
DNA methylation alterations exhibit intra-individual stability and
inter-individual heterogeneity in prostate cancer metastases

Martin J Aryee1,4, Wennuan Liu3, Julia C Engelmann1,9, Philipp Nuhn1, Meltem Gurel1,
Michael C Haffner1, David Esopi1, Rafael A Irizarry5, Robert H Getzenberg1,6,11, William G
Nelson1,6, Jun Luo1,6, Jianfeng Xu3, William B Isaacs1,6, G Steven Bova7,10, and Srinivasan
Yegnasubramanian1,8,*

1Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
2Oncology Department, Division of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
3Center for Cancer Genomics, Center for Genomics and Personalized Medicine Research, Wake
Forest University School of Medicine, Winston-Salem, NC, USA
5Biostatistics Department, Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, MD, USA
6Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
7Pathology Department, Johns Hopkins University, Baltimore, MD, USA
8Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, MD,
USA

Abstract
Human cancers nearly ubiquitously harbor epigenetic alterations. While such alterations in
epigenetic marks, including DNA methylation, are potentially heritable, they can also be
dynamically altered. Given this potential for plasticity, the degree to which epigenetic changes can
be subject to selection and act as drivers of neoplasia has been questioned. Here, we carried out
genome-scale analyses of DNA methylation alterations in lethal metastatic prostate cancer and
created DNA methylation “cityscape” plots to visualize these complex data. We show that somatic
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DNA methylation alterations, despite showing marked inter-individual heterogeneity among men
with lethal metastatic prostate cancer, were maintained across all metastases within the same
individual. The overall extent of maintenance in DNA methylation changes was comparable to
that of genetic copy number alterations. Regions that were frequently hypermethylated across
individuals were markedly enriched for cancer and development/differentiation related genes.
Additionally, regions exhibiting high consistency of hypermethylation across metastases within
individuals, even if variably hypermethylated across individuals, showed enrichment of cancer-
related genes. Interestingly, whereas some regions showed intra-individual metastatic tumor
heterogeneity in promoter methylation, such methylation alterations were generally not correlated
with gene expression. This was despite a general tendency for promoter methylation patterns to be
strongly correlated with gene expression, particularly at regions that were variably methylated
across individuals. These findings suggest that DNA methylation alterations have the potential for
producing selectable driver events in carcinogenesis and disease progression and highlight the
possibility of targeting such epigenome alterations for development of longitudinal markers and
therapeutic strategies.

INTRODUCTION
Cancer is thought to arise from a series of somatic genome and epigenome defects that allow
the cell to evade the rules that control the growth and organization of normal cells (1, 2). In
order for genetic and epigenetic somatic genome alterations to drive cancer initiation and
progression, the cancer cell would need to maintain those changes in a heritable way
throughout disease progression for as long as such changes confer a selective advantage.
Genetic alterations are maintained by semi-conservative DNA replication and have been
clearly implicated in carcinogenesis and disease progression (3). However, epigenetic
processes present a fundamental paradox in this regard: they are by definition potentially
heritable across cell divisions and are stable over time (4, 5), but they can also be plastic (5,
6). For instance, recent reports have suggested that the epigenetic process of DNA
methylation can be dynamic and reversible in both replication-dependent (e.g. during
differentiation and development (6)) and -independent (e.g. cyclical methylation patterns
during transcription (7, 8)) processes. Additionally, DNA methylation marks can occur at
both copies of a given locus, or occur at only one copy, resulting in allele-specific
methylation (ASM) (9–11). Unfortunately, most previous reports on DNA methylation in
human cancers have only examined total methylation (TM) at an allele-agnostic level, and
little is known about the maintenance of ASM in human neoplasia.

Consequently, it is currently unclear which DNA methylation and other epigenetic
alterations can be maintained stably as driver genome alterations fueling cancer initiation
and progression. A lack of such evidence has dampened enthusiasm for using DNA
methylation alterations, which can be more frequent than genetic alterations (12), as targets
for biomarker development and therapeutic intervention. Here, we show that, although there
is marked heterogeneity in DNA methylation profiles in men with lethal metastatic prostate
cancer, each individual’s distinct DNA methylation signature is tightly maintained in
disseminated metastases.

RESULTS
Performance of the MBD-SNP approach

We developed and applied a new technology and associated computational methods
enabling simultaneous genome-scale analysis of genetic (copy number) and epigenetic (total
and allele-specific DNA methylation) alterations. This method, called MBD-SNP (see
Figure 1A for overview), features affinity enrichment of methylated genomic DNA
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fragments (13) using the methyl-binding domain polypeptide from the MBD2 protein
(MBD2-MBD), which was previously shown to preferentially bind methylated DNA with
>100 fold selectivity compared to unmethylated DNA (14, 15). The resulting library of
methylated DNA fragments and an unenriched total input fraction from the same specimen
were then processed and hybridized to Affymetrix SNP 6.0 high-density oligonucleotide
microarrays. Comparison of the enriched methylated fraction with the total input using new
statistical approaches allowed parallel genome-scale assessment of TM, ASM, and copy
number in a rapid and cost-effective manner.

Using a series of control specimens (Figure 1B, Supplementary Materials and Methods), we
determined that the MBD-SNP technology allowed accurate point estimates of TM (Figure
1C, area under the receiver operator characteristic curve (AUC) = 0.89) and ASM (Figure
1C, AUC = 0.95) for regions of the genome with ≥ 2.5% CpG density. Therefore, this
platform allowed accurate interrogation of total and allele-specific DNA methylation
patterns at 51,501 (TM) and 24,498 (ASM) regions (Figure S1), including 7,323 (TM) and
4,295 (ASM) gene promoter regions, 5,766 (TM) and 4,277 (ASM) CpG islands, and 15,210
(TM) and 9,969 (ASM) CpG island shores (Table S1).

