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Abstract

In standard mean-variance bi-criterion portfolio selection, the efficient
set is a frontier. While it is not yet standard for there to be additional cri-
teria in portfolio selection, there has been a growing amount of discussion
in the literature on the topic. However, should there be even one additional
criterion, the efficient frontier becomes an efficient surface. Striving to par-
allel Merton’s seminal analytical derivation of the efficient frontier, in this
paper we provide an analytical derivation of the efficient surface when an ad-
ditional linear criterion (on top of expected return and variance) is included
in the model addressed by Merton. Among the results of the paper there is,
as a higher dimensional counterpart to the 2-mutual-fund theorem of tradi-
tional portfolio selection, a 3-mutual-fund theorem in tri-criterion portfolio
selection. 3D graphs are employed to stress the paraboloidic/hyperboloidic
structures present in tri-criterion portfolio selection.
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1 Introduction

In investments, portfolio selection is the problem of allocating a given sum of
money to securities drawn from a designated pool of securities for the purpose
of maximizing the future return of the portfolio thus formed, or, that is, for the
purpose of maximizing portfolio return. With portfolio return a random variable,
the foundation for the solution of the problem of portfolio selection was laid out
by Markowitz (1952) in the form of his famous mean–variance model. In this
model, “mean” refers to the endeavor to maximize the expected return of the port-
folio return random variable, and “variance,” which is Markowitz’s measure for
risk, refers to the endeavor to minimize the variance of the portfolio return random
variable. Hence the so-called mean–variance model is a bi-criterion optimization
problem with as its two objectives variance to be minimized and expected return to
be maximized.

While mean–variance has maintained its status as the predominant model in
portfolio selection for over sixty years, it has not been without attempts to extend
its scope. One such attempt arose in the 1970s. It is the attempt to include in the
portfolio selection process a criterion beyond expected return and variance. Lee
(1972) proposed taking dividends into account along with expected return and vari-
ance when constructing a portfolio. Stone (1973) proposed skewness as a different
kind of third criterion possibility. With only occasional articles on this following,
one such being by Spronk and Zambruno (1981), the idea of additional criteria
in portfolio selection essentially remained on the back burner of portfolio selec-
tion until the mid-1990s when, for instance, Konno and Suzuki (1995) revisited
skewness, Chow (1995) considered tracking error as a third criterion, and Sper-
anza (1996) and others mentioned in different ways transaction costs. Soon several
survey-type articles appeared such as by Spronk and Hallerbach (1997), Bana e
Costa and Soares (2001), and Steuer and Na (2003) giving further impetus to the
idea of additional objectives.

While skewness and tracking error are difficult to implement because of their
nonlinearities, additional criteria that can be modeled linearly are much more trac-
table. Recognizing this, the literature then saw a string of contributions involving
linear criteria whose number has only been increasing. For example, Lo, Petrovz
and Wierzbicki (2003) examined liquidity in this regard, considered social respon-
sibility, and Ehrgott, Klamroth and Schwehm (2004) took into account the star
ranking of a mutual fund. In the list contained in Steuer, Qi and Hirschberger
(2007), the amount invested in R&D (see Guerard and Mark, 2004) and growth-
in-sales (Ziemba, 2006) are also enumerated as possible additional criteria. On
the methodological front of how to handle additional criteria in portfolio selection,
there are among others the offerings by Ben Abdelaziz, Aouni and Fayedh (2007),
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Hirschberger, Steuer, Utz, Wimmer and Qi (2013), Aouni, Colapinto and La Torre
(2014), and Xidonas, Mavrotas, Krintas and Psarras (2012).

However, as of most recently, the additional criterion that appears to be attract-
ing the most attention is social responsibility. Another term often used interchange-
ably with social responsibility is sustainability. Over the past few years many pa-
pers have been written about social responsibility in portfolio selection includ-
ing those by Ballestero, Bravo, Pérez-Gladish, Arenas-Parra and Plà-Santamaria
(2012), Dorfleitner, Leidl and Reeder (2012), Bilbao-Terol, Arenas-Parra, Cañal-
Fernández and Bilbao-Terol (2013), Calvo, Ivorra and Liern (2014), Cabello, Ruiz,
Pérez-Gladish and Méndez-Rodriguez (2013), Pérez-Gladish, Méndez-Rodriguez,
M’Zali and Lang (2013), Utz, Wimmer, Hirschberger and Steuer (2014), and Utz,
Wimmer and Steuer (2015).

