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1 Theoretical Background

1.1 Quantum Chromo Dynamics (QCD)

Theoretical physicists believe that all visible matter in the universe is made up of
three families of quarks and leptons and that matter is formed due to the interaction
between these particles. Of the four interactions – strong, weak, electromagnetic
interaction and gravity – the first three are collected in what is called the Standard
model of particle physics. The quantum field theory that describes the strong
interaction is called quantum chromodynamics, in short QCD, which is a non Abelian
gauge theory with an SU(3)c symmetry group. The fundamental fields contained
in the theory are called quarks (fermions) and gluons (gauge bosons) and the QCD
Lagrangian is given by

LQCD =
∑
f

q̄ if
(
i /Dij − δijmf

)
qjf −

1
4G

a
µνG

a,µν − g2θ

64π2G
a
µνG̃

a,µν

− c

2 (∂µAa,µ) (∂νAa,ν)− ξ̄a∂µ∂µξa + gfabcξ̄
a∂µ

(
Acµξb

)
.

(1.1)

The expression above contains the covariant derivative D, which is defined as

/Dij = γµDµ,ij = δijγ
µ∂µ − igtaijγµAaµ. (1.2)

Eq. (1.1) contains both quark fields qf and the gluon fields Aaµ. There are six
different flavors of quarks, called up, down, charm, strange, top and bottom, or
in short {u, d, c, s, t, b}. Each of those flavors has a different mass, denoted by the
mass parameter mf in the Lagrangian. The experimentally measured masses and
electric charges can be found in tabs. 1.1, 1.2. The term proportional to c is called
the gauge-fixing term. The fields ξ are so-called ghost fields. Both ghost terms and
gauge-fixing term only appear in the quantized version of the QCD Lagrangian.
There is another quantum number, called color, assigned to each of the quark fields,
denoted by the indices {i, j, . . .} in the Lagrangian, which can take the values r, g, b.
It is this so-called color charge that is the origin of the strong interaction mediated
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1.1 Quantum Chromo Dynamics (QCD)

Table 1.1: The light quarks u, d and s: these masses are estimates of the current-quark
masses in the MS scheme at a scale µ ≈ 2GeV, taken from [1].

u d s

charge [e] 2/3 −1/3 −1/3
mass [MeV] 2.3+0.7

−0.5 4.8+0.7
−0.3 95± 5

Table 1.2: The heavy quarks c, t and b: c- and b-quark masses are the running masses
in the MS scheme, taken from [1].

c t b

charge [e] 2/3 2/3 −1/3
mass [GeV] 1.275± 0.025 173.5± 0.6± 0.8 4.18± 0.03

by the gluons and the interaction strength of which is measured by the coupling
parameter g. As mentioned before, the gauge group is SU(3)c, the group of special
unitary transformations that, in this case, acts in color space. The associated Lie
Algebra is generated for the fundamental representation ta = λa/2, where the λa are
the Gell-Mann matrices. The defining algebra is [ta, tb] = ifabctc where the fabc are
the SU(3)c structure constants. Using the gluon fields Aaµ we can construct the gauge
invariant field strength tensor, which is proportional to the commutator [Dµ, Dν ]:

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (1.3)

We can also define the dual field strength tensor

G̃a,µν = εµναβGa
αβ. (1.4)

Thus, the term proportional to θ in the Lagrangian shown in eq. (1.1) would result
in parity and CP violation due to strong interaction. Since so far there is no
experimental evidence for parity violation withtin QCD we can omit this last term,
i.e. from now on we set θ ≡ 0.
What is most important about this theory is that the coupling g is not a constant,
it always depends on the energy-momentum scale of the process that is under
investigation. It is, just like the quark masses, subject to renormalization, due to
quantum loop contributions to QCD matrix elements. In 1973, Wilczek, Gross and
Politzer [2, 3] discovered that QCD is an asymptotically free theory, i.e. that the
higher the energy scale µ, the smaller the coupling g(µ), which leads to the possibility
of perturbatively expanding QCD matrix elements in powers of g. Formulated
differently, it means that at high energies, the quarks effectively behave like free
particles. On the other hand, at low energies (below 1GeV) the coupling g is large,
so it renders a perturbative treatment of QCD impossible. There are several non-
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1 Theoretical Background

perturbative approaches to QCD: Lattice QCD (LQCD) [4, 5], effective field theories
(EFTs) [6–8], Shifman–Vainshtein–Zakharov sum rules [9, 10] and many more.
As is clearly visible from tabs. 1.1, 1.2, there is a hierarchy in the masses of quarks,
namely

mu,d � ms < 1GeV < mc,b � mt, (1.5)

which means that if we are interested in the properties of hadrons at low energies,
the heavy quarks can be integrated out and the only dynamical degrees of freedom
left are the light quarks and the gluons. Sometimes, even the s-quark is integrated
out, which leaves only the two lightest quarks and the gluons as explicit degrees
of freedom. The contribution of the quark flavors that have been integrated out is
encoded in the (local) couplings of the other fields of the theory.
In this work we are interested in the low energy properties of hadrons and our
non-perturbative method of choice is Chiral Perturbation Theory (ChPT) combined
with data obtained from lattice QCD (LQCD) simulations.

1.2 Chiral Perturbation Theory (ChPT)
At low energies, the effective degrees of freedom are not quarks and gluons, but rather
hadrons (mesons and baryons) formed from quarks and gluons. This observation
combined with the assumption that QCD is the theory describing strong interactions
leads to the idea of constructing an effective quantum field theory that has the
same symmetries as QCD, is Lorentz invariant, satisfies the principles of quantum
mechanics and the cluster decomposition principle [11, 12], i.e. distant experiments
should give uncorrelated results. This most general effective quantum field theory will
be written down in a Lagrangian with infinitely many terms and is unrenormalizable
in the usual sense (and has consequently infinitely many counterterms for which one
can, however, find an appropriate ordering scheme). Before we concern ourself with
renormalizability and the construction of the effective Lagrangian we have to take a
look at the symmetries (broken and unbroken) of QCD.

1.2.1 Chiral symmetry breaking
Since we are only interested in the low energy properties of our theory we are allowed
to only keep the three lightest degrees of freedom. Additionally for now, we only
consider the massless part of the QCD Lagrangian,

L 0
QCD = iq̄ /Dq − 1

4G
a
µνG

a,µν , (1.6)

while treating the mass term as a small perturbation to the massless case. Here
we have used that qT = (u, d, s) and we have dropped all color and flavor indices.
Using the chirality projectors we can now decompose the quark spinor into left- and
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1.2 Chiral Perturbation Theory (ChPT)

right-handed spinors so that q = qL + qR:

qL = 1− γ5

2 q, qR = 1 + γ5

2 q. (1.7)

Using the properties of the matrix γ5 = iγ0γ1γ2γ3 one finds that in L 0
QCD left- and

right-handed quarks do not interact, i.e. they completely decouple from each other:

iq̄ /Dq = iq̄L /DqL + iq̄R /DqR. (1.8)

This means L 0
QCD is invariant under global, separate transformations in flavor space,

e.g.

qL 7→ LqL, qR 7→ RqR, (1.9)

where L ∈ U(3)L and R ∈ U(3)R, and we can now rewrite the whole symmetry group
to

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)L × U(1)R
= SU(3)V × SU(3)A × U(1)V × U(1)A,

(1.10)

where the subscript V stands for the vector- and A for the axialvector-transformations
(where we have used R = L and R = L† respectively). The symmetry associated
with this set of transformations is called chiral symmetry while the limit of vanishing
quark masses is usually referred to as the chiral limit.
Experiments indeed show that QCD has this invariance under U(1)V transformations,
which corresponds to baryon number conservation, whereas the axial U(1)A symmetry
is anomalously broken, which means that the symmetry is broken when quantizing
the theory.
When looking at the hadron spectrum we find that a SU(3)L × SU(3)R symmetry
cannot be realized, not even approximately, since the expected (approximate) parity-
doubling of hadron states is not at all observed in nature. On the other side one finds
that the lowest-lying baryons are arranged in approximate multiplets of this SU(3)V
symmetry. Since the symmetry of the Lagrangian is not shared by the ground state
it is spontaneously broken, which according to Nambu and Goldstone leads to the
appearance of massless spin zero particles, so-called Goldstone bosons [13, 14]. To
be exact, for every generator of the broken symmetry one Goldstone boson emerges,
so in our case where SU(3)L × SU(3)R is broken down to just the vectorial group,
we should have 32 − 1 Goldstone bosons with the quantum numbers of the SU(3)A,
i.e. an octet of pseudoscalar mesons. In the idealized case of L 0

QCD they would be
massless, but since chiral symmetry is also explicitly broken by the mass term, we
expect them to have small masses, at least small compared to the first particle that
is not an approximate Goldstone boson, namely the vector meson ρ(770) with mass
Mρ ≈ 775MeV. Looking at the eight lowest-lying pseudoscalar mesons (see tab. 1.3)
we find that this is indeed the case, although the supression factor MK/Mρ ≈ 0.64 is
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1 Theoretical Background

Table 1.3: Masses and quantum numbers of the lowest-lying octet mesons, taken from
[1]

π± π0 K± K0, K̄0 η

JP 0− 0− 0− 0− 0−

approx. mass [MeV] 140 135 494 498 548

quite large compared to the two-flavor case, where one only has a triplet of pion states
and thus a supression factor of Mπ/Mρ ≈ 0.18. Hence a better convergence behavior
for a perturbative expansion around the chiral limit is expected for the two-flavor
case. In the purely mesonic sector which we are considering now, the suppression
factors appear in even powers, i.e. (MK/Mρ)2 ≈ 0.41 and (Mπ/Mρ)2 ≈ 0.033, hence
we expect a better convergence for this setup than when e.g. baryons or vector
mesons are included.

1.2.2 Constructing ChPT
In this section we will describe how to construct an effective field theory of QCD
based on the symmetries and symmetry breaking patterns described in the last
subsection. This effective theory will then describe the interaction between mesons
at low energies. As a first step we add external vector (vµ(x)), axialvector (aµ(x)),
scalar (s(x)) and pseudoscalar (p(x)) sources to eq. (1.6):

L = L 0
QCD + q̄

[
γµ(vµ + γ5a

µ)− (s− iγ5p)
]
q. (1.11)

All these external fields are Hermitian in flavor space and we have only included the
octet components of aµ and vµ, i.e. vµ = viµλ

i/2 and aµ = aiµλ
i/2 where the λi with

i = 1, . . . , 8 are the well known Gell-Mann matrices. Hence the traces in flavor space
〈vµ〉 and 〈aµ〉 are zero. We can now write down the generating functional

eiZ[v,a,s,p] =
〈

0
∣∣∣∣T{exp

(
i
∫
d4x ˆ̄q

[
γµ(vµ + γ5a

µ)− (s− iγ5p)
]
q̂
)}∣∣∣∣ 0〉 , (1.12)

which is invariant under SU(3)L × SU(3)R transformations if the external sources
transform in the following way:

rµ 7→ RrµR† + iR∂µR†, (1.13)
lµ 7→ LlµL† + iL∂µL†, (1.14)

s+ ip 7→ R(s+ ip)L† (1.15)

Here, again, L ∈ SU(3)L and R ∈ SU(3)R and we have used the linear combinations
lµ and rµ defined as rµ = vµ + aµ and lµ = vµ − aµ. We also have made use of the
ordinary time ordering T{. . .} in the definition of the generating functional. The
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1.2 Chiral Perturbation Theory (ChPT)

scalar source s usually contains the quark mass matrix M = diag(mu,md,ms) in
such a way that s = M + . . . and is thus treated, as mentioned before, as an external
perturbation of the otherwise massless theory.
Introducing these external fields is useful in two different ways: on one hand, this
formalism is very well suited for adding a broad variety of interactions, e.g. adding
the coupling of photon fields to the quark fields. On the other hand all Greens
functions for quark currents can be derived by taking functional derivatives with
respect to the external sources.
The key idea of an effective theory is now to write eq. (1.12) as a path integral over
the effective degrees of freedom, in our case the Goldstone bosons:

eiZ[v,a,s,p] =
∫

[dU ] exp
(
i
∫
d4xLeff(U, v, a, s, p)

)
. (1.16)

Note that here, the path-integral measure is denoted as [dU ] while the field U collects
the Goldstone bosons in a suitable way which will be specified below. By rewriting
eq. (1.12) we have made the assumption that the low-energy behavior of QCD is
dominated by the interactions of these Goldstone bosons and hence eq. (1.16) is
not applicable in an energy regime where other degrees of freedom like the ρ(770)
vector meson or baryons become important for the dynamics. What has also been
assumed is that quarks and gluons never appear as asymptotic states, because due
to confinement free quarks or gluons do not contribute to long-range dynamics at
low energies.
The rest of this subsection will be concerned with the construction of Leff and will
closely follow [15] whereas the fundamental principles are explained in [16, 17]. We
start from the fact that our initial symmetry group G is spontaneously broken to
H, which is a proper subgroup of G. Note that according to the Goldstone theorem
[13, 14] we then have dim(G)− dim(H) = n Goldstone boson fields which we will
collect in a vector ~Φ = (φ1, . . . , φn)T . We find that G acts on ~Φ in the following way:

g ∈ G : ~Φ 7→ ~Φ′ = ~f
(
g, ~Φ

)
, (1.17)

where ~f fulfills the group homomorphism property

~f
(
g1, ~f

(
g2, ~Φ

))
= ~f

(
g1g2, ~Φ

)
. (1.18)

Now we consider the subgroup H that leaves the ground state (~Φ ≡ ~0) invariant, i.e.

h ∈ H : ~f
(
h,~0

)
= ~0. (1.19)

In our case, the subgroup H is to be identified with SU(3)V . Using the group
homomorphism property eq. (1.18) again we find that for all h ∈ H, g ∈ G,

~f
(
gh,~0

)
= ~f

(
g,~0

)
, (1.20)
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1 Theoretical Background

and thus we have found an invertible mapping from the coset space G/H onto
the space of Goldstone boson fields. Also, the dimension of G/H is the same as
the number of generators that do not leave the ground state invariant, i.e. the
dimension of the space of Goldstone boson fields. So now we have found a one-to-one
correspondence of the elements of G/H to the Goldstone boson fields. Looking
at the action of G on G/H one finds, as elaborately described in [15], that each
element of G/H and thus the Goldstone bosons can be uniquely characterized by
a unitary matrix U(x) that contains all 8 Goldstone bosons and transforms under
chiral transformations in the following way:

U(x) 7→ RU(x)L†, L ∈ SU(3)L, R ∈ SU(3)R. (1.21)

There is still a freedom of choice regarding the coordinates on the group manifold
G/H and the standard choice for U(x) is

U(x) = exp
(
i
φ(x)
F0

)
, (1.22)

where φ(x) = λaφa(x) is a Hermitian 3× 3 matrix

φ(x) =
√

2


1√
2π

0(x) + 1√
6η(x) π+(x) K+(x)

π−(x) − 1√
2π

0(x) + 1√
6η(x) K0(x)

K−(x) K̄0(x) − 2√
6η(x)

 , (1.23)

and F0 is a dimensionful constant. One finds that the matrix element of the axial
vector current between a one-boson state and the vacuum can be expressed as

〈0 |Aµa(0)|φb(p)〉 = ipµδabF0, (1.24)

by expanding the axial current to lowest order in powers of φ. One calls F0 the
pseudoscalar meson decay constant in the chiral limit.
Now that we have chosen a representation for the Goldstone boson fields we can
construct the corresponding effective Lagrangian. Lorentz invariance dictates that
derivatives of the Goldstone fields can only appear in pairs and for now we neglect
all the external fields v, a, s, p. Since we are talking about a low energy expansion
all the appearing Goldstone boson momenta q have to be small compared to a
typical hadronic scale of ≈ 1GeV. This expansion of matrix elements in powers of q
goes by the name of Chiral Perturbation Theory. As mentioned above the effective
Lagrangian will have infinitely many terms and we can cluster them according to
the number of derivatives acting on the Goldstone boson fields:

Leff = L (0) + L (2) + L (4) + . . . . (1.25)
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1.2 Chiral Perturbation Theory (ChPT)

Since U is a unitary matrix, L (0) = U †U = 1 and can therefore be neglected. Thus,
the leading order term in the effective Lagrangian is L (2) and takes the form

L (2) = F 2
0

4
〈
(∂µU) (∂µU)†

〉
+ . . . , (1.26)

where 〈. . .〉 still stands for a trace in flavor space and the prefactor F 2
0 /4 has been

chosen in such a way that the lowest order expansion of the Lagrangian reproduces
the well known kinetic terms

L (2) =
(
∂µπ

+
) (
∂µπ−

)
+
(
∂µK

+
) (
∂µK−

)
+ . . . . (1.27)

Since we want our theory to be invariant under local chiral transformations (Leutwyler
showed in [18] that this is neccessary to have a theoretically sound construction of
ChPT), we have to introduce a covariant derivative that contains the external fields
lµ and rµ,

∇µU = ∂µU − irµU + iUlµ. (1.28)

We want to have a consistent power counting scheme, thus we need the external
fields aµ and vµ to also be counted as O(q). So far we have dealt with the chiral limit
of the theory, i.e. all quark masses were zero. Once we switch on the quark masses
we have explicit chiral symmetry breaking in form of the mass term which in full
QCD behaves as follows under a decomposition into left- and right-handed quarks:

q̄M q = q̄LM qR + q̄RM qL. (1.29)

Since we want to have the exact same explicit symmetry breaking pattern as in QCD,
we can now construct the full lowest order chiral Lagrangian, which contains the
scalar field s = M + . . ., the field U and derivatives acting thereon:

L (2) = F 2
0

4
〈
(∇µU) (∇µU)† + 2B0(sU † + Us†)

〉
, (1.30)

where B0 is related to the quark condensate in the chiral limit. One can clearly see
that we have counted the quark masses, and thus the scalar field that contains the
quark masses, as O(q2), which can be understood when we expand eq. (1.30) to
lowest order. We then find the famous Gell-Mann-Oakes-Renner relation [19] that
the squared Goldstone boson masses are proportional to the quark masses:

M2
π± = B0(mu +md), (1.31)

M2
π0 = B0(mu +md) +O((mu −md)2), (1.32)

M2
K± = B0(mu +ms), (1.33)

M2
K0 = B0(md +ms), (1.34)

8



1 Theoretical Background

M2
η = B0

3 (mu +md + 4ms) +O((mu −md)2). (1.35)

All the contributions proportional to the mass difference between mu and md dis-
appear in the isospin symmetric case mu = md but have to be taken into account
if one allows for isospin breaking. Throughout this thesis we will work in the ap-
proximation of isospin symmetry and thus M2

π± = M2
π0 , M2

K± = M2
K0 . Employing

eqs. (1.31)-(1.35) and again assuming isospin symmetry we can verify the famous
Gell-Mann-Okubo mass formula

4M2
K = 3M2

η +M2
π , (1.36)

which is fulfilled up to a few percent in nature. Using the Lagrangian eq. (1.30), at
leading order one can reproduce the results that are already known from current
algebra [20]. The effective Lagrangian method is advantageous in the sense that
higher order corrections can be systematically calculated.
The unknown constant can be connected to the quark condensate and the decay
constant F0 via eq. (1.16) and one finds the following (lowest order) relation:

〈0|ūu|0〉 =
〈
0|d̄d|0

〉
= 〈0|s̄s|0〉 = −F 2

0B0 + . . . . (1.37)

Later on we will also need L (4), which was first constructed by Gasser and Leutwyler
[7], so it is convenient to present it in its entirety at this point:

L (4) = L1
〈
(∇µU)† (∇µU)

〉2
+ L2

〈
(∇µU)† (∇νU)

〉 〈
(∇µU)† (∇νU)

〉
+ L3

〈
(∇µU)† (∇µU) (∇νU)† (∇νU)

〉
+ L4

〈
(∇µU)† (∇µU)

〉 〈
χ†U + χU †

〉
+ L5

〈
(∇µU)† (∇µU) (χ†U + χU †)

〉
+ L6

〈
χ†U + χU †

〉2
+ L7

〈
χ†U − χU †

〉2
+ L8

〈
χ†Uχ†U + χU †χU †

〉
− iL9

〈
FR
µν (∇µU) (∇νU)† + FL

µν (∇µU)† (∇νU)
〉

+ L10
〈
U †FR

µνUF
L,µν

〉
+H1

〈
FR
µνF

R,µν + FL
µνF

L,µν
〉

+H2
〈
χ†χ

〉
,

(1.38)

where we have introduced new building blocks

χ = 2B0(s+ ip), (1.39)
FL
µν = ∂µlν − ∂νlµ − i[lµ, lν ], (1.40)
FR
µν = ∂µrν − ∂νrµ − i[rµ, rν ]. (1.41)

The last two terms in eq. (1.38) do not have any physical relevance, they are
counterterms to the renormalization of one-loop graphs and are hence often omitted.
All these constants Li and Hi are in no way restricted by the theory and basically they
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1.2 Chiral Perturbation Theory (ChPT)

encode all the information about the integrated out heavier quarks. They are free
parameters of the theory and have to be fixed with input from experiments or LQCD.
Since the number of terms in the effective Lagrangians gets large pretty fast one
might say that the theory loses predictive power when doing higher order analyses.
But for a given process only subsets of low energy constants (LECs) contribute at a
given order, hence it is not neccessary to pin down all the LECs appearing in the
effective Lagrangians to said order.

1.2.3 Power counting and renormalization
Since we have a proper power counting scheme for the effective Lagrangian we now
want to translate said scheme to a power counting scheme for Feynman diagrams.
We start with the propagator for the Goldstone boson fields in momentum space,

i∆(q) = i

q2 −M2
φ

, (1.42)

which we obviously count as O(q−2). This will always be the case, also if ∆(q)
appears inside of a loop integral with its momentum q integrated up to infinity. This
will still lead to a consistent counting scheme if we use dimensional regularization.
Let I be the number of internal Goldstone boson lines, Vn the number of vertices
from L (n) and L the number of loops, then any given amplitude A expressed in
momenta q takes the following form:

A ∝
∫

(ddq)L 1
(q2)I

∏
n

(qn)Vn . (1.43)

If we now want A to be of chiral dimension D, i.e. A is of order O(qD), then we
find that

D = dL− 2I +
∑
n

nVn, (1.44)

and using the identity I = L − 1 + ∑
n Vn we can eliminate I and end up with a

counting formula for our perturbative expansion in Feynman diagrams:

D = (d− 2)L+ 2 +
∑
n

(n− 2)Vn. (1.45)

We see that for d ≥ 2 the chiral dimension D is non-negative; for definiteness we
set d = 4 from now on. For an increasing number of loops, the amplitude A will
be supressed since q is a small momentum and the lowest order contribution is of
O(q2). The graphs associated with an O(q2) amplitude consist of no loops and an
arbitrary number of vertices originating from L (2). At next to leading order we
have one loop graphs with vertices from L (2), tree level graphs with exactly one
vertex from L (4) and tree level graphs with several insertions from L (2). Combining
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1 Theoretical Background

eq. (1.45) with the earlier mentioned fact that every Lagrangian of fixed order has
only a finite number of terms leads to the conclusion that at fixed chiral order, only a
finite number of Feynman diagrams contribute to a process at a certain chiral order.
Since all loop graphs contain ultraviolet (UV) divergences as the dimension d→ 4
they require renormalization, which is only possible if a theory contains counterterms
that can absorb these divergences. The effective Lagrangian of ChPT as we have
presented it here contains all possible terms that are consistent with the required
symmetries, thus every UV divergence created by loop graphs will be absorbed by a
LEC from the same Lagrangian. Of course we need to employ a regularization scheme
that keeps all symmetries relevant for the theory intact, as is the case for dimensional
regularization. As presented in [7] all one-loop divergences can be absorbed in the
Li and Hi of eq. (1.38):

Li = Lri (µ) + Γiλ, i = 1, . . . , 10, (1.46)
Hi = Hr

i (µ) + ∆iλ, i = 1, 2, (1.47)

where prefactors Γi and ∆i are known from the associated β-function while the
divergence is contained in λ:

λ = µd−4

(4π)2

[ 1
d− 4 −

1
2(log 4π + Γ′(1) + 1)

]
. (1.48)

Here we have introduced a mass scale µ, called the scale of dimensional regularization.
Subtracting terms proportional to λ from one-loop amplitudes is commonly known as
the modified minimal subtraction scheme (for short MS scheme), which is a certain
scheme within dimensional regularization. There also exists the minimal subtraction
(MS) scheme where only the term proportional to the (d − 4) pole is subtracted
from the amplitude. As one can see from eqs. (1.46), (1.47) the renormalized LECs
depend on the scale µ, as is the case for the subtracted loop graphs, while the full
amplitude in combination of both effects is independent of the scale µ.
Up to now we have only considered the interactions between mesons, which gives
insight into a variety of interesting quantities like meson decay constants, meson-
meson scattering amplitudes and many more. So far we cannot investigate any
processes that include baryons or vector mesons and thus our current framework
needs to be extended. The next sections will show how to introduce baryons in the
theory and how to systematically calculate baryonic observables in this framework.

1.3 Baryon Chiral Perturbation Pheory (BChPT)

In this section we systematically want to introduce baryons into the framework of
ChPT (we closely follow [21]) so that transition amplitudes

F (~p, ~p ′, v, a, s, p) = 〈B′(~p ′)|B(~p)〉cv,a,s,p , (1.49)

11



1.3 Baryon Chiral Perturbation Pheory (BChPT)

can be calculated in terms of a low-energy expansion. B′ and B stand for outgoing
and incoming baryon states and they carry three momenta ~p ′ and ~p respectively.
We will only consider contributions from connected Feynman diagrams, which is
indicated by the superscript c and analogously to the mesonic sector we again want
these matrix elements to be evaluated in the presence of external fields. Here, we only
need to consider single-baryon-states, so we will neglect all possibilities of multiple
baryon states as incoming or outgoing particles, hence processes like baryon-baryon
scattering cannot be described by our theory. We will extend the theory of ChPT by
the lowest-lying octet baryons which we collect in a 3× 3 Hermitian matrix B,

B =


1√
2Σ0 + 1√

6Λ Σ+ p

Σ− − 1√
2Σ0 + 1√

6Λ n

Ξ− Ξ0 − 2√
6Λ

 , (1.50)

that transforms nonlinearly under chiral transformations, i.e.

