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Thermally induced spin-dependent transport across magnetic tunnel junctions (MTJs) is theoretically
investigated. We analyze the thermal analog of Slonczewski’s model (as well as its limiting case—Julliere’s
model) of tunneling magnetoresistance and obtain analytical expressions for the junction thermopower and
the tunneling magnetothermopower (TMT). The analytical model is tested numerically for the special case
of an Al2O3-based MTJ, for which we analyze the dependence of the thermopower and TMT on the relative
magnetization orientations, as well as on the barrier height and thickness. We show that at a certain barrier height
TMT vanishes, separating the region of positive and negative TMT. As its electrical prototype, this thermal spin
transport model should serve as a phenomenological benchmark for analyzing experimental and first-principles
calculations of thermopower in magnetic tunnel junctions. The analytical expressions can be used as a first estimate
of the magnetothermopower of the junctions using ab initio band structure data of the junction ferromagnets.
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I. INTRODUCTION

Traditionally, electric fields have been used as the main
force to induce and explore spin-dependent transport in solid-
state systems. This has lead to the fundamental and techno-
logically profitable field of spintronics [1]. Nevertheless, in
recent years we have witnessed how research on thermally
driven spin-dependent transport has flourished, bringing forth
a new field known as spin caloritronics, which merges
spintronics with classical thermoelectricity [2]. The former
deals with the interplay between the charge and spin degrees
of freedom of carriers, while the latter with the generation of
voltages induced by temperature gradients (and vice versa)
[3]. Therefore, spin caloritronics addresses the interaction
between spins and heat curents on the transport properties of
a system. Although nominally it is a new field, already in the
1980s Johnson and Silbsee performed thermodynamic studies
on spin-injection across ferromagnetic-nonmagnetic interfaces
[4,5]. More recently, Gravier et al. measured spin-dependent
heat transport across Co/Cu multilayers [6,7]. However, the
field came to prominence with the discovery of the so called
spin-Seebeck effect [8–12].

In this framework, spin-valves have proved to be excellent
systems for probing spin caloritronic phenomena [13–24]. An
ordinary spin-valve is a heterostructure composed of two fer-
romagnetic materials separated by a mesoscopic nonmagnetic
layer. Varying the relative orientation of the magnetizations
of the ferromagnets allows us to study the spin-dependent
properties of the system. When the nonmagnetic material is an
insulator or a semiconductor, spin-valves are usually referred
to as a magnetic tunnel junctions (MTJs). In order to explore
the spin-dependent thermoelectric properties of a spin-valve, a
temperature gradient is applied across the system (see Fig. 1),
which induces charge, spin, and/or heat currents— or voltages.

In classical thermoelectricity, a material is characterized by
its thermal conductivity, Peltier coefficient and thermopower.
In the following, we shall focus exclusively on the latter prop-
erty. The thermopower—also known as Seebeck coefficient—
measures the magnitude of an induced thermoelectric voltage
in response to a temperature gradient across the material. When
the spin degree of freedom is taken into account, in addition to

the charge voltage, a spin accumulation might also be induced
in the system. Analogously, the spin-Seebeck coefficient
measures the magnitude of a spin accumulation induced by
the temperature gradient [8–12]. Furthermore, when dealing
with spin-valves, it is commonly studied the dependence of
the thermopower on the relative magnetization orientations,
which has been dubbed the magneto-Seebeck effect [14,21].
Similar to the tunneling magnetoresistance (TMR), a tunneling
magnetothermopower (TMT) can also be defined [14].

Experimentally, Seebeck spin tunneling has been observed
in ferromagnet/insulator/silicon tunnel junctions [13], realiz-
ing thermal spin-injection into semiconductors. The magneto-
Seebeck effect was measured in MgO-based MTJs under heat
gradients created optically [14], electrically [15,25], and even
without an external heating source by using the heat dissipation
of the tunneling current [16]. Giant thermoelectric effects have
been observed in Al2O3-based MTJs [17]. Besides MTJs, all
metallic spin-valves have also been probed for spin-dependent
thermal properties [18].

