Motorische Fähigkeiten und exekutive Funktionen
bei Kindern
mit einer Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung

Dissertation zur Erlangung des Doktorgrades
der
Fakultät für Psychologie, Pädagogik und Sportwissenschaft

vorgelegt von
Susanne Ziereis

2014

Institut für Sportwissenschaft
Lehrstuhl Prof. Dr. Petra Jansen

Universität Regensburg
Inhaltsverzeichnis

Abkürzungsverzeichnis .. III

1. Einleitung .. 1

2. Theoretischer Hintergrund und Forschungsstand ... 4
 2.1 Krankheitsbild ADHS ... 4
 2.1.1 Symptome und komorbide Erscheinungsbilder .. 9
 2.1.2 Kognitive Fähigkeiten ... 11
 2.1.2.1 Exekutive Funktionen ... 11
 2.1.2.2 Einschränkungen und Defizite .. 13
 2.1.3 Motorische Einschränkungen .. 15
 2.2 Therapie- bzw. Interventionsmaßnahmen ... 15
 2.3 Zusammenhang zwischen der motorischen Fähigkeiten und den EF 21
 2.4 Zusammenhang zwischen körperlicher Aktivität und den EF 22
 2.5 Einfluss von körperlicher Bewegung auf die EF .. 23
 2.6 Methoden zur Erfassung der EF und der motorischen Fähigkeiten 25
 2.7 Zusammenfassung des aktuellen Forschungsstandes .. 28

3. Ziele und Vorgehen .. 30

4. Studie I .. 32
 4.1 Studiendesign .. 32
 4.2 Ergebnisse .. 42
 4.3 Diskussion .. 45

5. Überleitung und Hypothesen ... 50

6. Studie II ... 53
 6.1 Studiendesign .. 53
 6.2 Ergebnisse .. 62
 6.3 Diskussion .. 65
7. Abschließende Diskussion und Zusammenfassung ... 75
 7.1 EF und motorische Fähigkeiten bei Kindern mit ADHS ... 75
 7.2 Ursachen und Bedeutung der Ergebnisse für Kinder mit ADHS 77
 7.3 Körperliche Aktivität und dessen Einfluss auf die AG-Leistung bei Kindern mit ADHS ... 80
 7.4 Praxisrelevanz .. 82
 7.5 Zusammenfassung ... 85

8. Literatur ... 87
Tabellenverzeichnis .. 101
Abbildungsverzeichnis ... 102
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHS</td>
<td>Aufmerksamkeits-/Hyperaktivitätssyndrom</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgedächtnis</td>
</tr>
<tr>
<td>AMP</td>
<td>Amphetamin</td>
</tr>
<tr>
<td>APA</td>
<td>American Psychiatric Association</td>
</tr>
<tr>
<td>AWMA</td>
<td>Automated Working Memory Assessment</td>
</tr>
<tr>
<td>BAL</td>
<td>Balance</td>
</tr>
<tr>
<td>BF</td>
<td>Ballfertigkeit</td>
</tr>
<tr>
<td>BZF</td>
<td>Buchstaben-Zahlen-Folge</td>
</tr>
<tr>
<td>CPT</td>
<td>Conners Continuous Performance Test</td>
</tr>
<tr>
<td>DCD</td>
<td>Developmental Coordination Disorder</td>
</tr>
<tr>
<td>DSM</td>
<td>Diagnostic and Statistical Manual of Mental Disorders</td>
</tr>
<tr>
<td>DWSMB</td>
<td>Dean-Woodcock Sensory Motor Battery</td>
</tr>
<tr>
<td>EF</td>
<td>Exekutive Funktionen</td>
</tr>
<tr>
<td>EG</td>
<td>Experimentalgruppe</td>
</tr>
<tr>
<td>FBB-ADHS</td>
<td>Fremdbeurteilungsbogen für Aufmerksamkeitsdefizit-/Hyperaktivitätsstörungen</td>
</tr>
<tr>
<td>HAWIK</td>
<td>Hamburg-Wechsler-Intelligenztest für Kinder</td>
</tr>
<tr>
<td>HG</td>
<td>Handgeschicklichkeit</td>
</tr>
<tr>
<td>ICD</td>
<td>International Statistical Classification of Disease and Related Health Problems</td>
</tr>
<tr>
<td>KG</td>
<td>Kontrollgruppe</td>
</tr>
<tr>
<td>KITAP</td>
<td>Testbatterie zur Aufmerksamkeitsprüfung für Kinder</td>
</tr>
<tr>
<td>M-ABC</td>
<td>Movement Assessment Battery for Children</td>
</tr>
<tr>
<td>MPH</td>
<td>Methylphenidat</td>
</tr>
<tr>
<td>TEA-Ch</td>
<td>Test of Everyday Attention for Children</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>THOP</td>
<td>Therapieprogramm für Kinder mit hyperkinetischem und oppositionellem Problemverhalten</td>
</tr>
<tr>
<td>UWMF</td>
<td>Umschriebene Entwicklungsstörung motorischer Funktionen</td>
</tr>
<tr>
<td>WJ-R</td>
<td>Woodcock-Johnson Psycho-Educational Battery-Revised</td>
</tr>
<tr>
<td>WISC</td>
<td>Wechsler Intelligence Scale for Children</td>
</tr>
<tr>
<td>ZN</td>
<td>Zahlen nachsprechen</td>
</tr>
<tr>
<td>TGMD</td>
<td>Test of Gross Motor Development</td>
</tr>
<tr>
<td>TRF</td>
<td>Lehrerfragebogen über das Verhalten von Kindern und Jugendlichen</td>
</tr>
</tbody>
</table>
1. Einleitung

Obwohl eine Verringerung der kognitiven und motorischen Defizite mittel der bereits erwähnten pharmakologischen Therapie möglich ist (Bedard, Martinussen, Ichowicz, & Tannock, 2004; Klingberg, Fernell, Olesen, Johnson, Gustafsson, & Dahlström, 2005; Holmes...
2. Theoretischer Hintergrund und Forschungsstand

Aufgrund der Komplexität des Krankheitsbildes ADHS werden im folgenden Kapitel zunächst der theoretische Hintergrund und der bisherige Forschungsstand hierzu genauer erläutert. Dabei werden neben den allgemeinen Aspekten zum Krankheitsbild die Einschränkungen der motorischen und kognitiven Fähigkeiten betrachtet sowie bisherige Therapie- bzw. Interventionsmaßnahmen herausgestellt. Des Weiteren wird auf bisherige Forschungsarbeiten, die die Zusammenhänge Motorik-EF und körperliche Aktivität-EF untersuchten sowie auf Arbeiten, die sich mit dem Einfluss körperlicher Bewegung auf die EF befassten, eingegangen.

2.1 Krankheitsbild ADHS

Die Ursachen, welche man für das Auftreten des Störungsbildes einer hyperkinetischen Störung in Betracht ziehen muss, sind multifaktoriell. Es wird jedoch vor allem von genetischen und neurologischen (neuroanatomischen, neurophysiologischen, neurochemischen sowie neuropsychologischen) Faktoren, in Zusammenhang mit Einflüssen aus der Umwelt, bedingt (Barkley, 2006; Steinhausen et al., 2010).

Betrachtet man die in der Literatur derzeit vorherrschenden, theoretischen Entwicklungsmodelle für ADHS, so sind die folgende vier Modelle aufzuführen:

- **Biologisch-konstitutionelles Modell**
- **Soziales System-Modell**
- **Interaktives Modell**
- **Transaktionales Modell**

![Abb. 1: Kriterien für die Diagnose einer hyperkinetischen Störung nach ICD-10 und einer ADHS nach DSM-IV (Döpfner et al., 2000)](image1)

![Abb. 2: Symptomkriterien der hyperkinetischen Störung nach ICD-10 und der ADHS nach DSM-IV (Döpfner et al., 2000)](image2)

müssen diese über einen Zeitraum von mindestens sechs Monaten in allen Bereichen und vor dem 12. Lebensjahr beobachtbar sein (Döpfner et al., 2000).

2.1.1 Symptome und komorbide Erscheinungsbilder

Sofern betroffene Kinder nicht schon im Kindergarten auf Schwierigkeiten stoßen, die auf die erläuterten Auffälligkeiten zurückzuführen sind, erfahren sie diese meist im Schulalter. Die Forderung nach ruhigem, kontrolliertem Arbeiten und nach erhöhter Aufmerksamkeit bringt die Kinder an ihre Grenzen.

Neben den typischen Symptomen der Störung sind bei ADHS-Betroffenen meist auch komorbide psychische Störungsbilder festzustellen (Barkley, 2006). So fanden Wilens et al. (2002) heraus, dass dies beispielsweise für 75-80 % der Vorschul- und Schulkinder zutrifft. Spaltet man die psychischen Begleiterkrankungen nochmals auf, so kann ein oppositionelles

Betrachtet man den klinischen Verlauf der Erkrankung, so wird ADHS als eine chronische Störung gesehen, welche sich im frühen Kindesalter manifestiert und mit einer Remission von Symptomen oder der gesamten Störung im Verlauf der Adoleszenz einhergehen kann. Bei circa der Hälfte der Betroffenen bleibt die Störung bis ins Erwachsenenalter hinein bestehen. Ist dies der Fall, so treten unabhängig von den Kernsymptomen im Jugend- bzw. Erwachsenenalter weitere Problembereiche auf (sh. Abb. 3 und 4), auf welche an dieser Stelle jedoch nicht näher eingegangen werden soll (Steinhausen et al., 2010).
2.1.2 Kognitive Fähigkeiten

2.1.2.1 Exekutive Funktionen

Inhibition

Die Hemmung vorschneller, dominanter und/oder automatisierter Antworten bzw. Reaktionen wird als Fähigkeit zur Inhibition bezeichnet. Diese Fähigkeit zur Kontrolle, welche auf die Bereiche Aufmerksamkeit, Verhalten, Denken und/oder Emotionen übertragen werden kann, ermöglicht es somit, ungewünschte Reaktionen zu unterdrücken und gewünschte Reaktionen zuzulassen. Der komplexe Begriff der Inhibition wird dabei unterteilt

Arbeitsgedächtnis

- zentrale Exekutive,
- visuell-räumlicher Notizblock und
- phonologische Schleife (sh. Abb. 5).