Somatic alterations in total and allele-specific DNA methylation patterns in lethal
metastatic prostate cancer

Previous studies have used analysis of genetic alterations to examine the clonal evolution of
cancer metastases (16–18). Using such a study design, featuring analysis of multiple
metastatic deposits as well as matched normal tissues from each subject from a lethal
metastatic prostate cancer rapid autopsy cohort, Liu et al. showed that prostate cancer
metastases within an individual have monoclonal origins and display subsequent clonal
evolution (16). We examined the same specimens from this rapid autopsy cohort (a total of
71 specimens, including 3 to 6 metastases and 1 to 2 normal tissues from each of 13
subjects) to understand whether DNA methylation alterations also showed clonal
maintenance and evolution across metastatic dissemination. Additionally, we examined 24
normal prostate tissues from organ donors without evidence of prostate disease as reference
samples.

Applying the MBD-SNP technology and our new computational approaches to the study
samples, we computed normalized TM and ASM scores at all informative regions. We
confirmed that the approach allowed highly accurate point estimates of TM across the study
samples by validating the data in a subset of the study samples using both real-time
methylation specific PCR (RT-MSP) assays (19) and the bisulfite-based Illumina
HumanMethylation 450k microarray platform (Figure 1D,E; Supplementary Materials and
Methods). To assess the ability to identify regions showing ASM across the study samples,
we examined ASM signals at known imprinted loci including multiple known allele-specific
differentially methylated regions (DMR) at the IGF2/H19 imprinting control regions. The
MBD-SNP derived ASM scores were consistent with imprinting of these regions in all
normal samples analyzed (Figure S2). Interestingly, some cancer specimens showed
evidence for somatic loss of ASM of these regions, consistent with cancer-specific IGF2/
H19 loss of imprinting (LOI), a known hallmark of many cancers including prostate cancer
(20, 21). We observed 1,873 regions that showed gain or loss of ASM in at least one tumor
compared to normal tissues (Table S2; Figure S3), with 667 of these showing alterations in
at least two subjects.

Focusing on total methylation, we identified a total of 3943 regions that showed no evidence
of methylation in any of the normal prostate tissues, but were hypermethylated in at least
one prostate cancer specimen (Table S3). The frequency of these hypermethylation events
ranged widely, from affecting just a single subject to being hypermethylated in all subjects
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analyzed (Figures S4, S5); 1329 regions showed hypermethylation in at least 25% of the
metastatic prostate cancer tissues. Among these were several gene promoters known to be
frequently hypermethylated in primary and metastatic prostate cancer (19), such as those of
the GSTP1 (100% of tumors) and APC (89% of tumors) genes (Table S3). Regions showing
hypermethylation in any tumor were highly enriched within gene promoter regions (Figure
S6). On average, each subject showed hypermethylation at 611 promoter probes (range: 372
– 1039) representing 498 gene promoter regions (~1500 when extrapolated to the whole
genome) (Figures S7, S8). Some subjects showed alteration of >700 gene promoter regions
(~2100 when extrapolated to the whole genome), consistent with a CpG island
hypermethylator phenotype (CIMP) as has been suggested for colon and other cancer types
(22–24). We investigated differences in methylation patterns associated with promoter
proximity and found that promoter-associated CGIs are significantly more likely to be
hypermethylated than non-promoter CGIs (p < 1 × 10−10). The genes associated with
hypermethylated gene promoters were highly enriched for differentiation and development
associated Gene Ontology terms (25), as well as the Memorial Sloan Kettering Prostate
Cancer Pathways gene set (26) and multiple gene sets from the NCI Cancer Gene Index (27)
(Figure S6, Supplementary Materials and Methods). Thus, DNA hypermethylation events
may be involved in reprogramming developmental and differentiation states and in
activating carcinogenic pathways. In contrast, hypomethylation alterations, defined as those
regions that were methylated in all normal prostate tissues but undermethylated in at least
one of the metastatic cancer specimens, were more numerous than hypermethylation
alterations (12,799 hypomethylated regions occurring in at least 25% of the cancer
specimens), but did not show enrichment of promoter regions, any relevant gene ontology
terms, or of cancer-related gene sets (Figure S6). Additionally, the hypomethylated regions
tended to have lower CpG content than the hypermethylated regions (Figure S9). These
results are consistent with previous reports showing global, widespread losses of DNA
methylation, particularly at regions with lower CpG density, accompanied by focal gains of
DNA hypermethylation at CpG-rich promoter regions in cancer cells (28–33).

Clonal maintenance of DNA methylation alterations across metastatic dissemination
Having established genome-scale measurements of total and allele-specific methylation
patterns in each specimen, we examined the degree to which these patterns were maintained
across anatomically distinct metastases within each individual. Interestingly, total
methylation patterns in metastases from any given individual showed very high pairwise
correlations, with much lower pairwise correlations between metastases from different
individuals (Figure 2A). In contrast, the normal specimens showed high correlations
between individuals. A similar but less pronounced pattern was observed for allele-specific
methylation patterns (Figure 2B). Unsupervised hierarchical clustering using Euclidean
distance confirmed that there was relatively little tumor heterogeneity in metastases within
subjects compared to the significant tumor heterogeneity across subjects, resulting in
clustering of tumors by subject, even after rigorously controlling for copy number effects
(Figure 2C). Taken together, these data suggest that the tumor/metastasis-initiating clone or
sub-clone in each individual has a unique DNA methylation signature that is then closely
maintained across metastatic dissemination.