B → K(L,R, U)BK†(L,R, U), (1.51)

where again L ∈ SU(3)L, R ∈ SU(3)R and the compensator field K is a non-linear
function of the field U and L, R, which is defined by its action on the field u =

√
U :

u→ KuL† = RuK†. (1.52)

We can now construct building blocks X that transform under chiral transformations
as X → KX K†, which will be the main building blocks of our effective Lagrangian:

uµ = iu†(∇µU)u†, (1.53)

χ± = 1
2
(
uχ†u± u†χu†

)
, (1.54)

F±µν = u†FR
µνu± uFL

µνu
†. (1.55)

We find that in this chosen representation, the covariant derivative takes the form

DµB = ∂µB + [Γµ, B] , (1.56)

where the chiral connection Γµ is given by

Γµ = 1
2
[
u†, ∂µu

]
− i

2
(
u†rµu− ulµu†

)
. (1.57)

So far we can tell that uµ has to be counted as O(q) since it contains a derivative
acting on a meson field. We also find that F±µν is of O(q2). However, it is not yet
clear how the baryon field B and the covariant derivative thereof should be counted,
since the baryon octet mass in the chiral limit, m0, does not vanish. An analysis of
the behavior of free baryon fields as performed in [21] shows that only the baryon
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1 Theoretical Background

three-momentum ~p can be counted as O(q) and thus we end up with the following
important counting rules:

B, B̄ = O(1), DµB = O(1), i /DB −m0B = O(q). (1.58)

Furthermore we present the counting rules for baryon bilinears of elements of the
Clifford algebra, since these will also be used for writing down the effective meson-
baryon Lagrangians:

B̄ {1, γµ, γ5γµ, σµν}B = O(1), B̄γ5B = O(q). (1.59)

Using the building blocks eq. (1.53)-(1.55) and counting rules eqs. (1.58), (1.59)
we can write down the lowest order effective Lagrangian for the meson-baryon
interaction:

L (1)
MB =

〈
B̄(i /D −m0)B

〉
+ D

2
〈
B̄γ5γ

µ {uµ, B}
〉

+ F

2
〈
B̄γµγ5 [uµ, B]

〉
. (1.60)

As already mentioned before, m0 is the baryon octet mass in the chiral limit and
D and F are the axial meson baryon couplings. In the chiral limit D + F = g0

A,
where g0

A is the axial coupling constant in the chiral limit from SU(2)f BChPT. The
constants D and F can in principle be determined by fitting to semileptonic baryon
decays [22, 23] or fitting to hyperon axial coupling data obtained through LQCD
simulations [24]. The values obtained from the semileptonic baryon decays do not
match the ones obtained from fits to LQCD simulation data and thus, we will employ
a very common choice for the SU(3) axial couplings, namely D = 0.75, F = 0.5.
Analogously to the derivation of eq. (1.45) we can obtain the ordering for a perturba-
tive expansion within our theory by considering the fact that the baryon propagator
is counted as O(q−1) and hence we end up with an expression for the chiral dimension
D that also includes baryons:

D = 2L+ 1 +
∑
n

(n− 2)V MM
n +

∑
n

(n− 1)V MB
n . (1.61)

We have attached superscripts to the number of vertices per chiral order depending
of whether they originate from the meson-meson or the meson-baryon Lagrangians.
Eq. (1.61) implies that the chiral ordering starts at O(q), as one would expect since
we also have a Lagrangian of first chiral order.
The SU(2)f version of this theory was first worked out by Gasser, Sainio and Švarc
[25] and is in general called Baryon Chiral Perturbation Theory (BChPT). It is
noted in the aforementioned publication that, in contrast to meson ChPT, where the
MS renormalization scheme is used, one now has to use a different renormalization
scheme since dimensional regularization combined with the MS scheme does not
maintain power counting when including baryons. The evaluated loop graphs will in
general contain terms of lower chiral order than suggested by naïve power counting,
so that we can speak of a break down of chiral power counting when using this
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1.4 Infrared regularization for baryons

renormalization scheme. This behavior can be explained with the appearance of
a non-vanishing mass scale in this theory, namely the baryon mass in the chiral
limit, m0. This lead to several suggestions of renormalization schemes that keep
chiral power counting intact: the non-relativistic heavy baryon approach (HBChPT)
[26, 27], the relativistic infrared regularization (IR) scheme [28], based on ideas
presented in [29, 30], and the newer, also Lorentz-invariant, extended-on-mass-shell
scheme (EOMS) [31]. We will give a short introduction to the IR scheme after this
section.
Since we will perform a full one-loop calculation and analysis of the baryon octet
masses we need additional terms for the effective baryon-meson Lagrangian which
we shall present here. The second order Lagrangian differs from the one in [33] as
one term was eliminated in [34, 35]:

L (2)
MB = bD/F

〈
B̄ [χ+, B]±

〉
+ b0

〈
B̄B

〉
〈χ+〉

+ b1/2
〈
B̄
[
uµ, [uµ, B]∓

]〉
+ b3

〈
B̄ {uµ, {uµ, B}}

〉
+ b4

〈
B̄B

〉
〈uµuµ〉

+ ib5/6
〈
B̄σµν [[uµ, uν ] , B]∓

〉
+ ib7

〈
B̄σµνuµ

〉
〈uνB〉

+ i b8/9

2m0

(〈
B̄γµ

[
uµ, [uν , [Dν , B]]∓

]〉
+
〈
B̄γµ

[
Dν , [uν , [uµ, B]]∓

]〉 )
+ i b10

2m0

(〈
B̄γµ {uµ, {uν , [Dν , B]}}

〉
+
〈
B̄γµ [Dν , {uν , {uµ, B}}]

〉)
+ i b11

2m0

(
2
〈
B̄γµ [Dν , B]

〉
〈uµuν〉+

〈
B̄γµB

〉
〈[Dν , uµ]uν + uµ [Dν , u

ν ]〉
)
,

(1.62)
L (4)

MB = d1
〈
B̄[χ+, [χ+, B]]

〉
+ d2

〈
B̄[χ+, {χ+, B}]

〉
+ d3

〈
B̄{χ+, {χ+, B}}

〉
+ d4

〈
B̄χ+

〉
〈χ+B〉+ d5

〈
B̄[χ+, B]

〉
〈χ+〉+ d6

〈
B̄B

〉
〈χ+〉 〈χ+〉

+ d7
〈
B̄B

〉 〈
χ2

+

〉
+ . . . .

(1.63)

1.4 Infrared regularization for baryons
The goal of Becher and Leutwyler was, as they wrote in the introduction of [28], to
find a regularization procedure that is Lorentz invariant and reproduces the HBChPT
result when performing a non-relativistic expansion, without having to deal with
the problems associated with a purely non-relativistic treatment, i.e. problems with
convergence of the heavy baryon expansion in certain energy regions as presented in
sec. 3 of [28]. The basic idea of the regularization scheme is to separate the ’soft’
parts that come from the meson propagator from the ’hard contribution’ that stems
from the baryon propagator and absorb the latter into the local couplings while
keeping the ’soft’ part which does not violate chiral power counting, as was first
formulated by Tang and Ellis [29, 30].
We will illustrate the basic idea of Becher and Leutwyler for the easiest scalar one-loop
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integral

H = −i
∫ ddl

(2π)d
1

[M2 − l2] [m2 − (P − l)2] , (1.64)

which contains the meson propagator with meson mass M of O(q) and the baryon
propagator with mass m and momentum P . Using the power counting as was
explained before we would assign a chiral order of O(qd−3). We now need to extract
the ’soft’ part or, as called in [28], the infrared singular part, which has d-dependent
powers of the mass M , i.e. Md−3, Md−2, etc.
We start with the standard Schwinger-Feynman parametrization to combine the two
propagators, i.e.

H = −i
∫ ddl

(2π)d
∫ 1

0

du

[(1− u)(M2 − l2) + u(m2 − (P − l)2)]2
, (1.65)

and after carrying out the l integration we find the following result:

H = md−4

(4π)d/2 Γ
(

2− d

2

)∫ 1

0
du

[
u2 − 2αΩu(1− u) + α2(1− u)2

] d
2−2

. (1.66)

Here we have introduced the dimensionless quantities

α = M/m, Ω = P 2 −m2 −M2

2mM . (1.67)

For very small α, i.e. approaching the chiral limit, the integral has an infrared
singularity which arises in the limit of small u. From eq. (1.65) we can already see
that the low energy behavior is connected to u ≈ 0 (the infrared singular part) while
at u ≈ 1 the hard momentum structure of the baryon propagator dominates. Hence
we will isolate the divergent part by rescaling the integration variable u as u = αx.
Again, in the limit of small α, the upper integration limit becomes large, hence we
artificially extend the integration to infinity and we define the infrared singular part
of the integral as

I = K
∫ ∞

0
du

[
u2 − 2αΩu(1− u) + α2(1− u)2

] d
2−2

= K αd−3
∫ ∞

0
dx
[
1− 2Ωx+ x2 + 2αx(Ωx− 1) + α2x2

] d
2−2

,

(1.68)

where we have introduced the abbreviation K to collect the d-dependent coefficients.
As can be derived from eq. (1.68) by expanding in the meson mass parameter α for
a fixed Ω, the infrared sigular integral exclusively contains d-dependent powers of α
while what Becher and Leutwyler call the remainder and which is often also called
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the regular part R,

R = −K
∫ ∞

1
du

[
u2 − 2αΩu(1− u) + α2(1− u)2

] d
2−2

, (1.69)

is an ordinary Taylor series in the parameter α, i.e.

I = md−4

(4π)d/2α
d−3

(
c0 + αc1 + α2c2 . . .

)
, (1.70)

R =
md−4Γ

(
2− d

2

)
(4π)d/2(d− 3)

(
1− αΩ + α2 1 + (d− 6)Ω2

d− 5 + . . .

)
, (1.71)

where the coefficients ci depend on Ω. In the case of on-shell baryons (P 2 = m2),
they reduce to

ci = 1
2i!Γ

(
i+ 1

2

)
Γ
(

3− d+ i

2

)
. (1.72)

One can find that this artificial extension of the integration interval introduces new
divergencies for higher dimensions d. If we now take the limit d → 4 (again for
on-shell baryons) we find that the infrared singular part I produces a leading oder
term

I(d→ 4) = − 1
16π

(
M

m

)
+O(α2), (1.73)

which is of O(q) and thus obeys chiral power counting, whereas the regular part
contains power counting violating terms and already starts at O(q0):

R(d→ 4) = −2λ+ 1
16π2 +O(α). (1.74)

The regularization prescription given by Becher und Leutwyler is to employ the
decomposition H = I + R. Since the regular part of the integral is polynomial in
the small expansion parameter q all contributions from R can be absorbed in the
low energy constants while for the infrared part we again use the MS scheme for the
treatment of UV divergencies appearing in I.
The generalization of this method to tensorial integrals and integrals with more
than two propagators is presented in the original article and for deeper and more
comprehensive discussion of infrared regularization the reader is referred to [28]. This
method has been reformulated in [36] analogously to their own EOMS scheme.
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1.5 Vector mesons in ChPT

After systematically introducing baryons into the framework of ChPT we now aim
to do the same for vector mesons so that we can calculate transition amplitudes

V = 〈V ′(p′)|V (p)〉cv,a,s,p , (1.75)

where V ′ and V stand for the outgoing and incoming vector mesons and p′ and p
stand for the four momenta carried by the vector mesons. Over the years, a variety of
methods to incorporate vector mesons have been proposed: the so-called massive Yang-
Mills approach [37], vector mesons as Goldstone bosons of a spontaneously broken
hidden local symmetry [38, 39], the approach brought forth by Weinberg, Callan,
Coleman, Wess and Zumino [16, 17, 40] and the formulation using antisymmetric
tensor fields to describe the vector mesons, formulated in [41, 42]. See [43] for a
recent review on the effects and problems of additional degrees of freedom in the
context of effective field theories. For a comprehensive review we refer the reader to
[44] while a brief but concise overview is presented in [45].
We will extend ChPT by the lowest-lying octet of massive vector mesons making use
of the formulation in terms of flavor singlet (Sµ) and octet (Vµ) vector fields

Vµ = V a
µ λ

a =


ρ0
√

2 + φ(8)
√

6 ρ+ K∗+

ρ− − ρ0
√

2 + φ(8)
√

6 K∗0

K∗− K̄∗0 − 2√
6φ

(8)


µ

, Sµ = φ(0)
µ . (1.76)

Introducing these fields and the corresponding bare masses MV,b and MS,b we can
write down the free Lagrangian for the octet and singlet vector fields

LV,free = −1
4 〈VµνV

µν〉+ 1
2
〈
M2

V,bVµV
µ
〉
− 1

4 〈SµνS
µν〉+ 1

2M
2
S,bSµS

µ, (1.77)

where we again have employed the definition of the covariant derivative eq. (1.56)
in Vµν = DµVν − DνVµ. Again we are interested in the interaction between the
lowest-lying vector meson octet and the pseudoscalar mesons, which is modeled in
the standard interaction Lagrangian:

LV,int = −igV√
2
〈[uµ, uν ]V µν〉+ gVA

2 εµνρσ 〈{DµVν , Vρ}uσ〉

+ gV SA εµνρσ 〈(DµVν)Sρuσ〉+ . . . .

(1.78)

In principle, we could construct interaction terms that have more than one derivative
acting on the vector meson fields Vµ, Sµ, but we will not consider these in our study
of vector meson masses. We also neglect all terms that lead to higher order tadpole
contributions to the masses.
Just as in BChPT, the appearance of a non-vanishing mass scale leads to power
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counting violating terms, and, similar to the baryon case, a heavy vector meson
approach was designed [47, 48], while later on also manifestly covariant regularization
schemes have been devised [49–52]. All of these regularization schemes have to face
the fact that these vector mesons are not stable particles but rather resonances and
hence at a certain mass threshold they will decay into other, lighter particles. Take
the ρ(770) as an example: at the threshold M2

ρ > 4M2
π it will with a probability

of nearly 100% decay into two pions, which, per definition, cannot both have ’soft’
momenta and hence, the imaginary part of the loop diagram that generates the
decay width will not scale as expected from naïve power counting. Absorbing this
imaginary part in one of the low energy counterterms, as discussed in [52, 53], would
spoil perturbative unitarity if this process were not considered to happen way above
the decay threshold, i.e. M2

ρ � 4M2
π . It should be mentioned that this imaginary

part contains valuable information about the vector mesons [50, 52], in this case the
decay width of the particle.

1.6 Lattice QCD
As already mentioned in sec. 1.1 there is another approach to obtaining low energy
results for QCD, namely lattice QCD, which started with K. Wilson’s seminal paper
[4]. He showed how to quantize a gauge field theory on an Euclidean space-time
lattice without giving up gauge invariance, and thus, rendering the Euclidean path
integral finite. Such a four dimensional hypercube both serves as an ultraviolet (finite
lattice spacing) and an infrared (finite volume) regulator.
In quantum field theories, we calculate the expectation value of a given operator Ô
via the path integral

〈
Ô
〉

= 1
Z

∫
[dψ̄][dψ][dAµ]O[ψ̄, ψ, Aµ]e−iS[ψ̄,ψ,Aµ], (1.79)

where Z is a normalization constant and is defined as

Z =
∫

[dψ̄][dψ][dAµ]e−iS[ψ̄,ψ,Aµ]. (1.80)

O[ψ̄, ψ, Aµ] is the functional associated to the operator Ô and S is the desired action
in Minkowski space, e.g. in the case of QCD we have

SQCD[ψ̄, ψ, Aµ] =
∫
d4xLQCD[ψ̄, ψ, Aµ]. (1.81)

If we discretize the Euclidean version of our quantum field theory and put it in a finite
hypercube, we render the evaluation of path-integrals possible: the dimensionality
decreases from infinity to a finite number, which still is of O(107). The calculational
effort is still enormous, so we need powerful supercomputers and Monte Carlo
methods to obtain the desired results.
Let us start from eq. (1.1) again with θ = 0, and first we will take a look at the purely
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gluonic part of the theory. We define a parallel transporter along a link connecting
the lattice site x and a next neighbour site x+ eµ (we will call the distance between
two sites the lattice spacing a):

U(x, µ) = P exp
(
i
∫ x

x+eµ
Aν(z)dzν

)
. (1.82)

If we consider a local gauge transformation g(x) ∈ G where G is the gauge group,
then the link U transforms in the following way:

U ′(x, µ) = g(x)U(x, µ)g−1(x+ eµ). (1.83)

This is obviously not gauge-invariant, but one finds that the trace of a closed path
of these gauge-links is gauge invariant. Let us consider the simplest closed loop, the
so-called plaquette, shown in fig. 1.1:

Uµν(x) = U(x, µ)U(x+ eµ, ν)U †(x+ eν , µ)U †(x, ν). (1.84)

By summing over all plaquettes, Wilson constructed the SU(N) gauge action, which

x x+ eµ

x+ eµ + eνx+ eν

Figure 1.1: The smallest Wilson loop (the plaquette term)

takes the following form:

S[U ] = β
∑
x

∑
µ<ν

[
1− 1

N
Re (tr {Uµν(x)})

]
, (1.85)

where we have introduced β = 2N/g2 and g being the coupling constant. In the
continuum limit a→ 0 one finds that this expression reduces to

lim
a→0

S[U ] = 1
2g

∫
d4x

∑
µ,ν

tr
{
F 2
µν(x)

}
, (1.86)

which reproduces the gluonic term of the Euclidean action. At a first glance, the
fermionic action is more straightforward than its gluonic counterpart, since only the
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differentiation has to be discretized

SF [ψ̄, ψ] = a4∑
x

ψ̄(x)
 4∑
µ=1

γµ
1
2a

(
ψ(x+ eµ)− ψ(x− eµ)

)
+mψ(x)

 , (1.87)

where m stands for the quark mass and the γµ are the Euclidean gamma matrices.
From this action we can derive the free fermion propagator on the lattice in momentum
space, which takes the following form

G(p) =
m− i

a

∑
µ sin(apµ)

m2 + 1
a2
∑
µ sin2(apµ) . (1.88)

We find that sin(apµ) does not only vanish for pµ = 0, but also for pµ = π
4 , which

means the continuum limit lima→0G(p) does not only produce the correct result at
p = (0, 0, 0, 0), but also at 15 other lattice sites. Thus, we do not have the description
of a single fermion but rather one for sixteen fermions with mass m. This is the
famous doubler problem for naive lattice fermions [54, 55]. The solution presented
by Wilson constitutes of adding a term that gives masses proportional to 1/a to the
doubler fermions so that they decouple in the continuum limit. In the Euclidean
action this so called Wilson term takes the form

SF,Wilson[ψ̄, ψ] = −a4∑
x

ψ̄(x)a
∑
µ

r

2a2

[
ψ(x+ eµ) + ψ(x− eµ)− 2ψ(x)

]
, (1.89)

where 0 < r ≤ 1. If we look at the gauge transformation properties of the fermion
fields

ψ′(x) = g(x)ψ(x), ψ̄′(x) = ψ̄(x)g−1(x), (1.90)

and combine this with the transformation rules for the gauge links eq. (1.83) we can
write down the full, gauge invariant, unimproved, discretized version of the QCD
action:

S[ψ̄, ψ, U ] = a4∑
x

ψ̄(x)
[∑
µ

γµ
2a
(
U(x, µ)ψ(x+ eµ)− U †(x− eµ, µ)ψ(x− eµ)

)
+mψ(x)− r

2a
∑
µ

(
U(x, µ)ψ(x+ eµ) + U †(x− eµ, µ)ψ(x− eµ)

− 2ψ(x)
)]
.

(1.91)

This is one way to write down a discretized version of the QCD action in Euclidean
spacetime, lattice QCD with Wilson fermions [4]. In principle we can add as many
terms as we want as long as they disappear in the continuum limit and are gauge
invariant. The process of doing this is called improving and it has to be done for
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1 Theoretical Background

both the action and the operators considered. There are various different ways
how to discretize the fermionic action, e.g. domain-wall fermions [58, 59], Kogut-
Susskind-fermions [54, 55, 60], overlap fermions [61, 62] and several more. All of
these formulations come with certain difficulties, be it of physical or calculational
nature: Wilson fermions explicitly break chiral symmetry, the action for Kogut-
Susskind-fermions produces taste doublers.
These discretized actions are then simulated on supercomputers using the Hybrid
Monte Carlo (HMC) algorithm [63, 64]. There are several important details to these
simulations that have to be mentioned here: first of all, the simulations are usually
carried out for quark masses larger than the values we know from experiment, which
brings into focus an interplay between lattice QCD and ChPT, where the pseudo-
Goldstone boson masses are mere parameters. Thus we can use ChPT formulae to
extrapolate lattice data down to the experimentally known realm, whilst determining
the low-energy constants which serve as fit parameters in this scenario. Secondly, as
explained before, all lattice QCD simulations are confined to the hypercube, i.e. to a
finite simulation volume. Hence for small volumes we find that all simulation data
in the end suffer from finite volume errors, which in principle have to be removed for
the data to yield the correct extrapolation results. To estimate these effects, one can
also use ChPT formulae which do not introduce additional fit parameters [65–67].
Lastly, one has to take care of the continuum limit, i.e. take the limit a→ 0. For
simulations with periodic boundary conditions there exists a natural lower limit for
the lattice spacing a so one can still obtain relevant data. There are several remedies
for that: one can again employ a special version of ChPT, called Symanzik’s effective
theory [68, 69], that sets up a proper power counting for the quantity a and allows
for a simultaneous extrapolation in both the pseudo-Goldstone boson masses and
the lattice spacing. On the simulation side one can nowadays carry out simulations
on a hypercubic lattice with open boundary conditions in temporal direction, which
allows for a correct sampling at low a without the auto-correlation time going to
infinity [70, 71], and thus the continuum limit can be approached. To understand all
the techniques and subtleties involved in LQCD simulations, we refer the reader to
several good reviews and books to the topic of lattice QCD [5, 72–74].
In this work we will make use of data supplied by the QCDSF collaboration [75].
This data is obtained in a particular way: all simulations are carried out along a
trajectory starting at the SU(3)f symmetric point, i.e. mu = md = ms, while keeping
the average quark mass m̄ = 1

3(mu +md +ms) fixed. This way ms and ultimately
the K and η masses in the simulations are always lower than the physical K and η
masses. This is very advantageous when we apply ChPT formulae to the lattice data
in question, since it is known that these formulae show severe convergence problems
at the physical point due to the large pseudo-Goldstone boson masses [76–85].
The aim of this work is to try to determine the LECs for several observables to rather
high accuracy using the lattice data supplied by the QCDSF collaboration. We
calculate the extrapolation formulae for the first moments of the parton distribution
functions (PDFs) for nucleons and hyperons (ch. 2), the baryon octet masses (ch.
3) and the vector meson masses (ch. 4). For the vector mesons we also present the
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1.6 Lattice QCD

one loop corrections to the φ(1020) − ω(782) mixing amplitude. We then employ
these formulae to carry out the mass extrapolation for the vector meson masses and
the baryon octet masses. We do not concern ourselves with either the continuum
extrapolation or the finite volume extrapolation, but we will comment on their
neccessity when carrying out the mass extrapolation.

22



2 First PDF moments from
BChPT

In this chapter we concern ourselves with the calculation of the extrapolation formulae
for the first moments of the parton distribution functions (PDFs) in the framework of
covariant Nf = 2 + 1 BChPT. Furthermore, we discuss convergence by investigating
higher-order effects for the formulae presented here. This work was published in
the European Physics Journal A under the title ’The first PDF moments for three
dynamical flavors in BChPT’ [86].

2.1 Introduction

Successfully probing and understanding the inner structure of baryons is one of
the major branches of research within the hadron physics community: obtaining
information about the form factors, about angular momentum carried by the quarks
and gluons, about the moments of parton distribution functions etc. by experiment is
imperative for that understanding. But just as important is the theoretical description
of these seemingly unconnected structure observables, which can be brought together
under the concept of generalized parton distributions (GPDs) [87–89]. We will give
a brief introduction here. For a very extensive review on the subject matter, we refer
the reader to [90].
From a BChPT standpoint, we are interested in investigating matrix elements of the
form

〈B′, s′, p′ |Oµµ1...µN |B, s, p〉 , (2.1)

where the operator Oµµ1...µN will be defined later, B′, B are outgoing/incoming
baryons of spin s′, s and momentum p′, p. Let us start with the definition of the
prominent kinematic variables

p̄ = p+ p′

2 , ∆ = p′ − p, t = ∆2. (2.2)
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2.1 Introduction

We also need the definition of light cone coordinates

v± = 1√
2
(
v0 ± v3

)
, (2.3)

where v is an arbitrary four vector. Using these definitions one can define the parity
even generalized parton distributions

F q = 1
2

∫ dλ

2πe
ix(p̄z)

〈
p′
∣∣∣∣q̄ (−1

2z
)
/n−q

(1
2z
)∣∣∣∣ p〉

z=λn−

= 1
2(p̄n−)

[
Hq(x, ξ, t)ū(p′)/n−u(p) + Eq(x, ξ, t)ū(p′)iσ

αβ(n−)α∆β

2m u(p)
]
,

(2.4)

where we have introduced the kinematical parameters skewness ξ and momentum
fraction x. Note that since we chose z = λn−, n− can be an arbitrary light-like vector.
We then find that the skewness ξ can be expressed as ξ = −(∆n−)/(2p̄n−). Also
note that this definition is only valid in the light-cone gauge, i.e. A+ = 0, otherwise
the above expression is not gauge invariant and has to have a Wilson line W inserted,
connecting the two fields at positions −z/2 and z/2:

W
[
−1

2z
−,

1
2z
−
]

= P exp
(
ig
∫ − 1

2 z
−

1
2 z
−

dx−A+(x−n−)
)
. (2.5)

These generalized parton distribution functions and the Mellin moments thereof
encode information about baryon structure, e.g., we obtain the Pauli and Dirac form
factors from the zeroth moments of Hq and Eq:∫ 1

−1
dx x0Hq(x, ξ, t) = F q

1 (t),
∫ 1

−1
dx x0Eq(x, ξ, t) = F q

2 (t), (2.6)

where we have used the standard decomposition for the matrix element

〈p′ |q̄(0)γµq(0)| p〉 = ū(p′)
[
γµF q

1 (t) + iσµν∆ν

2m F q
2 (t)

]
u(p). (2.7)

We also find that for p = p′ and equal helicities for ingoing and outgoing hadrons,
the GPD Hq reduces to the well known parton distributions

Hq(x, 0, 0) =

 q(x) for x > 0
−q̄(−x) for x < 0

, (2.8)

where q(x) and q̄(x) are the quark and antiquark distribution functions. We are
especially interested in the Mellin moments of the GPDs, i.e.

