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1 SUMMARY 

This thesis focuses on the design, synthesis and evaluation of novel functionalized 

photochromic dithienylethenes (DTEs) for applications in biology. 

Chapter 1 deals with the creation of dithienylcyclopentene based enzyme inhibitors to 

reversibly control the activity of the metabolic branch-point enzyme PriA from Myco-

bacterium tuberculosis (mtPriA) by light. The enzyme’s natural rotational symmetry 

encouraged us to design two-pronged DTEs with terminal phosphate or phosphonate 

functional groups. Switching from the flexible, ring-open to the rigid, ring-closed isomer 

reduces inhibition activity by one order of magnitude, whereby mtPriA’s performance can 

even be remote-controlled by light during catalysis. Molecular Dynamics simulations 

support our experiments showing that the open form is energetically more favorable while 

bound in the active site. Thus the concept of utilizing the enzyme structure for the inhibitor 

design has been proven.  

In chapter 2 the development of photochromic dithienylcyclopentenes as cell signal 

inhibitors for the extracellular-regulated kinase (ERK) pathway is reported. Through 

Molecular Docking we identified promising DTE based ERK inhibitors, which were 

subsequently synthesized and photochemically evaluated. The mediocre thermal stability of 

their ring-closed photoisomers requires that the test solutions are irradiated directly before 

use. Incubation of cells with the title compounds caused significant inhibition by the ring-

open isomers, whereas the ring-closed forms’ activity seems reduced and cytotoxicity was 

observed. Further experiments with isolated ERK could not sufficiently substantiate these 

results though. This already gives a hint on the complexity of this topic as any other tier of 

the entire signal cascade might be affected. Nevertheless, interesting trends were found and 

new compounds could be identified, which allow for the light-dependent regulation of the 

ERK signal. 

Aiming for better water-solubility, increased hydrophilicity and easier derivatization, 

dithienylmaleimide based amino acids were synthesized and incorporated in peptides, as 

described in chapter 3. We combined independently prepared N- and C-terminal thienyl 

components by Perkin condensation to form the maleimide core. Subsequent derivatization 

of the photoswitchable amino acid is easily achieved by standard solid phase peptide 

coupling. The resulting compounds show excellent photochromic performance in polar 

solvents and are thus suitable candidates for biological applications. 



Zusammenfassung 
   

 

 4 

Moreover, novel photochromic dithienyl maleic hydrazides are introduced in chapter 4. 

The reaction of dithienylmaleimides with hydrazine generates DTEs bearing maleic 

hydrazide as ethene unit. Initial NMR measurements indicate that it might occur 

predominantly as the monolactim tautomer. Concurrently, we observed photoswitchable 

solvatochromism of the obtained compound, but its repeated application is restricted by 

rapid photodegradation. Further investigations are necessary to thoroughly characterize the 

compounds and their behavior.  These interesting pioneering observations could contribute 

to establish a new generation of DTE photoswitches. 

In conclusion, this thesis presents new concepts for the biological application of 

functionalized photochromic dithienylethenes, which act as light-dependent switches for 

enzyme activity and peptides. The implications of this work are especially relevant for the 

development of novel molecular tools to remote-control cellular processes by light. 
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2 ZUSAMMENFASSUNG 

Diese Arbeit befasst sich mit der Gestaltung, der Synthese und der Untersuchung von neuen 

funktionalisierten photochromen Dithienylethenen (DTEs) für biologische Anwendungen. 

Kapitel 1 handelt von der Entwicklung von Dithienylcyclopenten basierten Enzyminhibitoren, 

die die Aktivität des metabolischen Schlüsselenzyms PriA aus Mycobacterium tuberculosis 

(mtPriA) reversibel durch Licht kontrollieren können. Die natürliche Rotationssymmetrie des 

Enzyms hat uns dazu bewogen, symmetrische Inhibitoren mit terminalen Phosphat- oder 

Phosphonat-Ankern zu entwerfen. Durch das Schalten vom flexiblen, offenen Isomer zur starren, 

geschlossenen Form verringert sich die Inhibitionsaktivität um eine Größenordnung, wobei die 

Enzymsteuerung durch Licht auch während der Katalyse funktioniert. Moleküldynamik-

Simulationen stützen die experimentellen Daten und zeigen, dass die Bindung der offenen Form 

im aktiven Zentrum energetisch bevorzugt ist. Damit wurde bewiesen, dass man abgeleitet von 

der Enzymstruktur Inhibitoren konstruieren kann.  

In Kapitel 2 wird die Anwendung photochromer Dithienylcyclopentene als Zellsignalinhibitoren 

für die Kaskade der extrazellulär regulierten Kinase (ERK) berichtet. Mittels molekularen 

Dockings wurden potentielle, vom DTE-Gerüst abgeleitete, ERK-Inhibitorstrukturen bestimmt, 

welche anschließend synthetisiert und photochemisch untersucht wurden. Die mittelmäßige 

thermische Stabilität der geschlossenen Photoisomere erfordert, dass die Proben direkt vor 

ihrem Einsatz belichtet werden. Bei der Inkubation von Zellen mit den Zielsubstanzen können 

deren offene Isomere das ERK-Signal hemmen, wohingegen die Wirkung der geschlossenen 

Formen geringer erscheint und Zellschädigung festgestellt wurde. Weitere Experimente mit 

isolierter ERK konnten diese Ergebnisse jedoch nicht ausreichend untermauern und deuten auf 

die Komplexität dieser Thematik hin, da jede weitere Stelle der gesamten Signalkaskade 

betroffen sein könnte. Dennoch wurden interessante Tendenzen entdeckt und neue Substanzen 

gefunden, die das ERK-Signal abhängig von der Beleuchtung regulieren können. 

Um die Wasserlöslichkeit zu verbessern, die Hydrophilie zu erhöhen und eine leichtere 

Derivatisierung zu erreichen, wurden Dithienylmaleimid basierte Aminosäuren synthetisiert 

und in Peptide eingebaut, was in Kapitel 3 beschrieben ist. Dabei verknüpften wir die separat 

hergestellten N- und C-terminalen Thienylkomponenten durch eine Perkin-Kondensation, wobei 

der Maleimidkern entstand. Eine anschließende Derivatisierung der photoschaltbaren 

Aminosäure kann durch gewöhnliche Festphasenpeptidsynthese per Standardprotokoll 

erfolgen. Die hergestellten Substanzen zeigen hervorragende photochrome Eigenschaften in 

polaren Lösungsmitteln und eignen sich daher für biologische Anwendungen. 
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Darüber hinaus werden neue photochrome Dithienyl-Maleinsäurehydrazide in Kapitel 4 

vorgestellt. Die Reaktion von Dithienylmaleimiden mit Hydrazin erzeugt DTEs, die mit einem 

Maleinsäurehydrazid als Etheneinheit ausgestattet sind. Erste NMR-Messungen deuten darauf 

hin, dass es vermutlich als Monolactimtautomer vorliegt. Gleichzeitig beobachteten wir eine 

photoschaltbare Solvatochromie der hergestellten Substanz, jedoch ist eine wiederholte 

Anwendung durch den raschen Zerfall bei Beleuchtung eingeschränkt. Es sind weitere 

Untersuchungen nötig um eine fundierte Charakterisierung vorzunehmen. Diese interessanten 

wegbereitenden Beobachtungen können dazu beitragen eine neue Generation von DTE-

Photoschaltern zu entwickeln. 

Zusammenfassend zeigt diese Arbeit neue Konzepte zur biologischen Anwendung von 

funktionalisierten photochromen Dithienylethenen auf, welche als lichtabhängige Schalter für 

Enzymaktivität und Peptide agieren. Die gewonnenen Erkenntnisse besitzen besondere 

Relevanz im Hinblick auf die Entwicklung von neuartigen molekularen Hilfsmitteln um zelluläre 

Abläufe durch Licht zu kontrollieren. 
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3 EXPLOITING PROTEIN SYMMETRY TO DESIGN LIGHT-

CONTROLLABLE ENZYME INHIBITORS* 

 

 

 

 

 

                                                             
* This chapter was published as: B. Reisinger, N. Kuzmanovic, P. Löffler, R. Merkl, B. König and 

R. Sterner, Angew. Chem. 2014, 126, 606-609; Angew. Chem. Int. Ed. 2014, 53, 595-598. BR and NK 

contributed equally to this work. Design, calculations, synthesis, characterization and photophysical 

investigations of new compounds by NK. Protein cloning, expression, purification, steady-state 

enzyme kinetics and manuscript by BR (group of Prof. Dr. R. Sterner, University of Regensburg). 

Molecular Modeling by PL (group of Prof. Dr. R. Merkl, University of Regensburg). BK and RS 

supervised the project and are the corresponding authors. 
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3.1 Introduction 

The artificial control of biological processes by light is a rapidly emerging area of protein 

design.[1] Three basic strategies for the light-regulation of biomolecules have been reported: 

Besides caging of key positions with photolabile protecting groups[2] and reprogramming of 

naturally occurring photoreceptors,[3-5] designed molecules that can be reversibly switched 

by light (photoswitches) have been used to direct protein or cellular function.[6] Recently, 

substantial progress has been made in the regulation of neuronal activity by designing light-

inducible ligands for ion channels and receptors.[7-8] As the molecular recognition of specific 

ligand parts leads to a nonlinear signal response in neural systems, even small changes in 

the binding efficacy upon light irradiation significantly influence the cellular output.[9] 

However, when aiming to reversibly control enzymatic activities, switching of a 

photoresponsive group must substantially affect the enzyme’s active site. Covalent 

incorporation of a molecular photoswitch near the catalytic center is able to fulfill this 

task.[6, 10] The required coupling step between protein and photoswitch can be circumvented 

by designing a light-controlled inhibitor.[6, 11-13] 

 

Figure 1. Reversible light-dependent control of mtPriA activity.  

We aimed to design a light-controllable inhibitor for phosphoribosyl-isomerase A from 

Mycobacterium tuberculosis (mtPriA, Figure 1). mtPriA is a branch-point enzyme in amino 

acid biosynthesis as it catalyzes two chemically equivalent sugar isomerization reactions in 

tryptophan and histidine biosynthesis.[14] In the latter, the aminoaldose N′-[(5′-

phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) is 

converted to the corresponding aminoketose N´-[(5´-phosphoribulosyl)-formimino]-5-

aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) (Figure 2a). Since humans can 

neither synthesize histidine nor tryptophan, mtPriA is a potential target for anti-

tuberculosis drugs.[15-16] Structurally, mtPriA belongs to the class of (βα)8-barrels, which is a 

frequently encountered and highly versatile fold among enzymes.[17-18] mtPriA exhibits a 

clear twofold symmetry (Figure 2b),[19-20] which indicates its evolution from a (βα)4-half-

barrel precursor.[21] Consequently, two phosphate binding sites are found opposite each 

other to fix the substrate ProFAR and the product PRFAR (Figure 2b). We thus reasoned that 
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a C2-symmetric photoswitch with terminal phosphate-anchors would be an excellent 

foundation for building a light-controllable inhibitor of mtPriA. 

 

Figure 2. Reaction and structure of mtPriA. a) mtPriA catalyzes the conversion of ProFAR to PRFAR 

within histidine biosynthesis. b) Ribbon diagram of the (βα)8-barrel structure of mtPriA with bound 

product PRFAR (PDB ID 3ZS4[19]). The view is along the two-fold symmetry axis of the protein. PRFAR is 

anchored by two opposite phosphate binding sites, which are enlarged in the insets. Formed 

hydrogen bonds are indicated by dashed lines (structure is slightly rotated for clarity in either case).  

Two types of organic photochromic systems possess the desired twofold rotational 

symmetry: stilbene[22] or azobenzene switches[23] and the diarylethene scaffold.[24] Although 

azobenzene derivatives have been widely used in biological systems, they suffer from 

incomplete photoconversion and thermal reversibility.[1] In contrast, photoresponsive 

compounds based on 1,2-dithienylethene (DTE) generally feature switching rates of over 

90% conversion with both photoisomers being thermally stable.[12, 24] Hence, we opted for 

DTE as core and provided it with different phosphate and phosphonate anchors (Scheme 1). 
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3.2 Results and Discussion 

3.2.1 Synthesis 

Starting with the bischlorodithienylethene 1, Suzuki coupling yielded either the aromatic 

hydroxides 2-4 or the aromatic bromides 8-9. The former were subsequently converted to 

ortho-, meta- and para-phosphates 5-7, while the latter were used to synthesize the 

phosphonic acid esters 10-11, which were finally hydrolyzed to afford meta- and para-

phosphonates 12-13. 

 

Scheme 1. Synthesis of DTE-phosphates and DTE-phosphonates. 

 

  



Chapter 1 
   

 12 

3.2.2 Photochromism 

The DTE molecular structure can reversibly be toggled between a ring-open and ring-closed 

photoisomer (Scheme 2), which significantly alters its overall conformational flexibility.[12] 

Energy minimizations of the open and closed forms of all potential inhibitors confirmed for 

the phosphorous atoms distances between 15.8 and 19.6 Å (Scheme 2), which is in good 

accordance with the 16.9 Å observed for the corresponding atoms in the mtPriA structure 

with co-crystallized PRFAR (PDB ID 3ZS4[19]) (see Experimental Material and Methods for 

details). Only the open and closed isomers of ortho-phosphate 5 exhibit rather short P-P 

distances of 12.3 Å and 11.3 Å, respectively, in their energetically most favorable 

geometries; in addition, less populated, more extended conformers can be observed. 

 

Scheme 2. Photochemical switching and corresponding calculated P-P distances in DTE-

phosphates and DTE-phosphonates.  

When ring-open forms of compounds 5-7, 12 and 13 are irradiated with 312 nm light, the 

absorption band at 280 nm immediately decreases. Simultaneously, new absorption maxima 

at 350 nm and 525 nm are formed turning the initially colorless solutions pink (see Figure 

5). In each case, the spectral changes are completed after 30 s of irradiation and the 

corresponding photostationary states contain between 93% and 97% of the closed isomers, 

as judged by HPLC analyses (see Figure 6). The open forms can be recovered by irradiation 

with visible light (> 420 nm) and all switches are robust over several ring-closing/ring-

opening cycles (see Figure 7). 
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3.2.3 Biological Test Results 

The mtPriA activity can be monitored spectrophotometrically at 300 nm in a coupled 

enzyme assay (Scheme 3).[25] As all synthesized compounds were stable under assay 

conditions, their inhibitory effect could be investigated in steady-state enzyme kinetics. For 

this purpose, substrate saturation curves were measured in presence of different 

concentrations of compounds 5-7, 12 and 13 in their open and closed forms (curves are 

shown for compound 6 in Figure 8). Indeed, all investigated DTE-phosphates and DTE-

phosphonates have the ability to inhibit the mtPriA reaction in both isomeric forms, thus 

proving the viability of the design concept. As expected for competitive inhibition, the 

turnover numbers kcat were identical in presence and absence of inhibitor (see experimental 

section, Table 2). The observed increase of the Michaelis constants caused by the inhibitors 

(Table 2) was used to calculate the inhibition constants Ki (Formula 1), which are given in 

Table 1. 

Table 1. Inhibition constants Ki of compounds 5-7, 12 and 13 in their ring-open and ring-closed forms. 

Inhibitor Ki / µM[a] 

ring-open     ring-closed 

5 8.1 ± 2.1 7.0 ± 1.2 

6 

7 

12 

13 

0.55 ± 0.12 

3.5 ± 0.3 

1.6 ± 0.1 

6.8 ± 0.6 

4.4 ± 0.3 

3.7 ± 0.4 

4.9 ± 0.3 

22.7 ± 4.7 

[a] The values of Ki were obtained from the data shown in Table 2 using Formula 1. 

The determined inhibition constants are in the low micromolar range (Table 1) and 

therefore comparable or even better than the enzyme’s KM value for the natural substrate 

ProFAR (KMProFAR = 8.6 µM; see Table 2). In agreement with the well-suited distance of its 

phosphorous atoms (Scheme 2), the open isomer of phosphate 6 exhibits the highest 

binding affinity (Ki = 0.55 µM). However, when switched to its rigid, closed form, the 

inhibition activity is lowered by roughly one order of magnitude (Ki = 4.4 µM). A similar 

trend is observed for the respective phosphonate 12, whose binding affinity in the open 

form (Ki = 1.6 µM) is decreased about 3-fold upon ring-closure (Ki = 4.9 µM). In contrast, the 

inhibitory effects of phosphates 5 and 7 are nearly identical in their ring-open and ring-

closed forms (Table 1). Interestingly, the introduction of a phosphonate moiety in para-

position (compound 13) causes a 3-fold difference in the inhibition activity of the open (Ki = 

6.8 µM) and closed photoisomer (Ki = 22.7 µM). The removal of the oxygen bridge between 
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the terminal anchor and the switchable core further reduces the overall flexibility, which 

seems to predominantly affect the already rigid, closed isomer.  

The performance of mtPriA can also be remote-controlled by light during catalysis. Starting 

up with compound 6 in its strongly inhibiting, open form, the reaction velocity is enhanced 

about 3-fold, when switching to the less active, ring-closed isomer (Figure 3).  

 

Figure 3. Change in mtPriA activity upon ring-closure of compound 6. The turnover of 5 µM ProFAR 

was followed photometrically at 300 nm in the presence of 4 µM 6 in its open form under typical 

assay conditions (25 °C, 50 mM Tris/acetate pH 8.5, 100 mM ammonium acetate, 0.18 µM HisF and 

0.15 µM mtPriA). After having reached its maximal velocity, the reaction mixture was either left in 

the photometer (grey) or removed to irradiate it with 312 nm light for 10 s (black). A reference 

solution without enzymes was used to correct the baseline shift resulting from different absorption 

values of the open and closed isomer at 300 nm. 

 

3.2.4 Molecular Modeling 

As pointed out before, the mechanistic principle, which induces the different binding 

affinities of the photoisomers, is based on a change in conformational flexibility.[12] Due to 

free rotation around the C-C bonds joining the thiophene heterocycles with the central 

cyclopentene ring and the terminal phenyl groups, DTE-phosphate 6 is able to adopt various 

geometries in its ring-open form. On the other hand, the closed isomer is completely 

conjugated and thus far more restricted in its motility. In order to get insights into the 

binding modes of the inhibitors, Molecular Dynamics (MD) simulations of the open and 

closed isomer of compound 6 bound to mtPriA were performed. Although both forms are 

clearly fixed at the phosphate binding sites (Figure 4a and 4c), obvious differences can be 

observed in their structural cores. While the open isomer converges to similar, 
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C2-symmetric conformers in three independent calculations (Figure 4b), more diverse 

binding modes are found for the ring-closed isomer (Figure 4d). Here, one terminal phenyl 

ring is twisted and adopts various geometries to facilitate proper coordination of the 

terminal phosphate group. The measured difference in inhibition activity is also reflected in 

the binding energies determined during the simulations, which consistently show that 

interaction with the open form is energetically more favorable (see Table 3). Taken 

together, the higher flexibility of the open isomer allows for better adaptation to the 

enzyme’s active site and apparently overcompensates the loss in entropy upon binding. 

 

Figure 4. MD simulations of mtPriA and bound meta-phosphate 6. For each isomer, three 

independent calculations were performed and representative enzyme structures for the open (a) 

and closed (c) form are shown. A superposition of the energetically most favorable conformer of 

each simulation is depicted in the open conformation (b) and the closed conformation (d). 
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3.3 Conclusion 

In summary, we have demonstrated that natural protein symmetry can be advantageously 

utilized to design light-controllable enzyme inhibitors. The two-pronged DTE switches can 

reversibly be toggled between a high- and low-affinity form, where both photoisomers are 

nearly quantitatively formed and thermally stable. Hence, the enzyme’s performance can 

alternately be enhanced and reduced by irradiation with UV and visible light, respectively. 

The viability of a dual-anchored DTE inhibitor has been shown before[12] and the design 

concept can in principle be transferred to functionally quite different enzyme systems. 

