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Abstract

We consider evolution equations describing the scale dependence of the wave function of a
baryon containing an infinitely heavy quark and a pair of light quarks at small transverse
separations, which is the QCD analogue of the helium atom. The evolution equations depend
on the relative helicity of the light quarks. For the aligned helicities, we find that the equation
is completely integrable, that is it has a nontrivial integral of motion, and obtain exact analytic
expressions for the eigenfunctions and the anomalous dimensions. The evolution equation for
anti-aligned helicities contains an extra term that breaks integrability and creates a “bound
state” with the anomalous dimension separated from the rest of the spectrum by a finite
gap. The corresponding eigenfunction is found using numerical methods. It describes the
momentum fraction distribution of the light quarks in, e.g., Λb-baryon at large scales.

1. Precision tests of the flavor sector of the Standard Model may reveal new physics and remain
high on the agenda. Main attention has been so far focused on B-mesons but interest is developing to
the heavy baryon decays as well. Such baryons are produced copiously at the LHC and, as more data
are collected, studies of rare b-baryon decays involving flavor-changing neutral current transitions
have to become quantitative in order to make an impact on the field. In particular the Λb → Λµ+µ−

decays are receiving a lot of attention, see e.g. Ref. [1] and references therein.
Theoretical description of the b-hadron decays is based on factorization theorems that make use of

the large mass of the b-quark in order to separate calculable effects of short distances from the nonper-
turbative large distance physics. The corresponding formalism is similar but much less developed for
baryons as compared to mesons. A recent discussion using SCET formalism can be found in Ref. [2].
For the exclusive decays involving large energy release in the final state, the relevant nonperturbative
quantities are baryon wave functions at small transverse separations, dubbed light-cone distribution
amplitudes (DA). Their study was started in Refs. [3, 4, 5] where the complete classification and
renormalization group equations (RGE) that govern the scale-dependence are presented.

In this work we point out that these equations have a hidden symmetry and completely integrable
in the case that the light quarks have the same helicity. In other words, we identify a nontrivial
quantum number that distinguishes heavy baryon states with different scale dependence and obtain
exact analytic solution of the evolution equations. This phenomenon is similar to integrability of
RGEs for the light baryons [6, 7] and, in a more general context, to integrability in high-energy
QCD [8, 9, 10] and in the N = 4 supersymmetric Yang-Mills theory [11, 12, 13] that attracted huge
attention as a tool to check the AdS/CFT correspondence. The integrable model that we encounter
in the present context is different; it has been discussed recently in [17].
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The similar equation for the case that the two light quarks have opposite helicity contains an extra
term that breaks integrability and creates a “bound state” with the anomalous dimension separated
from the rest of the spectrum by a finite gap. The corresponding eigenfunction is found numerically.
It describes the momentum fraction distribution of the light quarks in, e.g. Λb, at large scales and can
be called “asymptotic DA” in analogy to the accepted terminology for hadrons built of light quarks.

2. Consider at first the leading-twist DA of a baryon containing an infinitely heavy quark and
a transversely polarized “diquark”: a pair of light quarks with aligned helicities. It can be defined
as [4]

〈0|[qT1 (z1n)C/nγ
µ
⊥q2(z2n)]hv(0)|Bj=1(v)〉 =

1√
3
εµ⊥u(v) f

(2)
B (µ)Ψ⊥(z1, z2;µ) . (1)

Here q1,2 = u, d, s are light quarks separated by a lightlike distance, hv(0) is the effective heavy quark
field with four-velocity v, C is the charge conjugation matrix, u(v) is the Dirac spinor /vu(v) = u(v),
and εµ is the diquark polarization vector, vµεµ = 0. The transverse projections are defined with
respect to the two auxiliary light-like vectors n and n̄ which we choose such that vµ = (nµ + n̄µ)/2,
v · n = 1, n · n̄ = 2:

εµ⊥ = gµν⊥ εν , gµν⊥ = gµν − (nµn̄ν + nν n̄µ)/(n · n̄) , (2)

and similar for γµ⊥. The Wilson lines connecting the quark fields are not shown for brevity. The heavy
quark field hv can itself be related to the Wilson line as [18]

〈0|hv(0)|h, v〉 = Pexp

[
ig

∫ 0

−∞
dα vµA

µ(αv)

]
, (3)

so that the operator in Eq. (1) can be viewed as a pair of light quarks (a diquark), attached to the
Wilson line with a cusp containing one lightlike and one timelike segment. Finally, the coupling

f
(2)
B is defined as the matrix element of the corresponding local q1q2hv operator; it is inserted for

normalization [4]. The parameter µ is the renormalization (factorization) scale. We tacitly imply
using MS scheme.