∫ 1

−1
dx xnHq(x, ξ, t) =

n∑
i=0
even

(2ξ)iAqn+1,i(t) + mod(n, 2)(2ξ)n+1Cq
n+1(t), (2.9)
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2 First PDF moments from BChPT

∫ 1

−1
dx xnEq(x, ξ, t) =

n∑
i=0
even

(2ξ)iBq
n+1,i(t)−mod(n, 2)(2ξ)n+1Cq

n+1(t), (2.10)

where we have introduced the modulus function, which finds the remainder of division
of an integer and another integer, in our case n and 2. The functions Aq(t), Bq(t)
and Cq(t) are called generalized form factors and they are connected to the matrix
elements of local twist two operators

Oqµµ1...µn = q̄γ{µi
←→
D µ1 . . . i

←→
D µn}q, (2.11)

where we define the operator

←→
D = 1

2(−→D −←−D), (2.12)

and the operation {...} as completely symmetrizing the indices and subtracting
the traces. The nucleon matrix elements of these operators are connected to the
generalized form factors defined above:

〈
p′
∣∣∣Oqµµ1...µn

∣∣∣ p〉 = ū(p′)γ{µ
n∑
i=0
even

Aqn+1,i(t)∆µ1 . . .∆µi p̄µi+1 . . . p̄µn}u(p)

− iū(p′)∆ασα{µ
2m

n∑
i=0
even

Bq
n+1,i(t)∆µ1 . . .∆µi p̄µi+1 . . . p̄µn}u(p)

+ ū(p′) 1
m
mod(n, 2)Cq

n+1(t)∆{µ∆µ1 . . .∆µn}u(p).

(2.13)

These matrix elements can be obtained using LQCD methods and can then be
analysed using covariant BChPT, as has been done in the two-flavor case [91, 92].
Our work aims at generalizing the BChPT formulae obtained and published in [93]
to the three-flavor case.

2.2 First GPD moments
Our work will focus on the first moments, so from now on we set n = 1 and thus, we
find that the symmetrization operation reduces to the expression

A{µBν} = 1
2

(
gαµgβν + gβµgαν −

2
d
gαβgµν

)
AαBβ, (2.14)

where d represents the space-time dimension. We are interested in both the flavor-
singlet and flavor-octet combinations, that means the relevant operators for our
analysis take the form

Osµν = iq̄1γ{µ
←→
D ν}q, Ov,iµν = iq̄λiγ{µ

←→
D ν}q, (2.15)
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2.2 First GPD moments

where λa, a = 1, . . . , 8 are again the well-known Gell-Mann matrices. First we look
at the decomposition of the matrix elements

Ms
B′B =

〈
B′, s′,p′

∣∣∣Osµν ∣∣∣B, s,p〉 , Mv,i
B′B

〈
B′, s′,p′

∣∣∣Ov,iµν ∣∣∣B, s,p〉 . (2.16)

We find that most generally, these two matrix elements can be decomposed into five
different generalized form factors, i.e.

Ms,v
B′B = ū(p′)

[
As,vB′B(t)γ{µp̄ν} − i

Bs,v
B′B(t)
2m̄ ∆ασα{µp̄ν}

+C
s,v
B′B(t)
m̄

∆{µ∆ν} + Ds,v
B′B(t)
2m̄ p̄{µ∆ν} + Es,v

B′B(t)γ{µ∆ν}

]
u(p),

(2.17)

where we have introduced the average baryon mass m̄ = (mB +mB′)/2 and the bold
font represents the three-components of the four momenta p and p′. To determine
the properties of the generalized form factors we look at a Hermitian operator P and
an anti-Hermitian operator T acting on the matrix elementsMs,v

B′B as follows:〈
B′, s′,p′

∣∣∣Os,vµν ∣∣∣B, s,p〉 =
〈
B′, s′,−p′

∣∣∣POs,vµνP†∣∣∣B, s,−p
〉
, (2.18)〈

B′, s′,p′
∣∣∣Os,vµν ∣∣∣B, s,p〉 = ss′

〈
B, s,−p

∣∣∣T (Os,vµν )†T †
∣∣∣B′, s′,−p′

〉
, (2.19)

where we have considered spin-dependent phases s, s′ = ±1 depending whether
baryon spin is +1/2 or −1/2 [94]. We neglect any other phases since they can be
absorbed into a redefinition of the baryon fields. Since the operator we are considering
here is Hermitian, we find

POv,iµνP† = Ov,i,µν , T (Ov,iµν)†T † = iq̄(λi)∗γ{µ←→D ν}q. (2.20)

Using Dirac spinors normalized to ū(p, s)u(p, s) = 2m we find that u(−p, s) =
γ0u(p, s) and u(−p,−s) = sγ1γ3u(p, s). Using these relations and the standard
properties of the gamma matrices one finds that under parity transformations the
matrix elements have the correct transformation behavior. If we transform the matrix
element under T we expect that

Mv,i
B′B ≡ ss′

〈
B′,−s′,−p′

∣∣∣iq̄(λi)∗γ{µ←→D ν}q
∣∣∣B,−s,−p

〉∗
. (2.21)

From this equation we can read off the properties of the generalized form factors:[
(A,B,C,D,E)v,1,3,4,6,8B′B

]∗
= +(A,B,C,D,E)v,1,3,4,6,8B′B , (2.22)[

(A,B,C,D,E)v,2,5,7B′B

]∗
= −(A,B,C,D,E)v,2,5,7B′B . (2.23)
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2 First PDF moments from BChPT

On the other hand, due to the Hermitian nature of the operator considered here we
expect to find

Mv,i
B′B ≡

〈
B, s,p

∣∣∣Ov,iµν ∣∣∣B′, s′,p′〉 , (2.24)

and thus we find that the matrices A,B,C are Hermitian 8 × 8-matrices whereas
D,E are anti-Hermitian. All of these form factors are directly accessible via covariant
BChPT and they carry information about the first moments of parton distributions,
as mentioned in the previous section, e.g. for the isovector moment we find that

Av,3pp (t = 0) = 1
2
(
〈x〉u − 〈x〉d

)
≡ 1

2〈x〉u−d, (2.25)

where we have used the definition

〈x〉q =
∫ 1

0
dx x[q(x) + q̄(x)]. (2.26)

2.3 Effective Lagrangians

The effective meson-baryon Lagrangian we have already presented in ch. 1 has to
be extended to include interactions with tensorfields in order to describe the matrix
elements we are investigating. This was first done in [93] for the SU(2)f case and
we have extended it to the case of three dynamical fermions. We employ traceless
tensorfields of definite parity ṽ{µν} for the flavor singlet and vi{µν} for the flavor octet
sector. For the construction of the Lagrangian however we use the following tensor
structures

V ±µν = 1
2
(
u†λivi{µν}u± uλivi{µν}u†

)
, V 0

µν = 1
2 ṽ{µν}. (2.27)

We do not assign a chiral power to the tensor structures presented above, so when
we consider chiral power counting, we have to remind ourselves that now loop-
contributions start at chiral order D = 2 instead of D = 3, as would be expected in
standard BChPT:

D = 2L+ 1 +
∞∑
n=2

(n− 2)V MM
n +

∞∑
n=0

(n− 1)V MB
n . (2.28)
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2.4 Extrapolation formulae

Using the structures above we can write down the lowest order Lagrangian compatible
with the symmetries of QCD and Lorentz covariance:

L (0)
MB,t = i

aD
4
〈
B̄γµ{V +

µν , D
νB}

〉
+ i

∆aD
4

〈
B̄γµγ5{V −µν , DνB}

〉
+ i

aF
4
〈
B̄γµ[V +

µν , D
νB]

〉
+ i

∆aF
4

〈
B̄γµγ5[V −µν , DνB]

〉
+ i

as
2
〈
B̄γµV 0

µνD
νB
〉

+ h.c. of all terms.

(2.29)

(∆)aD/F have been named accordingly to the appearance of D and F in the lowest
order meson baryon Lagrangian, i.e. D appears with the anticommutator while F is
associated with the commutator. Additionally to these zeroth order terms, we need
the O(q2) Lagrangian for the calculation of the contact terms. We again construct
all Lorentz covariant terms compatible with the symmetries of QCD:

L (2)
MB,t = t1

〈
B̄iγµ{V +

µν , D
νB}

〉
〈χ+〉+ t2

〈
B̄iγµ[V +

µν , D
νB]

〉
〈χ+〉

+ t3
〈
B̄iγµ{{V +

µν , χ̃+}, DνB}
〉

+ t4
〈
B̄iγµ[{V +

µν , χ̃+}, DνB]
〉

+ t5
〈
B̄iγµ{[V +

µν , χ̃+], DνB}
〉

+ t6
〈
B̄iγµ[[V +

µν , χ̃+], DνB]
〉

+ t7
〈
B̄iγµ{V +

µν , {χ̃+, D
νB}}

〉
+ t8

〈
B̄iγµ[V +

µν , {χ̃+, D
νB}]

〉
+ t9

〈
B̄iγµDνB

〉 〈
V +
µνχ̃+

〉
+ t10

〈
B̄iγµV +

µν

〉
〈χ̃+D

νB〉

+ t11
〈
B̄iγµ{V 0

µν , D
νB}

〉
〈χ+〉+ t12

〈
B̄iγµ{{V 0

µν , χ̃+}, DνB}
〉

+ t13
〈
B̄iγµ[{V 0

µν , χ̃+}, DνB]
〉

+ h.c. of all terms.

(2.30)

Here we have introduced χ̃+ = χ+ − 〈χ+〉/Nf . The LEC t10 multiplies a non-
Hermitian structure, hence it is in general a complex number. The term associated
with this LEC also yields a contribution to the generalized form factor E. The full
effective Lagrangian we need for our leading one-loop calculation of the generalized
form factors at t = 0 takes the form

Leff = L (0)
MB,t + L (1)

MB + L (2)
MB + L (2)

MB,t, (2.31)

with L (1)
MB taken from eq. (1.60) and L (2)

MB from eq. (1.62).

2.4 Extrapolation formulae

All leading one-loop graphs are of chiral order O(q2), the hadrons involved are those
in the ground state baryon and meson octet. The η′ and hence also η − η′ mixing
[95] is not included in the calculation. Fig. 2.1 shows the graphs that contribute to
the leading one-loop result.
Let us comment on how the power counting formula works for graphs 2.1(a) and
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2 First PDF moments from BChPT

2.1(b) in particular. For both graphs we of course find that the number of loops is
equal to one (L = 1), we have one (V MB

n=0 = 1) baryon-meson-tensor-baryon-vertex
from L (0)

MB,t and one (V MB
n=1 = 1) baryon-meson-vertex from L (1)

MB. Thus, according to
the power counting formula (2.28), we find the chiral dimension D = 2+1−1+0 = 2
as desired.
In this chapter we only present the generalized form factor As,vB′B for t = 0 for the
nucleon-to-nucleon case, for all other baryon-baryon combinations we refer the reader
to the arXiv.org supplement of [86]. We also present the matching formulae from
the SU(3)f LECs aF , aD, as and t

(r)
i used here to the SU(2)f LECs av,s2,0 and c

(r)
8,9

used in [93]. These matching relations are obtained through expanding the SU(3)f
result in the strange quark mass ms and then comparing the leading order to the
corresponding SU(2)f expressions. The matching relations for the meson sector have
been worked out in [96, 97] and for the baryon sector in [33]. Let us start with these
relations:

av2,0 = aD + aF + 16B0ms

(
t1 + t2 −

1
3(2(t3 + t4)− t7 − t8)

)
+ M2

K

48π2F 2
0

[
aF
(
D2 − 6DF − 3F 2

)
+ aD

(
−7D2 + 2DF − 3F 2

)
− 3

(
aD

(
1 + 7D2 − 2DF + 3F 2

)
+aF

(
1−D2 + 6DF + 3F 2

))
log

(
MK

m0

)]
+O(M3

K),

(2.32)

as2,0 = as + 16
3 B0ms(3t11 + t12 − 3t13) +O(M3

K), (2.33)

cr8(µ = m0) = m2
0

(
4(t1 + t2) + 2

3(2(t3 + t4)− t7 − t8)
)

+O(M2
K), (2.34)

c9 = 2
3m

2
0(6t11 − t12 + 3t13) +O(M2

K). (2.35)

We have cut off all the higher order effects for the matching relations. We present
the extrapolation formulae without inserting the full expressions for the standard
integrals IM(M), IMB(M) and IMBB(t = 0,M) due to concerns about readability. We
present the full form of these integrals in app. A. Since all the extrapolation formulae
are very lengthy we refer the reader to app. B. Note that the singlet sector does not
contain any loop contributions at leading one-loop order. We also find the following
relations that relate different form factors Av,iN ′N(0):

Av,1np = Av,3pp , Av,2np = iAv,3pp , Av,3nn = −Av,3pp , Av,8nn = Av,8pp . (2.36)
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(a) (b)

(c) (d)

Figure 2.1: Feynman loop-diagrams contributing to the O(q2) calculation: the solid
line represents members of the lowest-lying baryon octet, the dashed line denotes
members of the pseudoscalar meson octet and the dot represents an external tensor
field coupling to the baryons and pseudoscalar mesons.

2.5 Results and discussion

In app. B we present the nonvanishing generalized form factors As,vN ′N that we have
obtained from our chosen framework of covariant BChPT. In our calculation we
have included only the lowest-lying pseudoscalar mesons and the lowest-lying baryon
octet. All the other, heavier baryons, e.g. the decuplet, are so far encoded in the
values of our low energy constants. This is usually done in a calculation that serves
as a first step towards a full description.
The next step usually consists in including the baryon decuplet. Presently in our
three-flavor calculations we include e.g. a ΣK state with a threshold energy of
about 1685MeV but we explicitly exclude e.g. the ∆π state with an energy of
1370MeV. The decuplet can be incorporated in studies employing three-flavor
BChPT using both infrared regularization [98] and the heavy baryon formalism
[26, 99]. The additional small expansion parameter arising in this extension is the
octet-decuplet mass splitting m0,8−m0,10, and there are a host of new, undetermined
low energy constants appearing when we extend the theory by explicitly including
the baryon decuplet. Since this leading one-loop calculation already contains several
undetermined LECs, including the baryon-decuplet does not render the theory or
our extrapolation formulae more effective. It will, however, be inevitable to include
the baryon-decuplet for the study of finite volume effects or for the study of the
momentum dependence of the generalized form factors. Thus, it is important that
after finishing a full one-loop calculation the decuplet is also included.
In general it is doubtful that a leading one-loop calculation can adequately extrapolate
lattice data to the physical point, since here the result is only exact to O(q2) and we
have found that the truncated expressions deviate noticably from the full expressions
for meson masses above 300MeV. As an example for this we present the nucleon
one-loop wave function renormalization factor ZN(Mπ = MK = Mη = Msymm) in
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Figure 2.2: One-loop nucleon wave function renormalization for Mπ = MK = Mη =
Msymm: full result (solid line) and truncated results (dashed and dotted lines).

fig. 2.2. The quantity Msymm is called the symmetric meson mass and is defined as
M2

symm = (2M2
K +M2

π)/3. What we find is that these higher-order terms, in this case
especially the non-analytic terms proportional to M3, are numerically important.
This is the case for the wave function renormalization constant (fig. 2.2) as well as
for the other parts of the one-loop extrapolation formulae.
We employ the extrapolation formulae to analyze lattice QCD data obtained by
the QCDSF collaboration. QCDSF uses a simulation strategy where the singlet
quark mass is kept fixed and one starts at the SU(3)f symmetric point. There, the
strange quark mass is smaller than it is at the physical point and hence, both the
K and η masses are smaller than at the physical point, hence we expect improved
convergence behavior at this point. At the symmetric point we have M2

π = M2
K =

M2
η = (412MeV)2. In [75] it is argued that for the baryon masses, an expansion in

(M2
symm −M2

π) to first order is enough to accurately extrapolate the baryon mass
data to the physical point. For the quantities considered here, the situation is more
problematic, since here, we already find chiral logarithms appearing at quadratic
order, whereas for the baryon masses they appear at O(q4), so we expect that an
extrapolation linear in (M2

symm −M2
π) will not be sufficient.

We want to investigate how large the higher-order contributions to our results roughly
are, hence we take a closer look at the contributions of graph 2.1(a) and 2.1(b). They
only start contributing at O(q3) and have tunable parameters ∆aD/F , which we will
vary within the region ∆aD/F ∈ [−0.3, 0.5]. At the symmetric point, only t1, t2 and
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t11 are relevant, all the other couplings parametrize SU(3)f breaking effects. Hence
for our study we set all ti equal to zero and for aD/F we set aD = aF = 0.1. From
[93] we know that av2,0 ≈ 0.2. For the other parameters we employ typical values
that have also been used for the SU(2)f analysis, i.e. m0 = 1GeV, F0 = 0.09GeV,
D = 0.8, F = 0.5.
The generated grey band in fig. 2.3 gives a realistic impression of the size of higher-
order contributions. Figure 2.3(a) shows the form factor Av,3pp (0,Msymm) for varying
Msymm while fig. 2.3(b) shows a ratio of form factors where we have kept the singlet
quark mass fixed and the pion mass is varied, analogously to the simulation strategy
presented in [75]. We will refer to curves like the one in fig. 2.3(b) as ’fanplots’. We
find that although we have varied ∆aD/F in a very generous range we still find that
the higher-order contributions are under control and hence an extrapolation using
this strategy shows improved stability.
Since we already have so many low energy constants in our leading one-loop order
calculation, we would need an enormous amount of lattice data to pin them down.
Pushing the calculation to higher orders will introduce another host of undetermined
parameters, thus it is important that a thorough leading one-loop order analysis of
the lattice data to come is carried out before going to full one-loop order.
In the next chapter we will carry out a full one-loop analysis of the baryon-octet
masses using the lattice data published in [75] and we will try to pin down a large
number of LECs to a rather high accuracy. We will also present a more detailed
study of convergence of the BChPT expansion and we will comment on an attempt
to extract the nucleon sigma term from the lattice data available so far.
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Figure 2.3: The form factors A3
pp(0,Msymm) and the ratio of form factors

A3
pp(0,M2

π)/A3
pp(0,M2

symm) for various values of ∆aD/F . The grey band shows the
enveloppe of all possible curves, hence visualizing the size of higher order effects, while
the dotted line represents the case ∆aD = ∆aF = 0.
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3 Chiral extrapolation of
baryon mass ratios

In this chapter we will present a thorough O(p4), i.e. full one-loop, analysis of
the baryon mass ratios obtained from lattice data presented in [75]. We will also
investigate questions of convergence of the chiral expansion, as well as the possibility
to extract the nucleon sigma term from these ratios. We present all the LECs or
combinations thereof that can be determined by analyzing said lattice data. This
work was published in Physical Review D under the title ’Chiral extrapolation of
baryon mass ratios’ [35].

3.1 Prelude: Meson masses, decay constants and
numerical input from lattice QCD

As mentioned before, the simulation trajectory in [75] is such that the average quark
mass, i.e. m̄ = (mu +md +ms)/3 ≡ (2m` +ms)/3 is fixed. Here we have assumed
isospin symmetry in the light (`) sector. What is effectively varied is the quantity
δm` = m` − m̄ and this trajectory connects the symmetric point (δm` = 0) with the
physical point where the strange quark mass attains the experimentally known value,
see tab. 1.1. It is useful to rewrite the leading order GMOR relations eqs. (1.31)-(1.35)
in terms of these quantities, i.e.

Ṁ2
π = 2B0m̄+ 2B0δm`, (3.1)

Ṁ2
K = 2B0m̄−B0δm`, (3.2)

Ṁ2
η = 2B0m̄− 2B0δm`. (3.3)

Here, the dot denotes the fact that we are talking about the masses at leading-order
in the quark mass expansion. We thus find that the pseudoscalar Goldstone-boson
mass at the symmetric point Ṁ2

? to leading order takes the form

Ṁ2
? = 2B0m̄. (3.4)
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3.1 Prelude: Meson masses, decay constants and numerical input from lattice QCD

We in general denote quantities at the symmetric point with a ?, while we use 0 to
denote quantities in the chiral limit, as is usual in ChPT. There are three relevant
linear combinations of masses for this study that are used throughout [75] due to
the fact that they show remarkable stability along the chosen trajectory:

XN = 1
3(mN +mΣ +mΞ) ≈ 1150MeV, (3.5)

X2
π = 1

3(2M2
K +M2

π) ≈ (412MeV)2, (3.6)

X2
η = 1

2(M2
η +M2

π) ≈ (400MeV)2. (3.7)

Here, we already presented the values of these quantities at the physical point.
Since we want to carry out a full O(p4) analysis, we need the GMOR relations to
next-to-leading, i.e. one-loop, order and we again can expand said expressions that
can be found in [7] in terms of δm` to quadratic order:

M2
π = M2

? + (2B0δm`)
[
1 + 2B0m̄

(4πF0)2

(
2
3 + 2 log

(√
2B0m̄

µ

)

−128π2 (3L4 + 2L5 − 6L6 − 4L8)
)]

+ (B0δm`)2

5 + 8 log
(√

2B0m̄
µ

)
− 768π2(L5 − 2L8)

24π2F 2
0

 ,
(3.8)

M2
K = M2

? −
1
2(2B0δm`)

[
1 + 2B0m̄

(4πF0)2

(
2
3 + 2 log

(√
2B0m̄

µ

)

−128π2 (3L4 + 2L5 − 6L6 − 4L8)
)]

+ (B0δm`)2

1 + log
(√

2B0m̄
µ

)
− 96π2(L5 − 2L8)

12π2F 2
0

 ,
(3.9)

M2
η = M2

? − (2B0δm`)
[
1 + 2B0m̄

(4πF0)2

(
2
3 + 2 log

(√
2B0m̄

µ

)

−128π2 (3L4 + 2L5 − 6L6 − 4L8)
)]

− (B0δm`)2

2 + 3 log
(√

2B0m̄
µ

)
+ 192π2(L5 − 12L7 − 6L8)
6π2F 2

0

 .
(3.10)
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3 Chiral extrapolation of baryon mass ratios

Here we have introduced the pseudoscalar Goldstone-boson mass to one-loop accuracy
which is given by the expression

M2
? = 2B0m̄

[
1 + 2B0m̄

(4πF0)2

(
128π2(−3L4 − L5 + 6L6 + 2L8)

+2
3 log

(√
2B0m̄

µ

))]
.

(3.11)

Inserting these relations into the definitions of Xπ and Xη, eqs. (3.6), (3.7), we find
the corresponding one loop expressions

X2
π = 1

3(2M2
K +M2

π)

= M2
? + (B0δm`)2

24π2F 2
0

[
3 + 4 log

(√
2B0m̄

µ

)
− 384π2(L5 − 2L8)

]
,

(3.12)

X2
η = 1

2(M2
η +M2

π)

= M2
? −

(B0δm`)2

48π2F 2
0

[
3 + 4 log

(√
2B0m̄

µ

)
+ 1536π2(L5 − 6L7 − 4L8)

]
.

(3.13)

All the low energy constants used here are the renormalized ones presented in [7].
As we have done before, we have omitted the superscript (r) that usually signifies
that we are talking about renormalized constants. To follow the notation also used
in [75], we introduce a quantity that measures SU(3)f symmetry-breaking

ν = M2
π −X2

π

X2
π

= 2B0δm`

M2
?

[
1 + 2B0m̄

24π2F 2
0

(
1 + 3 log

(√
2B0m̄

µ

)

− 192π2(3L4 + 2L5 − 6L6 − 4L8)
))

+ (2B0δm`)2

48π2F 2
0M

2
?

[
1 + 2 log

(√
2B0m̄

µ

)
− 192π2(L5 − 2L8)

]
+O(m̄2δm`, m̄(δm`)2, (δm`)3).

(3.14)

This relation can be inverted and re-expanded to second order in the original variable
δm`, and so we can for further reference always use ν as the variable parametrizing
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3.1 Prelude: Meson masses, decay constants and numerical input from lattice QCD

symmetry-breaking:

2B0δm` = νM2
?

[
1− 2B0m̄

24π2F 2
0

(
1 + 3 log

(√
2B0m̄

µ

)

− 192π2(3L4 + 2L5 − 6L6 − 4L8)
)]

− (νM2
? )2

48π2F 2
0

[
1 + 2 log

(√
2B0m̄

µ

)
− 192π2(L5 − 2L8)

]
.

