Universitat Regensburg
Mathematik

Well-posedness of a Cahn-Hilliard
system modelling tumour growth

with chemotaxis and active transport

Harald Garcke and Kei Fong Lam

Preprint Nr. 17/2015




Well-posedness of a Cahn—Hilliard system modelling tumour
growth with chemotaxis and active transport

Harald Garcke * Kei Fong Lam *

November 19, 2015

Abstract

We consider a diffuse interface model for tumour growth consisting of a Cahn-
Hilliard equation with source terms coupled to a reaction-diffusion equation. The
coupled system of partial differential equations models a tumour growing in the pres-
ence of a nutrient species and surrounded by healthy tissue. The model also takes into
account transport mechanisms such as chemotaxis and active transport. We establish
well-posedness results for the tumour model and a variant with a quasi-static nutrient.
It will turn out that the presence of the source terms in the Cahn—Hilliard equation
leads to new difficulties when one aims to derive a priori estimates. However, we are
able to prove continuous dependence on initial and boundary data for the chemical
potential and for the order parameter in strong norms.

Key words. Tumour growth; phase field model; Cahn—Hilliard equation; reaction-
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1 Introduction

Several new diffuse interface models for tumour growth have been introduced recently in
[7]. Amongst them is a Cahn—Hilliard equation coupled with a reaction-diffusion equation
for a nutrient species. The model equations are given as

Orp = div (m(p) Vi) + (Apo — Aa) R (@) in Qx (0,7, (1.1a)
p=AU'(¢) - BAp - x,0 in Qx(0,7), (1.1b)

0o = div (n(p)(Xe Vo = X, V@) = Acah(p) in Q@ x (0,T), (1.1c)
0=Ve-v=Vu-v on I'x (0,7), (1.1d)

n(@)xoeVo v =K(0sx —0) on I'x (0,7). (1.1e)

Here,  c R? is a bounded domain with boundary T := 9, o denotes the concentration of
an unspecified chemical species that serves as a nutrient for the tumour, ¢ € [-1, 1] denotes
the difference in volume fractions, with {¢ = 1} representing unmixed tumour tissue, and
{¢ = -1} representing the surrounding healthy tissue, and p denotes the chemical potential
for ¢.

*Fakultat fiir Mathematik, Universitdt Regensburg, 93040 Regensburg, Germany ({Harald.Garcke,
Kei-Fong.Lam}@mathematik.uni-regensburg.de).



The non-negative constants \,, A\, represent the proliferation rate and the apoptosis
rate of the tumour cells, respectively, and A. represents the consumption rate of the
nutrient. Here we note that these are only active in the tumour regions, and the healthy
tissue does not proliferate, or consume nutrient or undergo apoptosis.

In the system (1.1)), A, B, and K denote positive constants, m(¢) and n(y) are positive
mobilities for ¢ and o, respectively, ¥(+) is a potential with two equal minima at +1, 0o
denotes a nutrient supply on the boundary I', and h(y) is an interpolation function with
h(-1) =0 and h(1) = 1. The simplest example is h(p) = 3(1 +¢).

We denote x, > 0 as the diffusivity of the nutrient, and x, > 0 can be seen as a
parameter for transport mechanisms such as chemotaxis and active uptake. To see this,

we note that in ((1.1a]) and ((1.1d]), the fluxes for ¢ and o are given by

q, = —m(p) Vi =-m(e)V(ATY' () - BAp - x,0),
qo = —n(p)V(Xo0 - Xso@),

respectively. The term m(¢)V(x,0) in g, models the chemotactic response, which drives
the cells towards regions of high nutrient. Meanwhile, the term n(¢)V(x,¢) in g, drives
the nutrients to regions of high ¢, i.e., to the tumour cells, which indicates that the
nutrient is actively moving towards the tumour cells. This term can be interpreted as the
active transport mechanisms which move the nutrient towards the tumour colony, see [7]
for details.

We note that in , the mechanism of chemotaxis and active transport are connected
via the parameter x,. To “decouple” the two mechanisms, we introduce the following
choice for the mobility n(y) and diffusion coefficient x,. For a positive constant 1 > 0 and
a positive mobility D(¢), consider

n(e) =nD()x," s Xo=1"Xe- (1.2)
Then, the corresponding fluxes for ¢ and o are now given as
ap = —m(p)V(AV' () - BAp - xp0),
4o = =D(p) V(o - 1),
where the parameter x, controls the effects of chemotaxis, and the parameter 1 controls

the effects of active transport.
We introduce the free energy IV for the nutrient as