From the theoretical point of view, spin-dependent thermal
transport has been studied in ferromagnet/insulator/ferrmagnet
MTJs [19]. In particular, a giant magnetothermopower effect
has been predicted by magnon-assisted thermal transport
[20]. Ab initio calculations have been performed for MgO-
based MTJs, where the TMT dependence on temperature
was computed [21,26,27], and which has been used to
understand previously mentioned experiments [14]. Similar
calculations have been performed for GaAs-based MTJs
[28]. Also, inspired by an aforementioned experiment [13],
theoretical descriptions of thermal spin transport for ferromag-
net/insulator/semiconductor MTJs have also been developed
[22,29]. Finally, theory regarding all-metallic junctions has as
well been recently studied [23,24,30,31].

Despite all this theoretical effort, to our knowledge, a more
elaborated analytical description of the magneto-Seebeck
effect in MTJs is still lacking.1 On the one hand, Slonczewski

1Except in the case of W. Lin et al. [17], where they used Julliere’s
model [38] to provide some insight to their experimental data.
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FIG. 1. (Color online) Scheme of a three-layer magnetic tunnel
junction. A thermally induced current tunnels across the insula-
tor/semiconductor tunneling barrier from one ferromagnet electrode
into the other. The thermopower and TMT depend on the relative
orientation of the magnetization of the left electrode nl (solid arrow)
with respect to the magnetization of the right electrode nr (dashed
arrow).

[32] developed an analytical model for describing the TMR
in ferromagnet/insulator/ferromagnet MTJs. On the other,
Mott derived a relation between the thermopower and the
energy derivative of the conductance for low temperatures
[33,34]. In this paper, we derive analytical expressions for both
the thermopower and the TMT by combining Slonczewski’s
model with Mott’s relation. We also study the limiting case—
Julliere’s model, which provides robust albeit highly simplified
expression for the junction magnetothermopower. We believe
the formulas obtained here should support both ab initio
calculations and experiments.

The paper is organized as follows: the definitions of
the thermopower and the TMT are given in Sec. II A, and
the transmission probability of the MTJ is computed in
Sec. II B. In Sec. II C we derive the analytical formulas for
the thermopower and the TMT. These analytical formulas
are evaluated in Sec. III, where they are compared to the
corresponding numerical calculations performed for the case
of an Al2O3-based MTJ. Finally, a summary is given in Sec. IV.

II. THEORY

A. Tunneling magnetothermopower

In general, the current I across a MTJ induced by a thermal
gradient is given by [35]

I = −GS�T, (1)

where G is the conductance, S the thermopower or Seebeck
coefficient, and �T the temperature difference between the
electrodes. This tunneling current can be computed through
[36]

I = 1

e

∫
g(E)[fL(E) − fR(E)]dE, (2)

where fL(E) and fR(E) are the Fermi-Dirac distributions of
the left and right electrodes respectively,

g(E) = e2

h

1

(2π )2

∫
T (E,k‖)d2k‖, (3)

and T (E,k‖) is the transmission probability associated with
an electron with energy E and transverse k vector k‖.

Therefore, combining Eqs. (1) and (2) in linear response
regime, the thermopower S and the conductance G are given
by the following integrals:

S = − 1

G

∫
g(E)

(
−∂f0

∂E

) (
E − μ0

eT0

)
dE, (4a)

G =
∫

g(E)

(
−∂f0

∂E

)
dE, (4b)

respectively, where μ0 and T0 are the chemical potential and
the temperature of the electrodes in equilibrium, respectively.
Performing the change of variable ε = E − μ0 in the integral
in Eq. (4a), it is straightforward to show that, for the
thermopower S to be finite, g(ε) must not be an even function,
i.e., g(ε) �= g(−ε).