The product εµ⊥u(v) on the right-hand-side (r.h.s.) of Eq. (1) can be expanded in irreducible
representations corresponding to physical baryon states with JP = 1/2+ and JP = 3/2+ using
suitable projection operators, see [4]. These (ground) states form the SU(3)F multiplets (sextets),
Σb,Ξb,Ωb and Σ∗b ,Ξ

∗
b ,Ω

∗
b , respectively, which are degenerate in the heavy b-quark limit. The double-

strange Ωb baryon is of special interest for flavor physics as it only decays through weak interaction.
The DA Ψ⊥(z1, z2;µ) is written usually in terms of its Fourier transform

Ψ⊥(z;µ) =

∫ ∞
0
dω1

∫ ∞
0
dω2 e

−i(ω1z1+ω2z2)Ψ⊥(ω1, ω2;µ) =

∫ ∞
0
ωdω

∫ 1

0
due−iω(uz2+ūz1) Ψ̃⊥(ω, u;µ) , (4)

where z = {z1, z2} and in the second line we redefine ω1 = uω, ω2 = ūω with ū = 1−u. The variables
ω1 and ω2 correspond to the energies (up to a factor two) of light quarks in the baryon rest frame.
The DA (4) is the most important nonperturbative input in QCD calculations of exclusive heavy
baryon decays to the leading power accuracy in the heavy quark mass.

The scale dependence of Ψ̃⊥(ω, u, µ) or, equivalently, Ψ⊥(z;µ), is governed by the renormalization
group equation [3, 4] (

µ
∂

∂µ
+ β(αs)

∂

∂αs
+

2αs
3π

H
)
f

(2)
B (µ) Ψ⊥(z;µ) = 0 . (5)
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The evolution kernel H is an integral operator which can be decomposed as

H = H12 +Hh1 +Hh2 − 4 . (6)

The kernels Hhk are due to heavy-light quark interactions,

Hh1f(z) =

∫ 1

0

dα

α

[
f(z)− ᾱf(ᾱz1, z2)

]
+ ln(iz1µ) f(z) ,

Hh2f(z) =

∫ 1

0

dα

α

[
f(z)− ᾱf(z1, ᾱz2)

]
+ ln(iz2µ) f(z) . (7)

They are identical to the Lange-Neubert kernels [19, 20, 21]. The remaining contribution

H12f(z) =

∫ 1

0

dα

α

[
2f(z)− ᾱf(zα12, z2)− ᾱf(z1, z

α
21))

]
(8)

takes into account the interaction between the light quarks; it is similar to the standard Efremov-
Radyushkin-Brodsky-Lepage evolution kernel for the pion DA. Here and below we use the notation

zα12 = ᾱz1 + αz2 , ᾱ = 1− α . (9)

The evolution kernels (7), (8) can be written in terms of the generators of the collinear subgroup of
conformal transformations

S+ = z2∂z + 2jz , S0 = z∂z + j , S− = −∂z , (10)

where j = 1 is the conformal spin of the light quark. The generators satisfy the standard SL(2)
commutation relations

[S+, S−] = 2S0 , [S0, S±] = ±S± . (11)

One can show that [23]

Hh1 = ln
(
iµS

(1)
+

)
− ψ(1) , Hh2 = ln

(
iµS

(2)
+

)
− ψ(1) ,

where S
(1)
+ , S

(2)
+ act on the first, z1, and the second, z2, light-cone coordinate, respectively. The last

kernel (8) is written in terms of the two-particle Casimir operator S2
12 [24]

H12 = 2
[
ψ(J12)− ψ(1)

]
, (12)

where S2
12 = S+S−+S0(S0−1) = J12(J12−1), S+ = S

(1)
+ +S

(2)
+ etc., and ψ(x) is the Euler’s digamma

function. Thus, the complete evolution kernel takes a very compact form

H = ln
(
iµS

(1)
+

)
+ ln

(
iµS

(2)
+

)
+ 2ψ(J12)− 4ψ(2) . (13)

The evolution equation for the DA in momentum space, Ψ⊥(w1, w2;µ), is given by the same expres-
sion with the SL(2) generators in the momentum space representation [22]. Eigenfunctions of H
correspond to the states that have autonomous scale dependence and the corresponding eigenvalues
define anomalous dimensions.

