Published online 26 July 2008

Nucleic Acids Research, 2008, Vol. 36, No. 16 el05
doi:10.1093/nar/gkn425

Substantial biases in ultra-short read data sets from
high-throughput DNA sequencing

Juliane C. Dohm', Claudio Lottaz?, Tatiana Borodina® and Heinz Himmelbauer'*

"Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin and 2Institute for Functional Genomics,
Computational Diagnostics, University of Regensburg, Josef-Engert-Str. 9, 93053 Regensburg, Germany

Received December 21, 2007; Revised June 16, 2008; Accepted June 19, 2008

ABSTRACT

Novel sequencing technologies permit the rapid
production of large sequence data sets. These tech-
nologies are likely to revolutionize genetics and bio-
medical research, but a thorough characterization
of the ultra-short read output is necessary. We gen-
erated and analyzed two lllumina 1G ultra-short read
data sets, i.e. 2.8 million 27mer reads from a Beta
vulgaris genomic clone and 12.3 million 36mers from
the Helicobacter acinonychis genome. We found
that error rates range from 0.3% at the beginning
of reads to 3.8% at the end of reads. Wrong base
calls are frequently preceded by base G. Base sub-
stitution error frequencies vary by 10- to 11-fold,
with A > C transversion being among the most fre-
quent and C > G transversions among the least fre-
quent substitution errors. Insertions and deletions
of single bases occur at very low rates. When simu-
lating re-sequencing we found a 20-fold sequencing
coverage to be sufficient to compensate errors by
correct reads. The read coverage of the sequenced
regions is biased; the highest read density was
found in intervals with elevated GC content. High
Solexa quality scores are over-optimistic and low
scores underestimate the data quality. Our results
show different types of biases and ways to
detect them. Such biases have implications on
the use and interpretation of Solexa data, for de
novo sequencing, re-sequencing, the identification
of single nucleotide polymorphisms and DNA
methylation sites, as well as for transcriptome
analysis.

INTRODUCTION

The DNA sequencing field has experienced a major boost
with the emergence of novel sequencing technologies.
Several systems are currently on the market, including
Illumina’s Solexa instrument, the Applied Biosystems’

Sequencing by Oligonucleotide Ligation and Detection
(SOLID) technology, and the GS FLX instruments from
Roche/454 Life Sciences. The Polony cyclic sequencing by
synthesis technology is to be launched (1).

These technologies allow sequence determination much
quicker and cheaper than the dideoxy chain terminator
method presented by Sanger in 1977 (2). The main differ-
ence between Sanger sequencing output and the output of
the new technologies is an increased read number, asso-
ciated with a decrease in the length of individual reads.

To achieve high throughput, the new approaches apply
different strategies. 454 Life Sciences has adapted pyrose-
quencing to a microbead format to sequence 400000
DNA fragments simultaneously, resulting in a per-run
dataset of 100 Mbp with reads averaging 250 bp. SOLiD
sequencing also uses templates immobilized onto microbe-
ads. Here, the sequence of the template DNA is decoded
by ligation assays involving oligonucleotides labeled
with different fluorophores. The SOLiD read length is
currently 25-35 bases, and 2-3 Gbp of data can be col-
lected during an 8-day run. Solexa sequencing is based on
amplifying single molecules attached to the surface of
a flow cell to generate clusters of identical molecules, fol-
lowed by sequencing using fluorophore-labeled reversible
chain terminators. Solexa sequencing proceeds a base at a
time and read length depends on the number of sequenc-
ing cycles. Current Illumina sequencing instrumentation
achieves read lengths of 36 bases. The Solexa flow cell
is composed of eight separately loadable lanes. Since
each lane has a capacity of about 5 million reads, > 40
million reads can be generated in a run of 3 days, equiva-
lent to > 1.3 Gbp.

