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Semiclassical theory of helium atom refers to a description of the quantum spectrum of helium in terms of

the underlying classical dynamics of the strongly chaotic three-body Coulomb system formed by the nucleus and

the two electrons.
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Helium and its role for the development of quantum mechanics

Helium: an atomic three-body problem
The semiclassical theory of the helium atom (or other two-electron atoms) follows the idea of computing

and understanding the quantum energy levels starting from trajectories of the underlying classical system. In

helium, the classical dynamics is given by the pair of interacting electrons moving in the field of the (heavy)

nucleus. Two-electron atoms represent a paradigmatic system for the successful application of concepts of
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Figure 1 : The helium atom
composed of two electrons and a
nucleus of charge Z=2 (from
Tanner et al. 2000)

Figure 2: Periodic orbit
configurations of the helium
electron pair that serv ed as
quasi-classical models for
the ground state (from
Tanner et al. 2000)

nucleus. Two-electron atoms represent a paradigmatic system for the successful application of concepts of

quantum chaos theory and in particular the Gutzwiller trace formula.

Helium, as the prototype of a two-electron atom, is composed of the

nucleus with charge Z=2 and two electrons, see Figure 1. The interplay

between the attractive Coulomb interaction between the nucleus and

the electrons and the Coulomb repulsion between the electrons gives

rise to exceedingly complicated spectral features, despite the seemingly

simple form of the underlying quantum Hamiltonian. Correspondingly,

orbits of the two interacting electrons, when considered as classical

particles, are predominantly characterized by chaotic dynamics and

cannot be calculated analytically. Hence, helium as a microscopic

three-body Coulomb system has much in common with its celestial

analogue, the gravitational three-body problem.

The failure of the "old quantum theory"
Modern semiclassical theory of the helium atom has its roots in the

early days of quantum theory: The observation that atomic spectra consist of discrete lines called for a then novel

theoretical approach, a quantum theory for atoms. Bohr's early attempts were formulated in terms of quantum

postulates and successfully reproduced the energy levels of hydrogen by requiring periodic (elliptic) Kepler

electron motion with quantized radii, respectively momenta p,

(where n is an integer and h Planck's constant). It was natural to try this

approach also for helium, the simplest atom with more than one electron. By

applying Bohr's ad hoc quantization rule (1) to various periodic orbit

configurations of the electron pair motion in helium (see Figure 2), a number

of leading physicists of that time, including Bohr, Born, Kramers, Landé ,

Sommerfeld and van Vleck, tried to compute the ground state energy of

helium. However, without success: all models gave unsatisfactory results.

Heisenberg, then a student of Sommerfeld, devised a different trajectory

configuration with the electrons moving on perturbed Kepler ellipses on

different sides of the helium nucleus; in Figure 3 Heisenberg's sketch of this

configuration posted in a letter to Sommerfeld in 1922 is shown. Assuming

half-integer quantum numbers in his letter, Heisenberg arrived at a helium

ionization potential of 24.6 V very close to the observed value of 24.5 V.

However, discouraged by Bohr who did not accept such half-integer orbital

quantum numbers, Heisenberg never published his results. Though the good

agreement must be considered as accidental, the Heisenberg model came

closest to an adequate semiclassical description of the helium ground state.

Modern semiclassical theory reveals that the association of energy levels with

individual periodic orbits in the old quantum theory was too simple-minded.

Indeed, for chaotic systems such as the three-body problem helium, it is the

entirety of all periodic orbits which conspire to form the energy levels such as beautifully shown in Gutzwiller's

trace formula. For a comprehensive account of the developments of the semiclassical theory for helium up to the

year 2000, see Tanner et al. 2000.

∮ pdq = nh (1)
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Figure 3: Heisenberg's proposal for Kepler-
ty pe electron pair motion in helium (from
Tanner et al. 2000)

Figure 4: Helium energy  lev el diagram
(from Tanner et al. 2000)

The problems and failure of (most of) the attempts to

quantize the electron pair motion in helium marked the end

of the "old quantum theory" which was subsequently

replaced by the "new quantum theory": quantum (wave)

mechanics which has proven very successful to this day.

Spectral properties and quantum-
mechanical concepts

By now considerable parts of the rich energy spectrum of

the helium atom have been computed quantum mechanically by numerically solving the Schrödinger equation for

the two-electron Hamiltonian of helium. To that end, besides the orbital dynamics, the spin degree of freedom of

the two electrons has to be considered. The electron spins can be paired antiparallel or parallel leading to the

distinction of singlet states (total spin ) and triplet states ( ) often referred to as parahelium and

orthohelium, respectively.