3. Our main result is that this evolution equation can be solved explicitly. To this end we consider
the following operators

Q1 = i
(
S

(1)
+ + S

(2)
+

)
, Q2 = S

(1)
0 S

(2)
+ − S(2)

0 S
(1)
+ . (14)
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It is possible to show that Q1 and Q2 commute with each other and with the evolution kernel H:

[Q1,Q2] = [Q1,H] = [Q2,H] = 0 . (15)

The first two relations are trivial, the last one can be verified using the explicit expressions for Q2

and H.
If H is interpreted as a Hamiltonian of a certain quantum-mechanical model, the operators Q1 and

Q2 correspond to the conserved charges. In the formalism of the quantum inverse scattering method
(QISM) the charges Q1,Q2 appear in the expansion of the element C(u) of the monodromy matrix,

C(u) = uQ1 + Q2.

The commutation relation [C(u),H] = 0, and its generalization to more degrees of freedom then
follow directly from the QISM [14, 15, 16]. Note that in classical applications of integrable models
one encounters Hamiltonians that commute with the sum of diagonal elements, A(u) +D(u), of the
monodromy matrix. In our case the Hamiltonian commutes with C(u), which corresponds to a new,
nonstandard integrable model.

The conserved charges Q1, Q2 are self-adjoint operators with respect to the SL(2, R) invariant
scalar product

〈Φ|Ψ〉 =
1

π2

∫
C−

d2z1

∫
C−

d2z2

(
Φ(z)

)∗
Ψ(z) , (16)

where the integration goes over the lower complex half-plane, Im zi < 0. The eigenfunctions of C(u)
provide the basis of the so-called Sklyanin’s representation of Separated Variables and are known in
explicit form [25]. They are labeled, for the present case, by two real numbers: s > 0 and x ∈ R such
that

C(u)φs,x(z1, z2) = s(u− x)φs,x(z1, z2) , (17)

with

φs,x(z) =
s

z2
1z

2
2

∫ 1

0
dα
(α
ᾱ

)ix
exp

[
is(ᾱ/z1 + α/z2)

]
= sρ(x)

eis/z1

z2
1z

2
2

1F1

(
1+ix, 2, is

(
z−1

2 −z
−1
1

))
, (18)

where

ρ(x) = πx/ sinh(πx). (19)

The eigenfunctions φs,x(z) form a complete system in the Hilbert space defined by the scalar prod-
uct (16) 〈

φs′,x′ |φs,x
〉

=
2π

s
δ(s− s′)δ(x− x′) . (20)

Since the conserved charges Q1 and Q2 commute with the Hamiltonian H, they share the same set of
eigenfunctions,

Hφs,x(z) = γ(s, x)φs,x(z) . (21)

The simplest way to calculate the eigenvalues is to compare the large-z asymptotics of the expressions
on the both sides of this equation. In this way one obtains the anomalous dimensions

γ(s, x;µ) = 2 ln(µs/s0) + E(x) , E(x) = ψ(1 + ix) + ψ(1− ix) + 2γE (22)
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where s0 = e2−γE . Going back to the RGE equation (5), we expand the DA Ψ⊥(z, µ) over the
eigenfunctions of H

Ψ⊥(z, µ) =

∫ ∞
0

ds s

∫ ∞
−∞

dx

2π
η⊥(s, x;µ)φs,x(z) . (23)

The expansion coefficients η⊥(s, x;µ) = 〈φs,x|Ψ⊥〉 evolve autonomously,

f
(2)
B (µ)η⊥(s, x;µ) = f

(2)
B (µ0)η⊥(s, x;µ0)

(
µ

µ0

)− 8
3β0

(
µ0s

s0

) 8
3β0

lnL

L
4

3β0

[
E(x)− 4π

β0 αs(µ0)

]
, (24)

where L = αs(µ)/αs(µ0), β0 = 11
3 Nc − 2

3nf . For large scales, the coefficients η⊥(s, x;µ) slowly drift

towards smaller values of both parameters: s→ 0, thanks to the factor s8 lnL/3β0 , and |x| → 0, taking
into account that ψ(1 + ix) ∼ ln |x| for x→ ±∞.