Xo
N(p,0) = 7|U|2+X¢U(1—<P)a (1.4)

and its partial derivatives with respect to ¢ and ¢ are given as

(1.3)

No=Xo0+Xp(1=9), N,=-x,0. (1.5)

Note that, by the boundary condition Ve -v =0 on I', and the definition of N, (1.5), we
have

VNgs -v=xX,Vo-v=X,Veo-v=xXxsVo-vonl.
Thus, by testing (1.1c]) with N 4, (1.1b)) with O, (1.1a) with p, and summing the resulting

equations, one can show the following formal energy identity is satisfied,

d B o
5 LA+ 51w« Lo 4 xpo(1- )| ax

dt
v [ m(@) VP +n(@) VN, dx + [ KNg(o-om)dn™  (16)

+ _[Q —p(Apo = Ag) (@) + Acoh(@)N ,dx =0,
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where H? ! is the (d-1)-dimensional Hausdorff measure. To derive useful a priori estimates
from (|1.6)) we face a number of obstacles:

1. the presence of source terms ph(¢)(Ag — Apo) + N s Acoh(y) deprives (1.6) of a Lya-
punov structure, i.e., an inequality of the form %V <aV, for a >0 and a suitable
function V;

2. the term o(1 - ¢) in the nutrient free energy N(p,0) can have a negative sign;
3. the presence of triple products poh(y) and oh(p)N 4.

One way to control the triple products with the usual H'-regularity expected from o, ¢
and p is to assume that A(-) is bounded. The simplest choice is

h(p) = min (O,max(%(go +1), 1)) ,

which ensures h(-1) =0 and h(1) =1 as requested. By considering the bounded functions
h(-), we can control the source terms ph(p)(Ag — Apo) + Ny coh(p) in (L.6), and thus
applications of Holder’s inequality and Young’s inequality will lead to (see (3.12)) below)

d B -
5 A s 1wl + X o+ xpo(1- )] ax

+ ki (19320 + VN, (1.7)

2oy * o132y

~kalo] 72y~ ksleliz(q) — kel Vela(q) < C,

for some positive constants k1, k2, k3, k4 and C. The sign indefiniteness of the term y, o (1-
¢) means that we have to first integrate (1.7 in time and then estimate with Holder’s
inequality and Young’s inequality. Thus, we obtain

B
Al (@) 1) + 5||V90||%2(Q) + ks ||UH%2(Q) — ke ”SOH%Q(Q)

T 2
ek [ (190130 + 19N,

— ko HU||?;2(0,T;L2(Q)) - k3H90H%2(0,T;L2(Q)) - k4||v¢||%2(o,T;L2(Q)) <C,

(1.8)

T20) + H0'||%2(r)) dt

for some positive constants ks, kg and C. A structural assumption (2.4) on the potential
U will allow us to control ”90”%2(9) with [W]11q) (see (3.16) below). This will lead to

B
(A=k) [ (o)1) + EHVS"”%%Q) +ksllol 20

T
1.
ek [ (190l + IVNalFay + lol 2y ) at (1.9)
— ko HUH%Q(QT;LQ(Q)) - k| (@) |10/ ) = Kall Vel T2 0,120y < Cs

for some positive constants k7, kg and C. To apply the integral version of Gronwall’s
inequality, we have to assume that the constant A satisfies A > k7. This is needed in order
to derive the usual a priori bounds for ¢ and g in Cahn-Hilliard systems with source
terms. However, we point out that, the constant A is often chosen to be A := %, where
~ > 0 denotes the surface tension and € > 0 is a small parameter related to the interfacial
thickness. For sufficiently small values of € or sufficiently large surface tension v, we see
that A > k7 will be satisfied, and thus it is not an unreasonable constraint.



Let us consider the nutrient equation (1.1c) with the specific choice of fluxes (|1.2]),
leading to

9o = div (D(p)Vo) —ndiv (D()Ve) = Acoh(p).

Performing a non-dimensionalisation leads to the following non-dimensionalised nutrient
equation (here we reuse the same notation to denote the non-dimensionalised variables)

KkOyo = Ao —0Ap —aoh(p), (1.10)

where k > 0 represents the ratio between the nutrient diffusion time-scale and the tumour
doubling time-scale, 6 > 0 represents the ratio between the nutrient diffusion time-scale
and the active transport time-scale, and « > 0 represents the ratio between the nutrient
diffusion time-scale and the nutrient consumption time-scale.