Dabei wird angenommen, dass die zentrale Exekutive ein Kontrollorgan darstellt, welches für die Koordination des visuell-räumlichen Notizblock und der phonologischen Schleife zuständig ist. Für eine zusätzliche Speicherung von Informationen verfügt die zentrale Exekutive jedoch nicht über die dafür nötige Kapazität. Das Modell von Baddeley, welches

![AG-Modell nach Baddeley](Baddeley, 2003)

Kognitive Flexibilität

2.1.2.2 Einschränkungen und Defizite

Betrachtet man die EF-Leistungen speziell bei ADHS-Populationen, so kann anhand des bisherigen Forschungsstandes allgemein betrachtet von deutlichen Einschränkungen und Defiziten gesprochen werden (Brown, 2008; Sonuga-Barke, Sergeant, Nigg, & Willcutt, 2008).
In einigen Forschungsarbeiten wurden dabei alle drei EF-Bereiche – die Inhibition, das AG sowie die kognitive Flexibilität - erfasst (Barnett et al., 2001; Barkley et al., 2001; Fugetta, 2006; Goldberg et al., 2005; Jacobsen & Kikas, 2007; Oosterlaan, Scheres, & Sergeant, 2005; Shoemaker et al., 2012; Yang et al., 2011). Viele Studien legten jedoch den Schwerpunkt auf die Erfassung der AG-Leistungen und/oder der inhibitorischen Kontrolle (Biedermann et al., 2008; Klingberg, Forssberg, & Westerberg, 2002; Wu, Anderson, & Castiello, 2006; Yang et al., 2011). Dabei muss die AG-Leistung, in Abhängigkeit der einglehenden Reize, in eine visuelle-räumliche und eine verbale AG-Leistung differenziert werden (vgl. Kapitel 2.1.2.1; Baddeley & Hitch, 1974; Goswami, 2008). Autoren, die diese AG-Leistungen bei Kindern mit ADHS bisher untersuchten, konnten im Vergleich zu nicht betroffenen Kindern in beiden Bereichen signifikante Einschränkungen feststellen (Alloway, 2011; Biedermann et al., 2008; Rapport et al., 2008; Sowerby, Seal, & Tripp, 2010; Westerberg, Hirvikoski, Forssberg, & Klingberg, 2004; Willcutt et al., 2005). Lediglich Barkley et al. (2001) und Shoemaker et al. (2012), welche sehr junge (3,5 – 5,5 Jahre) bzw. ältere Kinder (12-19 Jahre) untersuchten, fanden im Vergleich mit einer entsprechenden Kontrollgruppe (KG) keine signifikanten Unterschiede in den Leistungen des AG.

Bei der Fähigkeit zur inhibitorischen Kontrolle handelt es sich, wie bereits erwähnt, um die Fähigkeit, bestehende Handlungstendenzen unterdrücken zu können (Miyake et al., 2000). Auch in diesem Bereich konnten bei ADHS-Betroffenen Defizite festgestellt werden (Brocki, Randall, Bohlin, & Kerns, 2008; Biedermann et al., 2009; Shoemaker et al., 2012; Yang et al., 2011). Durch eine fortschrittliche Entwicklung neuroimaginärer Methoden erlangte die neuropsychologische Forschung in letzter Zeit viele neue Erkenntnisse hinsichtlich möglicher Ursachen. So konnten einzelne Hirnregionen, die der Krankheit zugrunde liegen und zugleich in Zusammenhang mit inhibitorischen Schwierigkeiten bzw. allgemein mangelnden EF stehen, bestimmt werden (Barkley, 2006). Die Fragestellung, inwiefern diese Defizite durch ein gezieltes kognitives Training ausgeglichen werden können, wurde in der bisherigen ADHS-Forschung ebenso bereits behandelt. In diesem Zusammenhang bestätigten mehrere Arbeitsgruppen eine signifikante Verbesserung in den Leistungen des Arbeitsgedächtnisses durch ein kognitives Training (Beck, Hanson, & Puffenberger, 2010; Holmes et al., 2010; Klingberg et al., 2002; Klingberg et al., 2005).
2.1.3 Motorische Einschränkungen

2.2 Therapie- bzw. Interventionsmaßnahmen

Nachdem in der Einleitung der vorliegenden Arbeit bereits mögliche Therapie- und Interventionsmaßnahmen wie z.B. die Pharmakotherapie, die Verhaltenstherapie, die Psychoedukation, das Neurofeedback und die Ergotherapie genannt wurden, wird auf diese im Folgenden näher eingegangen. Vorab soll dabei die Zusammenstellung des
Theorethischer Hintergrund und Forschungsstand

therapeutischen Versorgungsplanes beim Vorliegen einer ADHS-Diagnose genauer beleuchtet werden.

Therapeutische Möglichkeiten, die in solch einem multimodalen Behandlungskonzept einer ADHS unter Anderem Anwendung finden, sind:

Psychoedukation

Pharmakotherapie

Verhaltenstherapie

Neben psychoedukativen und pharmakotherapeutischen Maßnahmen stellen verhaltenstherapeutische Interventionen die zentrale psychosoziale Komponente im Behandlungskonzept hyperkinetischer Störungen dar (Taylor et al., 2004). Zu unterscheiden sind dabei eltern- und familienindizierte Verfahren, kindergarten- und schulzentrierte Interventionen und patientenzentrierte Verfahren. Wie bereits die Bezeichnung erkennen lässt, liegt der Unterschied im jeweiligen Ansatzpunkt der Therapie (Steinhausen et al., 2010). An dieser Stelle sollen die verschiedenen Maßnahmen der patientenzentrierten Verfahren, in welchen direkt mit dem hyperkinetischen Kind bzw. Patienten gearbeitet wird, näher beleuchtet werden.

Umfeld zu achten und dieses bewusster wahrzunehmen. Treten Problemsituationen auf, soll das Kind nach erfolgreicher Therapie in der Lage sein, sein Verhalten durch entsprechende Regeln in einem angemessenen Rahmen zu halten (Steinhausen et al., 2010).

Interventionen, in welchen die Familie und der Kindergarten oder die Schule mit einbezogen werden, spielen in der Behandlung jedoch ebenso eine wichtige Rolle (Taylor et al., 2004). Im deutschsprachigen Raum findet hierbei das Therapieprogramm für Kinder mit hyperkinetischem und oppositionellem Problemverhalten (THOP) für Kinder zwischen drei und zwölf Jahren häufig Anwendung (Döpfner et al., 2007). Das Programm setzt sich aus zwei Teilbereichen (Eltern-Kind-Programm und Interventionen im Kindergarten bzw. in der Schule) zusammen und zielt unter anderem auf den Aufbau positiver Lehrer-/Eltern-Kind Interaktionen sowie die Strukturierung problematischer Situationen ab (Döpfner et al., 2007).

Alternative Therapiemaßnahmen

Ehe die Forschungsansätze zum Einfluss körperlicher Aktivität auf die Kognition bei Kindern mit und ohne ADHS im Folgenden noch einmal detaillierter erläutert werden, wird zunächst den Zusammenhängen zwischen kognitiven Fähigkeiten und der motorischen Leistungsfähigkeit bzw. dem Ausmaß körperlicher Bewegung jeweils ein alleiniger Unterpunkt gewidmet.
2.3 Zusammenhang zwischen der motorischen Fähigkeiten und den EF

Kindern mit ADHS erfasst wurden, konnten die Autoren hierfür einen signifikanten Zusammenhang aufzeigen. So existiert scheinbar auch bei Kindern mit ADHS ein Zusammenhang zwischen motorischen Fähigkeiten und der Kognition/EF. Da weitere Untersuchungen, die diese Annahme unterstreichen, jedoch bislang fehlen, kann darin die Forschungsgrundlage für die erste Studie des vorliegenden Promotionsvorhabens gesehen werden.

2.4 Zusammenhang zwischen körperlicher Aktivität und den EF

2.5 Einfluss von körperlicher Bewegung auf die EF

Theoretischer Hintergrund und Forschungsstand

Experimentalgruppe (EG, n=10) teilnahm, die Fähigkeit zur Inhibition sowie zur anhaltenden Aufmerksamkeit erfasst. Die Autoren konnten abschließend im Vergleich zu einer Kontrollgruppe (KG) für die EG eine signifikante Verbesserung der Aufmerksamkeitsleistung festhalten. Im Bereich der Inhibitionsleistungen blieb ein derartiger Effekt jedoch aus. Die Ergebnisse einer weiteren Untersuchung mit vergleichbarem Forschungsziel, welche ein Jahr später durchgeführt wurde, widersprechen diesem jedoch (Smith et al., 2013). Das darin abgehaltene, achtwöchige Stationen-Training führte laut Smith et al. (2013) bei den Teilnehmern (n=17) zu signifikanten Verbesserungen in deren Inhibitionsleistungen, wohingegen die Leistungen des AG unverändert blieben.