While substantial progress has been made as described above, it is quite possi-
ble that multiple criteria in portfolio selection is still in its early stages. With cri-
teria beyond expected return and variance causing the efficient frontier to become
an efficient surface, many new questions about the structure of the efficient surface
and its relationship to other key quantities in portfolio selection arise. While it is
certainly possible to compute individual efficient solutions by means of inserting
any additional criterion into the problem as a constraint, this only generates partial
information. But to appreciate the full expanse of potentially optimal choices of-
fered by a problem, it is necessary to compute the entire efficient surface. Whereas
Merton (1972) has provided a very nice analytical derivation of the bi-criterion
efficient frontier of traditional portfolio selection, the purpose of this paper is to
provide a similar analytical derivation but of the efficient surface of a tri-criterion
portfolio selection problem.

The paper is organized as follows. In Section 2 we touch on multiple criteria
optimization and summarize many of the main results of the efficient frontier of
Merton’s model. In Section 3 we formulate our tri-criterion model and analytically
derive the minimum-variance surface. In Section 4 we derive the portion of the
minimum-variance surface that is the efficient surface, and in Section 5 we provide
an illustrative numerical example. Also in Section 5, we are able to illustrate the
paraboloidic/hyperboloidic nature of the efficient surface by means of several 3D
graphs.

3



2 Multiple criteria optimization and portfolio selection

We briefly review multiple criteria optimization and portfolio selection models in
this section. A multiple objective optimization problem can be formulated as

max{z1 = f1(x)} (1)
...

max{zk = fk(x)}
s.t. x ∈ S

where k is the number of objectives and S ⊂ Rn is the feasible region in decision
space. Because (1) has more than one objective, there is another version of the
feasible region, that being Z ⊂Rk in criterion space, where Z = {z | zi = fi(x), x ∈
S} with reference to which z = (z1, . . . ,zk) is a criterion vector. In criterion space,
z̄∈ Z is nondominated iff there does not exist an x∈ S such that fi(x)≥ fi(x̄) for all
i, with at least one of the inequalities strict. Otherwise, z̄ is dominated. The set of
all nondominated criterion vectors is called the nondominated set and is designated
N. In decision space, x̄ ∈ S is efficient iff its criterion vector z̄ = ( f1(x̄), . . . , fk(x̄))
is nondominated. Otherwise, x̄ is inefficient. The set of all efficient points is called
the efficient set and is designated E. In the form above, easier said than done, the
purpose of (1) is to compute all of N and E for use by the decision maker. More on
multiple criteria optimization can be found in Meittinen (1999) and Ehrgott (2005).

One of the oldest, if not the oldest, mechanism for addressing (1) is the e-
constraint approach. In this approach, all of the objectives except one are converted
to constraints such as in the following

max{z1 = f1(x)} (2)

s.t. f2(x) = e2

...

fk(x) = ek

x ∈ S

where the ei are pre-chosen values of all of the objectives that have been re-modeled
as constraints. Typically, (2) is solved many times for different configurations of
the ei.

In Markowitz (1952), his landmark portfolio selection formulation, given in
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bi-criterion format, is

min{z1 = xT
Σx} variance (3)

max{z2 = µ
T x} expected return

s.t. x ∈ S

where x ∈ Rn, n is number of securities in the designated pool, the xi components
of x are the proportions of capital to be allocated to security i, Σ is the problem’s
covariance matrix, and µ is the problem’s vector of individual security expected
returns.

The field of finance calls the N of (3) the “efficient” frontier, but we will hence-
forth call it the nondominated frontier. This is so the terms efficient and inefficient
can be reserved only for distinguishing among x-vectors (i.e., portfolios) in de-
cision space. Ihus, in accordance with multiple criteria optimization, the terms
dominated and nondominated will only be used in connection with vectors in cri-
terion space, and the terms efficient and inefficient will only be used in connection
with vectors in decision space.