Phosphate is a frequently encountered element of metabolic substrates, and various other 

(βα)8-barrel enzymes such as pyridoxine 5’-phosphate synthase[26] or aldolases[27-28] possess 

two phosphate binding sites. For these enzymes, inhibitors may be designed with a similar 

approach, which would allow for an independent photocontrol of several metabolic 

processes in a spatiotemporal fashion. 
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3.4 Supporting Information 

3.4.1 Synthesis and Characterization of New Compounds 

General. Commercial reagents and starting materials were purchased from Acros Organics, 

Alpha-Aesar or Sigma Aldrich and used without further purification. Solvents were used in 

p.a. quality and dried according to common procedures, if necessary. Flash column 

chromatography was performed on a Biotage Isolera One automated flash purification 

system with UV/Vis detector using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 

grain diameter) for normal phase or pre-packed Biotage SNAP cartridges (KP-C18-HS) for 

reversed phase chromatography. Reaction monitoring via TLC was performed on alumina 

plates coated with silica gel (Merck silica gel 60 F254, 0.2 mm). NMR spectra were recorded 

on a Bruker Avance 400 (1H 400.13 MHz, 13C 100.61 MHz, 31P 161.96 MHz, T = 300 K) 

instrument. The spectra are referenced against the NMR-solvent, chemical shifts δ are 

reported in ppm and coupling constants J are given in Hz. Resonance multiplicity is 

abbreviated as: s (singlet), d (doublet), t (triplet), m (multiplet) and b (broad). Carbon NMR 

signals are reported using DEPT 135 spectra with (+) for primary/tertiary, (−) for 

secondary and (q) for quaternary carbons. Mass spectra were recorded on Finnigan MAT95 

(EI-MS), Agilent Q-TOF 6540 UHD (ESI-MS, APCI-MS), Finnigan MAT SSQ 710 A (EI-MS, CI-

MS) or ThermoQuest Finnigan TSQ 7000 (ES-MS, APCI-MS) spectrometer. UV/Vis 

absorption spectroscopy was performed using a Varian Cary BIO 50 UV/Vis/NIR 

spectrometer. 

Photochemistry. Standard hand-held lamps (Herolab, 312 nm, 6 W) were used for 

visualizing TLC plates and to carry out the ring-closure reactions at 312 nm. The ring-

opening reactions were performed with the light of a 200 W tungsten light bulb which was 

passed through a 420 nm cut-off filter to eliminate higher energy light. The power of the 

light is given based on the specifications supplied by the company when the lamps were 

purchased. A light detector was not used to measure the intensity during the irradiation 

experiments. 

General procedure A for Suzuki coupling. 1,2-Bis(5-chloro-2-methylthiophen-3-

yl)cyclopent-1-ene 1[29] (1.0 eq.) was dissolved in dry THF under nitrogen atmosphere. After 

cooling to -78 °C, n-butyl lithium (2.2 eq.) was added dropwise via syringe and the resulting 

purple solution was stirred in the cold for 45 min. The reaction mixture was treated with 

trimethyl borate (4.0 eq.) and the yellow solution was stirred at -78 °C for 30 min. 

Subsequently, the cold bath was removed and the reaction was stirred at r.t. for further 

60 min to form the boronic ester intermediate. After quenching with aqueous sodium 
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carbonate (2 M) the two phase system was degassed for 15 min by nitrogen purge. Then the 

appropriate aryl bromide (2.2 or 4.0 eq.) and Pd(PPh3)2Cl2 (10 mol%) were added and the 

reaction mixture was heated to reflux overnight. After cooling to r.t., it was diluted with 

EtOAc and water and the phases were separated. The aqueous phase was extracted with 

EtOAc twice, the combined organic phases were dried over sodium sulfate and the solvents 

removed under reduced pressure. Purification of the crude product was performed by 

automated flash column chromatography. 

General procedure B for phosphate ester formation. A crimp top vial was equipped with 

the desired bisphenol DTE (1.0 eq.) and a stirring bar and capped. It was set under nitrogen 

atmosphere and pyridine (20 eq.) in dry CH2Cl2 (1 mL) was added by syringe. After cooling 

to 0 °C a solution of phosphorous oxychloride (10 eq.) in dry THF (1 mL) was added 

dropwise via syringe over 5 min. The purple reaction mixture was stirred for 2 h at r.t. 

under nitrogen atmosphere and subsequently quenched with acetone/water (1:1, 2 mL). 

Volatiles were removed in vacuo and the crude product was purified by automated reversed 

phase flash column chromatography. 

 

Synthesis of 2,2'-(4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl)) 

diphenol (2). Compound 2 was prepared from 1,2-bis(5-chloro-2-methylthiophen-3-

yl)cyclopent-1-ene 1 (1.50 g, 4.55 mmol), n-butyl lithium (1.3 M in hexane, 7.68 mL, 

10.0 mmol), trimethyl borate (2.03 mL, 18.2 mmol), 2-bromophenol (1.16 mL, 10.0 mmol) 

and Pd(PPh3)2Cl2 (320 mg, 0.46 mmol) following the general procedure A for Suzuki 

coupling with 50 mL dry THF and 20 mL aq. Na2CO3 (2 M). Automated flash column 

chromatography (PE/EtOAc, 15-25% EtOAc) and subsequent reversed phase automated 

flash column chromatography (MeOH/water with 0.05% TFA, 3-100% MeOH) afforded 

223 mg (0.50 mmol, 11%) of 2 as purple oil. 1H-NMR: δH(400 MHz, CDCl3): 2.10 (2H, dt, 

J = 7.4, 7.5 Hz, cyclopentene-CH2), 2.16 (6H, s, 2 CH3), 2.84 (4H, t, J = 7.4 Hz, 2 cyclopentene-

CH2), 6.85 (2H, s, 2 thiophene-H), 6.89 − 6.97 (4H, m, 4 phenyl-H), 7.15 − 7.22 (2H, m, 

phenyl-H), 7.30 (2H, dd, J = 7.6, 1.6 Hz, phenyl-H); 13C-NMR: δC(101 MHz, CDCl3): 14.1 (+), 

23.2 (−), 37.8 (−), 116.3 (+), 120.8 (+), 121.1 (q), 127.6 (+), 129.2 (+), 129.8 (+), 134.5 (q), 

135.4 (q), 135.6 (q), 136.6 (q), 152.4 (q); ESI-MS: m/z (%): 443.1 (100) [M-H]-; calcd. for 

C27H24O2S2 443.1145; found 443.1147. 
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Synthesis of 3,3'-(4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl)) 

diphenol (3). Compound 3 was prepared from 1,2-bis(5-chloro-2-methylthiophen-3-

yl)cyclopent-1-ene 1 (1.84 g, 5.59 mmol), n-butyl lithium (1.6 M in hexane, 7.68 mL, 

12.3 mmol), trimethyl borate (2.49 mL, 22.4 mmol), 3-bromophenol (2.13 g, 12.3 mmol) and 

Pd(PPh3)2Cl2 (393 mg, 0.56 mmol) following the general procedure A for Suzuki coupling 

with 100 mL dry THF and 20 mL aq. Na2CO3 (2 M). Automated flash column 

chromatography (PE/EtOAc, 15-30% EtOAc) and subsequent reversed phase automated 

flash column chromatography (MeOH/water with 0.05% TFA, 30-100% MeOH) afforded 

1.04 g (2.35 mmol, 42%) of 3 as red oil. 1H-NMR: δH(400 MHz, CDCl3): 2.00 (6H, s, 2 CH3), 

2.08 (2H, dt, J = 7.4 Hz, cyclopentene-CH2), 2.83 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 3.51 

(2H, bs, 2 phenyl-OH), 6.71 (2H, dd, J = 1.9 Hz, 8.0 Hz, 2 phenyl-H), 6.95 − 6.99 (2H, m, 

2 phenyl-H), 7.00 (2H, s, 2 thiophene-H), 7.07 (2H, J = 7.9 Hz, 2 phenyl-H), 7.19 (2H, t, J  = 

7.9 Hz, 2 phenyl-H); 13C-NMR: δC(101 MHz, CDCl3): 14.4 (+), 23.0 (−), 38.4 (−), 112.2 (+), 

114.1 (+), 117.9 (+), 124.4 (+), 130.1 (+), 134.7 (q), 134.8 (q), 136.1 (q), 136.7 (q), 139.2 (q), 

156.0 (q); EI-MS: m/z (%) 444.1 (100) [M]+, 429.0 (35) [M-CH3]+; calcd. for C27H24O2S2 

443.1145; found 443.1156. 

 

Synthesis of 4,4'-(4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl)) 

diphenol (4). Compound 4 was prepared from 1,2-bis(5-chloro-2-methylthiophen-3-

yl)cyclopent-1-ene 1 (209 mg, 0.64 mmol), n-butyl lithium (1.6 M in hexane, 0.88 mL, 

1.41 mmol), trimethyl borate (0.29 mL, 2.56 mmol), 4-bromophenol (439 mg, 2.54 mmol) 

and Pd(PPh3)2Cl2 (42 mg, 0.06 mmol) following the general procedure A for Suzuki coupling 

with 50 mL dry THF and 10 mL aq. Na2CO3 (2 M). Automated flash column chromatography 

(PE/EtOAc, 15-25% EtOAc), subsequent reversed phase automated flash column 

chromatography (MeOH/water with 0.05% TFA, 30-100% MeOH) and lyophilization 

afforded 127 mg (0.29 mmol, 45%) of 4 as red oil. 1H-NMR: δH(400 MHz, CDCl3): 1.98 (6H, 

s, 2 CH3), 2.10 (2H, p, J = 7.7 Hz, cyclopentene-CH2), 2.83 (4H, t, J = 7.5 Hz, 

2 cyclopentene-CH2), 4.88 (2H, bs, 2 phenyl-OH), 6.80 (4H, d, J = 8.7 Hz, 4 phenyl-H), 6.90 

(2H, s, 2 thiophene-H), 7.37 (4H, d, J = 8.7 Hz, 4 phenyl-H); 13C-NMR: δC(101 MHz, CDCl3): 
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14.4 (+), 23.0 (−), 38.5 (−), 115.7 (+), 123.1 (+), 126.8 (+), 127.7 (q), 133.5 (q), 134.6 (q), 

136.6 (q), 139.4 (q), 154.8 (q); EI-MS: m/z (%) 444.0 (100) [M]+, 429.0 (35) [M-CH3]+; calcd. 

for C27H24O2S2 443.1145; found 443.1148. 

 

Synthesis of (4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(2,1-

phenylene) bis(phosphate) (5). Compound 5 was prepared from 2 (65 mg, 0.15 mmol), 

pyridine (0.24 mL, 2.92 mmol) and phosphorous oxychloride (0.13 mL, 1.46 mmol) 

following the general procedure B for phosphate ester formation. Automated reversed 

phase flash column chromatography (MeOH/water with 0.5% NEt3, 20-100% MeOH) and 

subsequent lyophilization afforded 66 mg (0.09 mmol, 58%) of 5 as purple foam. 1H-NMR: 

δH(400 MHz, MeOD): 1.21 (18H, t, J = 7.3 Hz, 2 H+N(CH2CH3)3), 1.99 (6H, s, 2 thiophene-

CH3), 2.04 − 2.13 (2H, m, cyclopentene-CH2), 2.87 (4H, t, J = 7.5 Hz, 2 cyclopentene-CH2), 3.03 

(12H, q, J = 7.3 Hz, 2 H+N(CH2CH3)3), 6.99 (2H, t, J = 7.6 Hz, 2 phenyl-H), 7.10 − 7.18 (2H, m, 

2 phenyl-H), 7.40 (2H, s, thiophene-H), 7.51 (2H, d, J = 7.8 Hz, 2 phenyl-H), 7.63 (2H, d, J = 

8.3 Hz, 2 phenyl-H); 13C-NMR: δC(101 MHz, MeOD): 9.1 (+), 14.4 (+), 24.0 (−), 39.6 (−), 

47.5 (−), 121.4 (+), 123.8 (+), 126.6 (q), 128.2 (+), 128.4 (+), 128.7 (+), 135.8 (q), 136.1 (q), 

136.5 (q), 137.4 (q), 150.8 (q); 31P-NMR: δP(162 MHz, MeOD): -3.40 (s); ESI-MS: m/z (%) 

806.0 (100) [(M4-+3H)+2(N(Et)3)]-, 603.0 (44) [M4-+3H]-; calcd. for C27H25O8P2S2 603.0472; 

found 603.0477. 

 

Synthesis of (4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(3,1-

phenylene) bis(phosphate) (6). Compound 6 was prepared from 3 (26 mg, 0.06 mmol), 

pyridine (100 µL, 1.18 mmol) and phosphorous oxychloride (50 µL, 0.56 mmol) following 

the general procedure B for phosphate ester formation. Automated reversed phase flash 

column chromatography (MeOH/water with 0.5% NEt3, 20-100% MeOH) and subsequent 

lyophilization afforded 33 mg (0.03 mmol, 56%) of 6 as purple foam. 1H-NMR: δH(400 MHz, 

MeOD): 1.21 (36H, t, J = 7.3 Hz, 4 H+N(CH2CH3)3), 1.96 (6H, s, 2 thiophene-CH3), 2.11 (2H, dt, 

J = 7.5, 7.6 Hz, cyclopentene-CH2), 2.86 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 2.97 (24H, q, 

J = 7.3 Hz, 4 H+N(CH2CH3)3), 7.11 − 7.13 (4H, m, 4 phenyl-H), 7.15 (2H, s, 2 thiophene-H), 

7.17 − 7.23 (2H, m, 2 phenyl-H), 7.50 (2H, s, 2 phenyl-H); 13C-NMR: δC(101 MHz, MeOD): 
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9.5 (+), 14.5 (+), 24.1 (−), 39.5 (−), 47.1 (−), 118.1 (+), 120.0 (+), 120.3 (+), 125.3 (+), 

130.5 (+), 135.3 (q), 136.1 (q), 136.7 (q), 138.2 (q), 141.1 (q), 156.4 (q); 31P-NMR: 

δP(162 MHz, MeOD): -0.78 (s); ESI-MS: m/z (%) 806.0 (100) [(M4-+3H)+2(N(Et)3)]-, 

603.0 (21) [M4-+3H]-; calcd. for C27H25O8P2S2 603.0472; found 603.0478. 

 

Synthesis of (4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(4,1-

phenylene) bis(phosphate) (7). Compound 7 was prepared from 4 (50 mg, 0.11 mmol), 

pyridine (191 µL, 2.36 mmol) and phosphorous oxychloride (103 µL, 1.12 mmol) following 

the general procedure B for phosphate ester formation. Automated reversed phase flash 

column chromatography (MeOH/water with 0.5% NEt3, 20-100% MeOH) and subsequent 

lyophilization afforded 73 mg (0.07 mmol, 64%) of 7 as purple oil.  1H-NMR: δH(400 MHz, 

MeOD): 1.26 (36H, t, J = 7.3 Hz, 4 H+N(CH2CH3)3), 1.99 (6H, s, 2 thiophene-CH3), 2.08 (2H, dt, 

J = 7.5, 7.6 Hz, cyclopentene-CH2), 2.84 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 3.09 (24H, q, 

J = 7.3 Hz, 4 H+N(CH2CH3)3), 6.97 (2H, s, 2 thiophene-H), 7.20 (4H, d, J = 8.7 Hz, 4 phenyl-H), 

7.40 (4H, d, J = 8.6 Hz, 4 phenyl-H); 13C-NMR: δC(101 MHz, MeOD): 9.2 (+), 14.5 (+), 

24.1 (−), 39.3 (−), 47.4 (−), 121.8 (+), 124.6 (+), 127.1 (+), 130.6 (q), 134.8 (q), 136.2 (q), 

138.1 (q), 140.9 (q), 154.5 (q); 31P-NMR: δP(162 MHz, MeOD): -2.26 (s); ESI-MS: m/z (%) 

806.0 (100) [(M4-+3H)+2(N(Et)3)]-, 603.0 (15) [M4-+3H]-; calcd. for C27H25O8P2S2 603.0472; 

found 603.0465. 

 

Synthesis of tetraethyl((4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-

diyl))bis(3,1-phenylene)) bis(phosphonate) (10). A crimp top vial was loaded with 

compound 8[30] (277 mg, 0.49 mmol), palladium acetate (11 mg, 0.05 mmol), 

triphenylphosphine (39 mg, 0.15 mmol) and a stirring bar and capped. It was set under 

nitrogen atmosphere at which point diethyl phosphite (0.15 mL, 1.18 mmol), triethylamine 

(0.20 mL, 1.47 mmol) and ethanol (4 mL) were added via syringes and the purple solution 

was refluxed for 48 h. After cooling to r.t. the reaction mixture was diluted with ethanol 

(5 mL), transferred to a round bottom flask and the volatiles were removed at the rotary 

evaporator. The brown residue was purified by automated flash column chromatography 

(PE/EtOAc, 40-95% EtOAc) yielding 10 (128 mg, 0.19 mmol, 39%) as purple oil. 1H-NMR: 
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δH(400 MHz, CDCl3): 1.29 (12H, t, J = 7.1 Hz, 2 P(O)(OCH2CH3)2), 1.96 (6H, s, 2 thiophene-

CH3), 1.99 − 2.13 (2H, m, cyclopentene-CH2), 2.82 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 

3.91 − 4.24 (8H, m, 2 P(O)(OCH2CH3)2), 7.10 (2H, s, 2 thiophene-H), 7.39 (4H, td, J = 7.7, 

4.4 Hz, 2 phenyl-H), 7.54 − 7.71 (4H, m, 4 phenyl-H), 7.93 (2H, dt, J = 14.1, 1.4 Hz, 

2 phenyl-H); 13C-NMR: δC(101 MHz, CDCl3): 14.5 (+), 16.3 (+), 23.0 (−), 38.6 (−), 62.2 (−), 

124.8 (+), 128.2 (+), 128.3 (q), 129.0 (+), 129.1 (+), 130.0 (+), 134.7 (q), 134.9 (q), 135.4 (q), 

136.9 (q), 138.4 (q); 31P-NMR: δC(162 MHz, CDCl3): 19.0 (s); ESI-MS: m/z (%) 685.2 (100) 

[M+H]+, 1391.4 (65) [2M+Na]+; calcd. for C35H42O6P2S2 685.1971; found 685.1976. 

 

Synthesis of tetraethyl ((4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-

diyl))bis(4,1-phenylene)) bis(phosphonate) (11). A crimp top vial was loaded with 

compound 9[31] (248 mg, 0.44 mmol), palladium acetate (10 mg, 0.04 mmol), 

triphenylphosphine (34 mg, 0.14 mmol) and a stirring bar and capped. It was set under 

nitrogen atmosphere at which point diethyl phosphite (0.13 mL, 1.04 mmol), triethylamine 

(0.18 mL, 1.31 mmol) and ethanol (4 mL) were added via syringes and the purple solution 

was refluxed for 48 h. After cooling to r.t. the reaction mixture was diluted with ethanol 

(5 mL), transferred to a round bottom flask and the volatiles were removed at the rotary 

evaporator. The brown residue was purified by automated flash column chromatography 

(PE/EtOAc, 95% EtOAc) yielding 11 (102 mg, 0.15 mmol, 34%) as purple oil. 1H-NMR: 

δH(400 MHz, CDCl3): 1.31 (12H, t, J = 7.1 Hz, 2 P(O)(OCH2CH3)2), 1.99 (6H, s, 2 thiophene-

CH3), 2.02 − 2.14 (2H, m, cyclopentene-CH2), 2.83 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 

3.92 − 4.29 (8H, m, 2 P(O)(OCH2CH3)2), 7.11 (2H, s, 2 thiophene-H), 7.55 (4H, dd, J = 8.3, 

3.7 Hz, 4 phenyl-H), 7.75 (4H, dd, J = 12.9, 8.3 Hz, 4 phenyl-H); 13C-NMR: δC(101 MHz, 

CDCl3): 14.5 (+), 16.3 (+), 16.4 (+), 23.0 (−), 38.5 (−), 62.1 (−), 124.9 (+), 125.1 (+), 125.4 (+), 

127.2 (q), 132.4 (+), 132.5 (+), 134.8 (q), 136.2 (q), 137.0 (q), 138.2 (q), 138.4 (q); 31P-NMR: 

δC(162 MHz, CDCl3): 19.3 (s); ESI-MS: m/z (%) 685.2 (100) [M+H]+, 1391.4 (44) [2M+Na]+; 

calcd. for C35H42O6P2S2 685.1971; found 685.1977. 