Since genetic alterations in copy number are highly maintained across prostate cancer
metastatic dissemination (16), we compared the extent of maintenance of epigenetic
alterations in DNA methylation to that of copy number alterations. In order to facilitate
comparisons between these genetic and epigenetic datasets, we fit probe-level ANOVA
models to estimate the degree of maintenance of each type of somatic alteration normalized
to the total variability of that alteration (represented by R2 from the model). This was done
for those probes showing low variability in the normal prostate tissues, but a high degree of
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variability across metastases. The resulting R2 measures have values between 0 and 1, with
values near zero indicating high variability across different metastases from each subject and
values near 1 indicating nearly perfect consistency of methylation levels across all
metastases from each subject. These analyses confirmed that copy number alterations
showed a high degree of clonal maintenance. Interestingly, total DNA methylation
alterations showed a degree of clonal maintenance that was comparable to that of copy
number alterations (Figures 3A, S10, S11, S12, S13, Supplementary Materials and
Methods). Interestingly, ASM alterations, showed markedly less clonal maintenance,
although approximately 17% of regions exhibited a level of clonal maintenance in ASM
comparable to that of copy number alterations.

The observation that copy number and TM alterations were maintained to a similar extent
across metastases from each subject suggested that these genetic and epigenetic changes
may have developed through parallel clonal evolutionary processes. For instance, subject 21
showed a near-perfect co-evolution of copy number and DNA methylation patterns (Figure
3B). This similarity between the branching patterns from hierarchical clustering
dendrograms generated from copy number data and that generated from the DNA
methylation data was significant across all subjects (Figure 3C; p < 0.001; Supplementary
Materials and Methods). Taken together, these analyses indicate that DNA methylation
patterns can be as robustly maintained across metastatic dissemination as genetic copy
number alterations.

Given the differences in the functional annotations of hyper- and hypomethylation events in
the prostate cancer specimens, we examined whether there were differences in the tendency
to maintain hypermethylation versus hypomethylation alterations during metastatic
dissemination. Hypermethylation alterations showed a higher degree of maintenance (R2)
than hypomethylation alterations (Figure 3D). This difference was evident even after
controlling for CpG density (Figure S14). Taken together with the enrichment of
differentiation/development and cancer-related gene sets in hypermethylated gene
promoters, the high degree of maintenance of hypermethylation changes suggests that these
events are enriched for driver alterations.

Association of gene expression patterns with DNA methylation alterations
We next explored associations between DNA methylation alterations and gene expression
patterns in order to understand the functional consequences of somatic DNA methylation
alterations in the lethal metastatic prostate cancers. We measured genome-wide gene
expression patterns for 18 metastases from 5 autopsy cohort subjects and 21 organ donor
benign prostate samples, selected as an arbitrary subset of our overall study samples for
which high quality RNA was available, using the Agilent whole human genome gene
expression microarray platform. Analysis of differential expression between the metastases
and normal prostate tissues revealed 235 up-regulated and 1082 down-regulated genes (at
thresholds of |fold change| > 2 and p<0.01; Table S4), including several previously known
prostate cancer differentially expressed genes (e.g. AMACR, HPN, EZH2, GSTP1; (34–
37)). Interestingly, unsupervised hierarchical sample clustering by gene expression measures
of the 500 most variably expressed genes across all samples showed the same patterns of
within-subject maintenance and between-subject heterogeneity as was observed for DNA
methylation (Figure 4A).

Given this similarity, we examined whether there was a correlation between the DNA
methylation and expression patterns. Intersecting the coverage of the MBD-SNP platform
with the gene expression microarray platform resulted in a set of 4194 genes for which both
expression and promoter methylation data were available. We first examined whether DNA
methylation alterations were correlated with gene expression at these genes. There was a
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weak but highly significant inverse correlation overall between gene promoter methylation
and gene expression measures across all samples and all 4,194 genes (Figure S15). Since we
previously found that there were differences in the degree of maintenance (R2) between the
hypermethylated and hypomethylated loci, we now assessed whether there were differences
in the correlation between DNA methylation and expression at each of these types of
somatic methylation alterations. Regions showing promoter hypermethylation in the
metastases were strongly associated with reduced levels of gene expression (average fold
decrease = 1.33, p=5.87 × 10−38, Figure 4B), including at genes in the development/
differentiation pathways (Figure S16), which were enriched for hypermethylation.
Additionally, promoter hypermethylation was significantly more associated with gene
expression differences than was promoter hypomethylation (p = 9.2 × 10−8), which
generally had negligible association with gene expression.

We next identified the individual loci that showed evidence for significant correlation
between gene expression and DNA methylation in the metastatic prostate cancer tissues. For
these analyses, we were restricted to the 3,158 loci that were in the top 50th percentile of
variability for either gene expression or promoter methylation in order to exclude regions
that showed little or no variation in either dataset. We found that 452 out of these 3,158 loci
showed a nominally significant correlation between gene expression and DNA methylation
at p < 0.05, of which the majority showed the expected negative correlation (Figure S16).
The positive correlation between DNA methylation and gene expression in a minority of
regions (Figure S16), may be due to our definition of promoter regions, which includes
portions of gene bodies and insulator regions, or might be due to complex cis and trans
regulation leading to activation of hypermethylated genes (38).

Interestingly, while there was an overall strong pattern of within-subject stability in gene
expression (see Figure 4A), this intra-individual stability (R2) was strongest for those 452
genes whose expression level was associated with promoter DNA methylation (Figure 4C).
Similarly, those promoter methylation loci that were associated with gene expression
changes were more stably maintained within subjects than those whose methylation did not
show significant correlation with gene expression (Figure S17). These observations suggest
that DNA methylation alterations that are associated with phenotypic changes in gene
expression have a greater tendency to be maintained within individuals, perhaps due to
selection of those phenotypes, leading to maintenance of both the DNA methylation and
gene expression patterns.