2.6 Methoden zur Erfassung der EF und der motorischen Fähigkeiten

Um validierte Aussagen über die EF sowie das motorische Leistungsprofil eines Kindes machen zu können, ist die Verwendung standardisierter Testverfahren unerlässlich. Wie bereits in einem vorangehenden Unterpunkt erläutert, liegt der kognitive Schwerpunkt im vorliegenden Promotionsprojekt auf der Erfassung der Inhibitions- sowie der AG-Leistung. Neben der Beschreibung der für das Forschungsvorhaben ausgewählten Erfassungsmethoden wird im Folgenden auch auf weitere mögliche Verfahren eingegangen.

Testverfahren zur Erfassung der EF

Zur Erfassung der inhibitorischen Kontrolle wurde in bisherigen Arbeiten meist die „Stroop color-word Task“ oder aber die „Go/No-Go Task“ herangezogen. Aber auch die „Stop-Signal Task“ bzw. der „Conners Continuous Performance Test (CPT)“ fanden darin häufig Anwendung (Barkley et al., 2001; Brocki et al., 2008; Biederman et al., 2009; Schoemaker et al., 2011; Senderecka, Grabowska, Szewczyk, Gerc, & Chmylak, 2012; Tsushima et al., 2011; Yang et al., 2011). Aufgrund von bereits bestehender Erfahrung in der Arbeit mit der „Go/No-Go Task“ wird diese als Erfassungsmethode für die vorliegende Arbeit ausgewählt.

Dabei handelt es sich um ein computergestütztes Testverfahren, welches die Fähigkeit, eine angemessene Reaktion auszuführen und gleichzeitig einen inadäquaten Verhaltensimpuls kontrollieren zu können, prüft.

Motorische Testverfahren

Balance sowie die Ballfertigkeiten abgeprüft (Petermann, 2008). Diese Aspekte, kombiniert mit der sehr guten, internationalen Anerkennung, können als Gründe für die Auswahl und Verwendung der Testbatterie in der folgenden Arbeit gesehen werden.

2.7 Zusammenfassung des aktuellen Forschungsstandes

Populationen untersucht (Gapin et al., 2011). Dabei konnten in einzelnen Untersuchungen Verbesserungen der Inhibitions- und/oder AG-Leistungen festgestellt werden, in anderen blieb dieser Effekt jedoch aus (Chang et al., 2014; Medina et al., 2009; Smith et al., 2013; Verret et al., 2012). Da die genannten Arbeiten meist nur eine sehr kleine Stichprobe betrachten und es oftmals an einer entsprechenden KG mangelt, ist deren statistische Aussagekraft als gering anzusehen und macht eine Interpretation schwierig. Die Notwendigkeit weitere Forschung zum Einfluss körperlicher Aktivität auf die EF bei Populationen mit ADHS wird daher herausgestellt. Dabei sollte in kommenden Arbeiten potentiellen Kurzzeit- sowie Langzeiteffekten nachgegangen werden und auch die Art und Weise der sportlichen Intervention genauer untersucht werden. Des Weiteren erscheint es aufgrund der eingeschränkten EF ADHS-Betroffener von besonderem Interesse, speziell diese vor und nach solch einer Intervention zu erheben (Gapin et al., 2011; Smith et al., 2013; Verret et al., 2012).
3. Ziele und Vorgehen

Im folgenden Kapitel sollen die Ziele sowie das Arbeitsprogramm des vorliegenden Promotionsvorhabens vor dem Hintergrund der bisherigen Forschung aufgeführt und erläutert werden.

Nach der Erfassung und der Prüfung eines Zusammenhanges werden in der zweiten Studie die Kurz- sowie Langzeiteffekte einer sportlichen Intervention untersucht. Die Ergebnisse der
Korrelationsstudie werden dabei die Grundlage für die Interventionsinhalte zweier EGn darstellen. Um die gewünschten Aussagen über potentielle Kurz- bzw. Langzeiteffekte machen zu können, erfolgt vor und nach einer ersten Einheit sowie nach der kompletten Intervention eine Erfassung ausgewählter EF und der motorischen Leistungsfähigkeit. Im gleichen Zeitabstand werden diese Erhebungen bei einer entsprechenden KG, welche keine Intervention erhält, durchgeführt. Dabei werden die Erfassungsmethoden der ersten Studie Anwendung finden.
4. Studie I

Der Zusammenhang zwischen motorischen Fähigkeiten und den Leistungen ausgewählter exekutiver Funktionen bei Kindern mit einer Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung

Wie bereits der bisherige Forschungsstand aufzeigt, sind bei Kindern mit ADHS neben kognitiven Einschränkungen im Bereich der EF oftmals auch motorische Defizite festzustellen (vgl. Kapitel 2.1.2). Bislang konnte jedoch noch nicht vollständig geklärt werden, ob zwischen diesen beiden defizitären Bereichen ein Zusammenhang besteht (vgl. Kapitel 2.3). Dieser Mangel stellt die Forschungsgrundlage der im Folgenden beschriebenen Studie dar, welche der Fragestellung, ob bzw. in welcher Art es einen entsprechenden Zusammenhang gibt, weiter nachging.

4.1 Studiendesign

Stichprobe

An der Untersuchung nahmen 50 Kinder mit ADHS im Alter zwischen sieben und elf Jahren \((M = 8.95, SD = 1.43)\) teil, wobei es sich um 39 Jungen und 11 Mädchen handelte. Die klinische ADHS-Diagnose wurde dabei von einem ansässigen Kinder- und Jugendpsychiater...

Versuchsaufbau und –durchführung

Die Erfassung der AG-Leistung, der Fähigkeit zur inhibitorischen Kontrolle sowie der motorischen Fähigkeit eines jeden Kindes fand zu einem individuellen Testzeitpunkt statt. Nachdem der Testleiter den Kindern sowie den Eltern den Ablauf der Testungen erläuterte und bestehende Fragenklärte, wurden zunächst die kognitiven Testverfahren zur Erfassung der AG- sowie der Inhibitionsleistung durchgeführt. Zu diesen zählten:

Zahlen nachsprechen vw/rw und Buchstaben-Zahlen-Folge (HAWIK-IV) (Petermann & Petermann, 2010)

neun Zahlen (sh. Abb. 6). Nachdem der Test in der Vorwärts-Bedingung durchgeführt wurde, erfolgt derselbe Ablauf mit der Aufgabe, die Zahlen in umgekehrter Reihenfolge wiederzugeben (rw). Für jede korrekte Antwort wird ein Punkt vergeben, wobei die Gesamtpunktzahl jedes Kindes in einen altersneutralen Indexwert umgerechnet wird. Die Test-Retest Reliabilität beträgt r = 0.84.

Aus den beiden ermittelten Indexwerten kann im Anschluss ein Arbeitsgedächtnis-Index, der die gesamte phonologische AG-Leistung wiederspiegelt, ermittelt werden. Die Test-Retest Reliabilität liegt hierbei bei r = 0.92 (Petermann & Petermann, 2010).
Corsi-block-tapping Test vw/rw (Pagulayan, Busch, Medina, Bartock, & Krikorian, 2006)

Go/No-go Task (Drewe, 1975; Kaiser, Aschenbrenner, Pfüller, Roesch-Ely, & Weisbrod, 2012)

Die Go/No-go-Aufgabe wurde in der vorliegenden Untersuchung herangezogen, um die Fähigkeit zur inhibitorischen Kontrolle zu erfassen. In diesem computergestützten Test ist das Kind aufgefordert, beim Erscheinen des „Go“-Stimulus „X“ auf dem Bildschirm eine bestimmte Taste zu drücken sowie diese Reaktion bei dem „No-go“-Stimulus „0“ zu unterlassen. Zwischen den Stimuli wird dem Kind jeweils ein neutraler Stimulus („*“) präsentiert (sh. Abb. 10). Bei den 100 präsentierten Stimuli handelt es sich in 75 % der Fälle um einen „Go“-, bei 25 % der Fälle um einen „No-go“-Reiz. Die Fehlerraten (der
ausgelassenen „Go“-Stimuli sowie der fälschlichen Reaktionen bei „No-go“-Stimuli) sowie die mittlere Reaktionszeit der „Go“-Bedingungen entsprechen dabei den Messvariablen. Die Reliabilität des Tests variiert zwischen $r = 0.81$ und $r = 0.89$.

Abb. 10: Symbole des „Go“-, des neutralen sowie des „No-go-Stimulus“

M-ABC 2 (Petermann, 2008)

Im Anschluss an die kognitiven Testverfahren wurde die motorische Leistungsfähigkeit der Kinder, unter Verwendung der M-ABC 2, erhoben. Es handelt sich dabei um eine Testbatterie, mit welcher die Fähigkeiten der drei motorischen Hauptkomponenten Handgeschicklichkeit (HG), Ballfertigkeit (BF) sowie statische und dynamische Balance (BAL) bei Kindern im Alter von 3 bis 16 Jahren ermittelt werden können. Das Testverfahren beinhaltet dabei acht motorische Aufgabenstellungen, die für die Altersbereiche 3-6, 7-10 sowie 11-16 angepasst und daher voneinander verschieden sind. Da im vorliegenden Promotionsvorhaben lediglich Kinder im Alter von 7-10 Jahren untersucht werden, wird von einer weiteren Erläuterung des Tests für den Altersbereich 3-6 abgesehen. Bei 7 bis 10-jährigen Kindern wird die HG mit den Aufgaben **Stifte einstecken**, **Schnur auffädeln** und **Spur nachzeichnen** 2, die BF mit den Aufgaben **Zweihändiges Fangen** und **Bohnensäckchen werfen** 2 sowie die BAL mit Hilfe der Aufgaben **Ein-Brett-Balance**, **Laufen Ferse-an-Zeh vorwärts** und **Mattenhüpfen** 2 erfasst. Kinder der Altersgruppe 3 (11-16 Jahre) haben hingegen folgende Aufgaben zu absolvieren: **Stecker wenden** (HG 1), **Dreieck bauen** (HG 2), **Spur nachzeichnen** 3 (HG 3), **Einhändiges Fangen** (BF 1), **Zielwerfen** (BF 2), **Zwei-Brett-Balance** (BAL 1), **Laufen Ferse-an-Zeh rückwärts** (BAL 2) und **Zickzack-Hüpfen** (BAL 3). Im Folgenden werden die entsprechenden Aufgaben der jeweiligen Altersgruppe genauer erläutert:

Altersgruppe 2 (7-10 Jahre)

Stifte einstecken (HG 1)

Aufgabe des Kindes ist es, neun kleine Plastikstecker schnellstmöglich in ein Brett zu stecken. Dabei muss die Aufgabe zunächst mit der dominanten Hand, im Anschluss auch mit der nicht-dominanten Hand absolviert werden.
Schnur auffädeln (HG 2)
Bei dieser Aufgabe muss eine Schnur so schnell wie möglich durch die Löcher eines Plastikbrettes gezogen werden. Es spielt dabei keine Rolle, mit welcher Hand das Kind die Schnur bzw. das Brett hält.

