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Orthogonal Cherenkov sound in 
spin-orbit coupled systems
Sergey Smirnov

Conventionally the Cherenkov sound is governed by orbital degrees of freedom and is excited by 
supersonic particles. Additionally, it usually has a forward nature with a conic geometry known 
as the Cherenkov cone whose axis is oriented along the supersonic particle motion. Here we 
predict Cherenkov sound of a unique nature entirely resulting from the electronic spin degree of 
freedom and demonstrate a fundamentally distinct Cherenkov effect originating from essentially 
subsonic electrons in two-dimensional gases with both Bychkov-Rashba and Dresselhaus spin-orbit 
interactions. Specifically, we show that the axis of the conventional forward Cherenkov cone gets 
a nontrivial quarter-turn and at the same time the sound distribution strongly localizes around this 
rotated axis being now orthogonal to the subsonic particle motion. Apart from its fundamentally 
appealing nature, the orthogonal Cherenkov sound could have applications in planar semiconductor 
technology combining spin and acoustic phenomena to develop, e.g., acoustic amplifiers or sound 
sources with a flexible spin dependent orientation of the sound propagation.

Dating from the idea of a spin transistor1, systems with spin-orbit interactions have been attracting vasty 
interest because of a possibility to access the electronic spin degree of freedom by exclusively electric 
means and currently constitute a considerable part of contemporary spintronics2,3.

The interaction between the orbital and spin degrees of freedom is a relativistic effect and qualitatively 
it may be understood as a transformation of electric fields into magnetic fields in the rest system of an 
electron.

In two-dimensional semiconductor heterostructures two types of spin-orbit interaction are of particu-
lar importance. The first one is the Dresselhaus4 spin-orbit interaction due to the inversion asymmetry 
of the semiconductor crystal structure. The second one is the Bychkov-Rashba5 spin-orbit interaction 
appearing in asymmetric structures such as, e.g., asymmetric quantum wells. In realistic systems both 
of these spin-orbit interactions are usually present and of comparable strengths which can be measured 
through, e.g., Shubnikov-de Haas oscillations6,7, photocurrents8, optical monitoring of the spin preces-
sion9.

A qualitatively different class of condensed matter systems, where spin-orbit interactions are crucial, is 
the one of topological insulators10,11, the phase of matter where metallic edges coexist with an insulating 
bulk. The physics of the metallic edges is governed by helical states12,13. The surface helical states form 
Kramers pairs and the time reversal invariance leads to zero gap (or metallic) nature of these states while 
the states in the bulk are of finite gap (or insulating) character. The surface helical states are intimately 
linked to the bulk states and the time reversal invariance constrains the number of the Dirac points by 
even numbers.

Spin-orbit interaction mechanisms give rise to fascinating physical phenomena such as the intrinsic 
spin-Hall effect14,15 in semiconductors or the quantum spin-Hall effect16 in topological insulators, per-
sistent spin helix17 as an interplay between the Bychkov-Rashba and Dresselhaus mechanisms in semi-
conductors or spin-transfer torques18 in topological insulators with applications to non-volatile memory.

The examples above spin around the electron dynamics. The spin-orbit physics has, however, another 
side related to the dynamics of the crystal lattice or phonons. Although the electron-phonon interaction 
has an orbital nature, the dynamics of the electronic orbital degrees of freedom is strongly affected by 
the electron spin degree of freedom in systems with spin-orbit interactions. Therefore, the impact of 
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the electron spin on the phonon dynamics is of fundamental and practical interest. While the impact of 
phonons on the electron spin dynamics was extensively studied ( e.g., Dyakonov-Perel’19 mechanism or 
spin decay in quantum dots20,21), the role of the electron spin in the phonon dynamics was less explored.

One important aspect of the phonon dynamics is the acoustic Cherenkov effect, a counterpart of the 
optical Cherenkov effect22,23 where a medium emits a forward light cone under the action of superlight 
particles passing through this medium with velocities larger than the medium speed of light. Likewise, a 
medium emits a forward sound cone excited by supersonic particles whose velocity exceeds the medium 
sound velocity.