A careful examination of Figure 2C shows that although intra-individual heterogeneity in
DNA methylation is much smaller than inter-individual heterogeneity, different metastases
within each individual show clear patterns of clonal evolution and tumor heterogeneity in
their methylation patterns. We next explored whether this intra-individual tumor
heterogeneity in DNA methylation was correlated with phenotypic changes in gene
expression. At a general level, we found that although there was a strong correlation
between DNA methylation and gene expression at the inter-individual level, this general
correlation was absent at the intra-individual level (Figure S18). To focus this analysis
further, we assessed the correlation between methylation and expression at specific regions
that showed evidence of significant intra-individual tumor heterogeneity in DNA
methylation across multiple subjects. We identified 74 hypermethylated loci (1.9% of all
hypermethylated regions), including 30 gene promoters, and 1,255 hypomethylated loci
(5.6% of all hypomethylated regions), including 115 promoters, that showed such a pattern
of recurrent intra individual tumor heterogeneity in DNA methylation (See Supplementary
Materials and Methods and Figures S19, S20). Interestingly, we found no correlation
between DNA methylation and gene expression at the intra-individual level even at these
loci showing significant and recurrent DNA methylation heterogeneity in different
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metastases within individuals. Furthermore, such regions were not enriched for any GO gene
sets. Taken together, these analyses suggest that DNA methylation alterations showing
within-subject tumor heterogeneity are not significantly correlated with gene expression
patterns across different metastases within the same individual.

Genomic “Cityscapes” of DNA methylation alterations in lethal metastatic prostate cancer
To visualize both frequency and maintenance of DNA methylation alterations by position
across the genome, we constructed “cityscapes” of DNA methylation changes in lethal
metastatic prostate cancer. Such “cityscape” plots were constructed for regions showing
gains and losses in TM (hyper- and hypo- methylated regions; Figure 5) and in ASM (Figure
S21) in the metastases compared to normal prostate tissues. Within each “cityscape”,
chromosomes were folded into neighborhoods along a Hilbert curve (39); the area of each
chromosome neighborhood was proportional to the number of informative probes. Within
these neighborhoods, each “address” represents a single locus in the genome (Tables S2, S3
list the location and annotation of all interrogated addresses for ASM and TM respectively).
The height of each structure in the cityscape represents the number of tumors showing a
somatic DNA methylation alteration. The color of each structure represents the degree of
maintenance of methylation across all metastases within each individual as measured by R2

from our ANOVA model, with red indicating a high degree of somatic alteration
maintenance (high R2) and white indicating a low degree of maintenance (low R2) relative
to total variability. Note that the R2 maintenance metric is not meaningful at loci where
overall variability is negligible due to all tumors being fully methylated (e.g. the GSTP1
promoter).

For DNA hypermethylation alterations, several regions appeared as “skyscrapers” in the
cityscape, indicating regions that were frequently hypermethylated (Figures 5A, S22). Such
skyscrapers were highly enriched for the Memorial Sloan Kettering Prostate Cancer
Pathways gene set (26) and several sets from the NCI Cancer Gene Index (27) (Figure S23).
The cityscape contains several densely populated neighborhoods with clustered skyscrapers,
suggesting contiguous chromosomal segments frequently prone to hypermethylation (Figure
5A). This observation is consistent with previous findings of long-range epigenetic silencing
in large chromosomal tracts (40). We also observed several “low- and mid-rises” in the
cityscape, indicating regions that were hypermethylated in only one or a few subjects.
Interestingly, among these low- to mid-rise regions we found that those that were red,
indicating high maintenance of hypermethylation, showed enrichment for cancer related
genes (Figure S23) relative to white-yellow regions. This “cityscape” of hypermethylation
alterations in lethal metastatic prostate cancer revealed an unexpected importance of low
frequency but highly maintained DNA methylation alterations as potential driver epigenome
alterations.

The hypomethylation cityscape (Figure 5B) differed from the hypermethylation cityscape in
two major ways: i) it contained many more structures, representing extensive regions of
frequent hypomethylation; and ii) it showed a much higher fraction of white and yellow
structures, where intra-individual variation represented a much greater fraction of overall
tumor heterogeneity. These findings are consistent with those from a recent report showing
large blocks of highly variable hypomethylation in human cancers (41). Such widespread
regions of hypomethylation may contribute to genomic instability by multiple mechanisms,
including insertion of transposable elements (42). Finally, somatic ASM alterations were
much less numerous than total methylation alterations, and were significantly less
consistently maintained compared to hypermethylation alterations (Figure S21; Table S2).
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DISCUSSION
Given that epigenetic alterations can be labile, it has been questioned whether DNA
methylation alterations can even be stable enough to be subject to selection during the clonal
expansion events occurring during carcinogenesis, disease progression, and metastatic
dissemination. With our study design of examining multiple metastases with a monoclonal
origin within the same individual, we were able to examine distinct clonal expansion events
within individuals (each metastasis) to assess the extent to which DNA methylation
alterations were maintained across these metastases. We found that, overall, epigenetic
alterations in DNA methylation were maintained to a similar extent as genetic alterations in
copy number, suggesting that they have a similar potential as genetic alterations in serving
as selectable driver events during clonal expansion/metastatic dissemination. This suggests
that DNA methylation alterations could serve as a valuable source of targets for
development of markers for cancer detection and prognosis and for development of new
therapeutic strategies. However, this striking stability of DNA methylation alterations also
implies that it will be important to distinguish between driver and passenger DNA
methylation alterations, just as it has been important to do so for genetic alterations.

