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Chapter 1

Introduction

For a Noetherian separated regular scheme X, the Chow group CHk
Y (X) of algebraic

cycles of codimension k with supports in a closed subset Y of X is given as

CHk
Y (X) := ZkY (X) /RatkY (X),

i.e. the group of algebraic cycles ZkY (X) of codimension k on X with support in Y
divided by a certain subgroup RatkY (X), called the group of algebraic cycles which
are rationally equivalent to zero on Y . We set CHk

Y (X)Q := CHk
Y (X) ⊗Z Q for any

commutative ring Q with unit element and CH∗(X)Q :=
⊕

Y,k CHk
Y (X)Q, where the

direct sum is taken over all closed subsets Y and all k ∈ Z. We are interested in giving
an intersection product with supports

. : CHk
Y (X)Q ⊗ CHk′

Z (X)Q → CHk+k′

Y ∩Z(X)Q,

such that CH∗(X)Q is a commutative graded Q-algebra with [X] ∈ CH0
X(X)Q as unit

element and such that the intersection product is compatible with inclusions of sup-
ports.

In order to generalize Arakelov’s arithmetic intersection theory from arithmetic sur-
faces to higher dimensional schemes, Gillet and Soulé [GS87] introduced an intersection
product with supports for any Noetherian separated regular scheme, after tensoring the
Chow groups with support by Q. Their main tool is an isomorphism between CHk

Y (X)Q
and GrkγK

Y
0 (X)Q, the k-th graded piece of K-theory with support in Y with respect

to the γ-filtration. Then the product in K-theory induces a product of Chow groups
with support and coefficients in Q.

We fix a Noetherian, excellent, regular and separated base scheme S. Throughout the
text, we assume that all schemes under consideration are separated and of finite type
over S and we call them S-schemes. The aim of this thesis is the development of a new
approach to the intersection theory on regular S-schemes by combining Fulton’s method
of deformation to the normal cone with de Jong’s result on alterations (or similar re-
sults) as a new ingredient. As it turns out, one should work very generally in a bivariant
setting (cf. [Ful84, Chapter 17]) and talk about orientations (cf. [KT87, Chapter 3]):
For any morphism f : X → Y of S-schemes and any ring Q, a bivariant class c in
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6 CHAPTER 1. INTRODUCTION

Ap(f)Q is a collection of homomorphisms from CHk(Y ′)Q to CHk+p(X×Y Y ′)Q, for all
morphisms of S-schemes Y ′ → Y and all integers k ∈ Z, compatible with proper push-
forward, flat pull-back and the refined Gysin homomorphisms of regular imbeddings.
There are two distinguished subgroups Bp(f)Q ⊆ Ap(f)Q and Cp(f)Q ⊆ Ap(f)Q. The
subgroup Bp(f)Q is essentially generated by systems which are induced by flat pull-
backs and refined Gysin homomorphisms of regular imbeddings. The second subgroup
Cp(f)Q contains Bp(f)Q and is given by all systems that commute with proper push-
forward and with all systems in all Aq(g)Q for any morphism g of S-schemes and all
q ∈ Z. An S-scheme X is called BQ-orienting (resp. CQ-orienting), if all morphisms
f : Y → X are equipped with one unique class [f ] in B(f)Q =

⊕
p∈ZB

p(f)Q (resp.
C(f)Q =

⊕
p∈ZC

p(f)Q), such that [f ]([Y ]) = [X]. We show, that any BQ-orienting
S-scheme is CQ-orienting.

Kleiman and Thorup [KT87, Chapter 3] give two central results about orienting schemes:

(i) Any regular separated Noetherian universally catenary scheme is CQ-orienting.

(ii) Any regular, excellent scheme of dimension at most two is BZ-orienting.

They also show under the assumption of resolution of singularities the following gen-
eralization for the result (ii): If Y is a n-dimensional regular, excellent scheme and
if every excellent scheme of dimension at most n has a desingularization, then Y is
BZ-orienting. In order to generalize Kleiman and Thorup’s results, we introduce the
following Assumption:

Assumption A(S, Q, ≤ n).
For a multiplicative closed subset T ⊆ Z with 0 /∈ T , set Q = T−1Z. Let n be an
integer and let S denote a Noetherian, excellent, regular and separated scheme.
We say that

A(S, Q, ≤ n)

holds, if for every integral S-scheme of Krull dimension at most n, there exists a
projective alteration φ : X1 → X, generically finite of degree d ∈ T , such that X1

is a regular integral scheme.

This assumption allows us to include Kleiman and Thorup’s assumption of resolution of
singularities (i.e. A(SpecZ, Z, ≤ n)) on the one hand, and results like de Jong’s result
on alterations on the other hand. For example if S is a Noetherian excellent regular
separated scheme of Krull dimension one, then A(S, Q, ≤ n) holds for all n ∈ N by
[dJ97, Corollary 5.1]. With this notation, we prove the following result:

Theorem A (Theorem 4.2.1, Corollary 4.2.2). Let Y be a regular S-scheme
and assume that A(S, Q, ≤ dimS Y ) holds. Then any S-scheme X with X → Y
smooth is BQ-orienting.

Together with de Jong’s result on alterations we immediately get the following

Theorem B (Corollary 4.2.3). Let Y be a regular, separated scheme of finite
type over Z. Then Y is BQ-orienting.

Theorem A and Theorem B improve Kleiman and Thorup’s results from above.
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These results allow us to define an intersection product with supports for regular
S-schemes X under the Assumption A(S, Q, ≤ dimS X). We first use, that BQ-
orienting schemes are BQ-orthocyclic i.e. for every morphism f : X → Y of S-schemes
we have B(f)Q = A(f)Q and that the evaluation at [Y ] induces an isomorphism

EY : B(f)Q = A(f)Q
∼−→ CH∗(X)Q

of Q-modules. For closed immersion of S-schemes, we show that this is even an isomor-
phism of graded Q-modules. For closed subsets Y,Z ⊆ X we put the reduced induced
closed subscheme structure on both of them to get the closed immersions iY : Y → X
and iZ : Z → X and form the fiber square

Y ×X Z
i′Y−−−−→ Z

i′Z

y iZ

y
Y

iY−−−−→ X,

with morphisms as labeled. Then the intersection product is induced by the natural
cup-products

∪ : Bp(iY )Q ⊗Bq(iZ)Q → Bp+q(iY ◦ i′Z)Q.

Theorem C (cf. Section 4.3). This construction gives rise to the desired inter-
section product with supports

. : CHk
Y (X)Q ⊗ CHk′

Z (X)Q → CHk+k′

Y ∩Z(X)Q

for BQ-orienting schemes.

Behind this construction lies a pretty simple idea for such an intersection product: Let
X be a regular S-scheme and assume that A(S, Q, ≤ dimS X) holds. For a closed
integral subscheme V of codimension k of X with closed immersion iV : V → X
and [V ] ∈ CHk

Y (X), we choose an alteration φ : V1 → V with V1 regular as in our
Assumption. Then the morphism f : V1 → X in the diagram

V1

f

%%φ // V // X

��
S

is proper and l.c.i. and for [W ] ∈ CHk′
Z (X), we get a well-defined element

[V ].[W ] :=
1

d
f∗f

![W ] ∈ CHk+k′

Y ∩Z(X)Q,

where d denotes the degree of the alteration and f ! is Fulton’s refined Gysin homomor-
phism for l.c.i. morphisms. Note that this construction is indeed independent of the
choice of the alteration. This fact is not at all obvious and follows here from the theory



8 CHAPTER 1. INTRODUCTION

of bivariant classes (cf. Section 4.3).

Under the assumption A(S, Q, ≤ dimS X) we further show that our construction (The-
orem C) coincides with Fulton’s intersection product for divisors (cf. [Ful84, Chapter 2,
Section 20.1]) in the case of regular S-schemes and with Fulton’s intersection product
in the case of smooth S-schemes if S is in addition one-dimensional (cf. [Ful84, Chapter
8, Section 20.2]).
This thesis is structured as follows: In Chapter 2 we recall Fulton’s notion of relative di-
mension, which we call S-dimension, and the definition of the Chow groups of algebraic
cycles on S-schemes. In Chapter 3 we provide the precise statement of our assumption
on resolution of singularities and give a brief overview of cases where the assumption
holds. In the first section of Chapter 4, we follow [KT87, Chapter 3] to introduce bivari-
ant classes, orientation classes, orienting schemes, Alexander duality, exterior products
and Kleiman and Thorup’s fundamental results on orienting schemes. In the second
section of this chapter we use these methods to prove Theorem A and Theorem B
above. In the last section we will discuss how this results can be used to define an
intersection product with supports on regular schemes. Chapter 5 is dedicated to the
comparison of our theory to Fulton’s theory. In Appendix A we summarize Fulton’s
theory for S-schemes for the convenience of the reader: We review the push-forward of
cycles for proper morphisms, the pull-back of cycles for flat morphisms and the refined
Gysin homomorphisms for regular imbeddings (and l.c.i. morphisms). Note that this
is done in [Ful84, Chapters 1 - 6] for schemes X which are of finite type and separated
over a ground field. In [Ful84, Section 20.1], Fulton remarks that his theorems still hold
in the case of separated schemes of finite type over a Noetherian, regular and separated
base scheme S. In our appendix, we formulate the theorems we need from Fulton’s
book for S-schemes as a summary of the statements needed in the development of the
bivariant language in Section 4.1.

Notation

Throughout this thesis, all rings are assumed to be commutative with unit element.
All schemes under consideration are assumed to be separated and of finite type over
a fixed Noetherian, excellent, regular and separated base scheme S. We call these
schemes S-schemes. For an irreducible scheme X, we denote ηX its generic point,
and we sometimes write κ(X) for the function field of X, i.e. the residue field κ(ηX)
of the generic point. More generally, for any p ∈ X, we set κ(p) := OX,p/mX,p for
its residue field. The Krull dimension dimX of a S-scheme X is its dimension as a
topological space (not to be confused with the S-dimension dimS X). The codimension
codim(Z,X) of an irreducible closed subset Z of X is the supremum of integers n, such
that there exists a chain

Z = Z0 ( Z1 ( ... ( Zn

of closed irreducible subsets of X, beginning with Z. If Y is any closed subset of X,
we define

codim(Y,X) = inf
Z⊆Y

codim(Z,X)
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where the infimum is taken over all closed irreducible subsets of Y . Since S-schemes
are excellent and hence universally catenary, the dimension and codimension of a closed
integral subscheme Z of X behave well, i.e. dimZ + codim(Z,X) = dimX. We will
use the definition of quasi-projective and projective morphisms as in [EGA, II 5.3.1, II
5.5.2]. In contrast to standard usage, we require a local complete intersection (l.c.i)
morphism to admit a global factorization into a regular imbedding followed by a smooth
morphism as in [Ful84]. A flat morphism f : X → Y of S-schemes is always assumed
to have a relative S-dimension (cf. Definition A.1.2 and Remark A.1.3).

In contrast to Fulton, who denotes the Chow Groups by the letter A, we will use the
more common CH, followed by a lower index if we grade by S-dimension or upper
index if we grade by codimension. More specifically, CHkX denotes the Chow group of
algebraic cycles of S-dimension k on X. Note that codimension and S-dimension also
behave well by Proposition 2.1.3 (ii). When we use the grading by codimension we will
add the support of the cycles as a lower index, e.g. CHk

Y (X) denotes the Chow group
of algebraic cycles of codimension k on X supported in the closed subset Y . Note that
neither should be confused with Chow cohomology or bivariant classes. For bivariant
classes we have chosen to adapt the notation as in [KT87] and use the letters A, B and
C followed by an upper index to indicate the corresponding shift in the S-dimension.

Acknowledgments: The author would like to express his deepest gratitude to his
advisor, Prof. Dr. Klaus Künnemann, for the continuous support, excellent guid-
ance, and patience. The author also thanks V. Cossart, O. Piltant, P. Forré, J. Kolb,
F. Wutz, B. Altmann, S. Flossmann, P. Jell, J. Sprang and P. Vollmer for helpful
discussions and the collaborative research center SFB 1085 funded by the Deutsche
Forschungsgemeinschaft for its support.





Chapter 2

Chow Groups of S-schemes

In this Chapter we recall the definition of the Chow groups of algebraic cycles on
S-schemes i.e. separated schemes of finite type over a fixed Noetherian, excellent, reg-
ular and separated base scheme S. In [Ful84, Section 20.1], Fulton suggested a useful
grading of these Chow groups by what he calls relative dimension, but we have chosen
to call this S-dimension. A second way of grading the Chow groups is by codimension.
A close study of the S-dimension in the first section will allow us to show, that the
resulting grading of the Chow groups is compatible with the one by codimension in the
usual way. Both gradings have their advantages: Proper push-forward of cycles pre-
serves S-dimension, while flat pull-back preserves with the codimension (cf. Appendix
A).

2.1 The S-Dimension

In order to introduce graded Chow groups we introduce a suitable notion of dimension,
called the S-dimension. This definition goes back to Fulton [Ful84, Section 20.1].

Definition 2.1.1. Let X be an irreducible S-scheme with generic point ηX and struc-
ture morphism p : X → S.

(i) For a morphism f : X → Y of S-schemes, we define

dimY X := trdeg(κ(X)/κ(f(ηX)))− dimOY,f(ηX).

For Y = S, this gives the S-dimension of X:

dimS X = trdeg(κ(X)/κ(p(ηX)))− dimOS,p(ηX).

(ii) An S-scheme X is called S-equidimensional of S-dimension d, if every irreducible
component Xi of X satisfies

dimS Xi = d.

Remarks 2.1.2. (i) The S-dimension is called relative dimension in [Ful84, Section
20.1]. Note that Fulton works in a more general setting, namely without the
assumption on the base scheme S to be separated and excellent. He proves
Proposition 2.1.3 (ii), (iii) and hence (v) below in this more general setting.

11



12 CHAPTER 2. CHOW GROUPS OF S-SCHEMES

(ii) As mentioned by Kleiman in [KT87, Section 2], this definition still induces a
useful grading on the Chow groups, if we assume S only to be a separated, uni-
versally catenary, Noetherian scheme whose local rings are all equidimensional.
Recall that a ring is called equidimensional if all its maximal ideals have the same
codimension and all its minimal primes have the same dimension. Examples of
schemes S whose local rings are equidimensional are Cohen-Macaulay schemes
(cf. [Eis95, Proposition 18.8 and Corollary 18.11]) or schemes where every con-
nected component is irreducible.

(iii) Note that (i) includes the case of S-schemes. So does (ii), as every regular Noethe-
rian ring is Cohen-Macaulay (cf. [Liu02, Example 2.14]), hence such base schemes
have equidimensional local rings.

The following Proposition is based on [Ful84, Lemma 20.1].

Proposition 2.1.3. Let X, Y be irreducible S-schemes.

(i) We have

dimS X = dimS Xred.

(ii) If V → X is a closed irreducible subscheme of X we have

codim (V,X) = dimS X − dimS V .

(iii) For any dominant morphism f : X → Y of finite type, we have

dimS X = dimS Y + trdeg(κ(X)/κ(Y )).

(iv) If f : X → S is a dominant morphism of finite type and closed, we have

dimS X = dimX − dimS,

where dim denotes the Krull-dimension.

(v) If f : X → Y is a morphism of S-schemes, then

dimS X = dimS Y + dimY X.

(vi) If S = SpecK for a field K, then the S-dimension of X and the Krull dimension
of X coincide. In the case that X and Y are irreducible schemes of finite type
over a field K, we have

dimY X = dimX − dimY .

(vii) If f : X → Y is a flat morphism, for every point y ∈ Y we have

dimXy = dimS X − dimS Y .
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Proof. Assertion (i) follows directly from the definition, as the residue fields κ(V ) and
κ(p(ηV )) remain the same for the reduced scheme and dimOSred,p(ηX) = dimOS,p(ηX),
because the Krull dimension only depends on the underlying topological spaces. Hence
for (ii) - (vi) we can assume X and Y to be reduced, hence integral. Part (ii) and (iii)
can be found in [Ful84, Lemma 20.1]. For the convenience of the reader, we reproduce
the proof here: For (ii) let T and U be the closures of the images of X and V in S.
Since S is universally catenary, the dimension formula [EGA, IV 5.6.5]

trdeg(κ(X)/κ(T )) + codim(U, T ) = trdeg(κ(V )/κ(U)) + codim(V,X)

implies the claimed formula. Part (iii) follows since the transcendental degree is tran-
sitive and ηX and ηY have the same image in S. As dominant, closed morphisms are
surjective, (iv) follows from [EGA, IV 5.6.6.2]:

dimY X = trdeg(κ(X)/κ(Y )) = dimX − dimY.

For (v), we consider the factorization of f = g ◦ h through the scheme theoretic image
Im(f)

f : X
h→ Im(f)

g→ Y

with h dominant (cf. [GW10, Proposition 10.30]) and g a closed immersion. Then (v)
follows using (ii) and (iii). The claim in (vi) follows from

dimY X = trdeg(κ(X)/κ(f(ηX)))− dimOY,f(ηX)

= dimX − dim Im(f)− codim (Im(f), Y )

= dimX − dimY.