The presence of spin-orbit interaction mechanisms changes this picture. In two-dimensional semi-
conductor heterostructures with the Bychkov-Rashba spin-orbit interaction supersonic particles excite 
sound filling the forward Cherenkov cone and also the outward Cherenkov cone containing backward 
or anomalous (optical anomalous Cherenkov effect24, exists too but, in contrast to the present case, due 
to the spatial inhomogeneity) Cherenkov sound25. In other words, the Cherenkov cone angle which is, 
conventionally, between 0 and π /2 extends to π . On surfaces of three-dimensional topological insulators 
the Cherenkov sound is excited by helical particles which are always supersonic since the Dirac velocity 
is well above the sound velocity. In this case the geometry of the Cherenkov sound is also conic with 
the Cherenkov cone angle exceeding π /2, i.e., the anomalous Cherenkov sound is generated in this case 
too. What makes the Cherenkov sound in topological insulators distinct is that at high energies it may 
strongly localize along certain directions26. Additionally, at low energies a magnetic field control of the 
Cherenkov sound in topological insulators may be of practical interest27.

The arc of vision above might suggests that spin-orbit interaction mechanisms enlarge the Cherenkov 
cone angle but, nevertheless, the very core of the Cherenkov physics remains unchanged: 1) the Cherenkov 
sound is still excited by supersonic particles; 2) its geometry still represents a single cone (although, the 
cone angle may exceed π /2); 3) the cone axis is still oriented along the direction of motion of the super-
sonic particle exciting the Cherenkov sound.

In the following we explore the acoustic Cherenkov effect in realistic two-dimensional semiconductor 
heterostructures with both Bychkov-Rashba and Dresselhaus spin-orbit interaction mechanisms of com-
parable strengths and demonstrate that peculiar coupling between the orbital and spin dynamics results 
in an acoustic Cherenkov effect of a unique nature fundamentally different from what has been known 
so far: 1) the Cherenkov sound is generated by essentially subsonic electrons; 2) the geometry of the 
Cherenkov sound excited by subsonic electrons represents a double cone; 3) the axis of the Cherenkov 
double cone gets a quarter-turn and, therefore, is orthogonal to the direction of motion of the sub-
sonic particle exciting the Cherenkov sound; 4) the Cherenkov sound distributed within this rotated 
Cherenkov double cone is strongly localized around the cone axis or, in other words, the Cherenkov 
sound acquires an orthogonal nature.

A qualitative illustration of the orthogonal Cherenkov sound is shown in Fig. 1. In a two-dimensional 
electron gas with the Bychkov-Rashba and Dresselhaus spin-orbit interactions the electronic states are 
characterized (see below) by their chiralities λ  and momenta ( )φ= ,p p p , where φ ≡ /p pcos xp , 
φ ≡ /p psin yp . The energy spectrum consists of two branches, the upper (λ  =  + 1) and the lower 

(λ  =  − 1) ones. The isoenergy surfaces represent ellipses whose major axes is oriented along the line 
specified by the beams with the polar angle 3π /4 or 3π /4 +  π . When the strengths of the two spin-orbit 
interaction mechanisms are comparable the major axes of these ellipses get much longer than the minor 
ones and the ellipses become extremely narrow. If an incident electron in the upper branch has a momen-
tum pi (here and below the subscripts i and f denote initial and final states, respectively) such that 
φ π= /3 4pi

, then, being subsonic at low energies, it will be unable to excite Cherenkov sound by virtue 
of intrachiral (λ i =  +  1 →  λ f =  +  1) transitions. However, interchiral (λ i =  +  1 →  λ f =  − 1) transitions 
with φ π≈ ,− 0p pi f

 will not generate Cherenkov sound either because along these directions the electron 
energy changes very slowly and, despite the additional energy due to the energy gap between states with 
opposite chiralities, the electron energy loss is not compatible with its momentum change to emit a 
phonon. On the other side, interchiral transitions with φ π≈ ± /− 2p pi f

 might generate Cherenkov 
sound (red areas in Fig. 1). Along these directions the electron energy changes faster and in combination 
with the energy gap between states with opposite chiralities such transitions may satisfy the energy and 
momentum conservation laws, pi =  pf  +  q, εi =  εf  +  ħωq (q is the phonon momentum and ħωq is its 
energy), see Fig. 1.

To quantitatively verify whether subsonic electrons may excite the Cherenkov sound within the above 
mentioned qualitative scenario as well as to explore its properties we briefly formulate below the com-
putational scheme used to obtain the Cherenkov sound intensity. The single-particle Hamiltonian is:

 ( ) ( )α
σ σ

β
σ σ= + − + − , ( )

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH
m

p p p p
p

2 * 1x y y x x x y y

2

where m* is the electron effective mass, α and β are the strengths of the Bychkov-Rashba and Dresselhaus 
spin-orbit interactions, respectively. The eigenenergies of Ĥ  are
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The phonon part28 of the total Hamiltonian is
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where for the acoustic phonons ħωq =  c  q  with c being the sound velocity. The first term in Eq. (4) 
describes the phonon gas in terms of the second quantized operators ( )δ

