after

multiparasitism. An alternative explanation for the investment of

Ng males in pheromone production might be within host mating

ratios below 100% as found previously in field populations of Ng

[8]. Thus Ng males, after having inseminated the majority of

females within the host, might nevertheless invest in the

production of pheromones to attract the few remaining conspecific

females that emerge as virgins outside the host.

Age-dependent Behavioural Plasticity Reduces the Risk
of Interspecific Mating Costs

Young virgin Nv females are particularly prone to become

involved in interspecific sexual interactions. They might encounter

courting Ng males inside multiparasitised hosts and outside in the

moment when leaving the host. Our data demonstrate that young

Nv females have evolved counter-adaptations for both situations.

First, they are significantly less likely than older females to signal

receptiveness towards courting Ng males (Figure 4a). Secondly,

young Nv females do not respond to the Ng sex attractant when

leaving the host (Figure 2b) although most of them emerge as

virgins. Both of these behaviours are real discrimination rather

than a general lack of responsiveness in young Nv females because

they accept conspecific males as mates (see results of the mating

trials) and respond to the more complex Nv sex pheromone when

leaving the host (Figure 2d). In a recent study, Niehuis et al. [18]

have demonstrated that it is the newly evolved pheromone

component RR, which is responsible for the ability of Nv females to

discriminate between pheromone markings of conspecific and

heterospecific males. The addition of synthetic RR to the two-

component pheromone blend of Ng males rendered the blend

more attractive for Nv females whereas Ng females did not

discriminate between the two pheromone phenotypes [18].

The question as to why Nv females become less choosy with

increasing age is puzzling because in contrast to other insects

showing an age-dependent decrease of choosiness (see for example

[35–38]) they cannot gain any benefits from mating with Ng at any

time of their life. We suggest that, in a natural environment, the

probability is low that females would reach an age two days

Figure 6. Offspring sex ratios produced by Nasonia vitripennis females in the microcosm experiment. (A) Offspring sex ratios and (B)
proportion of all-male broods produced by differently treated Nasonia vitripennis (Nv) females. Prior to oviposition, females were exposed in groups
of six individuals to either two Nv males (Nv/Nv), one Nv and one N. giraulti (Ng) male (Nv/Ng) or one normal and one constrained Ng male (Nv/Ng*;
constrained males were able to perform courtship but were prevented from mating with the females; for this purpose their abdominal tip was sealed
with non-toxic glue). Box-and-whisker plots show median (horizontal line), 25–75 percent quartiles (box), maximum/minimum range (whiskers) and
outliers (u .1.56 above box height). Different lowercase letters indicate significant differences at p,0.02; data analysis in (A) by a Kruskal-Wallis
H-test followed by Holm-corrected multiple Mann-Whitney U-tests and in (B) by Holm-corrected multiple 262 X2-tests. (see also Table 1).
doi:10.1371/journal.pone.0089214.g006

Table 1. Statistical differences in the microcosm experiment
(Figure 6).

Sex ratio* Comparison p-Value

Nv/Nv Nv/Ng p,0.001

Nv/Nv Nv/Ng* p = 0.4622

Nv/Ng Nv/Ng* p = 0.0033

All-male broods

Nv/Nv Nv/Ng p,0.001

Nv/Nv Nv/Ng* p = 0.0150

Nv/Ng Nv/Ng* p = 0.0064

*Kruskal-Wallis test: H = 20.37, p,0.001.
doi:10.1371/journal.pone.0089214.t001
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without getting inseminated because mating occurs in Nasonia

typically shortly after emergence [39]. Therefore, the decreased

choosiness of older females found in our lab experiments might not

result in significant fitness consequences in nature.

Proposed Scenario of Pheromone Evolution in Nasonia
Based on the results presented here and in a previous study [18],

we propose the following scenario of pheromone divergence in

Nasonia (Figure 7). Pheromone use and mating outside the host are

likely features of the ancestral mating strategy in Nasonia, because

males of all known Nasonia species and the closely related species

Trichomalopsis sarcophagae produce two-component sex pheromones

(RS+MQ) [16]. The switch of Ng to a very high ratio of within host

mating made the sex pheromone widely dispensable in this species.