The adoption of high-throughput sequencing will revo-
lutionize molecular biology research, similar to the inven-
tion of the polymerase chain reaction (PCR) twenty years
ago (3). 454 pyrosequencing short (~100bp) reads gen-
erated on Roche GS20 instruments (now replaced by
GS FLX) were successfully used for the de novo sequenc-
ing of small genomes and BACs as well as for transcript
discovery and characterization (4-9). De novo genomic
sequencing succeeded even when ultra-short (27-36 bp)
reads generated by Solexa sequencing were employed for
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a small genome (10). For the human genome, ultra-short
reads were applied in studies on chromatin analysis
(11,12).

However, working with large data sets of short reads
involves difficulties, especially due to wrong base calls. To
exploit the full prospects of the novel technologies there is
the need to know as much as possible about biases in the
output data sets, especially with respect to errors. Previous
studies focused on the 454 technology (13) or dealt with
the prospects of short read sequencing as such (14). Here,
we characterize two Solexa read data sets: 12.3 million
36mer reads (trimmed to 32 bases) from the Helicobacter
acinonychis genome and 2.8 million 27mer reads from
a Beta vulgaris bacterial artificial chromosome (BAC)
clone. We analyze these reads and detect biases with
respect to error positions, error rates, erroneous base
calls and their neighboring bases and single base insertions
or deletions. We determine the compensation of erroneous
base calls by correct base calls depending on the sequenc-
ing coverage. We analyze read start positions, the read
coverage along the target sequence, and dependencies of
read coverage and local sequence characteristics. Finally,
we assess the reliability of quality values for wrong and
correct base calls.

METHODS
Solexa sequencing

Helicobacter acinonychis. DNA was fragmented by nebu-
lization as described in the Solexa protocol (www.illumi
na.com). Beta vulgaris DNA was sheared for 1h with a
UTR200 sonication device (Hielscher Ultrasonics GmbH)
at 100% amplitude and 0.5 cycle mode. Fragmented DNA
was further processed as described previously (10).
Sequencing was carried out by running 27 or 36 cycles,
respectively, on the Illumina 1G sequencing instrument.
The Goat module (Firecrest v.1.8.28 and Bustard
v.1.8.28 programs) of the Solexa pipeline v.0.2.2.3 (for
Helicobacter data set) and v.0.2.2.5 (for Beta data set)
were used for image deconvolution and quality value cal-
culation. Parameterization was auto-generated by the
pipeline (see Supplementary Data for intensity plots and
run parameters, i.e. frequency cross-talk matrix, offsets,
phasing). Set up configuration was used as installed by
Illumina’s technical staff. The Helicobacter data set was
collected from three lanes of two flow cells. The Beta
data set was generated in a single lane from a further
flow cell.

Data analysis

We developed various Perl scripts to extract and process
information from ELAND output files (Gerald module
v.1.27 of the Solexa pipeline) and to find positions of
reads that can be aligned more than once to the reference
sequence without mismatches (the positions of those reads
are not reported by ELAND). We wrote Perl scripts for
the detection of deletions and insertions of single nucleo-
tides in otherwise error-free reads and for the analysis of
quality values per base call. Plots were generated with the
statistical computing environment R (www.R-project.org)
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or OpenOffice Calc (www.openoffice.org). R: A language
and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. www.R-project.
org) or OpenOffice Calc (www.openoffice.org).

Data availability

Solexa read data are available from the SHARCGS
project website at http://sharcgs.molgen.mpg.de.

RESULTS

We previously generated 12288791 36mer reads from
Helicobacter acinonychis on an Illumina 1G sequencing
device (10). The Helicobacter genome is 1.55Mbp in size
and has a GC content of 38%. A high-quality reference
sequence for Helicobacter is available (GenBank
NC_008229) (15). We ran the ELAND software on the
read data set (trimmed by the last four bases, because
ELAND processes the first 32 bases only) and selected
the 8389548 32mer reads that ELAND reported to be
uniquely matched against the Helicobacter reference
sequence with zero, one or two mismatches (labeled U0,
Ul or U2, respectively, see Figure 1b). Additionally, we
generated a 27mer read data set for the sugar beet (Beta
vulgaris) bacterial artificial chromosome (BAC) clone ZR-
47B15. The data set consists of 2788 286 reads, 2 156 266
of which were labeled U0, Ul or U2 in the ELAND
output (Figure la). The Sanger reference sequence in fin-
ished quality of this BAC insert consists of 109563 bases
with 34.85% GC (Dohm et al., manuscript submitted for
publication). For all uniquely matched reads, ELAND
reports the match position in the reference sequence as
well as the error position(s) in the read.