In Merton (1972), Merton provides elegant analytical derivations of many of
the quantities and properties of the nondominated and efficient sets of the following
portfolio model

min{z1 = xT
Σx} (4)

max{z2 = µ
T x}

s.t. 1T x = 1

where 1 is a vector of ones. On one hand, the unlimited nature of the xi weights is
unrealistic, but on the other, the analyticity of the derived results from (4) brings
substantial advantages to research and teaching (as seen for example in the text by
Huang and Litzenberger, 1988). Because we will be parallelling many of the results
of Merton (1972), but with a third criterion included, we will now summarize many
of the most important points of Merton so as to serve as a good debarkation point
for this paper.

Assuming Σ positive definite, Merton begins with the following e-constraint
version of (4)

min{z1 =
1
2 xT

Σx}
s.t. µ

T x = z2

1T x = 1
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where z2 is an arbitrary value of expected return. Then from the Lagrangian

L(x,g1,g2) =
1
2 xT

Σx+g1(z2−µ
T x)+g2(1−1T x)

where the gi are the multipliers, the following system[
z2
1

]
=

[
µT Σ

−1
µ µT Σ

−11
1T

Σ
−1

µ 1T
Σ
−11

][
g1
g2

]
=

[
a c
c f

][
g1
g2

]
(5)

is obtained. With a, c and f defined as in (5), and the determinant D = a f − cc of
the 2×2 matrix positive as in Merton (1972), the minimum-variance frontier of (4)
is the parabola

z1 =
1
D
( f z2

2−2cz2 +a)

Such a parabola is given in Figure 1. The minimum-variance point on the parabola
zmv and its corresponding portfolio xmv in decision space are given by

zmv = (
1
f

,
c
f
) xmv =

1
f

Σ
−11

In (variance, expected return)-space, the nondominated frontier is the upper part
of the parabola starting at zmv. The set of all portfolios that are inverse images of
points on the nondominated frontier constitutes the efficient set and is given by

{x ∈ Rn | x = xmv +λ (Σ−1
µ− c

f
Σ
−11),λ ≥ 0} (6)

Note that the efficient set of Merton (1972)(6) is an unbounded line segment ema-
nating from xmv.

With it common to display the nondominated frontier in (standard deviation,
expected return)-space, we have Figure 2. In this figure, because of the change
from variance to standard deviation along the horizontal axis, the parabola becomes
a hyperbola, with the upper part of the hyperbola starting at the minimum-standard
deviation point now showing as the nondominated frontier. The dashed lines in the
figure are the asymptotes of the hyperbola given by

z2 =
c
f
±

√
Dz1

f
for z1 ≥ 0

where
√

z1 is standard deviation.
Also covered in Merton (1972) is the 2-mutual-fund theorem. The theorem

is as follows. Let x1 and x2 be any two portfolios whose criterion vectors are on
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Figure 1: A minimum-variance frontier plotted in (variance, expected return)-
space where it is a parabola. The portion of the parabola from zmv upward is the
nondominated frontier in this space.

the minimum-variance (or minimum-standard deviation) frontier, and let x be any
other portfolio (i.e., any vector in Rn whose components sum to one). Then, the
criterion vector of x is on the minimum-variance (or minimum-standard deviation)
frontier iff x can be formed as a linear combination of x1 and x2 whose weights
sum to one.

3 Deriving the minimum-variance surface

Following the literature with regard to the growing interest in additional criteria in
portfolio selection, let us add an additional objective to (4) to form the following
tri-criterion model

min{z1 = xT
Σx} (7)

max{z2 = µ
T x}

max{z3 = `T x}
s.t. 1T x = 1

While there are many candidates for a third criterion as discussed in Steuer et
al. (2007), let us motivate our third criterion with portfolio liquidity, an arbitrary
choice, for illustrative purposes. Hence, the `-vector in (7). As with the solution to
model (4), the solution to (7) is all of its nondominated and efficient sets N and E.
In analyzing (7), we make the following assumptions.

Assumption 1. Matrix Σ is positive definite.
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Figure 2: The same minimum-variance frontier plotted in (standard deviation, ex-
pected return)-space where it is a hyperbola. The upper part of the hyperbola is
the nondominated frontier in this space. The dashed lines are the asymptotes of the
hyperbola.