In practice, experimental parameters estimate that k < 1 (see for example [3, Sec-
tion 4.3.2]) and we assume that the time-scale of nutrient active transport and nutrient
consumption is of the same order as the time-scale of nutrient diffusion, i.e., 6 ~ O(1),
a~O(1). This leads to the following quasi-static model,

Orp = div (m(p) V) + (Ao — Aa)h(p) in Qx (0,7), (1.11a)

p =AU () - BAp - x,0 in Qx(0,7), (1.11b)

0= div(D(¢)Vo)-ndiv(D(e)Ve) = Acoh(p) in Q@ x (0,T), (1.11c)
0=Ve-v=Vu-v on I'x (0,7), (1.11d)
D(p)Vo-v=K(0w—0) onI'x (0,7). (1.11e)

Note that the loss of the time derivative 0;o implies that an energy identity for (1.11]
cannot be derived in a similar fashion as (1.6). However, if we test (1.11b]) with J;¢,

(1.11a) with x,0 + p, (L.11c) with o and add the resulting equations, we formally obtain

ifﬂ[m@p%v@ﬁ] dx

dt
+ fﬂ m(p)([Vul* + X,V - Vo) + D(p)(|Val* =V - Vo) dx
# [ Q= 20 h() Cpr + 1) + Ach(p) o dx

+fFK(|U]2—aaoo)d’Hd_1 =0.

(1.12)

Here, we point out that there are no terms with indefinite sign under the time derivative,
and so we expect that there will not be a restriction on the constant A as in the model
[T1).

We now compare with the other models for tumour growth studied in the litera-
ture. In [8], the authors derived the following model,

O = div (m(p) V) + P(¢) (Xeo + X (1 = ¢) = 1), (1.13a)
p=AU'(¢) - BAp - x,0, (1.13b)
9o = div (n(e)(Xa Vo = xpVe)) = P(9)(Xo0 + Xo(1 = ¢) — 1), (1.13c)

where we see that the chemical potentials N, and p enter as source terms in (|1.13a}) and
(1.13c), and P() is a non-negative function. Subsequently, if we consider

Xoe=1, xp=0, n(p)=m(p)=1



in (1.13]), then we obtain

I =Ap+P(p)(o-p), (1.14a)
pu=A¥'(p) - BAyp, (1.14b)
0o = Ao — P(p)(o — ). (1.14c)

Furnishing with homogeneous Neumann boundary conditions, the well-posedness
of the system and the existence of the global attractor have been proved in [6] for large
classes of nonlinearities ¥ and P.

The corresponding viscosity regularised version of (where there is an extra adypu
term on the left-hand side of and an extra adyp term on the right-hand side of
for positive constant «) has been studied in [4], where well-posedness is proved
for a general class of potentials W, and for a Lipschitz and globally bounded P. The
asymptotic behaviour as o — 0 is shown under more restrictions on ¥ (polynomial growth
of order 4) and the authors proved that a sequence of weak solutions to the viscosity
regularised system converges to the weak solution of .

For , there is a natural Lyapunov-type energy equality given as

d B 1
f A0+ 5 el + S 0] ax

a
+ Va2 + 1901320y + [ P()(0 - 1) dx =0.

Since all the terms are non-negative, the standard a priori estimates can be obtained even
in the case where ¥ has polynomial growth of order 6 in three dimensions. In contrast,
for we have to assume that the derivative ¥’ has linear growth, and thus restricting
our class of potentials to those with at most quadratic growth (see Section [7| below).

The quasi-static model bears the most resemblance to [, Equations (68)-(70)]
when the active transport is neglected (i.e., n = 0). We note that the focus of study seems
to be the linear stability of radial solutions to the resulting sharp interface limit when we
set A = % and B = ¢, and send € - 0. To the best of our knowledge, there are no results
concerning the well-posedness of .

We also mention another class of models that describes tumour growth using a Cahn—
Hilliard—Darcy system,

(1.15)

dive =S, (1.16a)
v=-Vp+uve, (1.16b)

Orp + div (vp) =V - (m(p)Vu) + S, (1.16¢)
p=AV'(p) - BAp, (1.16d)

where v denote a mixture velocity, p denotes the pressure, and S denotes a mass exchange
term. For the case where § = 0, the existence of strong solutions in 2D and 3D have
been studied in [I0], while for the case where S # 0 is prescribed, existence of global
weak solutions in 2D and 3D, and unique local strong solutions in 2D can be found in
[9]. A related system, known as the Cahn—Hilliard-Brinkman system where an additional
viscosity term is added to the left-hand side of the velocity equation and the mass
exchange S is set to zero, has been the subject of study in [2].

The structure of this paper is as follows. In Section[2] we state the assumptions and the
well-posedness results for and . In Section [3| we derive some useful estimates,
and in Section 4] we prove the existence of weak solutions to via a Galerkin procedure.
Continuous dependence on initial and boundary data for is shown in Section |5, In
Section |§|, we outline the proof of well-posedness for @ , and in Section [7| we discuss
the issue of the growth assumptions for the potential.