For (vii), we follow the idea of [Liu02, Corollary 4.3.14]: Choose a closed point x ∈ Xy in

the fiber Xy. Let {x}X denote the closure of x ∈ Xy ⊆ X in X and {y}Y the closure of
y in Y . Observe that the residue field κ(x) max either be computed as OX,x/mX,x or as
OXy ,x/mXy ,x (as localization commutes with passage to the quotient). Since the point x
is closed in Xy, κ(x) is a finite field extension of κ(y) (by Hilbert’s Nullstellensatz) and

we have trdeg(κ(x)/κ(y)) = 0. Using (iii) for the induced morphism {x}Xred → {y}
Y

red

we get

dimS({y}Y ) = dimS({x}X)− trdeg(κ(x)/κ(y)) = dimS({x}X)

and finally

dim(Xy) = dim(OXy ,x)

= dim(OX,x)− dim(OY,y) [Liu02, Theorem 4.3.12]

= codim ({x}, X)− codim ({y}, Y )

= dimS X − dimS {x} − dimS Y + dimS {y}
= dimS X − dimS Y.
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Examples 2.1.4. (i) Let S be a Noetherian, excellent, regular and separated base
scheme S of (Krull) dimension one. A proper, flat morphism X → S with X
integral is always dominant [Liu02, Proposition 3.9] and closed. Hence dimS X =
dimX − 1 by Proposition 2.1.3 (iv).

(ii) In general, the S-dimension of a scheme X is not necessarily the difference
dimX − dimS of the ordinary Krull dimensions: Let p be a prime number. For
S = SpecZp consider the S-schemes X1 = SpecFp and X2 = SpecQp. Observe
that Qp = Zp[1p ] is a Zp-algebra of finite type. Then

dimS X1 = −1 = dimX1 − dimS.

However, dimS X2 = 0, which is different from dimX2 − dimS = −1.

2.2 Chow Groups

With the notion of S-dimension we can define the Chow group of algebraic cycles of
S-dimension k on an S-scheme X.

Definition 2.2.1. Let X be an S-scheme.

(i) An algebraic cycle of S-dimension k on X is defined to be a finite formal sum∑
i

ni[Vi] ,

with closed integral subschemes Vi of S-dimension k of X and ni ∈ Z. Let ZkX
denote the group of algebraic cycles of S-dimension k on X given as the free
abelian group on the closed integral subschemes Vi of S-dimension k of X.

(ii) For any closed integral subscheme W in X of S-dimension (k+1) and any rational
function r ∈ κ(W )∗ we define a cycle [divW (r)] ∈ ZkX by

[divW (r)] =
∑

V ∈W (1)

lengthOW,ηV
(OW,ηV /(r))[V ],

the sum over all closed integral subschemes V of W of codimension one with
generic point ηV . By the usual arguments one can deduce, that this sum is finite
(cf. [Ful84, Section 1.2, Section 20.1]) and is indeed in Zk(X) by Proposition
2.1.3 (ii). Let RatkX ⊆ ZkX be the subgroup generated by all such [divW (r)]
with a closed integral subscheme W in X of S-dimension (k + 1) and a rational
function r ∈ κ(W )∗. We call RatkX the group of algebraic cycles of S-dimension
k rationally equivalent to zero on Y . Sometimes the simplified notion [div (r)] or
just div (r) is used instead of [divW (r)].

(iii) Define
CHkX := ZkX/RatkX

to be the Chow group of algebraic cycles of S-dimension k on X.
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(iv) Denote Z∗X (resp. CH∗X) the direct sum over the groups ZkX (resp. CHkX)
for k ∈ Z. An element in Z∗X (resp. CH∗X) is called a cycle on X (resp. a cycle
class on X).

(v) Let X1, ..., Xt denote the irreducible components of an S-equidimensional scheme
X of dimension d and η1, ..., ηt the corresponding generic points. Define the
(fundamental) cycle [X] of X as the cycle

[X] :=
t∑
i=1

mi[Xi] ∈ ZkX ,

with mi := lengthOX,ηi
(OX,ηi) denoting the geometric multiplicity of Xi in X.

More generally we define the (fundamental) cycle [X] ∈ CH∗(X) of any S-scheme
X in the same way.

Remark 2.2.2. A scheme and its underlying reduced scheme have the same closed
integral subschemes. Therefore all the constructions above do not see whether the
scheme is reduced or not, i.e. ZkX and ZkXred are canonically isomorphic, as well as
RatkX and RatkXred and hence we get CHkX ∼= CHkXred.

Definition 2.2.3. Let Q be a ring and X an S-scheme.

(i) We define
Zk(X)Q := ZkX ⊗Z Q

and
CHk(X)Q := CHkX ⊗Z Q.

(ii) Denote by Z∗(X)Q (resp. CH∗(X)Q) the direct sum over the groups Zk(X)Q
(resp. CHk(X)Q) for k ∈ Z.

Remark 2.2.4. We can view a scheme X as the disjoint union of its connected com-
ponents Xi. By doing this we obviously get Z∗(X) =

⊕
Z∗(Xi) and CH∗(X) =⊕

CH∗(Xi). In order to give an intersection product in the sense of Theorem 4.3.3, it
then suffices to give a pairing on each single CH∗(Xi) and set α.β = 0 whenever α and
β are cycle classes in different connected components.
Later we consider regular S-schemes X. Regular local rings are unique factorization
domains and in particular integral domains by the Auslander-Buchsbaum-Theorem (cf.
[Mat70, Theorem 48]). Thus a connected component Xi of a regular scheme X is al-
ready irreducible, since a point lying on the intersection of two different irreducible
components would not have its local ring being a domain. In conclusion, we may later
assume that a regular S-scheme X is irreducible, without loss of generality when we
are interested in giving an intersection product

. : CHk(X)Q ⊗ CHk′(X)Q → CHk+k′−dimS X(X)Q.





Chapter 3

Resolution of Singularities and
Alterations

One of the main results (cf. [KT87, remarks after Proposition 3.3]) of Kleiman and
Thorup about n-dimensional regular excellent schemes being BZ-orienting (in the sense
of Chapter 4) is proven under the assumption that every excellent scheme of dimension
at most n has a desingularization. A central idea of this thesis is to use de Jong’s
result on alterations to generalize Kleiman and Thorup’s results. This forces us to
allow algebraic cycles to have coefficients not only in Z but in a maybe larger ring
Q ⊆ Q. In this chapter, we introduce a suitable assumption on the existence of a
suitable desingularization and we will give a brief overview of cases, where we already
know that this assumption holds.

3.1 Assumption on Alterations

Definition 3.1.1. Let X denote a Noetherian integral scheme. An alteration X1 of X
is an integral scheme X1 together with a morphism φ : X1 → X, which is dominant,
proper and generically finite of degree d for some d ∈ N≥1, i.e. for some nonempty open
U ⊂ X, the morphism φ−1(U)→ U is finite of degree d.

Assumption 3.1.2. For a multiplicative closed subset T in Z with 0 /∈ T , set
Q = T−1Z. Let n be an integer and let S denote a Noetherian excellent regular
separated scheme. We say that

A(S, Q, ≤ n)

holds, if the following is true:
For every integral separated scheme X of finite type over S of Krull dimension at most
n, there exists an alteration φ : X1 → X, which is generically finite of degree d ∈ T
(hence 1

d ∈ Q) and such that X1 is a regular integral scheme and φ : X1 → X is
projective.

17
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X1
∃φ // X

��
S.

(3.1)

3.2 State of the Art

In this section, we give a collection of to the knowledge of the author best known results,
which imply that our assumption holds. For an overview see Corollary 3.2.8.

Theorem 3.2.1. (De Jong) Let K be a field and V be a integral separated scheme of
finite type over SpecK. There exists an alteration φ1 : V1 → V and an open immersion
j1 : V1 → V1 such that V1 is a projective regular integral separated scheme over SpecK.

Proof. For the proof see [dJ96, Theorem 3.1].

Theorem 3.2.2. (De Jong) Let S be an excellent scheme of Krull dimension one. As-
sume X is an integral separated scheme of finite type over S. There exists an alteration
φ1 : X1 → X and an open immersion j1 : X1 → X1 such that X1 is a regular integral
scheme and projective over S.

Proof. In the case that V is flat over S, this is [dJ97, Corollary 5.1]. Otherwise, V → S
is not dominant (cf. [Liu02, Proposition 4.3.9]), so V is already defined over some field,
in which the statement follows from Theorem 3.2.1.

Theorem 3.2.3. (Hironaka) Let X be an integral scheme of finite type over a field of
characteristic zero, then there exists an algebraic subscheme D of X such that the set
of points of D is exactly the singular locus of X, and if f : X̃ → X is the blowing up
of X with center D, then X is non-singular.

Proof. This can be found in [Hir64, Main Theorem I].

Theorem 3.2.4. (Abhyankar, Lipman) Let X be a reduced excellent Noetherian scheme
of Krull dimension (at most) two. Then there exists a finite sequence of proper bira-
tional morphisms

π : X ′ = Xn → ...→ X1 → X0 = X,

where X1 → X is the normalization of X and for every i ≥ 1,

Xi+1 → Xi

is the normalization of the blow-up of the singular locus of Xi endowed with the reduced
scheme structure and X ′ is regular.

Proof. There is nothing to show in dimension zero. In dimension one it is well known,
that the normalization of a curve is regular (cf. [Liu02, Example 8.3.41]). For dimension
two we refer to [Liu02, Theorem 8.3.44].
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Gabber obtained the following global resolution theorems, which improve de Jong’s
Theorems 3.2.1 and 3.2.2. We first introduce the notation of l-alteration:

Definition 3.2.5. Let S be a Noetherian scheme. Let RS be the category whose
objects are reduced S-schemes of finite type, whose generic points of irreducible com-
ponents map to generic points of irreducible components of S with a finite residue
field extension and morphisms are S-morphisms. For a prime number l, we define a
l-alteration to be a proper surjective map in RS with prime to l residue field extensions
at the generic points.

Theorem 3.2.6. (Gabber) Let V be a scheme separated and of finite type over a field
K and l a prime number not equal to char(K). Then there exists a finite extension K ′

of K of order prime to l and an l-alteration p : V1 → V such that V1 is smooth and
quasi-projective over K ′, and hence over K.

Proof. Note that if K ′ is a finite extension of K, then SpecK ′ → SpecK is a finite
morphism, hence quasi-projective. Then the claim follows from [ILO12, Theorem 3 (1),
p. 3].

Theorem 3.2.7. (Gabber) Let S be a Noetherian separated integral excellent regular
scheme of dimension one. Let V be a separated scheme of finite type, l a prime number
invertible on S (i.e. l 6= char(K) for all residue fields K). Then there exists an l-
alteration p : V1 → V such that V1 is regular and quasi-projective over S.

Proof. In the case that V is flat over S, this follows by [ILO12, Theorem 3 (2), p. 3].
Note, that there S′ → S is finite, hence quasi-projective. Otherwise, V → S is not
dominant (cf. [Liu02, Prop 4.3.9]), so V is over a field K, which is Theorem 3.2.6.

In conclusion we have the following

Corollary 3.2.8. The assumption holds in the following cases:

(i) If S = SpecK for a field K of characteristic 0, then

A(SpecK, Z, ≤ n)

holds for all n ∈ N.

(ii) If S = SpecK for any field K, then

A(SpecK, Q, ≤ n)

holds for all n ∈ N. More precisely, given a prime number l 6= char(K), then

A(SpecK, Z(l), ≤ n)

holds for all n ∈ N, where Z(l) denotes the localization of Z at T = Z \ (l).

(iii) For any Noetherian excellent regular separated scheme S, we have that

A(S, Z, ≤ 2)

holds.
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(iv) Let S be a Noetherian excellent regular separated scheme of Krull dimension one.
Then

A(S, Q, ≤ n)

holds for all n ∈ N.

(v) Let S be a Noetherian separated integral excellent regular scheme of dimension
one. For a prime number l invertible on S

A(S, Z(l), ≤ n)

holds for all n ∈ N, where Z(l) denotes the localization of Z at T = Z \ (l).

Proof. For (i) consider the diagram (3.1), where the alteration φ : X1 → X is given by
Theorem 3.2.3 as a blowing up, hence the morphism φ : X1 → X is projective and X1 is
regular. The same argument works to deduce (iii) from Theorem 3.2.4: As all schemes
are of finite type over S by hypothesis, they are excellent, hence the normalizations are
all finite. Together with the projectivity of the blowing ups, this implies the required
projectivity as well.
For (ii), (iv), and (v) consider the diagram (3.1) and note, that if X1 is quasi-projective
over S and X is of finite type and separated over S, then X1 is also quasi-projective
over X. Further we have, that if X1 → X is quasi-projective and proper and if X is
quasi-compact and quasi-separated, then X1 → X is projective (cf. [GW10, Corollary
13.72]). Then the first claim in (ii) follows from Theorem 3.2.1, the second claim is
Theorem 3.2.6, (iv) follows from Theorem 3.2.2 and (v) follows from Theorem 3.2.7.

Remark 3.2.9. We want to remark, that there is a recent result by Cossart and Piltant,
which is close to show A(S, Z, ≤ 3) for any Noetherian excellent regular separated
scheme S (cf. [CP14]). The only thing that is missing is the projectivity of alteration
φ : X1 → X as in our Assumption 3.1.2 for any S-scheme of dimension at most three
(this is so far only available for affine schemes).



Chapter 4

Intersection Theory with
Supports on Regular Schemes

The goal of this chapter is to develop an intersection theory for regular separated
schemes of finite type over a Noetherian, excellent, regular and separated base scheme
S by combining de Jong’s results on alterations with Fulton’s method of the deforma-
tion to the normal cone. It turns out, that the results achieve their sharpest formulation
in the bivariant language. In the first section we will follow [Ful84, Chapter 17] and
[KT87, Chapter 3] to define bivariant classes, orientation classes, orienting schemes,
and give some fundamental results on orienting schemes. This will provide the suitable
framework for the second section, in which we will prove our first main result: Let S
be a Noetherian, excellent, regular and separated scheme and assume A(S, Q, ≤ d) as
in Chapter 3 holds. Then we show that any regular separated scheme of dimension at
most d and of finite type over S is BQ-orienting. In the last section we will discuss
how this result can be used to define an intersection product with supports on regular
schemes.

Again, we fix a Noetherian, excellent, regular and separated base scheme S in this
chapter. Further we assume, that all schemes under consideration are of finite type
and separated over S. Recall that for a ring Q we have set

Zk(X)Q := ZkX ⊗Z Q, CHk(X)Q := CHkX ⊗Z Q

and Z∗(X)Q (resp. CH∗(X)Q) as the direct sum over the groups Zk(X)Q (resp.
CHk(X)Q) for all k ∈ Z.

4.1 Bivariant Classes and Orientations

We fix a ring Q. This section is based on [Ful84, Chapter 17] and [KT87, Chapter 3].
We merely adapt the ideas of [KT87, Chapter 3], formulate the precise statements in
our situation, and sometimes give more detailed proofs. We add some corollaries, but
the main ideas for the theorems of this section can already be found in Kleiman and
Thorup’s article. Note that for the convenience of the reader we included the needed

21
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statements from [Ful84, Chapters 1 - 6, Section 20.1, Appendix B] in Appendix A. In
order to avoid set-theoretical complications, we follow Fulton’s suggestion and fix a
universe (cf. [Ful84, footnote on page 320] and [ML98]).

Definition 4.1.1. Let p be an integer and f : X → Y a morphism of S-schemes.

(i) A p-system a is a collection of homomorphisms of Q-modules

a
(k)
Y ′ : CHk(Y

′)Q → CHk−p(X
′)Q

for all k ∈ Z and for all S-morphisms Y ′ → Y with induced fiber square

X ′
f ′−−−−→ Y ′y y

X
f−−−−→ Y,

(4.1)

which are compatible with proper push-forward in the following sense: For all
morphisms g : Y ′ → Y , h : Y ′′ → Y ′ we form the fiber square diagram

X ′′
f ′′−−−−→ Y ′′

h′
y h

y
X ′

f ′−−−−→ Y ′

g′
y g

y
X

f−−−−→ Y

(4.2)

with induced morphisms as labeled. Now assume h : Y ′′ → Y ′ to be proper and
α ∈ CHk(Y

′′)Q, then we require

a
(k)
Y ′ (h∗α) = h′∗a

(k)
Y ′′(α) in CHk−p(X

′)Q.(4.3)

The p-systems form a Q-module, which we denote by Hp(f)Q. We set H(f)Q :=⊕
p∈Z

Hp(f)Q.

(ii) Let Ap(f)Q be the Q-sub-module of Hp(f)Q consisting of all p-systems a which
commute with flat pull-backs and refined Gysin homomorphisms. More precisely:
In the situation of (4.2) assume h : Y ′′ → Y ′ to be flat of relative S-dimension d
and α ∈ CHk(Y

′)Q, then we require

a
(k+d)
Y ′′ (h∗α) = h′

∗
a
(k)
Y ′ (α) in CHk+d−p(X

′′)Q.

If g : Y ′ → Y , h : Y ′ → Z ′ are morphisms of S-schemes, and i : Z ′′ → Z ′ is a
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regular imbedding of codimension e, then for the fiber square diagram

X ′′
f ′′−−−−→ Y ′′

h′−−−−→ Z ′′

i′′
y i′

y i

y
X ′

f ′−−−−→ Y ′
h−−−−→ Z ′

g′
y g

y
X

f−−−−→ Y

(4.4)

and for all α ∈ CHk(Y
′)Q, we require

a
(k−e)
Y ′′ (i!α) = i!a

(k)
Y ′ (α) in CHk−e−p(X

′′)Q,

where i! denotes the refined Gysin homomorphisms as in Construction A.5.1. We
call Ap(f)Q the Q-module of bivariant classes of f and set A(f)Q :=

⊕
p∈Z

Ap(f)Q.

Remark 4.1.2. In Definition 4.1.1, a group structure is then given by

+ : Hp(f)Q ×Hp(f)Q → Hp(f)Q, (a, a′) 7→ a+ a′,

where a + a′ is induced by (a
(k)
Y ′ + a′

(k)
Y ′ )(α) = a

(k)
Y ′ (α) + a′

(k)
Y ′ (α) ∈ CHk−p(X

′)Q for
α ∈ CHk(Y

′)Q. The operation

Q×Hp(f)Q → Hp(f)Q

of Q on Hp(f)Q is induced by (q · a(k)Y ′ )(α) = q · (a
(k)
Y ′ (α)) ∈ CHk−p(X

′)Q for
α ∈ CHk(Y

′)Q and induces the structure of a Q-module on Hp(f)Q.