Spur nachzeichnen 2 (HG 3)
Das Kind wird bei dieser Aufgabe aufgefordert, zwischen zwei Linien eine durchgängige Linie zu zeichnen, ohne dabei die Begrenzungen zu übermalen. Die Durchführung erfolgt hierbei lediglich mit der dominanten Hand und ohne das Stoppen der dafür benötigten Zeit (sh. Abb. 11).

Zweihändiges Fangen (BF 1)
Das Kind erhält die Aufgabe, einen Tennisball von einer markierten Distanz aus gegen die Wand zu werfen und im Anschluss mit zwei Händen wieder aufzufangen, ohne dass dieser zuvor auf dem Boden aufspringt.

Bohnensäckchen werfen 2 (BF 2)
Das Kind soll bei dieser Aufgabe ein Bohnensäckchen in den roten Kreis einer Matte, die 1,80 m entfernt liegt, werfen.

Ein-Brett-Balance (BAL 1)
Diese Aufgabe erfordert es, für maximal 30 Sekunden auf einem Fuß auf einem Balancebrett zu balancieren. Nachdem die Aufgabe mit beiden Beinen durchgeführt wird, darf das Kind entscheiden, mit welchem Bein es starten möchte.
Laufen Ferse-an-Zeh vorwärts (BAL 2)
Aufgabe des Kindes ist es, vorwärts auf einer Linie entlang zu balancieren, wobei bei jedem Schritt die Ferse des einen Fußes, die Zehen des anderen Fußes berühren muss (sh. Abb. 12).

Mattenhüpfen 2 (BAL 3)
Das Kind hüpf auf einem Bein vorwärts von Matte zu Matte. Es startet dabei in einer aufrechten Position auf der ersten Matte und muss auf der Zielmatte zum Stehen kommen. Auch bei dieser Aufgabe werden beide Beine getestet.

Altersgruppe 3 (11-16 Jahren)
Stecker wenden (HG 1)

Dreieck bauen (HG 2)
Aufgabe des Kindes ist es, aus drei Plastikstreben, drei Schrauben sowie drei Schraubenmuttern so schnell wie möglich ein gleichseitiges Dreieck zu bauen.

Spur nachzeichnen 3 (HG 3)
Das Kind wird bei dieser Aufgabe aufgefordert, zwischen zwei Linien eine durchgängige Linie zu zeichnen, ohne dabei die Begrenzungen zu übermalen. Die Durchführung erfolgt hierbei lediglich mit der dominanten Hand und ohne das Stoppen der dafür benötigten Zeit.
Einhändiges Fangen (BF 1)

Zielwerfen (BF 2)
Das Ziel dieser Aufgabe ist es, von einer markierten Distanz aus mit einem Tennisball in den an der Wand angebrachten Kreis zu treffen. Dabei spielt es keine Rolle, mit welcher Hand der Ball geworfen bzw. ob der Ball nach dem Zurückprallen wieder aufgefangen wird.

Zwei-Brett-Balance (BAL 1)

Laufen Ferse-an-Zeh rückwärts (BAL 2)
Aufgabe des Kindes ist es, rückwärts auf einer Linie entlang zu balancieren, wobei bei jedem Schritt die Ferse des einen Fußes, die Zehen des anderen Fußes berühren muss.

Zickzack-Hüpfen (BAL 3)

Abb. 15: Aufgabe Zickzack-Hüpfen (Petermann, 2008)

Die Durchführung der kognitiven und motorischen Testverfahren erfolgte in Räumlichkeiten des Instituts für Sportwissenschaften der Universität Regensburg bzw. in den Räumlichkeiten der bereits erwähnten kinder- und jugendpsychotherapeutischen Praxis und umfasste pro Kind eine Dauer von ca. 1 ½ Stunden. Alle Kinder wurden dabei von einem einzigen Testleiter betreut, welcher ihnen während der Erhebung keinerlei Feedback gab. Um die Motivation hoch zu halten, wurden ihnen jedoch Süßigkeiten als Belohnung versprochen, die sie am Ende der Testungen erhielten.

Design und statistische Analyse

Im Rahmen der statistischen Berechnungen wurden mehrere Korrelationsanalysen durchgeführt. Die Variablen, welche dabei miteinander in Korrelation gesetzt wurden, werden im Folgenden nochmals zusammengefasst dargestellt:

- **M-ABC**
 - M-ABC Gesamtwert, errechnet aus den Variablen:
 - M-ABC Handgeschicklichkeit (HG)
 - M-ABC Ballfertigkeiten (BF)
 - M-ABC Balance (BAL)

- **HAWIK-IV (verbal-phonologisches AG)**
 - Indexwert AG, errechnet aus den Variablen:
 - Gesamtwert der Aufgabe Buchstaben-Zahlen-Reihenfolge (BZR)
 - Gesamtwert der Aufgaben Zahlen nachsprechen vw + rw (ZN)

- **Corsi Block-Tapping-Test (visuell-räumliches AG)**
 - Länge der unmittelbaren Blockspanne vw/rw
Studie I: Studiendesign

- **Go/No-go Test (Inhibition)**
 - Fehlerrate (FR)
 - Mittelwert der Reaktionszeiten (RT)

Für alle statistischen Berechnungen wurde die Software SPSS 18.0 verwendet.
4.2 Ergebnisse

Die in dieser Studie erhaltenen Mittelwerte der einzelnen Variablen können zusammen mit den entsprechenden Standardabweichungen der nachfolgenden Tabelle entnommen werden (sh. Tab. 1).

<table>
<thead>
<tr>
<th>Wert</th>
<th>M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ABC 2 (Motorik)</td>
<td></td>
</tr>
<tr>
<td>Gesamtwert</td>
<td>8.56 (2.77)</td>
</tr>
<tr>
<td>HG</td>
<td>8.90 (2.89)</td>
</tr>
<tr>
<td>BF</td>
<td>8.64 (2.63)</td>
</tr>
<tr>
<td>BAL</td>
<td>9.04 (2.87)</td>
</tr>
<tr>
<td>HAWIK-IV (verbal-phonologisches AG)</td>
<td></td>
</tr>
<tr>
<td>Indexwert AG</td>
<td>100.16 (12.45)</td>
</tr>
<tr>
<td>ZN vw</td>
<td>5.74 (1.32)</td>
</tr>
<tr>
<td>ZN rw</td>
<td>3.32 (1.06)</td>
</tr>
<tr>
<td>BZR</td>
<td>9.68 (1.96)</td>
</tr>
<tr>
<td>Corsi block tapping Test (visuell-räumliches AG)</td>
<td></td>
</tr>
<tr>
<td>Spannenlänge vw</td>
<td>4.32 (.71)</td>
</tr>
<tr>
<td>Spannenlänge rw</td>
<td>3.58 (.78)</td>
</tr>
<tr>
<td>Go/No-go (Inhibition)</td>
<td></td>
</tr>
<tr>
<td>RT (ms)</td>
<td>5017.83 (809.66)</td>
</tr>
<tr>
<td>FR (misses)</td>
<td>.55 (.94)</td>
</tr>
<tr>
<td>FR (false)</td>
<td>2.30 (2.27)</td>
</tr>
</tbody>
</table>

Anmerkungen: Die Maximalwerte der erhobenen Variablen sind: M-ABC 2 Gesamtwert (19), M-ABC HG (19), M-ABC BF (19), M-ABC BAL (19), Indexwert AG (150), ZN vw + rw (19), BZR (19), Corsi Spannenlänge vw + rw (7)

Korrelationsanalysen

Die Bonferroni korrigierten Ergebnisse der ersten Korrelationsanalyse, welche die Variablen Indexwert AG, Corsi Spannenlänge vw + rw, Go/No-go RT und Go/No-go FR enthielt, zeigten drei hochsignifikante, positive Korrelationen zwischen dem M-ABC Gesamtwert und 1) dem Indexwert AG (r = 0.486**, p = .000), 2) der Corsi Spannenlänge vw (r = 0.486**, p = .000) und 3) der Corsi Spannenlänge rw (r = 0.458**, p = .001). Die Analyse brachte keinerlei
Zusammenhänge zwischen der motorischen Leistung und den Variablen des Go/No-go Tests (Inhibitionsleistung) hervor (vgl. Tab. 2).

Anhand der zweiten, detaillierteren Korrelationsanalyse konnten positive Korrelationen zwischen dem Indexwert AG und 1) der Variable M-ABC HG (r = 0.455**, p = .001), 2) der Variable M-ABC BF (r = 0.473**, p = .001) und 3) der Variable M-ABC BAL (r = 0.380*, p = .007) festgehalten werden. Ebenso zeigte die Analyse positive Zusammenhänge zwischen der Corsi Spannenlänge rw und der Variable M-ABC HG (r = 0.520**, p = .000) sowie der Corsi Spannenlänge vw und der Variable M-ABC BF (r = 0.378*, p = .007) (vgl. Tab. 3).