Going over to the DA in momentum space, Ψ̃⊥(ω, u;µ), we define the corresponding eigenfunctions
as

φ̃s,x(ω, u) = 〈e−iω(ūz1+uz2)|φs,x(z1, z2)〉 . (25)

Using that 〈e−ikz|z−2eis/z〉 = −(1/
√
ks)J1(2

√
ks) [23] one obtains

φ̃s,x(ω, u) =
1

ω
√
uū

∫ 1

0

dα√
αᾱ

αixᾱ−ix J1

(
2
√
wsᾱū

)
J1

(
2
√
wsαu

)
. (26)

The eigenfunctions φ̃s,x(ω, u) are orthogonal and form a complete set:

s

2π

∫ ∞
0

ω3dω

∫ 1

0
duuū φ̃s,x(ω, u) φ̃∗s′,x′(ω, u) = δ(s− s′)δ(x− x′) , (27)

ω3uū

∫ ∞
0

sds

∫ ∞
−∞

dx

2π
φ̃s,x(ω, u) φ̃∗s,x(ω′, u′) = δ(ω − ω′)δ(u− u′) . (28)

Making use of the Bateman’s expansion for the product of two Bessel functions we obtain a series
representation

φ̃s,x(ω, u) =
1

ω

∞∑
n=0

inκ−1
n C3/2

n (1− 2u)Hn(x)
1√
sω
J2n+3(2

√
sω) . (29)

Here C
3/2
n (x) are the Gegenbauer polynomials, J2n+3(x) are Bessel functions, and

κn =
(n+ 1)(n+ 2)

4(2n+ 3)
. (30)

The functions Hn(x) are given by the continuous Hahn polynomials up to the prefactor ρ(x):

Hn(x) = in
∫ 1

0
du
(u
ū

)ix
C3/2
n (1− 2u) =

(n+ 1)(n+ 2)

2
inρ(x) 3F2

(−n, n+ 3, 1 + ix

2, 2

∣∣∣1) , (31)

e.g.

ρ−1(x)H0(x) = 1 , ρ−1(x)H1(x) = 3x , ρ−1(x)H2(x) = 5x2 − 1 , (32)
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etc. Hahn polynomials are real functions, have the symmetry Hn(x) = (−1)nHn(−x), and form a
complete orthogonal system. In our normalization∫ ∞

−∞

dx

2π
Hn(x)Hm(x) = κn δmn . (33)

Collecting everything we obtain the final result:

Ψ̃⊥(ω, u;µ) = ω2uū

∫ ∞
−∞

dx

2π

∫ ∞
0
sds φ̃s,x(ω, u)η⊥(s, x;µ) , (34)

where the scale dependence of η⊥(s, x;µ) is given in Eq. (24). The expansion coefficients of η⊥(s, x;µ)
in Hahn polynomials are related to the expansion coefficients of Ψ̃⊥(ω, u;µ) in Gegenbauer polyno-
mials,

η⊥(s, x;µ) =
∑
n

in η⊥n (s;µ)Hn(x) 7→ Ψ̃⊥(ω, u;µ) = uū
∑
n

ψ⊥n (ω;µ)C3/2
n (2u− 1) , (35)

by the Bessel transform (cf. Eq. (30) in Ref. [23])

ψ⊥n (ω;µ) =

∫ ∞
0

ds
√
sω J2n+3

(
2
√
sω
)
η⊥n (s;µ) . (36)

Making use of the asymptotic expansion for the Bessel function one finds that the small-s behavior
η⊥n (s) ∼ spn translates into the large-ω asymptotics of the function ψ⊥n (ω) ∼ ω−1−pn unless there is
some cancellation, see below.