On Hp(f)Q we have the following operations:

Lemma/Definition 4.1.3. Let p be an integer and f : X → Y denote a morphism of
S-schemes. Then the following operations are well-defined:

(i) For a morphism g : Y ′ → Y of S-schemes, form the fiber square

X ′
f ′−−−−→ Y ′

g′
y g

y
X

f−−−−→ Y

and define the restriction, or pull-back, as the homomorphism

g∗ : Hp(f)Q → Hp(f ′)Q

given by

(g∗a)
(k)
Y ′′(α) := a

(k)
Y ′′(α) in CHk−p(X

′′)Q

for any morphism h : Y ′′ → Y ′ of S-schemes and all α ∈ CHk(Y
′′)Q.
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(ii) Given a factorization f = g ◦ h, such that h is proper, define the push-forward

h∗ : Hp(f)Q → Hp(g)Q

by

(h∗a)
(k)
Y ′ (α) := h′∗(a

(k)
Y ′ (α)) in CHk−p(T

′)Q

for any morphism Y ′ → Y of S-schemes with fiber square diagram

X ′
h′−−−−→ T ′

g′−−−−→ Y ′y y y
X

h−−−−→ T
g−−−−→ Y

and all α ∈ CHk(Y
′)Q.

(iii) For morphisms f : X → Y , g : Y → Z of S-schemes, p, q ∈ Z, a p-system a in
Hp(f)Q and a q-system b in Hq(g)Q we define the (intersection) product to be
the homomorphism

. : Hp(f)Q ⊗Hq(g)Q → Hp+q(g ◦ f)Q

given by

((a.b)
(k)
Z′ )(α) := a

(k−q)
Y ′ (b

(k)
Z′ (α)) in CHk−p−q(X

′)Q

for a morphism Z ′ → Z of S-schemes with fiber square diagram

X ′
f ′−−−−→ Y ′

g′−−−−→ Z ′y y y
X

f−−−−→ Y
g−−−−→ Z

and all α ∈ CHk(Y
′′)Q. This product is obviously associative.

(iv) Given a morphism g : W → Z of S-schemes, form the fiber square

X ×S W −−−−→ Y ×S W −−−−→ Wy g′
y g

y
X ×S Z −−−−→ Y ×S Z

p′Y−−−−→ Zy p′Z

y pZ

y
X

f−−−−→ Y
pY−−−−→ S

.

Then for p, q ∈ Z, a p-system a in Hp(f)Q and a q-system b in Hq(g)Q, the
cartesian product

× : Hp(f)Q ⊗Hq(g)Q → Hp+q(f ×S g)Q
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is defined by

((a× b)(k)Y×SZ)(α) := (((p′Z ◦ g′)∗a).((p′Y )∗b))
(k)
Y×SZ(α) in CHk−p−q(X ×S W )Q

for (p′Z ◦g′) : Y ×SW → Y and p′Y : Y ×S Z → Z and for all α ∈ CHk(Y ×S Z)Q.

Proof. We have to show that these operations are well defined, i.e. the systems we
define are compatible with proper push-forward. For the restriction in (i), given a fiber
square diagrams

X ′′′
f ′′′−−−−→ Y ′′′

h′
y h

y
X ′′

f ′′−−−−→ Y ′′y y
X ′

f ′−−−−→ Y ′

with h proper and α ∈ CHk(Y
′′′)Q, we require

a
(k)
Y ′′(h∗α) = h′∗a

(k)
Y ′′(α) in CHk−p(X

′′)Q.

But this follows directly from the definition, as the upper fiber square is given by base-
change from f : X → Y as in (4.2). For the push-forward in (ii), we consider the fiber
square diagram

X ′′
h′′−−−−→ T ′′

g′′−−−−→ Y ′′

e′′
y e′

y e

y
X ′

h′−−−−→ T ′
g′−−−−→ Y ′y y y

X
h−−−−→ T

g−−−−→ Y

for a proper morphism e : Y ′′ → Y ′. Then we get

(h∗a)
(k)
Y ′ (e∗α) = h′∗a

(k)
Y ′ (e∗α) (definition)

= h′∗e
′′
∗a

(k)
Y ′′(α) (p-system)

= e′∗h
′′
∗a

(k)
Y ′′(α) (functoriality)

= e′∗(h∗a)
(k)
Y ′′(α) in CHk−p(T

′)Q (definition)

for all α ∈ CHk(Y
′′)Q, so the push-forward is well-defined. For the compatibility of the
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product with proper push-forward in (iii) consider the fiber square diagram

X ′′
f ′′−−−−→ Y ′′

g′′−−−−→ Z ′′

h′′
y h′

y h

y
X ′

f ′−−−−→ Y ′
g′−−−−→ Z ′y y y

X
f−−−−→ Y

g−−−−→ Z

for a proper morphism h : Z ′′ → Z ′. Then the claim follows from the calculation

(h′′∗ (a.b))
(k)
Z′′ (α) = h′′∗ (a

(k−q)
Y ′′ (b

(k)
Z′′(α))) (definition)

= a
(k−q)
Y ′ h′∗ (b

(k)
Z′′(α)) (p-system)

= a
(k−q)
Y ′ (b

(k)
Z′ (h∗ α)) (q-system)

= ((a.b)
(k)
Z′ ) (h∗ α) in CHk−p−q(X

′)Q (definition)

for α ∈ CHk(Z
′′)Q, a ∈ Hp(f)Q and b ∈ Hq(g)Q. The last claim (iv) follows directly

from (i) and (iii) by definition. The Q-linearity of the operations in (i) - (iv) is trivial.

Proposition 4.1.4. The operations in Lemma/Definition 4.1.3 restrict to bivariant
classes in the following sense:

(i) The restriction homomorphism in Lemma/Definition 4.1.3 (i) induces

g∗ : Ap(f)Q → Ap(f ′)Q.

(ii) The push-forward homomorphism in Lemma/Definition 4.1.3 (ii) induces

h∗ : Ap(f)Q → Ap(g)Q.

(iii) The (intersection) product in Lemma/Definition 4.1.3 (iii) induces

. : Ap(f)Q ⊗Aq(g)Q → Ap+q(g ◦ f)Q.

(iv) The cartesian product in Lemma/Definition 4.1.3 (iv) induces

× : Ap(f)Q ⊗Aq(g)Q → Ap+q(f ×S g)Q.

Proof. Since Ap(f)Q is a Q-submodule of Hp(f)Q for all f : X → Y and all p ∈ Z, we
only have to check if the restriction, push-forward, intersection product and cartesian
product of some given classes is again compatible with flat pull-backs and refined Gysin
homomorphisms. This follows directly form the definitions in (i), (iii) and (iv). In (ii)
the claim follows directly from Proposition A.1.4 (ii) and Theorem A.5.2 (i).
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Theorem 4.1.5 (Fulton). (i) Any flat morphism f : X → Y of relative S-dimension
p gives a well-defined bivariant class [f ] ∈ A−p(f)Z.

(ii) Any regular imbedding f : X → Y of codimension p (or more generally l.c.i.
morphisms of codimension p) gives a well-defined bivariant class [f ] ∈ Ap(f)Z.

Tensoring the Chow groups with the ring Q, these systems canonically induce systems
in Ap(f)Q

Proof. For (i), note that any base change f ′ : X×Y Y ′ → Y ′ is again flat and of relative
S-dimension p (cf. Remark A.1.3), hence we have homomorphisms

f ′
∗

: CHkY
′ → CHk−pX,

which are compatible with proper push-forward by A.1.4 (ii), other flat pull-backs by
Proposition A.1.4 (i) and the refined Gysin homomorphisms of regular imbeddings by
Theorem A.5.2 (ii). Hence the system of flat pull-backs [f ] is in A−p(f)Q. Part (ii) is
exactly Construction A.5.1 (ii) and Theorem A.5.2 (i),(ii) and (iv) for regular imbed-
dings of codimension p and Proposition A.5.5 (iii) for l.c.i. morphisms of codimension
p.

Definition 4.1.6. We denote by (Bp(f))p,f the smallest family of Q-submodules Bp(f)
of Hp(f) for p ∈ Z and morphisms of S-schemes f : X → Y such that the following
holds:

(i) If f : X → Y is flat of relative S-dimension p, the (−p)-system of flat pull-backs
[f ] as in Theorem 4.1.5 is in B−p(f)Q.

(ii) If f : X → Y is a regular imbedding of codimension p, the p-system of refined
Gysin homomorphisms [f ] as in Theorem 4.1.5 is in Bp(f)Q.

(iii) For any morphism g : Y ′ → Y of S-schemes and a ∈ Bp(f)Q, the restriction g∗a
is in Bp(f ′) (cf. Lemma/Definition 4.1.3).

(iv) Given a factorization f = g ◦ h with h proper and a ∈ Bp(f)Q, the push-forward
h∗a is in Bp(g)Q (cf. Lemma/Definition 4.1.3).

(v) Given a morphism g : Y → Z of S-schemes, a ∈ Bp(f)Q and b ∈ Bq(g)Q, the
intersection product a.b is in Bp+q(g ◦ f)Q (cf. Lemma/Definition 4.1.3).

(vi) Given any morphism g : W → Z of S-schemes, a ∈ Bp(f)Q and b ∈ Bq(g)Q, the
cartesian product a× b is in Bp+q(f ×S g)Q (cf. Lemma/Definition 4.1.3).

We set B(f)Q :=
⊕
p∈Z

Bp(f)Q.

Remark 4.1.7. From Definition 4.1.6, the following induction principle is evident:
Assume we a given a graded family of Q-submodules E(f)Q =

⊕
p∈Z

Ep(f)Q of H(f)Q

for all morphisms f : X → Y of S-schemes which satisfies the corresponding properties
(i) - (v) of Definition 4.1.6, then B(f)Q ⊆ E(f)Q, as B(f)Q is the smallest of such
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families of Q-modules. Note that we do not have to check (vi) since the cartesian
product is by definition given as an intersection product of some restricted classes,
hence the compatibility in (vi) follows from (iii) and (v).

Theorem 4.1.8. Let f : X → Y be a morphism of S-schemes. Then Bp(f)Q is a
Q-submodule of Ap(f)Q.

Proof. By Remark 4.1.7 we have to show that A( )Q satisfies the corresponding prop-
erties of Definition 4.1.6 (i) - (v). The (−p)-system of flat pull-backs [f ] ∈ B−p(f)Q for
a flat morphism f : X → Y of relative S-dimension p is in A−p(f)Q by Theorem 4.1.5.
The p-system of refined Gysin homomorphisms [f ] ∈ Bp(f)Q for a regular imbedding of
codimension p is in Ap(f)Q by Theorem 4.1.5 as well. The rest follows from Proposition
4.1.4 .

Definition 4.1.9. Let f : X → Y be a morphism of S-schemes. We define Cp(f)Q to be
theQ-submodule consisting of all systems a inHp(f)Q, which commute with any system
b in A(t)Q for any morphism t : W → Z of S-schemes by means of the intersection
products of the appropriately restricted p-systems: Consider the fiber square diagram

X ×S W
f ′′−−−−→ Y ×S W

p′′Y−−−−→ W

t′′
y t′

y t

y
X ×S Z

f ′−−−−→ Y ×S Z
p′Y−−−−→ Z

p′′Z

y p′Z

y pZ

y
X

f−−−−→ Y
pY−−−−→ S,

then we require

((p′Z ◦ t′)∗a).((p′Y )∗b) = ((p′Y ◦ f ′)∗b).((p′Z)∗a) ∈ H(f ′ ◦ t′′)Q = H(t′ ◦ f ′′)Q.

We set C(f)Q :=
⊕
p∈Z

Cp(f)Q.

Proposition 4.1.10. Let f : X → Y be a morphism of S-schemes. Then Bp(f)Q is a
Q-submodule of Cp(f)Q.

Proof. Again we use Remark 4.1.7: We have to show that C( )Q satisfies the corre-
sponding properties of Definition 4.1.6 (i) - (v): The (−p)-system of flat pull-backs [f ]
for a flat morphism f : X → Y of relative S-dimension p is in C−p(f)Q, as any system
b in A(t)Q for a morphism t : W → Z commutes with flat pull-backs by Definition 4.1.1
(ii). The p-system of refined Gysin homomorphisms [f ] for a regular imbedding of codi-
mension p is in Cp(f)Q by Definition 4.1.1 (ii) as well. For any morphism g : Y ′ → Y of
S-schemes and a ∈ Cp(f)Q, the restriction g∗a is in Cp(f ′). This holds, as the required
commutativity of the restriction g∗a ∈ Cp(f ′) with systems in A(t)Q for t : W → Z fol-
lows directly from the exact same commutativity for a ∈ Cp(f). Given a factorization
f = g ◦ h with h proper and a ∈ Cp(f)Q, the push-forward h∗a is in Cp(g)Q, because
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systems b ∈ A(t)Q for t : W → Z as in Definition 4.1.9 commute with the proper push-
forward h∗ by Definition 4.1.1. Given a morphism g : Y → Z of S-schemes, a ∈ Cp(f)Q
and b ∈ Cq(g)Q, the intersection product a.b is obviously in Cp+q(g ◦ f)Q by Definition
of the intersection product (cf. Lemma/Definition 4.1.3).

Corollary 4.1.11. In summery, for any f : X → Y we get the following inclusions of
Q-modules:

Hp(f)Q ⊇ Ap(f)Q ⊇ Bp(f)Q and

Hp(f)Q ⊇ Cp(f)Q ⊇ Bp(f)Q.

In particular, classes in B( )Q commute, i.e. for morphisms f : X → Y ,
g : W → Z and classes a ∈ B(f)Q, b ∈ B(g)Q consider the fiber square diagram

X ×S W
f ′′−−−−→ Y ×S W

p′′Y−−−−→ W

g′′
y g′

y g

y
X ×S Z

f ′−−−−→ Y ×S Z
p′Y−−−−→ Z

p′′Z

y p′Z

y pZ

y
X

f−−−−→ Y
pY−−−−→ S,

with morphisms as labeled. Then we have

((p′Z ◦ g′)∗a).((p′Y )∗b) = ((p′Y ◦ f ′)∗b).((p′Z)∗a) ∈ B(f ′ ◦ g′′)Q.

Proof. The inclusions follow directly from the definitions and Proposition 4.1.10. The
commutativity of classes in B( )Q then trivially follows: We view the class a ∈ B(f)Q
as a class in the larger Q-module C(f)Q and b ∈ B(g)Q as a class in A(g)Q. Then the
claim follows directly from Definition 4.1.9.

Definition 4.1.12. (i) A morphism f : X → Y of S-schemes is called BQ-oriented,
if it is equipped with a class [f ] in B(f)Q, such that [f ]([Y ]) = [X]. In this case,
we call [f ] a BQ-orientation class.

(ii) An S-scheme Y is called BQ-orienting if every f : X → Y is BQ-oriented in a
unique way.

(iii) An S-scheme Y is called BQ-orthocyclic if for every morphism f : X → Y of
S-schemes we have B(f)Q = A(f)Q and if evaluation at [Y ] is an isomorphism of
Q-modules

EY : B(f)Q = A(f)Q
∼−→ CH∗(X)Q, (ap)p∈Z 7→

∑
p∈Z

(ap)
(k)
Y [Y ]
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where k = dimS Y . We will denote the inverse of EY by

FX/Y : CH∗(X)Q −→ B(f)Q.

For an explicit construction of FX/Y for BQ-orthocyclic schemes see Remark
4.1.17.

(iv) A morphism f : X → Y of S-schemes is called CQ-oriented, if it is equipped
with a class [f ] in C(f)Q, such that [f ]([Y ]) = [X]. In this case, we call [f ] a
CQ-orientation class.

(v) An S-scheme Y is called CQ-orienting if every f : X → Y is CQ-oriented in a
unique way.

(vi) An S-scheme Y is called CQ-orthocyclic if for every morphism f : X → Y of
S-schemes we have C(f)Q = A(f)Q and if evaluation at [Y ] is an isomorphism of
Q-modules

C(f)Q = A(f)Q
∼−→ CH∗(X)Q, (ap)p∈Z 7→

∑
p∈Z

(ap)
(k)
Y [Y ],

where k = dimS Y .

We will see later that (ii) and (iii) are equivalent (Lemma 4.1.15 and Corollary 4.1.17
below) and that (vi) implies (v) (Lemma 4.1.15 below).

Lemma 4.1.13. Let f : X → Y be an S-morphism with X, Y irreducible.

(i) If Y is BQ-orienting, then the BQ-orientation class

[f ] ∈ B(f)Q

is already in

B− dimY X(f)Q.

In particular, if f is a closed immersion, the BQ-orientation class [f ] ∈ B(f)Q is
already in Bcodim(X,Y )(f)Q.

(ii) If Y is CQ-orienting, then the CQ-orientation class [f ] ∈ C(f)Q is already in
C− dimY X(f)Q.

Proof. Consider a BQ-orientation class

[f ] = ([f ]p)p∈Z ∈ B(f)Q =
⊕
p∈Z

Bp(f)Q.

The part

[f ]− dimY X ∈ B
− dimY X(f)Q = BdimS Y−dimS X(f)Q ⊆ B(f)Q



4.1. BIVARIANT CLASSES AND ORIENTATIONS 31

(cf. Proposition 2.1.3 (v)) already satisfies

[f ]−dimY X([Y ]) = [X],

hence [f ]− dimY X defines a BQ-orientation class. But now, since Y is BQ-orienting,
there is only one BQ-orientation class, hence

[f ] = [f ]− dimY X ∈ B
− dimY X .