Tab. 2: Ergebnisse der Korrelationsanalyse mit den Variablen M-ABC Gesamtwert, Indexwert AG, Corsi Spannenlänge vw + rw, Go/No-go RT, Go/No-go FR (false), Go/No-go FR (misses), Bonferroni korrigiertes Signifikanzniveau ** p < .0014, * p < .007

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M-ABC Gesamtwert</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Indexwert AG</td>
<td>.529**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Corsi Spannenlänge vw</td>
<td>.486**</td>
<td>.224</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Corsi Spannenlänge rw</td>
<td>.458**</td>
<td>.356</td>
<td>.355</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Go/No-go RT</td>
<td>.315</td>
<td>.066</td>
<td>-.003</td>
<td>-.171</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Go/No-go FR (false)</td>
<td>-.066</td>
<td>-.167</td>
<td>-.320</td>
<td>-.115</td>
<td>-.081</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7. Go/No-go FR (misses)</td>
<td>-.206</td>
<td>-.183</td>
<td>-.012</td>
<td>-.197</td>
<td>.307</td>
<td>.076</td>
<td>-</td>
</tr>
</tbody>
</table>

** p ≤ .0014, * p ≤ .007
Die drei separat durchgeführten Regressionsanalysen, für welche jeweils die Prädiktoren M-ABC HG, M-ABC BF und M-ABC BAL herangezogen wurden, lieferten folgende Ergebnisse:

1) Bei der Variable Indexwert AG als Kriterium zeigt sich, dass 27,9 % der Varianz ($R^2 = .308$) durch die Prädiktoren M-ABC BF und M-ABC HG aufgeklärt werden können ($F(2,49) = 10.46$, $p = .001$) (vgl. Tab. 4).

2) Bei der Variable Corsi Spannenlänge rw als Kriterium zeigt sich, dass 25,5 % der Varianz ($R^2 = .271$) durch den Prädiktor M-ABC HG aufgeklärt werden können ($F(1,49) = 17.807$, $p = .000$) (vgl. Tab. 5).
3) Bei der Variable Corsi Spannenlänge \(vw \) als Kriterium zeigt sich, dass 12,5 \% der Varianz \((R^2 = .143) \) von dem Prädiktor \(M-ABC BF \) aufgeklärt werden können \((F(1,49) = 8.012, p = .007) \) (vgl. Tab. 6).

Tab. 6: Ergebnisse der multiplen Regressionsanalyse für die Variable Corsi Spannenlänge \(rw \)

<table>
<thead>
<tr>
<th>Prädiktor</th>
<th>(\beta)</th>
<th>(T)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ABC HG</td>
<td>(.520)</td>
<td>(4.220)</td>
<td>(.000)</td>
</tr>
<tr>
<td>M-ABC BF</td>
<td>(-.029)</td>
<td>(-2.13)</td>
<td>(.832)</td>
</tr>
<tr>
<td>M-ABC BAL</td>
<td>(.133)</td>
<td>(0.973)</td>
<td>(.335)</td>
</tr>
</tbody>
</table>

4.3 Diskussion

zu spielen, welche sich über Verbindungen mit den für die Bewegungskontrolle wichtigen kortikalen bzw. subkortikalen Zentren erklären lässt (Diamond, 2000).

Der geschilderten Vermutung wurde in einer zweiten Studie, die im weiteren Teil der Arbeit ausführlich beschrieben wird, nachgegangen. Zunächst werden jedoch im folgenden Kapitel vor dem Hintergrund bisheriger Untersuchungen die hierfür nötigen Fragestellungen und Hypothesen formuliert.
5. Überleitung und Hypothesen

Fasst man die geschilderten Erkenntnisse bisheriger Untersuchungen zusammen, so bekräftigen diese die Vermutung, dass ein körperliches Training positive Effekte auf die EF-

Aufbauend auf dem bisherigen Forschungsstand und den Ergebnissen der Korrelationsstudie ergeben sich die folgenden Fragestellungen:

1) Kann durch eine mehrwöchige Sportintervention die AG-Leistung von Kindern mit ADHS positiv beeinflusst werden?

2) Lassen sich durch ein spezifisches, sportmotorisches Trainingsprogramm, welches auf eine Verbesserung der Handgeschicklichkeit, der Ballfertigkeit sowie der Balance abzielt (EG 1), größere Effekte erzielen als durch ein sportliches Training, welches diese Ziele nicht verfolgt (EG 2)?

3) Stellen sich bereits nach einer ersten Trainingseinheit positive Kurzzeiteffekte ein?

4) Werden sich die EGn-Ergebnisse signifikant von Ergebnissen einer entsprechenden Warte-KG unterscheiden?

H$_1$: Die AG-Leistung kann bei Kindern mit ADHS durch ein mehrwöchiges, sportmotorisches Trainingsprogramm, welches gezielt zur Verbesserung der Handgeschicklichkeit, der Ballfertigkeit sowie der Balance beitragen soll, sowie durch ein sportliches Training identischen Zeitraums, in welchem die Schulung dieser motorischen Fähigkeiten vermieden wird, verbessert werden.

H$_2$: Ein mehrwöchiges, sportmotorisches Trainingsprogramm, welches gezielt zur Verbesserung der Handgeschicklichkeit, der Ballfertigkeit sowie der Balance beitragen soll, hat größere positive Effekte auf die AG-Leistung bei Kindern mit ADHS als ein sportliches Training identischen Zeitraums, in welchem die Schulung dieser motorischen Fähigkeiten vermieden wird.
6. Studie II

Die Effekte unterschiedlicher sportmotorischer Interventionen auf die Arbeitsgedächtnisleistungen bei Kindern mit ADHS

6.1 Studiendesign

Stichprobe

An der Studie nahmen insgesamt 43 Kinder mit ADHS zwischen sieben und zwölf Jahren (M = 9,45, SD = 1.43) teil. Dabei handelte es sich um 32 Jungen und 11 Mädchen. Die Familien der Kinder erhielten die Einladung zur Studienteilnahme über ihren Kinder- und

Versuchsaufbau und –durchführung

Die vorliegende Studie verfolgte die Absicht, eine Sportintervention über einen Zeitraum von zwölf Wochen durchzuführen, wobei mit zwei EGn (EG1 und EG 2) sowie einer KG gearbeitet wurde. Die nachstehende Abbildung zeigt eine Übersicht des darin verwendeten Versuchsaufbaus (sh. Abb. 16).
Im Folgenden werden einzelne Bereiche dieses Versuchsaufbaus herausgegriffen und der Reihe nach erläutert:

Abb. 16: Übersicht des Versuchsaufbaus der Studie II
- das Fangen, Werfen und Prellen mit unterschiedlichen Bällen,
- die Schulung der Auge-Hand-Koordination,
- das Gleichgewichtstraining,
- die Feinmotorikschulung sowie
- die allgemeine Koordinationsschulung

<table>
<thead>
<tr>
<th>Woche 1</th>
<th>Woche 2</th>
<th>Woche 3</th>
<th>Woche 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elterninformation</td>
<td>Fangen, Werfen und Prellen</td>
<td>Balancetraining</td>
<td>Bewegungskünste</td>
</tr>
<tr>
<td>Pré-Test</td>
<td>Post-Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woche 5</td>
<td>Woche 6</td>
<td>Woche 7</td>
<td>Woche 8</td>
</tr>
<tr>
<td>Gezielt werfen</td>
<td>Tennis</td>
<td>Slackline</td>
<td>Jonglage</td>
</tr>
<tr>
<td>Woche 9</td>
<td>Woche 10</td>
<td>Woche 11</td>
<td>Woche 12</td>
</tr>
<tr>
<td>Beachvolleyball und -handball</td>
<td>Jonglage</td>
<td>Slackline</td>
<td>Koordinationsschulung</td>
</tr>
<tr>
<td>Woche 13</td>
<td>Woche 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fangen und Werfen</td>
<td></td>
<td>Post-Test 2</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 17: Trainingsplan der EG 1

Exemplarisch folgt die ausführlichere Beschreibung der ersten Einheit dieses Programmes:

Stundenkonzept - Fangen, Werfen und Prellen

Erwärmung

Zur Erwärmung wurde mit den Kindern das Spiel „Feuer, Wasser, Sturm, Insel“ aus *Kleine Ballspielschule für Grundschulkinder* (Stephan, 2012) gespielt, wobei dessen Form etwas abgeändert wurde. Dabei läuft jedes Kind zu Musik frei in der Halle umher und hat dabei die
Aufgabe, einen Volleyball am Fuß zu führen. Sobald der Übungsleiter die Musik stoppt und eines der folgenden Signale in die Halle ruft, müssen die Kinder ihren Ball in die Hand nehmen und wie folgt reagieren:

„Feuer“: Der Ball muss in der Hand geprellt werden als wäre er heiß
„Wasser“: Den Ball in die Luft werden und wieder fangen
„Sturm“: In Seitwärtsschritten mit dem Rücken zur Wand gehen und eng am Körper prellen
„Insel“: Auf eine umgedrehte Langbank steigen und den Ball auf den Boden prellen

Hauptteil
Im Hauptteil der Stunde wurden zunächst verschiedene Einzelübungen mit einem Gymnastikball durchgeführt (Stephan, 2012). Die Kinder sollten darin im Gehen bzw. im Laufen den Ball prellen und
- dabei andere mit Handschlag begrüßen,
- sich von Zeit zu Zeit hinknien und wieder aufstehen,
- dabei den Ball mit anderen (diagonal) tauschen bzw.
- eine Umdrehung machen und weiterprellen.