Figure 4 depicts, as a representative case, the level diagram of parahelium. The helium states and energy levels can

be classified as follows: (i) the ground state and bound singly excited states, (ii) doubly excited resonant states, and

(iii) unbound continuum states at energies above the two particle fragmentation threshold that are not considered

here. States of category (i) are composed of one electron in a hydrogen-type ground state with quantum number 

 and the second electron being excited with energy levels (labeled by ) forming a Rydberg series

(see Figure 4) converging to the first ionization threshold at an energy of  (in atomic units). In energy region

(ii) the doubly excited states have a finite lifetime; they can decay, owing to the mutual repulsive interaction

between the electrons, by autoionization where one electron leaves the system while the second one remains

bounded to the nucleus. These doubly excited states are organized in doubly infinite level sequences with quantum

numbers N and n. As visible in Figure 4, they apparently form individual Rydberg series labeled by the index , the

hydrogen-like principle quantum number of the energetically lower electron. However, closer inspection of the

energy region approaching complete fragmentation (i.e. the border to regime (iii)) shows that neighboring Rydberg

series perturb each other more and more.

With further increasing energy, these states eventually form a

rather dense set of energy levels with seemingly irregular

spacings, and the specification of the two-electron states in

terms of the quantum numbers (N,n) looses its meaning at such

high excitations: At these energies electron-electron interaction

gets increasingly important, and hence the concept of quantum

numbers (N,n) labeling independent electron states breaks

down. The labels (N,n) can be partly replaced by new, though

approximate, quantum numbers representing the collective

dynamics of the electron pair. However, due to the non-

integrability of the three-body Coulomb problem, a clear-cut

classification is no longer possible (see Tanner et al. 2000).

The increasing complexity of the energy spectrum close to the

helium double ionisation threshold can be experimentally

revealed in photo-ionisation measurements. The single photo-

ionisation cross section is proportional to the probability of

ionising a helium atom by a photon at a given frequency  It

can be compared directly to experimental data measuring the

electron flux obtained from shining a laser (at sufficiently weak intensity to avoid effects due to multi-photon

S = 0 S = 1

N = 1 n = 1, 2, 3...

− /2Z 2

N

ω .
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Figure 5: Total photoionisation cross section of helium; Ix
refers to the ionisation threshold for the x th Ry dberg series
(from Jiang et al 2008).

electron flux obtained from shining a laser (at sufficiently weak intensity to avoid effects due to multi-photon

ionisation) onto a helium target; a typical photoionisation signal for highly doubly excited helium states is shown in

Figure 5 (Jiang et al 2008), exhibiting irregular sequences of peaks from overlapping resonances.

The helium atom - a
semiclassical approach

The three-body Coulomb system helium is

one of the most complex systems which

has been treated fully semiclassically using

Gutzwiller's trace formula (Wintgen et al.

1992). The challenge is to describe

quantum spectra or photoionisation cross

sections of this few particle system in

terms of classical trajectories of the nucleus and the two electrons alone. It turns out that the structure of the

spectrum is closely linked to features of the underlying classical few-body dynamics such as invariant subspaces in

phase space, chaotic or nearly integrable behaviour and the influence of collision events.

The bound and resonance spectrum as depicted in Figure 4 is linked via Gutzwiller's trace formula to the set of all

periodic orbits of the system. Furthermore, it can be shown that photoionisation or absorption spectra in atoms are

related to a set of returning trajectories, that is, trajectories which start and end at the origin (Du et al. 1988). Note

that these orbits are in general only closed in position space and thus not periodic. Interestingly, in helium these are

triple-collision orbits, that is, orbits for which both electrons hit the nucleus simultaneously.

A good knowledge of the phase space dynamics is necessary to classify and determine these sets of trajectories.

Classical dynamics
The classical three body system can be reduced to four degrees of freedom (dof) after eliminating the centre of

mass motion and incorporating the conservation of the total angular momentum. As the nucleus is about 1800

times heavier than an electron, one can work in the infinite nucleus mass approximation without loosing any

essential features. After rescaling and making all quantities dimensionless, one can write the classical Hamiltonian

in the form

with nucleus charge  for helium (Richter et al. 1993). The phase space in Eq. (2) has 6 dof, the dynamics for

fixed angular momentum takes place on 4 dof. The  regime corresponds to the region of positive energy

where double ionisation is possible. There exist no periodic orbits of the electron pair and one does not find

quantum resonance states in this energy regime, see Figure 4. It is the classical dynamics for negative energies, that

is H= -1, which shows complex behaviour, chaos, unstable periodic orbits and is linked to the bound and resonance

spectrum of helium in Figure 4. Only one electron can escape classically in this energy regime and it will do so for

most initial conditions.