Start positions of reads and read distribution on
the target sequence

The preparation of Solexa sequencing libraries involves
the fragmentation of the DNA, followed by the adaptor
ligation, pre-amplification for material enrichment and
amplification within the flow cell prior to sequencing. In
order to detect whether the steps preceding sequencing
show biases, we analyzed the first bases of a read and
the bases that flank the read start position on either
side. Of all possible 27mer tuples (Beta) and 32mer
tuples (Helicobacter), 99.8 and 98.8% are unique, respec-
tively. We therefore assume that potential biases are repre-
sentative for the data set.

We calculated the frequency of 2- to 10-base tuples
enclosing the starting point for 8389548 uniquely
matched Helicobacter reads and for 2156266 uniquely
matched Beta reads relative to the frequency of these
tuples in the reference sequences. Since the bases in the
reads are subject to errors, we used for both sides the bases
of the corresponding region in the reference sequence.

A general sequence bias for the immediate vicinity of
the read start position could not be deduced from the two
data sets. The results for the Beta data set did not suggest
any tendencies (Supplementary Figure la). The results
for the reads from Helicobacter showed a weak tendency
towards T being the most frequent base call to the left and
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Figure 1. Pie charts of the read analysis with ELAND. The ELAND
categories are: QC: no matching done because of low quality of the
read (more than two positions with quality score = —5), NM, no match
found; U0, unique exact match found; Ul, unique match with one
error; U2, unique match with two errors; RO, multiple exact matches
found; R1, multiple matches with one error; R2, multiple matches with
two errors. The categories RO, R1, R2 are shown as a single entity. (a)
ELAND categorizations for 27mer reads from Beta vulgaris clone ZR-
47B15 (2788286 in total). (b) ELAND categorizations for 32mer reads
from Helicobacter acinonychis (12288791 in total, trimmed by the last
four base calls of the original 36mer data).

to the right of the read start position (Supplementary
Figure 1b). Since two different fragmentation methods
were used, sonication for Beta and nebulization for
Helicobacter, the results may indicate method-inherent
properties.

However, by analysing sequence characteristics and
number of reads starting in a sliding window of 1kbp in
width, we found a correlation of read coverage and GC
content in both data sets (Figure 2). In regions of elevated
GC content the number of reads was increased. For
instance, windows with a GC content of 40% contain
almost twice as many reads as windows with 30% GC in
the Beta data set. Thus, while the vicinity of 10 bp was not
sufficient to detect a conclusive bias for read starting
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Figure 2. Correlation of the Solexa read coverage and GC content. (a)
27mer reads generated from Beta vulgaris BAC ZR-47B15 (b) 32mer
data set from the Helicobacter acinonychis genome. Each data point
corresponds to the number of reads recorded for a I-kbp window
(shift of 100bp in Beta and 1kbp in Helicobacter).

points, there is a strong preference towards GC-rich
regions in | kbp sliding windows. Since both templates
show the correlation of read coverage and GC content,
the shift to GC rich regions seems to be a general feature
of the current pre-sequencing procedure. A similar finding
was reported by Hillier ez al. (16).

The overall coverage considering matching reads only is
165-fold in the Helicobacter data set (185-fold for 36mer
reads) and 465-fold in the Beta data set. The distribution
of matching reads along the reference sequences is shown
in Figure 3. We calculated the read depth in windows of
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Figure 3. Distribution of Solexa reads along the reference sequences considering unique match positions reported by ELAND (zero, one or two
mismatch bases) and reads with more than one match position (no mismatch bases) detected with a Perl script. (a) Read distribution along the Beta
vulgaris BAC sequence (with cloning vector pBeloBACII). 2 166 892 27mer reads were matched against the finished sequence (enclosed by the cloning
vector,~117kbp in total). The read coverage was calculated in 200 consecutive 0.58 kbp windows. (b) Read distribution along the 1.55Mbp
Helicobacter genome, based on 8700113 32mer reads. The local coverage is shown in 200 consecutive windows of 7.77 kbp.