The tunneling magnetothermopower, which measures the
dependence of the thermopower S on the relative in-plane
magnetization orientations, is defined as

TMT(φ) = S(0) − S(φ)

S(φ)
, (5)

where φ is the angle spanned between the magnetization
vectors of the ferromagnetic layers (see Fig. 1).

B. Computation of the transmission probability

In order to study the thermopower, the transmission
probability must be computed. For this purpose we use Slon-
czewski’s model [32,36], which describes the ferromagnetic
electrodes using the Stoner model [37], and the tunneling
barrier by means of a rectangular potential. This model also
assumes that the energy and transverse modes of the electrons
are conserved. The advantage that this description has is that
it allows to compute analytically the transmission probability
of the MTJ.

Thereupon, the Hamiltonian we use for describing the MTJ
is

H =
(

−�
2∇2

2m∗
i

+ Vi

)
I − �i

2
ni · σ , (6)

where the subscript i describes the left (l), central (c), and
right (r) layers. The first term in Eq. (6) corresponds to the
kinetic energy operator, where m∗

i is the electron effective
mass in the ith layer. The second term is the rectangular
potential barrier with Vl = Vr = 0. The third term accounts
for coupling between the magnetization and the electron spin
in the ferromagnetic leads (Stoner model), where �i and ni

correspond to the exchange energy and a unit vector parallel
to the magnetization, respectively, of the ith layer. Since the
tunneling barrier is not regarded as ferromagnetic �c = 0. The
magnetizations are both in-plane, and we take nl = (1,0,0)
and nr = (cos φ, sin φ,0), where φ is the angle between the
magnetization vectors of the ferromagnetic electrodes. Finally,
I and σ = (σx,σy,σz) are the unit matrix in spinor space and
the Pauli matrices, respectively.

Since the transverse modes k‖ of the conduction electrons
are conserved during the tunneling process, the calculation
of the transmission probability reduces to a one-dimensional
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problem. The wave functions found when solving the resulting
stationary Pauli-Schrödinger equation for a spin-σ electron
incoming from the left are [36]

ψlσ (z) = 1√
kσ

eikσ zχlσ + rσ,σ e−ikσ zχlσ + rσ̄ ,σ e−ikσ̄ zχlσ̄ ,

(7a)

ψcσ (z) =
∑
i=±

(Cσ,ie
qz + Dσ,ie

−qz)χli, (7b)

ψrσ (z) = tσ,σ eiκσ zχrσ + tσ̄ ,σ eiκσ̄ zχrσ̄ , (7c)

where kσ =
√

k2
σ0 − k2

‖ , q =
√

q2
0 + k2

‖ , and κσ =
√

κ2
σ0 − k2

‖ ,

with

kσ0 =
√

2m∗
l

�2

(
E + σ

�l

2

)
, (8a)

q0 =
√

2m∗
c

�2
(Vc + μ0 − E), (8b)

κσ0 =
√

2m∗
r

�2

(
E + σ

�r

2

)
, (8c)

and

χlσ = 1√
2

(
1
σ

)
, χrσ = 1√

2

(
1

σeiφ

)
, (9)

where σ =↑ (1), ↓ (−1). The height of the barrier, Vc, is
measured from the chemical potential, μ0, which at low tem-
peratures is approximated by the Fermi energy. The coefficient
tσ,σ (tσ̄ ,σ ) represents the transmission probability amplitude for
a tunneling process in which the electron spin is preserved
(flipped). Similarly, rσ,σ and rσ̄ ,σ are the reflection probability
amplitudes. These amplitudes are computed analytically by
solving the set of linear equations obtained when imposing the
boundary conditions

ψiσ (zic) = ψcσ (zic), (10a)

1

m∗
i

dψiσ

dz

∣∣∣∣
z=zic

= 1

m∗
c

dψcσ

dz

∣∣∣∣
z=zic

, (10b)

where i = l,r and zic is the position of the interface between
the central and the ith layer. The transmission probability is
now computed through