If f is a closed immersion, the second claim in (i) follows by Proposition 2.1.3 (ii). The
proof for part (ii) about the CQ-orientation class in analogous.

Proposition 4.1.14 (Fulton). (i) Any flat morphism f : X → Y of S-schemes of
relative S-dimension n is BZ-oriented.

(ii) Any regular imbedding f : X → Y of S-schemes of codimension d with an
S-equidimensional scheme Y is BZ-oriented.

(iii) Any l.c.i. morphism f : X → Y of S-schemes of codimension d with an
S-equidimensional scheme Y is BZ-oriented.

Proof. By Theorem 4.1.5 and Definition 4.1.6, both flat morphisms of some relative S-
dimension n and regular imbeddings define a system [f ] in B(f)Z. Then the claim in (i)
follows, as [f ]([Y ]) = f∗[Y ] = [f−1(Y )] = [X]. For (ii), see Theorem A.5.2 (viii). The
claim in (iii) follows from (i) and (ii) as we can factor an l.c.i. morphism into a regular
imbedding of codimension e followed by a smooth morphism of relative S-dimension
d+ e.

In the following, we will investigate the relations between the properties
BQ-orthocyclic, BQ-orienting, CQ-orthocyclic, and CQ-orienting for S-schemes.

Lemma 4.1.15 (Kleiman-Thorup). Suppose an S-scheme Y is BQ-orthocyclic
(resp. CQ-orthocyclic), then Y is BQ-orienting (resp. CQ-orienting).

Proof. Assume f : X → Y is any morphism of S-schemes and Y is BQ-orthocyclic
(resp. CQ-orthocyclic). The cycle [X] ∈ CH∗(X)Q has a unique preimage under the
isomorphism EY : A(f)Q → CH∗(X)Q, so it determines a system [f ] := (ap)p∈Z in

A(f)Q = B(f)Q (resp. in A(f)Q = C(f)Q) with [f ](Y ) =
∑
p∈Z

(ap)
(k)
Y [Y ] = [X]. Assume

we are given a second system [f ]′ ∈ A(f)Q with [f ]′([Y ]) = [X], then by the injectivity of
EY : A(f)Q → CH∗(X)Q we have that [f ]′ = [f ] ∈ A(f)Q, which shows the uniqueness
of the BQ-orientation class (resp. CQ-orientation class).

The converse of Lemma 4.1.15 is covered by the following important criterion found by
Kleiman and Thorup (cf. [KT87, Proposition 3.3]).

Proposition 4.1.16 (Kleiman-Thorup). Let Y be an S-scheme. If every projec-
tive morphism g : V → Y of S-schemes with V integral is BQ-oriented, then Y is
BQ-orthocyclic (and hence BQ-orienting by Lemma 4.1.15).
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For the convenience of the reader we have reproduced the beautiful, short proof of
Kleiman and Thorup:

Proof. (cf. [KT87, Proposition 3.3]) Let g : V → Y any morphism of S-schemes with
V integral. First we apply Chow’s lemma [EGA, II.5.6] to get a commutative diagram

V
h←−−−− V ′

g

y i

y
Y

g′′←−−−− V ′′

in which h is projective and birational, i is an open embedding, g′′ is projective and
V ′′ is integral. By hypothesis g′′ is BQ-oriented and we can define

[g] := h∗([i].[g
′′]) ∈ BQ(g),(4.5)

which is an BQ-orientation class as we have

[g]([Y ]) = (h∗([i].[g
′′])) ([Y ])

= h∗([i]([g
′′]([Y ])))

= h∗([i]([V
′′]))

= h∗[V
′]

= [V ] ∈ CH∗(V )Q.

Now, the idea is to construct the inverse FX/Y : CH∗(X)Q → B(f)Q for the isomor-
phism EY : B(f)Q → CH∗(X)Q. Given a morphism f : X → Y of S-schemes and a
cycle α =

∑
nV [V ] ∈ Z∗(X)Q with induced closed immersions jV : V → X, we define

FX/Y α :=
∑

nV jV ∗[gV ] ∈ B(f)Q

for gV := f ◦ jV and [gV ] constructed as in (4.5).
Assume the cycle α is rationally equivalent to a cycle α′, then FX/Y α = FX/Y α

′:

Given any morphism h̃ : Y ′ → Y of S-schemes and a closed integral subscheme
iW : W → Y ′, we set h := h̃◦iW : W → Y and we form [h] ∈ B(h)Q with [h]([Y ]) = [W ]
as in (4.5). Then consider the fiber square diagram

X ×Y W

i′W
��

//W

iW
��

h

��

X ×Y Y ′

��

// Y ′

h̃
��

X
f // Y
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and calculate

(h̃∗(FX/Y α))(iW ∗[W ]) = i′W ∗ (h∗(FX/Y α))([W ])

= i′W ∗ (h∗(FX/Y α))([h]([Y ]))

= i′W ∗
((
h∗(FX/Y α)

)
.[h]
)

([Y ])

= i′W ∗ ((f∗[h]).(FX/Y α))([Y ]) (cf. Corollary 4.1.11)

= i′W ∗ (f∗[h])((FX/Y α)([Y ]))

= i′W ∗ (f∗[h])(α)

= i′W ∗ (f∗[h])(α′)

= i′W ∗ (f∗[h])((FX/Y α
′)([Y ]))

= i′W ∗ ((f∗[h]).(FX/Y α
′))([Y ])

= i′W ∗
((
h∗(FX/Y α

′)
)
.[h]
)

([Y ]) (cf. Corollary 4.1.11)

= i′W ∗ (h∗(FX/Y α
′))([h]([Y ]))

= i′W ∗ (h∗(FX/Y α
′))([W ])

= (h̃∗(FX/Y α
′))(iW ∗[W ]) ∈ CH∗(X ×Y Y )Q.

This means that FX/Y α = FX/Y α
′ ∈ B(f)Q. Thus, we have a morphism of Q-modules

FX/Y : CH∗(X)Q → B(f)Q(4.6)

with EY ◦ FX/Y = id CH∗(X)Q by construction.
Finally, given a class a in A(f)Q, a morphism g̃ : Y ′ → Y of S-schemes and a closed
integral subscheme iV : V → Y ′, we set g := g̃ ◦ iV : V → Y and we form [g] ∈ B(g)Q
with [g]([Y ]) = [V ] as in (4.5) and denote i′V : X ×Y V → X ×Y Y the base change.
For α := EY a = a([Y ]) we have

(g̃∗(FX/YEY a))(iV ∗[V ]) = i′V ∗ g
∗(FX/YEY a)([V ])

= i′V ∗ g
∗(FX/YEY a) ([g]([Y ]))

= i′V ∗ (g∗(FX/YEY a)).[g] ([Y ])

= i′V ∗ (f∗[g]).(FX/YEY a) ([Y ]) (by Corollary 4.1.11)

= i′V ∗ (f∗[g]).(FX/Y α) ([Y ])

= i′V ∗ (f∗[g]) (FX/Y α([Y ]))

= i′V ∗ (f∗[g]) (α)

= i′V ∗ (f∗[g]) (a([Y ]))

= i′V ∗ (f∗[g].a) ([Y ])

= i′V ∗ g
∗a.[g] ([Y ]) (by Corollary 4.1.11)

= i′V ∗ g
∗a ([g]([Y ]))

= i′V ∗ g
∗a ([V ])

= g̃∗a (iV ∗[V ]) ∈ CH∗(X ×Y Y ′)Q.
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Thus FX/YEY a = a and the class a is actually in B(f)Q, i.e. A(f)Q = B(f)Q. Further
we see that FX/Y ◦ EY = idB(f)Q and Y is BQ-orthocyclic.

The proof above has the following corollary:

Corollary 4.1.17. Let Y be an S-scheme. If an S-scheme Y is BQ-orienting, then
Y is BQ-orthocyclic. Furthermore, given a morphism f : X → Y of S-schemes, the
inverse morphism for EY is given by

FX/Y : CH∗(X)Q → B(f)Q,(4.7) ∑
nV [V ] 7→

∑
nV jV ∗[gV ],

where jV : V → X denotes the induced closed immersions jV : V → X and
[gV ] ∈ B(gV )Q is the BQ-orientation class for gV := f ◦ jV : V → Y , which exists
and is unique since Y is BQ-orienting.

Proof. The first part follows directly from Proposition 4.1.16 and the definition of
BQ-orienting schemes. The proof, that FX/Y : CH∗(X)Q → B(f)Q can be constructed
explicitly as stated, follows from the calculations in the proof of Proposition 4.1.16.

One can compare BQ-orienting and CQ-orienting S-schemes in the following way. Note
that this proposition is not explicitly in [KT87].

Proposition 4.1.18. If an S-scheme Y is BQ-orienting, then it is CQ-orthocyclic, and
hence CQ-orienting by Lemma 4.1.15.

Proof. Given an S-scheme Y which is BQ-orienting, by Corollary 4.1.17 we know that
Y is also BQ-orthocyclic, i.e. for every morphism f : X → Y of S-schemes we have
B(f)Q = A(f)Q and evaluation at [Y ] is an isomorphism

EY : B(f)Q
∼−→ CH∗(X)Q.

By Proposition 4.1.10 we also know that B(f)Q ⊆ C(f)Q and we can always evaluate
classes in C(f)Q at the cycle class [Y ] ∈ CH∗(X)Q. This means we can form a diagram

A(f)Q = B(f)Q //

∼
EY

77
C(f)Q

EY // CH∗(X)Q,(4.8)

and we have to show, that the second morphism C(f)Q −→ CH∗(X)Q is injective, i.e.
given a ∈ C(f)Q with a([Y ]) = 0 ∈ CH∗(X)Q, we have to show that a = 0 ∈ C(f)Q.

This means we have to show that a
(dimS V )
Y ′ [V ] = 0 for all morphism of S-schemes g̃ :

Y ′ → Y and all closed integral subschemes iV : V → Y ′ of Y ′. For g := g̃ ◦ iV : V → Y
let [g] ∈ B(g)Q denote its unique BQ-orientation class and let i′V : X ×Y V → X ×Y Y
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denote the base change of iV . Then we have

a
(dimS V )
Y ′ (V ) = (g̃∗a) (iV ∗[V ])

= i′V ∗ (g̃∗a) ([g]([Y ]))

= i′V ∗ (g̃∗a.[g]) ([Y ])

= i′V ∗ (f∗[g].a) ([Y ]) (by Corollary 4.1.11)

= i′V ∗ f
∗[g] (a([Y ]))

= i′V ∗ f
∗[g] (0)

= 0 ∈ CH∗(X ×Y Y ′)Q.

This shows that C(f)Q −→ CH∗(X)Q is injective and hence all morphisms in the
diagram (4.8) are isomorphisms, i.e. Y is CQ-orthocyclic.

We will now talk about Alexander duality and BQ-orienting S-schemes. We need these
results in Chapter 5.

Definition 4.1.19. Given a BQ-oriented morphism f : X → Y of S-schemes. We
say that f : X → Y satisfies Alexander duality if, for any morphism g : W → X of
S-schemes, composition with [f ] ∈ B(f)Q

.[f ] : A(g)Q → A(f ◦ g)Q

is an isomorphism.

An important class of S-morphisms that satisfy Alexander duality was found by Kleiman
and Thorup:

Proposition 4.1.20 (Kleiman-Thorup). Let f : X → Y be a smooth morphism of
S-schemes, then f satisfies Alexander duality and the isomorphism

.[f ] : A(g)Q → A(f ◦ g)Q

restricts to an isomorphism

.[f ] : B(g)Q → B(f ◦ g)Q.

Proof. This follows from the straightforward adaptation of [KT87, Proposition 3.2],
where appearances of b ∈ A(f ◦ g)Z resp. b ∈ B(f ◦ g)Z (which are denoted by A(fg)
resp. B(fg) in loc. cit.) should be replaced by b ∈ A(f ◦ g)Q resp. b ∈ B(f ◦ g)Q.

Remark 4.1.21. The proof of Proposition 4.1.20 in [KT87, Proposition 3.2] uses a
kind of slant product with the natural BQ-orientation class [δ] as in Proposition 4.1.14
(ii) of the diagonal δ : X → X ×Y X, which is in fact a regular imbedding by Remark
A.3.25. This is an analogy to topology, hence the name Alexander duality.

Based on Proposition 4.1.20, we can prove the following

Proposition 4.1.22. Let f : X → Y be a smooth morphism of S-schemes and let Y
be BQ-orienting. Then X is BQ-orienting.
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Proof. Since Y is BQ-orienting, we know by Corollary 4.1.17 that Y is BQ-orthocyclic,
i.e. for every morphism g : W → X of S-schemes we have B(f ◦ g)Q = A(f ◦ g)Q and

EY : A(f ◦ g)Q
∼−→ CH∗(W )Q

is an isomorphism. By Proposition 4.1.20 the homomorphism

.[f ] : A(g)Q → A(f ◦ g)Q

is an isomorphism and hence EX = EY ◦ ( .[f ]) : A(g)Q
∼−→ CH∗(W )Q is an iso-

morphism as well. Proposition 4.1.20 further implies, that B(g)Q is isomorphic to
B(f ◦g)Q = A(f ◦g)Q, which in turn is isomorphic to A(g)Q, so B(g)Q = A(g)Q and X
is indeed BQ-orthocyclic. This implies that X is BQ-orienting by Lemma 4.1.15.

Remark 4.1.23. In [KT87, Proposition 3.4], Kleiman and Thorup propose a stronger
result than what we prove in Proposition 4.1.22.

For the comparison to other approaches to intersection theory on regular schemes, we
need to introduce external products:

Definition 4.1.24. Let Y be a S-scheme. We say there exist BQ-external products on
Y , if for all separated schemes X and Z of finite type over Y , there are maps

× : CHk(X)Q ⊗ CHk(Z)Q → CHk+k′(X ×Y Z)Q,

such that the following hold:

(i) As Z varies, [X] × : CHk(Z)Q → CHk+dimS X(X ×Y Z)Q is an BQ-orientation
class of X → Y .

(ii) For all proper morphisms g : W → X with W separated and of finite type over
X, we get a commutative square

CHk(W )Q ⊗ CHk′(Z)Q
×−−−−→ CHk+k′(W ×Y Z)Q

g∗⊗ idCHk′ (Z)

y (g×idZ)∗
y

CHk(X)Q ⊗ CHk′(Z)Q
×−−−−→ CHk+k′(X ×Y Z)Q.

If BQ-external products exist on Y , then they are already unique. Kleiman and Thorup
even showed:

Proposition 4.1.25 (Kleiman, Thorup). Unique BQ-external products exist on Y if
and only if Y is BQ-orthocyclic. Furthermore, the external products are the same
as the canonical morphisms induced by the the cartesian product of p-systems as in
Lemma/Definition 4.1.3 (iv) via the isomorphism EY : A(f)Q → CH∗(X)Q as in
Definition 4.1.12.

Proof. For Q = Z this can be found in [KT87, Proposition 3.6, discussion prior to
Proposition 3.6]. The adaptions for Q-coefficients are straightforward.
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4.2 Alterations and BQ-Orientations

This section gives the first central theorem of this thesis.

Theorem 4.2.1. Let Y be a regular S-scheme of Krull dimension dimY = n and
assume A(S, Q, ≤ n) holds. Then Y is BQ-orienting.

We give a detailed proof, which is based on the idea by Kleiman and Thorup given
in [KT87, remarks after Proposition 3.3]. For further remarks on their work also see
Remark 4.2.4.

Proof. By Proposition 4.1.16 it suffices to show, that any projective morphism
g : V → Y with V integral is BQ-oriented, i.e., there is a class [g] in BQ(g) such
that [g]([Y ]) = [V ]. We factor such a projective morphism g : V → Y with V integral
through the connected component Y1 of Y containing the image of V . As Y is regular,
this connected component Y1 is integral (cf. Remark 2.2.4) and the inclusion Y1 → Y is
flat of relative S-dimension 0 and therefore BZ-oriented by Proposition 4.1.14. Hence
without loss of generality we may assume that Y is integral.
Now the first step is to factor g : V → Y through its scheme theoretic image g(V ) (cf.
[GW10, subsection (10.8)]), so we get a diagram

V

g̃
��

g

}}
Y g(V )oo

with g̃ : V → g(V ) dominant and g(V )→ Y a closed imbedding. As closed imbeddings
are separated and of finite type and g : V → Y is projective, the morphism g̃ : V → g(V )
is projective as well. By [EGA, IV Theorem 6.9.1], we know that there is a nonempty
open subset U of g(V ), such that

g̃|g̃−1(U) : g̃−1(U)→ U

is flat. With this, we use Raynaud’s and Gruson’s ”flattening technique” (cf. [RG71,
5.2.2]), to extend the diagram

V

��

g

~~

V ×g(V ) g(V )′

��

oo

Y g(V )oo g(V )′oo

where V ×g(V ) g(V )′ → g(V )′ is flat and g(V )′ → g(V ) is an U -admissible blow-up (i.e.
g(V )′ is given as a blow-up BlZ(g(V )) of g(V ) along a closed immersion Z → g(V )
with Z ∩ U = ∅). In particular g(V )′ is integral, and the morphism g(V )′ → g(V ) is
projective and birational by Proposition A.3.18. Since g(V )′ is birational to a closed
integral subscheme of Y , we get for its Krull dimension dim g(V )′ ≤ dimY = n. Since
g(V )′ is projective over Y , it is in particular separated and of finite type and we assumed
that A(S, Q, ≤ n) holds, hence we can find an alteration φ : g(V )′1 → g(V )′, which is
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generically finite of degree d ∈ T , and such that g(V )′1 is a regular integral scheme and
φ : g(V )′1 → g(V )′ is projective. Now we are left with a diagram

V

��

g

~~

V ×g(V ) g(V )′

��

oo V ×g(V ) g(V )′1

g′

��

oo

h′

ww

Y g(V )oo g(V )′oo g(V )′1
oo

h

hh

with morphisms as labeled. We get that Y and g(V )′1 are regular, h is projective, g′ is
flat and h′ is proper and generically finite with degree d ∈ T (as it is the base change
of a proper, generically finite morphism with a dominant morphism). By Proposition
A.3.22 (ii) the morphism h : g(V )′1 → Y is an l.c.i. morphism, with corresponding
BZ-orientation class [h] ∈ B(h)Z (cf. Proposition 4.1.14 (iii) and note that Y was
integral without loss of generality). The flat morphism g′ the relative S-dimension
dimS V − dimS g(V ) (cf. Remark A.1.3(v)) and hence induces an BQ-orientation class
[g′] ∈ B(g′)Z as well (cf. Proposition 4.1.14 (i)). Now consider the class

[g] :=
1

d
h′∗([g

′].[h]) ∈ BQ(g).