size 7.77kbp for Helicobacter (Figure 3a) and of size
0.58 kbp for Beta (Figure 3b). The coverage varied by
a factor of 13 and 3.8, respectively, ranging from 49- to
652-fold for Helicobacter and from 238- to 897-fold for
Beta (Table 1). We tested whether the distributions shown
in Figure 3 are compatible with a uniform distribution
of reads across the target sequences. We have applied a
x*-test (goodness of fit) to reject the hypothesis that reads
have the same probability to fall into equally sized regions
of the target sequence (P<le ' even when dividing
target sequences in only five regions).

There is a number of ‘gap’ positions in the target
sequences where no read starts from. However, since
there are no gaps larger than read length all positions of
the target sequence are covered (Supplementary Table 1).

Distribution of error positions along reads

We selected all ELAND Ul and U2 reads, i.e. 280173
Beta reads and 2046923 Helicobacter reads (cf.
Figure 1), to analyze the occurrence of errors per position.
We performed two types of calculations. Firstly, we calcu-
lated the fraction of wrong base calls at each read position
considering wrong base calls only. Secondly, we calculated
per-base error rates, i.e. the fraction of wrong base calls
per position considering all base calls. The result is shown
in Figure 4. The number of occurrences of wrong bases is
increased at the first position. Rising from the lowest error
rate at the second position, the highest error rate is
observed at the last positions of the read [similar observa-
tion reported in (16)]: 2.5 and 2.9% of the errors in the
data sets of Beta and Helicobacter, respectively, were
found at read position 1, and 11.8% of errors were
recorded at the last read position (position 27 in the
Beta data set and position 32 in the Helicobacter data
set, Figure 4a). The per-base error rates range from
0.3% to 3.8% (Figure 4b) resulting in an average error

Table 1. Proportion of reference sequence and coverage ranges (based
on ELAND U0, Ul, U2, RO matched reads and reads with single
indels)

Beta Helicobacter
Coverage BAC (%) Coverage Genome (%)
200-300 4.27 <100 3.53
300-400 23.93 100-150 26.06
400-500 25.64 150-200 42.28
500-600 23.93 200-250 21.49
600-700 12.82 250-300 4.44
700-800 4.27 300-350 1.29
800900 5.13 >350 0.90

rate of 0.6% for the Beta data set and 1.0% for
the Helicobacter data set. Note that only uniquely
matched reads with less than three substitution errors
are considered.

In re-sequencing projects, sequencing errors can be
compensated by high-coverage sequencing. In a re-sequen-
cing project, the reads are aligned against a reference
sequence. Wherever a mismatch between sequencing
data and the reference is observed, a polymorphism is
postulated. In order to avoid spurious detection of poly-
morphisms due to sequencing errors, a consensus between
several reads at each position of the reference is common
practice. Here, we simulate re-sequencing at different
depth by randomly choosing the appropriate number of
reads from our two data sets and counting wrong and
correct base calls [five (Helicobacter) or ten (Beta) simula-
tions per data point]. An error was considered as compen-
sated when at least one correct base call for the same
position existed. A correct base call and the reference
sequence hold the majority over one wrong base call, i.c.
x wrong base calls at the same position can be compen-
sated by x correct base calls (plus reference sequence).
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Figure 6. Distance between two errors on a read in the Helicobacter
and Beta vulgaris data sets. ‘0" indicates that the erroneous base calls
are next to each other.

We plotted the dependency of sequencing coverage and
error compensation in Figure 5 (range of simulation
results: see Supplementary Figure 2). Increasing the
sequencing coverage results in a rapid decrease of uncom-
pensated errors. At a coverage of 20-fold the average
number of errors per kilo base pair is close to zero and
does not decrease any further. However, such estimates
are likely to change with improvements of the sequencing
technology, as less coverage will be sufficient for reduced
error rates.