Assumption 2. Vectors µ , ` and 1 are linearly independent.

Beginning as in the bi-criterion case, we form the following e-constraint repre-
sentation of our tri-criterion model

min{z1 =
1
2 xT

Σx} (8)

s.t. µ
T x = z2

`T x = z3

1T x = 1

where z2 and z3 are arbitrary values of expected return and liquidity, respectively.
The union of all criterion vectors (z1,z2,z3) resulting from the optimal solutions of
(8) for all values of z2 and z3 is the minimum-variance surface of (7). This is seen
as a generalization of the minimum-variance frontier of (4). To begin the process
of solving (8) for all values of z2 and z3, we take the Lagrangian

L(x,g2,g3,g4) =
1
2 xT

Σx+g2(z2−µ
T x)+g3(z3− `T x)+g4(1−1T x)

where the gi are multipliers. Because xT Σx is strictly convex by virtue of the
positive definiteness of Σ, L(x,g2,g3,g4) is strictly convex and x is the minimizing
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solution of (8) iff

∂L
∂x

= Σx−g2µ−g3`−g41 = 0

∂L
∂g2

= z2−µ
T x = 0

∂L
∂g3

= z3− `T x = 0

∂L
∂g4

= 1−1T x = 0

Premultiplying the first equation by Σ
−1 enables us to obtain x=(g2Σ

−1
µ+g3Σ

−1`+
g4Σ

−11). Substituting this into the last three equations of the above yields

g2µT Σ
−1

µ + g3µT Σ
−1` + g4µT Σ

−11 = z2

g2µT Σ
−1` + g3`

T
Σ
−1` + g4`

T
Σ
−11 = z3

g2µT Σ
−11 + g3`

T
Σ
−11 + g41T

Σ
−11 = 1

We introduce notation C and express the three equations above in matrix form as

C

g2
g3
g4

=

z2
z3
1

 (9)

where

C =

µT Σ
−1

µ µT Σ
−1` µT Σ

−11
µT Σ

−1` `T
Σ
−1` `T

Σ
−11

µT Σ
−11 `T

Σ
−11 1T

Σ
−11

=

a b c
b d e
c e f


We now demonstrate the following property of C.

Lemma 1. Matrix C is positive definite.

Proof. Because Σ
−1 is positive definite, it can function as a covariance matrix.

There exists a random vector v ∈ Rn such that the covariance matrix of v is Σ
−1.

In this way, C is the covariance matrix of the random vector
[
µ ` 1

]T v with

C =
[
µ ` 1

]T
Σ
−1 [

µ ` 1
]
. Thus, for all y ∈R3 with y 6= 0, we have yT Cy =

yT
[
µ ` 1

]T
Σ
−1 [

µ ` 1
]

y. Define w =
[
µ ` 1

]
y. By Assumption 2, w 6=

0. Therefore, yT Cy = wT Σ
−1w > 0. Thus, C is positive definite.
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By the positive definiteness of C, its determinant |C|> 0, and

C−1 =
1
|C|

d f − ee ce−b f be− cd
ce−b f a f − cc bc−ae
be− cd bc−ae ad−bb


Premultiplying (9) by C−1 gives usg2

g3
g4

= C−1

z2
z3
1

=
1
|C|

z2(d f − ee)+ z3(ce−b f )+(be− cd)
z2(ce−b f )+ z3(a f − cc)+(bc−ae)
z2(be− cd)+ z3(bc−ae)+(ad−bb)


3×1

Substituting the above gi into the previously derived x = (g2Σ
−1

µ + g3Σ
−1`+

g4Σ
−11) yields

x =
1
|C|

[(z2(d f − ee)+ z3(ce−b f )+(be− cd))Σ−1
µ

+(z2(ce−b f )+ z3(a f − cc)+(bc−ae))Σ−1`

+(z2(be− cd)+ z3(bc−ae)+(ad−bb))Σ−11]

or

x = x0 + z2d2 + z3d3 (10)

where

x0 =
1
|C|

[(be− cd)Σ−1
µ +(bc−ae)Σ−1`+(ad−bb)Σ−11] (11)

d2 =
1
|C|

[(d f − ee)Σ−1
µ +(ce−b f )Σ−1`+(be− cd)Σ−11] (12)

d3 =
1
|C|

[(ce−b f )Σ−1
µ +(a f − cc)Σ−1`+(bc−ae)Σ−11] (13)