Symmetries and invariant subspaces

The equations of motion derived from the Hamiltonian (2) are invariant under the transformation 

, as well as  The symmetries give rise to invariant subspaces in the full

phase space. Trajectories which start in such a subspace will remain there for all times thus reducing the relevant

degrees of freedom of the dynamics. Invariant subspaces are thus an extremely useful tool to study classical

dynamics in a high dimensional phase space. The subspace most important for
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Figure 6: The collinear eZe
configuration

Figure 7 : a) A  ty pical orbit in the eZe - space; b)
trajectory  in the Poincaré surface of section  (from
Tanner et al. 2000)

a semiclassical treatment is the collinear eZe space where the electrons move

along a common axis at different sides of the nucleus, see Figure 6. The

dynamics in this space describes the spectrum near the ground state as well as

some of the Rydberg series in the energy spectrum, Figure 4. Furthermore,

the photoionisation spectrum is dominated by the collinear dynamics.

Heisenberg's early success is indeed related to the similarity of his 'periodic

orbit' in Figure 3 with the shortest periodic orbit in the eZe space. We will discuss the most important properties of

the dynamics in this subspace in more detail below. Other subspaces are, for example, the collinear dynamics of

both electrons on the same side of the nucleus giving rise to 'frozen planet states' (Richter et al. 1992) and the so-

called Wannier ridge space with , which is, however, unstable with respect to perturbations away

from the subspace and thus less relevant for the spectrum. It plays an important role as a gate-way for ionisation

processes, see Lee et al. 2005, Byun et al. 2007. For a more detailed description of the dynamics in other invariant

subspaces, see Tanner et al. 2000 and references therein.

Symbolic dynamics in the eZe
collinear space
The dynamics in the eZe collinear space turns out

to be fully chaotic with a binary symbolic

dynamics. The two degrees of freedom are the

distances  of electron  from the

nucleus - a typical trajectory is shown in Figure 7.

Note that the axis  corresponds to binary

collisions, that is, the electron "i" collides with

the nucleus - see also the next section for a

discussion of collision events. One electron can

escape (ionise) to infinity leaving the other

electron in a regular Kepler ellipse around the

nucleus. Interestingly, escape can only occur after both electron come close to the nucleus simultaneously to allow

for momentum transfer between the light particles. The triple collision (discussed below) serves thus as the gateway

to electron ionisation. The dynamics is nearly regular having a small, but positive Lyapunov exponent, if the

electrons are far apart (that is,  or vice versa), see the Poincaré surface of section in Figure 7b).

The symbolic dynamics for the chaotic eZe - configuration maps each trajectory one-to-one onto a binary symbol

string. The symbols are defined through binary collisions, that is,

1 if a trajectory crosses the line  between two collisions with the nucleus, (i.e.  or );

0 otherwise.

Note that the symbolic dynamics is closely related to the triple collision, that is, the boundaries of the partition are

given by trajectories starting in or ending at the singular point  (triple collision manifolds).

The symbolic dynamics fully describes the topological properties of the phase space; periodic orbits, for example,

can be characterised by a periodic symbol string  where  is a finite binary symbol string. There are

infinitely many periodic orbits and they are all unstable with respect to the dynamics "in" the collinear plane. Some

examples are shown in Figure 8. The number of periodic orbits increases exponentially with the code length and

thus with the period of the orbits. The 'asymmetric stretch' orbit  is the shortest orbit in this subspace. The

asymptotic periodic orbit   corresponds to the notation  in the binary code.

Collisions, regularisation and the triple collision

Collisions are an important feature in few-body

dynamics as described above. There is in
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Figure 8: Representativ e periodic orbits of the helium
electron pair in the eZe - space (from Wintgen et al. 1 992)

Figure 9: The Fourier transformed part of the spectrum associated with
the eZe space (here denoted ) - the binary  code (+,-) refers to the
code (0,1 ) introduced abov e (from Qiu et al. 1 996)

dynamics as described above. There is in

particular a fundamental difference between two-

body (or binary) collisions and many-body

collisions where more than two particles collide

simultaneously. Binary collisions can be

regularised, that is, the dynamics can be

continued through the singularity after a suitable

transformation of the time and space variables. A

popular regularisation scheme is the

Kustaanheimo-Stiefel transformation which

preserves the Hamiltonian structure of the

equations. Binary collisions do not add instability

to the classical dynamics.