(3.15)

Since we aim at carrying out an expansion around the symmetric point, it is reasonable
to express the appearing quantities like decay-constants etc. as quantities at the
symmetric point plus corrections in the symmetry-breaking. Basically, there are 26
a priori unknown parameters in the final extrapolation formulae for the masses, so
we will need input for some of these LECs e.g. from lattice QCD, meson-baryon-
scattering or other sources available. For the low energy constants originating from
the purely mesonic sector, i.e. Li, F0, we have chosen the following strategy: we take
three different sets of LECs that are collected in [100] and we will choose the set that
according to the FLAG report fulfills most of their quality criteria. We will then
present a sample fanplot for the meson decay constants Fπ and FK and see how well
the LECs describe the situation at the physical point. The other sets we will use for
estimating the errors on our results. First we write down the one-loop expressions
for the meson decay constants and expand them in the expansion parameters m̄ and
δm`:

Fπ = F? − (B0δm`)
3 + 6 log

(√
2B0m̄
µ

)
− 256π2L5

32π2F0

+O((δm`)2), (3.16)

FK = F? + (B0δm`)
3 + 6 log

(√
2B0m̄
µ

)
− 256π2L5

64π2F0

+O((δm`)2), (3.17)

Fη = F? + (B0δm`)
3 + 6 log

(√
2B0m̄
µ

)
− 256π2L5

32π2F0

+O((δm`)2). (3.18)

Here we have again introduced a quantity we call the meson decay constant at the
symmetric point, F?, which is given by

F? = F0

[
1 + 2B0m̄

(4πF0)2

(
64π2(3L4 + L5)− 3 log

(√
2B0m̄

µ

))]
+O(m̄2) . (3.19)

The linear combination of decay constants FX = (2FK + Fπ)/3 is, to one-loop order,
constant in the whole region of δm`. In tab. 3.1 we present the three different input
sets we consider for our analysis. According to the authors of the report, none of these
sets are what they consider as perfect, but the MILC [101, 102] data points seem to
be reliable because of the effort that has been put into the continuum extrapolation
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3 Chiral extrapolation of baryon mass ratios

Table 3.1: Three parameter sets for the low-energy coefficients F0, Li.

F0 (MeV) 103L4 103L5 103L6 103L8 Ref.

80.3± 6.0 −0.08± 0.60 0.98± 0.40 −0.02± 0.40 0.42± 0.30 [101]
78.3± 3.2 0.04± 0.14 0.84± 0.38 0.07± 0.11 0.36± 0.09 [102]
83.8± 6.4 −0.06± 0.10 1.45± 0.07 0.02± 0.05 0.62± 0.04 [103]

and the renormalization. We added the PACS-CS [103] set solely because they were
the only group producing data points at pion masses below 250MeV. All these low
energy constants are given at a renormalization scale µ = 770MeV. In fig. 3.1 we
present the fan plot for the MILC2010 data. We have varied the LEC L5, which is
basically determining the slope at the symmetric point, to obtain the shaded bands.
To indicate how good these one-loop formulae describe reality when using these
LECs as input, we have indicated the values at the physical point with black dots.
Since we have now chosen a set of input parameters we can give numerical values

0.8
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X

ν

α = π
α = K

Figure 3.1: The fan plot for the ratios Fπ,K/FX for the LECs taken from [101]. The
shaded bands correspond to the variation of the error assigned to the LEC L5. We
have indicated the values at the physical point by black dots.

for all the quantities that will enter our analysis. We start with the observation in
[75], that if Xπ is used to set the scale, Xπ is very stable over the whole simulation
trajectory. We will determine the parameter 2B0m̄ from the fact that M? is equal to
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3.1 Prelude: Meson masses, decay constants and numerical input from lattice QCD

Xphys
π , i.e.

Ṁ? ≡
√

2B0m̄ = (420± 40)MeV, (3.20)

where we have used the other LEC sets for determining the error of this quantity.
Furthermore we have made use of the chiral counting scheme: Since the corrections
in eq. (3.11) containing F0 are already of O(p4), we can simply replace F0 by F?
since this merely amounts to higher order corrections which our calculation is not
sensitive to. In this way we also obtain the numerical value for F?,

F? = (112± 15)MeV. (3.21)

Alternatively we can take the direct route and insert the MILC2010 value for F0 in
eq. (3.11), which leads to Ṁ? = 428MeV and F? = 112.5MeV. We also find that Xπ

seems to be very stable over the whole range for ν, which means that

3 + 4 log
(420

770

)
− 384π2(L5 − 2L8) ≈ 0. (3.22)

Indeed, using the central values from the MILC2010 set, we find that the above
expression amounts to a numerical value of 0.05 and hence the terms proportional to
(δm`)2 are heavily supressed.
There is another quantity we have so far not investigated, namely M2

s̄s ≡ 2B0ms

which also naturally arises in SU(3)f calculations. We will give an O(p4) expansion
of this quantity, since it, when kept fixed, can be used to express the light quark-mass
dependence through the pion mass dependence:

M2
s̄s = 2Ṁ2

K − Ṁ2
π

= 2M2
K −M2

π + 1
48π2F 2

0

[
384π2

(
M4

K(4L4 + 2L5 − 8L6 − 4L8)

−M4
π(L4 + L5 − 2L6 − 2L8)

)
+ 3M4

π log
(
Mπ

µ

)
− (3M4

η + 2M2
ηM

2
π) log

(
Mη

µ

)]
+O(M6).

(3.23)

2B0m` = M2
π

[
1 + 1

144π2F 2
0

(
1152π2

(
M2

π(2L4 + L5 − 4L6 − 2L8)

+M2
s̄s(L4 − 2L6)

)
+ (M2

π + 2M2
s̄s) log


√√√√M2

π + 2M2
s̄s

3µ2


− 9M2

π log
(
Mπ

µ

))]
+O(M6) .

(3.24)
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3 Chiral extrapolation of baryon mass ratios

If we again use the central values of MILC2010 and furthermore insert the experi-
mentally known pion and kaon masses, we arrive at

Ms̄s = (715± 100)MeV. (3.25)

All the errors that have been quoted above result from varying the input parameters
amongst the three sets presented in tab. 3.1. As one can see, there is a clear hierarchy
between possible expansion parameters, i.e.

Mπ ≈
√

2B0m` <
√

2B0m̄ <
√

2B0ms = Ms̄s, (3.26)

and looking at the numerical values eqs. (3.20), (3.25), we can already deduce that
an expansion in Ms̄s over a typical hadronic scale of 1GeV will be futile while an
expansion in M? is expected to work much better.

3.2 Pre-analysis: Baryon masses to leading one-loop
order

Before we perform the full O(p4) analysis we carry out a short pre-analysis employing
the leading one-loop extrapolation formulae originating from the Feynman graph
shown in fig. 3.2. One finds the extrapolation formulae that have also been published
in e.g. [33], which take the following form:

mN = m0 − 4bDφN + 4bF εN − 2b0δ + 1
96πF 2

0

[
6DFαN − 9F 2βN −D2γN

]
, (3.27)

mΛ = m0 + 4
3bDφΛ − 2b0δ −

1
24πF 2

0

[
9F 2βΛ +D2γΛ

]
, (3.28)

mΣ = m0 − 4bDφΣ − 2b0δ −
1

24πF 2
0

[
3F 2βΣ +D2γΣ

]
, (3.29)

mΞ = m0 − 4bDφN − 4bF εN − 2b0δ −
1

96πF 2
0

[
6DFαN + 9F 2βN +D2γN

]
, (3.30)

where we have introduced a host of abbreviations:

αN = Ṁ3
η + 2Ṁ3

K − 3Ṁ3
π , βΛ = Ṁ3

K ,

βN = Ṁ3
η + 2Ṁ3

K + Ṁ3
π , γΛ = Ṁ3

η + Ṁ3
K + 3Ṁ3

π ,

γN = Ṁ3
η + 10Ṁ3

K + 9Ṁ3
π , φΛ = −4Ṁ2

K + Ṁ2
π ,

εN = Ṁ2
K − Ṁ2

π , βΣ = Ṁ3
K + 2Ṁ3

π ,

φN = Ṁ2
K , γΣ = Ṁ3

η + 3Ṁ3
K + Ṁ3

π ,

δ = 2Ṁ2
K + Ṁ2

π , φΣ = Ṁ2
π

(3.31)

If one wishes to do so, one can eliminate the η mass via the Gell-Mann-Okubo
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3.2 Pre-analysis: Baryon masses to leading one-loop order

Figure 3.2: Loop graph containing two vertices from the leading order Lagrangian
L

(1)
MB which produces the leading non-analytic quark-mass corrections. The dashed

line represents the pseudoscalar mesons while the solid line again stands for the
baryon-octet.

relation [104, 105], at least to the order in which we are working here:

3Ṁ2
η = 4Ṁ2

K − Ṁ2
π . (3.32)

For all our numerical studies we set the axial couplingsD and F to the valuesD = 0.75
and F = 0.5, which is to a large extent consistent with other determinations or
analyses [22, 24, 106, 107]. There are two more references we would like to add
at this point: in [108], large Nc arguments have been employed to fit certain mass
combinations where the singlet piece drops out. Their result comes very close to the
expectations from phenomenology. A similar result has been published in [109].
This section aims at pre-analyzing the low energy constants appearing at O(p3) to get
a feeling for the stability of the fits and to have a first look into the convergence pattern
of the leading one-loop result. We start by investigating two mass combinations: one
that we will call ∆DF , which is only interesting for the numerical values for D and F
chosen above, and the other one is the well-known Gell-Mann-Okubo mass difference
∆GMO [104, 105]:

∆DF = 1
4 (12mΣ − 4mΛ − 5mN − 3mΞ)

= 2
3 (20bD − 3bF )

(
Ṁ2

K − Ṁ2
π

)
+O(p4),

(3.33)

∆GMO = 1
4 (mΣ + 3mΛ − 2mN − 2mΞ)

= D2 − 3F 2

96πF 2
0

(
4Ṁ3

K − Ṁ3
π − 3Ṁ3

η

)
+O(p4).

(3.34)

Let us first analyze ∆DF : after plugging in the baryon masses, again averaged over
isospin multiplets,

mphys
N = 939MeV, mphys

Λ = 1116MeV, (3.35)
mphys

Σ = 1190MeV, mphys
Ξ = 1318MeV, (3.36)

we find that ∆phys
DF ≈ 292MeV. If we assume that our values for D and F are roughly

correct and that the contributions from O(p4) are small, this directly translates into
a rough value for the linear combination (20/3)bD − bF ≈ 0.65GeV−1. But since we
know that the BChPT expansion already is problematic at the physical point due to
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3 Chiral extrapolation of baryon mass ratios

Table 3.2: The leading one-loop fit results: meff
0 = m0 − 6b0X2

π is an effective fit
parameter that emerges since this combination appears equally in all baryon octet
mass formulae.

F0 (MeV) meff
0 (GeV) bD (GeV−1) bF (GeV−1)

70 2.279 -0.039 -0.912
80 2.024 -0.015 -0.747
112 1.617 0.024 -0.484
140 1.465 0.038 -0.386

much enhanced non-analytic loop corrections originating from large K and η masses,
we have to assume at least a 50% error on this linear combination of LECs, which
leaves us with the rough estimate

0.3GeV−1 .
(20

3 bD − bF
)
. 1GeV−1. (3.37)

We will later crosscheck this with the results from our leading one-loop fits. Let us now
turn to ∆GMO by inserting the approximate values Ṁπ = 140MeV, ṀK = 495MeV,
Ṁη = 566MeV (which is the result if we use eq. (3.32) to calculate the η mass) and
the central value for the decay constant in the chiral limit F0 = 80.3MeV. If we now
evaluate both sides, we find that

∆phys
GMO = 5.9MeV +O(p4) ≡ 6.0MeV, (3.38)

which leads to the conclusion that higher order contributions have to be heavily
suppressed while the leading one-loop part makes up almost the entire contribution.
This numerical smallness could be traced back to the fact that if one expands ∆GMO

in terms of δm` one finds no terms linear in the symmetry-breaking – it starts at
quadratic order.
We use only the experimental values for the baryon masses as input for our fit
procedure and present four different fit sets for this pre-analysis, which correspond
to different values for the input parameter F0. To the order we are working here the
precise value of F0 should not be of too much importance to the stability of the fits.
As we can see from tab. 3.2, this is not the case and furthermore we find that the
convergence of the BChPT expansion is very poor, e.g. we find that for the lowest
value of F0, the leading one-loop correction to the tree-level result at the physical
point amounts to −423 MeV, which is very large even if we merely assume a generic
suppression factor of MK/Λhad ≈ 0.5. This leads to the conclusion that a reliable
determination of the low energy constants is not possible at the physical point, due
to the aforementioned large K- and η-loop contributions.
However, we can also interpret these fit results as rough estimates for these parameters
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3.3 Next-to-leading one-loop contributions

(a) (b)

Figure 3.3: Feynman loop-diagrams contributing to the O(p4) calculation: the solid
line represents members of the lowest lying baryon octet, the dashed line denotes
members of the pseudoscalar meson octet and the black dot represents mass insertions
or BMMB vertices originating from L

(2)
MB.

which should be compatible with a next-to-leading loop analysis of the baryon masses.
Let us formulate three properties an O(p4) analysis should reproduce:

1. 1GeV . meff
0 . 3GeV,

2. bF is negative and lies roughly between −1GeV−1 . bF . 0GeV−1,

3. bD is of significantly smaller magnitude than bF .

3.3 Next-to-leading one-loop contributions
In order to obtain all contributions to the baryon masses at O(p4), we have to
calculate the additional loop graphs presented in fig. 3.3. The graph 3.3(a) has
the same topology as the graph of fig. 3.2 with an additional quark-mass insertion
proportional to the O(p2) LECs bD,F,0. The tadpole-type graph 3.3(b) introduces a
whole host of new LECs into the baryon mass formulae, i.e. b1−4,8−11. Additionally
to those loop contributions, there are seven new contact-terms proportional to the
parameters d1−7 which absorb the divergences of the regularized loop integrals. We
will present the absorption prescriptions later. Before we present the tree-level results
of O(p4), let us comment on how to obtain the baryon mass shifts ∆m(n)

B order to
order from the baryon self energy Σ(n)(/p) [33]:

∆m(1)
B = 0, (3.39)

∆m(2)
B = Σ(2), (3.40)

∆m(3)
B = Σ(3)(/p = m0), (3.41)

∆m(4)
B = Σ(4)(/p = m0) + Σ(2)∂Σ(3)(/p)

∂/p

∣∣∣∣∣
/p=m0

. (3.42)

Graph 3.3(a) does not introduce new parameters hence we will not comment on the
calculation of this graph at this point. We rather refer the interested reader to [33].
Since there are plenty new parameters appearing at O(p4), it will be important to
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3 Chiral extrapolation of baryon mass ratios

fix many of the input parameters, because given the modest amount of data we have,
we are not able to determine all of the LECs. An analysis using various available
data for the determination of these bi is presented in [112].
First, let us use eq. (1.63) to calculate all the contact-term contributions to the O(p4)
mass formulae:

m
(ct)
N = m(ct)

? +B0δm`

(
4(bD − 3bF )− 16B0m̄(6d2 − 4d3 + 9d5)

)
− 16(B0δm`)2 (9d1 − 3d2 + d3 + 6d7) ,

(3.43)

m
(ct)
Λ = m(ct)

? + 8B0δm` (bD + 16B0m̄d3)− 96(B0δm`)2 (2d3 + d4 + d7) , (3.44)
m

(ct)
Σ = m(ct)

? − 8B0δm` (bD + 16B0m̄d3)− 16(B0δm`)2 (4d3 + 6d7) , (3.45)
m

(ct)
Ξ = m(ct)

? +B0δm`

(
4(bD + 3bF ) + 16B0m̄(6d2 + 4d3 + 9d5)

)
− 16(B0δm`)2 (9d1 + 3d2 + d3 + 6d7) ,

(3.46)

where we again have introduced the contact-term contribution to the baryon mass
at the symmetric point

m(ct)
? = −4B0m̄ (3b0 + 2bD)− 16(B0m̄)2 (4d3 + 9d6 + 3d7) . (3.47)

Using eqs. (3.43)-(3.46) we can write down the contact-term contribution to XN ,
which is free of terms linear in the symmetry-breaking:

X
(ct)
N = m(ct)

? − 32(B0δm`)2 (3d1 + d3 + 3d7) . (3.48)

We also find from eqs. (3.43)-(3.46) that, linearly in the symmetry-breaking, only the
linear combinations b̃D ≡ bD + 16B0m̄d3 and b̃F ≡ bF + 4B0m̄(2d2 + 3d5) enter the
contact-term contributions. Note that d5 only enters in this combination, hence it
cannot be determined from the fan plots, since the tadpole contribution proportional
to bF is already of O(p4). Furthermore, the parameters b0 and d6 only appear in the
combination

m? = m0 − 12B0m̄ (b0 + 12B0m̄d6) + . . . , (3.49)

which means that these two LECs also cannot be determined from the fan plot data
alone, since again a shift in bF would be of O(p6) in the corresponding tadpole graph.
The tadpole contributions are derived from the Lagrangian in eq. (1.62). These
contributions contain 8 new a priori unknown constants that we will fix by using the
results presented in [110, 111]. These parameters have a model-dependent uncertainty
due to the approach that was chosen to derive the chiral potential, hence we will use
all three different input sets, which are presented in tab. 3.3. Notice that we also
added a parameter set where all the b1−4,8−11 vanish. By using these four different
input sets we try to get control over the uncertainties introduced by taking these
values as input, as well as being able to give a proper error estimate on the other
low energy constants we will determine from fitting our formulae to lattice data.
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3.4 Chiral analysis of baryon mass ratios

Table 3.3: Four parameter sets for the low-energy coefficients b1−4,8−11. All parameters
are given in units of GeV−1.

set b1 b2 b3 b4 b8 b9 b10 b11 Ref.

1 −0.082 −0.118 −1.890 −0.215 0.609 −0.633 1.920 −0.919 [110]
2 −0.126 −0.139 −2.227 −0.288 0.610 −0.677 2.027 −0.847 [111]
3 −0.014 −0.207 −1.063 −1.312 0.272 −0.483 1.054 0.328 [111]
4 0 0 0 0 0 0 0 0 -

As mentioned already in sec. 1.4 the infrared renormalized loop integrals still contain
divergences as the dimension d→ 4, which have to be absorbed by the low energy
constants. In this case the O(p4) tree-level constants di absorb the divergencies
originating from the O(p4) loop graphs. At order p3, there are neither counterterms,
nor are there divergencies. There is a universal description how to systematically
split off the finite, scale dependent part of the LECs from the divergent part, i.e.

di = γIRi L+ d
(r)
i (µ), (3.50)

where the γIRi are presented in app. C. We can then define scale independent quantities
d̄i

d
(r)
i (µ) = d̄i + γIRi

16π2 log
(
m0

µ

)
. (3.51)

3.4 Chiral analysis of baryon mass ratios
We want to analyze the fan plot data presented in tab. 22 and fig. 20 of [75], which
means we have to investigate the chiral behavior of the mass ratios

fB ≡
mB

XN

, (3.52)

for the members of the baryon octet, i.e. B = N,Λ,Σ,Ξ. We present the lattice
data for the reader’s convenience in tab. 3.4. From the definition, we find that at
the symmetric point fB = 1 and Xπ = M? = 412MeV. From this point, the lattice
simulations move towards the physical point by gradually changing δm` for fixed
m̄. In the same table we also see the lowest value for Mπ ≈ 229MeV, which means
MK ≈ 477MeV and via eq. (3.32) Mη ≈ 535MeV. As one can clearly see, all meson
masses are below the physical η mass of Mphys

η = 548MeV. This is in contrast to the
usual way of simulating three quark flavors on the lattice, where the strange quark
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3 Chiral extrapolation of baryon mass ratios

Table 3.4: The lattice data taken from [75], a collection of tabs. 20 and 29. We have
used Xπ to determine the lattice spacing a, see footnote 5 in the same reference.

N3
S ×NT ν fN fΛ fΣ fΞ

243 × 48 0.181 1.033(2) 1.009(6) 0.9949(13) 0.9717(26)
243 × 48 0 1.0 1.0 1.0 1.0
243 × 48 −0.128 0.9769(33) 0.9887(84) 1.005(1) 1.018(3)
243 × 48 −0.275 0.9546(32) 0.9885(77) 1.008(2) 1.038(3)

323 × 64 −0.404 0.9229(47) 0.9999(28) 1.039(7) 1.078(9)
323 × 64 −0.558 0.9426(120) 1.012(10) 1.062(19) 1.115(24)
323 × 64 −0.692 0.9185(145) 1.010(13) 1.090(23) 1.163(29)

is set to ms(µQCD) and the light quark mass is varied, rendering all meson masses
larger than at the physical point. Thus we believe that using the formulae provided
by three-flavor BChPT will show better convergence behavior when applied to the
data set presented in 3.4, although meson masses larger than ≈ 400MeV are most
likely still too high to ensure proper convergence behavior. In [108], Walker-Loud
and collaborators use large-Nc arguments to trace the bad convergence behavior back
to the flavor-singlet sector. They explicitly show that with their lattice data, BChPT
does not yield a controlled expansion for the mass relation R1. This suggests that it
might be a good idea to factor out flavor-singlet combinations, like is done for our
baryon mass ratios with XN .
In [75] it is argued that finite-volume effects tend to cancel in the ratios considered
here. Still, we are of the opinion that these finite-volume effects generated by the
chiral loops are non-negligible for the data obtained in their work and should be
investigated, especially for vector meson masses, see ch. 4.
What one finds when carrying out the analysis of these ratios is that some LECs
and combinations thereof, the ones that parametrize the leading symmetry-breaking
contributions, can already be obtained in a quite reliable fashion from the fan plot
data. This is an important step towards applying BChPT formulae in a theoretically
sound and controlled fashion to lattice QCD data. The other LECs, especially the
ones parametrizing the singlet contributions to the baryon masses, are more difficult
to determine, also due to a lack of information from the lattice, hence we can only
give rough estimates for these constants and combinations thereof.

3.4.1 Expansion of mass ratios fB and XN

To the order we are working here, we find that we are only sensitive to terms
(δm`)km̄2−k, since all other terms are of higher order and will be modified by two-

47



3.4 Chiral analysis of baryon mass ratios

loop contributions. We write down this double expansion, chiral expansion plus
expansion in (δm`)km̄2−k, in the following form:

fB = 1 + (B0δm`)f (1)
B + (B0δm`)2f

(2)
B +O((δm`)3). (3.53)

We then find that these coefficients f (n)
B are functions of m̄:

f
(1)
N = 4(bD − 3bF )

m0
−
√

2B0m̄
3(D2 + 10DF − 3F 2)

32m0πF 2
0

+ (16B0m̄)
(

(3b0 + 2bD)(bD − 3bF )
m2

0
− 6d2 − 4d3 + 9d5

m0
+ . . .

)
+O(m̄3/2),

(3.54)

f
(1)
Λ = 8bD

m0
−
√

2B0m̄
3(D2 − 3F 2)

16m0πF 2
0

+ (16B0m̄)
(

2(3b0 + 2bD)bD
m2

0
+ 8d3

m0
+ . . .

)
+O(m̄3/2),

(3.55)

f
(1)
Σ = −8bD

m0
+
√

2B0m̄
3(D2 − 3F 2)

16m0πF 2
0

− (16B0m̄)
(

2(3b0 + 2bD)bD
m2

0
+ 8d3

m0
+ . . .

)
+O(m̄3/2),

(3.56)

f
(1)
Ξ = 4(bD + 3bF )

m0
−
√

2B0m̄
3(D2 − 10DF − 3F 2)

32m0πF 2
0

+ (16B0m̄)
(

(3b0 + 2bD)(bD + 3bF )
m2

0
+ 6d2 + 4d3 + 9d5

m0
+ . . .

)
+O(m̄3/2),

(3.57)

and the coefficients for the terms quadratic in δm` read

f
(2)
N = −D

2 + 18DF − 3F 2

128
√

2B0m̄m0πF 2
0
− 163d1 − 3d2 − d3

m0
+ . . .+O(m̄1/2) , (3.58)

f
(2)
Λ = − 10(D2 − 3F 2)

128
√

2B0m̄m0πF 2
0

+ 323d1 − 5d3 − 3d4

m0
+ . . .+O(m̄1/2) , (3.59)

f
(2)
Σ = 2(D2 − 3F 2)

128
√

2B0m̄m0πF 2
0

+ 323d1 − d3

m0
+ . . .+O(m̄1/2) , (3.60)

f
(2)
Ξ = −D

2 − 18DF − 3F 2

128
√

2B0m̄m0πF 2
0
− 163d1 + 3d2 − d3

m0
+ . . .+O(m̄1/2) . (3.61)

Here, the ellipses denote contributions from loop graphs of fourth order, which are
too lengthy to be presented here. Let us focus on the contact-term contributions first.
We find that f (1)

Σ = −f (1)
Λ and also that the linear combination f (n)

N + f
(n)
Σ + f

(n)
Ξ = 0.

Furthermore, the baryon mass in the chiral limit only appears in combination with
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other LECs, i.e. D/√m0, F/
√
m0, bi/m0 and di/m0. And most prominently, the

LEC d7 does not appear at all to this order of the double expansion of the ratios.
So, determining d7 only from fan plot type data would be very hard, since terms
proportional (δm`)3 should be vanishingly small (the lattice data suggests a rather
linear dependence). Since we also want to use D and F as well as b1−4,8−11 as input
for our analysis, it is unfortunate that m0 is not accurately known. But what is
rather accurately known is the baryon mass at the symmetric point

m? = m0 − 4B0m̄(3b0 + 2bD) +O(m̄3/2), (3.62)

due to the additional lattice data available for m?(M?), which we will also use for
our analysis. Thus, we can eliminate m0 in favor of m? and additionally replace F0
by F?, since at the order we are working this is valid according to the chiral counting
scheme. We can now rewrite the expressions above in terms of the modified LECs
b̃D/F , m? and F?:

f
(1)
N = 4(b̃D − 3b̃F )

m?