2 Main results

For any d € N, let Q ¢ R? denote a bounded domain with Lipschitz boundary T, and let
T > 0. We recall the Poincaré inequalities (see for instance [14, Equations (1.35), (1.37a)
and (1.37c)]): There exists a positive constant Cp, depending only on €2 and the dimension
d, such that for all f e H'(Q),

Hf - 7HLQ(Q) <Cp ”VfHLQ(Q)v (21)
1 £lr2c0) < Cp (1V £ r20) + 1 £l 22y ) - (2.2)
where f := ﬁ [, fdx denotes the mean of f.

Assumption 2.1. We assume that oo € H'(Q), o9 € L*(R), m,n,h,D € C°(R), and
there exist positive constants he, mg, m1, Dy, D1, ng and ny, such that

mo<m(t)<mi, mno<n(t)<ni, Do<D(t)<D;, 0<h(t)<he VteR. (2.3)

We assume that oo € L*(0,T;L*(T)) and ¥ ¢ CHY(R) is non-negative, continuously
differentiable, with globally Lipschitz derivative and satisfies

()2 Rift] — Ra, |¥'(t)| < Ra(1+[t)), (2.4)

for positive constants Rs, R3 and a positive constant Ry such that

2X2
A> —2 2.5
Xo 1 ( )

Definition 2.1. We call a triplet of functions (,u,0) a weak solution to if
o, e HY(0,T; (H' (2))") n L*(0,T; H (),
peL*(0,T; H'(Q))

such that for ¢, ¢,& € HY(Q) and a.e. te (0,T),
(010.) = [ =m(@)Vp-T¢ + O = Aa)h(p)C dx, (2.6a)
fﬂ,ud)dx - /Q AV (9)6 + BVp- Vo - ypobdx, (2.6b)
(010.€) = [ -n(P) (X V0 =X, T¢) - VE = Aearh ()¢ dx (2:6¢)

+ AéK(Joo -0) dHa 1,

where (-,-) denotes the duality pairing between H'(Q) and its dual (H'(Q))*.

Theorem 2.1 (Existence of global weak solutions). Let Q c R? be a bounded domain with
Lipschitz boundary T' and let T > 0. Suppose Assumption [2.1] is satisfied. Then, there
exists a triplet of functions (@, u,o) such that

©e L®(0,T; H (Q)) n H*(0,T; (H'(Q))*), (2.7)
pe L*(0,T; H' (),
o e L*(0,T; H'(Q)) n L=(0,T; L*(Q)) n H' (0, T; (H'(2))*), (2.9)

and is a weak solution of (L.1)) in the sense of Definition 2.1 with ¢(0) = ¢o, 0(0) = 0 in
L3(Q).



The embedding of L2(0,T; H*()) n H'(0,T; (H'(2))*) into C([0,T7]; L*(R)) guar-
antees that the initial data are meaningful. We point out that the assumption arises
from using Young’s inequality to estimate the term x,o(1-¢) in , and is by no means
an optimal assumption. See Remark for more details. In addition, Theorem gives
existence of weak solutions in any dimension. This is thanks to the fact that U’ has linear

growth (see ([2.4])2).

Next, we show continuous dependence on initial and boundary data and uniqueness of
weak solutions under additional assumptions on the interpolation function h(-) and the
mobilities m(-) and n(-).

Theorem 2.2 (Continuous dependence and uniqueness). Let d < 4. Suppose h(-) €
COL(R), m(-) and n(-) are constant mobilities (without loss of generality we set m(-) =
n(-)=1). Fori=1,2, let

i € L(0, T H () n H'(0,T5 (H'(2))),

i € L2(07T7H1(Q))7

o; € L2(0,T; HY(Q)) n L™(0,T; L*()) n H*(0,T; (H*(Q))*)

denote two weak solutions of (1.1)) satisfying (2.6) with corresponding initial data p;(0) =
vo0.i € HY(Q), 0:(0) = 09 € L*(Q), and boundary data oo ; € L*(0,T; L*(T')). Then,

up. (Hal(s) —09(5) [ Z2(0y + 1 (5) - cpz(s)Hizm))
+ [ - /QHi?(O,T;LZ(Q)) +[v(or- ‘72)”%2(0,T;L2(Q))
+ o1 - GQH%Q(O,T;LQ(F)) +[|V (1 - @2)”%2(0,T;L2(Q))
<C (HUo,l —002[ 7200y + lpo1 = o2l taqy + 001 - 000,2”%2(0,T;L2(F))) :

where the constant C' depends on 0| pe01.12(0)), Ts K, hoos Q, d, A, B, Ap, Acs Aas X,
Xo, and Ly, Ly which denote the Lipschitz constants of h and V', respectively.