 

Synthesis of ((4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(3,1-

phenylene))diphosphonic acid (12). Compound 10 (118 mg, 0.17 mmol) was dissolved in 
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dry acetonitrile (15 mL) and treated with trimethylsilyl bromide (1.14 mL, 8.62 mmol). The 

reaction mixture was stirred at r.t. overnight. Volatiles were removed at the rotary 

evaporator. After purification by automated reversed phase flash column chromatography 

(MeOH/water with 0.5% NEt3, 3-100% MeOH) and lyophilization compound 12 (114 mg, 

0.15 mmol, 87%) was obtained as dark purple oil. 1H-NMR: δH(400 MHz, MeOD): 1.23 

(18H, t, J = 7.3 Hz, 2 H+N(CH2CH3)3), 1.98 (6H, s, 2 thiophene-CH3), 2.05 − 2.16 (2H, m, 

cyclopentene-CH2), 2.86 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 3.07 (12H, q, J = 7.3 Hz, 

2 H+N(CH2CH3)3), 7.16 (2H, s, thiophene-H), 7.33 (2H, td, J = 7.7, 3.5 Hz, 2 phenyl-H), 

7.44 − 7.59 (2H, m, 2 phenyl-H), 7.67 (2H, dd, J = 12.1, 7.5 Hz, 2 phenyl-H), 8.01 (2H, d, 

J = 13.1 Hz, 2 phenyl-H); 13C-NMR: δC(101 MHz, MeOD): 9.2 (+), 14.6 (+), 24.1 (−), 39.5 (−), 

47.4 (−), 125.4 (+), 127.4 (+), 128.7 (+), 129.5 (+), 130.6 (+), 135.2 (q), 135.7 (q), 136.2 (q), 

138.3 (q), 139.2 (q), 141.0 (q); 31P-NMR: δP(162 MHz, MeOD): 12.5 (s); ESI-MS: m/z (%) 

571.1 (100) [M4-+3H]-; calcd. for C27H25O6P2S2 571.0573; found 571.0570. 

 

Synthesis of ((4,4'-(cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(4,1-

phenylene))diphosphonic acid (13). Compound 11 (82 mg, 0.12 mmol) was dissolved in 

dry acetonitrile (5 mL) and treated with trimethylsilyl bromide (0.79 mL, 6.00 mmol). The 

reaction mixture was stirred at r.t. overnight. Volatiles were removed at the rotary 

evaporator. After purification by automated reversed phase flash column chromatography 

(MeOH/water with 0.5% NEt3, 3-100% MeOH) and lyophilization compound 13 (76 mg, 

0.10 mmol, 82%) was obtained as dark purple oil. 1H-NMR: δH(400 MHz, MeOD): 1.25 

(18H, t, J = 7.3 Hz, 2 H+N(CH2CH3)3), 1.99 (6H, s, 2 thiophene-CH3), 2.09 (2H, dt, J = 7.5, 

7.6 Hz, cyclopentene-CH2), 2.85 (4H, t, J = 7.4 Hz, 2 cyclopentene-CH2), 3.09 (12H, q, J = 

7.3 Hz, 2 H+N(CH2CH3)3), 7.17 (2H, s, thiophene-H), 7.50 (4H, dd, J = 8.4, 2.8 Hz, 4 phenyl-H), 

7.73 (4H, dd, J = 12.1, 8.3 Hz, 4 phenyl-H); 13C-NMR: δC(101 MHz, MeOD): 9.2 (+), 14.7 (+), 

24.1 (−), 39.4 (−), 47.4 (−), 125.4 (+), 125.8 (q), 132.6 (+), 136.2 (q), 136.7 (q), 136.9 (q), 

138.4 (q), 138.5 (q), 140.7 (q); 31P-NMR: δP(162 MHz, MeOD): 12.9 (s); ESI-MS: m/z (%) 

571.1 (100) [M4-+3H]-; calcd. for C27H25O6P2S2 571.0573; found 571.0579. 
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3.4.2 Photochromism of DTE-phosphates and DTE-phosphonates 

Photochemical syntheses of ring-closed isomers. Solutions of compounds 5-7, 12 and 13 

(12.5 µM) in 50 mM Tris/acetate pH 8.5 were irradiated for 30 s with a 312 nm lamp 

yielding pink solutions containing the ring-closed isomers. The changes in the UV/Vis 

absorption spectra are representatively shown for compound 6 in Figure 5. The 

photostationary states contain between 93 and 97% of the ring-closed isomers according to 

HPLC analyses. The respective HPLC chromatograms of compound 6 in its open and closed 

form are depicted in Figure 6. 

 

Figure 5. UV/Vis absorption spectra evolution of compound 6 upon irradiation with 312 nm light. 

Arrows indicate the changes of the absorption maxima of 12.5 µM 6 in 50 mM Tris/acetate pH 8.5 

with irradiation intervals of 2 s from 0 to 30 s, which is illustrated by the color change from blue 

(open isomer) to purple (closed isomer). 

Photochemical cycling studies. In order to test the robustness of the photochromic 

systems, photochemical cycling studies were recorded for all switches (Figure 7). In each 

case, a solution of 12.5 µM inhibitor in 50 mM Tris/acetate pH 8.5 was alternately irradiated 

with 312 nm light for 30 s and with visible light for 15 min over various cycles and the 

absorption change at 525 nm was monitored. 
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Figure 6. Representative HPLC chromatograms for the determination of the photostationary state of 

compound 6 (100 µM in 50 mM Tris/acetate pH 8.5). The UV/Vis signal was detected at 288 nm. The 

chromatograms before (upper) and after (lower) irradiation with 312 nm light for 30 s indicate that 

97% of the open isomer (blue curve) were converted to the closed isomer (red curve). The 

absorption spectra of both forms are shown in the right panel. 

 

Figure 7. Cycle performance of compounds 5-7, 12 and 13. Changes in absorption at 525 nm were 

measured during an alternated irradiation of each inhibitor solution (12.5 µM in 50 mM Tris/acetate 

pH 8.5) with 312 nm light for 30 s and greater than 420 nm light for 15 min. 
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3.4.3 Cloning, Heterologous Expression in E. coli, and Purification of mtPriA 

The gene coding for mtPriA was amplified by PCR using pETM-11-mtPriA[19] as a template 

and cloned into the vector pET24a(+) (Stratagene) via the terminal restriction sites for NdeI 

and XhoI. mtPriA was heterologously expressed in E. coli BL21-Gold cells (Stratagene) 

transformed with pET(24a)(+)-mtpriA. To this end, five liters of Luria Broth (LB) medium 

supplemented with 75 μg/mL kanamycin were inoculated with a pre-culture and incubated 

at 37 °C. After an OD600
 
of 0.6 was reached, the temperature was lowered to 20 °C. 

Expression was induced by adding 0.5 mM IPTG, and growth was continued overnight. Cells 

were harvested by centrifugation (Sorvall/RC5B, GS3, 15 min, 4000 rpm, 4 °C) and 

suspended in 50 mM Tris/HCl pH 8.0, 300 mM NaCl, 10 mM imidazole. After lysing by 

sonication (Branson Sonifier W-250D, 2 x 2 min in 15 sec intervals, 45% pulse, 0 °C), cells 

were centrifuged again (Sorvall/RC5B, SS34, 30 min, 13.000 rpm, 4 °C) to separate the 

soluble from the insoluble fraction of the cell extract. As a first purification step, mtPriA was 

subjected to a Ni2+ affinity chromatography using its C-terminal hexa-histidine tag. To this 

end, the soluble supernatant was loaded onto a HisTrapFF crude column (5 mL; GE 

Healthcare), which had been equilibrated with 50 mM Tris/HCl pH 8.0, 300 mM NaCl, 

10 mM imidazole. After washing the column with the equilibration buffer, a linear gradient 

of 10-500 mM imidazole was applied and mtPriA eluted between 40 and 100 mM imidazole. 

Main fractions were pooled and further purified via size exclusion chromatography. For this 

purpose, a Superdex200 column (HiLoad 26/60, 320 mL, GE Healthcare) was equilibrated 

and operated with 50 mM Tris/HCl pH 8.0, 200 mM sodium chloride, 2 mM dithiothreitol at 

4 °C. Fractions with pure protein were pooled and dialyzed twice against 50 mM Tris/HCl 

pH 8.0. According to SDS-PAGE (12.5% acrylamide), mtPriA was more than 95% pure. 

About 1 mg of protein was obtained per liter of culture. 

 

3.4.4 Steady-state Enzyme Kinetics of mtPriA 

Steady-state enzyme kinetics of the mtPriA reaction were measured spectrophotometrically 

at 300 nm as described.[25] In a coupled enzyme assay the substrate ProFAR was initially 

converted to PRFAR, which was further processed by the enzyme HisF from Thermotoga 

maritima (tmHisF) to yield imidazole glycerol phosphate (ImGP) and aminoimidazole 

carboxamide ribonucleotide (AICAR) (Scheme 3). As ProFAR and PRFAR exhibit identical 

absorption spectra, the second step is indispensible in order to monitor the reaction 

progress at 300 nm (Δε300(ProFAR-AICAR) = 5.637 mM-1cm-1). It furthermore prevents 

product inhibition of the mtPriA reaction.[32] 



Exploiting Protein Symmetry to Design Light-Controllable Enzyme Inhibitors 
   

 27 

 

Scheme 3. Coupled enzyme assay for photometric determination of mtPriA activity. 

The steady-state catalytic parameters of mtPriA in the absence of inhibitor were determined 

in triplicate at 25 °C in 50 mM Tris/acetate pH 8.5 in the presence of 100 mM ammonium 

acetate, 2-73 µM ProFAR, and 0.2 µM tmHisF (Table 2). Reactions were initiated with 0.2 µM 

mtPriA, when the baseline signal was constant. To determine the inhibition constants of 

compounds 5-7, 12 and 13 in their open and closed forms, three saturation curves were 

measured in presence of different inhibitor concentrations in each case. Reaction mixtures 

contained 100 mM ammonium acetate, 3-190 µM ProFAR, 0.4-20 µM inhibitor (closed 

inhibitor forms were synthesized photochemically prior to addition to the reaction 

mixture), and 0.04-0.2 µM tmHisF in 50 mM Tris/acetate pH 8.5. Substrate turnover was 

initiated with 0.04-0.2 µM mtPriA. The molar concentration of mtPriA and tmHisF did not 

exceed a tenth of the respective inhibitor concentration. Additionally, to rule out artifacts, 

the photostability of inhibitor 6 was representatively investigated under assay conditions: 

15 µM of 6 in both isomeric forms were irradiated for 30 minutes at 300 nm in the 

spectrophotometer and no change in the absorption spectra was observed. Moreover, it was 

assured that the performance of mtPriA is rate-limiting in each kinetic setup, as doubling of 

its concentration resulted in a doubled initial velocity. Finally, the inhibition constant Ki of 

each DTE compound could be calculated from Formula 1, where Km is the Michaelis constant 

of mtPriA and Km
app is the apparent Km value determined in the presence of a distinct 

inhibitor concentration c(I). All kinetic parameters are given in Table 2 and steady-state 

enzyme kinetics of 6 in its open and closed form are illustrated in Figure 8. 






( )m
i app

m m

K c I
K

K K
  

Formula 1. Determination of inhibition constant Ki. 

 



Chapter 1 
   

 28 

 

Figure 8. Substrate saturation curves of mtPriA in the presence of inhibitor 6 in its open (upper 

curves) and closed (lower curves) form. See Table 2 for deduced steady-state kinetic parameters. 

 

Table 2. Steady-state kinetic constants for the ProFAR isomerization activity of mtPriA in absence 

and presence of compounds 5-7, 12 and 13 in their ring-open and ring-closed forms. 

Inhibitor c(I) / µM kcat / s-1 Km / µM Ki / µM 

 open / closed 

-  0.49 

0.49 

0.57 

8.6 

9.2 

8.1 

 

5 5.0 / 5.0 

10.5 / 10.5 

18.0 / 18.0 

0.47 / 0.58 

0.59 / 0.55 

0.55 / 0.60 

12.7 / 13.9 

20.9 / 21.5 

32.5 / 35.2 

10.5 / 8.1 

7.3 / 7.0 

6.5 / 5.8 

6 0.4 / 2.0 

0.6 / 3.5 

0.8 / 8.0 

0.52 / 0.56 

0.59 / 0.60 

0.55 / 0.61 

16.2 / 12.4 

18.7 / 15.9 

18.5 / 23.7 

0.45 / 4.5 

0.51 / 4.1 

0.69 / 4.6 

7 2.0 / 3.5 

3.5 / 7.0 

5.0 / 10.5 

0.47 / 0.58 

0.47 / 0.55 

0.47 / 0.53 

13.1 / 16.2 

17.7 / 24.8 

21.7 / 35.6 

3.8 / 4.0 

3.3 / 3.7 

3.3 / 3.3 

12 1.5 / 4.0 

2.5 / 10.0 

4.0 / 15.0 

0.57 / 0.55 

0.58 / 0.57 

0.60 / 0.55 

16.3 / 15.2 

22.3 / 27.1 

29.4 / 34.9 

1.7 / 5.2 

1.6 / 4.6 

1.7 / 4.9 

13 5.0 / 15.0 

10.0 / 15.0 

15.0 / 20.0 

0.60 / 0.58 

0.60 / 0.57 

0.59 / 0.57 

15.7 / 15.1 

20.7 / 15.0 

26.6 / 14.7 

6.1 / 19.8 

7.1 / 20.2 

7.2 / 28.2 
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Three substrate saturation curves were recorded at different inhibitor concentrations c(I) 

for each form (open/closed). The deduced kcat and Km values are shown. The shown Ki values 

were calculated with Formula 1 from the increase of the apparent Km value with respect to 

the Km value in absence of inhibitor. The mean values and standard deviations of Ki for each 

inhibitor are given in Table 1. 

 

3.4.5 Molecular Modeling 

Energy minimization of the open and closed isomers of compounds 5-7, 12 and 13. 

The conformer distribution of compounds 5, 6, 7, 12 and 13 in their open and closed 

isomers was calculated by Wavefunction Spartan’10[33] using molecular mechanics in water 

(MMFFaq) in the ground state with 20.000 conformers examined, a total charge of -2 for 

phosphonates or -4 for phosphates, singlet multiplicity, subject to symmetry and global 

calculations. Sorted by energy minimum the five best results for each calculation were 

averaged and are shown in Scheme 2. 

Molecular Dynamics (MD) simulations of mtPriA with compound 6 bound in its open 

and closed form. Modeling and MD simulations were performed with YASARA Structure 

Version 13.4.21 employing the YAMBER3 force field.[34] Simulations were run at 298 K 

under periodic boundary conditions and with explicit water, using a multiple time step of 

1 fs for intramolecular and 2 fs for intermolecular forces. Lennard-Jones forces and long-

range electrostatic interactions were treated with a 7.86 Å cutoff, the latter were calculated 

using the Particle Mesh Ewald method.[35] Temperature was adjusted using a Berendsen 

thermostat based on the time-averaged temperature and simulations were carried out at 

constant pressure. The parameterization of the open and closed forms of compound 6 was 

performed using the AM1BCC protocol[36], that assigns atomic charges by applying additive 

bond charge corrections (BCCs) to semi-empirical AM1 atomic charge calculations. Based on 

the crystal structure of mtPriA (PDB ID 3ZS4), the original ligand PRFAR was removed and 

manually replaced by compound 6 in the open and closed form in order to fit the phosphate 

binding pockets. The simulation cell was defined as 5 Å larger than the protein along each 

axis (cell dimensions 52 × 47 × 44 Å3), filled with water to a density of 0.997 g/mL, and 

counterions were added to a final concentration of 0.9% NaCl. The protonation states of 

protein side chains were assigned according to Krieger et al.[37] In order to remove 

conformational stress, two phases of equilibration were conducted: After a 100 ps 

equilibration with frozen protein coordinates, the whole system was equilibrated for 1 ns. 

The two equilibrated models of the open and closed form were subsequently used for the six 
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following (three for each conformer) production MD simulations. To reassign initial atom 

velocities and thus seed independent calculations, the temperature was slightly changed 

(+/-0.0001 K) for the respective second and third simulation runs of the open/closed form. 

Trajectories were sampled at intervals of 100 ps for a total of 10 ns for each model. Each 

snapshot was energy minimized as follows: After removing conformational stress by a 

steepest descent minimization, the procedure continued by simulated annealing (time step 

2 fs, atom velocities scaled down by 0.9 every 10th step) until convergence was reached, i.e. 

the energy improved by less than 0.05 kJ/mol per atom during 200 steps. Binding energies 

were obtained for each energy minimized snapshot using YASARA’s integrated binding 

energy function that computes the energetic difference of the ligand at bound state and at 

infinite distance from its binding site. Representative enzyme models (shown in Figure 4) 

for each simulation are based on the energy minimized snapshots with the best binding 

energy. The ligand binding energies and standard deviations (see Table 3) were calculated 

by using the full production trajectory. 

 

Table 3. Ligand binding energies derived from MD simulations of mtPriA and compound 6 in its 

open and closed form.[a] 

 
Ligand binding energy (open) 

[kJ/mol] 

Ligand binding energy (closed) 

[kJ/mol] 

run 1 -2171 ± 55 -2062 ± 64 

run 2 -2162 ± 59 -1919 ± 71 

run 3 -2122 ± 77 -2049 ± 60 

[a] Three independent simulations were performed in each case; see Experimental Methods for 

details.  
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4 TOWARDS PHOTOSWITCHABLE KINASE INHIBITORS† 

                                                             
† Synthesis and characterization of new compounds, photochemical investigations and Molecular 

Modeling by Natascha Kuzmanovic. Whole-cell dose response experiments and luminescent ERK2 

activity assay by Nuška Tschammer (University of Erlangen). Morten Grøtli (University of 

Gothenburg) supervised the Molecular Docking and instructed the radiometric ERK2 activity assay at 

Millipore UK Ltd. Burkhard König supervised the project. 





  Towards Photoswitchable Kinase Inhibitors 
   

 37 

4.1 Introduction 

The detailed understanding how molecular mechanisms proceed during cell signal 

transduction remains an important topic of cell biology. Phosphorylation by protein kinases 

is one of the most frequent modes to regulate vital processes in the human body like gene 

expression, protein translation, cell cycle progression and apoptosis.[1] More than 500 

different protein kinases are encoded in the human genome.[2] As components of cellular 

cascade systems they mediate each other sequentially (cf. Figure 9), usually by transferring 

the γ-phosphate of adenosine triphosphate (ATP) covalently to serine, threonine or tyrosine 

hydroxides of their specific substrates. It has been assessed that malfunction of the kinases 

contributes to human diseases including obesity, diabetes, rheumatoid arthritis, 

neurodegenerative disorders and cancer.[2-4] Kinases are therefore one of the most 

important targets in drug discovery but the information on the exact mechanisms of 

molecular control is still limited.[3, 5] 

The extracellular-regulated kinase (ERK) pathway (Figure 9) plays a central role in cancer 

research as it controls the growth and survival of a broad spectrum of human tumors.[6] 

When growth factors bind extracellularly to a specific transmembrane receptor they launch 

signal transduction through the protein kinase cascade Ras-Raf-MEK-ERK. ERK occurs 

either as ERK1 or ERK2, which are closely related to each other (84% sequence identity) 

and share many if not all functions; they are therefore usually referred to as ERK1/2.[7] As 

pivot of this cascade, ERK1/2 activates transcription factors in the cell nucleus to initiate 

protein expression, cell proliferation, or apoptosis.[7] Inhibiting ERK1/2 thus allows for new 

anti-tumor treatments and several inhibitors are currently subjected to clinical trials.[8] 

However, deciphering the mechanisms of the ERK pathway continues to be an important 

and challenging task.[4, 7] 

 

Figure 9. The extracellular-regulated kinase (ERK) pathway.  



Chapter 2 
   

 38 

The development of remote-controllable, fast-acting and selective ERK1/2 inhibitors may 

provide a convenient tool to further investigate the dynamic operation and time-dependent 

parameters for signaling output. As outlined in Chapter 1, the regulation of biomolecules by 

light has gained a rapidly growing interest in science.[9-11] Most examples include 

azobenzene units due to easy synthetic access, high photostability and ultrafast kinetics. 