In this regard, our ability to survey different types of DNA methylation alterations, including
DNA hypermethylation, DNA hypomethylation, and allele-specific methylation, has
provided several new insights. First, we found a general tendency for widespread, but
somewhat variable loss of methylation at normally methylated regions in metastases within
individuals (see the large number of hypomethylation events in the hypomethylation
cityscape in Figure 5B). These hypomethylation events were not strongly correlated with
any functional gene sets, or with cis activation of gene expression. Therefore, if DNA
hypomethylation played a driver role, it would likely be through promotion of genetic
instability, for example through promotion of retrotransposition (42), rather than through
direct cis regulation of specific genes. In contrast, somatic acquisition of DNA
hypermethylation at regions that were normally unmethylated (see hypermethylation
cityscape) were less numerous, but showed a greater tendency to stay methylated across all
metastases. This staunch maintenance of newly acquired hypermethylation events in the
metastases against the backdrop of a tendency to lose methylation at normally methylated
regions in a widespread fashion across the genome, suggests that most of the
hypermethylation events were likely subject to specific selection across metastatic
dissemination and expansion. This observation, combined with the strong correlation with
cis regulation of gene expression and enrichment of hypermethylation at development/
differentiation and cancer genes, suggests that DNA hypermethylation events may be highly
enriched for driver epigenetic events.

Given the parallel evolution of DNA methylation and copy number alterations, it is possible
that the DNA methylation alterations may be caused by genetic alterations in the cancers, or
vice versa. However, even in the former case, the DNA methylation alterations may still be
part of the causal chain in cancer progression – e.g. genetic alterations lead to epigenetic
alterations which are required for carcinogenesis or metastatic dissemination. While this
would need to be investigated in future functional studies, there is emerging evidence to
implicate this chain of causation involving epigenetic alterations. For example, in the Apc
Min mouse model (43), which typically develops dozens of intestinal polyps by 3 to 6
months of age, disruption of DNMT1 or MBD2, key mediators of DNA methylation-
induced gene silencing, leads to pronounced reduction of polyp formation (44–46).
Additionally, malignant transformation via activation of a variety of oncogenes often
involves widespread epigenome alterations that have also been implicated in the causal
chain (23, 47–49). Such somatic epigenetic alterations resulting from genetic mutations may

Aryee et al. Page 8

Sci Transl Med. Author manuscript; available in PMC 2013 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be of particular interest since they may be more targetable/reversible through
pharmacological manipulation than the upstream genetic alterations.

Our studies also reveal important insights on prostate tumor heterogeneity. There is a
considerable amount of inter-individual tumor heterogeneity at both the genetic (16, 26, 50,
51) and epigenetic levels. This inter-individual heterogeneity challenges “one-size-fits-all”
approaches for cancer management, and highlights the need for individualized medicine
approaches. Second, while the amount of intra-individual heterogeneity across metastases is
considerably less than the inter-individual variability for both genetic and epigenetic
alterations, there is clonal evolution leading to appreciable intra-individual metastatic tumor
heterogeneity in DNA methylation patterns. However, despite the strong relationship
between heterogeneity in promoter methylation, particularly hypermethylation, and gene
expression at the inter-individual level, there was essentially no correlation between DNA
methylation and gene expression at the intra-individual level. Based on these results, we can
speculate that DNA methylation heterogeneity between different metastases within
individuals arises in a largely stochastic manner, without much impact on cis regulation of
gene expression phenotypes. It is therefore possible that lethal metastatic prostate cancer
arises after passing through a very narrow, but individual-specific clonal gate, with very
little functional heterogeneity developing afterwards. In a similar vein, a recent whole
genome analysis of primary and metastatic renal carcinoma showed that the degree of
heterogeneity across different metastases within the same individual was much lower than
the degree of heterogeneity across different portions of the primary tumor from the same
individual (52). On an optimistic note, this striking intra-individual homogeneity across the
lethal metastatic clonal gate, now observed at both the genetic (16) and epigenetic levels,
may therefore represent a window of opportunity for effectively treating the lethal metastatic
prostate cancer cell clone systemically. Studies such as the ones presented here could
potentially focus target selection to the most promising genomic loci, exhibiting consistent
somatic genome alterations across all metastases in affected individuals.

MATERIALS AND METHODS
Prostate specimens

Tissues from multiple anatomically distinct prostate cancer metastases and matched normal
tissues from non-prostate tissues were obtained through the Project to Eliminate Lethal
Prostate Cancer (PELICAN) rapid autopsy program at the Johns Hopkins Autopsy Study of
lethal Prostate Cancer, as previously described (16). Organ donor benign prostate tissues
were obtained from 24 brain dead organ donors with no evidence of prostate cancer. Tissue
samples were snap-frozen, microdissected with a cryostat, and subjected to DNA isolation
as described previously (19). Subject and sample data are provided in Supplementary Table
S5, S6.