We interpret x0 as the minimizing solution of (8) when z2 = 0 and z3 = 0. In this
way,

{x ∈ Rn | x = x0 + z2d2 + z3d3, z2,z3 ∈ R} (14)

is the set of all optimal solutions of (8) for all values of z2 and z3, with the three
vectors on the right in the set having the following property.

Lemma 2. Vectors x0, d2 and d3 are linearly independent.
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Proof. Letting h0,h2,h3 ∈ R, by (11)-(13), we have

h0x0 +h2d2 +h3d3 =
h0

|C|
[(be− cd)Σ−1

µ +(bc−ae)Σ−1`+(ad−bb)Σ−11]

+
h2

|C|
[(d f − ee)Σ−1

µ +(ce−b f )Σ−1`+(be− cd)Σ−11]

+
h3

|C|
[(ce−b f )Σ−1

µ +(a f − cc)Σ−1`+(bc−ae)Σ−11]

After rearrangement, we have

h0x0 +h2d2 +h3d3 =
1
|C|
{[(d f − ee)h2 +(ce−b f )h3 +(be− cd)h0]Σ

−1
µ

+[(ce−b f )h2 +(a f − cc)h3 +(bc−ae)h0]Σ
−1`

+[(be− cd)h2 +(bc−ae)h3 +(ad−bb)h0]Σ
−11}

By Assumptions 1 and 2, Σ
−1

µ , Σ
−1` and Σ

−11 are linearly independent. There-
fore, the necessary and sufficient condition of h0x0 +h2d2 +h3d3 = 0 is

(d f − ee)h2 +(ce−b f )h3 +(be− cd)h0 = 0

(ce−b f )h2 +(a f − cc)h3 +(bc−ae)h0 = 0

(be− cd)h2 +(bc−ae)h3 +(ad−bb)h0 = 0

With the above reducing to C−1

h2
h3
h0

 = 0, and C−1 nonsingular, the only pos-

sibility is that h0 = h2 = h3 = 0. Therefore, x0, d2 and d3 are linearly indepen-
dent.

With (14) being the set of all portfolios that generate the minimum-variance
surface, it is seen that (14) is an affine set, in particular, being a 2-dimensional
hyperplane in Rn offset from the origin by x0. From this, as an extension of the 2-
mutual-fund theorem of bi-criterion portfolio selection mentioned in Section 2, we
can state the following 3-mutual-fund theorem of tri-criterion portfolio selection.

Theorem 1. Let x1, x2 and x3 be any three affinely independent1 points from (14).
Then, any portfolio that generates a point on the minimum-variance surface can
be formed by some linear combination of x1, x2 and x3 whose weights sum to one.

1Points x0,x1, . . . ,xm are affinely independent if x1−x0, . . . ,xm−x0 are linearly independent.
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In criterion space, the minimum-variance surface of model (7) is obtained by
substituting (10) into z1 = xT Σx to yield

z1 = d2T
Σd2z2

2 +2d2T
Σd3z2z3 +d3T

Σd3z2
3 +2d2T

Σx0z2 +2d3T
Σx0z3 +x0T

Σx0

(15)

where the six coefficients of (15) are specified in detail as

d2T
Σd2 =

1
|C|2

(ad2 f 2−2ade2 f +ae4−b2d f 2 +b2e2 f +2bcde f −2bce3− c2d2 f + c2de2)

d2T
Σd3 =

1
|C|2

(−abd f 2 +abe2 f +acde f −ace3 +b3 f 2 +bc2d f −3b2ce f +2bc2e2− c3de)

d3T
Σd3 =

1
|C|2

(a2d f 2−a2e2 f −ab2 f 2 +2abce f −2ac2d f +ac2e2 +b2c2 f −2bc3e+ c4d)

d2T
Σx0 =

1
|C|2

(abde f −abe3−acd2 f +acde2−b3e f +b2cd f +2b2ce2−3bc2de+ c3d2)

d3T
Σx0 =

1
|C|2

(−a2de f +a2e3 +ab2e f +abcd f −3abce2 +ac2de−b3c f +2b2c2e−bc3d)

x0T
Σx0 =

1
|C|2

(a2d2 f −a2de2−2ab2d f +ab2e2 +2abcde−ac2d2−2b3ce+b4 f +b2c2d)