This is in contrast to triple collisions where both

electrons hit the nucleus simultaneously. The

triple collision is a non-regularisable singularity,

that is, there is no unique way to determine the

fate of a trajectory after it has encountered a

triple collision. The manifold of all orbits coming

out of or going into a triple collisions - the so-

called triple collision manifold (Waldvogel 2002)

- plays an important role in tessellating the full

phase space and provides the symbolic dynamics

in the eZe space. Triple collision orbits always move along the so-called Wannier orbit  when encountering

the singularity. The triple collision singularity thus acts as an infinitely unstable fixed point; a closer analysis shows

that the singularity itself has a non-trivial structure and topology which can be illuminated using McGehee

transformation techniques.

For a discussion of the Kustaanheimo-Stiefel and McGehee transformations in the context of three body Coulomb

problems, see Richter et al. 1993 and Lee et al. 2005, respectively.

Semiclassical periodic orbit quantisation
The Gutzwiller trace formula

marked a milestone in the

development of semiclassical

theories. It relates the spectrum of

a quantum system to the set of all

periodic orbits of the

corresponding classical system in

terms of a Fourier-type relation

where the eigenenergies and the

actions of the classical periodic

orbits act as Fourier-pairs. The

classical dynamics of the eZe

collinear configuration can be

used for a quantisation of an important part of the helium spectrum due to a 'lucky' coincidence: It turns out that

the electron motion in the vicinity of the collinear space is stable in all degrees of freedom perpendicular to the eZe

space. The electrons carry out a regular bending-type vibration while performing chaotic motion in the collinear

degrees of freedom. This makes it possible to use the periodic orbits of the eZe configuration for a semiclassical

description of parts of the spectrum for angular momentum L=0 including the ground state. The existence of this

connection can be shown by Fourier methods. By inverting the Gutzwiller trace formula using Fourier

=r1 r2

Kmax
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Figure 1 0: Quantum eigenv alues obtained from cy cle ex pansion
techniques using periodic orbits up to length j; the ex act quantum
results are giv en in the last column (in atomic units), from Wintgen et al.
(1 992).

connection can be shown by Fourier methods. By inverting the Gutzwiller trace formula using Fourier

transformation, one obtains an action spectrum related to the full quantum energy spectrum as shown in Figure 9

(Qui et al. 1996). The energy scaling relation for the classical actions 

has been used here, where  is the action of a periodic orbit (po) at fixed energy , see (2). The quantum

spectrum used in Figure 9 has been obtained from full 3D numerical calculations (Bürgers et al. 1995) and semi-

empirical formulas based on approximate quantum numbers. (For more details on approximate quantum numbers,

see Tanner et al. 2000).

Each of the peaks in Figure 9 can

be identified with a periodic orbit

of the classical two-electron

dynamics; furthermore all these

periodic orbits lie in the eZe space

confirming the statement that

large parts of the quantum

spectrum are determined by this

invariant lower dimensional

subspace - a truly amazing result.

At last the periodic orbits Niels

Bohr was looking for have been

found and they are quite close to

the solution proposed by

Heisenberg which he himself did

not dare to publish! For a full

blown semiclassical quantisation, one needs information of as many periodic orbits as possible - these can be

obtained systematically using the symbolic dynamics in the eZe space. The most extensive semiclassical

calculations so far made use of all periodic orbits up to length 16 (  orbits ) together with cycle

expansion techniques to obtain energies as listed in Tab 9 (Wintgen et al. 1992). Pushing the semiclassical

calculation to even higher energies is hampered by the exponential increase of the number of periodic orbits with

increasing (symbol) length in chaotic systems - a general obstacle for semiclassical quantisation techniques.

Photoionisation cross sections
Information about atomic spectra is often experimentally obtained through measurements of the photo excitation

or ionisation, see Figure 5 for helium. An expression for the photo-ionisation cross section can be written in terms

of the retarded Green function G(E) of the full three particle problem, that is, 

where c is the speed of light,  is the initial state wave function and  is the dipole operator with 

, the polarization of the incoming photon. Using again Gutzwiller's expression for the Green function in terms of

classical trajectories, one can relate the cross section to classical trajectories of the three-body dynamics.