Tσ (E,k‖) = m∗
l

m∗
r

(κσ |tσ,σ |2 + κσ̄ |tσ̄ ,σ |2). (11)

The total transmission probability is T = T↑ + T↓.
The computation of the transmission amplitudes is, in

general, quite cumbersome. However, in the limit qd 	 1, the
following simplified analytical expression for the coefficients
tσ,σ and tσ̄ ,σ is found [36]:

tσ,σ ′ ≈ − 2im∗
cm

∗
r q

√
kσ

(m∗
l q − im∗

ckσ )(m∗
r q − im∗

cκσ ′)
(1 + σσ ′e−iφ)e−qd ,

(12)

which is valid to first order in exp(−qd). Therefore, replacing
Eq. (12) in Eq. (11) one obtains the transmission probability:

Tσ (E,k‖)

≈ 8m∗
l m

∗
rm

∗2
c kσ (κσ + κσ̄ )

(
m∗2

r q2 + m∗2
c κσ κσ̄

)
q2(

m∗2
l q2 + m∗2

c k2
σ

)(
m∗2

r q2 + m∗2
c κ2

σ

)(
m∗2

r q2 + m∗2
c κ2

σ̄

)
×

[
1 + (κσ − κσ̄ )

(
m∗2

r q2 − m∗2
c κσ κσ̄

)
(κσ + κσ̄ )

(
m∗2

r q2 + m∗2
c κσ κσ̄

) cos φ

]
e−2qd .

(13)

Notice that T (E,k‖) = T (E,k‖).

C. Analytical expression for the TMT

To compute the thermopower [Eq. (4a)] and the con-
ductance [Eq. (4b)], the transverse modes k‖ in Eq. (13)
need to be integrated out [Eq. (3)], which can only be done
numerically. However, for k‖ � q0 the wave vector q can be
approximated as q = q0[1 + (k‖/

√
2q0)2]. In such a limit, the

k‖ dependence of the transmission probability [Eq. (13)] is
dominated by the exponential factor exp(−k2

‖d/q0). Therefore,
for relatively small q0 and large barrier thicknesses, the
transmission probability rapidly decay with increasing k‖ and
the main contribution to the integral in Eq. (3) comes from the
vicinity of k‖ ≈ 0. Under this approximation Eq. (3) becomes

g(E) ≈ e2q0

8π2�d
T (E,0). (14)

Substituting explicitly the expression for T (E,0) [Eq. (13)] in
Eq. (14) gives

g(E) ≈ g0
[
1 + P eff

gl P eff
gr cos φ

]
, (15)

where g0 = gl0gr0, with

gl0 =
√

2e2q0e−2q0d

πhd

×
[

m∗
l m

∗
c (k↑0 + k↓0)

(
m∗2

l q2
0 + m∗2

c k↑0k↓0
)

(
m∗2

l q2
0 + m∗2

c k2
↑0

)(
m∗2

l q2
0 + m∗2

c k2
↓0

)
]

q0, (16)

and

P eff
gl = (k↑0 − k↓0)

(k↑0 + k↓0)

(
m∗2

l q2
0 − m∗2

c k↑0k↓0
)

(
m∗2

l q2
0 + m∗2

c k↑0k↓0
) (17)

is the effective spin polarization of the left electrode. The
expression for gr0 (P eff

gr ) is found by replacing in Eq. (16)
[Eq. (17)] kσ0 and m∗

l with κσ0 and m∗
r , respectively.