The expansion coefficients at the reference (low) scale can be calculated from a given model of
the DA as

η⊥(s, x;µ0) =

∫ ∞
0

ωdω

∫ 1

0
du φ̃∗s,x(ω, u) Ψ̃⊥(ω, u;µ0). (37)

In the existing studies it is usually assumed that Ψ̃⊥(ω, u;µ0) is decreasing exponentially at large
energies ω. For a rather general model of this type

Ψ̃⊥(ω, u;µ0) = ω2uū
∑
n

cn

(
ω

εn

)κn e−ω/εn
ε4n

C3/2
n (2u− 1) (38)

one obtains

η⊥(s, x;µ0) = s
∑
n

incn(sεn)nHn(x)
Γ(n+ 4 + κn)

Γ(2n+ 4)
1F1

(
n+ 4 + κn

2n+ 4

∣∣∣∣− sεn). (39)

In particular, for the simplest phenomenologically acceptable model [3, 4, 5]

Ψ̃⊥(ω, u;µ0) = ω2uū
e−ω/ε0

ε40
7→ η⊥(s, x;µ0) = ρ(x) s e−sε0 . (40)

Exponential decrease ∼ e−ω/εn of each Gegenbauer harmonics in (38) amounts, from the view point
of the relation in Eq. (36), to the fine tuning such that all leading power terms in the asymptotics
ω → ∞ drop out. This fine tuning is, however, destroyed by the evolution so that a power-like
asymptotics is always generated.
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To see this, consider the simplest model in (40) corresponding to the term n = 0 in (38) as an
example. As the result of the evolution (24) all harmonics with n > 0 become excited

η⊥n (s, µ) = cn(µ) s(µ0s)
−δ e−sε0 (41)

where δ = −8/3β0 lnL and

cn(µ) ∼
∫
dxH0(x)L4/3β0E(x)Hn(x) . (42)

For the corresponding coefficients in the Gegenbauer expansion (35) one obtains using (36)

ψ⊥n (ω, µ) = cn(µ) ε−2
0

(
ε0
µ0

)δ ( ω
ε0

)n+2 Γ(n+ 4− δ)
Γ(2n+ 4)

1F1

(
n+ 4− δ

2n+ 4

∣∣∣∣− ω

ε0

)
. (43)

The confluent hypergeometric function 1F1(a, b|ω) decreases as a power of ω at ω →∞, cf. Eq. (62)
below, unless a − b is a nonnegative integer, in which case the asymptotic behavior is exponential.
Thus, unless δ = 0 and n = 0, we obtain

ψ⊥n (ω, µ) ∼ (ω/ε0)−2+δ . (44)

Note that the asymptotic behavior is the same for any n.

4. Next, we consider heavy baryons with the light quarks having opposite helicity. The scale
dependence of the leading twist DAs does not depend on the spin of the light quark pair and is the
same for the jP = 0+ SU(3)F triplet and all longitudinal DAs of heavy baryons in the jP = 1+

sextets, see [4]. For definiteness, consider the Λb-baryon DA [3, 4] defined as

〈0|[uT (z1n)Cγ5/nd(z2n)]hv(0)|Λ(v)〉 = f
(1)
Λ (µ)ΨΛ(z1, z2;µ)uΛ(v) . (45)

The evolution equation for ΨΛ(z1, z2;µ) contains an additional term corresponding to the gluon
exchange between the light quarks (in Feynman gauge)

H12 7→ H12 − δH12 , δH12f(z) =

∫ 1

0
dα

∫ ᾱ

0
dβf(zα12, z

β
21) (46)

that corresponds to H 7→ H − 1/J12(J12 − 1) in the SL(2)-invariant representation of the evolution
kernel in Eq. (13). Expanding ΨΛ(z1, z2;µ) in terms of the eigenfunctions (18) of the integrable
Hamiltonian (13)

ΨΛ(z, µ) =

∫ ∞
0

ds s

∫ ∞
−∞

dx

2π
ηΛ(s, x;µ)φs,x(z) (47)

one obtains the RGE equation for the expansion coefficients ηΛ(s, x, µ)(
µ
∂

∂µ
+ β(αs)

∂

∂αs
+

2αs
3π

[
2 ln

(µs
s0

)
+ E(x)

])
f

(1)
Λ (µ)ηΛ(s, x, µ)

=
2αs
3π

f
(1)
Λ (µ)

∫ ∞
−∞

dx′ V (x, x′) ηΛ(s, x′, µ) , (48)

where E(x) is defined in Eq. (22) and the kernel V (x, x′) is given by the matrix element〈
φs′,x′ |δH12|φs,x

〉
= δ(s− s′)V (x, x′) . (49)

7
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E
(x

n
)

Figure 1: The spectrum of eigenvalues E(xn) ≡ En of the discretized version of Eq. (51) x 7→ xn = (2n+1)/200,
n = 0, 1, . . . , 99 (blue dots) compared to the “unperturbed” spectrum E(xn) (red solid curve). In order not to
overload the plot, only every second eigenvalue is shown.