Im Anschluss an die Einzelübungen wurden zwei Laufstaffeln durchgeführt. Diese beinhalteten zum einen Pass- und Fangübungen (mit einem Tennisball), zum anderen Übungen zum Feinmotoriktraining (mit Wäscheklammern).

Stundenausklang
Um einen möglichst hohen Kontrast zwischen den beiden Programmen zu erreichen, wurden im Programm der EG 2 lediglich Sportarten geschult, in welchen die HG, die BF und die BAL nicht bzw. nur in geringem Maße gefordert waren. Dabei wurden die einzelnen Einheiten, identisch zu den Stunden der EG 1, in eine Erwärmungsphase, einen Hauptteil sowie einen Stundenausklang gegliedert. Die hierfür ausgewählten Sportarten bzw. Schwerpunkte der Stunden können dem folgenden Trainingsplan entnommen werden (sh. Abb. 18).

<table>
<thead>
<tr>
<th>Woche 1</th>
<th>Woche 2</th>
<th>Woche 3</th>
<th>Woche 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elterninformation</td>
<td>Sprint- und Laufstaffeln</td>
<td>Schwimmen</td>
<td>Schwimmen</td>
</tr>
<tr>
<td>Prä-Test</td>
<td>Post-Test 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woche 5</th>
<th>Woche 6</th>
<th>Woche 7</th>
<th>Woche 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangeln und Raufen</td>
<td>Klettern</td>
<td>Klettern</td>
<td>Orientierungslauf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woche 9</th>
<th>Woche 10</th>
<th>Woche 11</th>
<th>Woche 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprint- und Laufstaffeln</td>
<td>Turnen</td>
<td>Turnen mit Trampolin</td>
<td>Leichtathletik Weitsprung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woche 13</th>
<th>Woche 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leichtathletik</td>
<td>Post-Test 2</td>
</tr>
<tr>
<td>Sprint und Hürdenlauf</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 18: Trainingsplan der EG 2

Auch für diesen Trainingsplan erfolgt eine exemplarische Beschreibung der ersten Stunde:

Stundenkonzept – Sprint- und Laufstaffeln

Erwärmung

Zu Beginn der ersten Stunde wurde mit den Kindern der EG 2 ebenfalls „Feuer, Wasser, Sturm, Insel“ aus *Kleine Ballspielschule für Grundschulkinder* (Stephan, 2012) gespielt - jedoch ohne die Verwendung von Bällen. Die Kinder liefen frei in der Halle umher und hatten auf Kommando folgende Aufgaben zu erfüllen:

„Feuer“: Auf beiden Beinen durch die Halle hüpfen
„Wasser“: Sich im Krebsgang (ohne dass das Gesäß den Boden berührt) fortbewegen
„Sturm“: Sich flach auf den Boden legen
„Insel“: Auf eine Sprossenleiter klettern
Hauptteil

Stundenausklang

Trotz der unterschiedlichen Inhalte der beiden Trainingspläne wurde darauf geachtet, dass der Grad der körperlichen Anstrengung während der Einheiten in beiden Gruppen vergleichbar war. Sofern es möglich war, beinhalteten die Stunden daher dieselben Spiele, lediglich in unterschiedlichen Ausführungen (vgl. „Feuer, Wasser, Sturm, Insel“). Dabei fanden die Stunden beider Gruppen unter der Woche, nachmittags zwischen 15 und 17 Uhr, in den Sporthallen und auf dem Freigelände des Sportzentrums der Universität Regensburg statt. Hierfür wurden die EGs jeweils in drei Kleingruppen à vier/fünf Kinder – Jungen und Mädchen gemischt - aufgeteilt. Die Umsetzung der entsprechenden Stundeninhalte in den Kleingruppen erfolgte durch je zwei Fachübungsleiter, die vorab eingehend geschult wurden. Nachdem in der vorliegenden Studie neben potentiellen Langzeiteffekten einer entsprechenden Intervention auch potentielle Kurzzeitefekte ermittelt werden sollten, enthielt die Untersuchung insgesamt drei Testzeitpunkte (Prä-Test, Post-Test 1 und Post-Test 2). Zum Zeitpunkt 1, welcher eine Woche vor Beginn der Intervention lag, wurden die Eltern der Kinder ausführlich über die Durchführung der Studie informiert und nach deren Einverständnis gefragt. Darauf folgend wurde bei allen Kindern (EG 1, EG 2 und KG) ein

Design und statistische Analyse

Es handelt sich bei der vorliegenden Untersuchung um einen zweifaktoriellen Versuchsplan mit dem Faktor 1 „Gruppe“ (EG 1, EG 2, KG) sowie dem Faktor 2 „Zeitpunkt“ (ZP 1, ZP 2, ZP 3). Die abhängigen Variablen sind:

- Verbal-phonologisches AG (HAWIK-IV)
 - Indexwert AG, errechnet aus
 - Wertpunktsumme BZF
 - Wertpunktsumme ZN vw
 - Wertpunktsumme ZN rw

- Visuell-räumliches AG (Corsi-block-tapping Test)
 - Corsi Blockspanne vw
 - Corsi Blockspanne rw
o Motorikleistung (Movement ABC-2)
 - *M-ABC Gesamtwert*, errechnet aus
 - *Wert M-ABC HG*
 - *Wert M-ABC BF*
 - *Wert M-ABC BAL*

Zunächst wurde in einer ersten einfaktoriellen ANOVA die Vergleichbarkeit der anthropometrischen Daten sowie der Daten zum Freizeit- und Vereinssportverhalten der drei Gruppen sichergestellt. Der Vergleich der Prä-Testwerte aller Gruppen erfolgte in einer weiteren einfaktoriellen ANOVA. Dabei ergab die Analyse, dass sich die Prä-Test-Werte der Variable *Corsi Blockspanne vw* signifikant voneinander unterschieden. Um α-Fehler zu vermeiden erfolgte in beiden Tests eine Bonferroni-Korrektur.

6.2 Ergebnisse

Der folgenden Tabelle können die anthropometrischen Daten sowie die Daten zum Freizeit- und Vereinssportverhalten der drei Gruppen entnommen werden (sh. Tab. 7):

Tab. 7: Deskriptive Statistik der anthropometrischen Daten sowie der Daten zum Freizeit- und Vereinssportverhalten

<table>
<thead>
<tr>
<th>Variable</th>
<th>Experimental-gruppe 1 (n=13)</th>
<th>Experimental-gruppe 2 (n=14)</th>
<th>Kontroll-gruppe (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahren)</td>
<td>9.2</td>
<td>9.6</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F (1,43) = .302 p .741</td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>63.9</td>
<td>65.9</td>
<td>64.6</td>
</tr>
<tr>
<td>(Perzentile)</td>
<td>23.5</td>
<td>32.7</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F (1,43) = .023 p .977</td>
</tr>
<tr>
<td>Vereinssport (h/Woche)</td>
<td>1.3</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F (1,43) = .277 p .759</td>
</tr>
<tr>
<td>Freizeitsport (h/Woche)</td>
<td>4.8</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F (1,43) = .092 p .913</td>
</tr>
</tbody>
</table>

Kurzfristeffekte einer einzelnen Interventionseinheit auf die AG- bzw. Motorik-Leistungen

Die Datenanalyse des Prä-Tests und des Post-Tests 1 beider EG ergab einen Haupeffekt der Zeit in der Variable M-ABC BF (F(1,25) = 7.540, p = .011, η² = .23). Weitere signifikante Effekte wurden dabei nicht gefunden.

Langfristeffekte einer zwölfwöchigen Intervention auf die AG- bzw. Motorik-Leistungen

Die Datenanalyse der Prä-Test- und Post-Test 2-Messungen brachte mehrere signifikante Ergebnisse hervor. Betrachtet man zunächst die AG-Leistung, so können hierfür signifikante Haupeffekte der Zeit für die folgenden drei Variablen festgehalten werden: 1) Indexwert AG, F(1,33) = 17.800, p < .001, η² = .35; 2) ZN vw, F(1,33) = 24.261, p = .001, η² = .43; 3) BZF, F(1,33) = 6.128, p = .019, η² = .15 (vgl. Abb. 19, 20 und 22). Des Weiteren ergab die Analyse
Interaktionseffekte zwischen Gruppe (EG1, EG 2 und KG) und Zeit (Prä-Test und Post-Test 2) für die Variablen: 1) *Indexwert AG*, $F(2,33) = 10.075$, $p < .001$, $\eta^2 = .38$; 2) *ZN rw*, $F(2,33) = 3.438$, $p < .05$, $\eta^2 = .17$; 3) *BZF*, $F(2,33) = 5.851$, $p = .007$, $\eta^2 = .26$ (vgl. Abb. 19, 21 und 22). Die darauf folgenden Prüfungen der Interaktionseffekte mit entsprechend Bonferroni korrigierten post-hoc Tukey-Tests ergaben jedoch keine signifikanten Unterschiede zwischen der EG 1 und der EG 2, der EG 1 und der KG bzw. der EG 2 und der KG, hervor. Wurden die beiden EГn bei der Datenanalyse zusammengefasst, ließen sich folgende Interaktionseffekte zwischen Gruppe (EG 1 + EG 2 vs. KG) und Zeit finden: 1) *Indexwert AG*, $F(1,34) = 18.294$, $p < .001$, $\eta^2 = .35$; 2) *ZN rw*, $F(1,34) = 7.073$, $p = .012$, $\eta^2 = .17$; 3) *BZF*, $F(1,34) = 7.818$, $p = .008$, $\eta^2 = .19$.