We exclude that Ng males use the pheromone inside the host

because newly emerged males do not possess it and it was

undetectable in the vast majority of hosts from which males had

emerged. However, Ng males did not abolish the chemical signal

during evolution but continued to invest in pheromone production

to the same degree as Nv presumably to attract the low proportion

of conspecific females emerging as virgins. The resulting signal

interference between Nv and Ng in ancestral times and the fitness

costs resulting from heterospecific mating might have been

selective forces driving the evolution of the reported age-

dependent mate discrimination in Nv and the diversification of

the male sex attractant (RR as a novel pheromone component). As

a final step, Nv females have evolved the chemosensory adaptations

to exploit the novel three component sex pheromone (for

explanations of the suggested order of signal diversification and

chemosensory adaptation see [18]).

From the data currently available, it is impossible to infer

whether pheromone diversification in Nv has occurred before or

Figure 7. Hypothetical scenario of pheromone evolution in Nasonia. For details see text.
doi:10.1371/journal.pone.0089214.g007
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after the Wolbachia-mediated reproductive isolation of the Nasonia

species. In the former case it might have been part of the

speciation process and thus represents a case of reinforcement, i.e.,

the evolution of prezygotic isolation by natural selection against

the production of unfit hybrids [40] (according to Butlin [40], the

term reinforcement should be restricted to cases where hybridisa-

tion is still possible). The involvement of reinforcement in

speciation is difficult to demonstrate, but its signature can be

detected by showing that reproductive barriers between two taxa

are stronger in zones of contact than in allopatry [41]. As for the

male sex pheromone in Nasonia, all allopatric European and

sympatric North American Nv populations studied so far produce

the more complex three-component pheromone blend (RR/RS/

MQ) [18]. However, as Servedio & Noor emphasise [3], the

signature of reinforcement may be easily erased by the spread of

premating isolation mechanisms into areas of allopatry. Hence, the

more complex pheromone blend of Nv might have evolved in

zones of contact with Ng before Nv has spread around the world.

This would support the hypothesis that the cosmopolitan species

Nv originates in North America rather than in the Old World, a

question that is still under debate [42]. It has to be emphasised,

however, that the outlined scenario, albeit supported by a

comprehensive set of behavioural data, is a hypothetical one.

Alternative evolutionary processes such as genetic drift or sexual

selection cannot be fully excluded and might have led just as well

to the pheromone diversification in Nv.

Conclusions

The study of pheromone evolution is probably one of the most

challenging tasks chemoecologists are facing today [2,31,43]. The

present study has implications for our understanding of this

process by providing evidence for the hypothesis that communi-

cation interference of sympatric species using similar sexual signals

can generate selective pressures that lead to their divergence [2].

However, our data are hitherto based on two inbred lab strains

only and the motivation for interspecific mating has been shown to

vary significantly between geographic Nasonia populations [24].

Hence, future studies using outbred lab strains [44] or field

populations are needed to confirm the findings of the present study

before substantial conclusions on the origin of pre-zygotic isolation

in Nasonia wasps can be drawn.

Supporting Information

Figure S1 Schematic view of the two-choice olfactome-
ter used for the pheromone bioassays.

(TIF)

Figure S2 Age dependency of the pheromone titre of
individual Nasonia giraulti males. Box-and-whisker plots

show median (horizontal line), 25–75 percent quartiles (box),

maximum/minimum range (whiskers). Different lowercase letters

indicate significant differences between age groups at p,0.05 (data

analysis by Kruskal-Wallis H-test and Mann-Whitney U-tests,

n = 5 per age group).

(TIF)

Figure S3 Behavioural response of Nasonia giraulti
males to female dummies. (A) Proportion of Nasonia giraulti

(Ng) males showing copulation attempts with the dead Ng and N.

vitripennis (Nv) females offered either simultaneously (choice) or

singly (no choice) for five minutes in an observation chamber (data

analysis by Fisher’s exact test; n = 20). (B) Proportion of first

mounts of Ng males in the choice experiment (data analysis by a X2

test for the goodness of fit).

(TIF)
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18. Niehuis O, Büllesbach J, Gibson JD, Pothmann D, Hanner C, et al. (2013)

Behavioural and genetic analyses of Nasonia shed light on the evolution of sex

pheromones. Nature 494: 345–348. doi: 10.1038/nature11838.

19. Steiner S, Ruther J (2009) How important is sex for females of a haplodiploid

species under local mate competition? Behav Ecol 20: 570–574. doi: 10.1093/

beheco/arp033.

20. Tanner ME (2002) Understanding nature’s strategies for enzyme-catalyzed

racemization and epimerization. Acc Chem Res 35: 237–246. doi: 10.1021/

ar000056y.