MBD-SNP approach
The methyl-binding domain of the MBD2 protein (MBD2-MBD) can bind methylated DNA
fragments with exquisite selectivity and has been used to efficiently enrich methylated DNA
fragments from genomic DNA (14, 15). Analyzing the resulting methylated DNA library
with real-time PCR, tiling microarrays, and next generation sequencing has allowed gene-
specific, chromosome-wide, and genome-wide DNA methylation analysis previously (14,
15, 53). In the MBD-SNP assay described here, we use the MBD2-MBD polypeptide to
isolate methylated DNA fragments from genomic DNA samples followed by analysis with
Affymetrix SNP 6.0 high density oligonucleotide microarrays. Comparison with an
unenriched total input fraction then allows genome-scale determination of total and allele-
specific methylation and copy number in an integrated fashion for each specimen. Briefly,
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each genomic DNA specimen (1 μg) was divided into two equal fractions: i) an enriched
methylated fraction (EM) and, ii) a total input fraction (TI). Each of these fractions was
further divided into two equal reactions, each of which was either digested with the NspI or
StyI restriction enzymes in separate reactions. Therefore, each fraction (EM or TI) and
restriction enzyme digest (NspI or StyI) received 250 ng of genomic DNA. The resulting
genomic DNA fragments were then ligated with Affymetrix SNP 6.0 assay adaptors. These
restriction digest and adaptor ligation steps were carried out following the Affymetrix SNP
6.0 assay protocols. Up to this point, the EM and TI fractions were treated identically. After
adaptor ligation, the TI fraction was brought to a total volume of 100 uL with water and set
aside on ice; the EM fraction was subject to enrichment for methylated DNA fragments
using MBD2-MBD polypeptides immobilized on magnetic beads as previously described
(14, 15) except that the final DNA was eluted in 45 uL of EB1 buffer (0.2X NEBuffer 1
(New England Biolabs, Ipswich, MA), 0.2X BSA (NEB), 0.25X T4 DNA ligase Buffer
(NEB) in water) for the DNA previously digested by NspI and 35 uL of EB2 buffer (0.2X
NEBuffer3, 0.2X BSA (NEB), 0.25X T4 DNA ligase buffer (NEB) in water) for the DNA
previously digested by StyI. These elution buffers were formulated so that the DNA from
the EM fractions would be in the same buffers as the DNA from the TI fraction. For the EM
and TI fractions previously digested with NspI, four 10 uL aliquots of DNA were amplified
in 4 separate 100 uL one primer amplification reactions (30 cycles); for the EM and TI
fractions previously digested with StyI, three 10 uL aliquots of DNA were amplified in 3
separate one primer amplification reactions (30 cycles), according to the Affymetrix SNP
6.0 microarray protocol. The seven amplification reactions for each fraction (EM and TI)
were then pooled, and subjected to clean-up, labeling, hybridization to Affymetrix SNP 6.0
microarrays, washing, and scanning according to the manufacturer’s protocols.

Affymetrix SNP 6.0 microarray and MBD-SNP probe selection
The Affymetrix SNP 6.0 microarray contains copy number probes at ~900,000 non-
polymorphic loci, and an additional ~900,000 SNP probe sets at polymorphic loci. Our
assay allows estimation of allele-specific methylation at polymorphic loci, and total
methylation estimation at both polymorphic and non-polymorphic loci. We restricted
analysis to probes in regions with a CpG density ≥ 2.5%. The CpG density for a given probe
was calculated as the average of the CpG densities of the NspI and StyI fragments
containing the probe location. NspI and StyI fragments that were not within the size selected
range of 100 to 2500 bp were excluded from the calculation of CpG density. The CpG
density cutoff was chosen based on preliminary analysis of the fully in-vitro methylated
control sample that determined that these regions allow for robust detection of methylation
signals. With this filter, 7,323 genes had at least one MBD-SNP total methylation probe
within 5kb upstream and 2kb downstream of the transcription start site. Of these, 4,295
genes had at least one MBD-SNP allele-specific methylation probe within the same region.

MBD-SNP Total and Allele-Specific Methylation estimates
For a given sample, let xiA

E and xiB
E denote the enriched methylated fraction (E) signal

intensity recorded at probe location i for allele A and B respectively. Similarly, xiA
T and

xiB
T represent intensity values from the total input fraction (T) array. Taking the intensity

ratio of enriched DNA to total DNA resulted in methylation estimates that are normalized
for copy-number and probe effects. ASM estimates were restricted to loci with heterozygous
genotype calls.

The methylation signal is most directly assessed at non-polymorphic (copy number probe)
loci where it is given by mi=log2 xi

E/xi
T. The non-polymorphic probe signals are quantile

normalized between samples. Quantile normalization is typically inappropriate for
methylation data as there can be significant differences in total methylation levels between
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samples. In this case however, we take advantage of the fact that the majority of probes on
the array are in low CpG-density regions that are below the robust detection limit of the
MBD assay. These probes, which dominate the signal distribution, are therefore expected to
behave similarly across all samples in accordance with the quantile normalization
assumption of equal between-sample signal intensity.

SNP loci methylation estimates are obtained by combining the signal from the two alleles:
mi=log2[(xE

iA + xE
iB) / (xT

iA + xT
iB)]. The polymorphic and non-polymorphic probes are

roughly evenly interspersed throughout the genome and, as a result, the methylation
distributions of these two sets of probes are expected to be the same. We take advantage of
this fact by quantile normalizing the polymorphic signal distribution to a target distribution
defined by the non-polymorphic probes, putting both types of probes on the same scale.

Probes on CpG-free restriction fragments were used as unmethylated control loci. As is
common in many microarray applications, the unnormalized methylation values displayed a
bias related to the probe GC content. This bias was corrected by adjusting values such that
the GC-stratified, median control-probe methylation value was set to zero.

The raw allele-specific methylation (ASM) signal at informative (heterozygous (A/B)
genotype) loci was calculated as log2[(xiA

E/ xiA
T) / (xiB

E/ xiB
T)]. As it is reasonable to

assume that overall distribution of allele-specific methylation is similar between samples,
we quantile normalized these ASM ratios. Since each SNP is represented by 3 replicate
probes for the two alleles, the final SNP ASM ratio was calculated as the median of these
ASM ratios.

Classification of MBD-SNP methylation status
The total methylation signal distribution had two clear modes, likely representing
unmethylated and highly methylated loci and could be modeled as a two-component normal
mixture model (Figure S24). This model was used to classify loci as methylated or
unmethylated. Allele-specific methylation was similarly classified as being present or absent
using a normal mixture model.