Exploiting their quick response nature, photoswitchable ion channel or receptor ligands 

were developed to reversibly control neuronal activity.[12-15] However, their performance is 

limited because they do not allow a complete photoconversion and the thermal cis to trans 

reisomerization is fast.[12] In contrast, photoswitchable molecular tools based on the 1,2-

dithienylethene (DTE) scaffold exhibit high photostationary states and thermal stability of 

both photoisomers in the dark,[16] which makes them ideal candidates for the light-

dependent control of rather slow biological processes such as enzymatic reactions or DNA 

hybridization.[17-24] 

            

Scheme 4. Light-induced switching of a DTE between its open isomer and closed isomer.  

Irradiation with UV or visible light, respectively, toggles DTEs between the open and the 

closed photoisomer (Scheme 4). Selective ATP competitive ERK1/2 inhibitors (Figure 10) 

and the open isomer share similar shapes which correlate in size and electronics.[25-26] 

Equipped with suitable hydrogen bonding motifs the DTE may join the ATP binding site of 

the kinase and thereby inhibit enzyme activity. As the conformation of the respective closed 

isomer is far more rigid (Scheme 4), its affinity to the catalytic center is expected to be 

reduced, which in turn enhances kinase activity. Hence we aimed to develop DTE based 

ERK1/2 inhibitors, which toggle kinase activity upon irradiation with light. Our desired 

photoswitchable kinase inhibitors should allow for the non-invasive, reversible remote-

control of cellular kinase function in real time and thereby provide a convenient tool to 

deepen the understanding of cellular signal mechanisms. Based on these studies new 

methods of anticancer therapy could be established. 

 

Figure 10. Selective ERK2 inhibitors with IC50 values in brackets.[25-26]  
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4.2 Results and Discussion 

4.2.1 Molecular Docking 

In order to design photoswitchable kinase inhibitors, suitable DTE based structures were 

virtually screened. The binding mode and affinity between small-molecule ligands and the 

kinase receptor were calculated by Molecular Docking.[27] ERK2 (PDB ID 1TVO) was used as 

receptor grid and the library of ligands consisted of open and closed isomer 

dithienylcyclopentene derivatives with different short hydrogen bonding motifs at their 

thiophene moieties. Hits were identified by scoring function and chosen manually, whereby 

the binding mode and affinity of the respective open/-closed photoisomer pairs must differ 

significantly. The compounds drawn in Figure 11 adopted similar positions as the co-

crystallized ligand FR180204 in the catalytic site (Figure 12). Concurrently, their particular 

ring-closed counterparts were randomly distributed as result of weak interactions with the 

designed grid area of the enzyme. 

 

Figure 11. DTEs 1-7 were identified as hits after virtual screening with ERK2 receptor (PDB ID 1TVO). 

Their respective ring-closed isomers afforded significantly lower docking scores. 

 

Figure 12. Binding mode of the ring-open DTE 3 (green) in the ATP binding pocket of the target 

kinase ERK2. Left: four hydrogen bonds to the protein are indicated in yellow. Right: superposition of 

3 with reference ligand FR180204 (grey), the protein surface is shown as grey shadows.  
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4.2.2 Synthesis 

The desired photoswitchable kinase inhibitors were prepared via bischloro-DTE 11 and 

chloro-phenyl-DTE 12 according to literature known procedures (Scheme 5).[28-29] Starting 

with chlorination of 2-methyl-thiophene 8, subsequent Friedel-Crafts acylation followed by 

McMurry coupling led to compound 11 in moderate to good yields (58-79%). Further 

modification to obtain compound 12 was accomplished by Suzuki coupling (64% yield). 

 

Scheme 5. Synthesis of the bischloro-DTE 11 and chloro-phenyl-DTE 12 as precursors for further 

derivatization. 

In order to afford carboxy-DTEs 1 and 5, the chlorine atoms of compounds 11 and 12 were 

transformed into carboxylic acids via lithium halide exchange with n-butyl lithium, followed 

by treating with gaseous carbon dioxide and acidic work-up (Scheme 6). Reactions achieved 

very good yields of 98 to 99%. Acidic esterification of 1 and 5 in methanol led to methyl 

ester-DTEs 2 and 6 in excellent yields of 94 to 96%. DTEs 1 and 5 were treated with thionyl 

chloride and subsequently converted into either amide or methyl ester residues using 

gaseous ammonia in anhydrous THF to yield DTEs 3 and 7 (61-71%) or a solution of 

ammonia in methanol to access DTE 4 (35%). 

 

Scheme 6. Synthetic pathway to access the target DTEs 1-7. 
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4.2.3 Photochromism 

The photochemical properties of the target DTEs 1-7 were spectrophotometrically studied. 

All title compounds exhibited excellent photochromic behavior in methanol solutions. 

Figure 13 shows exemplarily the UV/Vis absorption spectra evolution of compound 4 upon 

irradiation with 312 nm light in periods of 6 s. The absorption band at 260 nm decreases 

and two new maxima arise at around 355 and 525 nm, which results from the ring-closed 

isomer formation, and turns the initially colorless solution pink (Figure 13). The 

photostationary states (PS) are reached after 36 to 72 s of UV irradiation (Table 4, appendix 

Figure A1). Exposure to visible light (> 420 nm) induces the reopening, which is usually 

complete after 15 min and can be observed by decoloration and return to the original 

spectrum. 

 

 

Figure 13. Light-induced interconversion of compound 4 between its open and closed isomer and 

its UV/Vis absorption spectra evolution (50 µM in MeOH) upon irradiation with 312 nm light; arrows 

indicate the changes of the absorption maxima with irradiation periods of 6 s; the colors of the 

respective solutions are depicted. 

The cycle performance of the title compounds 1-7 was studied by alternately irradiation 

with 312 nm and greater than 420 nm light. Figure 14 depicts the photostability of DTE 4 

with a high fatigue resistance of 91% after eight ring-closing/-opening cycles. The spectra 

for DTEs 1-3 and 5-7 are included in the appendix in Figure A2 with moderate to good 

fatigue resistance rates ranging from 62 to 83% (Table 4). 
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Figure 14. Cycle performance of compound 4. Changes in absorption at 525 nm were measured 

during an alternated irradiation of the inhibitor solution (50 µM in MeOH) with 312 nm light for 60 s 

and greater than 420 nm light for 15 min. 

Table 4 summarizes the photochemical properties of the target DTEs 1-7 including the time 

of UV irradiation to reach the PS (tPS), the fatigue resistance after recording eight ring-

closing/-opening cycles, and the thermal stability of the closed photoisomers. We could not 

observe any consistent correlation between substitution pattern and the examined 

parameters. 

Table 4. Photochemical properties of the target DTEs 1-7.  

Compound tPS [s] 
Fatigue 

resistance[a] [%] 

Thermal 

stability[b] [%] 

1 54 75 37 

2 66 83 46 

3 72 80 31 

4 42 91 36 

5 54 79 52 

6 60 66 77 

7 36 62 48 

[a] after 8 cycles, [b] after storage in 10 mM DMSO solutions for 6 months at -20 °C in the dark. 
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4.2.4 Biological Test Results 

Whole-cell dose response experiments. 

To study the inhibitory activity of the photoswitchable kinase inhibitors 1-7 a whole-cell 

reporter gene assay was performed.[30] Thereby, the ERK1/2 activity of HEK cells was 

detected at distinct amounts of inhibitor to generate dose response curves. Initially, 

neurotensin stimulates the neurotensin receptor 1 to launch the phosphorylation cascade, 

which activates ERK1/2 further downstream. Activated ERK1/2 in turn phosphorylates the 

transcription factor Elk1, which leads to accumulation of luciferase in the cell. The 

luminescence signal is thus proportional to ERK1/2 activation and a reduced luminescence 

indicates the inhibition of ERK1/2. The inhibitory activity of DTEs 1-7 against ERK1/2 was 

examined as open and closed isomers separately. We irradiated the photoswitches prior to 

incubation of the cells. The experiments were performed in the dark and the ERK2 inhibitor 

FR180204 was used as reference.  

 

Figure 15. Inhibition curves of 4 in its open (blue) and closed (red) isomer. The reference inhibitor 

FR180204 is marked in grey.  

We observed that all compounds were sufficiently transported into the cells as determined 

by UV/Vis absorption measurements of the cell lysate after centrifugation. Figure 15 shows 

exemplarily the inhibition curves of DTE 4 in its open (IC50 13 µM) and closed isomer 

(IC50 n.a.). Indeed, the design concept seems viable regarding the distinct performances of 

the two isoforms. Table 5 summarizes the test results for all inhibitors 1-7 and the 

particular dose response curves for DTEs 1-3 and 5-7 are included in the appendix in Figure 

A3. The open isomer compounds of DTEs 1-4 and 7 achieved inhibition constants in the 

micromolar range, while only DTE 2, 4 and 7 reached the efficacy of the reference inhibitor. 

Their respective closed isomers were solely active at the highest concentration, which may 
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indicate cytotoxity. However, we could not observe any toxic effects of the ring-open 

isomers. DTEs 5 and 6 exhibited not enough activity at the concentrations applied. Taken 

together, these results confirm efficient photoswitchable activities of the designed 

molecules 2, 4 and 7 within the ERK cascade in HEK cells. Nevertheless, cells contain a 

complex machinery of various factors, which could response to interaction with the DTEs 

and generate the observed signal. We hence performed further in vitro investigations to 

support the observed findings. 

Table 5. Test results of whole-cell dose response experiments. The open-isomers of 1-7 were tested 

three times in triplicate, and their respective closed isomers two times in triplicate for each 

concentration. 

 
open closed 

Compound 
IC50 

[M] 
pIC50  SE Efficacy [%] 

IC50 

[M] 
pIC50  SE Efficacy [%] 

FR180204 3.8 5.42  0.02 100 - - - 

1 4.9 5.31  0.33 17  4 2.3 5.64  0.46 16  3 

2 20 4.69  0.06 99  2 41 4.39  0.07 94  2 

3 5.9 5.23  0.43 14  4 > 50 < 4.30 60 (@ 50 M) 

4 13 4.89  0.05 96  2 n.a. n.a. n.a. 

5 > 50 < 4.30 45 (@ 50 M) n.a. n.a. n.a. 

6 > 50 < 4.30 45 (@ 50 M) n.a. n.a. n.a. 

7 16 4.79  0.07 100  2 37 4.43  0.10 98  2 

 

 

Radiometric kinase activity assay 

To approve the photoswitchable kinase inhibition, a radiometric in vitro ERK2 activity assay 

was employed at  Millipore UK Ltd.[31] DTE 4 was exemplarily prepared as ring-open or ring-

closed forms, which were incubated with isolated ERK2, radioactive γ-33P-ATP and a 

peptidic substrate in the dark. The signal is detected by scintillation counting of the 

resulting radioactive peptide and correlates positively with kinase activity. Indeed, the test 

results confirmed inhibitory activity against ERK2 (Figure 16). Surprisingly, no significant 

difference in the behavior of the two isoforms could be observed (Figure 16). Insufficient 
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geometric diversity of the photoisomers could either be the reason or the two curves could 

be caused by the same molecule as result of reisomerization. The latter is presumably the 

case since the observed IC50 of 28 µM for both isoforms matches to the open isomer data of 

the whole-cell approach. At a first glance, the thermal reopening outlined in Table 4 may be 

responsible, but considering the interactions in the enzyme’s active site, enzymatic 

reisomerization is also imaginable. 

   

Figure 16. Inhibition curves of DTE 4 in its open (left) and closed (right) photoisomer against ERK2. 

 

Enzymatic reisomerization studies 

In order to exclude the influence of the enzyme on the ring-opening reaction, ERK2 

(0.12 µM, 0.5 µg/mL in HEPES buffer, pH 7.50) was incubated with the closed photoisomers 

of compound 4 (50 µM) and the changes were followed photometrically over 16 h. To 

quantify unspecific protein interactions the inhibitor’s behavior was additionally studied in 

presence of BSA (75 nM, 0.5 µg/mL), a serum albumin which usually acts as standard. 

 

Figure 17. The influence of the proteins ERK2 and BSA on the ring-closing/-opening reaction of DTE 4 

was photometrically recorded over 16 h. 

ERK2 vs. DTE 4 open ERK2 vs. DTE 4 closed 
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In comparison with buffer environment, the absorbance of the ERK2 inhibitor 4 decreased 

slightly faster in presence of a protein. We could not observe any proof for specific 

interaction with ERK2 since incubation of BSA resulted in comparable curves (Figure 17). 

The influence of proteins on the equilibrium of the photoisomers is negligibly slow 

compared to kinase activity under assay conditions. Thus we could not assess any 

correlation between the enzyme activity test results and enzymatic reisomerization. 

Consequently, the thermal reopening (Table 4) of the closed forms is considered to be 

responsible for the observed trend. To generate reliable results, the photoswitch probes 

require fresh preparation by illumination with the respective light source. 

 

Luminescent kinase activity assay 

To circumvent the storage and transport duration of the externally employed radiometric 

assay, a commercially available luminescent kinase activity assay was analogously 

performed using freshly prepared photoswitch solutions.[32] Isolated ERK2 was incubated 

with the open and closed forms of the DTEs 1-7 straight after irradiation. The assay 

measures the amount of ADP formed by the kinase reaction. ADP is subsequently converted 

to ATP, which in turn generates light using the luciferase/luciferin reaction. Thus, the 

luminescent signal correlates positively with the ADP amount and kinase activity. The 

resulting curves exhibit a sigmoidal shape, but surprisingly with increasing output signal 

(Figure 18), which could not be explained so far. Based on these studies the inhibitory 

effects of the whole-cell approach could not be confirmed against isolated ERK2. Given the 

vast numbers of enzymes, receptors and other participants involved in the ERK pathway, it 

remains challenging to identify the anchor point, where and how the designed DTEs 

interfere in cell signaling. 

 

Figure 18. Test results of the in vitro luminescent ERK2 kinase activity assay.  

FR180204 

 

  DTEs 1-7 
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4.3 Conclusion 

In summary, we have developed a series of photochromic dithienylcyclopentenes which 

showed light-dependent cell signaling inhibition addressing the extracellular-regulated 

kinase pathway. The structural design of the envisaged ATP competitive kinase inhibitors 

was derived from Molecular Docking calculations using ERK2 as target protein. Several 

suitable inhibitors were synthesized and photochemically studied exhibiting fast 

photoconversion, moderate to high fatigue resistance rates, but only moderate thermal 

stability. To generate reliable results, it was thus absolutely essential to irradiate the 

photoswitch probes straight before testing.  Their inhibitory activity was investigated by 

different enzyme activity assays. A commercially available whole-cell assay provided 

inhibition constants in the micromolar range for the ring-open photoisomers of several 

DTEs. After photoisomerization by UV light, their inhibitory activity dropped and cytotoxic 

effects were observed. Unfavorably, we could not confirm these findings by incubation of 

isolated ERK2. The affected site, where our inhibitors interfere in the cellular ERK pathway, 

was not identified yet. In order to gain further insight, their activity needs to be investigated 

separately towards all tiers of the ERK cascade. As ERK1/2 plays the key role in the ERK 

pathway, it remains a pivotal element of cancer research to identify the enzyme’s exact 

functioning in the complex cellular phosphorylation networks.  
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4.4 Experimental Materials and Methods 

4.4.1 Synthesis and Characterization of New Compounds 

General. Commercial reagents and starting materials were purchased from Acros Organics, 

Alpha-Aesar, Fluka, Sigma Aldrich or VWR and used without further purification. Solvents 

were used in p.a. quality and dried according to common procedures, if necessary. 

Compounds 1, 2, 5, 11 and 12 were prepared according to previously reported 

procedures.[28-29] Flash column chromatography was performed on a Biotage Isolera One 

automated flash purification system with UV/Vis detector using Sigma Aldrich MN silica gel 

60 M (40-63 µm, 230-400 grain diameter) for normal phase or pre-packed Biotage SNAP 

cartridges (KP-C18-HS) for reversed phase chromatography. Reaction monitoring via TLC 

was performed on alumina plates coated with silica gel (Merck silica gel 60 F254, 0.2 mm). 

Melting points were determined using a Stanford Research Systems OptiMelt MPA 100. NMR 

spectra were recorded on Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz) and Bruker 

Avance 400 (1H 400.13 MHz, 13C 100.61 MHz) instruments. The spectra are referenced 

against the NMR-solvent, chemical shifts δ are reported in ppm and coupling constants J are 

given in Hz. Resonance multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), m 

(multiplet) and b (broad). Carbon NMR signals are reported using DEPT 135 spectra with 

(+) for primary/tertiary, (−) for secondary and (q) for quaternary carbons. Mass spectra 

were recorded on Finnigan MAT95 (EI-MS), Agilent Q-TOF 6540 UHD (ESI-MS, APCI-MS), 

Finnigan MAT SSQ 710 A (EI-MS, CI-MS) or ThermoQuest Finnigan TSQ 7000 (ES-MS, 

APCI-MS) spectrometer. UV/Vis absorption spectroscopy was performed using a Varian 

Cary BIO 50 UV/Vis/NIR spectrometer. IR-spectra were recorded with a Specac Golden Gate 

Diamond Single Reflection ATR System in a Bio-Rad FT-IR-Spectrometer Excalibur FTS 

3000. Signal intensity is abbreviated with s = strong, m = medium and w = weak.  

Photochemistry. Standard hand-held lamps (Herolab, 312 nm, 6 W) were used for 

visualizing TLC plates and to carry out the ring-closure reactions at 312 nm. The ring-

opening reactions were performed with the light of a 200 W tungsten light bulb which was 

passed through a 420 nm cut-off filter to eliminate higher energy light. The power of the 

light is given based on the specifications supplied by the company when the lamps were 

purchased. A light detector was not used to measure the intensity during the irradiation 

experiments. 
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4,4'-(Cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-2-methyl ester) (2). Biscarboxy 

dithienylcyclopentene 1 (500 mg, 1.43 mmol) was dissolved in methanol (150 mL) and 

eight drops of HCl (conc.) were added. The brown solution was heated to 85 °C for 4 days. 

After evaporating the solvent in vacuo the crude product was purified by flash column 

chromatography (PE/EtOAc 1:2) yielding 505 mg (1.34 mmol, 94%) of compound 2 as 

brown oil; 1H-NMR (400 MHz, CDCl3): δ = 1.90 (6H, s, 2 thiophene-CH3), 2.05 (2H, q, J = 

7.5 Hz, cyclopentene-CH2), 2.77 (4H, t, J = 7.5 Hz, 2 cyclopentene-CH2), 3.84 (6H, s, 

2 COOCH3), 7.50 (2H, s, thiophene-H); 13C-NMR (100 MHz, CDCl3): δ = 14.8 (+), 22.8 (–), 

38.6 (–), 52.0 (+), 129.2 (q), 134.4 (+), 134.7 (q), 136.6 (q), 142.8 (q), 162.6 (q); UV/Vis: 

open isomer: max = 260 nm, closed isomer: max = 355, 540 nm; MS (EI): m/z (%) = 

84.0 (100), 376.1 (26, M+·); HR-MS (ESI): calcd. for C19H20O4S2 377.0876; found 377.0870. 

 

4,4'-(Cyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-2-carboxamide) (3). Biscarboxy 

dithienylcyclopentene 1 (250 mg, 0.72 mmol) was dissolved in dry THF (50 mL) under 

nitrogen atmosphere and treated with thionyl chloride (0.21 mL, 2.87 mmol) and 4 drops of 

DMF. After stirring the reaction mixture for 20 h at room temperature under nitrogen 

atmosphere the solvent and thionyl chloride were removed in vacuo. The brown residue 

was dissolved in dry THF (50 mL) and gaseous ammonia was bubbled through for 15 min by 

precipitation of NH4Cl which was removed by filtration. After removing the solvent under 

reduced pressure the crude product was intensively washed with chloroform and water 

over a filter until the filtrate turned colorless. Dissolving the filtration residue in acetone 

and removing the solvent under high vacuum yielded 51 mg (0.15 mmol, 21%) of compound 

3 as colorless solid; m.p.: 223 °C; 1H-NMR (400 MHz, acetone-d6): δ = 1.94 (6H, s, 2 CH3), 

2.10 – 2.03 (2H, m, cyclopentene-CH2), 2.81 (4H, t, J = 7.5 Hz, 2 cyclopentene-CH2), 7.50 (2H, 

s, 2 thiophene-H); 13C-NMR (100 MHz, acetone-d6): δ = 14.7 (+), 23.5 (–), 39.1 (–), 

130.4 (+), 135.6 (q), 136.8 (q), 137.3 (q), 140.8 (q), 163.7 (q); UV/Vis: open isomer: max = 

260 nm, closed isomer: max = 350, 525 nm; MS (EI): m/z (%) = 693.1 (100) [2MH+], 

346.9 (60) [MH+], 363.9 (50) [MNH4
+]; HR-MS (ESI): calcd. for C17H18N2O2S2 347.0882; 

found 347.0877. 
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Methyl 4-(2-(5-carbamoyl-2-methylthiophen-3-yl)cyclopent-1-enyl)-5-methyl-thio- 

phene-2-carboxylate (4). Bismethylester dithienylcyclopentene 2 (100 mg, 0.27 mmol) 

was dissolved in a solution of ammonia in methanol (7 N, 40 mL) in an autoclave vessel. 