Semiclassical methods are particularly useful when considering the cross section in the limit  that is, at the

double ionisation threshold. Especially the regime just below the threshold with  is not accessible both to

experiments and to fully numerical calculations due to the large density of resonances. Using a semiclassical closed

orbit theory together with a semiclassical treatment of triple collision orbits, one can make detailed predictions

here; in particular, the cross section can be written in the form (Byun et al 2007, Lee et al 2010) 

= ,Spo
1

|E|‾‾‾√
S
~
po (3)

S
~
po E = −1

= 65536216

σ(E) = − ωℑ⟨D |G(E)|D ⟩
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Figure 1 1 : Fourier transform of cross section data;
the peaks can be related to the CTCOs depicted in
the insets (from By un et al. 2007 ).

here; in particular, the cross section can be written in the form (Byun et al 2007, Lee et al 2010) 

where  gives a smooth background contribution and the sum is taken over all closed triple collision orbits

(CTCO), that is, trajectories which start and end in the triple collision. It can be shown that CTCOs are part of the

eZe sub-space. Furthermore,  is the classical action at energy  as given in (3) and  is an energy

independent coefficient related to the stability of a given CTCO away from the triple collision. Most remarkably is

the energy scaling due to the exponent , (for details see Lee et al. 2010),

which can be obtained through a stability analysis of the

triple collision itself. Here,  relates to a contribution

from the so-called Wannier Ridge dynamics, an

invariant subspace of the full dynamics where the two

electrons are always at the same distance from the

nucleus. The exponents are related to Siegel exponents

(see Waldvogel 2002) or Wannier exponents (Wannier

1953). The energy scaling describes the decay of the

fluctuations in the photoionisation cross section

towards the threshold as can be seen in Figure 5.

The CTCOs can in fact be seen in cross section data

using a Fourier transformation of Eqn. (5). The data

shown in Figure 11 are obtained from a 1D eZe cross

section calculations (Byun et al. 2007) and show a nice

one-to-one correspondence between peaks and triple

collision trajectories.

Experimental and numerical studies confirm that the dominant contribution to the cross section signal is given by

the collinear eZe dynamics (Jiang et al. 2008) as predicted by the semiclassical analysis.

Recent developments and open questions

Exploring the full phase space - approximate symmetries and global
structures
Helium has provided a prime example where experimental and numerical results of the quantum 3-body problem

give clear hints about interesting structures in the phase space of the classical dynamics. However, the story is not

finished yet - at the time of writing (2013), large areas of the full 7 dimensional classical phase space are unexplored

and the connection between approximate quantum numbers (Herrick's quantum numbers - see Lee et al. 2005,

Sano 2010) is still unclear. This also opens up interesting links to celestial mechanics and triple collision encounters

in three-body gravitational problems as discussed at the workshops on Few Body Dynamics in Atoms, Molecules

and Planetary Systems (http://www.pks.mpg.de/~fbd10/) in Dresden in 2010 and Celestial, Molecular, and Atomic

Dynamics (CEMAD) (http://www.pims.math.ca/scientific-event/130729-cmad2) in Victoria in 2013.

Highly doubly excited states - recent advances
The world record of experimentally accessing and numerically calculating highly doubly excited states in helium is

σ(E) ≈ + |E ℜ 2πi ,σ0
8 ωπ 2
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The world record of experimentally accessing and numerically calculating highly doubly excited states in helium is

currently held (in 2013) by Jiang et al. 2008 for total cross sections reaching helium resonances up to the ionisation

thresholds N=17 and Czasch et al. 2005 for partial cross sections reaching N=13. Going even higher in the spectrum

or considering helium under electromagnetic driving (Madronero et al. (2008)) is a formidable challenge asking for

new numerical techniques to deal with the large basis sets necessary and experimental techniques to reach the

resolutions required. Unusually for atomic physicists, the rewards may lie in looking at the Fourier transforms of

their data.

Double ionisation of helium for strong laser fields and ultra-short pulses
- probing correlated electron-electron dynamics
Studying double ionisation (DI) of helium by looking at the classical dynamics of the two electrons as they escape

form the nucleus has a long history: Already in 1953, Wannier predicted an unexpected energy scaling of the DI

cross section near the threshold governed by exponents similar to those found in Eq.(6). Interesting recent effects

being considered are electron-electron correlation effects in strong laser fields and in attosecond pulses. In the

strong field case, rescattering can lead to a large contribution to the DI cross section from ionisation events where

both electrons escape from the nucleus along the same direction (Prauzner-Bechcicki et al. 2007). Two-photon DI

in ultra-short pulses, on the other hand, shows a preference for back-to-back electron escape due to electron-

electron repulsion (Feist et al. 2009). These and many other scenarios can be studied using classical electron

dynamics.

Semiclassics for many-body problems
While helium represents a prime example for the success of semiclassics for an interacting few body system,

generalizations to other many-body problems remain as a future challenge.
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