−
√

2B0m̄
3(D2 + 10DF − 3F 2)

32m?πF 2
?

− 4B0m̄

(4πF?)2

[
b̃D − 3b̃F
m?

(
5
3 + 8 log

(√
2B0m̄

µ

))

+ 2b̃D
m?

(13D2 − 30DF + 9F 2)
(

1
3 + log

(√
2B0m̄

µ

))

− 6b̃F
m?

(5D2 − 6DF + 9F 2)
(

1
3 + log

(√
2B0m̄

µ

))

+ D2 + 10DF − 3F 2

m2
?

(
3
4 + log

(√
2B0m̄

µ

))]
+ T (1)

N +O(m̄3/2),

(3.63)

f
(1)
Λ = 8b̃D

m?

−
√

2B0m̄
3(D2 − 3F 2)

16m?πF 2
?

− 4B0m̄

(4πF?)2

[
2b̃D
m?

(
5
3 + 8 log

(√
2B0m̄

µ

))

+ 4b̃D
m?

(13D2 + 9F 2)
(

1
3 + log

(√
2B0m̄

µ

))

+ 72b̃F
m?

DF

(
1
3 + log

(√
2B0m̄

µ

))

+ 2(D2 − 3F 2)
m2
?

(
3
4 + log

(√
2B0m̄

µ

))]
+ T (1)

Λ +O(m̄3/2).

(3.64)

Furthermore, f (1)
Σ and f (1)

Ξ can be obtained by using the relations given in the text
above. The formulae for the coefficients of (δm`)2 are only changed by replacing
(m0, F0)→ (m?, F?). The abbreviations T (1)

B stand for all the tadpole contributions
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proportional to b1−4,8−11:

T (1)
N = 4B0m̄

3(4πF?)2

[
9b1 − 15b2 + b3

m?

(
1 + 4 log

(√
2B0m̄

µ

))

+ 9b8 − 15b9 + b10

m?

log
(√

2B0m̄

µ

)]
,

T (1)
Λ = 8B0m̄

3(4πF?)2

[
9b1 + b3

m?

(
1 + 4 log

(√
2B0m̄

µ

))

+ 9b8 + b10

m?

log
(√

2B0m̄

µ

)]
,

(3.65)

We find that b2,9 appear only for B = N,Ξ, while the linear combinations 9b1 + b3
and 9b8 + b10 enter for all baryons. Due to the symmetry constraints given earlier in
the text, we can only derive the parameter combinations b̃D/F from a derivative of
the ratios at the symmetric point.
Since all of the above ratios have been normalized to the linear combination of
baryon masses XN , it is instructive to take a closer look at the chiral expansion of
this quantity. In the lattice simulations [75], it is shown to be practically constant
along the whole simulation trajectory, which lead to it being used to set the scale for
the lattice simulations. When employing the BChPT formulae we derived here, we
find that this flat behavior of XN is not automatically guaranteed. We will rather
impose it as a constraint when we carry out the fits to fan plot data. Let us take a
look at the chiral expansion of XN :

XN = m? + (B0δm`)2X
(2)
N +O((δm`)3), (3.66)

where we find the expressions

m? = m0 − 4B0m̄(3b0 + 2bD)− (2B0m̄)3/2 (5D2 + 9F 2)
24πF 2

?

+ (2B0m̄)2

3(4πF?)2

[
32(3b0 + 2bD) log

(√
2B0m̄

µ

)

− 8(9b1 + 7b3 + 12b4) log
(√

2B0m̄

µ

)

− 2(9b8 + 7b10 + 12b11)
(

log
(√

2B0m̄

µ

)
− 1

4

)
− 12(4πF?)2 (4d3 + 9d6 + 3d7)

− (5D2 + 9F 2)
m0

(
1 + 2 log

(√
2B0m̄

µ

))]
+O(m̄5/2),

(3.67)
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and for the coefficient of (δm`)2 we find

X
(2)
N = − 3(D2 + 2F 2)

16πF 2
?

√
2B0m̄

− 32 (3d1 + d3 + 3d7) + 5b0

π2F 2
?

(
3
4 + log

(√
2B0m̄

µ

))

+ bD
6π2F 2

?

(
2D2

(
5 + 6 log

(√
2B0m̄

µ

))
+ 15 + 20 log

(√
2B0m̄

µ

))

− 12b1 + 8b3 + 15b4

12π2F 2
?

(
3 + 4 log

(√
2B0m̄

µ

))

− 12b8 + 8b10 + 15b11

24π2F 2
?

(
1 + 2 log

(√
2B0m̄

µ

))

− D2 + 2F 2

2m0π2F 2
?

(
5
4 + log

(√
2B0m̄

µ

))
+O(m̄1/2).

(3.68)

As is evident from eqs. (3.67), (3.68), the LEC d7 shows up both at orders m̄ and
(δm`)2. Hence the baryon mass in the chiral limit m0 and the combinations of
LECs appearing in this expansion will be determined from the behavior of m?(m̄)
since the data presented in [75] contains a few data points in the region 300MeV <
M? < 500MeV. Again, we discard any data points available for M? > 500MeV
since we believe that including those data points will introduce a hardly controllable
model-dependence.

3.4.2 Linear fits to lattice data
In this subsection we perform preliminary fits to a linearized version of the mass
ratios combined with the constraint that XN does not deviate much from the physical
value. As we have already mentioned above, only the combinations of LECs that are
proportional to the terms linear in δm` can be safely determined from such fits. We
approximate

fB ≈ 1 + νf
(1,v)
B , XN ≈ m? + ν2X

(2,ν)
N , (3.69)

and using eq. (3.15), expanding up to O((2B0m̄)2), we find that we can determine
the following linear combinations of LECs:

b̃D = bD + 16B0m̄d3, b̃0 = b0 − 2B0m̄
(8

3d3 − 6d6 − 2d7

)
,

b̃F ≡ b′F + 8B0m̄d2, d̃7 = d1 + 1
3d3 + d7.

(3.70)

Here we have introduced another linear combination called b′F = bF + 12B0m̄d5. All
loop functions are evaluated at a renormalization scale µ = 1150MeV. Furthermore
we use that 2B0m̄ = (420MeV)2 in order to assure that the meson mass at the
symmetric point is set to M? = 412MeV if we use the central values for the set
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Table 3.5: Input values b1−4,8−11 taken from tab. 3.3, set 1.

F? [MeV] m0 [MeV] b̃D [GeV−1] b̃F [GeV−1] b̃0 [GeV−1] d̃7 [GeV−3]

140 1000 0.066 −0.306 −0.599 −0.118
112 800 0.078 −0.352 −0.888 −0.158
112 1000 0.078 −0.352 −0.764 −0.168
112 1200 0.078 −0.352 −0.639 −0.180
80 800 0.109 −0.434 −1.158 −0.257
80 1000 0.109 −0.434 −1.067 −0.271
80 1200 0.109 −0.434 −0.974 −0.287

Table 3.6: Input values b1−4,8−11 taken from tab. 3.3, set 2.

F? [MeV] m0 [MeV] b̃D [GeV−1] b̃F [GeV−1] b̃0 [GeV−1] d̃7 [GeV−3]

140 1000 0.054 −0.308 −0.652 −0.130
112 800 0.062 −0.355 −0.961 −0.173
112 1000 0.062 −0.355 −0.838 −0.183
112 1200 0.062 −0.355 −0.713 −0.195
80 800 0.088 −0.437 −1.270 −0.277
80 1000 0.088 −0.437 −1.179 −0.291
80 1200 0.088 −0.437 −1.086 −0.307

of meson LECs presented in tab. 3.1. In the expressions for f (1,ν)
B we set mnum

? =
1150MeV, effectively eliminating the baryon mass in the chiral limit, m0, as explained
before. To get an estimate for the error for these combinations we vary the decay
constant at the symmetric point F? in the region 80− 140MeV. We have collected
the results of these fits in tabs. 3.5-3.8, for input values for m0 ranging from 800MeV
to 1200MeV and for all four parameter sets that were presented in tab. 3.3. From
these results we can assess certain ranges for the fit parameters that should, even
after carrying out the full O(p4) analysis, hold true, based on the expectation of
higher-order corrections to our approximate fit formulae eq. (3.69). The bounds we
impose on the fit parameters are (in the appropriate units we have already given in
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Table 3.7: Input values b1−4,8−11 taken from tab. 3.3, set 3.

F? [MeV] m0 [MeV] b̃D [GeV−1] b̃F [GeV−1] b̃0 [GeV−1] d̃7 [GeV−3]

140 1000 0.069 −0.310 −0.697 −0.136
112 800 0.083 −0.358 −1.024 −0.181
112 1000 0.083 −0.358 −0.900 −0.192
112 1200 0.083 −0.358 −0.775 −0.203
80 800 0.117 −0.443 −1.362 −0.289
80 1000 0.117 −0.443 −1.271 −0.303
80 1200 0.117 −0.443 −1.178 −0.319

Table 3.8: Input values b1−4,8−11 taken from tab. 3.3, set 4.

F? [MeV] m0 [MeV] b̃D [GeV−1] b̃F [GeV−1] b̃0 [GeV−1] d̃7 [GeV−3]

140 1000 0.063 −0.271 −0.322 −0.068
112 800 0.072 −0.305 −0.504 −0.091
112 1000 0.072 −0.305 −0.380 −0.101
112 1200 0.072 −0.305 −0.255 −0.113
80 800 0.095 −0.365 −0.580 −0.166
80 1000 0.095 −0.365 −0.490 −0.180
80 1200 0.095 −0.365 −0.396 −0.196

tabs. 3.5-3.8):

0.05 ≤ b̃D ≤ 0.15 , (3.71)
−0.50 ≤ b̃F ≤ −0.25 , (3.72)
−1.50 ≤ b̃0 ≤ −0.20 , (3.73)
−0.35 ≤ d̃7 ≤ −0.05 . (3.74)

In the full analysis we will use b̃D/F as input for every set of input parameters while
the parameters m0, b0, d1−7 will be treated as free fit parameters. Afterwards we
can use the linear results for b̃0 and d̃7 as a consistency check. Note again that these
LEC ranges are only valid for this choice of 2B0m̄ and µ.
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Table 3.9: m?(M?) data taken from [75], tab. 19. To obtain these values in units of
MeV we have used their value for a = 0.0834(1) fm quoted in footnote 5 in sec. 8.3.2 of
[75].

M? [MeV] 307 357 413

m?(M?) [MeV] 1018(28) 1068(18) 1153(7)

3.4.3 Full one-loop analysis of the fan plot data

In this section we will apply the full one-loop formulae to the fan plot data for the
baryon octet masses (see again tab. 3.4) and we will fitm?(M?) to the three data points
that fulfill our demand that M? ≤ 413MeV. For the reader’s convenience we present
these data points in tab. 3.9. Additionally we impose over the whole range of ν that
XN (ν) does not deviate from its value at the physical point XN (−0.885) = 1150MeV
by more than 10%. In this whole analysis we again eliminate F0 in favor of F?, as
we did in the last subsection already, since this formally amounts to an O(p5) effect.
We obtain fB through insertion of the full one-loop expression for the baryon masses.
Note that we do not expand either in ν or m̄ this time. We also do not truncate
XN (ν) at O(ν2) as has been done in the last subsection. We need input both for the
fan plot functions and XN (ν), so we use what we have specified in eqs. (3.20), (3.21).
All meson LECs we again take from the set MILC2010, see tab. 3.1. Plus, we can use
b̃D/F from the last subsection as input for each single set of b1−4,8−11 from tab. 3.3.
With all that input, we can determine further parameters from the data sets given in
tabs. 3.4 and 3.9: First of all, the (δm`)2 dependence is determined by four different
parameters, i.e.

d̃1 = d1 −
1
3d3, d2, d̃4 = d4 + 4

3d3, (3.75)

as well as d̃7 which we have defined in eq. (3.70). Since we use b̃D as an input value,
we can also insert

bD = b̃D − 8(0.42GeV)2d3 (3.76)

in eq. (3.67), we find that we can furthermore determine the combinations

b′0 = b0 −
16
3 (0.42GeV)2d3, (3.77)

d̃6 = 4
9d3 + d6 + 1

3d7. (3.78)
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Table 3.10: Results for the fit parameters. The set-number refers to tab. 3.3. b̃D/F
are fixed input. m0 is given in GeV, b′0, b̃D/F in GeV−1, and the di are given in GeV−3

at a scale µ = 1150MeV. Here, the experimental masses are not included in the fit.

set b̃D b̃F m0 b′0 d̃1 d2 d̃4 d̃6 d̃7 b̃0

1 0.078 −0.352 1.029 −0.364 0.035 0.122 0.020 −0.532 −0.244 −0.927
2 0.062 −0.355 1.051 −0.373 0.040 0.126 0.018 −0.603 −0.272 −1.011
3 0.083 −0.358 1.064 −0.400 0.030 0.121 0.030 −0.641 −0.289 −1.078
4 0.072 −0.305 0.930 −0.271 0.025 0.101 0.042 −0.213 −0.113 −0.497

The running of XN(δm` = 0) also enables us to obtain a value for the baryon mass
in the chiral limit m0. We find that, using the earlier defined b̃0, we can write it as

b̃0 = b′0 + 6(0.42GeV)2d̃6, (3.79)

if we also use
√

2B0m̄ = 0.42GeV.
We present the results of our several different fit scenarios in tabs. 3.10-3.14. In
tab. 3.10 we have used b̃D,F as input and have determined all the other parameters,
while in tab. 3.13 we have added four additional data points, namely the mass ratios
at the physical point. We have assigned an error of 5MeV due to our neglect of
isospin-breaking effects, the physical point is located at ν ≈ −0.885. As consistency
checks we have included two fit sets where we fit all the LECs and then calculate
b̃0 and b̃F , once with and once without including the four additional experimentally
known data points. Finally, tab. 3.14 contains a stability check where we have used
the central value for F0 from the MILC2010 set instead of F? and we have not fixed
b̃D,F but have included the experimentally known mass ratios. We find that all the
fits have a χ2/d.o.f. ≈ 0.2, which has two different reasons: first, the parameters
b̃D,F are mostly determined by the data around the symmetric point, because there
the mass ratio formulae prove to be very linear, see fig. 3.5. Secondly we have a
host of free parameters, which means that there is enough leeway to describe the
behavior of XN appropriately. We have carried out many different fits to assess the
general error that comes from various assumptions, i.e. the uncertainties we have
from the various input values for bi, the higher-order corrections we neglect due to
shifting F0 → F?, using parameters gained from fitting the linear approximations of
our full extrapolation functions as input for our full fits etc. Overall we observe a
good agreement of the fits; although we vary the input parameters in a rather broad
range we end up with very similar results.

3.5 Discussion of results
In this section we will first discuss the convergence of the expansion of m? and then
we will take a closer look at the parameters that parametrize symmetry-breaking.
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Table 3.11: Results for the fit parameters, this time including the experimentally
known baryon masses.

set b̃D b̃F m0 b′0 d̃1 d2 d̃4 d̃6 d̃7 b̃0

1 0.078 −0.352 1.026 −0.370 0.035 0.046 0.044 −0.525 −0.257 −0.926
2 0.062 −0.355 1.046 −0.381 0.041 0.050 0.041 −0.594 −0.287 −1.010
3 0.083 −0.358 1.058 −0.411 0.030 0.047 0.054 −0.630 −0.306 −1.077
4 0.072 −0.305 0.936 −0.262 0.024 0.017 0.063 −0.222 −0.115 −0.496

Table 3.12: Consistency check. Here, the combinations b̃D,F are not fixed, and the
experimental masses are not included in the fit. The values for b̃0, b̃F are computed
for each set of fit results.
set m0 b′0 b̃D b′F d̃1 d2 d̃4 d̃6 d̃7 b̃0 b̃F

1 1.028 −0.372 0.087 −0.405 0.043 0.119 0.039 −0.531 −0.244 −0.933 −0.321
2 1.050 −0.381 0.072 −0.409 0.048 0.122 0.036 −0.602 −0.273 −1.017 −0.323
3 1.063 −0.407 0.092 −0.412 0.040 0.121 0.051 −0.640 −0.289 −1.084 −0.327
4 0.929 −0.278 0.079 −0.346 0.033 0.095 0.059 −0.211 −0.114 −0.501 −0.280

For the discussion of convergence let us take a closer look at m?, eq. (3.67), using
the fit results from tab. 3.10 as input parameters. Naively we would expect the
suppression factor to be of the order

√
2B0m̄

4πF?
∼ 420

4π · 112 ∼ 0.3, (3.80)

while we already know that the leading non-analytic loop correction of O(p3) is much
enhanced with respect to the value quoted above. We find, that

m? = m0 − 4B0m̄(3b0 + 2bD)− (2B0m̄)3/2 (5D2 + 9F 2)
24πF 2

?

+ (2B0m̄)2

3(4πF?)2

[
...

]
(3.81)

→ (1029 + 330− 397 + 186)MeV = 1148MeV for set 1 from tab. 3.10, (3.82)
→ (1051 + 351− 397 + 143)MeV = 1148MeV for set 2 from tab. 3.10, (3.83)
→ (1064 + 365− 397 + 115)MeV = 1147MeV for set 3 from tab. 3.10, (3.84)
→ (930 + 236− 397 + 380)MeV = 1149MeV for set 4 from tab. 3.10. (3.85)

As we can see, m? ≈ mnum
? = 1150MeV for all the different sets as we have used

this as a constraint for the fit parameters. The convergence behavior we observe
here is inconclusive if investigated order by order. What we can conclude is that
the fourth order contribution is roughly in line with a suppression factor of ≈ 0.5.
There is the possibility to analyze the convergence behavior by only comparing full
orders, i.e. the full tree-level contribution O(p) and O(p2) with the full one-loop

56



3 Chiral extrapolation of baryon mass ratios

Table 3.13: Consistency check. Here, the fit includes the experimental baryon masses,
but the combinations b̃D,F are not fixed.
set m0 b′0 b̃D b′F d̃1 d2 d̃4 d̃6 d̃7 b̃0 b̃F

1 1.021 −0.378 0.077 −0.357 0.039 0.022 0.051 −0.518 −0.257 −0.926 −0.341
2 1.042 −0.389 0.062 −0.361 0.044 0.025 0.048 −0.587 −0.287 −1.010 −0.343
3 1.054 −0.417 0.082 −0.365 0.035 0.025 0.062 −0.624 −0.305 −1.077 −0.347
4 0.930 −0.269 0.069 −0.295 0.027 0.010 0.067 −0.213 −0.115 −0.494 −0.302

Table 3.14: Stability check. Here we use the value from MILC2010 for the meson
decay constant as input everywhere, instead of F?. The fit includes the experimental
baryon masses, but the combinations b̃D,F are not fixed.

set m0 b′0 b̃D b′F d̃1 d2 d̃4 d̃6 d̃7 b̃0 b̃F

1 1.116 −0.329 0.118 −0.470 0.075 0.121 0.134 −1.247 −0.524 −1.649 −0.385
2 1.144 −0.337 0.097 −0.476 0.084 0.129 0.123 −1.411 −0.583 −1.831 −0.385
3 1.161 −0.371 0.126 −0.482 0.067 0.127 0.157 −1.500 −0.618 −1.960 −0.392
4 0.993 −0.211 0.098 −0.381 0.048 0.063 0.152 −0.516 −0.250 −0.757 −0.336

contributions O(p3) and O(p4), which leads us to a suppression factor ranging from
0.15 to 0.2 for sets 1-3. For set four, neither approach gives reasonable results: for
the first way of assessing convergence by looking at order-to-order suppression we do
not see any suppression at all, while the second approach yields a suppression factor
of roughly ≈ 0.02 which is unrealistic for BChPT for 2B0m̄ = (0.42 textGeV )2. In
both scenarios our fits with b1−4,8−11 = 0 seem to be meaningless in a perturbative
sense. What we also can clearly see is the enhanced contribution from the leading
non-analytic loop corrections ∝M3. This shows that our fits are really sensitive to
the LECs b1−11.
We can now shift the average quark mass 2B0m̄ from (0.42GeV)2 to (0.3GeV)2,
which results also in a shift F? → 104MeV. If we again take a look at the perturbative
expansion we find

m? → (1029 + 169− 168− 10)MeV = 1020MeV for set 1 from tab. 3.10, (3.86)
m? → (1051 + 179− 168− 39)MeV = 1023MeV for set 2 from tab. 3.10, (3.87)
m? → (1064 + 186− 168− 57)MeV = 1025MeV for set 3 from tab. 3.10, (3.88)
m? → (930 + 120− 168 + 122)MeV = 1004MeV for set 4 from tab. 3.10. (3.89)

Again we see that the third order term is of the same magnitude as the second order
term, while we also find that the O(p4) term is well under control except for set
4. When comparing full loop orders we again find a suppression factor of roughly

57



3.5 Discussion of results

0.16 for the sets 1-3 while set 4 again presents itself with an unrealistically small
suppression factor of 0.05. This is a hypothetical study since lattice data at such
small values for the average quark mass is not yet available. Hence, all the parameters
that can mostly be determined from the singlet sector alone will be subject to big
uncertainties, i.e. the parameters m0, b′0 and d̃6 will come with loose upper and lower
bounds.
We can see how drastically the situation changes if we add a data point for the
symmetric mass m?(M?) at M? > 500MeV and carry out the same fits. We find that
m0 ≈ 800MeV, b′0 ≈ −0.9GeV−1 and d̃6 ≈ 0.04GeV−3, while the other parameters
more or less keep their previous values. This constitutes a very serious problem,
since m0 is a LEC that appears in every single three-flavor BChPT calculation, so
it is mandatory to pin down especially the baryon mass in the chiral limit. For
that, further data points for m?(M?) have to be collected, preferrably in the region
M? < 300MeV since the error bands in this region are quite sizable, see fig. 3.4.
Up to this point in our analysis, we can only give rough bounds for these singlet
parameters, which we base on the results presented in tabs. 3.10-3.14, which are:

800MeV ≤ m0 ≤ 1200MeV , (3.90)
−1GeV−1 ≤ b′0 ≤ 0GeV−1 , (3.91)
−2GeV−3 ≤ d̃6 ≤ 0.50GeV−3 . (3.92)

This leads us to revising the previous boundaries we gave for b̃0, since the above
value for b′0 gives us a new lower limit on b̃0:

−2GeV−1 ≤ b̃0 ≤ −0.20GeV−1. (3.93)

We find that the uncertaintiy of the extrapolation of the symmetric baryon mass
grows immensely right below the last data point. Note that the fourth data point,
which was not used in our regular analysis, is presented in fig. 3.4 to show that data
points > 500MeV are not well described by our extrapolation. Secondly, that data
point was used to show that uncontrollable uncertainties are introduced when we
add data above the 500MeV threshold to our analysis. Fig. 3.4 also shows the O(p5)
effect that stems from eliminating F0 in favor of F?. One can clearly see that again
above the 500MeV threshold this effect drastically influences the curves. We can
conclude that chiral extrapolations above 500MeV introduce a hardly controllable
model-dependence. Furthermore the finding that chiral extrapolations of lattice
data above that threshold cannot be trusted is consistent with the findings of other
studies, [81, 113]. In [114], S. Dürr et al. present a study of two-flavor lattice data
examining purely mesonic observables and they advocate that only data points below
a threshold of 300MeV yield reliable results when extrapolated to the physical point.
After discussing the singlet parameters in length let us now turn to the LECs that
parametrize symmetry-breaking. We present the fit curves in fig. 3.5. The first
observation one can make about the values of the LECs that parametrize the terms
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Figure 3.4: The function m?(M?) for the four parameter sets from tab. 3.10 (solid)
and 3.14 (dashed). Furthermore we have used the color code: set 1 (red), set 2 (green),
set 3 (blue) and set 4 (black). The band here shows the one-sigma band associated to
the solid red curve.

linear in symmetry-breaking for the various different sets of input parameters is that
both b̃D and b̃F are almost the same, no matter whether we use values obtained from
linear approximations to the mass ratio extrapolation formulae or whether we treat
those parameters as free for our analysis employing the full extrapolation formulae.
This hints at a very stable determination of these parameters. If we investigate the
bounds we gave in eqs. (3.71) and (3.72) we find that all fit sets produce values
within these boundaries. When we investigate the linear combination (20/3)b̃D − b̃F
we find that for all fits from tabs. 3.10-3.13, the linear combination falls in the bounds
we have presented in sec. 3.2. For sets 1-3 from tab. 3.14 we find that the values for
this particular linear combination lie a little above the given bounds. We find that
the LECs parametrizing the linear part of symmetry-breaking can be determined in
a very stable manner, which is due to the new impressive lattice data that leads to
the fan plots we present here.
Lastly we need to discuss the linear combinations of LECs that parametrize the
non-linear part of the symmetry-breaking effects. Since they appear at O(p4), which
is the order we are working at in our full one-loop calculation, we will not be able to
determine them to very high precision. From the results we have gathered, we can
extract the following allowed ranges (in units of GeV−3):

−0.05 ≤ d̃1 ≤ 0.15, (3.94)
0.00 ≤ d2 ≤ 0.25, (3.95)
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Figure 3.5: Three different fit results for b1−11 taken from set 1. The three curves
represent the results from tabs. 3.10 (solid), 3.11 (dashed) and 3.13 (dotted). The
bands again are the one-sigma bands corresponding to the solid curves. Note that the
fit results in tabs. 3.11 and 3.13 contain the experimentally known mass ratios as data
points.