After sealing in an autoclave, the brown solution was heated to 110 °C for 17 h generating 

pressure of 5 bar. The solvent and the ammonia were removed by nitrogen stream. The 

crude product was purified by flash column chromatography (PE/EtOAc 1:2) yielding 38 mg 

(0.11 mmol, 39%) of compound 4 as brown foam; 1H-NMR (300 MHz, CDCl3): δ = 1.91 (3H, 

s, thiophene-CH3), 1.94 (3H, s, thiophene-CH3), 2.05 (2H, p, J = 7.5 Hz, cyclopentene-CH2), 

2.77 (4H, t, J = 7.5 Hz, 2 cyclopentene-CH2), 3.83 (3H, s COOCH3),  5.93 (2H, bs, CONH2), 7.22 

(1H, s, thiophene-H), 7.50 (1H, s, thiophene-H); 13C-NMR (75 MHz, CDCl3): δ = 14.8 (+), 

22.9 (–), 38.5 (–), 52.0 (+), 129.2 (q), 130.6 (+), 133.2 (q), 134.5 (+), 134.8 (q), 136.5 (q), 

141.2 (q), 142.9 (q), 162.6 (q), 162.8 (q); UV/Vis: open isomer: max = 260 nm, closed 

isomer: max = 355, 540 nm; MS (EI): m/z (%) = 361.1 (100, M+·), 301.1 (97, M+·-COOMe); 

HR-MS (ESI): calcd. for C18H19NO3S2 362.0879; found 362.0875. 

 

Methyl 5-methyl-4-(2-(2-methyl-5-phenylthiophen-3-yl)cyclopent-1-en-1-yl)thio- 

phene-2-carboxylate (6). Monocarboxy-DTE 5 (100 mg, 0.26 mmol) was dissolved in 

methanol (25 mL) and treated with 3 drops of HCl (conc.). It was heated to reflux for 72 h. 

The solvent was removed at the rotary evaporator and the crude mixture was purified by 

flash column chromatography (PE/EtOAc 19:1) yielding 98 mg (0.25 mmol, 96%) of 

compound 6 as red oil; 1H-NMR (400 MHz, CDCl3): δ = 1.94 (3H, s, CH3), 1.95 (3H, s, CH3), 

2.13 – 2.03 (2H, m, cyclopentene-CH2), 2.89-2.75 (4H, m, 2 cyclopentene-CH2), 3.85 (3H, s, 

C(O)OCH3), 6.97 (1H, s, thiophene-H), 7.23 (1H, t, J = 7.4 Hz, phenyl-H), 7.33 (2H, t, J = 7.6 Hz, 

2 phenyl-H), 7.48 (2H, d, J = 8.2 Hz, 2 phenyl-H), 7.58 (1H, s, thiophene-H); 13C-NMR: 

(100 MHz, CDCl3): δ = 14.4 (+), 14.8 (+), 22.9 (–), 38.6 (–), 52.0 (+), 123.7 (+), 125.3 (+), 

127.1 (+), 128.8 (+), 128.9 (q), 133.6 (q), 134.3 (q), 134.4 (q), 134.7 (+), 135.8 (q), 136.3 (q), 

137.0 (q), 140.0 (q), 143.0 (q), 162.7 (q); UV/Vis: open isomer: max = 265, 295 nm, closed 

isomer: max = 255, 295, 355, 540 nm; MS (ESI): m/z (%) = 395.1 (100, MH+·); HR-MS (ESI): 

calcd. for C23H22O2S2 395.1134; found 395.1133. 
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5-Methyl-4-(2-(2-methyl-5-phenylthiophen-3-yl)cyclopent-1-en-1-yl)thiophene-2-

carboxamide (7). Monocarboxy-DTE 5 (100 mg, 0.26 mmol) was dissolved in dry THF 

(25 mL) under nitrogen atmosphere and treated with thionyl chloride (38 µL, 0.53 mmol) 

and 2 drops of DMF. After stirring the reaction mixture for 17 h at room temperature under 

nitrogen atmosphere the solvent and thionyl chloride were removed in vacuo. The residual 

blue oil was dissolved in dry THF (25 mL) and gaseous ammonia was bubbled through for 

15 min by precipitation of NH4Cl and a color change of the solution from blue to purple. It 

was diluted with diethyl ether (10 mL), washed with water (15 mL) and the phases 

separated. The aqueous phase was extracted twice with diethyl ether (10 mL) and the 

combined organic phases dried over MgSO4 and the solvent removed at the rotary 

evaporator. Purification was performed by flash column chromatography (PE/acetone 4:1) 

yielding 66 mg (0.17 mmol, 67%) of compound 7 as purple foam; 1H-NMR: (400 MHz, 

CDCl3): δ = 1.95 (3H, s, CH3), 2.02 (3H, s, CH3), 2.14 – 2.04 (2H, m, cyclopentene-CH2), 2.87 – 

2.73 (4H, m, cyclopentene-CH2), 5.68 (2H, bs, C(O)NH2), 6.98 (1H, s, thiophene-H), 7.25 – 

7.20 (1H, m, phenyl-H), 7.25 (1H, s, thiophene-H), 7.34 (2H, t, J = 7.6 Hz, 2 phenyl-H), 7.48 

(2H, d, J = 8.2 Hz, 2 phenyl-H); 13C-NMR: (100 MHz, CDCl3): δ = 14.4 (+), 14.9 (+), 23.0 (–), 

38.4 (–), 38.5 (–), 123.7 (+), 125.3 (+), 127.1 (+), 128.9 (+), 130.8 (+), 132.8 (q), 133.7 (q), 

134.3 (q), 134.5 (q), 135.9 (q), 136.3 (q), 136.9 (q), 140.1 (q), 142.3 (q), 163.7 (q); UV/Vis: 

open isomer: max = 265, 290 nm, closed isomer: max = 255, 295, 355, 525 nm; MS (ESI): 

m/z (%) = 380.1 (100, MH+·), 759.2 (67, 2 MH+·); HR-MS (ESI): calcd. for C22H21NOS2 

380.1137; found 380.1138. 

 

4.4.2 Molecular Docking 

The crystal structure of ERK2 (PDB code 1TVO) with a co-crystallized receptor was 

retrieved from RCSB protein data bank and used as target structure for docking studies. The 

Protein Preparation Wizard of MacroModel (Maestro v. 9.0) was applied to prepare the 

enzyme for Glide calculations, which were performed by Glide XP (Maestro v. 9.0) to 

generate the receptor grid. Energy minimizations (Polak-Ribiere conjugate gradient 

minimization, maximum of 5000 iterations) and conformational searches (systematic 

torsional sampling in water, maximum of 5000 steps) were provided by MacroModel for a 

series of DTE based derivatives. They were docked as ligands into the protein grid by 
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standard precision (SP) and extra precision (XP) modes with OPLS2005 as force field. The 

energy window for saving structures was set to 10 kJ/mol. 

 

4.4.3 Photochemical Investigations 

Photochemical syntheses of ring-closed isomers. Solutions of compounds 1-7 in MeOH 

(50 µM) were irradiated with a 312 nm lamp until complete conversion (36 s to 72 s) 

yielding pink solutions containing the ring-closed isomers. The changes in the UV/Vis 

absorption spectra are representatively shown for compound 4 in Figure 13 and for 

compounds 1-3 and 5-7 in the appendix in Figure A1. 

Fatigue resistance studies. In order to test the robustness of the photochromic systems, 

photochemical cycling studies were recorded for all switches (see Figure 14 and appendix, 

Figure A2). In each case, a solution of ring-open inhibitor in MeOH (50 µM) was alternately 

irradiated with 312 nm light for 60 s and with visible light for 15 min over eight cycles. The 

absorption change at 525 nm was recorded after each cycle and plotted against the cycle 

number. 

Thermal stability measurements: Absorption spectra were recorded in MeOH solutions 

(50 µM) in quartz cuvettes. Absorbances were recorded at 525 nm after storing the closed 

isomer compounds for 6 months at -20 °C in the dark and after subsequent UV irradiation 

for full photoconversion. The quotient of these two values gives the amount of closed 

isomer. 

 

4.4.4 Enzymatic Reisomerization with ERK2 

Purchased enzyme: ERK2/MAPK1, human recombinant, expressed in E.coli, untagged; 

41.76 kDa, 0.223 mg/mL, 296.000 pmol/mg x min (=> 17.76 nm/µg in 1 hour). DTE 4 was 

dissolved in DMSO (10 mM, 1 mL DMSO) and diluted 1:200 with buffer (50 mM HEPES, 

pH 7.50, 100 mM NaCl, 5 mM DTT, 20% glycerol) giving a final DTE concentration of 50 µM. 

Buffer solutions of BSA (75 nM, 0.5 µg/mL) and ERK2 (0.12 µM, 0.5 µg/mL) were prepared. 

ERK2, BSA or buffer was incubated with the DTEs as open and closed isomers, respectively, 

and the absorbance at 260 nm (max of open isomer) and 525 nm (max of closed isomer) 

recorded over 16 h with time intervals of 30 min. Pure Buffer, BSA and ERK2 solutions were 

used to quantify the background absorption. Measurements were performed in triplicates in 

a 96-well Greiner flat bottom microtiter plate.   
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CHAPTER 3 

 

 

5 SYNTHESIS OF PHOTOCHROMIC DITHIENYLMALEIMIDE AMINO 

ACIDS‡ 

 

                                                             
‡ Design, synthesis, characterization and peptide coupling experiments of new compounds by 

Natascha Kuzmanovic. Optimization of synthesis protocols and photophysical investigations by 

Daniel Wutz. Burkhard König supervised the project. 
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5.1 Introduction 

Over the last decade photochromic molecules have increasingly been applied in biology to 

alter conformations or switch functions by light.[1-3] Photoinduced activation or deactivation 

of biomolecules, particularly with visible light, provides a high spatial and temporal 

resolution and is therefore a convenient method for investigating cellular processes or 

pathogeneses.[4] Two main concepts are applied: the irreversible release of caged 

compounds bearing photocleavable protecting groups[5] or the reversible switching 

between two structurally different photoisomers[6] (photoswitches) by light of certain 

wavelengths. In the latter field, most structures are based on azobenzene units due to easy 

synthetic access, high photostability and ultrafast kinetics.[7] The light-controlled regulation 

of neuronal activity by azobenzene containing ligands for ion channels and receptors were 

recently reported.[8-10] However, the photophysical properties of azobenzenes do not allow a 

complete photoisomerization in the photostationary state and in many cases the cis to trans 

thermal re-isomerization is fast.[7] Photochromic compounds based on the 

1,2-dithienylethene (DTE) scaffold show nearly quantitative photochemical conversion and 

both photoisomers are thermally stable in the dark.[11] DTEs have been used to control 

enzyme activity,[12-15] Watson-Crick base pairing,[16-18] and even the agility of a living 

organism.[19] Irradiation with UV or visible light, respectively, toggles DTEs between the 

open and the closed photoisomer, which differ in conformational flexibility and electronic 

conjugation (Figure 19). Despite their interesting photophysical properties the application 

of DTEs as photoswitches in life science is still limited. The synthesis, particular of non-

symmetric DTEs is laborious[18, 20] and the water-solubility of the typically used hydrophobic 

diaryl (perfluoro-)cyclopentene core is limited. Hence, we decided to develop a non-

symmetric dithienylmaleimide based amino acid, which could easily be incorporated in any 

peptide by solid phase peptide synthesis (SPPS). 

 

Figure 19. Photochemical interconversion of a DTE with cyclopentene, perfluoro-cyclopentene or 

maleimide ring structure. 

DTEs with a central maleimide unit have been reported that are efficiently prepared via 

Perkin condensation allowing non-symmetric substitution of the thiophene rings.[21] 
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Compared to diarylcyclopentenes, the diarylmaleimides exhibit a higher hydrophilicity and 

hence offer a better water solubility. Meanwhile the diarylmaleimide’s absorption maxima 

are shifted to higher wavelengths. The photoisomerization can thus be induced by light with 

lower energy reducing potential cell damage.[11]  oreover, the diarylmaleimides’ 

biocompatibility is known from bisindoylmaleimides, e.g. the arcyriarubins and 

arcyriaflavins with antibiotic activities against bacteria and fungi, and several other highly 

potent protein kinase inhibitors.[22-26] Therefore the dithienylmaleimide structure was 

selected for the synthesis of a photoswitchable amino acid. The building block, Alloc 

protected at the amino group and with free carboxylic acid, is readily incorporated in 

peptides by solid phase synthesis as illustrated in Figure 20. 

 

Figure 20. SPPS of the dithienylmaleimide amino acid 1 and natural amino acids (bowls). 
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5.2 Results and Discussion 

5.2.1 Synthesis 

To synthesize the amino acid functionalized dithienylmaleimide 2, we chose to form the 

maleimide core by Perkin condensation allowing us to independently equip the thiophene 

precursors 3 and 4 with the desired amino or carboxylic group, respectively (Scheme 7).[21, 

27-28] The glyoxylamide thiophene 3 carries the N-terminal amine via a methylene linker, 

which was necessary to introduce as all attempts to directly introduce the nitrogen atom at 

the thiophene failed.[29] Alloc was chosen as amino protecting group due to its stability 

against the applied conditions of further synthetic steps towards compound 2. Furthermore, 

deprotection/peptide coupling protocols for solid phase peptide synthesis (SPPS) with 

Alloc-protected amines are well established.[30-31] As counterpart, the diester thiophene 4 

bears the C-terminal carboxylic acid in 2-position and a second ester in 4-position. The 

latter forms the maleimide core and is thus fixed as methyl ester, which in turn restricts the 

choice of the C-terminal protective group as transesterification occurs during condensation. 

In particular, using a C-terminal ethyl ester led to a mixture of the ethyl and methyl ester as 

the condensation product (cf. Scheme A1 in the appendix). Consequently, we favoured the 

methyl ester as protecting group for the C-terminal carboxylic acid.  

 

Scheme 7. Perkin condensation of the N-terminal precursor 3 and C-terminal precursor 4 to access 

the dithienylmaleimide 2. 
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Scheme 8: Synthetic route for the preparation of the N-terminal precursor 3. 

The synthetic pathway to access the N-terminal precursor 3 is depicted in Scheme 8. To 

prepare the thiophene nitrile 7 bromination of 2-methyl thiophene 5 and subsequent 

Rosenmund-von Braun reaction were performed according to literature procedures.[32-33] 

Thereafter, reduction of the nitrile with lithium aluminium hydride followed by immediate 

protection with allyl chloroformate afforded carbamate 8 in good yield (66% for 2 steps). 

Using Fmoc chloride instead led to the respective Fmoc derivative, which was not only less 

efficient (38% yield) but also caused the formation of side products in the following Friedel-

Crafts acylation. In particular, we observed simultaneous acylation of the Fmoc fluorene 

system (cf. Scheme A2 in the appendix). Even though the Alloc group should not be as prone 

to acylation, the Friedel-Crafts acylation was still the most challenging step of the synthesis. 

We noticed that the yield of glyoxylester 9 critically depends on the sequence of the addition 

of reagents. Best results (49%) were obtained by mixing 8 and methyl chlorooxoacetate 

prior to adding aluminium chloride slowly in small portions. Otherwise, the allyl carbamate 

was cleaved and the resulting primary amine was competitively acylated yielding compound 

10 as main product (Figure 21). Additionally, quenching the reaction with saturated sodium 

hydrogen carbonate solution instead of neutral water suppressed the formation of 

compound 11 which is obtained by addition of hydrochloric acid to the allyl double bond 

(Figure 21). Obviously, the allyl carbamate is not as robust as expected towards the present 

acidic conditions.  

 

Figure 21: Undesired side products of the acylation reaction of carbamate 8. 



Synthesis of Photochromic Dithienylmaleimide Amino Acids 
   

 

 63 

The use of zinc(II) chloride or iron(III) chloride as milder Lewis acids did not afford the 

desired product. Finally, aminolysis with aqueous ammonia converted the glyoxylester 9 

into the desired N-terminal precursor 3 in 92% yield. All in all, we achieved moderate to 

high yields (49 to 92%) for the particular synthesis towards 3 resulting in an overall yield of 

22% for six steps. 

 

Scheme 9. Synthesis of the C-terminal precursor 4. 

The C-terminal precursor 4 was prepared by esterification of the methyl thiophene acid 12 

in presence of thionyl chloride followed by Friedel-Crafts acylation and final thallium 

trinitrate mediated oxidative rearrangement (Scheme 9).[34-35] All intermediates could be 

isolated in good to excellent yields (77 to 97%) with an overall yield of 68% for three steps. 

It is noteworthy that initial yields of around 40% for the Friedel-Crafts acylation 

significantly increased to 77% after removal of stabilizers and reactive decomposition 

products from the solvent chloroform prior to drying and distillation (cf. Experimental 

Section). 

The N-terminal precursor 3 and the C-terminal precursor 4 were combined by Perkin 

condensation (Scheme 7). In order to provide a photochromic amino acid with a free 

carboxylic group ready for SPPS, the methyl ester of 2 was cleaved (Scheme 10). Non-

hydrolytic ester cleavage was required to avoid maleimide hydrolysis (cf. Scheme A4 in the 

appendix), which was achieved using lithium iodide in a polar aprotic solvent.[36] The SN2 

fashion C-O bond cleavage is based on the coordination of the lithium cation as hard acid at 

the oxygen atom (pulling factor) and the nucleophilic attack of the soft iodide at the carbon 

atom (pushing factor).[37] A large excess of lithium iodide and reflux conditions were 

necessary to achieve moderate conversion. The yield significantly changed with the solvent 

(Table 6). Best results (35%) could be achieved in acetone, whereas the reaction mixture 

mainly consisted of starting material in most other solvents. A more efficient deprotection 

protocol needs to be developed. 



Chapter 3 
   

 

 64 

Table 6. Non-hydrolytic methyl ester deprotection of 2. 

Entry eq. LiI Solvent T [°C] Isolated yield[a] [%] 

1 3.0 EtOAc r.t. -- 

2 3.0 EtOAc reflux -- 

3 30 EtOAc reflux 26 

4 3.0 acetone reflux -- 

5 30 acetone reflux 35 

6 30 MeCN reflux -- 

7 30 DMSO 100 -- 

[a] If conversion was too low the product 1 was not isolated. 

 

5.2.2 Peptide Coupling 

 

 

Scheme 10. Non-hydrolytic cleavage of the methyl ester 2 and subsequent solid phase peptide 

synthesis to access the photochromic tripeptide 17. 

To explore the applicability of the title compound 1 in SPPS, we used Wang resin bound 

alanine and attached it by standard coupling protocol (Scheme 10). Subsequently, the Alloc 
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protecting group was catalytically removed through coordination to palladium(0) and 

nucleophilic attack of DABCO as allyl scavenger.[30] After another coupling/deprotection 

step with Fmoc alanine, the photochromic tripeptide 17 was released from the resin 

(Scheme 10) and identified by mass spectrometry. Currently, purification and complete 

characterization of 17 is in progress. 

 

5.2.3 Photochromism 

The dithienylmaleimide core structure can reversibly be toggled between a ring-open and 

ring-closed photoisomer (Figure 19). The photochemical properties of compounds 1 and 2 

were spectrophotometrically investigated. It is known that diarylmaleimides are not able to 

undergo photoisomerization in polar solvents due to a twisted intramolecular charge 

transfer (TICT).[38-39] However, the DTEs 1 and 2 showed excellent photochromic behavior 

in highly polar methanol (Figure 22 and Figure A4 in the appendix), which is in good 

accordance with the performance of other recently developed dithienylmaleimide 

derivatives.[21] This phenomenon can be explained by inductive and resonance effects of the 

substitution pattern on the aryl moieties.  