Pheromone Evolution in Nasonia

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89214

http://www.pherobase.com/


21. Steiner S, Hermann N, Ruther J (2006) Characterization of a female-produced

courtship pheromone in the parasitoid Nasonia vitripennis. J Chem Ecol 32: 1687–

1702. doi:10.1007/s10886-006-9102-3.

22. van den Assem J, Jachmann F, Simbolotti P (1980) Courtship behavior of Nasonia

vitripennis (Hym., Pteromalidae): some qualitative, experimental evidence for the

role of pheromones. Behaviour 75: 301–307. doi: 10.1163/156853980X00456.

23. Ruther J, Thal K, Blaul B, Steiner S (2010) Behavioural switch in the sex

pheromone response of Nasonia vitripennis females is linked to receptivity signalling.

Animal Behaviour 80: 1035–1040. doi: 10.1016/j.anbehav.2010.09.008.

24. Bordenstein SR, Drapeau MD, Werren JH (2000) Intraspecific variation in

sexual isolation in the jewel wasp Nasonia. Evolution 54: 567–573. doi: 10.1111/

j.0014-3820.2000.tb00059.x.

25. Bordenstein SR, Werren JH (1998) Effects of A and B Wolbachia and host

genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics 148:

1833–1844.

26. Drapeau MD, Werren JH (1999) Differences in mating behaviour and sex ratio

between three sibling species of Nasonia. Evol Ecol Res 1: 223–234.

27. Blaul B, Ruther J (2011) How parasitoid females produce sexy sons: a causal link

between oviposition preference, dietary lipids and mate choice in Nasonia.

Proc R Soc Lond B 278: 3286–3293. doi:10.1098/rspb.2011.0001.

28. King B (1993) Flight activity in the parasitoid wasp Nasonia vitripennis

(Hymenoptera: Pteromalidae). J Ins Behav 6: 313–321. doi: 10.1007/

BF01048112.

29. King BH, Grimm KM, Reno HE (2000) Effects of mating on female locomotor

activity in the parasitoid wasp Nasonia vitripennis (Hymenoptera : Pteromalidae).

Environ Entomol 29: 927–933. doi: 10.1603/0046-225X-29.5.927.

30. Ruther J, Matschke M, Garbe LA, Steiner S (2009) Quantity matters: Male sex

pheromone signals mate quality in the parasitic wasp Nasonia vitripennis.

Proc R Soc Lond B 276: 3303–3310. doi: 10.1098/rspb.2009.0738.

31. Ruther J (2013) Novel insights into pheromone-mediated communication in

parasitic hymenopterans. In: Wajnberg E, Colazza S, editors. Chemical Ecology

of Insect Parasitoids. Chichester: Wiley. 112–144.

32. Werren JH (1980) Sex ratio adaptations to local mate competition in a parasitic

wasp. Science 208: 1157–1159. doi: 10.1126/science.208.4448.1157.

33. Burton-Chellew MN, Koevoets T, Grillenberger BK, Sykes EM, Underwood SL

et al. (2008) Facultative sex ratio adjustment in natural populations of wasps:
Cues of local mate competition and the precision of adaptation. Am Nat 172:

393–404. doi: 10.1086/589895.

34. Wathes DC, Abayasekara DRE, Aitken RJ (2007) Polyunsaturated fatty acids in
male and female reproduction. Biol Reprod 77: 190–201. doi: 10.1095/

biolreprod.107.060558.
35. Moore PJ, Moore AJ (2001) Reproductive aging and mating: the ticking of the

biological clock in female cockroaches. Proc Natl Acad Sci USA 98: 9171–9176.

doi: 10.1073/pnas.161154598.
36. Tinghitella RM, Weigel EG, Head M, Boughman JW (2013) Flexible mate

choice when mates are rare and time is short. Ecol Evol 3: 2820–2831. doi:
10.1002/ece3.666.

37. Mautz BS, Sakaluk SK (2008) The effects of age and previous mating experience
on pre- and post-copulatory mate choice in female house crickets (Acheta

domesticus L.). J Ins Behav 21: 203–212. doi: 10.1007/s10905-008-9120-9.

38. Klein AL, Trillo MC, Albo MJ (2012) Sexual receptivity varies according to
female age in a Neotropical nuptial gift-giving spider. J Arachnol 40: 138–140.
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