We obtain

V (x, x′) =
1

2π

∞∑
n=0

κ−1
n

H∗n(x)Hn(x′)

(n+ 1)(n+ 2)
=

1

2 sinhπ(x− x′)

[
x− x′

xx′
− π sinhπ(x− x′)

sinhπx sinhπx′

]
. (50)

It is easy to see that V (x, x) ∼ 1/(2πx2) for large x, and decreases exponentially in |x− x′|.
In order to solve (48) one needs to find the eigenfunctions of the integral equation

E(x) ηE(x)− [V ηE ](x) = E ηE(x) . (51)

If V → 0, obviously all eigenfunctions are localized in x, ηa(x) ∼ δ(x−a). The spectrum of eigenvalues
is continuous, Ea = E(a) ≥ 0, and double degenerate since E(a) = E(−a). In order to understand the
effect of the “perturbation” V we consider the discretized version of this equation: x → xn = (n +
1/2)∆x, ∆x = L/N , n = −N, . . . , N − 1. The unperturbed eigenfunctions, ηk(xn) = δnk, correspond
to local excitations at the k − th site. Discretizing the integral in (48) one replaces the original
eigenvalue problem (51) by the eigenvalue problem for the matrix Vnk = δnkE(xn) −∆xV (xn, xm).
Since V (x, x′) = V (−x,−x′), all eigenstates have definite parity with respect to x→ −x; the double
degeneracy is lifted and one can study x-even and x-odd eigenstates separately. Diagonalising this
matrix numerically we find that the shift of eigenvalues as compared to the unperturbed spectrum is
surprisingly small, δE = E − E ≤ 0.003, for all eigenstates except for the lowest one, cf. Fig. 1, and
the corresponding eigenfunctions ηk(xn) remain well localized around the point xk, see Fig. 2. At the
same time the lowest x-even eigenstate changes drastically: It becomes delocalized, see Fig. 2, and
separated from the rest of the spectrum by a finite gap1

∆E = E0 ' −0.3214 . (52)

In the continuum limit (∆x→ 0, L→∞) this phenomenon can be understood as creation of a bound
state in addition to the continuum spectrum that remains to be largely unperturbed. The “wave

1The size of the gap coincides with the gap in the spectrum of anomalous dimensions of three-light-quark operators
in the large-N limit [7], indicating that these problems are related. Unravelling this connection goes beyond the tasks
of this letter.
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0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1.0

x

Figure 2: The x-even eigenfunctions η+k (xn) = η+k (−xn) for k = 0 (the ground state), and k = 10, 50, 100, 150
(from left to right), for L = 5 and N = 500. Normalization is arbitrary.

function” of this (lowest) state can be approximated to a good accuracy (better that 1% for |x| < 3)
by the following expression:

η0(x) '
√

2E0√
2 + x2

ρ(x)

[E0 − E(x)]
, η0(0) = 1 . (53)

It can be convenient to expand this function in Hahn polynomials

η0(x) =
∞∑

n=0,2,...

χnHn(x) , (54)

where the first few coefficients read

χ0 ' 0.612, χ2 ' −0.126, χ4 ' 0.0574, χ6 ' −0.0338, χ8 ' 0.0226, χ10 ' −0.0163 . (55)

The normalization is given by ∫ ∞
−∞

dx

2π
η2

0(x) =

∞∑
n=0

κn χ2
n ' 0.0758 . (56)

Coming back to the representation of the DA in the form (47) we can separate the contribution of
the discrete (lowest) level as

ηΛ(s, x, µ) = ξ0(s, µ)χ−1
0 η0(x) + η′Λ(s, x, µ). (57)

where the function η′Λ(s, x, µ) accounts for the contribution of the continuum spectrum and must be
orthogonal to η0(x), ∫

dx η0(x) η′Λ(s, x, µ) = 0 . (58)
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Figure 3: Asymptotic Λb distribution amplitude for the simplest choice (60) of the profile function ξ0(s, µ0).