In order now to derive analytical expressions for the
thermopower and the TMT, we benefit from Mott’s relation
[33,34], which states that

S = −π2

3

k2
B

e

d

dE
ln g(E)

∣∣∣∣
E=μ0

T0, (18)

where kB is the Boltzmann constant. Equation (18) allows
to compute the thermopower given the energy dependent
conductance g(E). Thus, replacing Eq. (15) into Eq. (18) yields
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the following expression for the thermopower:

S(φ) ≈
[

1 + (1 − η)P eff
gl (μ0)P eff

gr (μ0) cos φ

1 + P eff
gl (μ0)P eff

gr (μ0) cos φ

]
S0, (19)

where

η = π2

3

k2
B

e

1

S0

d

dE
ln

(
P eff

gl P eff
gr

)∣∣∣∣
E=μ0

T0, (20)

is a dimensionless quantity and S0 ≡ S(π/2). The explicit
form for the parameter η is given in Appendix A. Finally,
the expression for the TMT is found by replacing Eq. (19) into
Eq. (5), which reads

TMT(φ) ≈ − P eff
gl (μ0)P eff

gr (μ0)

1 + P eff
gl (μ0)P eff

gr (μ0)

× η(1 − cos φ)

1 + (1 − η)P eff
gl (μ0)P eff

gr (μ0) cos φ
. (21)

Equations (19) and (21) represent the thermal analogs of
Slonczewski’s formulas for the conductance and the TMR,
respectively [32,36].

An interesting limit to study is that in which Julliere’s model
is valid [36,38]. In such case, the effective spin polarization
reduces to [36,38]

P eff
gi = D

↑
i − D

↓
i

D
↑
i + D

↓
i

, i = l,r, (22)

where Dσ
i is the spin-dependent density of states in the ith

electrode. Moreover, since 2g0 = g(φ = 0) + g(φ = π ) [see
Eq. (15)], then [36]

g0 ∝ 1
2 (D↑

l D↑
r + D

↓
l D↓

r + D
↑
l D↓

r + D
↓
l D↑

r ), (23)

which allows us also to compute S0 from the density of states
and, hence, the η parameter [Eq. (20)]. Therefore, in the
limit where Julliere’s model and Mott’s law are valid, one
can estimate both the thermopower [Eq. (19)] and the TMT
[Eq. (21)] only through the density of states.

III. RESULTS

In this section we discuss the results obtained for the case
of an Fe/Al2O3/Fe MTJ. Since the system is symmetric, the
effective spin polarization [Eq. (17)] is the same in both
electrodes, so P eff

gl = P eff
gr ≡ P . In addition, for the set of

parameters discussed throughout this section, the relation
P 2 � 1 is satisfied, hence, Eq. (19) takes the simple form

S(φ) ≈ [1 − ηP 2 cos φ]S0. (24)

This cosine-like behavior found for the angular de-
pendence of the thermopower has been observed in
Refs. [15,16], where they measure the induced thermovoltage
for CoFeB/MgO/CoFeB MTJs. However, ab initio calcula-
tions performed in Ref. [21] for the same kind of MTJs show a
different behavior. This might be an indication that for the
structure considered in Ref. [21] the condition P 2 � 1 is
not fulfilled. In such a case terms of higher order in cos φ

which are present in the expansion of S [Eq. (19)] become
relevant and deviations from the angular dependence given in

Eq. (24) occur. Furthermore, replacing Eq. (24) in the general
expression for the TMT [Eq. (5)] yields

TMT(φ) ≈ −ηP 2 (1 − cos φ), (25)

where we have used that ηP 2 � 1.
The thermopower and TMT coefficients can be evaluated

at different levels of approximation. The simplest one is to use
the analytical expressions obtained in the previous section,
namely, Eqs. (19) and (21). These analytical expressions
combine both Slonczewski’s and Mott’s models. We therefore
refer to them as the Slonczewski-Mott approximation. A step
forward consists of disregarding Mott’s approximation, i.e., to
use the analytical expression for g [Eq. (14)] but to compute
numerically the energy integrations in Eqs. (4a) and (4b).
This is what we call the Slonczewski approximation. Finally,
exact results are obtained by disregarding both Slonczewski’s
and Mott’s approximations; i.e., by performing numerical
integration in Eqs. (3), (4a), and (4b).