Analysis of reads containing two errors

ELAND reported 88753 reads containing two errors
in the Beta data set, corresponding to 4.1% of all uniquely
matched reads. In Helicobacter, 647151 reads contained
two errors (7.7% of all uniquely matched reads).
We analyzed the distance between erroneous bases and
found a preference for small distances between errors
(Figure 6). In 25% of reads that contained two errors
the erroncous bases were either at adjacent positions or
separated by one base. This observation does not contra-
dict the assumption that errors occur independently
according to their position-specific probability. The heat-
map in Supplementary Figure 3 illustrates the occurrence
of two errors relative to the positions in the read. As
expected from the per-base error rates, two-error occur-
rences are concentrated at the 3’ end of reads and are
therefore close together. In addition, error pairs also
occur with increased frequency at read positions 1 and
2. We provide even stronger evidence for the independence
of error positions in two-error reads in Supplementary
Figure 4.

Although error positions seem to be independent in
reads with two errors, there is evidence that errors accu-
mulate in reads more easily than expected. We deduce this
from the ratios of the observed and expected number of
reads containing one and two errors respectively:
Given the determined error rates per position (for the
Helicobacter data set) we expect 3.5 times more correct
reads (UO) than reads with one error (U1), but we observe
4.5 times more U0 than Ul; we expect 19.8 times more
correct reads than reads with two errors (U2), but we
observe 9.8 times more UO than U2. Thus, there are
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fewer Ul reads than expected and more U2 reads than
expected compared to the U0 reads. This tendency is con-
firmed in the Beta data set (data not shown) and suggests
dependencies in the occurrence of errors.

Analysis of error base sequence context

In order to find sequence composition preferences close to
wrong base calls, we analyzed the sequence tuples flanking
error positions. Since errors at position 1 do not have
preceding bases and errors at the last position do not
have subsequent bases in the read, we used the corre-
sponding segment of the reference sequence for the analy-
sis. This also avoids analysing wrong base calls in the
error-prone read sequences close to the error position
under consideration. The sequence composition before
the read start is not considered to be responsible for
an error at position 1 because this part of the source
sequence is not part of the sequenced fragment.
However, the bases following the end of the read could
have an influence on the base calling. We decided to treat
all error positions in the same manner by looking up the
flanking bases in the reference sequence. As reference
tuples we did not consider all tuples in the reference
sequence but all tuples in all uniquely matched reads
(taken from the reference sequence and adding 5 bases
before and after the corresponding read segment). This
is to keep the analysis clean from the read coverage bias
towards GC-rich regions of the reference sequence. We
calculated the relative frequencies for 3- to 11-base
tuples enclosing the error at the middle position and gen-
erated sequence logos for Beta and Helicobacter sepa-
rately. To visualize the general trend we show the 3- and
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Figure 7. Sequence context of wrong base calls in Solexa reads from
Helicobacter acinonychis and Beta vulgaris, considering one base
upstream and downstream of the wrong base calls. An ‘¢’ indicates
the substituted base. The scatterplot shows the correlation of the rela-
tive frequencies (relating the frequency of 3-tuples at error positions to
the frequency of all 3-tuples in the reads) for the two data sets.
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S-base tuple results in scatterplots with the tuple frequen-
cies for both data sets (Figure 7 and Supplementary
Figure 5). All 3-base tuples starting with a G are clearly
dominant in both data sets with G-error-G and G-error-A
being the top candidates (Figure 7). Error enclosing tuples
starting with A or T are underrepresented, and error
enclosing tuples starting with C are as frequent as in the
reference tuples. The least frequent base after an error is
T, being the third base in the three least frequent tuples
A-error-T, T-error-T and C-error-T. The trend of G being
the most frequent base before an error is preserved
and even more emphasized in the scatterplot with 5-base
tuples (Supplementary Figure 5). Here, Gs are still the
preferred bases before an error, and least frequently we
see errors enclosed by Ts. In 35 and 32% of cases (Beta
and Helicobacter, respectively), the error position was
preceded by G.