Note that this class is actually in BQ(g) by Definition 4.1.6. Then we have

[g]([Y ]) = (
1

d
h′∗([g

′].[h])) ([Y ])

=
1

d
h′∗[g

′]([h] ([Y ]))

=
1

d
h′∗[g

′]([g(V )′1])

=
1

d
h′∗[V ×g(V ) g(V )′1]

=
1

d
· d · [V ]

= [V ] ∈ CHk(V )Q,

so [g] gives the desired BQ-orientation class.

This Theorem has two immediate consequences:

Corollary 4.2.2. Let Y be a regular S-scheme of Krull dimension n and assume
A(S, Q, ≤ n) holds. Then any S-scheme X with X → Y smooth is BQ-orienting.

Proof. This follows from Theorem 4.2.1 by Corollary 4.1.22.

We now look at the special case where our base scheme S = SpecZ.
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Corollary 4.2.3. Let Y be a regular, separated scheme of finite type over S = SpecZ.
Then Y is BQ-orienting.

Proof. By Corollary 3.2.8 (iv) with R = Z, we know that A(SpecZ, Q, ≤ d) holds for
all d ∈ N, hence the claim follows from Theorem 4.2.1.

Remark 4.2.4. Theorem 4.2.1 and Corollary 4.2.3 are direct generalization of results
found in [KT87, Section 3]. Kleiman and Thorup showed the following two results,
which we will formulate in our notation here:

(i) Let Y be a regular S-scheme and assume A(S, Z, ≤ dimS Y ) holds. Then Y is
BZ-orienting ([KT87, remarks after Proposition 3.3]).

(ii) Let Y be a regular, separated scheme of finite type over S = SpecZ. Then Y is
CQ-orienting ([KT87, Proposition 3.9]).

4.3 Intersection Theory with Supports on BQ-orienting
Schemes

In this section we define the intersection product with supports for BQ-orienting S-
schemes.

Definition 4.3.1. Let Q be a ring and Y ⊆ X a closed subset. We can view Y as
a closed subscheme of X by putting the reduced induced structure on it (cf. [Har77,
II.3.2.6]). We define

CHk
Y (X) := CHdimS X−k(Y ),

CHk
Y (X)Q := CHdimS X−k(Y )Q = CHdimS X−k(Y )⊗Z Q

and
CH∗(X)Q :=

⊕
Y,k

CHk
Y (X)Q,

where the direct sum is taken over all closed subschemes Y and all k ∈ Z. For Y = X we
just write CHk(X)Q instead of CHk

X(X)Q. Call CHk
Y (X)Q the Chow group of algebraic

cycles of codimension k on X supported in the closed subset Y with Q-coefficients.

Remark 4.3.2. Let X be an S-scheme. The grading of the Chow group introduced by
S-dimension as in Definition 4.3.1 is in fact compatible with the grading of algebraic
cycles by codimension in the usual way. This follows directly from Proposition 2.1.3
(ii), as we have dimS V = dimS X − codim (V,X) for any closed integral subscheme V
of X.

The next Theorem relates the approach to intersection theory by Fulton, Kleiman and
Thorup to the approach by Gillet and Soulé.

Theorem 4.3.3. (Intersection Theory with Supports) Let X be an BQ-orienting S-
scheme. Then for closed subsets Y, Z ⊆ X in X there exists a morphism

. : CHk
Y (X)Q ⊗ CHk′

Z (X)Q → CHk+k′

Y ∩Z(X)Q,(4.9)

called intersection product with supports, such that
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(i) The Chow group CH∗(X)Q becomes a commutative graded Q-algebra with [X] ∈
CH0

X(X)Q as unit element.

(ii) The intersection product (4.9) is compatible with natural inclusions of supports
CHk

Y ′(X)Q → CHk
Y (X)Q and CHk

Z′(X)Q → CHk
Z(X)Q for closed subsets Y ′ ⊆ Y

and Z ′ ⊆ Z.

In this case we refer to CH∗(X)Q as the Chow ring with Q-coefficients.

Proof. Since X is BQ-orienting, it is also BQ-orthocyclic by Corollary 4.1.17. This
means, given the closed immersion iZ : Z → X of S-schemes (which is given by putting
the reduced induced closed subscheme structure) we have an isomorphism of Q-modules
as in Definition 4.1.12 (iii):

EX : BQ(iZ) = AQ(iZ)
∼−→ CH∗(Z)Q ∼= CH∗Z(X)Q, (ap)p∈Z 7→

∑
p∈Z

(ap)
(dimS X)
X ([X]).

First we show that this is an isomorphism of graded Q-modules: Given a p-system
a ∈ Bp(iZ)Q, we have

EX(a) = adimS XX ([X]) ∈ CHdimS X−p(Z)Q = CHp
Z(X)Q

thus
EX(Bp(iZ)Q) ⊆ CHp

Z(X)Q

and EX is in fact an isomorphism of graded Q-modules. Note that this implies that
the inverse homomorphism of Q-modules as in Corollary 4.1.17

FZ/X : CH∗Z(X)Q ∼= CH∗(Z)Q → BQ(iZ)

satisfies
FZ/X(CHp

Z(X)) ⊆ Bp(iZ)Q.

Now, for closed subsets Y,Z ⊆ X we put the reduced induced closed subscheme struc-
ture on both of them to get the closed immersions iY : Y → X and iZ : Z → X. For
the fiber square

Y ×X Z
i′Y−−−−→ Z

i′Z

y iZ

y
Y

iY−−−−→ X,

we define so called cup-products

∪ : Bp(iY )Q ⊗Bq(iZ)Q → Bp+q(iY ◦ i′Z)Q, a⊗ b 7→ i∗Z(a).b .(4.10)

The cup-product is commutative by Corollary 4.1.11. By definition as a product of
bivariant classes, the cup product is obviously associative and commutes with restriction
of bivariant classes, i.e. for any morphism f : X ′ → X we have

f∗(a ∪ b) = (f∗a) ∪ (f∗b).(4.11)
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This follows as the product of bivariant classes obviously commutes with the restriction
of bivariant classes. The cup-product gives rise to the desired intersection product

. : CHk
Y (X)Q ⊗ CHk′

Z (X)Q → CHk+k′

Y ∩Z(X)Q, α⊗ β 7→ EX(FY/X(α) ∪ FZ/X(β)).

The commutativity and associativity of the intersection product then follow immedi-
ately from the commutativity and associativity of the cup-product. Then for [X] ∈
CH0

X(X)Q and α ∈ CHk
Y (X)Q we have

[X].α = EX(FX/X([X]) ∪ FY/X(α))

= EX(id CH0
X(X)Q

∪ FY/X(α))

= EX(FY/X(α))

= α ∈ CHk
Y (X)Q,

so [X] ∈ CH0
X(X)Q is the unit element. This shows (i).

Part (ii) follows directly from the definition, as for closed subsets Z ′ ⊆ Z ⊆ X with
induced closed immersions iZ′ : Z ′ → Z and iZ : Z → X we know that

CHp
Z′(X)Q

FZ′/X−−−−→ B(iZ ◦ iZ′)QyiZ′ ∗ iZ′ ∗

y
CHp

Z(X)Q
FZ/X−−−−→ B(iZ)Q

commutes.

Remark 4.3.4. We can formulate two more explicit statements of the previous Theo-
rem in the special case that the Noetherian excellent regular separated base scheme S
is in addition one-dimensional.

(i) If S is in addition one-dimensional, then by Theorem 4.2.1 and Corollary 3.2.8
(iv) any regular S-schemes X is BQ-orienting. Hence in this case Theorem 4.3.3
gives an intersection product

. : CHk
Y (X)Q ⊗ CHk′

Z (X)Q → CHk+k′

Y ∩Z(X)Q.

(ii) If X is a smooth S-scheme and S is in addition one-dimensional, then X is
BZ-orienting by Theorem 4.2.1, as S is regular of Krull dimension one and
A(S, Z, ≤ 2) holds by Corollary 3.2.8 (iii). Hence by Theorem 4.3.3 we have
an intersection product

. : CHk
Y (X)⊗ CHk′

Z (X)→ CHk+k′

Y ∩Z(X).

Lemma 4.3.5. (Explicit Formulas of the Intersection Product) Let X be a BQ-orienting
S-scheme. Let Y,Z ⊆ X denote closed subsets with induced closed immersions iY : Y →
X and iZ : Z → X.
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(i) For α ∈ CHk
Y (X)Q and β ∈ CHk′

Z (X)Q, we have

α.β = (i∗ZFY/X(α)) (β) ∈ CHk+k′

Y ∩Z(X)Q,

for FY/X : CH∗Y (X)Q → B(iY )Q as in Corollary 4.1.17.

(ii) Assume we are given closed integral subschemes iV : V → Y with [V ] ∈ CHk
Y (X)Q

and iW : W → Z with [W ] ∈ CHk′
Z (X)Q respectively. For the closed immersions

f := iY ◦ iV : V → X and i := iV × iW : V ×X W → Y ×X Z, we get

[V ].[W ] = i∗[f ]
(dimS X−k′)
W ([W ]) ∈ CHk+k′

Y ∩Z(X)Q,

where [f ] ∈ Bk(f)Q denotes the unique BQ-orientation class of f : V → X.

(iii) In the special case that X is an integral regular S-scheme of Krull dimension
dimX = n and if A(S, Q, ≤ n) holds (hence X is BQ-orienting by Theorem
4.2.1), we get the following more explicit formula:
Given a closed immersion f : V → X of codimension k′, we use Assumption
A(S, Q, ≤ n) to get a diagram

V1

f1

''
φ
// V

f
// X

��
S

with an alteration φ : V1 → V , which is generically finite of degree d ∈ T (with
Q = T−1Z), and V1 is a regular integral scheme and projective over X. By
Proposition A.3.22 (ii) the morphism f1 : V1 → X is an l.c.i. morphism, so
it determines an BQ-orientation class [f1] ∈ Bk(f1)Z given by the refined Gysin
homomorphisms associated to f1 : V1 → X (cf. Proposition 4.1.14). Then we
have

[f ] =
1

d
φ∗[f1] ∈ Bk(f)Q

and for α ∈ CHk
Y (X)Q we have

[V ].α =
1

d
φ∗f

!
1(α) ∈ CHk+k′

V ∩Y (X)Q.

Proof. For (i), we calculate

α.β = EX(FY/X(α) ∪ FZ/X(β))

= (i∗ZFY/X(α)).(FZ/X(β)) ([X]) (cf. Def. cup-product (4.10))

= (i∗ZFY/X(α)) (FZ/X(β)([X]))

= (i∗ZFY/X(α)) (EX ◦ FZ/X(β))

= (i∗ZFY/X(α))(β) ∈ CHk+k′

Y ∩Z(X)Q.
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For (ii), form the diagram

V ×X W
i′′V

//

i′′W
�� i &&

Y ×X W
i′′Y

//

i′W
��

W

iW
��

g

��

V ×X Z
i′V

//

i′′Z
��

Y ×X Z
i′Y

//

i′Z
��

Z

iZ
��

V
iV

//

f

::Y
iY

// X

and set g := iZ ◦ iW . Then we get:

[V ].[W ] = EX(FY/X([V ]) ∪ FZ/X([W ]))

= EX((iV ∗[f ]) ∪ (iW ∗[g])) (cf. Corollary 4.1.17)

= (iZ
∗(iV ∗[f ]).(iW ∗[g])) ([X]) (cf. Def. cup-product (4.10))

= iZ
∗(iV ∗[f ]) (iW ∗[g] ([X]))

= i′V ∗[f ]
(dimS X−k′)
Z (iW ∗[g]

(dimS X)
X ([X]))

= i′V ∗i
′′
W ∗[f ]

(dimS X−k′)
W ([g]

(dimS X)
X ([X])) (by (4.3))

= i∗[f ]
(dimS X−k′)
W ([W ]) ∈ CHk+k′

Y ∩Z(X)Q,

where [f ] ∈ Bk(f)Q and [g] ∈ Bk′(g)Q denote the unique BQ-orientation classes of f
and g respectively. This shows (ii).
Lastly for (iii), we have

1

d
φ∗f

!
1 ([X]) =

1

d
φ∗[V1] =

1

d
· d · [V ] = [V ],

hence 1
dφ∗f

∗
1 ∈ Bk(f)Q is an orientation and since X is orienting, it is unique, i.e. does

in fact not depend on the choice of the alteration φ : V1 → V .

Remark 4.3.6. In the situation of Theorem 4.3.3, we may forget about the support
by setting Y = Z = X, to get the morphism

. : CHk(X)Q ⊗ CHk′(X)Q → CHk+k′(X)Q,

which we also call the intersection product.

Proposition 4.3.7. Let f : X → Y be a morphism of BQ-orienting S-schemes. Then
for closed subsets Z,Z ′ ⊆ Y and W ⊆ X we get:

(i) There is a Q-linear pull-back homomorphism of Q-modules

f∗ : CHk
Z(Y )Q → CHk

f−1(Z)(X)Q,

and given α ∈ CHk
Z(Y )Q and β ∈ CHk′

Z′(Y )Q, one has

f∗(α.β) = f∗(α).f∗(β) ∈ CHk+k′−dimY X
f−1(Z∩Z′) (X)Q,
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(ii) If f is proper and n = dimS X − dimS Y , there is a push-forward homomorphism
of Q-modules

f∗ : CHk
W (X)Q → CHk−n

f(W )(Y )Q.

(iii) (Projection formula) Assume f is proper and n = dimS X − dimS Y , then for
α ∈ CHk

Z(Y )Q and β ∈ CHk′
W (X)Q we have

f∗(f
∗(α).β) = α.f∗(β) ∈ CHk+k′−n

Z×Y f(W )(Y )Q.

Proof. For (i) we use that Y is BQ-orienting, so there exists a unique class [f ] ∈
BdimY X(f)Q with [f ]([Y ]) = [X]. This induces the desired morphism

f∗ : CHk
Z(Y )Q → CHk

f−1(Z)(X)Q

as the composition

CHk
Z(Y )Q

FZ/Y−→ Bk(iZ)Q
f∗−→ Bk(if−1Z)Q

EX−→ CHk
f−1(Z)(X)Q,(4.12)

where f∗ : Bk(iZ)Q → Bk(if−1Z)Q denotes the restriction of bivariant classes as in
Lemma/Definition 4.1.3 (i) for the fiber square

f−1(Z)
if−1(Z)−−−−−→ X

f ′
y f

y
Z

iZ−−−−→ Y.

This composition is already known to be a morphism of Q-modules. Given α ∈
CHk

Z(Y )Q and β ∈ CHk′
Z′(Y )Q, one has

f∗(α.β) = f∗
(
EY (FZ/Y (α) ∪ FZ′/Y (β))

)
(by (4.9))

= (EX ◦ f∗ ◦ FZ×Y Z′/Y )
(
EY (FZ/Y (α) ∪ FZ′/Y (β))

)
(by (4.12))

= (EX ◦ f∗ ◦ FZ×Y Z′/Y ◦ EY︸ ︷︷ ︸
= idB(iZ×Y Z′

)Q

)
(
FZ/Y (α) ∪ FZ′/Y (β)

)
= (EX ◦ f∗)

(
FZ/Y (α) ∪ FZ′/Y (β)

)
= EX((f∗ ◦ FZ/Y )(α) ∪ (f∗ ◦ FZ′/Y )(β)) (by (4.11))

= EX((Ff−1(Z)/X ◦ EX︸ ︷︷ ︸
= idB(i

f−1(Z)
)Q

◦f∗ ◦ FZ/Y ) (α) ∪ (Ff−1(Z′)/X ◦ EX︸ ︷︷ ︸
= idB(i

f−1(Z′))Q

◦f∗ ◦ FZ′/Y ) (β))

= EX(Ff−1(Z)/Xf
∗(α) ∪ Ff−1(Z′)/Xf

∗(β)) (by (4.12))

= f∗(α).f∗(β) ∈ CHk+k′−n
f−1(Z∩Z′)(X)Q (by (4.9)).

The push-forward in (ii) is induced from the one in Proposition A.1.1 by tensoring with
Q:

f∗ : CHk
W (X)Q = CHdimS X−k(W )Q → CHdimS X−k(f(W )) = CHk−n

f(W )(Y )Q.
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For the projection formula assume we are given α ∈ CHk
Z(Y )Q and β ∈ CHk′

W (X)Q.
Let iW : W → X, iZ : Z → Y and if(W ) : f(W ) → Y denote the induced closed
immersions by putting the reduced induced structure. Then we get

f∗(f
∗(α).β) = f∗

(
i∗W (Ff−1(Z)/X(f∗(α))) (β)

)
(Lemma 4.3.5 (i))

= f∗
(
i∗W (Ff−1(Z)/X(

(
EX ◦ f∗ ◦ FZ/Y (α)

)
))(β)

)
(by (4.12))

= f∗
(
i∗W
(
(Ff−1(Z)/X ◦ EX ◦ f∗ ◦ FZ/Y )(α)

)
(β)
)

= f∗
((

(f ◦ iW )∗FZ/Y (α)
)

(β)
)

= f∗ (((f ◦ iW )∗a) (β)) for a := FZ/Y (α)

= f∗

(
a
(k)
W (β)

)
= a

(k)
f(W )(f∗β) (*)

=
(

(i∗f(W )FZ/Y )(α)
)

(f∗(β))

= α.f∗(β) ∈ CHk+k′−n
Z×Y f(W )(Y )Q.