For quantitative illustration we considered a symmetric
MTJ with kσ0 = κσ0 and the following model parameters:
m∗

l = m∗
r = m0, m∗

c = 0.4m0 (here m0 is the bare electron

mass), k↑0(μ0) = 1.09 Å
−1

, and k↓0(μ0) = 0.42 Å
−1

.
For the low temperature considered here (T = 4.2 K) we

found that the agreement between both the Slonczewski-Mott
and Slonczewski approximations was extremely good. The
calculations corresponding to the Slonczewski approximation
are therefore omitted in all the figures.

Figure 2 shows the TMT dependence on the relative
magnetization φ for different values of the barrier height Vc.
The agreement between the exact calculations (solid lines) and
Slonczewski-Mott approximation (dashed lines) is reasonably
good already for a 40 Å thick barrier and the observed angular
dependence is well described by Eq. (25). Notice how the sign
of the TMT changes as the value of Vc increases. Let us now
discuss more in detail this sign change.

Figures 3(a) and 3(b) show the dependence of the exact
and approximate thermopowers, respectively, on the barrier
height. Dashed lines correspond to the case when the magne-
tizations are parallel (φ = 0) and solid lines to the antiparallel
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V
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T
 [%
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φ [π]

V
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 = 0.1 eV

FIG. 2. (Color online) TMT dependence of an Fe/Al2O3/Fe MTJ
on the relative orientation of the magnetizations of the ferromagnets,
for different values of the tunneling barrier height Vc, and thickness
d = 40 Å. Solid lines represent the exact calculations while dashed
lines correspond to the Slonczewski-Mott approximation.

054419-4



TUNNELING MAGNETOTHERMOPOWER IN MAGNETIC . . . PHYSICAL REVIEW B 89, 054419 (2014)

-0.03

-0.02

-0.01

-0.03

-0.02

-0.01

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-6
-4
-2
0
2
4

S
 [k

B
 / 

e]

φ = 0
φ = π

(b)

Approx.

S
 [k

B
 / 

e]

φ = 0
φ = π

Exact

(a)

T
M

T
 [%

]

V
c
 [ eV ]

 Exact
 Approx.

(c)

FIG. 3. (Color online) (a) Thermopower of an Fe/Al2O3/Fe MTJ
as a function of the barrier height. The solid (dashed) line corresponds
to the exact calculation for the antiparallel (parallel) configuration.
(b) Same as (a) but within the Slonczewski-Mott approximation.
(c) TMT(π ) dependence on the barrier height. Solid and dashed
lines correspond, respectively, to the exact and approximated results.
Notice that the thermopowers for the parallel and antiparallel
orientations cross, meaning the TMT becomes zero. The barrier
thickness is d = 40 Å.

magnetizations (φ = π ). Figure 3(c) shows the TMT de-
pendence on the barrier height when φ = π . Again, the
agreement between the exact calculations (solid line) and the
Slonczewski-Mott approximation (dashed line) is very good
and it gets better at smaller values of Vc. A similar behavior
was obtained for the case of the TMR [39].

The TMT is a complicated function of Vc. Therefore,
the trend observed in Fig. 3(c) is not as straightforward to
understand as the angular dependence displayed in Fig. 2. In
fact, Fig. 3(c) shows that the TMT changes sign for a specific
value of the barrier height V (0)

c , which corresponds to the
crossing between the thermopower for the parallel and the
antiparallel cases [see Figs. 3(a) and 3(b)]. The condition for
TMT(φ) = 0 [Eq. (21)] is satisfied when P eff

gi (μ0) = 0, which
according to Eq. (17) occurs when

V (0)
c = �

2kμ↑kμ↓
2
(
m2

0

/
m∗

c

) , (26)

where kμ↑ = k↑0(μ0) and kμ↓ = k↓0(μ0). For this same value
the TMR also becomes zero [36], although it remains positive.
The sign change of the TMT is not related to the effective spin
polarization but to a sign change in the parameter η. This is
particularly clear for the case of a symmetric MTJ, since for
symmetric MTJs the TMT is proportional to ηP 2 [Eq. (25)].