−0.10 ≤ d̃4 ≤ 0.20, (3.96)
−0.75 ≤ d̃7 ≤ −0.05. (3.97)

All these values have been determined at a renormalization scale µ = 1150MeV
and they can be evolved to other renormalization scales via eqs. (C.3)-(C.9) when
infrared regularization is used at a different scale µ.
When we compare eq. (3.97) to eq. (3.74) we see that the linear approximation
grossly underestimates the uncertainty in d̃7. This is mostly due to the fact that
the combination d̃7 has to compensate for the quite sizable O(p3) contribution in
order to keep the observable XN(ν) approximately constant. In fig. 3.6 we present
the function XN(ν) over the whole range for ν for our four results from tab. 3.10.
As we can see from comparing tab. 3.10 to tab. 3.11, including the experimentally
known mass ratios mainly modifies the LEC d2. We can see the effect on the fit
curves in fig. 3.5, when we compare the dotted and dashed lines with the solid lines.
We see that the curves that deviate most are the ones for fN and fΞ. These findings
lead us to conclude that a truly reliable extrapolation of fan plot data down to
the physical point is still to be considered problematic, although a lot of progress
towards such an extrapolation has been made in this work for the involved LECs
and combinations thereof.
Borasoy and Meißner [76] have estimated d1−7 in the framework of HBChPT using
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one-sigma band pertaining to the red curve.

the resonance saturation principle and combining it with a fit to experimental baryon
masses and sigma terms. We show a direct comparison of their estimates and our
results in tab. 3.15. Of course this comparison is of purely qualitative nature, due
to the different regularization schemes and even more importantly the fact that the
sigma term and the baryon masses at the physical point have been used as input,
despite the bad convergence properties at the physical point.
Shortly after [35] was submitted to arXiv.org, two other analyses of the lattice data
available at that time were published [112, 115], the latter of which uses a framework
similar to the one we employed, so it is reasonable to compare their LECs with ours.
The comparison of O(p4) LECs is presented in tab. 3.15, while the comparison of
several fit values for the bayon mass in the chiral limit m0 can be found in tab. 3.16.
We find that the d1−7 mostly fit into our relatively broad ranges. The same is true for
the values for m0. Only the value quoted in [116] is not in line with our results. In
general one has to be cautious here, since all these values were obtained in different
regularization schemes at sometimes even different renormalization scales µ. We
have checked that the latter however does not have a big influence on our results.
As far as the LEC combinations b̃D,F,0 are concerned, b̃F,0 from [76, 112] are covered
by our relatively broad ranges, wheras for b̃D our result is not compatible with the
results quoted in the two references. In [112], one finds that their LEC bD jumps
from a rather small value at O(p3) to a comparatively large value at O(p4), i.e. from
≈ 0.05/GeV to ≈ 0.22/GeV. Such a large jump could hint at a convergence problem
and since almost all of the data analyzed in ref. [112] is at or above the threshold
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Table 3.15: Comparison of our results to the estimates obtained from resonance
saturation presented in [76] and the fit results published in [112]. As an estimate
for the parameter βR appearing in the publication we use βR ≈ 0, because the value
of the combinations only depends very slightly on βR, if it is varied in the range
[−0.1, 0.1]GeV−1 as advocated in their paper. All LECs are given in units of [GeV−3].

Ref. d̃1 d2 d̃4 d̃6 d̃7

this work [−0.05, 0.15] [0.00, 0.25] [−0.10, 0.20] [−2, 0.5] [−0.75,−0.05]
[76] −0.015 0.035 0.015 −0.0217 −0.072
[112] 0.020(23) 0.296(53) 0.298(76) −0.053(39) −0.059(40)

Table 3.16: Results for m0 (in GeV) from refs. [76, 112, 116, 117]. For our estimate,
see eq. (3.90).

Ref. [112], Fit I [116] [117] [76]

m0 0.880± 0.022 0.756± 0.032 0.944± 0.002 0.767± 0.110

where the three-flavor expansions work in a reliable manner, it is important to redo
this analysis once more data with small meson masses, i.e. in particular small strange
quark masses, is available.

3.6 Pion-nucleon sigma term

The pion-nucleon sigma term is a quantity which measures the contribution of the
explicit breaking of chiral symmetry to the nucleon mass. It is defined as

σπN(t) = m`

〈
N ′, p′

∣∣∣ūu+ d̄d
∣∣∣N, p〉 , (3.98)

where t = (p′ − p)2. We can extract σπN(0) from the nucleon mass formulae via the
Feynman-Hellman theorem [118, 119],

σπN(0) = m`
∂mN(m`,ms)

∂m`

. (3.99)
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From the O(p3) mass formula for the nucleon, we find that the O(p3) sigma term
can be written as

σπN(0) = −2Ṁ2
π(2b0 + bD + bF )− Ṁ2

π

64πF 2
0

(
4απNṀπ + 2αKNṀK + 4

3α
η
NṀη

)
,

(3.100)

where we find the coefficients αiN to be

απN = 9
4(D + F )2 , αKN = 1

2(5D2 − 6DF + 9F 2) , αηN = 1
4(D − 3F )2. (3.101)

If we investigate this quantity at this order, we find that the one-loop contribution is
of order

−Ṁ2
π

(
ṀK

4πF0

)( 5.54
GeV

)
≈ −50MeV, (3.102)

at the physical point with our particular choice for D and F , see sec. 3.2. So this
positive quantity of about 50MeV acquires a contribution of about −50MeV at
leading one-loop order, which casts strong doubts on the applicability of BChPT at
the physical point. From eqs. (3.43)-(3.46) we can derive the contributions of the
O(p4) contact-terms to the sigma term:

σ
(ct)
πN (0) = −2B0m`

(
4b0 + 2bD + 2bF + 32

3 B0m̄ (4d3 + 9d6 + 3d7)

+ 8
3B0m̄ (6d2 − 4d3 + 9d5)

+ 16(B0δm`) (3d1 + d2 − d3 + 3d5 + 2d7)
)
.

(3.103)

This equation can be rewritten using our previously defined fit parameters, eqs.(3.70)
and (3.77), and we obtain the form

σ
(ct)
πN (0) = −2B0m`

(
4b′0 + 2b̃D + 2b̃F + 96B0m̄d̃6

+ 16
3 (B0δm`)(3d̃1 + 3d2 − 4d3 + 9d5 + 6d̃7)

) (3.104)

Since we were not able to determine the LECs d3 and d5, we can only give a rough
estimate for the sigma term. In general, we can write the complete sigma term as a
part that is independent of these LECs and a d3 and d5 dependent part:

σπN(0) = σπN(0)
∣∣∣
d3=d5=0

+8
3(2B0δm`)(2B0m`)(9d5 − 4d3)

≈ σπN(0)
∣∣∣
d3=d5=0

−8
3M

2
π(X2

π −M2
π)(9d5 − 4d3).

(3.105)
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Let us consider two scenarios for estimating the combination d5 − (4/9)d3: we take
the results of fit sets 1 and 4 from tab. 3.10 as input and calculate σπN(0)|d3=d5=0,
which results in 67MeV and 47MeV respectively. Then we impose a consistency
condition on d3 and d5 by requiring that these two LECs do not yield more than a
100% correction to the linear combinations of LECs we defined as b′F and b̃D. This
gives us the following bounds on the LECs and the linear combination thereof:

−0.07GeV−3 ≤ d3 ≤ 0.07GeV−3, (3.106)
−0.38GeV−3 ≤ d5 ≤ 0.38GeV−3, (3.107)

−0.41GeV−3 ≤
(
d5 −

4
9d3

)
≤ 0.41GeV−3. (3.108)

The above bounds lead to two ranges for the sigma terms, dependent on the input
value for σπN(0)|d3=d5=0, i.e.

39MeV ≤ σπN(0) ≤ 95MeV for set 1, (3.109)
19MeV ≤ σπN(0) ≤ 75MeV for set 4. (3.110)

The values quoted in this work are in perfect agreement with the latest three-flavor
lattice determinations of the sigma term [120, 121]. The estimates we give here for
d3 and d5 are also in tune with the fit results presented in [112]. Convergence for the
sigma term at the physical point is still very questionable, so one should see these
results only as what they were intended to be, i.e. rough bounds on the pion-nucleon
sigma term. For a reliable determination one needs data points at smaller average
quark masses and in general one would need the whole fan plot data at different
values for M?, so that a relieable determination of d3 and d5 is also possible.
In general, we advocate to determine the sigma term employing Nf = 2 lattice data
combined with SU(2)f BChPT, as is done in [122]. There is also the possibility to
extract the pion-nucleon sigma term from πN -scattering by using the chiral symmetry
of the strong interactions at the unphysical Cheng-Dashen point [123]. This has been
done several times and usually favors a somewhat larger sigma term [124], while
lattice determinations favor a lower value [120–122].
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4 Chiral behavior of vector
meson self-energies

In this chapter we concern ourselves with extrapolating the vector meson mass data
presented in [75]. We calculate the vector meson octet masses to one-loop accuracy,
while our representation of the vector meson self-energy also allows us to discuss the
one-loop corrections to the φ(1020)− ω(782) mixing amplitude. This work has been
published in Physical Review D under the title ’Chiral behavior of vector meson
self-energies’ [125].

4.1 Generalities

In this chapter we concern ourself with calculating the vector meson self-energy to
leading one-loop order within the framework of ChPT. Let us start with investigating
the free vector field propagator in momentum space, which can be derived from the
Lagrangian presented in eq. (1.77):

(D−1
0 )µν(k) = −i

(
gµν − kµkν

M2
V,b

)
s−M2

V,b

= −i

(
gµν − kµkν

s

)
s−M2

V,b

+ i
kµkν
sM2

V,b

. (4.1)

In the above expression we have again introduced the abbreviation s = k2. We
assume MV,b to be real, so the width of the vector mesons is generated dynamically,
via dressing by meson loops. In fig. 4.1 we schematically show the vector meson
self-energy Πµν(k), which we can formally write in terms of a transversal and a

Π

Figure 4.1: The vector meson self-energy Πµν(k). The double line represents incom-
ing/outgoing vector mesons.
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longitudinal part:

Πµν(k) =
(
gµν −

kµkν
k2

)
ΠT (s) + kµkν

k2 ΠL(s). (4.2)

Let us resum the geometric series of irreducible two-point graphs

(D−1)µν = (D−1
0 )µν + (D−1

0 )µα(iΠ)αβ(D−1
0 )βν + . . . = (D0 − iΠ)−1

µν , (4.3)

where we find (D0)µν = i((k2 −M2
V,b)gµν − kµkν). Next, we can invert the matrix

presented in eq. (4.3) and we obtain

(D−1)µν(k) =
(−i)

(
gµν − kµkν

s

)
s−M2

V,b − ΠT (s) + ikµkν
s(M2

V,b + ΠL(s)) . (4.4)

The first term resembles the transversal part of the free spin one propagator, with the
pole position perturbatively shifted from M2

V,b to M2
V,b+ΠT , whereas the second term

in eq. (4.4) does not have a pole in the vicinity of M2
V,b, assuming that perturbation

theory is applicable. When sandwiched between vertices derived from eq. (1.78),
we find that the second term vanishes due to the transversal nature of the vertices.
Hence we only need to concern ourselves with the calculation of ΠT , but for general
interactions one should make sure that ΠT (0) = ΠL(0) so that the self-energy does
not develop a pole at s = 0. We also are only interested in the mesonic contributions
to ΠT and hence we will assume that all other hadronic contributions have already
been absorbed in all the parameters that occur in our framework, which is common
practice within an effective field theory treatment describing low-energy interactions.
In the chiral limit case where we send the quark mass matrix M → 0, the denominator
of the transversal part of the full propagator takes the form

s−M2
V,b − Π̊PGB

T (s) = s−M2
V,b − Π̊PGB

T,loop(s)−
N∑
n=0

c̊ns
n, (4.5)

where the circle denotes quantities in the chiral limit and the superscript PGB
denotes that these are solely contributions from the interactions between vector
mesons and the pseudoscalar bosons. The terms proportional to c̊n are counterterms
that absorb the divergencies from the loop part of the self-energy, where N depends
on the degree of divergence of the loop graphs under consideration. We will not need
the explicit form of such counterterms here, although their construction is straight
forward, see e.g. [43, 126].
Without loss of generality, we set the longitudinal part of the self-energy Π̊PGB

L (s) = 0,
which due to the pole situation at s = 0 leads to Π̊PGB

T (0) = 0. In principle, the
longitudinal components that would appear in our calculation are only due to
the parametrization we chose for the vector fields and can be removed by a field
redefinition that only affects the spin zero component of the vector fields (for a
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4 Chiral behavior of vector meson self-energies

discussion see e.g. [42], eq. (3.9) and comments on said equation). This leads us
directly to the conditions

c̊0 = 0 and Π̊PGB
T,loop(s) s→0−→ 0, (4.6)

which means that the bare mass MV,b is not renormalized by the loop graphs we
evaluate. Let us define two parameters M̊V and Γ̊V to write the pole position of the
propagator in the chiral limit,

s̊pole = M̊2
V − iM̊V Γ̊V , (4.7)

so that we have

s̊pole −M2
V,b −

[
Π̊PGB
T,loop(̊spole) +

N∑
n=1

c̊ns̊
n
loop

]
= 0. (4.8)

We treat the corrections that appear in the brackets to one-loop accuracy while
simultaneously assuming that the parameter Γ̊V is sufficiently small compared to
M̊V , i.e. Γ̊V � M̊V , so that terms of quadratic order in the imaginary part of the
pole position can be neglected. For the vector field propagators appearing in loop
calculations, we take the free propagators with the pole position shifted to s̊loop so
that we can immediately relate the imaginary part of the loop integrals occurring in
Π̊PGB
T (M̊V ), i.e.

M̊V Γ̊V = − Im
[
Π̊PGB
T,loop(̊spole)

]
− Im

 N∑
n=1

c̊ns̊
n
pole

 ≈ − Im
[
Π̊PGB
T,loop(M̊2

V )
]
. (4.9)

Since the difference between M̊2
V , M2

V,b and the width Γ̊V formally amounts to a
two-loop effect when we insert it in the loop corrections, we can eliminate the
unobservable parameter M2

V,b to one-loop accuracy:

M2
V,b = M̊2

V − Re
[
Π̊PGB
T,loop(̊spole)

]
− Re

 N∑
n=1

c̊ns̊
n
pole


≡ M̊2

V − Re
[
Π̊PGB
T,loop(̊spole)

]
− Re

 N∑
n=0

d̊n(̊spole − M̊2
V )n


≈ M̊2

V − Re
[
Π̊PGB
T,loop(̊spole)

]
− d̊0,

(4.10)

where we have used the approximations that were mentioned above. We make strong
use of the applicability of perturbation theory, not however of the convergence of the
low-energy expansion in s. Since we are interested in the resonance region itself, it is
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reasonable to reorder the series of the counterterms cn in the following way:

N∑
n=0

cns
n =

N∑
n=0

dn(s− M̊2
V )n,

N∑
n=0

(−1)nd̊nM̊2n
V = 0. (4.11)

We can now expand the denominator of eq. (4.5) around s̊pole and if we employ
eqs. (4.9), (4.10) and negelct all terms proportional to O((s− s̊pole)2), we find the
following expansion:

s−M2
V,b − Π̊PGB

T (s) ≈ s̊pole + (s− s̊pole)
(

1− d

ds
Π̊PGB
T,loop

∣∣∣s=s̊pole

−
N∑
n=1

nd̊n(̊spole − M̊2
V )n−1

)

−
(
M̊2

V + Π̊PGB
T,loop(̊spole)− Re Π̊PGB

T,loop(̊spole)

+ iIm
N∑
n=1

d̊n(̊spole − M̊2
V )n

)

≈ (s− s̊pole)
(

1− d

ds
Π̊PGB
T,loop

∣∣∣s=s̊pole − d̊1 + 2id̊2M̊V Γ̊V
)

+ s̊pole −
(
M̊2

V − iM̊V Γ̊V
)
.

(4.12)

We also find that in the vicinity of the pole, the transversal part of the propagator
takes the form

(
D̊−1

)T
µν

(k) =
(−i)R̊

(
gµν − kµkν

s

)
s− s̊pole

, (4.13)

where the residue R̊ is easily to be read off from eq. (4.12). As a renormalization
condition we require that Re R̊ = 1, and we find that at one-loop order that amounts
to a condition on d̊1, i.e.

d̊1 ≡ −Re d

ds
Π̊PGB
T,loop

∣∣∣s=s̊pole . (4.14)

So far we have only treated the chiral limit case, so let us now switch on the quark
masses. After going through the same steps as above, we end up with the following
result:

s−M2
V,b − ΠPGB

T (s) = s− M̊2
V − Π̄PGB

T,loop(s)− e0 +DN −
N∑
n=1

dn(s− M̊2
V )n, (4.15)

Π̄PGB
T,loop(s) = ΠPGB

T,loop(s)− Re Π̊PGB
T,loop(̊spole), (4.16)
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4 Chiral behavior of vector meson self-energies

DN = Re
N∑
n=1

d̊n(̊spole − M̊2
V )n = Re

N∑
n=2

d̊n(−iM̊V Γ̊V )n, (4.17)

en = dn − d̊n. (4.18)

All the contributions from quark-mass dependent counterterms we have collected
in the en terms. It is important to note that the parameter MV,b here is the same
parameter used in eq. (4.8) since we treat the quark-mass corrections to the bare
mass as another perturbation in addition to the PGB loops; at leading order in the
expansion around s = M̊2

V these are given by e0. Furthermore, when investigating
the constant DN defined in eq. (4.17) we find that it is of two-loop order, which lies
beyond the scope of this work. It is hence neglected from now on.
Let us take a closer look on the pole position spole of the propagator for non-vanishing
quark masses: we find that the relevant non-analytic terms from loop graphs start at
O(m3/2

q ) ∼ O(M3
PGB), whereas the corrections from the mass-dependent counterterms

yield even powers of MPGB. Schematically, this results in the following expansions:

spole = s̊pole + x2M
2
PGB + x3M

3
PGB +O(M4

PGB logMPGB,M
4
PGB), (4.19)

en = e(2)
n M2

PGB +O(M4
PGB). (4.20)

We can again investigate the expansion in terms of (spole − s̊pole), which leads to

0 = spole −
(
M̊2

V + Π̄PGB
T,loop(spole) + e0 +

N∑
n=1

dn(spole − M̊2
V )n −DN

)

= (spole − s̊pole)− iM̊V Γ̊V − Re Π̄PGB
T,loop(̊spole)− Re

N∑
n=0

en(̊spole − M̊2
V )n

− i
(

Im ΠPGB
T,loop(̊spole) + Im

N∑
n=1

dn(̊spole − M̊2
V )n

)

− (spole − s̊pole)
(
d

ds
ΠPGB
T,loop

∣∣∣
s=s̊pole

+
N∑
n=1

ndn(̊spole − M̊2
V )n−1

)
+O((spole − s̊pole)2)

≈ (spole − s̊pole)
(

1− d

ds
ΠPGB
T,loop

∣∣∣
s=s̊pole

− d1 + 2id2M̊V Γ̊V
)

− Re Π̄PGB
T,loop(̊spole)− e0 − i Im

(
ΠPGB
T,loop(M̊2

V )− Π̊PGB
T,loop(M̊2

V )
)
.

(4.21)

We can now also employ the conditions eqs. (4.14), (4.19) and (4.20) to end up with
the following result:

spole − s̊pole = Re Π̄PGB
T,loop(̊spole) + e

(2)
0 M2

PGB

+ i Im
(
ΠPGB
T,loop(M̊2

V )− Π̊PGB
T,loop(M̊2

V )
)

+O(~2)

+O
(
M4

PGB logMPGB,M
4
PGB

)
.

(4.22)
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Here, we have indicated that we have neglected all two-loop contributions, denoted
by O(~2). Furthermore we can fix the coefficient e(2)

1 via the condition that ReR =
1 +O(M4

PGB). We can fix e0 and d1 up to and including O(MPGB) from the quark-
mass dependence of the vector meson masses and again the renormalization condition
mentioned above. We are not aware of a natural or model-independent way to
determine the coefficients d̊n≥2. In general, the off-shell behavior of an amplitude
like ΠT (s) will depend on the chosen field parametrization, e.g. [127].
So far we have investigated an expansion around the chiral limit where the quark
masses and thus all pseudo-Goldstone boson masses are zero. This expansion is a
problematic one, since in our physical world, as mentioned before, the PGB masses
are not small compared to the reference scales, in this case the vector meson masses.
One finds that MKM

−1
K∗ ≈ 0.6 and MηM

−1
ω ≈ 0.7 due to the large strange quark

masses. It is because of that reasoning that we can conclude that the extrapolation
from the chiral limit to the physical point is most likely not under sufficient theoretical
control, see ch. 3 for a discussion of that problem. Another problem is due to the
fact that vector mesons can decay. Thus, the closer we get to the chiral limit, the
more important it gets to account for the possibility of the decay into three, four,
etc. nearly massless PGBs. Thus, a one-loop calculation is certainly not sufficient
to calculate the self-energy near the chiral limit reliably. Finally, we have neglected
the effects that are O(̊Γ2

V M̊
−2
V ), although in some of the intermediate steps of our

reasoning they need not be tiny.
As already described in ch. 3, we again want to extrapolate the lattice data presented
in [75] and we adapt our extrapolation to their simulation concept. Since this time
we only attempt a leading one-loop calculation, we have to modify eq. (3.11) by
neglecting all terms of O(p4), i.e. we find

M2
PGB(δm` = 0) = M2

? = 2B0m̄+O(m̄2 log m̄) ≈ (412 MeV)2, (4.23)

for m̄ = m̄phys. The value for the octet vector meson mass at the symmetric point is
derived from [75] to be M?

V = 855MeV, which means that at and in the vicinity of
the symmetric point the vector mesons are almost stable particles. It is certainly not
a disadvantage to choose the symmetric point as a reference point for our calculations
and extrapolations. We will only use eqs. (4.15) and (4.22) to analyze the running
of (s?pole − s̊pole) with varying m̄. For analyzing the symmetry-breaking effects, we
will make use of the symmetric point as a reference point.
To see the mechanism at work, let us return to eq. (4.15) and employ the first line of
eq. (4.21) to write

s?pole = M̊2
V + Π̄PGB?

T,loop(s?pole) + e?0 +
N∑
n=1

d?n(s?pole − M̊2
V )n −DN , (4.24)
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and following the lines presented above, we find that

s−M2
V,b − ΠPGB

T (s) = s− s?pole −
(
ΠPGB
T,loop(s)− ΠPGB?

T,loop(s?pole) + e0 − e?0
)

−
(

N∑
n=1

δdn(s?pole − M̊2
V )n +

N∑
n=1

fn(s− s?pole)n
)
,

(4.25)

δdn = dn − d?n, (4.26)

fn =
N∑

m=n
dm

(
m

n

)
(s?pole − M̊2

V )m−n. (4.27)

As argued before, at the symmetric point the width is tiny and hence, we can neglect
it, setting Im s?pole = 0 and Re s?pole = (M?

V )2. Furthermore we can absorb the terms
proportional to δdn, which are of order O(δm`), in the term e0− e?0. They constitute
m̄ corrections to the symmetry-breaking behavior due to s?pole − M̊2

V = O(m̄).
Symbolically, we write

δe = e0 − e?0 +
N∑
n=1

δdn(s?pole − M̊2
V )n = O(δm`). (4.28)

Hence we can write the denominator of the vector meson propagator in its final form

s−M2
V,b − ΠPGB

T (s) = s− s?pole −
(
δe+ ΠPGB

T,loop(s)− ΠPGB?
T,loop(s?pole)

+
N∑
n=1

fn(s− s?pole)n
)
.

(4.29)

Since we will set s?pole = (M?
V )2 to the value quoted in [75], we have effectively

eliminated every reference to the chiral limit mass M̊V from eq. (4.29). For a fixed
value of m̄ we take the propagators appearing in the loop integrals as free propagators
with a pole position shifted to M?

V . We have reordered the original counterterms in
such a way that the energy dependence of the self-energy is expanded around M?

V

instead of M̊V . Anologously, one expands around M?
S in the singlet case. We again

require, in analogy to eq. (4.14), that the real part of the residue at the pole position
is equal to one, thus fixing the parameter f1 order by order in δm`.
In the last part of this section, let us shortly discuss the singlet-octet mixing in the
general case that m` 6= ms. We find that the neutral octet isosinglet field not only
mixes with MM, VM and SM states, but also with one-particle singlet states. Hence,
the one particle propagator in the φ(0) − φ(8) sector is non-diagonal [128] and we
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4.2 Extrapolation fomulae

have to invert the corresponding matrix, which yields

D−1
mix = i

s−M?2
S − δΠ00 −Π08

−Π80 s−M?2
V − δΠ88

−1

= i

det08

s−M?2
V − δΠ88 Π08

Π80 s−M?2
S − δΠ00

 ,
(4.30)

where we again only consider the transversal part of the self-energies and the
expressions have been expanded about the symmetric point. We have introduced
the expressions δΠ00/88, which stand for Π00/88(s)−Π00/88(s?V/S,pole). Again, we have
neglected the tiny widths at the symmetric point. We also write Π00 instead of Πφ(0)

for better legibility, as we also do for its isoscalar octet counterpart.
Since we are looking for the mass eigenvalues of this sector, we determine the
(complex) zeroes of the determinant det08, see ref. [129]. We find that

det08 = (s−M?2
V − δΠ88)(s−M?2

S − δΠ00)− Π08Π80. (4.31)

For energy-independent self-energies, this is a simple quadratic equation in s and
the two roots are identified with the masses of the φ(1020) and the ω(782). This
treatment leads to the expressions for masses and the mixing angle ΘV presented in
e.g. [46].