  

Figure 22: UV/Vis absorption spectra evolution of the dithienylmaleimide amino acid 1 (50 µM in 

MeOH) upon irradiation with 312 nm light; arrows indicate the changes of the absorption maxima 

with irradiation periods of 6 s. 

Upon irradiating a methanol solution of the ring-open form of compound 1 with UV light 

(312 nm), the absorption band at 250 nm immediately decreases. Simultaneously, new 

absorption maxima at 232 nm, 378 nm and 550 nm arise causing the color change from 

colorless to purple (Figure 22). Compared to the common DTE-cyclopentenes the 

absorption maxima are red shifted by approximately 25 nm.[11] The photostationary state 

was reached after 36 s of irradiation and the open form can be reobtained by irradiation 
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with visible light (> 420 nm) for 5 min. The photoswitchable amino acid 1 is stable over 

several closing/opening cycles (see Figure 23). 

 

Figure 23: Cycle performance of the dithienylmaleimide amino acid 1 (50 µM in MeOH). Changes 

in absorption at 554 nm were measured during an alternated irradiation with 312 nm light for 60 s 

and greater than 420 nm light for 5 min. 
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5.3 Conclusion 

We have developed an efficient synthesis of a photochromic dithienylmaleimide amino acid. 

The compound shows an increased hydrophilicity and water solubility compared to DTEs 

bearing a perfluorocyclopentene unit. Its absorption is bathochromically shifted and the 

irradiation with light of 312 nm and greater than 420 nm converts the open and closed 

photoisomers completely. As a protected amino acid the compound can conveniently be 

conjugated to biological molecules or incorporated in peptides by solid phase synthesis, as 

exemplarily demonstrated by coupling to alanine at the amino and carboxy function. 

Applications of the dithienylmaleimide amino acid in the photoregulation of peptide 

conformations or interactions can be envisaged.  
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5.4 Experimental Section 

5.4.1 General 

Commercial reagents and starting materials were purchased from Acros Organics, Alpha-

Aesar, Fluka, Sigma Aldrich or VWR and used without further purification. Solvents were 

used in p.a. quality and dried according to common procedures, if necessary. To purify the 

chloroform for Friedel-Crafts acylations, it was extracted with sulfuric acid (1 M), dried over 

calcium chloride, filtered through silica, subsequently refluxed with phosphorous pentoxide 

(5 – 10 g/L) and distilled under nitrogen atmosphere. Thienyl nitrile 7 and thienyl methyl 

ester 13 were prepared according to previously reported procedures.[33-34] Flash column 

chromatography was performed on a Biotage Isolera One automated flash purification 

system with UV/Vis detector using Sigma Aldrich MN silica gel 60 M (40-63 µm, 230-400 

grain diameter) for normal phase or pre-packed Biotage SNAP cartridges (KP-C18-HS) for 

reversed phase chromatography. Reaction monitoring via TLC was performed on alumina 

plates coated with silica gel (Merck silica gel 60 F254, 0.2 mm). Melting points were 

determined using a Stanford Research Systems OptiMelt MPA 100. NMR spectra were 

recorded on Bruker Avance 300 (1H 300.13 MHz, 13C 75.48 MHz) and Bruker Avance 400 

(1H 400.13 MHz, 13C 100.61 MHz) instruments. The spectra are referenced against the NMR-

solvent, chemical shifts δ are reported in ppm and coupling constants J are given in Hz. 

Resonance multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), m (multiplet) 

and b (broad). Carbon NMR signals are reported using DEPT 135 spectra with (+) for 

primary/tertiary, (−) for secondary and (q) for quaternary carbons. Mass spectra were 

recorded on Finnigan MAT95 (EI-MS), Agilent Q-TOF 6540 UHD (ESI-MS, APCI-MS), 

Finnigan MAT SSQ 710 A (EI-MS, CI-MS) or ThermoQuest Finnigan TSQ 7000 (ES-MS, APCI-

MS) spectrometer. UV/Vis absorption spectroscopy was performed using a Varian Cary BIO 

50 UV/Vis/NIR spectrometer. IR-spectra were recorded with a Specac Golden Gate Diamond 

Single Reflection ATR System in a Bio-Rad FT-IR-Spectrometer Excalibur FTS 3000. Signal 

intensity is abbreviated with s = strong, m = medium and w = weak. Standard hand-held 

lamps (Herolab, 312 nm, 6 W) were used for visualizing TLC plates and to carry out the ring-

closure reactions at 312 nm. The ring-opening reactions were performed with the light of a 

200 W tungsten light bulb which was passed through a 420 nm cut-off filter to eliminate 

higher energy light. The power of the light is given based on the specifications supplied by 

the company when the lamps were purchased. A light detector was not used to measure the 

intensity during the irradiation experiments. 
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5.4.2 New Compounds 

 

4-(4-(5-((((Allyloxy)carbonyl)amino)methyl)-2-methylthiophen-3-yl)-2,5-dioxo-2,5-

dihydro-1H-pyrrol-3-yl)-5-methylthiophene-2-carboxylic acid (1): Compound 2 

(40 mg, 0.09 mmol, 1.0 eq.) was dissolved in acetone (10 mL) and LiI (350 mg, 2.60 mmol, 

30 eq.) was added. The mixture was heated to 100 °C overnight. After cooling to room 

temperature it was quenched with 1 M HCl (5 mL) and diluted with CH2Cl2 (5 mL). The 

phases were separated and the aqueous phase was extracted with CH2Cl2 (3 x 5 mL). The 

combined organic phases were dried over sodium sulfate and the solvent was removed at 

the rotary evaporator. Automated reversed phase flash column chromatography 

(MeCN/H2O with 0.05% TFA, 3 - 100% MeCN) yielded compound 1 (14 mg, 0.03 mmol, 

35%) as yellow foam; Rf: 0.04 (PE/EtOAc : 1/1); 1H-NMR (300 MHz, CD3CN): δ = 1.93 (3H, 

s, thiophene-CH3), 1.97 (3H, s, thiophene-CH3), 4.33 (2H, d, J = 6.3 Hz, thiophene-CH2NH), 

4.52 (2H, d, J = 5.3 Hz, CH2=CHCH2O), 5.18 (1H, dd, J = 10.5, 1.4 Hz, CH2=CHCH2), 5.27 (1H, 

dd, J = 17.3, 1.6 Hz, CH2=CHCH2), 5.74 – 6.05 (1H, m, CH2=CHCH2), 6.14 (1H, bs, CH2NHCO), 

6.79 (1H, s, thiophene-H), 7.60 (1H, s, thiophene-H), 8.80 (1H, bs, COOH); 13C-NMR (75 MHz, 

CD3CN): δ = 14.7 (+), 15.1 (+), 40.0 (−), 65.9 (−), 117.4 (−), 127.2 (q), 127.4 (+), 129.0 (q), 

131.3 (q), 134.0 (q), 134.3 (+), 136.0 (+), 136.1 (q), 141.1 (q), 141.7 (q), 149.5 (q), 157.0 (q), 

162.8 (q), 171.5 (q); IR  ̃ [cm-1]: 2926 (w), 1981 (w), 1769 (w), 1709 (s), 1544 (m), 

1459 (m), 1344 (m), 1246 (m), 1185 (m), 1150 (m), 1049 (w), 991 (m), 849 (w), 762 (m); 

UV/Vis (50 µM in MeOH): open isomer: max = 250 nm; closed isomer: max = 232 nm, 

378 nm, 550 nm; MS (ESI): m/z (%) = 346.0 (100, [M-AllocNH]+), 447.1 (60, MH+); HR-MS 

(ESI): calcd. for C20H18N2O6S2 (M+H)+, m/z = 447.0679; found 447.0676. 

 

Methyl 4-(4-(5-((((allyloxy)carbonyl)amino)methyl)-2-methyl-thiophen-3-yl)-2,5-

dioxo-2,5-dihydro-1H-pyrrol-3-yl)-5-methylthiophene-2-carboxylate (2): KOtBu (1 M 

in THF, 0.12 mL, 0.12 mmol, 1.2 eq.) was added to a solution of glyoxylamide 3 (28 mg, 

0.10 mmol, 1.0 eq.) in dry THF (1 mL) at 0 °C under nitrogen atmosphere. After stirring for 

90 min at 0 °C, diester 4 (27 mg, 0.12 mmol, 1.2 eq.) in THF (0.5 mL) was added at 0 °C and 

stirred for 24 h at room temperature. Then the reaction was heated to reflux for 1 h, 
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quenched with 1 M HCl solution (3 mL) and diluted with EtOAc (5 mL). The organic phase 

was washed with water (2 x 5 mL), brine (5 mL) and dried over MgSO4. The solvent was 

removed under reduced pressure and purification of the crude product by automated 

reversed phase flash column chromatography (H2O/EtOH, 20% - 45% EtOH) yielded 2 

(53 mg, 0.05 mmol, 50%) as yellow foam; Rf: 0.20 (PE/EtOAc : 2/1); 1H-NMR (400 MHz, 

CDCl3): δ = 1.90 (3H, s, thiophene-CH3); 1.98 (3H, s, thiophene-CH3), 3.87 (1H, s, OCH3), 4.45 

(2H, d, J = 6.0 Hz, thiophene-CH2NH), 4.60 (2H, d, J = 4.9 Hz, CH2=CHCH2O), 5.13 – 5.27 (2H, 

m, CH2=CHCH2 and CH2NHCO), 5.31 (1H, dd, J = 17.2, 1.2 Hz, CH2=CHCH2), 5.92 (1H, ddt, 

J = 16.2, 10.8, 5.5 Hz, CH2=CHCH2), 6.90 (1H, s, thiophene-H), 7.74 (1H, s, thiophene-H), 8.30 

(1H, bs, CONHCO); 13C-NMR (101 MHz, CDCl3): δ = 15.0 (+), 15.3 (+), 39.9 (−), 52.3 (+), 

65.9 (−), 117.9 (−), 125.8 (q), 126.7 (+), 127.5 (q), 130.9 (q), 132.7 (+), 134.8 (q), 134.9 (+), 

139.4 (q), 142.1 (q), 148.6 (q), 156.0 (q), 162.1 (q), 170.0 (q), 170.2 (q); IR  ̃ [cm-1]: 

3289 (w), 3070 (w), 2952 (w), 1703 (s), 1540 (m), 1458 (w), 1339 (m), 1248 (m), 994 (w), 

909 (m), 727 (m); UV/Vis (50 µM in MeOH): open isomer: max = 250 nm; closed isomer: 

max = 232 nm, 378 nm, 550 nm; MS (ESI): m/z (%) = 461.1 (100, MH+), 360.0 (98, 

[M-AllocNH]+), 483.1 (26), 519.1 (25), 462.1 (24), 571.3 (21), 361.0 (21), 270.1 (21); HR-MS 

(ESI): calcd. for C21H21N2O6S2 (M+H)+, m/z = 461.0838; found 461.0386. 

 

Allyl ((4-(2-amino-2-oxoacetyl)-5-methylthiophen-2-yl)methyl) carbamate (3): To a 

solution of oxoacetate 9 (282 mg, 0.95 mmol, 1.0 eq.) in THF (5 mL) was added a NH4OH 

solution (32% in H2O) (1.18 mL, 9.50 mmol, 10.0 eq.) at 0 °C. The reaction was stirred for 

90 min at room temperature and then quenched with water (5 mL). The aqueous phase was 

extracted with EtOAc (3 x 10 mL). The combined organic phases were dried over MgSO4 and 

the solvent was removed under reduced pressure. Compound 3 (253 mg, 0.90 mmol, 94%) 

was obtained as yellow solid and used without further purification; Rf: 0.21 

(PE/EtOAc : 1/1); m.p.: 108 °C; 1H-NMR (400 MHz, CDCl3): δ = 2.70 (3H, s, thiophene-CH3), 

4.44 (2H, d, J = 6.1 Hz, thiophene-CH2NH), 4.59 (2H, d, J = 5.1 Hz, CH2=CHCH2O), 5.21 (1H, d, 

J = 10.4 Hz, CH2=CHCH2), 5.24 – 5.43 (2H, m, CH2=CHCH2 and NH), 5.90 (1H, ddt, J = 16.2, 

10.7, 5.5 Hz, CH2=CHCH2), 6.05 (1H, bs, NH2), 7.06 (1H, bs, NH2), 7.86 (1H, s, thiophene-H); 

13C-NMR (101 MHz, CDCl3): δ = 16.7 (+), 39.8 (−), 65.9 (−), 117.9 (−), 129.0 (+), 130.8 (q), 

132.7 (+), 137.0 (q), 155.7 (q), 156.1 (q), 164.4 (q), 182.1 (q); IR  ̃ [cm-1]: 3402 (m), 

3301 (m), 3167 (w), 2962 (w), 1750 (m), 1686 (s), 1649 (s), 1535 (m), 1460 (m), 1254 (m), 

1047 (m), 796 (m); MS (ESI): m/z (%) = 300.1 (100, MNH4+), 283.1 (60, MH+),182 (30) 
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588.1 (27, 2MNa+); HR-MS (ESI): calcd. for C12H18N3O4S (M+NH4)+, m/z = 300.1013; found 

300.1012. 

 

Methyl 4-(2-methoxy-2-oxoethyl)-5-methylthiophene-2-carboxylate (4): Thallium 

trinitrate (850 mg, 1.91 mmol, 1.2 eq.) and 70% HClO4 (0.30 mL) were added to a 

suspension of 14 (316 mg, 1.59 mmol, 1.0 eq.) in MeOH (3 mL) at room temperature. After 

stirring for 24 h the mixture was concentrated under vacuum and diluted with water 

(5 mL). The aqueous phase was diluted with EtOAc (5 mL), extracted with EtOAc (3 x 5 mL) 

and dried over MgSO4. The solvent was evaporated and purification of the crude product by 

automated flash column chromatography (PE/EtOAc, 3% - 15% EtOAc) yielded compound 4 

(331 mg, 1.45 mmol, 91%) as colorless oil; Rf: 0.34 (PE/EtOAc : 5/1); 1H-NMR (300 MHz, 

CDCl3): δ = 2.43 (3H, s, thiophene-CH3), 3.54 (2H, s, thiophene-CH2C(O)OCH3), 3.70 (3H, s, 

thiophene-CH2C(O)OCH3), 3.85 (3H, s, C(O)OCH3), 7.61 (1H, s, thiophene-H); 13C-NMR 

(75 MHz, CDCl3): δ = 13.8 (+), 33.8 (−), 52.0 (+), 52.1 (+), 129.0 (q), 130.7 (q), 135.6 (+), 

144.0 (q), 162.6 (q), 170.9 (q); IR  ̃ [cm-1]: 2997 (w), 2953 (m), 2845 (w), 1736 (w), 

1704 (s), 1535 (w), 1457 (s), 1392 (w), 1331 (w), 1291 (m), 1250 (s), 1194 (s), 1132 (w), 

1063 (s), 1006 (m), 927 (w), 874 (w), 785 (w), 751 (s); MS (APCI): m/z (%) = 229.1 (100, 

MH+); HR-MS (APCI): calcd. for C10H12O4S (M+H)+, m/z = 229.0529; found 229.0531. 

 

 

Allyl ((5-methylthiophen-2-yl)methyl)carbamate (8): LAH (2.78 g, 73.2 mmol, 1.0 eq.) 

was added in portions to a solution of nitrile 7 (3.01 g, 24.4 mmol, 3.0 eq.) in dry Et2O 

(250 mL) at 0 °C under nitrogen atmosphere. After stirring for 4 h at room temperature the 

reaction was quenched with water (80 mL) and saturated NaHCO3 solution (50 mL) at 0 °C. 

The suspension was filtered and the aqueous phase was extracted with Et2O (3 x 80 mL). 

The combined organic phases were dried over MgSO4 and concentrated in vacuo. Then the 

residue was dissolved in dry THF (100 mL) and pyridine (2.47 mL, 30.50 mmol, 1.25 eq.) 

was added at 0 °C. Within 1 h allyl chloroformate (4.02 mL, 37.82 mmol, 1.55 eq.) in dry THF 

(5 mL) was dropped to the solution via a syringe pump at 0 °C. After stirring for 14 h at 

room temperature the reaction was quenched cautiously with water (50 mL) and extracted 

with EtOAc (3 x 30 mL). The combined organic phases were dried over MgSO4 and the 

solvent was removed under reduced pressure. Purification of the crude product by 
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automated flash column chromatography (PE/EtOAc, 8% - 15% EtOAc) yielded 8 (3.40 g, 

16.1 mmol, 66%) as yellow oil; Rf: 0.20 (PE/EtOAc : 9/1); 1H-NMR (400 MHz, CDCl3): δ = 

2.44 (3H, s, thiophene-CH3), 4.44 (2H, d, J = 5.7 Hz, thiophene-CH2NH), 4.59 (2H, d, J = 5.1 Hz, 

CH2=CHCH2O), 5.05 (1H, bs, NH), 5.21 (1H, d, J = 10.4 Hz, CH2=CHCH2), 5.30 (1H, d, 

J = 16.1 Hz, CH2=CHCH2), 5.92 (1H, ddt, J = 16.3, 10.8, 5.5 Hz, CH2=CHCH2), 6.57 (1H, dd, 

J = 3.2, 0.8 Hz, 4-thiophene-H), 6.74 (1H, d, J = 3.0 Hz, 3-thiophene-H); 13C-NMR (101 MHz, 

CDCl3): δ = 15.4 (+), 40.1 (−), 65.6 (−), 117.8 (−), 124.8 (+), 125.7 (+), 132.8 (+), 138.8 (q), 

139.9 (q), 155.9 (q); IR  ̃ [cm-1]: 3335 (m), 3073 (w), 2922 (w), 1695 (s), 1514 (m), 

1426 (w), 1236 (s), 982 (m), 799 (m); MS (ESI): m/z (%) = 212.1 (100, MH+), 151.1 (48), 

114.1 (47), 111.0 (35), 234.1 (27, MNa+); HR-MS (ESI): calcd. for C10H14NO2S (M+H)+, m/z = 

212.0740; found 212.0740. 

 

Methyl 2-(5-((((allyloxy)carbonyl)amino)methyl)-2-methylthiophen-3-yl)-2-

oxoacetate (9): Carbamate 8 (169 mg, 0.80 mmol, 1.0 eq.) and methyl chlorooxoacetate 

(81 µL, 0.88 mmol, 1.1 eq.) were dissolved in dry CH2Cl2 (6 mL) under nitrogen atmosphere. 