Figures 4(a) and 4(b) show the thermopower dependence on
the barrier thickness d when the magnetizations are antiparallel
(φ = π ). The barrier thickness only enters in the denominator
of η (see Appendix A). Therefore, as d increases η → 0 and,
hence, S → S0 [Eq. (19)]. Furthermore, according to Eq. (A2),
S0 depends linearly on d. This explains the linear behavior of
S displayed in Figs. 4(a) and 4(b).

The dependence of the TMT coefficient in the antiparallel
configuration (φ = π ) is shown in Fig. 4(c) for two different
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FIG. 4. (Color online) (a) Thermopower of an Fe/Al2O3/Fe MTJ
as a function of the barrier thickness for the antiparallel configuration
(φ = π ) and the barrier hight Vc = 0.1 eV. (b) Same as (a) but for
Vc = 3.0 eV. (c) TMT(π ) dependence on the barrier thickness. In
(a), (b), and (c) the solid lines represent the exact calculations and the
dashed lines correspond to the Slonczewski-Mott approximation.

values of the barrier hight. As discussed above, η approaches
zero as d increases. Since the TMT is proportional to η [see
Eq. (21)], the TMT is suppressed for large barrier thicknesses,
as seen in Fig. 4(c). This differs from the thermopower, whose
amplitude increases with d [see Figs. 4(a) and 4(b)]. This
behavior agrees with the low temperature trend found in the
ab initio calculations in Ref. [26] for a CoFeB/MgO/CoFeB
MTJ, where the dependence on the thickness of the barrier was
studied by varying the number of MgO monolayers.

By comparing the exact (solid lines) and approximate
(dashed lines) results shown in Fig. 4, one notices that the
Slonczewski-Mott approximation works better for thicker
barriers. This is a typical feature of the Slonczewski approxi-
mation [Eq. (14)] which has also been observed in theoretical
investigations of the TMR [39]. It is intrinsic to the derivation
of Eq. (14), which is only valid for large values of d.

Finally, for a symmetric MTJ the effective spin polarization
P can be extracted from TMR experiments, by measuring
the parallel and antiparallel conductances GP and GAP,
respectively, through the equation [36]

P = ±
√

GP − GAP

GP + GAP
. (27)

Therefore, by measuring the parallel, SP , and antiparallel, SAP,
values of the thermopower, it is possible to experimentally
estimate the parameter η with the equation

η = − 2GP GAP

GP SP + GAPSAP

SP − SAP

GP − GAP
, (28)

found when replacing Eq. (27) in Eq. (21).

IV. SUMMARY

We have studied thermal spin transport in magnetic tunnel
junctions using the thermal analog of Slonczewski’s model of
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tunneling. We have derived analytical expressions for the ther-
mopower and the tunneling magnetothermopower of magnetic
junctions in both Slonczewski’s approximation and in the limit
of Julliere’s model. We show that the TMT can be both positive
and negative, depending on the barrier properties, crossing
through zero at a certain barrier height. Our expressions could
be used in combination with first-principles band structure
parameters of the bulk ferromagnetic materials forming the
junction to estimate the spin thermal transport characteristics.

Furthermore, they can serve as a phenomenological description
of experiments on junction magnetothermopower, in most
cases with a single fitting parameter (η).
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APPENDIX A: THE η PARAMETER

The expression found for η is

η = −π2

3
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∑
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where
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)
)

2m∗
i m

∗
c (m∗
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i )

]}
, (A2)

and klσ = kσ0(μ0), qF = q0(μ0), and krσ = κσ0(μ0). Since the effective masses and Fermi wave vectors can be computed through
ab initio calculations, it is also possible to estimate the parameter η.
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