Analysis of base substitution errors in Solexa reads

Twelve substitution errors (eight transversions and four
transitions) are possible during a base call. We compared
the wrong base calls in the reads to the base in the refer-
ence sequence and found that base substitution errors in
Solexa reads are not equally frequent. Generally, the two
data sets show similar tendencies (Figure 8, Table 2). The
most frequent base to be changed into is a C, preferen-
tially substituting T or A in the Beta data set and A in the
Helicobacter data set (T in Helicobacter as well but at a
lower frequency). Consistently for both data sets, C>G
transversions are the least frequent substitution errors.
The top three types of substitution errors account for
>53% of all substitution errors found in the
Helicobacter read data set (the transversions A >C,
G>T and A>T) and for >42% of all substitution
errors found in the Beta data set (the transition T > C
and the transversions A > C and C > A).
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Figure 8. Frequency of substitution errors in the Helicobacter acinony-
chis and Beta vulgaris Solexa read data sets.
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Table 2. Base substitution frequencies in the Beta and Helicobacter
read data sets

From
Into A C G T Any
Beta
A - 0.13 0.04 0.08 0.25
C 0.14 - 0.08 0.15 0.38
G 0.05 0.02 - 0.09 0.16
T 0.05 0.04 0.12 - 0.21
Any 0.25 0.19 0.24 0.33
Helicobacter
A - 0.07 0.02 0.04 0.14
C 0.25 - 0.04 0.10 0.39
G 0.05 0.02 - 0.06 0.14
T 0.10 0.06 0.18 - 0.34
Any 0.41 0.15 0.24 0.20

Table 3. Observed and expected error rates for base calls of different
quality values in the Beta and Helicobacter data sets

Score Beta (%) Helicobacter (%) Expected (%)
0 =40 1.39 0.43 0.01
0 =130 3.55 1.06 0.10
0 =20 5.21 1.70 0.99
0=10 9.68 4.40 9.09
0=0 39.65 28.68 50.00

Insertions and deletions in the Solexa read data sets

The ELAND algorithm is limited to the alignment of reads
containing up to two substitution errors. In addition to the
reads matched by ELAND to the reference sequence there
is a substantial amount of unmatched reads (Figure 1).
Some of the unmatched reads contain more than two
sequencing errors, but another reason for unmatched
reads may be the occurrence of insertions and deletions
(indels). We implemented a Perl script to find single nucleo-
tide indels within reads without considering additional sub-
stitution errors. We observed a very low rate (<0.01%) of
indel errors: 323 of 2.8 million Beta reads contain a single
nucleotide insertion and 1258 Beta reads contain a single
nucleotide deletion; 1215 and 2284 insertion and deletion
errors, respectively, were found in the Helicobacter data set.
Further inspection of the data revealed that >25% of
base insertions occurred in homopolymer tracts of four
or more nucleotides. However, no clear trend could be
detected for deletions. With respect to the positions
within reads where indels occur there is a slight accumula-
tion of such events at internal positions of the reads. No
bias for inserted or deleted bases could be detected (data
not shown). The reason for detecting this type of error
might be sequencing errors in the reference sequences.
For Helicobacter, two erroneous insertions in the Sanger
sequence were reported (10). Approximately 10% of
Illumina reads with one deletion match to these two
positions.
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Figure 9. Histograms of base quality values for all correct base calls
(a) and all wrong base calls (b) in the Bera and Helicobacter data sets.

Assessment of quality values

The Solexa base caller Bustard reports the quality of each
base call by estimating a quality score similar to the phred
score based on the image output without considering the
reference sequence. More precisely, Bustard estimates the
probability P of a base call to be wrong and reports
the corresponding quality score Q = —10 log;o (P/(1—P).
Thus, a quality score Q = 40 roughly corresponds to an
expected error probability of P = 0.01%, and Q = 0 cor-
responds to an expected error probability of P = 50%.
Based on uniquely matched reads reported by ELAND,
we have determined 7201 633 correct and 369113 wrong
base calls in the Bera data set as well as 70 995 154 correct
and 2 694 074 wrong base calls in the Helicobacter data set.
We have extracted the corresponding quality scores from
Bustard output files and computed observed error rates
per quality score. Table 3 shows a comparison of the
expected and observed error rates for the base call score
quality in our two data sets: Theoretical values under-
estimate the error probability for high quality values
and overestimate the error probability for low quality
values.