 ,

 =′ ′

†b bq q qq  while the second 

Figure 1.  A qualitative illustration of the orthogonal Cherenkov sound in a two-dimensional electron 
gas with Bychkov-Rashba and Dresselhaus spin-orbit interactions. Part a) shows the process of the 
orthogonal Cherenkov sound generation in the plane of the two-dimensional electron gas. Part b) illustrates 
the corresponding interchiral transition using a three-dimensional representation of the electron spectrum 
(Eqs. (2) and (3)) at low energies and small momenta. A subsonic electron with the initial momentum pi 
(black arrow) and chirality λ i =  +  1 (the corresponding energy is ε ε≡ λi pi i

) changes its state via the 
electron-phonon interaction. The electron final state is characterized by the momentum pf (blue arrow) and 
chirality λ f =  − 1 (the corresponding energy is ε ε≡ λf pf f

). The electron group velocity in the initial state 
vg =  ∂εi/∂pi (wide black arrow) has the same direction as the initial momentum pi. The momentum and 
energy conservation laws admit the emission of a phonon (red wavy arrow connecting the vectors pi and pf) 
within the double cone whose axis is orthogonal to pi or vg. The phonon momentum and energy are 
q =  pi − pf, ħωq =  εi − εf, respectively. Thus, instead of the normal forward or anomalous backward Cherenkov 
sound excited by supersonic particles within a cone whose axis is parallel to pi or vg, the subsonic particles 
in spin-orbit coupled systems may excite a unique Cherenkov sound within a double cone whose axis gets a 
quarter-turn with respect to pi or vg, as shown by multiple phonons (multiple red wavy arrows) within the 
red area indicating the Cherenkov double cone.
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one describes the electron-phonon interaction of strength gph via the coupling to the electron field oper-
ators ψ ψ δ δ


 ( ), ( ′) = ( − ′)



σ σ σσ′ ′

ˆ ˆ †{ }r r r r .

Let us mention that the electron-phonon interaction in Eq. (4) is of the deformation potential type. In 
noncentrosymmetric crystals the piezoelectric electron-phonon coupling mechanism might also become 
important and in principle for a quantitative analysis both electron-phonon interactions should be con-
sidered. However, focusing on the qualitative aspect, we note that the orthogonal Cherenkov sound 
results from the general conservation laws of the energy and momentum and, therefore, its very existence 
can be predicted within a minimal model taking into account for simplicity only one electron-phonon 
interaction mechanism. It is our goal here to demonstrate within a minimal model the existence of an 
unusual Cherenkov effect which, in contrast to the known Cherenkov effects, is neither forward nor 
backward but, to some extent, is of an intermediate orthogonal nature. Moreover, taking into account 
possible applications in spintronic devices with a magnetic field control the deformation potential 
electron-phonon coupling mechanism may become dominant in InAs based structures29.

We follow the standard calculation25–27,30 to obtain the self-energy being the sum of the single-particle 
irreducible Feynman diagrams contributing to the electron Green’s function Gλp(t −  t′ ) defined with 
respect to the physical vacuum Ψ0 , ψ ψ( − ′) = − Ψ ( ) ( ′) Ψλ λ λ

†G t t i T t tp p p0 0 , where the electronic 
field operators are in the Heisenberg representation. We calculate the self-energy in the second order in 
gph which is equivalent to the Fermi’s golden rule but the self-energy approach has a more systematic 
form easily generalized to derivations of the Cherenkov effect resulting from higher orders in gph as might 
be important in cases where the second order Cherenkov effect is absent. The dimensionless Cherenkov 
sound intensity as a function of the polar angle is obtained from the imaginary part of the self-energy,

 ∫ε
π

φ φ
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2 5
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2 2 2

3

on the mass surface, ε =  ελp, with λ  =  + 1. It is given as the sum of the two terms, W(φ) =  W1(φ) +  W2(φ), 
originating, respectively, from intrachiral and interchiral transitions:
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where q′  ≡ q  /m*c, h1,2(q′ ,φ) ≡ (8/m*c2)∂q′ψ1,2(q′ ,φ), ψ φ ε ε( ′, ) ≡ − −λ λ, =+ , =± , −q c qp p q1 2 1 10 0
, 

φ φ φΦ( ′, ) ≡ Δ − Δ− −
q p q p q0 0

, Δ φp ≡ φp −  φ0, φ φ φΔ ≡ −  

p p 0, φ φ≡ p0 0
, φ φ≡ 

p0 0
, p0 is the initial 

electron momentum and the summation is over all the roots qj(φ) of the momentum-energy conserva-
tion equations,