Going over to the momentum space we obtain for the contribution of the lowest state (asymptotic
DA)

f
(1)
Λ (µ)Ψ̃

(0)
Λ (ω, u;µ) = f

(1)
Λ (µ0)χ−1

0 ω2uū

(
µ

µ0

)− 8
3β0

L
4

3β0
[E0− 4π

β0 αs(µ0)
]
∫ ∞
−∞

dx

2π
η0(x)

×
∫ ∞

0
sds φ̃s,x(ω, u)ξ0(s, µ0)

(
µ0s

s0

) 8
3β0

lnL

, (59)

cf. Eq. (24). Note that the restriction to the contribution of the discrete level implies a certain
relation between the momentum fraction distribution between the two light quarks and their total
momentum ω, the remaining freedom is encoded in the “profile function” ξ0(s, µ0) at the reference
scale, which can be arbitrary. For the simplest ansatz

ξ0(s, µ0) = se−sε0 , (60)

cf. (40), we obtain (at the scale µ0)

Ψ̃
(0)
Λ (ω, u) =

1

ε20
uū

∞∑
n=0,2,...

in
(
χn
χ0

)
Γ(n+ 4)

Γ(2n+ 4)
C3/2
n (1− 2u)

(
ω

ε0

)n+2

1F1

( n+ 4

2n+ 4

∣∣∣− ω

ε0

)
=

1

ε20
uū

{(
ω

ε0

)2

e−ω/ε0 − 1

42

(
χ2

χ0

)(
ω

ε0

)4

C
3/2
2 (1− 2u) 1F1

(6

8

∣∣∣− ω

ε0

)
+ . . .

}
, (61)

where the first few Hahn expansion coefficients χn are given in Eq. (55). The function Ψ̃
(0)
Λ (ω, u) is

plotted in Fig. 3. Note that the contributions of higher Gegenbauer polynomials C
3/2
n (1− 2u) in (61)

are accompanied by increasing powers of ω so that the deviation from the ”naive” ∼ uū shape is
increasing with the energy: the distribution becomes broader. Taking into account that for large ω

ωn+2
1F1

( n+ 4

2n+ 4

∣∣∣− ω) ' ω−2 Γ(2n+ 4)

Γ(n)
, n > 0 , (62)
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we see that all terms in this expansion except for the first one have a power-like asymptotics at
ω →∞.2 One formally gets

Ψ̃
(0)
Λ (ω, u) '

ω→∞
ω−2uū

∞∑
n=2,4...

in
(
χn
χ0

)
Γ(n+ 4)

Γ(n)
C3/2
n (1− 2u) . (63)

The series in (63) is divergent indicating that for large ω the function Ψ
(0)
Λ (ω, u) develops end-point

singularities (at u→ 0, 1). This feature is rather robust and does not depend on the precise choice of
the profile function ξ0(s, u) provided it vanishes sufficiently fast at s→ 0 and s→∞.

We expect that the model of the Λb DA in Eq. (61), or a more general one in Eq. (59), will
be sufficient for phenomenological applications. If necessary, the contributions of the continuum
spectrum (57) can be added, in which case the scale dependence of η′Λ(s, x, µ) can be approximated
using Eq. (24). In this approximation the orthogonality condition (58) will not hold at all scales,
which is, however, unlikely to be numerically significant.

The evolution equation for the Λb DA has also been discussed in Ref. [5] using a different rep-
resentation ηΛ(s, x) 7→ ρ̂2(wr,κ) where we use the notatation κ for the variable called u′ in [5] to
avoid confusion with the momentum fraction. The relation is simply s = 1/wr for the first variable,
whereas going over from the x- to κ-representation corresponds to the Fourier transform

η̂(κ) =

∫ ∞
−∞

dx η(x)
(κ
κ̄

)ix
=

∫ ∞
−∞

dx η(x)eipx , p = ln
κ
κ̄
, κ̄ = 1− κ . (64)

In other words if our variable x (17) is interpreted as a quasimomentum, then p = ln(κ/κ̄) is the
corresponding generalized coordinate3. For the ground state η0(x) = η0(−x) implies η̂0(κ) = η̂0(1−κ).