Identification of hyper-/hypo-methylation and gain/loss of ASM
Hypermethylated loci were defined as being unmethylated in all organ donor normal
samples, and methylated in at least one prostate cancer metastasis. Hypomethylated loci
were defined similarly, with all organ donor normal prostates showing methylation and at
least one tumor showing lack of methylation. Regions of gain of ASM were defined as those
that were classified as not having ASM in any of the organ donor normal prostate tissues,
and having ASM in at least one tumor sample. Regions of loss of ASM were defined as
those that were classified as having ASM in all of the organ donor normal prostate tissues,
but classified as not having ASM in at least one tumor sample. To assess the number of
alterations per subject, we restricted analysis to three randomly selected tumors per subject.
This allowed comparison of number of alterations across subjects without bias to differences
in the number of tumors available for a given subject.

Correlation analysis and hierarchical clustering by DNA methylation measures
Between-sample similarity was computed using the Pearson correlation coefficient. Average
linkage Euclidean distance hierarchical clustering was carried out using 71 tissue samples
from the 13 patient subjects using the 500 probes/probesets with greatest variance across
samples. Copy number had a minimal effect on methylation estimates since both total and
allele-specific methylation estimates were calculated as the ratio of methylated DNA to total
DNA. However, to exclude the possibility that observed methylation patterns were driven by
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residual copy-number effects, we carried out a further two step procedure prior to clustering.
First, we restricted our analysis to probes in regions with a copy number of two as
determined by Partek Genomic Suite (v6.4). Second, to account for any remaining subject-
specific copy number variation, we fit probe level models to adjust for continuous copy-
number estimates from CRLMM (v1.10.0).

Genotyping and copy number
Partek Genomic Suite (v6.4) was used to determine regions with gain or loss of copy
number. The R/Bioconductor CRLMM package (v1.10.0) was used for genotyping and to
generate raw (non-integer) copy number estimates.

Clonal maintenance R2

Loci with heterogeneous somatic alterations were identified by choosing probes with low
variability among organ donor normal prostate samples (lowest 75%), but high variability
among tumor samples (top 500 and top 5%). For copy number estimates, probes were
excluded if the mean estimate among organ donor normal was outside the range (1.5, 2.5).
Methylation estimates with a single informative subject were excluded. Methylation
estimates were adjusted for copy-number effects, as described above in ‘Hierarchical
clustering by methylation status’. To quantify the fraction of ASM probes with R2 values
comparable to copy number, we calculated the copy number mean R2 minus one standard
deviation and determined the fraction of ASM probes with an R2 value greater than this
threshold.

To ensure that the difference in number of probes available for copy number (1,852,215)
and total methylation (51,501) did not drive the observed similarity in maintenance, we
repeated the analysis using the top 5% most variable probes and obtained the same result
(Figure S10). To exclude the possibility that the observed difference in R2 between
hypermethylated and hypomethylated loci is related to differences in variability between
large and small methylation log-ratios we discretized methylation values into unmethylated,
partially methylated or fully methylated categories. R2 values calculated using discretized
methylation were very similar to those obtained from continuous methylation estimates.

Gene expression microarray data and analysis of correlation between DNA methylation
and gene expression

Samples used for gene expression profiling included 18 metastases from 5 autopsy subjects,
processed as described previously (16), and 21 normal prostate specimens from organ
donors (54). Total RNA was extracted from cryostat sections and evaluated using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) as described previously
(55). Gene expression profiling was performed according to the guidelines provided by the
Agilent Whole Genome Expression Microarray system (Agilent Technologies). Briefly,
each of the 39 RNA samples was linearly amplified and labeled with Cy5, and cohybridized
with a common reference RNA sample derived from benign prostatic hyperplasia that was
similarly amplified but labeled with Cy3. For each sample, expression ratios of Cy5/Cy3 for
each probe constituted the raw gene expression measure for the corresponding gene. Raw
data were pre-processed with the R/Bioconductor limma package using within-sample
standard locally weighted least squares regression (lowess) normalization and between-
sample quantile normalization. Values from replicate probes were averaged. The raw and
normalized data is available from the Gene Expression Omnibus (GEO) with accession
number GSE38241. Probes differentially expressed between prostate cancer metastases and
normal prostate tissues were identified by a linear mixed-effects model that accounts for
within-subject correlation between tumor samples. The top 500 most variably expressed
probes across all tissues were identified and subjected to average linkage Euclidean distance
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hierarchical clustering. For correlation analysis between DNA methylation and gene
expression, methylation probes were assigned to genes if they were located within a 5kb
upstream to 2kb downstream window around transcriptional start sites. In the case where
multiple methylation probes were available for a given gene, one was selected at random.
Gene-level linear regression models were used to assess statistical significance of the
expression-methylation relationship. When assessing the strength of the intra-individual
gene expression – methylation relationship, a subject-specific term was added to the model.
R2 values for log2 gene expression values were calculated as described for DNA
methylation.