We also collected the quality values for bases reported
by ELAND as correct separately from quality values for
bases reported as wrong (matching reads only). Figure 9
shows the results in separate histograms. The fraction
of the best quality value is increased for correct base
calls and low quality values show low fractions as
expected. However, there is a substantial amount of
high quality values for wrong base calls. Six percent
of all wrong base calls in Helicobacter and 19% of all
wrong base calls in Beta have Solexa quality scores
0 = 40.
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DISCUSSION

We have characterized two Solexa read data sets derived
from a bacterial genome (Helicobacter acinonychis) and
from a Beta vulgaris BAC clone. We looked for systematic
biases of read start positions, recorded the error positions
and the error frequency along the read length, examined
the distribution of reads along the reference sequences,
investigated substitution preferences, and assessed the
reliability of quality scores. The generalization of our
observations may be limited by the fact that the presented
data relates to a single Illumina 1G Analyzer. However,
since three different flow cells, four different lanes and two
different library preparations for two different target
sequences are involved we assume that our consistent
observations reflect relevant aspects of the current state
of Solexa technology.

To explain the observed biases, a comprehensive knowl-
edge of the Solexa technology is necessary. The source
DNA is fragmented randomly, and adapter molecules
are ligated at both ends of each fragment followed by
pre-amplification for enrichment of the material. The
DNA fragments are melted, and the single strands are
trapped inside the flow cell which is covered by a dense
lawn of primers. Subsequent local amplification leads to
the formation of clusters of approximately 1000 identical
molecules per square micrometer. The base incorporation
is started by adding primers, polymerase and the four
flourophore-labeled deoxynucleotidetriphosphates. The
dNTPs act as reversible terminators, i.e. only a single
base is added per molecule in each cycle. The cluster fluor-
escence is measured to identify which base has been incor-
porated. A green laser identifies the incorporation of the
bases G and T, and a red laser identifies the bases A and C.
Two different filters are used to distinguish between
G/T and A/C, respectively. After signal detection, the
fluorophore and the terminating modification of the
nucleotide are removed.

In the context of this work we could not detect a general
sequence bias for the immediate vicinity of read start posi-
tions, indicating that the fragmentation step is essentially
random. Two different methods of fragmentation were
used but potential trends for each method were rather
weak. However, we did observe a strong correlation
between GC richness and read coverage, with the read den-
sity being increased in regions of elevated GC content.
Uneven coverage of the target genome is well known
from Sanger sequencing, but this effect has been attributed
to a cloning bias in the underlying plasmid shotgun
libraries. Since the propagation of Solexa templates in
E. coli is avoided, the cloning procedure cannot be a
reason for the read distribution bias. Another reason for
biases towards GC-rich sequences could be the different
melting behaviour of double-stranded DNA. AT-rich
DNA segments denature at lower temperatures than GC-
rich DNA. In Serial Analysis of Gene Expression (SAGE)
and Massively Parallel Signature Sequencing (MPSS) data
sets, the even more dissimilar melting behaviour due to the
shortness of the templates (14-21 bases) is supposed to be
the reason for the observed bias towards GC-rich
sequences (17,18). Since the fragment libraries for Solexa
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sequencing are larger having sizes of 120170 bp, denatura-
tion of the DNA is less likely to occur. However, potential
denaturation effects are most likely to occur at the adapter-
free state of the DNA molecules. Once adapters have been
ligated to the fragments, the DNA is no longer sensitive to
denaturation. According to the protocol for library genera-
tion, we performed a PCR enrichment step. This step might
introduce bias as well. However, described PCR-intro-
duced biases have opposite effects, i.e. sub-optimal ampli-
fication of GC-rich templates (19).