The end-point behavior of η̂0(κ) is determined by the position of the (nearest) singularity of η0(x)
in the complex x plane. A singularity (simple pole) at x0 = ±ia corresponds to η̂0(κ) ∼ [κκ̄]a for
κ → 0,κ → 1. The position of the singularity can be related to the value of energy E0, alias the
lowest anomalous dimension. One can show that the term in V in Eq. (51) does not contribute close
to the singularity so that the following exact relation holds:

E0 = E(x0) = ψ(1 + a) + ψ(1− a) + 2γE . (65)

Using an (approximate) value E0 = −0.3214, Eq. (52), we obtain, to the same accuracy

a = 0.3460 . (66)

Assuming that the asymptotic ∼ [κκ̄]a behavior can be extrapolated to the whole interval κ ∈ [0, 1]
one obtains a model for the eigenfunction of the ground state

η̂0(κ) = [κκ̄]a 7→ η0(x) = Γ[a+ ix]Γ[a− ix]/Γ2[a] , (67)

which turns out to be in good agreement numerically with a more complicated parametrization in
Eq. (53).

This result agrees well with the approximation for the asymptotic Λb DA in the κ-space ρ̂2(wr,κ) ∼
[κκ̄]1/3 found in Ref. [5] (see Fig. 4 there) by expanding the eigenfunction in Gegenbauer polyno-
mials and retaining the first few terms. Numerical convergence of this expansion (away from the

2 The exponential falloff of the first term is tightened to the particular choice of the profile function (60) and in this
sense accidental.

3We thank the referee for suggesting to make this comparison.
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end-points) observed in [5] is in fact directly related to our result that the lowest eigenstate of the
evolution equation is separated from the continuum spectrum by a finite gap (52).

The above discussion cannot be directly applied to all other eigenstates of the evolution equation
that belong to the contunuum spectrum. In particular for the integrable case these solutions are given
by plane waves, η̂(κ) ∼ eipx, and possess an essential singularity at κ → 0,κ → 1. This singularity
is only seen in extreme proximity to the end-points and cannot be found using the Gegenbauer
expansion. Whether such singularities are important for phenomenological applications remains to
be studied.

5. To summarize, in this letter we have studied the evolution equations that determine the scale
dependence of leading-twist DAs of heavy-light baryons containing one infinitely heavy and two light
quarks. The evolution equations are different for the cases that the light quarks have the same,
or opposite, chirality. For the first case, which corresponds to transverse DAs of jP = 1+ sextets
(Σb,Ξb,Ωb and Σ∗b ,Ξ

∗
b ,Ω

∗
b), the evolution equation turns out to be completely integrable, that is it has

a nontrivial integral of motion. The anomalous dimensions form a continuum spectrum parametrized
by two real numbers, s and x (22), and the corresponding eigenfunctions are known exactly (18), (26).
For the second case (jP = 0+ SU(3)F triplet and all longitudinal DAs of heavy baryons in the jP = 1+

sextets), integrability is broken by an additional contribution to the evolution kernel that effectively
corresponds to an attractive interaction between the light quarks and creates a bound state. As the
result, the lowest anomalous dimension becomes separated from the rest of the spectrum (that remains
continuous) by a finite gap (52). The corresponding eigenfunction is delocalized in the x-space and
can be found using numerical methods (53) (see also (67). It can be interpreted as the asymptotic
DA at large scales (59), (61) and deviates significantly from the naive ∼ u(1−u) shape at large quark
energies, cf. (63) and Fig. 3.

We expect that evolution equations for the higher-twist DAs of heavy baryons [3, 4] and for the
three-particle quark-gluon DAs of B-mesons in the large-Nc limit [21] have similar properties and can
be studied using the same methods. These can be important for practical applications since heavy
hadron decay form factors for physical values of the b-quark mass are likely to be dominated by soft
contributions that can be related to higher-twist DAs using light-cone sum rules, see e.g. [1, 26].

Analogous unconventional integrable models with the Hamiltonian commuting with the diagonal
entry D(u) of the monodromy matrix have appeared recently in the studies of high-energy scattering
amplitudes in the N = 4 supersymmetric Yang-Mills theory [27, 28, 29, 30].
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