Abb. 19: Ergebnisse der Variable *Indexwert AG* des Prä-Tests und des Post-Tests 2 beider EG sowie der KG

Abb. 20: Ergebnisse der Variable *ZN vw* des Prä-Tests und des Post-Tests 2 beider EG sowie der KG
Im Bereich der motorischen Leistung brachte die Analyse signifikante Interaktionseffekte zwischen Gruppe (EG 1, EG 2 und KG) und Zeit (Prä-Test und Post-Test2) für die Variable BF, $F(2,33) = 8.197$, $p = .001$, $\eta^2 = .33$ (vgl. Abb. 23) und die Variable M-ABC Gesamtwert, $F(2,33) = 9.925$, $p < .001$, $\eta^2 = .38$ (vgl. Abb. 24) hervor. Die anschließende Prüfung der Interaktionen ergab jedoch keine signifikanten Unterschiede zwischen der EG 1 und der EG 2, der EG 1 und der KG bzw. der EG 2 und der KG. Fasste man bei der Analyse die Daten der beiden EGN zusammen, ergaben sich folgende Interaktionseffekte zwischen Gruppe (EG 1 + EG 2 vs. KG) und Zeit: 1) BF, $F(1,34) = 12.207$, $p = .001$, $\eta^2 = .26$; 2) M-ABC Gesamtwert, $F(1,34) = 18.826$, $p < .001$, $\eta^2 = .36$.
6.3 Diskussion

Die Datenanalyse, welche potentiellen Langzeiteffekten der 12-wöchigen Intervention nachging, ergab zunächst auf motorischer Ebene einen signifikanten Interaktionseffekt zwischen Gruppe und Zeit in der Variable M-ABC BF sowie in der Variable M-ABC Gesamtwert. Es kann folglich von einer Leistungsänderung in den beiden Variablen von Prä-Test zu Post-Test 2 ausgegangen werden, wobei sich diese zwischen den drei Gruppen wiederum signifikant unterscheidet. Die weiteren Prüfungen dieser Effekte lieferten in beiden Fällen jedoch keine signifikanten Ergebnisse, d.h. es konnten keine signifikanten Unterschiede zwischen der EG 1 und der EG 2, der EG 1 und der KG sowie der EG 2 und der KG festgestellt werden. Ein Grund für das Fehlen einzelner Gruppenunterschiede kann in den

Im weiteren Verlauf der Diskussion werden nun die Langzeiteffekte auf die verbalphonologische und visuell-räumliche AG-Leistung der Kinder interpretiert. Im verbalphonologischen Bereich fallen darunter die signifikanten Haupteffekte der Zeit in den

Der signifikante Haupeffekt der Zeit in der Variable ZN vw lässt darauf schließen, dass sich die Aufmerksamkeits- bzw. Gedächtnisleistungen der Gruppen in diesem Untertest merklich verändert haben. Betrachtet man die Mittelwerte der jeweiligen Gruppen, könnte man in diesem Zusammenhang eine Verbesserung der EG 1 und der EG 2 sowie eine Verschlechterung der KG vermuten. Aufgrund des fehlenden Interaktionseffekts zwischen Gruppe und Zeit in dieser Variable kann jedoch davon ausgegangen werden, dass sich diese Leistungsänderungen nicht signifikant voneinander unterscheiden. Auch wenn aufgrund der deskriptiven Statistik die Vermutung nahe liegt, dass die Leistungssteigerungen der beiden EGN auf die sportmotorischen Trainingseinheiten zurückzuführen sind, fehlen letztendlich die statistischen Belege hierfür.

die Interventionsprogramme der beiden EGN für die Leistungssteigerung verantwortlich gemacht werden können und daher körperliche Aktivität jeglicher Art die AG-Leistung positiv beeinflusst.

Ähnlich verhält es sich bei der Interpretation des Haupeffekts der Zeit sowie dem Interaktionseffekt zwischen Gruppe und Zeit in der Variable BZF, welche die Aufmerksamkeitsspanne der Kinder erfasste. Obwohl anhand der deskriptiven Ergebnisse auf eine Leistungssteigerung bei den EGN-Teilnehmern bzw. eine geringe Verschlechterung bei den KG-Teilnehmern geschlossen werden kann und der Interaktionseffekt auch für einen signifikanten Unterschied in den Leistungsänderungen steht, ergab eine weitere Prüfung des Effekts keine signifikanten Unterschiede zwischen der EG 1 und der EG 2, der EG 1 und der KG bzw. der EG 2 und der KG. So stellte sich im Rahmen einer weiteren Berechnung jedoch ein signifikanter Unterschied zwischen allen EGN-Kindern und den KG-Kindern vom Prä-Test zum Post-Test 2 heraus, der mit sehr hoher Wahrscheinlichkeit auf die Interventionsprogramme zurückgeführt werden kann.

Die Effekte, welche an dieser Stelle als letztes diskutiert und interpretiert werden, beziehen sich auf die Variable Indexwert AG. Dabei dient der Indexwert AG als Messwert für die verbal-phonologische AG- und Aufmerksamkeitsleistung und setzt sich aus den Ergebnissen der Variablen ZN vw/rw und BZF zusammen. Es verwundert daher kaum, dass auch in dieser Variable ein Haupeffekt der Zeit sowie ein Interaktionseffekt zwischen den beiden Faktoren Gruppe und Zeit gefunden wurden. Auf den ersten Blick scheint es, als bestünde ein signifikanter Unterschied in den, ebenfalls signifikanten, Leistungsänderungen von Prä-Test zu Post-Test 2. Bei diesen Änderungen handelt es sich um deutliche Verbesserungen der EG 1 und der EG 2 sowie um eine geringfügige Leistungsverschlechterung der KG. Die Prüfung, welche einzelnen Gruppenunterschieden nachging, brachte allerdings keinerlei signifikante Ergebnisse hervor. Es kann folglich nicht davon gesprochen werden, dass sich die Leistungsänderungen zwischen der EG 1 und der EG 2, der EG 1 und der KG bzw. der EG 2 und der KG signifikant voneinander unterscheiden. Rational betrachtet bedeutet dieses Ergebnis, dass ein spezielles Training der BF, der HG und der BAL bzw. ein sportliches Training im Allgemeinen zwar mit einer Veränderung bzw. Verbesserung der AG-Leistung verbunden ist, dafür aber, aufgrund der fehlenden Unterschiede zur KG, nicht eindeutig die Interventionen verantwortlich gemacht werden können. Da die Tatsache, dass für diese Variable ein Interaktionseffekt gefunden wurde, in der Diskussion nicht übergangen werden
Studie II: Diskussion

gesehen werden. Weitere Untersuchungen mit größerer Aussagekraft, die für einen Vergleich herangezogen werden könnten, gibt es bis zu diesem Zeitpunkt noch nicht.

Fasst man die einzelnen Aspekte der Diskussion nochmals kurz zusammen, so kann Folgendes festgehalten werden:

Abschließende Diskussion und Zusammenfassung

7. Abschließende Diskussion und Zusammenfassung

7.1 EF und motorische Fähigkeiten bei Kindern mit ADHS

Die Fragestellung, ob zwischen EF und motorischen Fähigkeiten ein Zusammenhang besteht, wurde in bisherigen Forschungsarbeiten bereits ausführlich behandelt und konnte dabei für eine gesunde Population auch bestätigt werden (Piek et al., 2004; Rigoli et al., 2012; Wassenberg et al., 2005). Untersuchungen, die dies für Kinder mit der Diagnose ADHS belegten, gibt es bislang nur in sehr begrenzter Anzahl. Eindeutige Aussagen zum Zusammenhang der EF und der Motorik bei Kindern mit ADHS sind folglich noch nicht möglich. Betrachtet man unabhängig davon die EF und die motorischen Leistungen bei diesen Kindern, sind meist deutliche Defizite in beiden Bereichen festzustellen (Brown, 2008; Fliers et al., 2008; Sonuga-Barke et al., 2008). Dabei fand man in diversen Arbeiten vor allem
Abschließende Diskussion und Zusammenfassung

Einschränkungen in den AG- und Inhibitionsleistungen (Alloway, 2011; Brocki et al., 2008; Biedermann et al., 2008; Shoemaker et al., 2012; Willcut et al., 2005) sowie in der Fein- und der Grobmotorik der Kinder (Fliers et al., 2008; Kramann, 2008; Pitcher et al., 2003; Willcut et al., 2005). Spekulationen, ob darin ein Zusammenhang bestehen könnte, liegen daher nicht fern und werden durch die Ergebnisse von gesunden Probanden geschürt. Nachdem bislang lediglich Livesey et al. (2006) aussagekräftige Ergebnisse bezüglich eines Zusammenhangs zwischen EF und motorischen Leistungen bei Kindern mit ADHS lieferten, stand die Klärung dieser Forschungsfrage noch aus. Die Erkenntnisse, die man sich aus dem ersten Experiment erhoffte, sollten hierzu beitragen.

7.2 Ursachen und Bedeutung der Ergebnisse für Kinder mit ADHS

einen Zusammenhang zwischen dem AG und der Motorik, aber auch für einen möglichen Zusammenhang zwischen der Inhibition und der Motorik, verantwortlich sein könnten, werden im folgenden Abschnitt aufgeführt.

Eine weitere Vorstellung beinhaltet die Voraussage der Leistung der kognitiven Fähigkeiten (inklusive die des AG) anhand der motorischen Entwicklung (Piek, Dawson, Smith, & Gasson, 2008). Forschungsarbeiten, in denen deutlich gemacht werden konnte, dass sensorische und motorische Hirnareale als erstes reifen, untermauern diese Vorstellung (Casey, Tottenham, Liston, & Durston, 2005).