Let us now comment on the notion of an elliptic paraboloid. In (z1,z2,z3)-space,
the expression z1 = α2z2

2+α3z2
3, where α2 ≥ 0 and α3 ≥ 0, is an elliptic paraboloid

in standard form. The paraboloid is non-degenerate, if both α2 > 0 and α3 > 0.
Otherwise the paraboloid is degenerate. For a given value ζ > 0 of z1, we obtain
α2
ζ

z2
2 +

α3
ζ

z2
3 = 1 in (z2,z3)-space. This is recognized as an ellipsoid.

Theorem 2. The minimum-variance surface (15) of the tri-criterion portfolio prob-
lem of (7) is a non-degenerate elliptic paraboloid.

Proof. We rewrite (15) as

z1 =
[
z2 z3 1

]
P

z2
z3
1

 where P =

d2T
Σd2 d2T

Σd3 d2T
Σx0

d2T
Σd3 d3T

Σd3 d3T
Σx0

d2T
Σx0 d3T

Σx0 x0T
Σx0

 .

As Σ is a covariance matrix, let r∈Rn designate the random vector associated with
it. Form a new random vector

[
d2 d3 x0

]T r. Let P be its covariance matrix.

For all y ∈ R3 with y 6= 0, yT Py = yT
[
d2 d3 x0

]T
Σ
[
d2 d3 x0

]
y. Let w =[

d2 d3 x0
]

y and w 6= 0 by Lemma 2. Then yT Py = wT Σw > 0, because Σ is
positive definite. Therefore, P is positive definite.
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With P positive definite, all of its eigenvalues v1, v2 and v3 are positive. With P

real and symmetric, there exists a normal matrix N such that P=NT

v1 0 0
0 v2 0
0 0 v3

N.

Hence, the minimum-variance surface (15) is z1 =
[
z2 z3 1

]
NT

v1 0 0
0 v2 0
0 0 v3

N

z2
z3
1

.

Let u=N

z2
z3
1

. Then, z1 =uT

v1 0 0
0 v2 0
0 0 v3

u= v1u2
1+v2u2

2+v3u2
3. With v1,v2,v3 >

0, after a change of coordinate system, we see the paraboloid as non-degenerate.

A depiction of a minimum-variance surface is given in Figure 3. The task of
specifying the portion of the paraboloid that is the nondominated set of our tri-
criterion model (7) still awaits us.

4 Deriving the nondominated surface

In order to compute the efficient and nondominated sets of model (7), we utilize a
weighted-sums approach to form

min{1
2 xT

Σx−λ2µ
T x−λ3`

T x} λ2,λ3 ≥ 0 (16)

s.t. 1T x = 1

whose Langrangian is

L(x,g) = 1
2 xT

Σx−λ2µ
T x−λ3`

T x+g(1−1T x)

where g is its multiplier. Because xT Σx is strictly convex, L(x,g) is strictly convex
and x is the minimizing solution to (16) if and only if it satisfies

∂L
∂x

= Σx−λ2µ−λ3`−g1 = 0

∂L
∂g

= 1−1T x = 0

Premultiplying the first equation by Σ
−1 yields x = λ2Σ

−1
µ + λ3Σ

−1`+ gΣ
−11.