Then aluminium chloride (427 mg, 3.20 mmol, 4.0 eq.) was added in portions at 0 °C and the 

suspension was stirred for 20 h at room temperature. The reaction was quenched with 

saturated NaHCO3 solution (1 mL) at 0 °C and diluted with water (5 mL). The aqueous phase 

was extracted with CH2Cl2 (3 x 5 mL), the combined organic layers were washed with brine 

(10 mL) and dried over MgSO4. After evaporation of the solvent the crude product was 

purified by automated flash column chromatography (PE/EtOAc, 15% - 40% EtOAc) to 

obtain 9 (117 mg, 0.39 mmol, 49%) as brown oil; Rf: 0.22 (PE/EtOAc : 3/1); 1H-NMR 

(400 MHz, CDCl3): δ = 2.70 (3H, s, thiophene-CH3) 3.91 (3H, s, OCH3), 4.42 (2H, d, J = 6.1 Hz, 

thiophene-CH2NH), 4.58 (2H, d, J = 5.3 Hz, CH2=CHCH2O), 5.16 – 5.34 (3H, m, CH2=CHCH2 

and NH), 5.90 (1H, ddt, J = 16.3, 10.8, 5.6 Hz, CH2=CHCH2), 7.32 (1H, s, thiophene-H); 

13C-NMR (101 MHz, CDCl3): δ = 16.3 (+), 39.7 (−), 52.8 (+), 65.9 (−), 118.0 (−), 127.5 (+), 

131.0 (q), 132.6 (+), 138.0 (q), 154.8 (q), 156.1 (q), 164.0 (q), 180.0 (q); IR  ̃ [cm-1]: 

3395 (m), 2954 (w), 1726 (s), 1670 (s), 1517 (m), 1434 (m), 1242 (s), 1200 (s), 1112 (s), 

984 (m), 757 (m); MS (ESI): m/z (%) = 298.1 (100, MH+), 315.1 (58, MNH4+), 320.1 (48, 

MNa+), 185.0 (37); HR-MS (ESI): calcd. for C13H16NO5S (M+H)+, m/z = 298.0744; found 

298.0744. 
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Methyl 4-acetyl-5-methylthiophene-2-carboxylate (14): Thiophene 13 (800 mg, 

5.12 mmol, 1.0 eq.) and acetyl chloride (550 µL, 7.68 mmol, 1.5 eq.) were dissolved in 

purified anhydrous CHCl3 (10 mL) under nitrogen atmosphere. After cooling to 0 °C 

aluminium chloride (2.05 g, 15.4 mmol, 3.0 eq.) was added in small portions. The yellow 

suspension was heated to 45 °C overnight upon turning bright red, then the reaction was 

quenched with ice/water and the aqueous phase was extracted with ethyl acetate 

(3 x 10 mL). The combined organic phases were washed with a saturated solution of 

NaHCO3 (10 mL) and brine (10 mL). The organic phase was dried over MgSO4 and the 

solvent was evaporated. The crude product was purified by automated flash column 

chromatography (PE/EtOAc, 5% - 25% EtOAc) and 14 (781 mg, 3.94 mmol, 77%) was 

obtained as colorless solid; Rf: 0.41 (PE/EtOAc : 3/1); m.p.: 84 °C; 1H-NMR (300 MHz, 

CDCl3): δ = 2.52 (3H, s, thiophene-CH3), 2.76 (3H, s, acetyl-CH3), 3.88 (3H, s, OCH3), 8.03 (1H, 

s, thiophene-H); 13C-NMR (75 MHz, CDCl3): δ = 16.8 (+), 29.6 (+), 52.3 (+),128.5 (q), 

135.0 (+), 136.3 (q), 155.8 (q), 162.0 (q), 193.7 (q); IR  ̃ [cm-1]: 3007 (w), 2957 (w), 

1717 (s), 1678 (s), 1539 (s), 1457 (m), 1439 (m), 1254 (s), 1233 (s), 1074 (m), 1021 (w), 

745 (s); MS (EI): m/z (%) = 183.1 (100, [M-(CH3)]+), 198.1 (41, M+); HRMS (APCI): 

m/z (%) = 199.0 (100, MH+);  calcd. for C9H10O3S (M+H)+, m/z = 199.0423; found 199.0424. 
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5.4.3 Solid Phase Peptide Synthesis 

Solid phase peptide synthesis was carried out manually on 50 mg Wang resin (loading 1.0 – 

1.2 mmol) using the Fmoc strategy in BD Discardit II syringes (Becton Dickinson GmbH). 

Solvents and soluble reagents were removed by suction. A syringe was equipped with Wang 

resin (50 mg, 0.05 – 0.06 mmol) as solid phase, which was initially allowed to swell for 

60 min in DMF (3 mL). 

The amino acid coupling steps were performed in DMF (3 mL) with Fmoc-S-alanine (93 mg, 

0.30 mmol, 10 eq.), TBTU (94 mg, 0.29 mmol, 9.8 eq.), HOBt (46 mg, 0.30 mmol, 10 eq.) and 

DIPEA (11 µL, 0.60 mmol, 20 eq.). After shaking for 90 min another portion of TBTU (62 mg, 

0.19 mmol, 6.0 eq.) was added to complete the coupling step and the shaking was continued 

for further 30 min. The resin was washed with DMF/CH2Cl2/DMF (4 x 3 mL each) and the 

coupling step was repeated. 

Fmoc removal followed with piperidine/DMF (4:6, 3 mL) for 5 min, washing with DMF (2 x 

3 mL) and further 5 min of piperidine/DMF (2:8, 3 mL). After completion, the resin was 

washed with DMF/CH2Cl2/MeOH/DMF (4 x 3 mL each). 

The dithienylmaleimide amino acid 1 (13 mg, 0.03 mmol, 1.0 eq.) was attached to Wang-Ala-

NH2 15 (0.05 – 0.06 mmol, 1.7 – 2.0 eq.) by dissolving in DMF (2 mL) and adding TBTU 

(9 mg, 0.03 mmol, 1.0 eq.), HOBt (5 mg, 0.03 mmol, 1.0 eq) and DIPEA (10 µL, 0.06 mmol, 

2.0 eq.). After shaking for 90 min another portion of TBTU (6 mg, 0.02 mmol, 0.6 eq.) was 

added and the shaking continued for further 30 min. The resin was washed with 

DMF/CH2Cl2/DMF (4 x 3 mL each). 

Alloc was deprotected under nitrogen atmosphere using Pd(PPh3)4 (7 mg, 0.01 mmol, 

20 mol%) and DABCO (17 mg, 0.15 mmol, 5.0 eq.) in anhydrous CH2Cl2 (2.5 mL). After 

shaking for 90 min it was washed with CH2Cl2/DMF (5 x 3 mL each). 

Following the completion of the sequence the tripeptide 17 was released from the resin by 

treatment with TFA/CH2Cl2 (95:5, 1 mL) for 60 min. It was repeated and the solvent of the 

combined filtrates was removed by nitrogen purge. 

The tripeptide 17 was separated from byproducts by automated reversed phase flash 

column chromatography (MeCN/H2O with 0.05% TFA, 3-100% MeCN) and requires further 

purification by preparative HPLC.  
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5.4.4 Photochemical Investigations 

Photochemical syntheses of the ring-closed isomers. Solutions of compounds 1 and 2 in 

MeOH (50 µM) were irradiated with a 312 nm lamp until complete conversion (36 s) 

yielding pink solutions containing the ring-closed isomers. The changes in the UV/Vis 

absorption spectra are representatively shown for compound 1 in Figure 22 and for 

compound 2 in the appendix in Figure A4.  

Fatigue resistance studies. In order to test the robustness of the photochromic systems, 

photochemical cycling studies were recorded for the dithienylmaleimides 1 and 2 (see 

Figure 23 and appendix, Figure A4). In each case, a solution of the ring-open photoswitch in 

MeOH (50 µM) was alternately irradiated with 312 nm light for 60 s and with visible light 

>420 nm for 5 min over eight cycles. The absorption change at 565 nm was recorded after 

each cycle and plotted against the cycle number.  
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6.1 Introduction 

Maleic hydrazide is a well-established plant growth inhibitor that was first reported in 

1949.[1] Agriculture exploits its ability to prevent sprouting during growth or storage. It is 

usually applied on potatoes, onions and tobacco, or to prevent weed spread.[2-5] Even if its 

uptake and metabolization by mammalians has been investigated for decades, the impact on 

human health is still not fully examined and subject of ongoing research.[6-9] Maleic 

anhydride suppresses cell proliferation in plants by inhibiting their DNA and protein 

synthesis.[7] Moreover, its structural similarity with pyrimidine bases suggests intercalation 

into the DNA.[10]  

 

Figure 24. Tautomers of maleic hydrazide; diketo 1A, monolactim 1B and dihydroxy tautomer 1C. 

Analogous to nucleic bases, maleic hydrazide exhibits different tautomers appearing as 

diketo, monolactim or dihydroxy form (Figure 24). Experimental[10-11] and theoretical[12-14] 

studies indicate a predominance of the diketo 1A and the monolactim tautomer 1B as they 

seem similarly stable in solid state, solution and gas phase, whereas the dihydroxy form 1C 

is less populated.[14] NMR studies revealed that 1B is favored in polar solvents,[15] which is 

supported by the hypothesis that contiguous heteroatoms of the same hybridization type 

are strongly destabilizing.[16] Interestingly, new investigations on 2,3-diaryl-substituted 

maleic hydrazides report the exclusive formation of maleic hydrazide 1A without any 

monolactim byproduct.[17] Furthermore, it was recently shown, that UV irradiation 

generates the N-aminomaleimide tautomer 1D (Scheme 11).[18] 

 

Scheme 11. UV-induced unimolecular transformations of 1B into the N-aminomaleimide 1D.[18] 

In the course of exploring the reactivity of dithienylmaleimides, we discovered 

photochromic dithienyl maleic hydrazides as a new generation of DTE photoswitches. They 

comprise a six-membered core cycle, which is able to adopt different tautomeric structures 

as known for maleic hydrazide. We therefore wanted to investigate the interplay of 

photochromism and tautomerism of a dithienyl maleic hydrazide upon irradiation with UV 

and visible light. 
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6.2 Initial Results and Discussion 

To develop a new generation of photochromic dithienylethenes, we treated the bischloro 

dithienylmaleimide 1 with hydrazine under acidic conditions to afford the respective 

dithienyl maleic hydrazide 2 (Scheme 12).[19-20] We obtained two products that exhibited the 

same mass, in particular a photochromic blue fraction and a yellow fraction that was stable 

towards UV irradiation. The latter was not further investigated. According to the reported 

investigations on the diphenyl-substituted maleic hydrazide, the reaction product is 

estimated to appear as diketo form 2A.[17] This may be the case if the tautomerism 

equilibrium is dependent on the substitution at the 2- and 3-position of the maleic 

hydrazide. Else, the monolactim tautomer 2B is expected to be predominant as it is the 

preferred tautomer of maleic hydrazide.[15-16] 

 

Scheme 12. Synthesis of the dithienyl maleic hydrazide 2A and its tautomers 2B and 2C.[19] 

To get further insight into the proton distribution on the dithienyl maleic hydrazide 2, we 

applied NMR spectroscopy. Thereby, dimethylsulfoxide-d6 was used as aprotic polar solvent. 

The 1H-NMR spectra shows two separated broad singlets with the same intensity and high 

chemical shifts (11.14 and 12.24 ppm), thus indicating the existence of two different groups 

with hydrogen bonding ability (Figure 25).  

 

Figure 25. 1H-NMR spectra (10 to 13 ppm) of the dithienyl maleic hydrazide 2 in DMSO-d6. 
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In the case of a symmetric molecule as in 2A or 2C, only one signal is expected for both 

hydrazide protons. We could hence conclude that the title compound may mainly be present 

as tautomer 2B in a DMSO solution. Additionally, the thienyl and methyl protons appear as 

broad singlets, which may result from proton exchange implying the existence of a 

tautomerism equilibrium. Using methanol-d4 as polar protic solvent shows only the 

broadened signals for the methyl and thienyl protons, the resonance signals at 11 and 

12 ppm disappear.  

The physicochemical properties of the new dithienyl maleic hydrazide 2 were 

spectrophotometrically investigated by alternate irradiation with 312 nm or greater than 

420 nm light, respectively. Similar to known photochromic dithienylethenes, it can 

reversibly be toggled between two photoisomers (Scheme 13, upper reaction). Surprisingly, 

the color of the closed isomer of compound 2 in solution changed with the solvent, e.g. it 

appeared purple in methanol and blue in chloroform (Figure 26). The observed 

solvatochromism may be due to a solvent induced shift in the tautomerism equilibrium 

(Scheme 12). 

 

 

 

 

Figure 26. Coloration and decoloration of dithienyl maleic hydrazide 2 dissolved in methanol or 

chloroform upon irradiation with UV or visible light, respectively. The color is dependent on the 

solvent, appearing purple in methanol and blue in chloroform. 

Table 7. Absorption maxima of the closed isomer of compound 2 dependent on the solvent. 

Entry Solvent max [nm] 

1 MeOH 351, 560 

2 CHCl3 340, 592 

3 acetone 342, 551 

3 toluene[a] 362, 590, 612 

4 toluene[b] 323, 555, 612 

[a] up to 40 s of UV irradiation; [b] more than 40 s of UV irradiation. 

CHCl3 MeOH CHCl3 MeOH 
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Upon irradiating a solution of the ring-open form of compound 2 in the respective solvent 

with UV light (312 nm), new absorption maxima arise causing the color change (Figure 26 

and Figure 27). The position of this absorption band is strongly dependent on the solvent 

(Table 7). Compared to the common DTE-cyclopentenes the absorption maxima are red 

shifted by approximately 25 nm, which is in good accordance with the related 

dithienylmaleimdes (see Chapter 3).[21] The photostationary state was reached after 71 to 

90 s of irradiation. Particularly in toluene, we observed a maximum shift after 40 s of UV 

irradiation, which could be due to UV-light induced photoisomerization according to Reva et 

al. (Scheme 13).[18] The open form can be reobtained by irradiation with visible light 

(> 420 nm) for 10 min. 

 

Scheme 13. Possible UV-light induced reactions of 2B. 

 

Figure 27. Absorption spectra evolution of maleic hydrazide 2 (25 µM in MeOH or toluene) upon 

irradiation with 312 nm light; arrows indicate the changes of the absorption maxima with irradiation 

periods of 6 s. 

In contrast to the highly fatigue-resistant dithienylmaleimides (c.f. Chapter 3), the dithienyl 

maleic hydrazide 2 shows rather low photostability. It is almost completely degraded after 

eight iterations of alternate ring-closing/-opening cycles (Figure 28). 
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Figure 28. Cycle performance of maleic hydrazide 2. Changes in absorption at 565 nm were 

measured during an alternated irradiation the inhibitor solution (25 µM in MeOH) with 312 nm light 

for 60 s and greater than 420 nm light for 10 min. 
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6.3 Conclusion 

In summary, we discovered a new type of dithienylethenes. According to the present data it 

is presumably a dithienyl maleic hydrazide, which adopts its monolactim tautomer as 

preferred structure. Irradiation with UV or visible light, respectively, toggles the resulting 

compound reversibly between two photoisomers, whereby we observed a solvatochromism 

of the ring-closed form. However, it only exhibits rather low photostability compared to 

other dithienylethenes. To draw conclusions about the interplay of tautomerism, 

solvatochromism and photoisomerization, more detailed investigations are necessary, e.g. 

temperature-dependent 2D NMR measurements in different solvents before and after UV 

irradiation. Additionally, it would be interesting if the hydrazide moiety can be derivatized, 

thus establishing new possibilities to functionalize this new type of photoswitches. 

 

 

6.4 Experimental Section 

 

4,5-Bis(5-chloro-2-methylthiophene-3-yl) maleic hydrazide (2). Hydrazine 

monohydrate (16 µL, 0.34 mmol, 1.2 eq.) was dissolved in MeOH/THF (5:1, 12 mL) and 

cooled to 0 °C. Fuming hydrochloric acid (0.1 mL) was added dropwise, after which the bath 

was removed and dithienylmaleimide 1 (100 mg, 0.28 mmol, 1.0 eq.) was added. It was 

refluxed for 24 h. After cooling to r.t. it was extracted with ethyl acetate (2 x 10 mL), dried 

over magnesium sulfate and the volatiles removed. The crude product was obtained as 

yellow powder and purification by automated column chromatography (PE/EtOAc, 30% –

60% EtOAc) yielded 31 mg (0.08 mmol, 30%) of 2B as blue powder. 1H-NMR (300 MHz, 

MeOD): δ = 2.09 (6H, bs, 2 thiophene-CH3), 6.54 (1H, bs, thiophene-H), 6.62 (1H, bs, 

thiophene-H); 1H-NMR (400 MHz, DMSO): δ = 2.11 – 1.92 (6.3 H, m, 2 thiophene-CH3), 2.17 

(0.3H, s), 6.70 (2.1H, bm, 2 thiophene-H), 7.40 (0.1 H, s), 11.14 (1H, bs), 12.24 (1H, bs); 

MS (ESI): m/z (%) = 373.0 (100, [MH+]), 375.0 (70, [MH+]). 
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7.1 Supplementary NMR spectra for Chapter 1 

1H-NMR for compound 2: 

 

13C-NMR for compound 2: 
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1H-NMR for compound 3:  

 

13C-NMR for compound 3: 
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1H-NMR for compound 4: 

 

13C-NMR for compound 4: 
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1H-NMR for compound 5:  

 

13C-NMR for compound 5: 
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1H-NMR for compound 6: 

 

13C-NMR for compound 6: 
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1H-NMR for compound 7:  

 

13C-NMR for compound 7: 
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1H-NMR for compound 10: 

 

13C-NMR for compound 10: 
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1H-NMR for compound 11: 

 

13C-NMR for compound 11: 
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1H-NMR for compound 12:  

 

13C-NMR for compound 12: 
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1H-NMR for compound 13:  

 

13C-NMR for compound 13: 
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7.2 Supporting Information for Chapter 2 

7.2.1 Supplementary Figures 

 

Figure A1. UV/Vis absorption spectra evolution of DTEs 1-3 and 5-7 (50 µM in MeOH) upon irradiation 

with 312 nm light; arrows indicate the changes of the absorption maxima with irradiation periods of 

6 s; the colors of the respective solutions are depicted. 

 

 

 

Figure A2. Cycle performances of compounds 1-3 and 5-7. Changes in absorption at 525 nm were 

measured during an alternated irradiation the inhibitor solution (50 µM in MeOH) with 312 nm light 

for 60 s and greater than 420 nm light for 15 min. 
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Figure A3. Dose-response curves for DTEs 1-3 and 5-7 in their open (blue) and closed (red) 

photoisomers with FR180204 as reference.  
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7.2.2 Supplementary NMR spectra 

1H-NMR for compound 2:  

 

13C-NMR for compound 2:  
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1H-NMR for compound 3: 

 

 

13C-NMR for compound 3:  
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1H-NMR for compound 4: 

 

 

13C-NMR for compound 4:  
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1H-NMR for compound 6: 

 

 

13C-NMR for compound 6:  
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1H-NMR for compound 7: 

 

 

13C-NMR for compound 7:  
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7.3 Supporting Information for Chapter 3 

7.3.1 Supplementary Synthetic Data 

 

Scheme A1. Perkin condensation of the N-terminal precursor 3 and C-terminal precursor 4b to 

access the dithienylmaleimide 2 and 2b. 

 

Scheme A2. Synthesis of the N-terminal precursor 9b using Fmoc protection. Double acylated 9c 

occurred as main product. 

 

Scheme A3. Synthesis of the C-terminal ethyl ester precursor 4b. 

 

Scheme A4. Hydrolytic ester cleavage yielded the anhydride 1b. 
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4-(4-(5-((((Allyloxy)carbonyl)amino)methyl)-2-methylthiophen-3-yl)-2,5-dioxo-2,5-

dihydrofuran-3-yl)-5-methylthiophene-2-carboxylic acid (1b): A mixture of 2 and 2b 

(62 mg) in 10 mL of H2O/MeOH/THF (2:5:3, v/v/v) was stirred for 20 h with NaOH (78 mg, 

1.95 mmol) at room temperature. After addition of water (10 mL) the reaction mixture was 

washed with EtOAc (2 x 10 mL) and then acidified with conc. HCl to pH 1. The aqueous 

phase was extracted with EtOAc (3 x 10 mL) and the combined organic phases were dried 

over magnesium sulfate. Evaporation of the solvent and purification of the crude product by 

automated reversed phase flash column chromatography (H2O/MeCN, 20% - 55% MeCN) 

yielded 1b (29 mg, 0.06 mmol) as green solid; Rf: 0.02 (PE/EtOAc : 1/1); m.p.: 84 °C; 

1H-NMR (400 MHz, DMSO-d6): δ = 1.92 (3H, s, thiophene-CH3), 1.97 (3H, s, thiophene-CH3), 

4.28 (2H, d, J = 6.1 Hz, thiophene-CH2NH), 4.49 (2H, d, J = 5.3 Hz, CH2=CHCH2O), 5.18 (1H, dd, 

J = 10.5, 1.4 Hz, CH2=CHCH2), 5.27 (1H, dd, J = 17.2, 1.5 Hz, CH2=CHCH2), 5.90 (1H, ddt, 

J = 17.2, 10.6, 5.3 Hz, CH2=CHCH2), 6.87 (1H, s, thiophene-H), 7.65 (1H, s, thiophene-H), 7.90 

(1H, t, J = 6.0 Hz, CH2NHCO), 13.27 (1H, bs, COOH); 13C-NMR (75 MHz, DMSO-d6): δ = 

14.1 (+), 14.5 (+), 38.8 (−), 64.4 (−), 116.9 (−), 124.9 (q), 125.5 (+), 126.8 (q), 131.6 (q), 

133.5 (+), 133.9 (+), 135.6 (q), 140.8 (q), 141.4 (q), 148.6 (q), 155.9 (q), 162.2 (q), 164.9 (q), 

164.9 (q); IR  ̃ [cm-1]: 3327 (w), 3164 (w), 3020 (w), 2925 (m), 1764 (s), 1702 (m), 1541 

(m), 1458 (w), 1254 (m), 931 (m), 750 (w); UV/Vis (50 µM in MeOH): open isomer: 

max = 246 nm; closed isomer: max = 384 nm, 568 nm; MS (ESI): m/z (%) = 448.1 (100, 

MH+), 347.0 (98, [M-AllocNH]+); HR-MS (ESI): calcd. for C20H18NO7S2 (M+H)+, m/z = 

448.0519; found 448.0516. 