Im zweiten Abschnitt dieses Unterpunktes wird auf die Bedeutung des Zusammenhangs für Kinder mit ADHS genauer eingegangen. Wie bereits in den Kapiteln 2.1.2 und 2.1.3 erläutert, sind bei den meisten ADHS-Kindern gravierende Einschränkungen im Bereich der EF sowie der Motorik feststellbar (Brown, 2008; Fliers et al., 2008; Sonuga-Barke et al., 2008). Im
Notwendigkeit weiterer Forschungsarbeiten in diesem Bereich. So gingen einzelne Arbeiten diesem Einfluss zwar in der Zwischenzeit nach, die Ergebnisse der Untersuchungen widersprechen sich jedoch teilweise und müssen aufgrund der geringen statistischen Aussagekraft kritisch betrachtet werden (Chang et al., 2014; Smith et al., 2013; Verret et al., 2012). Würde ein positiver Einfluss körperlicher Aktivität auf die EF bei Kindern mit ADHS allerdings belegt werden, könnte der Zusammenhang zwischen EF und motorischen Fähigkeiten für entsprechende Kinder eine größere Bedeutung haben als bisher vermutet. So wären beispielsweise sportmotorische Trainingseinheiten als ergänzende Therapiemaßnahme zur Verbesserung der EF einsetzbar. Die Tatsache, dass bei Kindern mit ADHS von einem Zusammenhang des AG und der Motorik ausgegangen werden kann in Verbindung mit der Tatsache, dass bislang nicht vollständig geklärt werden konnte, ob körperliche Aktivität positive Effekte auf die EF dieser Kinder hat, stellte schlussfolgernd die Forschungsgrundlage des zweiten Experiments dar. In Verbindung mit den Ergebnissen des ersten Experiments wird dies im folgenden Unterpunkt nochmals in kurzer Form dargestellt und dessen Ergebnisse zusammenfassend erläutert.

7.3 **Körperliche Aktivität und dessen Einfluss auf die AG-Leistung bei Kindern mit ADHS**

Abschließende Diskussion und Zusammenfassung

7.4 Praxisrelevanz

Die Umsetzung dieser Erkenntnisse in die Praxis könnte dabei durchaus im Rahmen der therapeutischen Versorgung der Kinder stattfinden. Das teilweise bereits bestehende Angebot an ergotherapeutischen Sitzungen, welche u. a. die Verbesserung der Fein- und Grobmotorik zum Ziel haben, müsste daraufhin erweitert und intensiviert werden. Eine weitere Möglichkeit wäre, gezielt bewegungstherapeutische Maßnahmen in den Therapieplan mit aufzunehmen. Da entsprechende Maßnahmen oftmals kostenintensiv und mit einem hohen zeitlichen Aufwand verbunden sind und noch immer Zweifel an deren Effektivität bestehen, werden sie im aktuellen Praxisalltag bislang jedoch noch kaum bzw. zu wenig beachtet. Eindeutige Belege, die die Wirkung sportmotorischer Therapieeinheiten in
weiteren Forschungsarbeiten bestätigen, könnten an dieser Sichtweise etwas ändern und sind daher dringend notwendig.

jedochn auch Kinder ohne ADHS-Diagnose von einem gezielten Bewegungsprogramm im Bereich Unterricht und Schule profitieren.

Es existierte jedoch auch bereits ein Modellprojekt, in dem die kognitive Aktivierung durch Bewegung im schulischen Rahmen angestrebt wurde. Das von Voll und Buuck (2011) entwickelte Programm „Bewegung zur kognitiven Aktivierung“ (BekoAkt) griff dabei bisherige, wissenschaftliche Erkenntnisse auf und sollte ein Bewegungspausenprogramm mit komplexen koordinativen Übungen beinhalten, das im schulischen Kontext effektiv angewendet werden kann (Voll & Buuck, 2011). Es knüpft dabei an die Grundidee des Konzepts der „Bewegten Schule“ an, hebt sich allerdings durch die Fokussierung auf eine Verbesserung geistiger Fähigkeiten und die daraus folgende, erweiterte Zielsetzung von diesem ab. Eine Durchführung des Programms wäre in der ganzen Klasse wie auch in

7.5 Zusammenfassung

Fasst man abschließend die Erkenntnisse aus der vorliegenden Promotionsarbeit zusammen, so kann zunächst von einem positiven Zusammenhang zwischen der Motorik und den Leistungen des AGs bei Kindern mit ADHS gesprochen werden. Aufgrund dieses Zusammenhangs können folglich positive Effekte von einer sportmotorischen Aktivität auf das AG dieser Kinder vermutet werden. Da ein entsprechender Zusammenhang zwischen motorischen Fähigkeiten und weiteren EF (wie z.B. der Inhibition) dabei nicht festgestellt wurde, sind vergleichbare Effekte in diesen Bereichen nicht zu erwarten. Untersuchungen, die sich gezielt mit dem Zusammenhang zwischen der Motorik und der Inhibition bzw. der kognitiven Flexibilität befassen, sind jedoch nötig um diese Annahme zu bestätigen bzw. zu widerlegen.

Abschließende Diskussion und Zusammenfassung

Kindern, die an einer sportlichen Intervention teilnahmen, im Vergleich zu einer KG signifikant verbesserte. Dies deckt sich zum Teil mit den Hypothesen der vorliegenden Arbeit und ist vergleichbar mit Untersuchungsergebnissen bei gesunden Kindern. Da Unterschiede zwischen den beiden EGn weder statistisch belegt werden konnten, noch in den deskriptiven Ergebnissen zu beobachten waren, kann schlussfolgernd gemutmaßt werden, dass die Art und Weise der sportlichen Aktivität dabei keine Rolle spielt. Für eine endgültige Bestätigung dieser Vermutungen sind auch an dieser Stelle weiterführende Arbeiten mit höherer statistischer Aussagekraft notwendig.

8. Literatur

Tabellenverzeichnis

Tabelle 1: Ergebnisse der motorischen und EF Messungen aller Kinder, n = 5042

Tabelle 2: Ergebnisse der Korrelationsanalyse mit den Variablen M-ABC Gesamtwert, Indexwert AG, Corsi Spannenlänge vw + rw, Go/No-go RT, Go/No-go FR (false), Go/No-go FR (misses), Bonferroni korrigiertes Signifikanzniveau ** p ≤ .0014, * p ≤ .00743

Tabelle 3: Ergebnisse der Korrelationsanalyse mit den Variablen Indexwert AG, Corsi Spannenlänge vw + rw, M-ABC HG, M-ABC BF und M-ABC BAL (Bonferroni korrigiertes Signifikanzniveau **p ≤ .0016, * p ≤ .008) ...44

Tabelle 4: Ergebnisse der multiplen Regressionsanalyse für die Variable Indexwert AG44

Tabelle 5: Ergebnisse der multiplen Regressionsanalyse für die Variable Corsi Spannenlänge rw ...45

Tabelle 6: Ergebnisse der multiplen Regressionsanalyse für die Variable Corsi Spannenlänge rw ...45

Tabelle 7: Deskriptive Statistik der anthropometrischen Daten sowie der Daten zum Freizeit- und Vereinssportverhalten .. 62
Abbildungsverzeichnis

Abbildung 1: Kriterien für die Diagnose einer hyperkinetischen Störung nach ICD-10 und einer ADHS nach DSM-IV (Döpfner et al., 2000) .. 7

Abbildung 2: Symptomkriterien der hyperkinetischen Störung nach ICD-10 und der ADHS nach DSM-IV (Döpfner et al., 2000) .. 7

Abbildung 3: Symptome der ADHS im Jugendalter (Steinhausen et al., 2010) 11

Abbildung 4: Symptome der ADHS im Erwachsenenalter (Steinhausen et al., 2010) 11

Abbildung 5: AG-Modell nach Baddeley (Baddeley, 2003) .. 12

Abbildung 6: Zahlenreihen des Zahlen Nachsprechens (Petermann & Petermann, 2010) 34

Abbildung 7: Beispiel einer vorgelesenen BZF .. 34

Abbildung 8: Korrekte Antwort des BZF-Beispiels .. 34

Abbildung 9: Erfassungsinstrument des Corsi-block-tapping Tests (Pagulayan et al., 2006) ... 35

Abbildung 10: Symbole des “Go-“, des neutralen sowie des „No-go-Stimulus“ 36

Abbildung 11: Aufgabe *Spur nachzeichnen* (Petermann, 2008) 37

Abbildung 12: Aufgabe *Laufen Ferse-an-Zeh vorwärts* (Petermann, 2008) 37

Abbildung 13: Aufgabe *Stecker wenden* (Petermann, 2008) ... 38

Abbildung 14: Aufgabe *Einhändiges Fangen* (Petermann, 2008) 38

Abbildung 15: Aufgabe *Zickzack-Hüpfen* (Petermann, 2008) 39

Abbildung 16: Übersicht des Versuchsaufbaus der Studie II ... 55

Abbildung 17: Trainingsplan der EG 1 ... 56

Abbildung 18: Trainingsplan der EG 2 ... 58

Abbildung 19: Ergebnisse der Variable *Indexwert AG* des Prä-Tests und des Post-Tests 2 beider EG sowie der KG .. 63

Abbildung 20: Ergebnisse der Variable *ZN vw* des Prä-Tests und des Post-Tests 2 beider EG sowie der KG .. 63
Abbildung 21: Ergebnisse der Variable \textit{ZN rückwärts} des Prä-Tests und des Post-Tests 2 beider EG sowie der KG..64

Abbildung 22: Ergebnisse der Variable \textit{BZF} des Prä-Tests und des Post-Tests 2 beider EG sowie der KG...64

Abbildung 23: Ergebnisse der Variable \textit{M-ABC BF} des Prä-Tests und des Post-Tests 2 beider EG sowie der KG...65

Abbildung 24: Ergebnisse der \textit{M-ABC Gesamtwert} des Prä-Tests und des Post-Tests 2 beider EG sowie der KG...65