Substituting x into the second equation produces

g =
1

1T
Σ
−11

(1−λ21T
Σ
−1

µ−λ31T
Σ
−1`) =

1
f
(1−λ2c−λ3e)
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Noting that f > 0, the above is well-defined. Substituting g into x = (λ2Σ
−1

µ +
λ3Σ

−1`+gΣ
−11) yields

x = λ2Σ
−1

µ +λ3Σ
−1`+

1
f
(1−λ2c−λ3e)Σ−11

or

x = xmv +λ2∆
2 +λ3∆

3 (17)

where

xmv =
1
f

Σ
−11 (18)

∆
2 = Σ

−1
µ− c

f
Σ
−11 (19)

∆
3 = Σ

−1`− e
f

Σ
−11 (20)

Notice that the expression for xmv, the minimum-variance portfolio, is the same for
both Merton’s model (4) and the tri-criterion model (7) of this paper. The efficient
set of (7) can then be expressed as

{x ∈ Rn | x = xmv +λ2∆
2 +λ3∆

3, λ2,λ3 ≥ 0} (21)

Lemma 3. Vectors ∆
2 and ∆

3 are linearly independent.

Proof. For h2,h3 ∈ R we have

h2∆
2 +h3∆

3 = h2(Σ
−1

µ− c
f

Σ
−11)+h3(Σ

−1`− e
f

Σ
−11)

= h2Σ
−1

µ +h3Σ
−1`− ch2 + eh3

f
Σ
−11 (22)

Since Σ
−1

µ , Σ
−1` and Σ

−11 are linearly independent, the right-hand side of (22) is
zero iff h2 = h3 = 0, and − ch2+eh3

f = 0. Since only h2 and h3 are needed, ∆
2 and

∆
3 are linearly independent.

Therefore, generated by ∆
2 and ∆

3, E is a translated 2-dimensional cone. Fur-
thermore, note that the ∆

2 generator of (21) is the same as the single generator of
(6). This means that any portfolio efficient in model (4) is efficient in model (7),
and this immediately enables us to state the following theorem.

Theorem 3. The efficient set (6) of the bi-criterion model (4) is a subset of the
efficient set (21) of the tri-criterion model (7).
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Thus by adding a linear criterion, the investor’s efficient set becomes a superset
of its former self. By substituting (17) into model (7) we are able to demonstrate,
as a function of λ2,λ3 ≥ 0, the nondominated set of (7) in the form of the following
set of parametric equations

z1 = (xmv +λ2∆
2 +λ3∆

3)T
Σ(xmv +λ2∆

2 +λ3∆
3)

z2 = µ
T (xmv +λ2∆

2 +λ3∆
3)

z3 = `T (xmv +λ2∆
2 +λ3∆

3)

Whereas the nondominated set of Merton’s bi-criterion model (4) is a portion of the
parabolic minimum-variance frontier (2), the nondominated set of the tri-criterion
model is a portion of the paraboloidic minimum-variance surface (15).

5 Illustrative numerical example

We now provide a numerical example along with graphs to illustrate the results
of this paper. To equip the example, data from the Center for Research in Secu-
rity Prices (CRSP) were obtained over the period January 2009 to December 2013
on four stocks chosen from the Dow Jones Industrial Average index: American
Express (AXP), Disney (DIS), Johnson & Johnson (JNJ), and Coca Cola (KO).
Monthly data over the period were downloaded for the covariance matrix Σ and the
individual security expected return vector µ of model (7). Also, for the model’s
liquidity vector `, we downloaded monthly closing bid, closing asked, and clos-
ing prices so as to compute as our liquidity measure the negative of each stock’s
bid-asked spread asked price−bid price

closing price . With all of this, we have

µ =


0.0355
0.0240
0.0109
0.0135

 `=


−0.0003
−0.0003
−0.0002
−0.0002

 Σ =


0.0182 0.0059 0.0016 0.0008
0.0059 0.0050 0.0014 0.0014
0.0016 0.0014 0.0018 0.0010
0.0008 0.0014 0.0010 0.0019


(23)

Utilizing the µ , ` and Σ of (23) in (11)–(13), we obtain

x0 =


0.7643
−2.7643

0.4959
2.5041

 d2 =


61.8479
−61.8479
−111.0574

111.0574

 d3 = 104×


0.7553
−1.7553
−0.6975

1.6975


With these vectors inserted, in accordance with (14), the following set

{x ∈ R4 | x = x0 + z2d2 + z3d3, z2,z3 ∈ R}
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Figure 3: The portion of the paraboloidic minimum-variance surface of the illus-
trative numerical example for variance z1 ≤ .01

gives the 2-dimensional hyperplane of portfolios in x-space that generates the
minimum-variance surface. And by (15), we have

z1 = 9.5778×105z2
2 +1.1396×104z2z3 +53.5843z2

3 +242.7541z2 +0.9582z3 +0.0198

as the equation of the elliptic paraboloid that is the minimum-variance surface.
Graphing this, the minimum-variance surface is portrayed in Figure 3.