Solexa sequencing base call errors occur preferentially
at the 3’ end of reads. For the accumulation of errors
towards the end of the read, we consider the following
scenario. All immobilized DNA molecules in a cluster
are supposed to give the same signal at a time because
each cycle usually adds exactly one base to the growing
double strand along the template in a cluster. Whenever
single DNA molecules in the cluster are not elongated
properly, the overall cluster signal suffers from interfer-
ence by molecules which are out of phase. Failures in
the deprotection (i.e. removal of the terminator group)
of incorporated bases can lead to this type of interference.
Without deprotection, the next base cannot be added and
all bases of following cycles are shifted by one position
in this DNA molecule. Thus, with increasing cycle num-
bers shifts accumulate leading to an increased error rate in
later cycles. Additionally, incomplete removal of the fluo-
rophore results in more than one fluorescing base in
the following cycle and interferes with signal interpreta-
tion as well.

Sequence tuples before an error position are preferen-
tially G-rich. This result suggests that G might be prefer-
entially subject to an incomplete step of deprotection and
fluorophore removal.

The way signals are detected offers an explanation for
the observed preferences of base substitution errors.
The green laser is used to detect G and T at the same
time. The brightness of G is enhanced by the use of a
filter to distinguish G versus T incorporation. Similarly,
A and C are detected by the red laser and distinguished by
using different filters. The transversions G>T and A > C
are among the most frequent base substitutions in both of
our data sets, suggesting that these base call errors arise
because of insufficient discrimination of the respective
base emission spectra.

The quality of Sanger sequences is affected by the pre-
sence of GC-rich sequences as well, but also by polyA or
polyT homopolymer runs and by repeats causing second-
ary structure (20). In a recent survey on the accuracy of
454 pyrosequencing, Huse et al. (13) estimated that
39% of all errors that had passed GS20 quality filtering
occur in homopolymer length detection. This is certainly
linked to the fact that 454 technology sequences homo-
polymer tracts in single cycles. In contrast, Solexa
sequencing proceeds in a sequential manner, one base
at a time. As expected, we have not noted an increased
error rate in homopolymer runs of Solexa reads. The
Solexa one-by-one sequencing procedure is probably
also ensuring that base insertions and deletions in general
occur at very low rates.
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Each sequencing technology provides base quality
values.  Sanger sequencing phred scores are
calculated from log-transformed probabilities that a base
call is incorrect. For example, a phred score of 30
indicates a probability of 0.1% of a wrong base call.
In 454 sequencing, quality scores do not provide
a measure that a base at a given position is correct, but
merely indicate that homopolymer length has been called
correctly. It has been found that GS20 reads with average
quality scores above 25 had very few errors (13). Solexa
scores and phred scores are calculated differently, but
scores above 15 have approximately the same meaning.
Our observations, however, suggest that the scores deter-
mined by the Solexa software underestimate the true error
rate by up to 100 times for high quality values and over-
estimate the true error rate for low quality values.

Our results lead to several implications for analyses with
Solexa reads. Even if an excellent Q-value is determined
there is a chance for a wrong base call at this position.
Thus, during re-sequencing for SNP discovery, variable
positions need confirmation, preferably from the opposite
strand. Some types of substitution errors occur more
frequently than others. Such SNP candidates should
be treated with caution, even in case of confirmation.
Especially if one or more Gs precede the putative SNP
a wrong base call should be considered. However, in
re-sequencing projects most sequencing errors can be dis-
cerned from bona fide SNPs by applying high coverages
(for our data sets: 20-fold and above). In the context
of DNA methylation site detection by shotgun bisulfite
sequencing (21), the frequency of erroneous detection of
C instead of T and vice versa is of particular interest.
T > C transitions could be a source for false positives,
while C>T substitutions could cause false negative
results. For de novo sequencing, systematic substitution
errors may confound the ability of filtering correct reads
and increase the chance for misassemblies. The read pre-
valence in GC-rich regions affects all assumptions inferred
from the overall read coverage (e.g. the expected maxi-
mum number of missing reads in a row). The identification
of confirmed SNPs in AT-rich regions may be hampered
by poor sequence coverage. Thus, Solexa-based de novo
sequencing as well as re-sequencing activities need to cali-
brate their sequencing output for achieving accordingly
high read coverage of AT-rich regions. The bias in read
coverage might also impact the estimation of expression
levels of transcripts by ultra-short read sequencing. If no
compensation is applied the expression levels of GC-rich
transcripts may be overestimated.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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