Figure 2.  Cherenkov sound intensity as a function of the polar angle for different values of v/c. The 
parameters are for the two-dimensional electron gas formed in an InAs quantum well structure with 
c =  4.2 ⋅  103 m/s, m* =  0.038m0 (m0 is the free electron mass), α =  0.15 ⋅  10−11 eV⋅ m, β/α =  0.85. The 
sound is excited by electrons with λ  =  +  1 and momenta with orientation  φ0 =  3π /4. The electron group 
velocity, vg ≡ ∂ελp/∂p, has the same orientation.
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where vso ≡ pso/m* is the anomalous spin-dependent velocity31 and v ≡ p0
/m*.

In Fig.  2 we show the total Cherenkov sound intensity, W(φ) =  W1(φ) +  W2(φ). For large v/c the 
Cherenkov sound is excited by supersonic electrons. In this case the sound is generated by both intra-
chiral and interchiral transitions and has the standard conic geometry where the cone axis has the same 
orientation φ0 as the electron momentum or group velocity and the cone angle extends up to π  as 
expected25 in spin-orbit coupled systems for supersonic electrons. When v/c decreases the intrachiral 
contribution to the Cherenkov sound decays, the interchiral contribution starts to dominate and the 
sound intensity rapidly decreases along the standard cone axis, i.e., in the vicinities of the angles φ =  φ0 
and φ =  φ0 +  π . For smaller v/c these vicinities grow into broad areas which eventually enclasp the whole 
space apart from the two enclaves around the two angles φ =  φ0 ±  π /2, i.e., an orthogonal Cherenkov 

Figure 3.  The two-dimensional distribution of the Cherenkov sound in the plane of an InAs quantum 
well. Here v/c =  10−5, c =  4.2 ⋅  103 m/s, m* =  0.038m0 (m0 is the free electron mass), α =  0.15 ⋅  10−11 eV⋅ m, 
β/α =  0.85. The sound is excited by electrons with λ  =  +  1 and momenta with orientation φ0 =  3π /4. The 
electron group velocity, vg ≡ ∂ελp/∂p, has the same orientation.
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double cone forms as the most elegantly demonstrated by the blue curve for which v/c =  10−5 and 
v g /c ≈  0.0814 (deep subsonic regime).

The actual distribution of the Cherenkov sound within the plane of the quantum well is best visual-
ized using the polar coordinates as is done in Fig. 3. The parameters of the quantum well are the same 
as the ones used to obtain the data shown in Fig. 2 for v/c =  10−5 (deep subsonic regime, v g /c ≈  0.0814). 
In this representation the orthogonal nature of the Cherenkov sound is clearly revealed: the sound (dark 
areas) is localized mainly along the two directions orthogonal to the electron momentum or group veloc-
ity direction (red arrow) and consists of the left and right shoulders forming a narrow orthogonal 
Cherenkov double cone.

Finally, Fig. 4 demonstrates the total Cherenkov sound intensity for the case α =  β for the same values 
of v/c as in Fig. 2. As one can see, here the Cherenkov sound has also an orthogonal nature. The locali-
zation of the Cherenkov sound around the direction perpendicular to vg happens in this case faster 
because already for v/c =  10−2 one reaches the deep subsonic regime, v g /c ≈  10−2. For even smaller 
values of v/c all the sound intensity curves collapse onto one curve representing the saturation limit 
corresponding to the linear dispersion of the initial electronic state ελ=+1,p for small momenta, p  ≈  0. 
Note also that for α =  β the size of the localization domain also saturates so that the width of the peaks 
cannot be reduced by further decreasing v/c.

In conclusion we would like to mention that, in addition to its unique fundamental nature described 
above, the Cherenkov sound represents a general and realistic channel of the electron energy dissipation. 
Usually one assumes that at low energies the conventional Cherenkov dissipation is locked out since 
all particles are subsonic. Our analysis, however, shows that this is not the case in spin-orbit coupled 
systems and in practice one encounters the problem of energy losses also in the subsonic regime which 
might be important for phonon-limited low-field electron mobility32 being crucial for efficient high clock 
frequency and low power spintronics. Another practical aspect of the orthogonal Cherenkov sound is 
in diverse combinations of modern spintronics and acoustics to build such devices as acoustic amplifi-
ers33–35 or sources of sound36 based on the acoustic Cherenkov effect with a flexible control of the sound 
direction determined by the electron spin dynamics in contrast to the more conventional manipulation 
mechanisms based on the orbital dynamics.
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