Now for the nondominated surface. Utilizing the µ , ` and Σ of (23) in (18)–
(20), we obtain

xmv =


0.0158
−0.0140

0.5210
0.4772

 ∆
2 =


0.8591
2.1633
−3.5338

0.5114

 ∆
3 =


0.0028
−0.0312

0.0137
0.0147


With these vectors inserted, in accordance with (17), the following set

{x ∈ R4 | x = xmv +λ2∆
2 +λ3∆

3, λ2,λ3 ≥ 0} (24)

gives the 2-dimensional translated cone of efficient portfolios in x-space that gener-
ates the portion of the minimum-variance surface that is the nondominated surface.
By substituting the vectors of the efficient set (24) into model (7), we obtain the
nondominated surface as shown in gray in Figure 4.

Notice the rightmost oval seen in Figure 4. It is the cross-section of the minimum-
variance surface with constant variance z1 = 0.01. It is shown more directly in
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Figure 4: The portion of the minimum-variance surface that is the nondominated
surface for variance z1 ≤ .01

Figure 5. As seen, the major axis of the ellipse is not parallel to either the z2 or z3
axis. Thus, the minimum-variance surface is rotated. This is a consequence of the
fact that the d2T

Σd3 coefficient of the z2z3 term in the expression for the elliptic
paraboloid above is not equal to 0. The heavier line between z1 and z2 inclusive is
the portion of the ellipse that is nondominated.

As standard deviation is often more interpretable than variance (as standard de-
viation is given in the same units as expected return), we now look at our plotting
situation in terms of standard deviation. Whereas the parabola of Figure 1 becomes
the hyperbola of Figure 2 when variance is changed to standard deviation in Mer-
ton’s bi-criterion model (4), the paraboloid of Figure 3 becomes the hyperboloid
seen in Figure 6 when variance is changed to standard deviation in our tri-criterion
model (7).

Denoting standard deviation by z∗1 =
√

z1, the hyperboloid in given by

z∗1 =
√

9.5778×105z2
2 +1.1396×104z2z3 +53.5843z2

3 +242.7541z2 +0.9582z3 +0.0198

While a hyperbola (as in Merton’s model) is surrounded by only 2 asymptotes, a
hyperboloid is surrounded by an asymptotic cone. Such an asymptotic cone can
be obtained by shifting the vertex of the paraboloid that corresponds to the hy-
perboloid in the z1 direction to z1 = 0. Since the vertex of the minimum-variance
paraboloid is the minimum-variance point, this involves a shift of zmv

1 = 1
f = 1.4206×

17
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Figure 5: Cross-section taken at variance z1 = .01 showing the rotated nature of
the minimum-variance surface

10−3 in our example. Thus, the asymptotic cone is given by√
(z∗1)2 +1.4206×10−3

=
√

9.5778×105z2
2 +1.1396×104z2z3 +53.5843z2

3 +242.7541z2 +0.9582z3 +0.0198

or equivalently

(z∗1)
2 = 9.5778×105z2

2 +1.1396×104z2z3 +53.5843z2
3 +242.7541z2 +0.9582z3 +0.0184

How the asymptotic cone encloses the hyperboloidic minimum-standard deviation
surface and nondominated surface is shown in Figure 7. The dot in the liquidity,
expected return plane is the origin of the cone. This ends our illustrative example.
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Figure 6: The portions of the hyperboloidic minimum-standard deviation surface
and nondominated surface of the illustrative numerical example for standard devi-
ation

√
z1 ≤ .10

References

[1] B. Aouni, C. Colapinto, and D. La Torre. Financial portfolio management
through the goal programming model: Current state-of-the-art. European
Journal of Operational Research, 234(2):536–545, 2015.

[2] Enrique Ballestero, Mila Bravo, Blanca Pérez-Gladish, Mar Arenas-Parra,
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