It remains to prove the equality

f∗

(
a
(k)
W (β)

)
= a

(k)
f(W )(f∗β) ∈ CHk+k′−n

Z×Y f(W )(Y )Q.(*)

For this, we consider the fiber square diagram

Z ×Y W //

��

W

��
f◦ iW

��

Z ×Y f(W ) //

��

f(W )

if(W )

��
Z

iZ
// Y

with all morphisms being proper. The upper square of this diagram induces the com-
mutative diagram

CHk+k′

Z×YW (X)Q

f∗
��

CHk′
W (X)Q

f∗
��

akW

oo

CHk+k′−n
Z×Y f(W )(Y )Q CHk′−n

f(W )(Y )Q,
ak
f(W )

oo

which commutes as a = FZ/Y (α) ∈ Bk(iZ)Q ⊆ Ak(iZ)Q is a bivariant class, i.e. it
commutes with proper push-forward by definition.

Remark 4.3.8. Note that Proposition 4.3.7 provides the same results for our definition
of the intersection product with supports for regular separated schemes of finite type
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over SpecZ as Gillet and Soulé show for their’s in [GS87]. However some results like
the projection formula in loc. cit. rely on a version of the Riemann-Roch Theorem with
supports, whose proof in [GS87] is only sketched. Furthermore, our approach enables
us to easily adapt further results from Fulton’s book [Ful84], e.g. the excess intersection
formula (cf. [Ful84, Proposition 17.4.1]): Given a fiber square of S-schemes

X ′
f ′−−−−→ Y ′

g′
y g

y
X

f−−−−→ Y

with a regular embedding f of codimension d and a regular embedding f ′ of codimension
d′, then we get

g∗[f ] = ce(E).[f ′] ∈ Ad(f ′),

where e = d− d′ and E denotes the excess normal bundle defined by

E := g∗NXY/NX′Y
′

(cf. Theorem A.5.2 (iii)).



Chapter 5

Comparison to other Approaches
to Intersection Theory

In this chapter we treat the natural question: How does the intersection theory devel-
oped in Chapter 4 relate to other existing theories? For this we again fix a Noetherian,
excellent, regular and separated base scheme S. In the first section we show that our
intersection product for regular S-schemes X (and if A(S, Q, ≤ dimS X) holds) coin-
cides with Fulton’s intersection product for divisors (cf. Section A.2 or directly [Ful84,
Chapter 2, Section 20.1]). In the second section we will consider the special case of
smooth schemes over a one-dimensional scheme, and we will see that our theory coin-
cides with Fulton’s theory (cf. [Ful84, Chapter 8, Section 20.2]), and hence also with
the intersection theory developed by Gillet and Soulé (cf. [GS87]) in this special case.

5.1 Intersection with Divisors

In this section let X be a regular S-scheme, i.e. a regular, separated scheme of finite
type over a fixed Noetherian, excellent, regular and separated base scheme S.

Construction 5.1.1. Let X be a regular S-scheme of S-dimension dimS X = n. In
order to give a pairing

.divisors : CH1
Y (X)⊗ CHk

Z(X)→ CHk+1
Y ∩Z(X),

by linearity it is enough to define

[V ].divisors[W ] ∈ CHn−k−1(Y ×X Z) = CHk+1
Y ∩Z(X)

for a closed imbeddings iV : V → X, iW : W → X of integral subschemes with
[V ] ∈ CH1

Y (X) and [W ] ∈ CHk
Z(X). As X is Noetherian and regular, the Chow group

of algebraic cycles of codimension one and the group of Cartier divisor classes on X
are isomorphic (cf. [GW10, Proposition 10.38 and Theorem 11.39])

CaCl (X)
∼−→ CH1(X).

47



48 CHAPTER 5. COMPARISON TO OTHER APPROACHES

Let D ∈ CaCl (X) denote the corresponding Cartier divisor for the algebraic cycle
[V ] ∈ CH1(X). This Cartier divisor is by definition effective (i.e. it is a closed sub-
scheme i : V → X, such that its ideal sheaf JV ⊆ OX is locally generated by one
element) and its support supp(D) is the underlying closed subspace of the closed sub-
scheme V (cf. [GW10, Remark 11.31]). Then Fulton (cf. Construction A.2.1 or directly
[Ful84, Chapter 2, Section 20.1]) constructed a well-defined element

[V ].divisors[W ] := D.divisors[W ] ∈ CHn−k−1(W ×X D) = CHk+1
supp(D)∩W (X).

We can push-forward this class to CHk+1
Y ∩Z(X) via the closed immersion V ×X W →

Y ×X Z. This construction implies the the pairing

.divisors :: CH1
Y (X)Q ⊗ CHk

Z(X)Q → CHk+1
Y ∩Z(X)Q

after tensoring the Chow groups with Q.

Proposition 5.1.2. Let X be a regular S-schemes X and assume that
A(S, Q, ≤ dimS X) holds. Then the pairing

.divisors :: CH1
Y (X)Q ⊗ CHk

Z(X)Q → CHk+1
Y ∩Z(X)Q

given in Construction 5.1.1 coincides with our intersection product in Theorem 4.3.3
(using Theorem 4.2.1, which says that X is BQ-orienting).

Proof. Since X is regular, we may assume that X is integral (cf. Remark 2.2.4). Further
it suffices to check our claim for closed immersions f : V → X (of codimension one)
and g : W → X (of codimension k). Following the explicit formula of our intersection
product as in Lemma 4.3.5 (iii), we take an alteration φ : V1 → V , such that V1 is a
regular integral scheme and projective over X and hence f1 := f ◦ φ : V1 → X is an
l.c.i. morphism with associated BQ-orientation class [f1] ∈ Bk(f1)Z given by the refined
Gysin homomorphisms associated to f1 : V1 → X (cf. Proposition 4.1.14). Then we
have

[V ].[W ] = f∗(
1

d
φ∗[f1])([W ]),

where 1
dφ∗[f1] ∈ B

k(f)Q is a BQ-orientation class by Lemma 4.3.5.
On the other hand note, that f : V → X is a regular imbedding of codimension one, be-
cause V can be viewed as an effective Cartier divisor. Hence by Proposition 4.1.14 (ii),
f is BZ-oriented by the system [f ] of the refined Gysin homomorphisms. But since reg-
ular S-schemes are BQ-orienting by Theorem 4.2.1, we get that 1

dφ∗[f1] = [f ] ∈ Bk(f)Q.
Lastly we use Theorem A.5.2 (ix), which says that the construction of the Gysin homo-
morphism for regular imbeddings coincides with the intersection product with effective
Cartier-Divisors in Construction A.2.1. In conclusion we have

[V ].[W ] = f∗(
1

d
φ∗[f1])([W ]) = [f ]([W ]) = f !([W ]) = D.divisors[W ] ∈ CHk+1

Y ∩Z(X)Q.
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5.2 Smooth Schemes over a Dedekind scheme

In this section we fix a Noetherian, excellent, regular and separated base scheme S of
Krull dimension one. For smooth S-schemes we want to show, that our intersection
product with supports as given in Remark 4.3.4 (ii) coincides with Fulton’s intersection
product as in Proposition A.6.3.

As a first step, we show the following

Proposition 5.2.1. Let S be a Noetherian, excellent, regular and separated base scheme
S of (Krull) dimension one. Then Fulton’s exterior products (cf. Proposition A.6.1
or directly [Ful84, Proposition 20.2]) give an explicit description of the BZ-exterior
products on S (cf. Definition 4.1.24). This means, that the diagram

Bp(pY ◦ iX)Z ⊗Bq(pY ◦ iZ)Z
×

Def 4.1.24
//

∼= ES⊗ES
��

Bp+q((pY ◦ iX)× (pY ◦ iZ))Z

∼= ES
��

CHn−p(X)⊗ CHn−q(Z)
×

Fulton
// CH2n−p−q(X ×S Z)

commutes.

Proof. We know that the scheme S is BZ-orienting by Theorem 4.2.1 and Corollary
3.2.8 (iii). Hence S is BZ-orthocyclic by Corollary 4.1.17. By Proposition 4.1.25 we
know that there exist unique BZ-external products on S. So we only need to show
that the Fulton’s construction as in Proposition A.6.1 satisfies (i) and (ii) of Definition
4.1.24: For two S-schemes X and Z consider the morphism

a
(k)
Z := [X]× : CHk(Z)→ CHk+dimS X(X ×S Z),

which is induced by
[W ] 7→ [X]×S [W ]

as in formula (A.3) in Proposition A.6.1. Let pX : X → S denote the structure
morphism. For part (i) of Definition 4.1.24 we have to check, that these morphisms

a
(k)
Z induce the desired BQ-orientation class [pX ] in B− dimS X(pX)Z with

[pX ]([S]) = [X].

Since we know that S is BZ-orthocyclic, we have A− dimS X(pX)Z = B−dimS X(pX)Z
and we only have to check that [pX ] is in A− dimS X(pX)Z. From Proposition A.6.2 (i)
we see that [pX ] is in H− dimS X(pX)Z, Proposition A.6.2 (ii) and (iii) show [pX ] is in
A− dimS X(pX)Z and we have

[pX ]([S]) = [X]×S [S]

= [X ×S S]

= [X].

For the compatibility with proper push-forward in (ii) of Definition 4.1.24 again see
Proposition A.6.2 (i).
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Using the fact that if f : X → Y is a morphism of S-schemes with Y smooth, then
γf : X → X ×S Y is a regular imbedding of codimension n = dimS Y (cf. Remark
A.3.25), Fulton constructed an intersection product on smooth S-schemes (cf. Propo-
sition A.6.3):

Proposition 5.2.2 (Fulton). Let Y be a smooth S-scheme and let X,Z ⊆ Y denote
two closed subsets. Fulton’s construction yields in an intersection product

.Fulton : CHk
X(Y )⊗ CHk′

Z (Y )→ CHk+k′

X∩Z(Y ), α⊗ β 7→ γiX
! (α×S β),

where iX : X → Y denotes the induced closed immersion. This product makes CH∗(Y )
into a commutative, graded Z-algebra with unit [Y ] ∈ CH0(Y ).

Proof. Identifying the terms in Proposition A.6.3 via Definition 4.3.1 directly gives the
claim.

We can now compare Fulton’s construction to the one given in Chapter 4.

Theorem 5.2.3. Let Y be a smooth S-scheme. Then our intersection product with
supports as given in Remark 4.3.4 (ii) coincides with Fulton’s theory as in Proposition
5.2.2.

Proof. Suppose Y is a smooth S-scheme with n = dimS Y , denote the structure mor-
phism by pY : Y → S. We know that the scheme S is BZ-orienting and BZ-orthocyclic
(Theorem 4.2.1, Corollary 3.2.8 (iii), Corollary 4.1.17). We further have that Y is BZ-
orienting and BZ-orthocyclic (Proposition 4.1.22, Corollary 4.1.17). For closed subsets
X,Z ⊆ Y we put the reduced structure of a closed subscheme on both of them to get
the closed immersions iX : X → Y and iZ : Z → Y and form the fiber square

X ×Y Z
i′X−−−−→ Z

i′Z

y iZ

y
X

iX−−−−→ Y.

Let γiX : X → X ×S Y denote the graph of iX : X → Y , which is a regular imbedding
of codimension n = dimS Y by Remark A.3.25, hence gives an BZ-orientation class
[γiZ ] ∈ Bn(γiZ )Z by Proposition 4.1.14. Then we have to show, that the diagram

CHp
X(Y )⊗ CHq

Z(Y )
. as in Remark 4.3.4 (ii) //

OO
∼= EY ⊗EY

CHp+q
X∩Z(Y )
OO

∼= EY

Bp(iX)Z ⊗Bq(iZ)Z
∪ as in (4.10) //

.[pY ]⊗ .[pY ]

��

Bp+q(iX ◦ i′Z)Z

.[pY ]
��

Bp(pY ◦ iX)Z ⊗Bq(pY ◦ iZ)Z
× //

∼= ES⊗ES
��

Bp+q((pY ◦ iX)× (pY ◦ iZ))Z
.[γiX ]

//

∼= ES
��

Bp+q(pY ◦ iX ◦ i′Z)Z

∼= ES
��

CHn−p(X)⊗ CHn−q(Z)
× // CH2n−p−q(X ×S Z)

[γiX ]nX×SZ // CHn−p−q(X ×Y Z)
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commutes. The top square of this diagram commutes by construction of the intersec-
tion product with supports in Theorem 4.3.3. The bottom left square commutes by
Propositions 5.2.1 and 4.1.25, the bottom right square commutes by definition (indeed

X ×Y Z −−−−→ X ×S Zy yidX×S iZ

X
γiX−−−−→ X ×S Y

is a fiber square). Note that the bottom line is exactly Fulton’s construction as in
Proposition 5.2.2. Hence the crucial point is to show the commutativity of the middle
part of the diagram above. This part of our proof generalizes [KT87, Formula (3.7)]:
Consider the fiber square diagram

X ×Y Z //

��

X ×S Z //

t
��

Y ×S Z //

��

Z

iZ
��

X
γiX //

idX

��

X ×S Y //

s

��

u

::Y ×S Y //

��

Y

pY

��
X

iX // Y
pY // S,

with morphisms as labeled, where s is smooth of relative S-dimension dimS Y (hence
induces [s] ∈ B−n(s)Z by Proposition 4.1.14). Further note that idX : X → X is flat
and l.c.i. and hence we get

idB0(idX)Z = [idX ] = [γiX ].[s] ∈ B0(idX)Z

by Proposition A.5.3. Then for a ∈ Bp(iX)Z and b ∈ Bq(iZ)Z, we have

(t∗ [γiX ]).(b.[pY ]×S a.[pY ]) = (t∗ [γiX ]).(u∗ b).[s].a.[pY ]

= (γ∗iX u
∗ b).[γiX ].[s].a.[pY ]

= (γ∗iX u
∗ b).[idX ].a.[pY ]

= ((u ◦ γiX )∗ b).a.[pY ]

= (b ∪ a).[pY ] ∈ Bp+q(pY ◦ iX ◦ i′Z)Z.

Remark 5.2.4. In order to generalize Arakelov’s arithmetic intersection theory from
arithmetic surfaces to higher dimensional schemes, Gillet and Soulé [GS87] introduced
an intersection product with supports for any Noetherian regular scheme, after tensor-
ing the Chow groups with support by Q. Their main tool is an isomorphism between
CHk

Y (X)Q and GrkγK
Y
0 (X)Q, the k-th graded piece of K-theory with support in Y with

respect to the γ-filtration. Then the product in K-theory induces a product of Chow
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groups with support and coefficients in Q.
Gillet and Soulé state in [GS87, 8.4], that if Y is a smooth integral separated scheme
of finite type over a separated Dedekind scheme S, then their intersection product co-
incides with Fulton’s intersection product (also see [GS92, Section 4.5]). Therefore, by
Theorem 5.2.3, we know that Gillet and Soulé’s intersection product with supports co-
incides with the our intersection product as in Remark 4.3.4 (ii) in the case of smooth
separated schemes which are of finite type over a Noetherian, excellent, regular and
separated base scheme of Krull dimension one.

Corollary 5.2.5. If X is a smooth integral S-scheme (hence BZ-orienting by Corollary
4.1.22 and Corollary 3.2.8), then we can add the following property to our intersection
product with supports as in Remark 4.3.4 (ii):

(iii) For [Y1] ∈ CHk
Y (X) and [Z1] ∈ CHk′

Z (X) with Y1 and Z1 intersecting properly
(i.e. codim(Y1∩Z1, X) = codim(Y1, X)+codim(Z1, X)), the intersection product
[Y1].[Z1] ∈ CHk+k′

Y ∩Z(X) is given by Serre’s Tor-formula:

[Y1].[Z1] =
∑

x∈Y1∩Z1∩X(p+q)

∑
i≥0

(−1)ilengthOX,x(Tor
OX,x
i (OY1,x,OZ1,x))[{x}]

Proof. This follows from Remark 5.2.4 and [Sou92, Chapter I, Theorem 2 (iii)].



Appendix A

Fulton’s Theory for S-schemes

In [Ful84, Chapters 1 - 6], Fulton developed a theory which induces the push-forward of
cycles for proper morphisms, the pull-back of cycles for flat morphisms and the refined
Gysin homomorphisms for regular imbeddings for schemes that are of finite type over
a field. In Chapter 20 of [Ful84], Fulton states that his theory is still valid for schemes
X of finite type and separated over a Noetherian, regular base scheme S. Furthermore,
Fulton uses this to give an intersection product for smooth separated schemes X which
are of finite type over a Noetherian one-dimensional regular base scheme S.

In this appendix, we have collected the results from [Ful84, Chapters 1 - 6] used in this
thesis in the following generality: We fix a Noetherian, excellent, regular and separated
base scheme S. All schemes X are assumed to be of finite type and separated over S
and we call them S-schemes. Note that this case is already covered by [Ful84, Section
20.1]. For the intersection product for smooth S-schemes, we additionally assume that
S is of Krull dimension one in the last section.