4.2 Extrapolation fomulae
To derive the extrapolation formulae, additionally to the effective Lagrangians of
eqs. (1.77), (1.78) we need the chiral Lagrangian that contains the leading quark-mass
insertions for the self-energies, see also [46–48, 130]:

LV,χ = bV0 〈VµV µ〉〈χ+〉+ bVD〈Vµ{χ+, V
µ}〉+ bV S0 SµS

µ〈χ+〉+ b08Sµ〈V µχ+〉. (4.32)

We find that these O(p2) mass insertions include the singlet-octet mixing terms and
yield the following energy-independent contributions to the self-energies:

Πρ,ct = 8B0
(
bV0 (2m` +ms) + 2bVDm`

)
, (4.33)

ΠK∗,ct = 8B0
(
bV0 (2m` +ms) + bVD(m` +ms)

)
, (4.34)

Πφ(8),ct = 8B0

(
bV0 (2m` +ms) + 2

3b
V
D(m` + 2ms)

)
, (4.35)

Πφ(0),ct = 8B0b
V S
0 (2m` +ms) , (4.36)

Π08,ct = 4B0b08

√
2
3(m` −ms) = Π80,ct. (4.37)

One can easily see that the singlet-octet mixing term disappears at the SU(3)f
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4 Chiral behavior of vector meson self-energies

Figure 4.2: The three tadpole graphs we have included in our calculation. The double
solid line represents an octet vector meson while the double dashed line stands for the
singlet vector meson. The dashed line represents any of our pseudo-Goldstone bosons
π, K, η.

symmetric point wherem` = ms. From eq. (4.32), we can also derive the contributions
from the tadpole graphs presented in fig. 4.2, which again contain an octet-singlet
mixing contribution proportional to the LEC b08:

Πρ,tad = −4B0b
V
0

F 2
0

(
6m`Iπ + 4(m` +ms)IK + 2

3(m` + 2ms)Iη
)

− 4B0b
V
D

F 2
0

(
6m`Iπ + 2(m` +ms)IK + 2

3m`Iη

)
,

(4.38)

ΠK?,tad = −4B0b
V
0

F 2
0

(
6m`Iπ + 4(m` +ms)IK + 2

3(m` + 2ms)Iη
)

− 4B0b
V
D

F 2
0

(
3m`Iπ + 3(m` +ms)IK + 1

3(m` + 4ms)Iη
)
,

(4.39)

Πφ(8),tad = −4B0b
V
0

F 2
0

(
6m`Iπ + 4(m` +ms)IK + 2

3(m` + 2ms)Iη
)

− 4B0b
V
D

F 2
0

(
2m`Iπ + 10

3 (m` +ms)IK + 2
9(m` + 8ms)Iη

)
,

(4.40)

Πφ(0),tad = −4B0b
V S
0

F 2
0

(
6m`Iπ + 4(m` +ms)IK + 2

3(m` + 2ms)Iη
)
, (4.41)

Π08,tad = −B0b08

F 2
0

√
2
3

(
6m`Iπ − 2(m` +ms)IK + 2

3(m` − 4ms)Iη
)
, (4.42)

where we have defined the appearing loop functions IM in eq. (A.1). Furthermore
we find that Π08,tad = Π80,tad and that this contribution to singlet-octet mixing also
vanishes in the SU(3)f limit as expected. There are several other possible terms
that generate tadpole contributions, see e.g. [47]. In said publication the authors
use large Nc arguments to constrain the corresponding LECs. Strictly speaking our
formulae are only complete at leading one-loop order O(p3), but we take the tadpole
graphs into account to estimate higher-order effects. We show all leading one-loop
order contributions to the vector meson self-energies in fig. 4.3.
The first graph we want to investigate is the bubble-type graph fig. 4.3(a), which
exclusively occurs for the octet vector mesons and which follows directly from the
first term of the Lagrangian eq. (1.78). This graph is particularly interesting since it
has been missed in the so-called ’heavy vector meson’ approach from [47], while the
contribution due to the intermediate two-PGB states is absent in quenched QCD
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[131]. We find that calculating this diagram results in contributions to the masses as
well as to the widths. Thus we find the results for the respective octet vector mesons:

Πρ,bubble(s) = −g
2
V s

2

F 4
0

(
4IππA (s) + 2IK̄KA (s)

)
, (4.43)

ΠK?,bubble(s) = −g
2
V s

2

F 4
0

(
3IπKA (s) + 3IKηA (s)

)
, (4.44)

Πφ(8),bubble(s) = −g
2
V s

2

F 4
0

6IK̄KA (s). (4.45)

We also present the explicit mass corrections that arise from the sunset diagrams
figs. 4.3(b)-4.3(d), they take the form

Πρ,sun(s) = −4(gVA )2s

F 2
0

(2
3I

πV
A (s) + 2IKVA (s) + 2

3I
ηV
A (s)

)
− 4(gV SA )2s

F 2
0

IπSA (s),

(4.46)

ΠK?,sun(s) = −4(gVA )2s

F 2
0

(3
2I

πV
A (s) + 5

3I
KV
A (s) + 1

6I
ηV
A (s)

)
− 4(gV SA )2s

F 2
0

IKSA (s),

(4.47)

Πφ(8),sun(s) = −4(gVA )2s

F 2
0

(
2IπVA (s) + 2

3I
KV
A (s) + 2

3I
ηV
A (s)

)
− 4(gV SA )2s

F 2
0

IηSA (s),

(4.48)

Πφ(0),sun(s) = −4(gV SA )2s

F 2
0

(
3IπVA (s) + 4IKVA (s) + IηVA (s)

)
, (4.49)

while the last graph of fig. 4.3 contributes to singlet-octet mixing. The calculation
yields

Π08,sun(s) = −4gVAgV SA
F 2

0
s

√6IπVA (s)− 2
√

2
3I

K V
A (s)−

√
2
3I

ηV
A (s)

 . (4.50)

The above expressions are inserted into eqs. (4.29) and (4.30), where we also employ
s?V,pole = (M?

V )2 = (885MeV)2 [75] and furthermore s?S,pole = (M?
S)2, where the singlet

vector meson mass in the chiral limit M?
S is an unknown parameter that can be

determined from fitting the extrapolation formulae to lattice data. The complex
zeroes of eq. (4.29) give the mass and decay width of the corresponding vector meson,
i.e. sV,pole = M2

V − iMV ΓV , where V stands for any of the vector mesons under
consideration here.
Now that we have presented all these expressions for the loop contributions to
the self energy, we have to discuss power counting and regularization of the loop
integrals appearing in these expressions. We evaluate all integrals using dimensional
regularization and the MS renormalization scheme to take care of the ultraviolet
divergencies. We have absorbed a constant part of our loop integrals into (M?

V )2 by

74



4 Chiral behavior of vector meson self-energies

(a) (b) (c)

(d) (e)

Figure 4.3: The other loop diagrams we include in our calculation. The double solid
line represents the octet vector mesons and the double dashed line represents the
singlet vector meson. The dashed line stands for any of the pseudo-Goldstone bosons
π, K or η.

subtracting Π?
T,loop(s?pole). We also use renormalization conditions as, e.g., ReR ≡ 1,

hence our renormalized loop contributions start formally at second chiral order, i.e.
with terms proportional to (s− (M?

V )2)2 and δm`. The power-counting for the loop
graphs is not straightforward, as has been mentioned in sec. 1.5 and was discussed
in detail in [50, 52]. Now and then, we resort to dispersion-theoretic arguments,
since in that language, all loop integrals are, in principle, up to a polynomial in s,
determined by their branch cuts and threshold singularities. We give an example
for the dispersive approach in app. D.2. In [129, 131, 132] the authors have used
dispersive techiques to treat the ππ loop.
We also present the counterterms f1 ocurring in eq. (4.29) up to linear terms in
the symmetry breaking variable δm`, neglecting counterterms of O((s− s?pole)2) and
O((s− s?pole)δm2

`):

fρ1 = fV ?1 − 8B0z
V
Dδm` +O((δm`)2), (4.51)

fK
?

1 = fV ?1 + 4B0z
V
Dδm` +O((δm`)2), (4.52)

fφ
(8)

1 = fV ?1 + 8B0z
V
Dδm` +O((δm`)2), (4.53)

fφ
(0)

1 = fS?1 +O((δm`)2), (4.54)
f 08

1 = 0− 2
√

6B0z08δm` +O((δm`)2). (4.55)

Neglecting the energy-dependent terms sets limits on the accuracy in determining
the energy-dependence of the self-energies in the resonance region. The above terms
can of course be derived from effective Lagrangians, e.g. in the case of the mixing
renormalization parameter z08, we find that

Lmix = b′08Sµ〈V µχ+〉 −
z08

4 Sµν〈V µνχ+〉+ . . . . (4.56)

We can now redefine the coupling constant for a fixed value for M?
V as b′08 =

b08 + z08(M?
V )2. All the terms that have been omitted from eq. (4.56) would call

for more complicated redefinitions eventually involving higher powers of s− (M?
V )2.
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4.3 Fit results and discussion

Analogously, we can derive the zDV counterterm from a Lagrangian of the form

LV,counter = −zDV4 〈Vµν {χ+, V
µν}〉+ . . . , (4.57)

and so on. In contrary to fV,S?1 and zDV , which are fixed from the renormalization
condition ReR ≡ 1, there is no natural way to fix z08. Hence, for now we treat it as
a free parameter as to arrive at an unbiased description of the singlet-octet mixing
amplitude.

4.3 Fit results and discussion

Since we choose the SU(3)f symmetric point instead of the chiral limit as the reference
point for our analysis, it is reasonable to replace F0 → F? in the loop contributions
to the self-energies, which, as mentioned in ch. 3, amounts to a two-loop effect. The
expression for F? is presented in eq. (3.19). As a numerical input for analyzing the
fanplots and mixing-determinant, we again use F? ≈ 112MeV. When we determine
the running of M?

V (m̄), we use the whole formula eq. (3.19) and again use the
MILC2010 set, presented in tab. 3.1, as input. We set the renormalization scale to
µ = 770MeV. The parameter gV appearing as the coefficient of the bubble-type loop
graphs we can fix from looking at the ρ decay width Γ [ρ→ ππ], which is given by

Γ [ρ→ ππ] =
g2
VM

2
ρ

48πF 4
?

[
M2

ρ − 4M2
π

]3/2
. (4.58)

We obtain the value for gV by requiring that at the physical point, Γ [ρ→ ππ] ≈
150MeV, which leads to a gV value of about 0.125. In order to test the stability
of our fits and examine the influence of higher-order effects we use a second set of
parameters, where we replace F0 by the pion decay constant Fπ ≈ 92.4MeV, which
yields a gV value of 0.085.
One of the biggest uncertainties in analyzing the data presented in [75] is the input
values we choose for the axial type of couplings gV/V SA that generate the sunset graphs.
When we compare the interaction terms presented in eq. (1.77) with the heavy vector
meson Lagrangian of [46] we find that g1 ≡ gV SA and g2 ≡ gVA . Jenkins et al. seem to
favor the predictions derived from the non-relativistic chiral quark model, i.e.

gVA ≡ gχqm2 = 3
4 , gV SA ≡ gχqm1 =

√
3

2 . (4.59)

In [47], the authors employ large Nc arguments to neglect the linear combination
g′ ≡ gV SA − (2/

√
3)gVA which leads to a value for g ≡ gVA/2 = 0.375. In said reference,

they quote several other estimates, some of which amount to smaller values, e.g.
g ≡ 0.3. Combining this with the assumption that g′ ≈ 0, we obtain gVA ≈ 0.6
and gV SA ≈ 0.7. We will use several different sets for these axial-type couplings to
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4 Chiral behavior of vector meson self-energies

Table 4.1: The lattice data taken from [75], a collection of tabs. 20 and 29. We have
used Xπ to determine the lattice spacing a, see footnote 5 in the same reference.

N3
S ×NT ν Mρ/Xρ MK∗/Xρ

243 × 48 0.181 1.25(2) 0.9877(12)
243 × 48 0 1.0 1.0
243 × 48 −0.128 0.9859(22) 1.007(1)
243 × 48 −0.275 0.9706(34) 1.015(2)

323 × 64 −0.404 0.9488(50) 1.026(3)
323 × 64 −0.558 0.9392(63) 1.030(3)
323 × 64 −0.692 0.9431(109) 1.028(5)

exp. value −0.885 0.910(5) 1.046(5)

Table 4.2: M?
V (M?) data taken from [75], tab. XIX. To obtain these values in units

of MeV we have used their value for a = 0.0771(3) fm quoted in footnote 5 in sec. 8.3.2
of [75].

M? [MeV] 307 357 413

M?
V (M?) [MeV] 808(17) 825(7) 855(4)

estimate the theoretical uncertainties involved. It is important to do so since the
sunset graphs in most cases yield the dominant corrections to the tree-level result.
As already presented in ch. 3, we analyze lattice data presented by the QCDSF
collaboration in [75] and given in tabs. 4.1 and 4.2 for the convenience of the reader.
The data from tab. 4.2 is used to determine the vector meson mass in the chiral limit
M̊V , which does not appear in any of the other observables, since we have effectively
eliminated it, and bV0 , which we have absorbed in M?

V in the other observables, from
the running of M?

V (m̄). As can be seen in tab. 4.1, for this analysis we have added
the mass ratios at the physical point. The singlet mass M?

S appears both in the
symmetric mass M?

V and in the mass ratios used, but mostly it is determined from
the condition that the singlet-octet mixing determinant, eq. (4.31), has zeroes at
s = M2

ω,φ − iMω,φΓω,φ (we use the numbers at the physical point quoted in [1] as
input). We disregard the imaginary part, i.e. Γω,φ ≈ 0, since it is generated mostly
by a two-loop effect where three pions occur in an intermediate state. The LEC b08
is determined solely from the zeroes of the determinant and has no direct influence
on the masses of the ρ and K∗. If we wanted to determine the subleading z08 term,
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4.3 Fit results and discussion

Table 4.3: Fit results (type A) including tadpole contributions, where gV , gVA and
gV SA have been used as input.

fit gV gVA gV SA M̊V [GeV] bV0 bVD M?
S [GeV] b08 color

1A 0.125 3/4
√

3/2 0.631 0.056 0.022 1.011 0.218 black
2A 0.125 0.6 0.7 0.627 0.054 0.019 1.000 0.237 orange
3A 0.125 1/2 1/2 0.625 0.053 0.017 0.988 0.249 blue
4A 0.125 0 0 0.618 0.051 0.015 0.979 0.266 red
5A 0.085 3/4

√
3/2 0.693 0.031 0.065 0.958 0.231 black

6A 0.085 0.6 0.7 0.683 0.027 0.063 0.949 0.245 orange
7A 0.085 1/2 1/2 0.678 0.025 0.062 0.938 0.253 blue
8A 0.085 0 0 0.667 0.020 0.062 0.930 0.266 red

we would need detailed information about the energy dependence of the mixing
amplitude. In the large Nc limit, the vector mesons form a nonet, which in the matrix
notation takes the form Nµ = Vµ +

√
3−1

1Sµ, where additional flavor traces are
suppressed, see e.g. [46–48, 130]. When we compare with these types of Lagrangians,
we can find relations like

bV0 ≈ 0, b08 −
4√
3
bVD ≈ 0, z08 −

4√
3
zVD ≈ 0. (4.60)

We will, in general, not rely on such estimates, but the last relation for z08 will be
used in the fit set that is denoted with A, where we set z08 → 4

√
3−1

zVD. In a second
set, the fit set B, we simply set z08 ≡ 0, i.e. neglect this energy-dependent correction.
Thus, in set B, the energy dependence of the mixing amplitude is entirely given by
the loop graphs.
We have collected all the fit results for various different values of the input parameters
g
V (S)
A including tadpoles in tabs. 4.3 and 4.4 and without tadpoles in tabs. 4.5 and

4.6. We present the fan plots corresponding to these results in fig. 4.4 and the plot
for the vector meson mass at the symmetric point is presented in fig. 4.5. Note that
we have used the notation

Xρ = 1
3 (2MK∗ +Mρ) , (4.61)

as has been done in [75]. In the fan plots, one can barely distinguish the different
colored lines around the symmetric point (δm` = 0), which is expected from our
expansion formulae, where the calculated corrections to M?

V are of O(δm`). It seems
that the variation of the input parameters can almost completely be absorbed by
shifting the fitted parameters as can be seen from tabs. 4.3-4.6. We can observe a
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4 Chiral behavior of vector meson self-energies

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

0.90

0.95

1.00

1.05

Ν

M
�
X

Ρ

Figure 4.4: The ratios Mρ/Xρ and MK∗/Xρ plotted for all parameter sets from
Tab. 4.3. The color code for the different curves is shown in tabs. 4.3-4.6. Full lines:
1A-4A, dashed lines: 5A-8A. Xρ is defined in [75], see also eq. (4.61).
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in tabs. 4.3-4.6. Full lines: 1A-4A, dashed lines: 5A-8A.
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4.3 Fit results and discussion

Table 4.4: Fit results (type B) including tadpole contributions, where gV , gVA and
gV SA have been used as input.

fit gV gVA gV SA M̊V [GeV] bV0 bVD M?
S [GeV] b08 color

1B 0.125 3/4
√

3/2 0.636 0.060 0.017 0.935 0.208 black
2B 0.125 0.6 0.7 0.630 0.057 0.015 0.924 0.220 orange
3B 0.125 1/2 1/2 0.626 0.054 0.015 0.914 0.227 blue
4B 0.125 0 0 0.618 0.051 0.015 0.902 ±0.238 red
5B 0.085 3/4

√
3/2 0.696 0.032 0.062 0.924 0.220 black

6B 0.085 0.6 0.7 0.685 0.028 0.062 0.914 0.230 orange
7B 0.085 1/2 1/2 0.679 0.025 0.061 0.904 0.237 blue
8B 0.085 0 0 0.667 0.020 0.062 0.893 ±0.246 red

rather large shift in the parameter bVD, which comes from absorbing the contribution
∝ g2

V /F
4
? from the bubble-type graph. This means that mostly, the functional form

of our leading one-loop corrections fixes the shape of the curves, at least in the
parameter regions we have used. This also applies to the dependence of M?

V on M?,
albeit to a lesser extent, as can be seen in fig. 4.5. Here, we clearly observe that
the variation of gV has an effect on the determination of M̊V . For a more accurate
determination of M?

V (m̄) in the vicinity of the chiral limit we would need more
input from lattice QCD. We also observe that the data point at around 500MeV
which was not included in the fits is missed collectively by all fit curves. As a side
remark, we find that a very slight cusp at the V? → φ?φ? decay threshold (at around
M? ≈ 330MeV) is visible in fig. 4.5. This effect, however, does not seem to be of
much importance here, which would be different for scalar meson resonances, see
[133].
In figs. 4.6 and 4.7 we present the real and imaginary part of the self-energy function
for the ρ-meson, for a typical fit result from tab. 4.3. We find that the real part
of Πρ(s) has zero slope at s = (M?

V )2, which reflects our chosen renormalization
conditions. The energy dependence of Π08(s) is presented in fig. 4.8. All the different
fit sets can be very well distinguished, but the trend is the same for every set: our fits
favor a limited, however non-negligible energy dependence of the mixing amplitude,
which can be traced back to the loop graphs as well as to the counterterm coefficient
z08 in the A type fits. In [47], a strong energy dependence and a possible sign change
in the mixing amplitude have been observed between the ω(782) and the φ(1020)
mass (see their Table II). Furthermore, we present the real part of the determinant
det08 for four typical fits in the (s, ν) plane in fig. 4.9. The energy dependence of
the zeroes of the determinant can be read off from this figure over the whole ν
range examined in this work. We also produced contour plots of the same fit results,
showing the position of the zeroes of Re[det08] and illustrating the running of the

80
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Figure 4.6: The energy dependence of the real part of Πρ plotted for the parameter
sets 1A− 4A for ν = −0.885 (left) and ν = 0 (right). The color code for the different
curves is shown in the tables above.
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Figure 4.7: The energy dependence of the imaginary part of Πρ plotted for the
parameter sets 1A− 4A for ν = −0.885 (left) and ν = 0 (right). The color code for
the different curves is shown in the tables above.
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Figure 4.8: The energy dependence of Π08 plotted for all parameter sets including
tadpoles. The fit sets without tadpoles have been omitted due to their similarity. The
color code for the different curves is shown in tabs. 4.3-4.6.
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4 Chiral behavior of vector meson self-energies

Table 4.5: Fit results (type A) without tadpole contributions, where gV , gVA and gV SA
have been used as input.

fit gV gVA gV SA M̊V [GeV] bV0 bVD M?
S [GeV] b08

1A′ 0.125 3/4
√

3/2 0.630 0.076 0.025 1.010 0.247
2A′ 0.125 0.6 0.7 0.626 0.073 0.021 0.999 0.268
3A′ 0.125 1/2 1/2 0.623 0.072 0.019 0.988 0.281
4A′ 0.125 0 0 0.617 0.068 0.017 0.979 0.300
5A′ 0.085 3/4

√
3/2 0.691 0.048 0.073 0.957 0.261

6A′ 0.085 0.6 0.7 0.682 0.043 0.072 0.947 0.276
7A′ 0.085 1/2 1/2 0.677 0.040 0.071 0.937 0.285
8A′ 0.085 0 0 0.666 0.034 0.070 0.929 0.300

real part of the zeroes when tuning the symmetry-breaking variable ν.
In all the results we have collected above we have discarded a second class of fits
that produce additional unphysical states in the singlet-octet sector. These appear
in the energy region where our present calculation should be applicable. This class
of solutions favors rather large axial coupling constants gV (S)

A . We show one example
of such a fit result in tab. 4.7. Here, we find that b08 is considerably smaller than
in the earlier fits, while M?

S is notably larger and all the other parameters fall into
the previously determined range. In fig. 4.11 we plot the typical behavior of the
determinant det08 for these two classes of fits. All obtained fits can be grouped
into either the standard fits, i.e. the ones presented in tabs. 4.3-4.6, or fits showing
spurious states with relatively large gV (S)

A and M?
S and smaller b08. We find that

the plots for the masses look relatively similar to the ’standard case’ fits, but det08
shows a very non-parabolic behavior. For the fit set denoted by 1̃A we find the
parameter z08 to be 0.734GeV−2, whereas for the fits 1A− 4A we find an interval of
0.826-0.900GeV−2 and for 5A− 8A we find 0.374-0.416GeV−2.
While our formulas are accurate and model independent to one-loop order and to
O(p3) in chiral counting, it is important to further study the energy dependence of
the two-point amplitudes. In our opinion, this study shows that if the possibility
of a sizable variation of the mixing amplitude between s = M2

ω and s = M2
φ is not

taken into account, the whole analysis is not under sufficient theoretical control. The
accuracy of this study itself is limited by the lack of lattice data for the variation of
the ω and φ masses for different values in symmetry-breaking parameter δm` ∼ ν.
This data could be used to check the validity of the mixing scenarios we have outlined
here and illustrated in fig. 4.9. The analysis of the mixing that is presented here is
of course only of qualitative nature. For a quantitative discussion of the dynamics of
φ(1020)−ω(782) mixing we would additionally have to consider vector meson decays
and include the corresponding relevant final-state-interactions etc. [134–138]. Such
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Figure 4.9: The real part of det08 plotted in the (s, ν) plane for fits 2A, 6A, 2B, 6B.
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Figure 4.11: Re[det08] at ν = −0.885 for a standard fit (1A of Tab. 4.3) (left) and
for the fit of tab. 4.7 showing spurious states (right)
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4 Chiral behavior of vector meson self-energies

Table 4.6: Fit results (type B) without tadpole contributions, where gV , gVA and gV SA
have been used as input.

fit gV gVA gV SA M̊V [GeV] bV0 bVD M?
S [GeV] b08

1B′ 0.125 3/4
√

3/2 0.635 0.080 0.019 0.934 0.234
2B′ 0.125 0.6 0.7 0.629 0.076 0.018 0.923 0.247
3B′ 0.125 1/2 1/2 0.625 0.073 0.017 0.913 0.256
4B′ 0.125 0 0 0.617 0.068 0.017 0.901 ±0.268
5B′ 0.085 3/4

√
3/2 0.694 0.050 0.071 0.923 0.247

6B′ 0.085 0.6 0.7 0.684 0.044 0.070 0.912 0.259
7B′ 0.085 1/2 1/2 0.678 0.040 0.070 0.902 0.266
8B′ 0.085 0 0 0.666 0.034 0.070 0.891 ±0.277

Table 4.7: Result for a fit showing spurious states.

fit gV gVA gV SA M̊V [GeV] bV0 bVD M?
S [GeV] b08

1̃A 0.125 3/4
√

3/2 0.611 0.046 0.032 1.199 0.001

an extensive analysis is beyond the scope of the investigation we have presented here.
Here we want to remark that we do not observe a clear large Nc pattern in our
results. The LEC bV0 is not notably supressed in comparison to bVD and the mass
splitting M?

S−M?
V is small but definitely non-negligible. Furthermore, the parameter

b08 comes out somewhat larger than we would expect from the estimate of eq. (4.60),
independently of the chosen scenario to fix z08. We can of course not rule out such a
scenario, since our study itself has several theoretical uncertainties which we have
discussed in length in the paragraphs above. We want to point out that especially
bV0 is subject to large higher-order corrections, see tabs. 4.3-4.6.
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5 Outlook

Using the symmetric point as a starting point for the extrapolation of lattice data
to the physical point has proven to be a valuable strategy. We have shown that
employing this strategy within the framework of SU(3)f BChPT yields reliable
results in chapters 3 and 4. In order to achieve a further increase in accuracy, these
first investigations have to be extended in various directions, which we will shortly
outline in this chapter.