DNA methylation cityscapes
Genomic cityscape plots were created to display regions with altered TM or ASM in the
metastatic prostate cancer tissues compared to the organ donor normal prostate tissues.
Within each “cityscape”, genomic loci were folded into neighborhoods in order of
chromosomes along a Hilbert curve (39). Each address in the cityscape generally represents
a single region of the genome that was interrogatable by the MBD-SNP approach. In rare
circumstances, the position of adjacent structures was swapped when this improved
visibility of a labeled structure. Due to dimensional constraints on the Hilbert curve layout,
some addresses represent the maximal signal from two adjacent genomic loci. Each structure
in the cityscape represents a region in which all of the organ donor normal prostate
specimens conformed to the appropriate base state (e.g. all classified as unmethylated for the
hypermethylation cityscape or all classified as methylated for the hypomethylation
cityscape) AND at least one metastasis was altered in methylation state compared to the
base state. The height of each structure in the cityscape indicates the fraction of tumors with
a DNA methylation alteration. The tallest structures thus represent loci at which 100% of all
tumors were classified as methylated and none of the organ donors were methylated (e.g.
GSTP1 in the hypermethylation cityscape). The color of each structure represents the
somatic alteration maintenance metric (R2). In general, when multiple promoter-associated
probes were available, all were used for plotting, but only the one with highest alteration
frequency was labeled. In the case where multiple probes show the same alteration
frequency, the one with the highest R2 was selected for labeling. For example, in the
cityscape, all probes for GSTP1 are plotted, but only the probe showing the highest
frequency (SNP_A-4242162) is labeled as GSTP1. Cityscape plots were created using the
Processing programming language.

Analysis software
R 2.14 (56), Bioconductor 2.8 (57) and Partek Genomic Suite 6.4 were used for all analyses.
All code is available upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview and performance of the MBD-SNP method
(A) Overview of MBD-SNP workflow. Genomic DNA is fragmented by NspI and StyI in
two separate reactions, and digested ends are ligated to adaptors. These products are then
divided into a total input and enriched methylated fraction, the latter of which is subjected to
enrichment of methylated DNA fragments by binding to MBD2-MBD immobilized
magnetic beads. Both the total and enriched methylated fractions are then subjected to
amplification, labeling, and hybridization to Affymetrix SNP 6.0 microarrays. Subsequent
computational analyses comparing the enriched methylated and total input fractions allow
assessment of total and allele-specific methylation. (B) Schematic showing generation of
control specimens for testing MBD-SNP performance. (C) Receiver operator characteristic
(ROC) curves for classification of total (allele-agnostic) and allele-specific methylation,
generated by using CS1 (100% methylated), CS3 (0% methylated) and CS2 (50%
methylated in individual specific fashion). (D) ROC curve for array performance as
benchmarked against 5 loci across 44 samples verified by real-time methylation specific
PCR (RT-MSP). (E) Concordance between MBD-SNP and Illumina 450k methylation
estimates. There are 13,426 MBD-SNP methylation probes with an Illumina 450k probe
located within 150bp. The MBD-SNP methylation score is plotted against the Illumina 450k
methylation measure for each of the 13,426 probes and each of 12 specimens analyzed on
both platforms. Among sites classified as unmethylated (Beta < 0.2) or highly methylated
(Beta > 0.8) in the Infinium platform, 86.9% were concordant by the MBD-SNP mixture-
model based classification of methylation status (p ≪ 1 × 10−10).
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Figure 2. DNA methylation alterations are heterogeneous across individuals, but closely
maintained in the metastases within each individual
Between-sample correlation for (A) total DNA methylation (TM), and (B) allele-specific
DNA methylation (ASM). Axis labels indicate tissue type (tumor vs. normal) and subject
identifier. The light colored block diagonal structure shows high inter-individual correlation
for normal tissues (bottom left) and high intra-individual correlation and inter-individual
heterogeneity for metastases. (C) DNA methylation hierarchical clustering showing high
within-subject similarity and between-subject heterogeneity of metastases. These analyses
were done using the 500 probes showing greatest variability across all samples.
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Figure 3. Epigenetic DNA methylation changes are maintained to an extent comparable to
genetic copy number alterations
(A) Degree of maintenance within subjects normalized to the overall variability (R2) for
somatic copy number alterations, total DNA methylation alterations, and allele-specific
DNA methylation alterations. The 500 probes with highest overall tumor variability were
analyzed. (B) A subject showing near-perfect similarity between copy-number and DNA
methylation hierarchical clustering dendrograms. (C) Degree of similarity between within-
subject hierarchical clustering of copy-number and DNA methylation profiles is
significantly greater than would be expected by random chance. (D) R2 distribution for
somatically altered regions. The degree of maintenance normalized to overall variability is
higher for somatically hypermethylated regions than hypomethylated regions.
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Figure 4. Gene expression patterns show high within-subject maintenance and correlation with
DNA hypermethylation
(A) Gene expression hierarchical clustering showing high within-subject similarity and
between-subject heterogeneity of metastases. These analyses were done using the 500 genes
showing greatest variability in gene expression across all 21 benign and 18 metastasis
samples with gene expression microarray data. (B) DNA promoter hypermethylation shows
significant correlation with downregulation of gene expression (average fold decrease =
1.33, p=5.87 × 10−38) and is more strongly correlated with gene expression than promoter
hypomethylation (p=9.2 × 10−8). (C) Within-subject maintenance (R2) of gene expression
patterns for genes with significant correlation between DNA methylation and gene
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expression was stronger than for genes having no evidence for methylation-expression
correlation.
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Figure 5. DNA methylation “Cityscape” plots of lethal metastatic prostate cancer highlight
frequent and highly maintained alterations
Genomic cityscapes of somatic (A) hypermethylation and (B) hypomethylation. Each
chromosome is folded into neighborhoods along a Hilbert curve as shown in (C). Each
structure represents a region showing alteration in TM compared to the normal prostate
tissues. The height of each structure indicates the number of tumors showing alteration. The
color scale represents the degree of maintenance of these alterations across metastases
within individuals normalized to the overall variability (R2). Hypermethylated promoter
regions of genes from the NCI Cancer Gene Index that fell in the top tenth percentile of
frequency of alteration or R2 are labeled. The magnified region in (A) illustrates a
representative chromosomal segment showing clustering of frequently hypermethylated
regions (skyscrapers). The white path shows the Hilbert curve “folding” of this genomic
segment.
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