A.1 Proper push-forward and flat pull-back

Proposition A.1.1. Let f : X → Y be a proper morphism of S-schemes. Then the
push-forward is defined by

f∗ : ZkX → ZkY, [V ] 7→ deg(V/f(V ))[f(V )],

with

deg(V/f(V )) :=

{
[κ(V ) : κ(f(ηV ))] for dimV = dim f(V ),

0 otherwise,

where ηV denotes the generic point of V .
If α is a k-cycle on X which is rationally equivalent to zero, then f∗α is rationally
equivalent to zero on Y . There is therefore an induced homomorphism

f∗ : CHkX → CHkY,

so that f∗ is a covariant functor for proper morphisms.

53
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Note that the statement dimV = dim f(V ) (where dim denotes the ordinary topological
dimension) is equivalent to dimf(V ) V = 0 and to dimS V = dimS f(V ) by Proposition
2.1.3 (iv) and (v).

Proof. Fulton [Ful84, bottom of page 394] claims that this still holds by using the Stein
factorization [EGA, III.4.3.1] for non-excellent schemes. Since we assumed our schemes
to be excellent (hence the normalizations are finite), we can simply adapt the proof
given in [Ful84, Theorem 1.4 and Proposition 1.4] by replacing the Krull dimension
with the S-dimension.

Definition A.1.2. (i) A morphism f : X → Y of S-Schemes has relative dimension
n, if for all closed integral subschemes V of Y and all irreducible components V ′

of f−1(V ), we have

dimV ′ = dimV + n.(A.1)

By definition, n = dimX − dimY .

(ii) A morphism f : X → Y of S-Schemes has relative S-dimension n, if for all closed
integral subschemes V of Y and all irreducible components V ′ of f−1(V ), we have

dimS V
′ = dimS V + n.(A.2)

By definition, n = dimS X − dimS Y .

Remark A.1.3. (i) If the scheme Y in Definition A.1.2 is irreducible, then by
Proposition 2.1.3 (v) the relative S-dimension n of the morphism f is the equal
to dimY X.

(ii) All of our schemes are universally catenary, as they are of finite type over the
excellent scheme S. Hence a morphism f : X → Y of S-Schemes has relative
dimension dimX−dimY if and only if for all V, V ′ as in Definition A.1.2 we have

codim (V ′, X) = codim (V, Y ).

(iii) By Proposition 2.1.3 (ii), a morphism f : X → Y of S-Schemes has relative S-
dimension dimS X − dimS Y if and only if for all V, V ′ as in Definition A.1.2 we
have

codim (V ′, X) = codim (V, Y ).

(iv) It follows that a morphism f : X → Y of S-Schemes has relative dimension
dimX − dimY if and only if f : X → Y relative S-dimension dimS X − dimS Y .

(v) Using [Ful84, B2.5], we get the following: If f : X → Y is flat, Y is irreducible and
X is S-equidimensional of dimension dimS Y +n, then f has relative S-dimension
n. Furthermore, any base change f ′ : X×Y Y ′ → Y ′ of a flat morphism f : X → Y
of relative S-dimension n is again flat and of relative S-dimension n.
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Proposition A.1.4. (i) Let f : X → Y be a flat morphism of relative S-dimension
n of S-schemes. The pull-back

f∗ : ZkY → Zk+nX

is defined by

f∗([V ]) =
∑

lengthOf−1Z,ηW
(Of−1Z,ηW )[W ],

where the sum is taken over all irreducible components W of the inverse image
scheme f−1Z. If α ∈ ZkX is rationally equivalent to zero, then f∗α is rationally
equivalent to zero in Zk+nX and there are therefore induced homomorphisms

f∗ : CHkY → CHk+nX,

so that f∗ is a contravariant.

(ii) Pull-back and push-forward are compatible in the following sense: Let

X ′
f ′−−−−→ Y ′

g′
y g

y
X

f−−−−→ Y

be a fiber square with f proper and g denoting a flat morphism of relative dimen-
sion n of S-schemes. Then for all α ∈ ZkX,

f ′∗g
′∗α = g∗f∗α

in Zk+nY
′.

(iii) For an S-scheme X consider a closed subscheme i : Y → X and let
j : U = X − Y → X be the open immersion. Then the sequence

CHkY
i∗−→ CHkX

j∗−→ CHkU −→ 0

is exact for all k ∈ Z.

Proof. Part (i) works like [Ful84, Theorem 1.7] by replacing X ×P1 with X ×S P1
S and

using S-dimension. Part (ii) is [Ful84, Proposition 1.7, Section 20.1]. The last part is
[Ful84, Proposition 1.8, Section 20.1]

Remark A.1.5. By Proposition 2.1.3 (ii), flat pull-back preserves the codimension of
cycles.
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A.2 Intersection with Divisors

In this section we very briefly recall Fulton’s definition of the intersection product for
divisors, which uses the theory of pseudo-divisors. For details of the proofs we refer to
[Ful84, Chapter 2, Section 20.1].

Construction A.2.1. Let D be an effective Cartier divisor on an S-scheme X (with
dimS X = n), i.e. a closed subscheme i : D → X, such that its ideal sheaf JD ⊆ OX
is locally generated by one element, and let iW : W → X be the closed immersion of
a integral subscheme W of codimension k in X. Then Fulton defined the intersection
product of D.divisors[W ] ∈ CHn−k−1(W ×X D) by the following:
An effective Cartier divisor D induces a so called pseudo-divisor

(OX(D), supp(D), sD),

where OX(D) denotes the associated line bundle, supp(D) the support of D and sD
the canonical section of OX(D) (cf. [Ful84, Appendix B.4]). Take the pull-back

(i∗WOX(D), i−1W (supp(D)), i∗W sD)

of this pseudo-divisor and find a Cartier divisor D̃ on W which represents this pull-back
(cf. [Ful84, Lemma 2.2, Section 20.1]). This Cartier divisor D̃ will be determined up
to linear equivalence, so it determines a well-defined element

D.divisors[W ] ∈ CHn−k−1(W ×X D).

A.3 Cones, Chern and Segre classes

For every (geometric) vector bundle E on an S-scheme X, we will construct Chern and
Segre class operations. Although the constructions do not depend on the base scheme
S, we should note that we grade the Chow group CH∗X by S-dimension.

Proposition A.3.1. Let L be a line bundle on X and V be an integral closed subscheme
of X of S-dimension k. Then the restriction L|V of L to V is isomorphic to OV (C)
for some Cartier divisor C on V , determined up to linear equivalence. The associated
Weil divisor determines a well defined element

c1(L) ∩ [V ] := [C] in CHk−1X.

By linearity we get a homomorphism

c1(L) ∩ : ZkX → CHk−1X, α 7→ c1(L) ∩ α,

compatible with rational equivalence, therefore inducing

c1(L) ∩ : CHkX → CHk−1X.

We define c1(L)d ∩ α for d ∈ N inductively by c1(L)d ∩ α = c1(L) ∩ (c1(L)d−1 ∩ α).
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Proof. See [Ful84, Proposition 2.5 (a), Section 20.1].

Definition A.3.2. The homomorphism c1(L) ∩ : CHkX → CHk−1X as in A.3.1 is
called the operation of the first Chern class of the line bundle L.

The following facts about the first Chern class are well known:

Proposition A.3.3. The operation of the first Chern class satisfies the following prop-
erties:

(i) (Commutativity) For two line bundles L, L′ on an S-scheme X and α ∈ CHkX,
then

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α) in CHk−2X.

(ii) (Projection formula) For a proper morphism f : X ′ → X of S-schemes, L a line
bundle on X and α ∈ CHkX

′, then

f∗(c1(f
∗L) ∩ α) = c1(L) ∩ f∗α in CHk−1X.

(iii) (Flat pull-back) For a flat morphism f : X ′ → X of relative S-dimension n of
S-schemes, L a line bundle on X and α ∈ CHkX, then

c1(f
∗L) ∩ f∗α = f∗(c1(L) ∩ α) in CHk+n−1X

′.

(iv) (Additivity) If L, L′ are line bundles on an S-scheme X and α ∈ CHkX, then

c1(L⊗ L′) ∩ α = c1(L) ∩ α+ c1(L
′) ∩ α

and
c1(L

∨) ∩ α = −c1(L) ∩ α in CHk−1X.

Proof. Compare to [Ful84, Proposition 2.5 b) - e), Section 20.1].

Definition A.3.4. For a vector bundle E on X of rank e + 1 let E denote the as-
sociated sheaf of sections of E over X, i.e. the locally free OX -module given by
E(U) = Hom U (U,E). Let

p : P (E) = Proj (Sym•E∨)→ X

be the projective bundle of lines, with canonical line bundle OE(1) on P (E). Define
the operation of the ith Segre class to be the homomorphism

si(E) ∩ : CHkX → CHk−iX, α 7→ si(E) ∩ α := p∗(c1(O(1))e+i ∩ p∗α).

Remark A.3.5. Note that we use Fulton’s notation [Ful84, B.5.5] for the projective
bundle of lines here in contrast to standard Grothendieck’s language [EGA].

Proposition A.3.6. Let E be a vector bundle of rank e+ 1 on X.

(i) For all α ∈ CHkX,
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(a) si(E) ∩ α = 0 for i < 0,

(b) s0(E) ∩ α = α.

(ii) If E, F are vector bundles on an S-scheme X, α ∈ CHkX, then, for all i, j,

si(E) ∩ (sj(F ) ∩ α) = sj(F ) ∩ (si(E) ∩ α).

(iii) If f : X ′ → X is a proper morphism of S-schemes, E a vector bundle on X and
α ∈ CHkX

′, then, for all i,

f∗(si(f
∗E) ∩ α) = si(E) ∩ f∗(α).

(iv) If f : X ′ → X is a flat morphism of S-schemes of some relative S-dimension, E
a vector bundle on X and α ∈ CHkX, then, for all i,

si(f
∗E) ∩ f∗(α) = f∗(si(E) ∩ α).

(v) If E is a line bundle on an S-scheme X and α ∈ CHkX, then

s1(E) ∩ α = −c1(E) ∩ α.

Proof. See [Ful84, Proposition 3.1, Section 20.1].

Definition A.3.7. Let E be a vector bundle on an S-scheme X. Consider the formal
power series

st(E) =

∞∑
i=0

si(E)ti ∈ R[[t]],

where R denote the sub-algebra of End CH∗X generated by the Elements si(E) ∩ .
Define the Chern polynomial to be the inverse power series

ct(E) =

∞∑
i=0

ci(E)ti := st(E)−1.

Every ci(E) ∈ R defines an operation

ci(E) ∩ . : CHkX → CHk−iX.

We call ci(E) the ith Chern class on E.

Remark A.3.8. Explicitly we get

c0(E) = 1,

c1(E) = −s1(E),

c2(E) = s1(E)2 − s2(E),

...

cn(E) = −s1(E)cn−1(E)− s2(E)cn−2(E)− ...− sn(E).
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Theorem A.3.9. The Chern classes satisfy the following properties:

(i) (Vanishing) For all bundles E on an S-scheme X, all i > rank (E) and all α ∈
CH∗X,

ci(E) ∩ α = 0.

So ct(E) is in fact a polynomial.

(ii) (Commutativity) For all bundles E, F on an S-scheme X, α ∈ CH∗X,

ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α).

(iii) (Projection formula) Let E be a vector bundle on an S-scheme X, f : X ′ → X a
proper morphism of S-schemes andαinCH∗X,

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗α.

(iv) (Pull-back) Let E be a vector bundle on an S-scheme X, f : X ′ → X a flat
morphism of S-scheme of some relative S-dimension and α ∈ CH∗X,

ci(f
∗E) ∩ f∗α = f∗(ci(E) ∩ α).

(v) (Whitney sum) For any exact sequence 0 → E′ → E → E′′ of vector bundles on
an S-scheme X,

ct(E) = ct(E
′)ct(E

′′),

i.e.,

ck(E) =
∑
i+j=k

ci(E
′) · cj(E′′).

(vi) (Normalization) If E is a line bundle on an integral S-scheme X (of S-dimension
n), D a Cartier divisor on X with OX(D) ∼= E, then

c1(E) ∩ [X] = [D],

where [D] denotes the associated cycle class in CHn−1X defined by the Cartier
divisor D (see [Ful84, Section 2.1]).

Proof. Compare to [Ful84, Theorem 3.2, Section 20.1].

Theorem A.3.10. Let π : E → X be a vector bundle of rank r = e+ 1, E the sheaf of
sections of E over X (a locally free OX-module),

p : P (E) = Proj (Sym•E∨)→ X

the projective bundle of lines in E and O(1) = OE(1) the canonical line bundle on
P (E).

(i) The flat pull-back
π∗ : CHk−rX → CHkE

is an isomorphism for all k ∈ Z.
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(ii) There is a canonical Isomorphism

ΘE :
e⊕
i=0

CHk−e+iX
∼→ CHkP (E), (αk−e+i)i=0,...,e 7→

e∑
i=0

c1(O(1))i ∩ p∗αk−e+i.

Proof. See [Ful84, Theorem 3.3, Section 20.1].

Proposition A.3.11. Let π : E → X be a vector bundle of rank r, s : X → E its zero
section, q : P (E ⊕ 1)→ X the projection and ξ the universal rank r quotient bundle of
q∗(E ⊕ 1), i.e.,

0→ OP (E⊕1)(−1)→ q∗(E ⊕ 1)→ ξ → 0

is exact.
If j : E → P (E ⊕ 1) is the canonical inclusion, then for all β ∈ CHkE and β̄ ∈
CHkP (E ⊕ 1) with j∗β̄ = β we have

s∗β = q∗(cr(ξ) ∩ β̄).

Proof. See [Ful84, Proposition 3.3, Section 20.1].

Definition A.3.12. Let s = sE : X → E be the zero section of the vector bundle
π : E → X of rank r. Then the Gysin morphism is defined by

s∗ : CHkE → CHk−rX, s
∗(β) = (π∗)−1(β).

Definition A.3.13. Let X be an S-scheme, S• =
⊕

n≥0 S
n a graduated sheaf of

OX -algebras on X with OX → S0 is an isomorphism and S• is an OX -algebra which is
locally generated by S1. For a variable Z let S•[Z] be the graded OX -algebra given by

(S•[Z])n = Sn ⊕ Sn−1Z ⊕ ...⊕ S1Zn−1 ⊕ S0Zn.

Then the cone of S• is defined by

C := C(S•) := Spec (S•)→ X,

the projective cone of S• is

P (C) := Proj (S•)→ X.

We set
C ⊕ 1 := C(S•[Z])

and
P (C ⊕ 1) := Proj (S•[Z])

the projective closure of C.

Remark A.3.14. Note that a vector bundle E on an S-scheme X is the cone of the
graded OX -algebra Sym•E∨, where E denotes the sheaf of sections of E over X.

Proposition A.3.15. Let X be an S-scheme.
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(i) If S• → S′• is a surjective, graded homomorphism of such graded sheaves of
OX-algebras, and C = Spec (S•), C ′ = Spec (S′•), then there are closed imbed-
dings

C ′ → C

and

P (C ′)→ P (C),

such that OC(1) restricts to OC′(1)

(ii) The element Z ∈ (S•[Z])1 determines a regular section

s ∈ Γ(P (C ⊕ 1),OP (C⊕1)(1)).

The zero scheme Z(s) of this section is canonically isomorphic to P (C) and with
its complement P (C ⊕ 1)\P (C) being canonically isomorphic to C.

Proof. See [Ful84, B5.1] or [Har77, II.7.15].

Example A.3.16. The zero section

sE : C(OX) = X → E = C(S•)

is given by the surjection

e : S• → OX , e|S0 = idOX , e|Si = 0 ∀i ≥ 1.

Definition A.3.17. Let Y be an S-scheme and let i : X → Y be a closed imbedding
with ideal sheaf J on Y . Then we define the Normal Cone by

CXY := Spec (
⊕
n≥0

Jn/Jn+1)

and the blow-up of Y in X by

BlXY := Proj (
⊕
n≥0

Jn).

The scheme E := X ×Y BlXY is called the exceptional divisor of the blow-up BlXY .

Proposition A.3.18. Let Y be an S-scheme.

(i) The morphism BlXY → Y is projective.

(ii) If Y is integral with closed subscheme X, then BlXY is integral.

(iii) The exceptional divisor E of the blow-up BlXY is an effective Cartier divisor on
BlXY and we have E = P (CXY ).

(iv) If X does not contain any irreducible component of Y , then BlXY → Y is bira-
tional.



62 APPENDIX A. FULTON’S THEORY FOR S-SCHEMES

(v) If Y is relative equidimensional of dimension d, then so is CXY .

Proof. Part (i) is [GW10, Proposition 13.96 (i)]. Part (i) - (iv) can be found in [Liu02,
8.1.12]. For (v) consider the closed imbedding X → Y → Y ×S A1

S with normal cone
CX(Y ×S A1

S) = CXY ⊕ 1. By (iii) BlX(Y ×S A1
S) is birational to Y ×S A1

S , so it is
relative equidimensional of dimension d+ 1. Then CXY is relative equidimensional of
dimension d + 1 as an open subscheme of the exceptional divisor P (CXY ⊕ 1) of the
blow-up BlX(Y ×S A1

S).

Definition A.3.19. Let C = Spec (S•) → X be a cone, q : P (C ⊕ 1) → X its
projective closure and OC⊕1(1) the canonical line bundle on P (C⊕1). Define the Segre
class s(C) ∈ CH∗X of the cone C as

s(C) = q∗

∑
i≥0

c1(OC⊕1(1))i ∩ [P (C ⊕ 1)]

 .

Proposition A.3.20. If E is a vector bundle over X of rank r, then

s(E) = c(E)−1 ∩ [X] ,

where c(E) = 1 + c1(E) + ...+ cr(E) is the total Chern class of E.

Proof. See [Ful84, Proposition 4.1 a), Section 20.1].

Definition A.3.21. Let X and Y be S-schemes.