 

Ethyl/Methyl 4-(4-(5-((((allyloxy)carbonyl)amino)methyl)-2-methyl-thiophen-3-yl)-

2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)-5-methylthiophene-2-carboxylate (2/2b).  

KOtBu (1 M in THF) (1.34 mL, 1.34 mmol, 1.2 eq.) was added to a solution of 3 (316 mg, 

1.12 mmol, 1.0 eq.) in dry THF (6 mL) at 0 °C under nitrogen atmosphere. After stirring for 

90 min at 0 °C, diester 4b (326 mg, 1.34 mmol, 1.2 eq.) was added at 0 °C and stirred for 

15 h at room temperature. Then the reaction was heated to 60 °C for 1 h, quenched with 1 M 
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HCl solution (4 mL) and diluted with EtOAc (10 mL). The organic phase was washed with 

water (3 x 5 mL), brine (5 mL) and dried over magnesium sulfate. The solvent was removed 

under reduced pressure and purification of the crude product by automated reversed phase 

flash column chromatography (H2O/EtOH, 20% - 45% EtOH) yielded 2b (40 mg, 0.08 mmol, 

8%) as orange foam, 2 (74 mg, 0.16 mmol, 14%) as yellow foam and a mixed fraction of both 

(65 mg); Analysis of 1b: Rf: 0.25 (PE/EtOAc : 2/1); 1H-NMR (400 MHz, CDCl3):  = 1.36 (3H, 

t, J = 7.1 Hz, O−CH2−CH3), 1.91 (3H, s, thiophene-CH3), 1.97 (3H, s, thiophene-CH3), 4.33 (2H, 

q, J = 7.1 Hz, O−CH2−CH3), 4.45 (2H, d, J = 5.9 Hz, C−CH2−NH), 4.60 (2H, d, J = 4.8 Hz, 

O−CH2−CH), 5.14 –5.26 (2H, m, CH2=CH−CH2 and CH2−NH−CO), 5.31 (1H, dd, J = 17.2, 1.1 Hz, 

CH2=CH−CH2), 5.92 (1H, ddt, J = 16.3, 10.8, 5.6 Hz, CH2=CH−CH2), 6.90 (1H, s, thiophene-H), 

7.75 (1H, s, thiophene-H), 7.97 (1H, bs, CO−NH−CO); 13C-NMR (101 MHz, CDCl3):  = 

14.3 (+), 15.0 (+), 15.3 (+), 39.9 (−), 61.4 (−), 65.9 (−), 117.9 (−), 125.8 (q), 126.7 (+), 

127.4 (q), 131.4 (q), 132.7 (+), 132.8 (q), 134.7 (+), 139.4 (q), 142.1 (q), 148.4 (q), 156.0 (q), 

161.7 (q), 170.0 (q), 170.1 (q); IR  ̃ [cm-1]: 3288 (w), 3071 (w), 2980 (w), 1710 (s), 

1541 (m), 1458 (w), 1252 (m), 995 (w), 916 (w), 760 (w); UV/Vis (50 µM in MeOH): open 

isomer: max = 250 nm; closed isomer: max = 232 nm, 378 nm, 554 nm; MS (ESI): m/z (%) = 

475.1 (100, MH+), 374.1 (78, [M-AllocNH]+), 476.1 (26), 533.2 (24, [MNH4 + MeCN]+), 

497.1 (21); HR-MS (ESI): calcd. for C22H23N2O6S2 (M+H)+, m/z = 475.0993; found 475.0992.  

 

Ethyl 4-(2-methoxy-2-oxoethyl)-5-methylthiophene-2-carboxylate (4b). Thallium tri-

nitrate (2.20 g, 4.94 mmol, 1.2 eq.) and 70% HClO4 (2 mL) were added to a suspension of 

14b (875 mg, 4.12 mmol, 1.0 eq.) in MeOH (20 mL) at room temperature. After stirring for 

24 h the mixture was concentrated under vacuum and diluted with water (5 mL). The 

aqueous phase was extracted with chloroform (3 x 5 mL) and dried over magnesium sulfate. 

The solvent was evaporated and purification of the crude product by automated flash 

column chromatography (PE/EtOAc, 3% - 15% EtOAc) yielded 816 mg (3.37 mmol, 82%) of 

compound 4b as yellowish oil; Rf: 0.23 (PE/EtOAc : 9/1); 1H-NMR (400 MHz, CDCl3):  = 

1.35 (3H, t, J = 7.1 Hz, O−CH2−CH3), 2.42 (3H, s, thiophene-CH3), 3.54 (2H, s, C−CH2−CO), 3.70 

(3H, s, CO−O−CH3), 4.31 (2H, q, J = 7.1 Hz, O−CH2−CH3), 7.60 (1H, s, thiophene-H); 13C-NMR 

(75 MHz, CDCl3):  = 13.8 (+), 14.4 (+), 33.8 (−), 52.2 (+), 61.0 (−), 129.6 (q), 130.6 (q), 

135.4 (+), 143.8 (q), 162.2 (q), 171.0 (q); IR  ̃ [cm-1]: 3081 (w), 2987 (w), 2922 (w), 

1730 (s), 1705 (s), 1460 (m), 1254 (s), 1201 (s), 1172 (s), 1061 (s); MS (EI): m/z (%) = 
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183.1 (100, [M-(CO2Me)]+), 242.1 (67, M+), 155.1 (61), 197.0 (49, [M-(EtO)]+), 182.1 (47); 

HR-MS (ESI): calcd. for C11H14NaO4S (M+Na)+, m/z = 265.0505; found 265.0502.  

 

 

(9H-Fluoren-9-yl)methyl ((5-methylthiophen-2-yl)methyl)carbamate (8b). To an ice-

bath cooled solution of nitrile 7 (2.00 g, 16.24 mmol, 1.0 eq) in anhydrous Et2O (200 mL), 

LAH (1.85 g, 48.71 mmol, 3.0 eq) was slowly added. After stirring for 2 h at room 

temperature the reaction mixture was quenched with water (6 mL). The precipitate was 

filtered off and the aqueous phase was extracted with Et2O (2 x 10 mL). 9-Fluorenylmethyl 

chloroformate (4.20 g, 16.24 mmol, 1.0 eq) was added to the combined organic phases and 

the reaction mixture was stirred at room temperature overnight. The solvent was removed 

under reduced pressure and the crude product was purified by automated flash column 

chromatography (PE/EtOAc, 5 - 25% EtOAc) affording 2.14 g (6.12 mmol, 38%) of 8b as 

beige solid. 1H-NMR (400 MHz, CDCl3): δ = 2.45 (3H, s, thiophene-CH3), 4.23 (1H, t, J = 

6.6 Hz, fluorenyl-H), 4.43 – 4.47 (4H, m, fluorenyl-CH2 and thiophene-CH2), 5.17 (1H, bs, 

Fmoc-NH), 6.59 (1H, bs, thiophene-H), 6.74 (1H, bs, thiophene-H), 7.31 (2H, t, J = 7.4 Hz, 

2 phenyl-H), 7.41 (2H, t, J = 7.4 Hz, 2 phenyl-H), 7.59 (2H, d, J = 7.4 Hz, 2 phenyl-H), 7.77 (2H, 

d, J = 7.6 Hz, 2 phenyl-H); 13C-NMR (100 MHz, CDCl3): δ = 15.4 (+), 40.2 (–), 47.3 (+), 

66.8  (–), 120.0 (+), 124.9 (+), 125.1 (+), 125.8 (+), 127.1 (+), 127.7 (+), 138.8 (q), 139.9 (q), 

141.4 (q), 143.9 (q), 156.1 (q); MS (ESI): m/z (%) = 350.1 (100, [MH+]), 372.1 (94, [MNa+]), 

721.1 (50, [2 MNa+]), 699.2 (37, [2 MH+]); HR-MS (ESI): calcd. for C21H20NO2S (MH+), m/z = 

350.1209; found 350.1206. 

 

Methyl-2-(5-(((((9H-fluoren-9-yl)methoxy)carbonyl)amino)methyl)-2-methylthio-

phen-3-yl)-2-oxoacetate (9b/9c). In a crimp top vial a solution of methyl-

chlorooxoacetate (19 mg, 0.15 mmol, 1.1 eq) in anhydrous CH2Cl2 (2 mL) was added to AlCl3 

(75 mg, 0.56 mmol, 4.0 eq) under nitrogen atmosphere. It was cooled by ice-bath and a 

solution of 8b (50 mg, 0.14 mmol, 1.0 eq) in anhydrous CH2Cl2 (2 mL) was added dropwise 

via syringe. The reaction mixture was stirred for 2 h at 0 °C, and subsequently quenched by 
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addition of ice water (5 mL), which led to decoloration. The aqueous phase was extracted 

with CH2Cl2 (2 x 5 mL) and the combined organic phases were washed with saturated 

NaHCO3 and brine (each 5 mL) and dried over magnesium sulfate. Purification by flash 

chromatography (PE/EtOAc, 5-15% EtOAc) provided 22 mg (0.05 mmol, 36%) of 9b and 35 

mg (0.07 mmol, 45%) of 9c, both as slightly yellow oil. Analysis of 9b: 1H-NMR (400 MHz, 

CDCl3): δ = 2.72 (3H, s, thiophene-CH3), 3.93 (3H, s, oxoacetyl-OCH3), 4.23 (1H, t, J = 6.6 Hz, 

fluorenyl-H), 4.44 − 4.46 (4H, m, fluorenyl-CH2 and thiophene-CH2), 5.20 (1H, bs, Fmoc-NH), 

7.31 (2H, t, J = 7.4 Hz, 2 fluorenyl-H), 7.35 (1H, s, thiophene-H), 7.40 (2H, t, J = 7.3 Hz, 

2 fluorenyl-H), 7.58 (2H, d, J = 7.3 Hz, 2 fluorenyl-H), 7.76 (2H, d, J = 7.5 Hz, 2 fluorenyl-H); 

13C-NMR (100 MHz, CDCl3): δ = 16.3 (+), 39.7 (−), 47.2 (+), 52.8 (+), 67.0 (−), 120.0 (+), 

125.0 (+), 127.1 (+), 127.6 (+), 127.8 (+), 131.0 (q), 137.9 (q), 141.4 (q), 143.8 (q), 164.0 (q), 

179.9 (q); MS (ESI): m/z (%) = 436.1 (100, [MH+]); Analysis of 9c: 1H NMR (300 MHz, 

CDCl3): δ = 2.72 (3H, s, thiophene-CH3), 3.92 (3H, s, oxoacetyl-OCH3), 3.99 (3H, s, oxoacetyl-

OCH3), 4.38 – 4.24 (2H, m, CH2), 4.46 (2H, d, J = 5.9 Hz, CH2), 4.72 – 4.50 (1H, m, fluorenyl-H), 

5.30 (1H, bs, Fmoc-NH), 7.35 (1H, s, thiophene-H), 7.53 – 7.38 (2H, m, 2 fluorenyl-H), 7.62 

(1H, d, J = 7.4 Hz, fluorenyl-H), 7.85 (2 H, dd, J = 7.4, 3.8 Hz, 2 fluorenyl-H), 8.08 (1 H, dd, J = 

8.0, 1.4 Hz, fluorenyl-H), 8.28 (1H, s, fluorenyl-H); MS (ESI): m/z (%) = 522.1 (100, [MH+]), 

539.1 (63, [MNH4+]), 544.1 (36, [MNa+]). 

 

Ethyl 4-acetyl-5-methylthiophene-2-carboxylate (14b). A solution of acetyl chloride 

(128 µL, 1.80 mmol, 1.5 eq.) in dry chloroform (2 mL) was added to AlCl3 (480 mg, 

3.60 mmol, 3.0 eq.) at room temperature under nitrogen atmosphere. After stirring for 

10 min a solution of 13b (204 mg, 1.20 mmol, 1.0 eq.) in dry chloroform (2 mL) was 

dropped to the suspension. The mixture was heated to 60 °C for 9 h, then the reaction was 

quenched with ice/water and the aqueous phase was extracted with chloroform 

(2 x 30 mL). The combined organic phases were washed with a saturated solution of 

NaHCO3 (50 mL) and brine (50 mL). The organic phase was dried over magnesium sulfate 

and the solvent was evaporated. The crude product was purified by automated flash column 

chromatography (PE/EtOAc, 8% - 30% EtOAc) and 180 mg of 14b (180 mg, 0.85 mmol, 

71%) were obtained as colorless solid; Rf: 0.15 (PE/EtOAc : 9/1); m.p.: 103 °C; 1H-NMR 

(400 MHz, CDCl3):  = 1.37 (3H, t, J = 7.1 Hz, O−CH2−CH3), 2.52 (3H, s, thiophene-CH3), 2.75 

(3H, s, acetyl-CH3), 4.34 (2H, q, J = 7.1 Hz, O−CH2−CH3), 8.02 (1H, s, thiophene-H); 13C-NMR 

(101 MHz, CDCl3):  = 14.3 (+), 16.8 (+), 29.6 (+), 61.4 (−), 129.0 (q), 134.7 (+), 136.3 (q), 
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155.6 (q), 161.6 (q), 193.7 (q); IR  ̃ [cm-1]: 3008 (w), 2985 (w), 2944 (w), 1713 (s), 

1670 (s), 1540 (s), 1452 (m), 1250 (s), 1236 (s), 1082 (s), 1021 (w), 747 (s); MS (EI): 

m/z (%) = 197.0 (100, [M-(CH3)]+), 169.0 (70, [M-(COCH3)]+), 212.1 (63, M+), 167.1 (43), 

43.1 (27); HR-MS (ESI): calcd. for C10H13O3S (M+H)+, m/z = 213.0580; found 213.0581. 
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7.3.2 Supplementary Figures 

    

    

Figure A4. Upper spectra: UV/Vis absorption spectra evolution of the dithienylanhydride 1b (left) 

and the dithienylmaleimide 2 (right), each 50 µM in MeOH, upon irradiation with 312 nm light; 

arrows indicate the changes of the absorption maxima with irradiation periods of 6 s. Lower 

spectra: Cycle performance of the dithienylanhydride 1b (left) and dithienylmaleimide 2 (right). 

Changes in absorption at 556 nm were measured during an alternated irradiation with 312 nm light 

for 60 s and greater than 420 nm light for 5 min. 
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7.3.3 Supplementary NMR spectra 

1H-NMR for compound 1:  

 

13C-NMR for compound 1: 
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1H-NMR for compound 1b: 

 

13C-NMR for compound 1b: 
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1H-NMR for compound 2: 

 

13C-NMR for compound 2: 
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1H-NMR for compound 2b: 

 

13C-NMR for compound 2b: 
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1H-NMR for compound 3: 

 

13C-NMR for compound 3: 
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1H-NMR for compound 4: 

 

13C-NMR for compound 4: 
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1H-NMR for compound 8: 

 

13C-NMR for compound 8: 
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1H-NMR for compound 8b:  

 

13C-NMR for compound 8b: 
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1H-NMR for compound 9: 

 

13C-NMR for compound 9: 
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1H-NMR for compound 9b: 

 

13C-NMR for compound 9b: 
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1H-NMR of compound 9c:  

 

1H-NMR for compound 14: 
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13C-NMR for compound 14: 
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7.4 List of Abbreviations 

A   absorption 

AICAR   aminoimidazole carboxamide ribonucleotide 

Ala   alanine 

AlCl3   aluminium chloride 

Alloc   allyloxycarbonyl 

Alloc-Cl  allyl chloroformate 

APCI   atmospheric-pressure chemical ionization 

aq.   aqueous 

Ar   aryl 

ATP   adenosine triphosphate 

B(OMe)3  trimethyl borate 

BSA   bovine serum albumin 

calcd.   calculated 

CDCl3   deuterated chloroform 

CD3CN   deuterated acetonitrile 

CHCl3   chloroform 

CH2Cl2   dichloromethane 

CHO   Chinese hamster ovary cells 

CI   chemical ionization 

CuCN   copper(I) cyanide 

d   dublet 

d   distance 

δ   chemical shift 

DABCO   1,4-diazabicyclo[2.2.2]octane 

DAD   diode array detector 

DIPEA   N,N-diisopropylethylamine or Hünig’s base 

DMF   dimethylformamide 

DMSO   dimethyl sulfoxide 

DTE   1,2-dithienylethene 

EI   electron ionization 

Elk1   transcription factor in the cell nucleus, which is activated by ERK1/2 

ELISA   enzyme-linked immunosorbent assay 

ERK   extracellular signal-regulated kinase 

ES   electrospray ionization 

http://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinase
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Et   ethyl 

EtOAc   ethyl acetate 

EtOH   ethanol 

Et2O   diethylether 

eq.   equivalents 

E. coli   Escherichia coli 

g   gaseous 

g   grams 

Fmoc   fluorenylmethyloxycarbonyl 

h   hours 

HCl   hydrochloric acid 

HClO4   perchloric acid 

HEK   human embryonic kidney cells 

HPLC   high-performance liquid chromatography 

HisF   imidazole glycerol phosphate synthase 

HOBt   hydroxybenzotriazole 

H2O   water 

HP(O)(OEt)2  diethyl phosphite 

HR   high resolution 

Hz   hertz 

ImGP   imidazole glycerol phosphate 

IR   infrared 

J   joule 

J   coupling constant 

K   kelvin 

kcat   apparent unimolecular rate constant 

Ki   inhibition constant 

KM   Michaelis constant 

KOtBu   potassium tert-butoxide 

L   liters 

   wavelength 

LAH   lithium aluminium hydride 

LiI   lithium iodide 

M   molar 

m meters 

m multiplet 
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MAPK mitogen-activated protein kinase 

Me methyl 

MeCN   acetonitrile 

MD molecular dynamics 

MeOD deuterated methanol 

MeOH methanol 

MgSO4 magnesium sulfate 

min minutes 

mol   mole 

m.p.   melting point 

MS   mass spectrometry 

mtPriA   phosphoribosyl-isomerase A from Mycobacterium tuberculosis 

m/z   mass to charge 

N   normal 

 ̃   wavenumber 

n.a.   not available 

NaCl   sodium chloride 

Na2CO3 sodium dicarbonate 

NaHCO3 sodium hydrogen carbonate 

NaOH   sodium hydroxide 

NBS N-bromosuccinimide 

nBuLi n-butyl lithium 

NEt3 triethylamine 

NH4OH aqueous ammonia 

NIR near infrared 

NMR nuclear magnetic resonance 

PCR polymerase chain reaction 

PE petrol ether 

PDB Protein Data Bank 

Pd(OAc)2 palladium(II) acetate 

Pd(PPh3)2Cl2 bis(triphenylphosphine)palladium(II)dichloride 

Pd(PPh3)4 tetrakis(triphenylphosphine)palladium(0) 

POCl3 phosphorous(V) oxychloride 

PPh3 triphenylphosphine 

ppm parts per million 
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PRFAR N´-[(5´-phosphoribulosyl)-formimino]-5-aminoimidazole-4-

carboxamide-ribonucleotide 

ProFAR N′-[(5′-phosphoribosyl)-formimino]-5-aminoimidazole-4-

carboxamide ribonucleotide 

PS photostationary state 

q quaternary carbon 

Rf retardation factor 

rpm revolutions per minute 

s seconds 

s singlet 

SE standard error 

SOCl2 thionyl chloride 

SPPS solid phase peptide synthesis 

r.t. room temperature 

T temperature 

t triplet 

t time 

TBTU O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium 

tetrafluoroborate  

TICT twisted intramolecular charge transfer 

TFA trifluoroacetic acid 

THF   tetrahydrofuran 

TLC   thin layer chromatography 

tmHisF   imidazole glycerol phosphate synthase from Thermotoga maritima 

TMS-Br  bromotrimethylsilane 

Tris   tris(hydroxymethyl)aminomethane 

TTN   thallium trinitrate 

UV   ultraviolet 

Vis   visible light 

W   watt 

Å   Ångström 
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