5.1 First PDF moments from BChPT

We consider the extrapolation of the first PDF moments as another benchmark of
the applicability of SU(3)f BChPT since the extrapolation of three-point functions
in general is more problematic than the extrapolation of two-point functions, see
e.g. the extrapolation of the electromagnetic form factors in SU(2)f BChPT [139]
compared to the relatively uncomplicated extrapolation of the nucleon mass [92].
As already mentioned in chapter 2, to pin down the O(p2) LECs we would already
need a large amount of data. Pushing the calculation to the next order will introduce
a host of new undetermined parameters, so that for the time being only a leading
one-loop calculation is realistic. Including the baryon decuplet will also be inevitable
for a thorough study since some of the appearing intermediate states like KΣ have
higher mass than e.g. the π∆ threshold. So far, all these effects are encoded in the
LECs, but in principle these intermediate decuplet states should be treated explicitly.
This will also introduce new LECs, namely the new meson-octet-baryon-decuplet
coupling constant and the tensor couplings to the decuplet baryons, hence including
the decuplet will without more data not enable us to obtain more accurate results.
However, there are ways to increase accuracy without introducing new low energy
constants, e.g. by taking finite volume corrections into account, as has been done
for the nucleon mass [66] and the electromagnetic form factors [67] (for details of
the calculations also see the references therein). It would be reasonable though to
include the decuplet before calculating finite volume effects.
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5.3 Chiral behavior of vector meson self-energies

5.2 Chiral extrapolation of baryon mass ratios
The accuracy of the extrapolation of baryon mass ratios is mostly affected by two
factors: first, the input parameters we chose and second, the lack of lattice data at a
larger variety of values of m̄. Let us comment on each of these factors separately.
When we are talking about the input parameters used, we mostly have two sources
of theoretical uncertainty: the model-dependence that is encoded in the results for
the bi that were obtained via meson-baryon-scattering in [110, 111] as well as our
input values for the axial coupling constants D and F . We have tried to eliminate
the theoretical uncertainty that is emanating from the bi by simply considering all
three different input sets and checking the convergence of our expansion. In our
opinion the result was satisfying, as can also be seen when comparing the bi we used
as input values with the bi obtained directly from mass fits, see [112]. That leaves the
fixed input parameters D and F , which can in principle be determined from lattice
studies. In [24] it was pointed out though that a chiral expansion of the parameters
was not possible. We propose that a combined fit of both baryon mass ratios and
lattice data obtained for the hyperon axial couplings in the same manner as has been
presented in [75] and leaving D and F as two additional fit parameters could help
to obtain both a higher accuracy for the baryon mass ratio LECs as well as for the
axial couplings D and F .
Our discussion of the πN sigma term clearly shows that for a reliable determination
of all low energy constants there is a lack of lattice data. We would need fan plot
data for different values of m̄ to be able to calculate σπN from the nucleon mass.
Also, fig. 3.4 shows that additional values of XN for smaller m̄ would greatly increase
the accuracy of our fit results.

5.3 Chiral behavior of vector meson self-energies
Extending this present calculation to a next-to-leading one-loop calculation without
assuming a large Nc scaling meets several difficulties: First, extending the calculation
leads to the appearance of an abundance of new tadpole contributions, which means
that, to determine the new LECs, one would have to include e.g. V φ→ V φ scattering
data. Second, just like with the baryon mass ratios, additional fan plot data at
different fixed values for the average quark mass m̄ would be neccessary to fix the
quark-mass insertions appearing at fourth chiral order.
At this order, one could also consider calculating the electromagnetic contributions
and the effects of isospin breaking, which we have totally neglected in our calculation,
since they are also not included in the lattice study we obtain our data sets from.
Numerical estimates of these effects can be found in [47, 140].
For a further study we should also consider calculating the finite size corrections for
the lattice data we employed for our analysis, although it is claimed in [75] that the
finite size effects cancel to a large extent in the mass ratios.
A rather large uncertainty again results from a lack of information, this time in
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5 Outlook

the singlet-octet mixing sector. The only information we have there are the masses
and decay widths of the ω(782) and φ(1020) vector mesons at the physical point.
To improve this situation, we need lattice data for Mω(ν) and Mφ(ν) to be able to
determine the parameters b08 and z08 instead of having to assume several scenarios
for the parameter z08.
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A Standard integrals

This chapter contains all standard integrals that appear in the formulae in this thesis.
Let us start with the scalar one-point integrals in the IR scheme, which are defined
in the following way:

IM =
∫
IR

ddl

(2π)d
i

l2 −M2 = 2M2λ+ M2

16π2 log
(
M2

µ2

)
+O(d− 4), (A.1)

IB,V =
∫
IR

ddl

(2π)d
i

l2 −m2 = 0, (A.2)

where m represents non-vanishing masses, e.g. the baryon mass mB or the vector
meson masses MV , whereas M is to be identified with the mass of a member from
the pseudoscalar meson octet, e.g. π, K, η. The parameter λ, defined in eq. (1.48),
contains the (d− 4)−1 pole. From now on we will omit the O(d− 4) terms since they
are only relevant for two-loop calculations. If we employ the decomposition

I(s) = H(s)−R(s), (A.3)

we find the following relations for these easiest scalar integrals:

RM = 0, HB,V = RB,V = 2m2λ+ m2

16π2 log
(
m2

µ2

)
. (A.4)

For our calculations we also need the scalar two-point integral in the IR scheme,
IMB,V:

IMB,V(s) =
∫
IR

ddl

(2π)d
i

[(p− l)2 −m2] [l2 −M2] , (A.5)
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Here we have used the notation p2 = s . This integral can be evaluated [28] to

IMB,V(s) = s−m2 +M2

s
λ− 1

16π2
α(α + Ω)

1 + 2αΩ + α2 (2 logα− 1)

− 1
8π2

α
√

1− Ω2

1 + 2αΩ + α2 arccos
(
− Ω− α√

1 + 2αΩ + α2

)
,

(A.6)

where we have employed the definitions for α and Ω that have been presented in
eq. (1.67). Since the IR integral is in general described as the decomposition eq. (A.3)
we will also give the general formulae for HMB,V and RMB,V:

HMB,V(s) = 2λ+ 1
16π2

[
− 1 + log

(
m2

µ2

)
+ s−m2 +M2

2s log
(
M2

m2

)

− 4|q|√
s

arctanh
(

2|q|
√
s

(m+M)2 − s

)]
,

(A.7)

RMB,V(s) = s+m2 −M2

2s

[
2λ+ 1

16π2

(
log

(
m2

µ2

)
− 1

)]

+ |q|
8π2√s

arctanh
(

2|q|
√
s

s+m2 −M2

)
.

(A.8)

Here we have introduced the abbreviation

|q| =

√
(s− (m+M)2)(s− (m−M)2)

2
√
s

. (A.9)

The last scalar function we have to take a look at is the three-point integral IMBB,
which is defined as

IMBB(p′ 2, p2, t) =
∫
IR

ddl

(2π)d
i

[((p′ − l)2 −m2] [(p− l)2 −m2] [l2 −M2] , (A.10)

where we have used the standard definition t = (p′ − p)2. In our case, only the
forward case of this integral, i.e. t = 0 is needed, which takes the form

IMBB(m2,m2, 0) = − λ

m2 −
1

16π2m2

[
logα + 1

2 −
α√

4− α2
arccos

(
−α2

)]
. (A.11)

There is another integral mentioned in the main text, i.e. IMB,V
A , which is given by

the following expression:

IMB,V
A = 1

4s(d− 1)

[(
4sM2 − (s+M2 −m2)2

)
IMB,V + (s+M2 −m2)IM

+ (s−M2 +m2)IV
]
.

(A.12)
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A Standard integrals

This decomposition is also valid for the non-IR-regularized functions H. Integrals of
the type IMM

A can be obtained by replacing m with M in the above expressions.
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B Additional material for
chapter 2

In this chapter we present the results for the generalized nucleon form factors
As,vN ′N(t = 0) that have been omitted from chapter 2 due to reasons of legibility. Let
us start off with the fairly short expressions for the singlet form factors:

Aspp(0) = as
2 + 8

3M
2
K(3t11 + t12 − 3t13) +M2

π

(
4t11 −

8t12

3 + 8t13

)
, (B.1)

Asnn(0) = as
2 + 8

3M
2
K(3t11 + t12 − 3t13) +M2

π

(
4t11 −

8t12

3 + 8t13

)
. (B.2)

The form factors Av,3/8pp (0) are fairly more complicated, hence we will not present the
the full expressions, we will rather use abbreviations for all the scalar integrals still
appearing in the formulae. First, we present the formfactor Av,3pp (0):

Av,3pp (0) = ZN
aD + aF

2 + αv,3pp + IM(Mπ)
24F 2

0m
2
0
βv,3pp + IM(MK)

36F 2
0m

2
0
γv,3pp + IM(Mη)

24F 2
0m

2
0
δv,3pp

− IMB(Mπ)
48F 2

0m
2
0
εv,3pp −

IMB(MK)
36F 2

0m
2
0
ζv,3pp + IMB(Mη)

48F 2
0m

2
0
ηv,3pp + IMBB(0,Mπ)

16F 2
0m

2
0

θv,3pp

+ IMBB(0,MK)
12F 2

0m
2
0

ιv,3pp −
IMBB(0,Mη)

48F 2
0m

2
0

κv,3pp + λv,3pp .

(B.3)

Here, we have introduced a host of abbreviations, which are defined as:

αv,3pp = 4
3

[
3(t1 + t2)(2M2

K +M2
π)− 2(2t3 + 2t4 − t7 − t8)(M2

K −M2
π)
]

(B.4)

βv,3pp =
[
(D + F )

(
3(aD + aF )(D + F ) + 8(∆aD + ∆aF )

)
M2

π

− 3(aD + aF )
(
4 + (D + F )2

)
m2

0

] (B.5)
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γv,3pp =
[
2
(
−∆aD(D − 3F )− 9aF (D − F )2 + 3aD(D − F )(D + 3F )

+ 3(D + F )∆aF
)
M2

K − 3
(
3aF − 6aF (D − F )2

+ aD(3 + 2(D − F )(D + 3F ))
)
m2

0

] (B.6)

δv,3pp = (aD + aF )(D − 3F )2(m2
0 −M2

η ) (B.7)

εv,3pp = (D + F )M2
π

[
− 16(∆aD + ∆aF )(4m2

0 −M2
π)

+ 3(aD + aF )(D + F )(−8m2
0 + 5M2

π)
] (B.8)

ζv,3pp = M2
K

[
2(D(∆aD − 3∆aF )− 3F (∆aD + ∆aF ))(4m2

0 −M2
K)

+ 3(D − F )((aD − 3aF )D + 3(aD + aF )F )(−8m2
0 + 5M2

K)
] (B.9)

ηv,3pp = (aD + aF )(D − 3F )2M2
η (−8m2

0 + 5M2
η ) (B.10)

θv,3pp = (aD + aF )(D + F )2M2
π(8m4

0 − 12m2
0M

2
π + 3M4

π) (B.11)
ιv,3pp = (D − F )((aD − 3aF )D + 3(aD + aF )F )M2

K

× (8m4
0 − 12m2

0M
2
K + 3M4

K)
(B.12)

κv,3pp = (aD + aF )(D − 3F )2M2
η (8m4

0 − 12m2
0M

2
η + 3M4

η ) (B.13)

λv,3pp = − (D + F )M4
π

2304π2F 2
0m

4
0

[
9(aD + aF )(D + F )(2m2

0 −M2
π)

+ 4(∆aD + ∆aF )(6m2
0 −M2

π)
]

+ M4
K

3456π2F 2
0m

4
0

[
54aF (D − F )2(2m2

0 −M2
K)

− 18aD(D2 + 2DF − 3F 2)(2m2
0 −M2

K)

+ (D(∆aD − 3∆aF )− 3F (∆aD + ∆aF ))(6m2
0 −M2

K)
]

+ (aD + aF )
768π2F 2

0m
4
0
(D − 3F )2(2m2

0M
4
η −M6

η )

(B.14)
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B Additional material for chapter 2

The last result of this chapter is the formfactor Av,8pp (0), which takes a similar form
as Av,3pp (0):

Av,8pp (0) = ZN
3aF − aD

2
√

3
− αv,8pp + IM(Mπ)

8F 2
0m

2
0
βv,8pp + IM(MK)

12
√

3F 2
0m

2
0
γv,8pp −

IM(Mη)
24
√

3F 2
0m

2
0
δv,8pp

+ IMB(Mπ)
16F 2

0m
2
0
εv,8pp + IMB(MK)

6
√

3F 2
0m

2
0
ζv,8pp + IMB(Mη)

48
√

3F 2
0m

2
0
ηv,8pp + IMBB(0,Mπ)

16F 2
0m

2
0

θv,8pp

− IMBB(0,MK)
3
√

3F 2
0m

2
0
ιv,8pp + IMBB(0,Mη)

48
√

3F 2
0m

2
0
κv,8pp + λv,8pp .

(B.15)

In order to present the result in a more legible way, we have introduced various
abbreviations:

αv,8pp = 4
3
√

3

[
3(t1 − 3t2)(2M2

K +M2
π)

+ 2(10t3 − 6t4 + t7 − 3t8 + 6t9)(M2
K −M2

π)
]
,

(B.16)

βv,8pp =
√

3(aD − 3aF )(D + F )2(−m2
0 +M2

π), (B.17)

γv,8pp =
[
2(5D∆aD − 4aDD(D − 3F )− 3∆aDF − 3D∆aF + 9F∆aF )M2

K

+ (−27aF + aD(9 + 8D(D − 3F )))m2
0

]
,

(B.18)

δv,8pp = (aD − 3aF )(D − 3F )2(m2
0 −M2

η ), (B.19)
εv,8pp =

√
3(aD − 3aF )(D + F )2M2

π(8m2
0 − 5M2

π), (B.20)

ζv,8pp = M2
K

[
(5D∆aD − 3∆aDF − 3D∆aF + 9F∆aF )(4m2

0 −M2
K)

+ 2aDD(D − 3F )(−8m2
0 + 5M2

K)
]
,

(B.21)

ηv,8pp = (aD − 3aF )(D − 3F )2M2
η (8m2

0 − 5M2
η ), (B.22)

θv,8pp =
√

3(aD − 3aF )(D + F )2M2
π(8m4

0 − 12m2
0M

2
π + 3M4

π), (B.23)
ιv,8pp = aDD(D − 3F )M2

K(8m4
0 − 12m2

0M
2
K + 3M4

K), (B.24)
κv,8pp = (aD − 3aF )(D − 3F )2M2

η (8m4
0 − 12m2

0M
2
η + 3M4

η ), (B.25)
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λv,8pp = −
√

3(aD − 3aF )(D + F )2(2m2
0M

4
π −M6

π)
256π2F 2

0m
4
0

+ M4
K

1152
√

3π2F 2
0m

4
0

[
− (5D∆aD − 3∆aDF − 3D∆aF + 9F∆aF )

× (6m2
0 −M2

K)

+ 24aDD(D − 3F )(2m2
0 −M2

K)
]

−
(aD − 3aF )(D − 3F )2(2m2

0M
4
η −M6

η )
768
√

3π2F 2
0m

4
0

.

(B.26)

The only undefined element is the renormalization factor at the one-loop level, also
called Z factor, ZN here because it is the renormalization factor of the nucleon sector.
We find that this factor at one-loop level takes the form

ZN = 1−M2
π

3(D + F )2

32π2F 2
0
−M2

K

5D2 − 6DF + 9F 2

48π2F 2
0

−M2
η

(D − 3F )2

96π2F 2
0

− 3(D + F )2M3
π(−3m2

0 +M2
π)

16π2F 2
0m

3
0

√
4− M2

π

m2
0

arccos
(
−Mπ

2m0

)

− (5D2 − 6DF + 9F 2)M3
K(−3m2

0 +M2
K)

24π2F 2
0m

3
0

√
4− M2

K

m2
0

arccos
(
−MK

2m0

)

−
(D − 3F )2M3

η (−3m2
0 +M2

η )

48π2F 2
0m

3
0

√
4− M2

η

m2
0

arccos
(
− Mη

2m0

)

+ 3(D + F )2M2
π(−3m2

0 + 2M2
π)

32π2F 2
0m

2
0

log
(
Mπ

m0

)

+ (5D2 − 6DF + 9F 2)M2
K(−3m2

0 + 2M2
K)

48π2F 2
0m

2
0

log
(
MK

m0

)

+
(D − 3F )2M2

η (−3m2
0 + 2M2

η )
96π2F 2

0m
2
0

log
(
Mη

m0

)
.

(B.27)
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C Additional material for
chapter 3

In section 3.3 we have mentioned that there is a systematic way to split off the finite
part of an LEC from the divergent part, i.e.

di = γIRi λ+ d
(r)
i (µ). (C.1)

In that way, we can define a completely scale independent quantity d̄i, which we
define as

d
(r)
i (µ) = d̄i + γIRi

16π2 log
(
m0

µ

)
. (C.2)

In this appendix, we present these γIRi which we have determined from our calculation.
They read:

γIR
1 = 1

72F 2
0

(
bD(14 + 69D2 + 81F 2) + 162bFDF + D2 − 3F 2

m0

− (12b1 − 4b3 + 3b8 − b10)
)
,

(C.3)

γIR
2 = 1

48F 2
0

(
120bDDF + bF (4 + 60D2 + 108F 2) + 6DF

m0
+ 3(4b2 + b9)

)
, (C.4)

γIR
3 = 1

48F 2
0

(
6bD(4 + 13D2 + 9F 2) + 108bFDF + 3(D2 − 3F 2)

m0

− (36b1 + 4b3 + 9b8 + b10)
)
,

(C.5)

γIR
4 = 1

72F 2
0

(
−4bD(11 + 72D2)− 9(D2 − 3F 2)

m0
+ 108b1 − 4b3 + 27b8 − b10

)
, (C.6)

γIR
5 = 1

72F 2
0

(
44bF −

26DF
m0

− 13(4b2 + b9)
)
, (C.7)
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γIR
6 = 1

432F 2
0

(
264b0 + bD(132− 144D2)− 35D2 + 27F 2

m0

− (108b1 + 140b3 + 264b4 + 27b8 + 35b10 + 66b11)
)
,

(C.8)

γIR
7 = 1

144F 2
0

(
120b0 + bD

(
28− 24(7D2 + 9F 2)

)
− 432bFDF −

17D2 + 9F 2

m0

− (36b1 + 68b3 + 120b4 + 9b8 + 17b10 + 30b11)
)
.

(C.9)

These equations can be used to calculate the different low energy constants at different
scales. The scale we have used in our work was µ = 1150MeV.

102



D Additional material for
chapter 4

D.1 Loop integrals

Let us revisit the integral from eq. (A.7) and let us split it up into two parts:

HMV(s) = HMV(M2
V )− s−M2

V

16π2 JMV(s), (D.1)

where

HMV(M2
V ) = 2λ+ 1

16π2

(
−1 + log

(
M2

V

µ2

)
+ M2

M2
V

log
(
M

MV

)

+ 2M

√
4M2

V −M2

M2
V

arctan
(√4M2

V −M2

2MV +M

))

= 2λ+ 1
16π2

(
−1 + log

(
M2

V

µ2

))
+ M

16πMV

+ M2

16π2M2
V

(
log

(
M

MV

)
− 1

)
− M3

128πM3
V

+O(M4),

(D.2)

and JMV(s) does not contain any divergencies

JMV(s) =
∫ ∞

(MV +M)2
ds′

√
(s′ − (MV +M)2)(s′ − (MV −M)2)

s′(s′ − s)(s′ −M2
V )

= M2 −M2
V

sM2
V

log
(
M

MV

)
+ 4|q|√

s(s−M2
V ) arctan

(
2|q|
√
s

(MV +M)2 − s

)

+ 2M

√
4M2

V −M2

M2
V (s−M2

V ) arctanh
(√4M2

V −M2

2MV +M

)
.

(D.3)
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D.1 Loop integrals

For M 6= 0 we find that this finite part can be expanded

JMV(M2
V ) = − 1

M2
V

[
1 + log

(
M

MV

)
− 3π

4
M

MV

+ M2

M2
V

(3
4 − log

(
M

MV

))

+O(M3)
]
,

(D.4)

while for s 6= M2
V we find that the chiral expansion takes the following form:

JMV(s) = 1
s

log
(

M2
V

M2
V − s

)
− πM

MV (M2
V − s)

− M2

M2
V

(3M2
V − s)

(M2
V − s)2 log

(
M

MV

)

+ M2

M2
V (M2

V − s)2

[
2M2

V − s− (s+M2
V )M

2
V

s
log

(
M2

V

M2
V − s

)]

+ π

8
M3

M3
V (M2

V − s)
+O(M4).

(D.5)

As s approaches M2
V , the convergence radius of this expansion vanishes and hence

the expansion shown in eq. (D.4) should be used. We also find that the function
JMV(s) diverges logarithmically as both s→M2

V and M → 0. The integral HMM(s)
can be found immediately by replacing MV with M . Analogously, one can find all
integrals that contain the isosinglet vector mass by replacing MV by MS.
Let us also present the chiral limit values for these functions, as they are needed for
the renormalization procedures described in chapter 4:

HMM
A (s)→ s

192π2

[
5
3 + log

(
−µ

2

s

)
− 32π2λ

]
(D.6)

HMV
A (s)→ 1

192π2s

[
(3M2

V s− s2)
(

32π2λ+ log
(
M2

V

µ2

))

+ (s−M2
V )3

s
log

(
M2

V

M2
V − s

)
+ 1

3
(
5s2 − 12M2

V s+ 3M4
V

)]
.

(D.7)

As a last point we want to show the chiral expansion of the full function HMV
A in the

case of s 6= M2
V :

HMV
A (s) = 1

192π2s

[
(3M2

V s− s2)
(

32π2λ+ log
(
M2

V

µ2

))

+ (s−M2
V )3

s
log

(
M2

V

M2
V − s

)
+ 1

3
(
5s2 − 12M2

V s+ 3M4
V

)
+ 3M2

s

(
s2
(

32π2λ+ log
(
M2

V

µ2

))
+ (M4

V − s2) log
(

M2
V

M2
V − s

)

− s(s+M2
V )
)

+O(M4)
]
.

(D.8)

104



D Additional material for chapter 4

D.2 Dispersive representation of the ππ loop

The techniques employed in effective field theories match very well with the techniques
of dispersion relations. There is a fruitful interplay when one mixes these two
approaches to analyse low energy phenomena [141]. Let us start with the definition
of the dispersive integral

Π(s) = 1
π

∫ ∞
s0

ds′
Im Π(s′)

s′ − (s+ iε) , (D.9)

a representation which is valid for functions Π(s) that vanish as s → ∞ and that
have a cut along the real, positive s axis, starting at s0. This equation is usually
called an unsubtracted dispersion relation. It is important to know Im Π(s′) also
for large values of s′ in order to obtain Π(s) for small s. One can also consider
subtracted dispersion relations where the influence of the high-energy regions of
Im Π(s′) is reduced while the lower energies weigh in heavier. These subtractions are
also needed if lims→∞Π(s) 6= 0:

Π(s) =
N−1∑
n=0

cns
n + sN

π

∫ ∞
s0

ds′
Im Π(s′)

s′N [s′ − (s+ iε)] , (D.10)

When comparing these subtraction constants with the results obtained from ChPT
we find that they are equivalent to the low energy constants.
Let us now show how this whole procedure works out in the case for the decay width
Γ[ρ→ ππ] and the corresponding self-energy Πππ

ρ (s). From eq. (4.58) we obtain the
energy dependence of the decay width

−iMρΓρ = −i g2
V

48πF 4
0
s3
[
1− 4M2

π

s

] 3
2

. (D.11)

Let us now insert this expression in a dispersion relation with four subtractions, i.e.

Πππ
ρ (s) = c0 + c1s+ c2s

2 + c3s
3 − g2

V s
4

48π2F 4
0

∫ ∞
4M2

π

ds′

s′(s′ − s)

[
1− 4M2

π

s′

] 3
2

, (D.12)

where we have dropped the ε-prescription but it is understood that the real values of
s are approached from the upper complex plane for s ∈ [4M2

π ,∞). We can directly
relate the expression in eq. (D.12) to the result of the bubble-type graph that we
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have shown in fig. 4.3(a). The integral appearing in the above expression is given by

Jππρ =
∫ ∞

4M2
π

ds′

s′(s′ − s)

√
1− 4M2

π

s′

3

= 1
s

8
3 −

8M2
π

s
+ 2

√
1− 4M2

π

s

3

arctanh
− [1− 4M2

π

s

]− 1
2
 .

(D.13)

We can perform a chiral expansion of this integral in the region 4M2
π < s and it is

given to O(p3) as

Jππρ = 1
s

[
8
3 −

8M2
π

s
+ iπ − 6M2

π

s

(
1 + log

(
M2

π

s

)
+ iπ

)]
+O(M4

π). (D.14)

We can now perform the matching between the dispersion relation result eq. (D.12)
to the pion part of the result of the dimensionally regularized loop graph presented
in fig. 4.3(a), the first term in eq. (4.43) (d is the space-time dimension),

iΠ̃ππ
µν = i

[
gµν −

kµkν
k2

]
Π̃ππ
ρ , Π̃ππ

ρ = −4g2
V

F 4
0
s2IππA (s). (D.15)

We find that this yields simple expressions for the subtraction constants ci:

c0 = c1 = 0, (D.16)

c2 = − g2
V

8π2F 4
0
M2

π

[
32π2λ+ log

(
M2

π

µ2

)]
, (D.17)

c3 = g2
V

48π2F 4
0

[
32π2λ+ log

(
M2

π

µ2

)
+ 1

]
. (D.18)

We find that the subtraction constant c3 has a logarithmic divergence in the chiral
limit, which is, however, counterbalanced by the infrared term in eq. (D.13). Obvi-
ously, we would need counterterms like s2M2

π and s3 which are not yet present in
our effective Lagrangian so to take care of the UV-divergencies present in λ in c2,3.
The construction of these terms that have more than one derivative acting on the
vector meson field is in prinicple straightforward, as is shown in [126]. As a result,
this would leave us with finite expressions for our subtraction constants

c2 = − g2
V

8π2F 4
0
M2

π

[
r2(µ) + log

(
M2

π

µ2

)]
, (D.19)

c3 = g2
V

48π2F 4
0

[
r3(µ) + log

(
M2

π

µ2

)
+ 1

]
, (D.20)

where the constants r2,3(µ) are a priori unknown.
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