(i) A sequence of elements a1, ..., ad in a ring A is called a regular sequence, if the
ideal J := (a1, ..., ad) is proper ideal of A and the image of ai in A/(a1, ..., ai−1)
is a non-zero-divisor, for all i = 1, ...d.

(ii) A closed imbedding i : X → Y is called a regular imbedding of codimension d, if
every point of X has an affine neighborhood U = SpecA in Y , such that the ideal
J in A defining i : X → Y locally is generated by a regular sequence of length d.

(iii) A morphism f : X → Y is called local complete intersection (l.c.i) morphism of
codimension d, if there is a factorization f = g ◦ i, with a regular imbedding i of
codimension e and a smooth morphism g of relative S-dimension d+ e.
So in contrast to standard usage, we require an l.c.i. morphism to admit such a
global factorization.

The following Proposition is often helpful:

Proposition A.3.22. Let X and Y be S-schemes.

(i) If X and Y are regular, then each closed imbedding i : X → Y is a regular
imbedding.

(ii) If X and Y are regular, then each projective morphism f : X → Y is an l.c.i.
morphism.
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Proof. The claim in (i) is proven in [EGA, IV 19.1.1]. For (ii) we note that regular
schemes admit ample line bundles by [SGA, exp. II Corollaire 2.2.7.1 and Définition
2.2.5]. By [EGA, II 5.5.4 (ii)] we get that f : X → Y factors into a closed immersion
X → PrY for some r ∈ N followed by the projection PrY → Y . Then the claim follows
directly from (i), since PrY → Y is smooth and hence PrY is regular.

Remark A.3.23. Let X and Y be S-schemes. If i : X → Y is a regular imbedding
of codimension d with ideal sheaf J , J/J2 is a locally free OX -module of rank d and
there is a canonical isomorphism

Sym•(J/J2)→
⊕
n≥0

(Jn/Jn+1),

i.e.,
CXY = Spec (Sym•(J/J2))

is a vector bundle on X, with sections dual to J/J2.

Definition A.3.24. Let X and Y be S-schemes. If i : X → Y is a regular imbedding
of codimension d with ideal sheaf J , the cone CXY is also called the Normal Bundle
NXY of X in Y , a vector bundle on X.

Remark A.3.25. Let S be a locally Noetherian scheme and Y → S be a smooth
separated morphism. Then any section π : S → Y of f is a regular immersion and
with normal bundle canonically isomorphic to the tangent bundle TY/X of Y over X
(cf [Liu02, Corollary 6.3.14]). Hence for any morphism f : X → Y of S-schemes with Y
smooth, the graph morphism γf : X → X ×S Y is a regular imbedding of codimension
n = dimS Y (as it is a section of the smooth morphism X ×S Y → X). In particular,
the diagonal δ : Y → Y ×S Y of a smooth S-scheme Y is a regular imbedding of
codimension n = dimS Y .

A.4 Deformation to the Normal bundle

Proposition A.4.1. (Deformation to the Normal Cone) Let i : X → Y be a closed
imbedding of S-schemes, with Normal Cone C = CXY .
Then there exists a uniquely determined scheme M := MXY with the following prop-
erties:

(i) There is a commutative diagram

X ×S P1
S

pr
##

ĩ //M

ρ��
P1
S

,

with a closed imbedding ĩ.

(ii) Over A1
S = P1

S − {∞} we have ρ−1(A1
S) = Y ×S A1

S.



64 APPENDIX A. FULTON’S THEORY FOR S-SCHEMES

(iii) Over {∞} the Cartier divisor M{∞} := ρ−1({∞}) is the sum of two effective
Cartier divisors

M{∞} = P (C ⊕ 1) + BlXY .

(iv) The closed imbedding

ĩ∞ : X = X ×S {∞} →M{∞} ,

induced by ĩ, is given by the composition of the zero section of X in C with the
canonical open imbedding of C in P (C ⊕ 1).

(v) The intersection of the two divisors P (C⊕ 1) and BlXY is P (C), regarded as the
hyperplane at infinity in P (C ⊕ 1) resp. as the exceptional divisor of BlXY .

(vi) In particular, ĩ∞(X) ∩ BlXY = ∅. The closed imbedding ĩ gives a family of
imbeddings of X

X ×S P1
S

pr
##

ĩ //M0 := M − BlXY

ρ0
ww

P1
S

,

which deforms the given imbedding i to the zero section ĩ∞ of X in C.

Proof. The scheme M is given by setting

M := BlX×S{∞}(Y ×S P1
S).

The detailed computations which show the properties follow from [Ful84, Section 5.1,
Section 20.1] by replacing any appearances of X × An and X × Pn by X ×S AnS and
X ×S PnS respectively.

Proposition A.4.2. Let i0 : X → Y be a closed immersion of S-schemes with Nor-
mal Cone C = CXY of schemes of finite type and separated over a separated regular
Noetherian base scheme S. The specialization homomorphisms

σ : ZkY → ZkC

are given by σ[V ] = [CV ∩XV ] for all k ∈ Z. They are well-defined and agree with
rational equivalence, i.e., these σ induce specialization homomorphisms

σ : CHkY → CHkC.

Proof. The proof follows from [Ful84, Proposition 5.2, Section 20.1].
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A.5 Refined Gysin homomorphisms

We are now able to give the crucial construction of the refined Gysin homomorphisms
for regular imbeddings of schemes.

Construction A.5.1. Let i : X → Y be a regular imbedding of codimension d (with
ideal sheaf J and normal cone NXY ) of S-schemes.

(i) Let f : V → Y be a morphism and

W

g

��

j // V

f
��

X
i // Y

a fiber square. Let N := g∗NXY be the Normal bundle and π : N → W denote
the projection. The ideal sheaf JX/Y of X in Y maps onto the ideal sheaf JW/V
of W in V , so we get a surjection⊕

n≥0
g∗(JnX/Y /J

n+1
X/Y )→

⊕
n≥0

(JnW/V /J
n+1
W/V ).

This gives a closed imbedding CWV → N and the diagram

CWV

##

// N

~~
W

commutes. If V is relative equidimensional of dimension d, then so is CXY by
Proposition A.3.18 (v).
Define

X.V = s∗N [CWV ] ∈ CHk−d(W ),

where s∗N is the Gysin morphism of the zero section sN of N as in Definition
A.3.12.

(ii) For a morphism f : Y ′ → Y form the fiber square

X ′

g

��

j // Y ′

f
��

X
i // Y

.

We define the refined Gysin homomorphisms by

i! : CHkY
′ → CHk−dX

′,
∑

ni[Vi] =
∑

niX.Vi.

Note, that the cone CX′Y
′ is a closed subscheme of N = g∗NXY , so i! is the

composition

ZkY
′ σ→ ZkCX′Y

′ → CHkN
s∗N→ CHk−dX

′,
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with σ the specialization homomorphism as in Proposition A.4.2 and s∗N the Gysin
homomorphism of the zero section sN in N as in Definition A.3.12. These agree
with rational equivalence, so the refined Gysin homomorphisms are well-defined.
For Y ′ = Y , f = idY , these are simply called Gysin homomorphisms, denoted by

i∗ : CHkY → CHk−dX.

Theorem A.5.2. Let i : X → Y be a regular imbedding of codimension d (with ideal
sheaf J and normal bundle NXY ) of S-schemes. Form the fiber square

X ′′

q
��

i′′ // Y ′′

p
��

X ′

g

��

i′ // Y ′

f
��

X
i // Y

.

(i) (push-forward) If p is proper and α ∈ CHkY
′′, then

i!p∗(α) = q∗i
!(α) in CHk−dX

′.

(ii) (pull-back) If p is flat of relative S-dimension n and α ∈ CHkY
′, then

i!p∗(α) = q∗i!(α) in CHk+n−dX
′′.

(iii) (excess formula) If i′ is also a regular imbedding of codimension d′, we have a
canonical imbedding

NX′Y
′ → g∗NXY ,

with its quotient is a vector bundle E of rank e = d−d′, called the excess Normal
bundle. For all α ∈ CHkY

′′ we have

i!(α) = ce(q
∗E) ∩ i′!(α) in CHk−dX

′′.

(iv) (self intersection) For α ∈ CHkX we have

i∗i∗(α) = cd(NXY ) ∩ α in CHk−dX.

(v) (Chern class and Gysin) For a vector bundle F on Y ′, α ∈ CHkY
′ and m ≤ 0 we

have
i!(cm(F ) ∩ α) = cm(i′

∗
F ) ∩ i!α in CHk−d−mX

′.

(vi) (Commutativity) Let j : S → T be a regular imbedding of codimension e of
S-schemes. For the fiber square

Y ′′

p
��

// S

j
��

Y ′ // T
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and all α ∈ CHkY
′ we have

i!j!(α) = j!i!(α) in CHk−d−eX
′′.

(vii) (Functoriality) Let j : Y → Z be a regular imbedding of codimension e of
S-schemes and

Y ′

f
��

// Z ′

h
��

Y
j // Z

a fiber square. Then j ◦ i : X → Z is a regular imbedding of codimension d + e
and for all α ∈ CHkZ

′,

(j ◦ i)!(α) = i!j!(α) in CHk−d−e(X
′)

(viii) If Y is S-equidimensional, then f ![Y ] = [X] ∈ CHdimS X(X).

(ix) (effective Cartier divisors) An effective Cartier divisor f : D → X can be viewed
as a regular immersion of codimension one. In this case the refined Gysin homo-
morphism f ! coincides with the intersection product of effective Cartier divisors
as in Construction A.2.1, i.e.

D.divisors[W ] = f !([W ]) ∈ CHn−k−1(W ×X D)

for [W ] ∈ CHn−k(W )

Proof. Using [Ful84, Section 20.1], the results can be found in the following places: (i)
and (ii) can be found in [Ful84, Theorem 6.2], (iii) and (iv) are in [Ful84, Theorem 6.3],
(v) is [Ful84, Proposition 6.3], (vi) is [Ful84, Theorem 6.4], (vii) is [Ful84, Theorem
6.5], (viii) is [Ful84, Example 6.2.1] and (ix) follows from [Ful84, Example 6.2.3 and
Example 3.3.1].

Proposition A.5.3. Let

X ′

h
��

i′ // Y ′

g

��

p′ // Z ′

f
��

X
i // Y

p // Z

be a cartesian diagram.

(i) Let i be a regular imbedding of codimension d, p resp. pi flat of relative S-
dimension n resp. n− d. Then i′ is a regular imbedding of codimension d, p′ and
p′i′ are flat and for all α ∈ CHkZ

′,

(p′i′)∗(α) = i′∗(p′∗α) = i!p′∗α in CHk+n−dX
′.

(ii) If i is a regular imbedding of codimension d, p smooth of relative S-dimension n
and pi a regular imbedding of codimension d− n.
Then for all α ∈ CHkZ

′,

(pi)!(α) = i!(p′∗α) in CHk+n−dX
′.
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Proof. [Ful84, Proposition 6.5, Section 20.1].

Definition A.5.4. Let f : X → Y be an l.c.i. morphism of codimension d and

X
i→ P

p→ Y

a factorization into a regular imbedding i of codimension d+e and a smooth morphism
p of relative S-dimension e. For a morphism h : Y ′ → Y and

X ′

h′

��

f ′ // Y ′

h
��

X
f // Y

cartesian we define p′ by the cartesian diagram

X ′

��

// P ′

��

p′ // Y ′

��
X // P // Y

and the Gysin morphism f ! by

f ! : CHkY
′ → CHk−dX

′ , f !(α) = i!(p′∗α).

Proposition A.5.5. (i) If p is also separated, this definition of f ! is independent of
the choice of a factorization of f .

(ii) For an flat l.c.i. morphism f we have (f ′)∗ = f !.

(iii) We get analogous properties as in Theorem A.5.2 (i), (ii), (vi) and (viii) for l.c.i.
morphisms. For the functoriality in (vii) we have to assume, that all morphisms
allow a factorization into a closed immersion followed by a smooth morphism,
and that we can form a diagram

X //

f ��

P

��

// R

��
Y //

g
��

Q

��
Z

,

with the horizontal maps being regular imbeddings and the upper right square is
Cartesian. The assertion in (iii) is valid as well if the excess normal bundle E
for l.c.i. morphisms f and f ′ is defined to be

E = h′∗NXP/NX′P
′

for P and P ′ as in Definition A.5.4.

Proof. [Ful84, Proposition 6.6, Section 20.1].
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A.6 Intersection theory for smooth schemes over a one-
dimensional base

In this section we fix a Noetherian, excellent, regular and separated base scheme S of
(Krull) dimension one. As usual, an S-scheme is a separated scheme which is of
finite type over S. In case that an S-scheme X is smooth over S, we can use Fulton
definition of an intersection product as in [Ful84, Section 8, Section 20.2]. There are
two ingredients to his construction, which we will discuss in the following. The first
one is an explicit description of exterior products:

Proposition A.6.1. Let X and Y be S-schemes. For closed integral subschemes
V → Y with dimS V = k and W → X with dimSW = k′ define the product cycle

[V ]×S [W ] =

{
[V ×S W ] if V or W is flat over S,

0 otherwise
∈ CHk+k′(X ×S Y ).(A.3)

This passes to rational equivalence and gives the exterior product

× : CHk(X)⊗ CHk′(Y )→ CHk+k′(X ×S Y ).

Proof. By [Ful84, Proposition 20.2] we see that the construction of the exterior product
passes to rational equivalence.

Proposition A.6.2. The exterior products

× : CHk(X)⊗ CHk′(Y )→ CHk+k′(X ×S Y )

for S-schemes X and Y as in Proposition A.6.1 are commutative and associative and
are compatible with proper pushforward, flat pullback and refined Gysin homomorphisms
in the following way: Let f : X ′ → X and g : Y ′toY be morphisms of S-schemes and
let f ×S g be the induces morphism from X ′ ×S Y ′ to X ×S Y . Then we have:

(i) If f and g are proper, so is f ×S g and we have

(f ×S g)∗(α×S β) = f∗α×S g∗β ∈ CHk+k′(X ×S Y )

for α ∈ CHk(X
′) and β ∈ CHk′(Y

′).

(ii) If f and g are flat of relative S-dimensions m and n, then f×S g is flat of relative
S-dimension m+ n and we have

(f ×S g)∗(α×S β) = f∗α×S g∗β ∈ CHk+k+m+n(X ′ ×S Y ′)

for α ∈ CHk(X) and β ∈ CHk′(Y ).

(iii) If f and g are regular imbeddings of codimensions m and n, then f ×S g is a
regular imbedding of codimension m+ n and we have

(f ×S g)!(α×S β) = f !α×S g!β ∈ CHk+k−m−n(X ′ ×S Y ′)

for α ∈ CHk(X) and β ∈ CHk′(Y ).
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Proof. The exterior products are commutative and associative by definition. Part (i)
and (ii) are proven in [Ful84, Proposition 1.10], part (iii) in [Ful84, Example 6.5.2] in
the case of schemes over a field. In [Ful84, Section 20.2], Fulton states that the same
properties hold for S-schemes (with S onedimensional).

The second important fact for the following construction is that if f : X → Y is a
morphism of S-schemes with Y smooth, then

γf : X → X ×S Y

is a regular imbedding of codimension n = dimS Y (cf. Remark A.3.25). Using the
refined Gysin homomorphisms, Fulton constructed an intersection product for smooth
schemes over a one-dimensional base scheme as follows:

Proposition A.6.3. Let Y be a smooth S-scheme and set n = dimS Y . Given two
closed subset X,Z ⊆ Y , put the reduced induced structure of a closed subscheme to get
separated morphisms iX : X → Y , iZ : Z → Y of finite type. We form the fiber square

X ×Y Z −−−−→ X ×S Zy yidX×S iZ

X
γiX−−−−→ X ×S Y

and define the refined intersection product

.Fulton : CHk(X)⊗ CHk′(Z)→ CHk+k′−n(X ×Y Z), α⊗ β 7→ γiX
! (α×S β),

where
γiX

! : CHk+k′(X
′ ×S Y ′)→ CHk+k′−n(X ′ ×Y Y ′)

is the refined Gysin homomorphism of the graph γiX : X → X ×S Y . This product is
associative, commutative, satisfies the projection formula and is compatible with refined
Gysin homomorphisms of regular imbeddings (cf. [Ful84, Proposition 8.1.1, Section
20.2])

Proof. This follows from [Ful84, Example 20.2.1] by setting X ′ = X.

Remark A.6.4. We emphasize, that the results of this section work in greater general-
ity, namely for smooth separated schemes X which are of finite type over a Noetherian
one-dimensional regular base scheme S (cf. [Ful84, Section 20.2]).
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arXiv:1207.3648, 2012.

[dJ96] de Jong, A. J.: Smoothness, semi-stability and alterations. Publ. Math.
IHES, 83, pp. 51-93, 1996.

[dJ97] de Jong, A. J.: Families of curves and alterations. Ann. Inst. Fourier, 47,
pp. 599–621, 1997.

[KT87] Kleiman, S. ; with the collaboration of Thorup, A. on §3: Intersection
theory and enumerative geometry: a decade in review. Proc. Sympos. Pure
Math. (Algebraic geometry, Bowdoin, 1985), 46, pp.321-370, 1987.

71

http://arxiv.org/abs/1412.0868
http://arxiv.org/abs/1207.3648


72 BIBLIOGRAPHY

[Liu02] Liu, Q.: Algebraic geometry and arithmetic curves. Oxford Grad. Texts
Math., 6, Oxford University Press, Oxford, 2002.

[Mat70] Matsumura, H.: Commutative algebra. Benjamin, New York, 1970.

[ML98] Mac Lane, S.: Categories for the working mathematician. Grad. Texts
Math., 5, Springer, Berlin, 1998.

[RG71] Raynaud, M. ; Gruson, L.: Critères de platitude et de projectivité. Tech-
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