We point out that Theorem provides continuous dependence for the difference
of the chemical potentials |11 — pi2]|r2(ax(0,r)) and also with a stronger norm |¢1(t) -
©2(t) |l L (0,;22(q2)) for the difference of the order parameters. This is in contrast with the
classical norm [[p1(t) = @2(t)| Lo (0,7;(H1 (0))+) One obtains for the Cahn-Hilliard equation,
compare [0, Theorem 2].

We will now consider the quasi-static system .

Definition 2.2. We call a triplet of functions (¢, u, o) a weak solution to (1.11)) if

e H'(0,T;(H'(Q)*)nL*(0,T; H'()),
o,pe L2(0,T; H'())

such that for ¢, \,& e HY(Q) and a.e. t € (0,T),

(010,C) = [ =m(@)V1- ¢+ (o = A)h(P)C dx, (2:103)
/QMA dx = fg AT (9)A + BVp- VA - xpo\dx, (2.10b)
[F EK (00 — o)A = A D(p)(Vo—nVp) - VE+ Acoh(p)€ dx. (2.10¢)



Theorem 2.3 (Existence and regularity of global weak solutions). Let Q c R? be a bounded
domain with Lipschitz boundary I' and let T > 0. Suppose Assumption is satisfied, and
let A be a positive constant which need not satisfy . Then, there exists a triplet of
functions (p, u, o) such that

@ e L0, T; HY(Q)) n HY(0,T; (H'(Q))"), (2.11)
w0 € L20,T; H'(Q)), (2.12)

and is a weak solution of (1.11) in the sense of Definition with ©(0) = g in L*(Q).
Furthermore, if 0o € L=(0,T; L*(T")), then

o e L™(0,T; H(Q)). (2.13)

In Section [6] we derive the a priori estimates and deduce the existence of approximate
solutions on the Galerkin level. The proof of Theorem then follows from standard
compactness results. In Section [6.4], we show the continuous dependence on initial and
boundary data and uniqueness under additional assumptions.

Theorem 2.4 (Continuous dependence and uniqueness). Let d < 4. Suppose h(-) €
CYY(R), m and D are constant mobilities (without loss of generality we set m = 1).
Fori=1,2, let

i € L0, 75 H' () n H' (0,75 (H' (2))"),

Mi € L2(07T7H1(Q))7

o; € L0, T; H'(Q))

denote two weak solutions of (1.11|) satisfying 12.10: with corresponding initial data v;(0) =
v € HY(Q) and boundary data 0o ; € L®(0,T; L*(T)). Then,

S[lél;] lo1(s) - @2(5)”%2(9) + = o ”%2(0,T;L2(Q)) + [V (p1 - SOQ)“%?(O,T;LQ(Q))

+ V(o1 - U2)HQL2(0,T;L2(Q)) + oy - o2 H2L2(07T;L2(F))

<C (”@0,1 —v02l72(q) + 0001 - UOOQ”%P(O,T;L?(F))) ;
where the constant C' depends on |04 Lo (o, r;m1(0)), K5 @, A, B, L, Lur, Ay, A, Aas X
and T.

3 Useful estimates

We will use a modified version of Gronwall’s inequality in integral form.

Lemma 3.1. Let o, 3,u and v be real-valued functions defined on I :=[0,T]. Assume that
« is integrable, B is nonnegative and continuous, u s continuous, v is nonnegative and
integrable. Suppose u and v satisfy the integral inequality

u(s)+f08v(t)dt Sa(s)+/086(t)u(t)dt Vsel. (3.1)

Then, it holds that

u(s)+[08v(t)dt sa(s)+f08a(t)ﬂ(t)exp(ft86(r)dr) dt. (3.2)



This differs from the usual Gronwall’s inequality in integral form by an extra term
Jo v(t)dt on the left-hand side.

Proof. Let

w(s) :=u(s)+ /:v(t) dt.

Then, by (3.1) and the non-negativity of 5 and v, it holds that

S
w(s) <a(s) + f B(t)w(t)dt.
0
Applying the standard Gronwall’s inequality in integral form yields the required result. [

Below we will derive the first a priori estimate for sufficiently smooth solutions to (|1.1J),
in particular this will hold for the Galerkin approximations in Section We choose to
present this estimate here due to the length of the derivation.

Lemma 3.2. Suppose Assumption is satisfied. Let ¢,0 € CY([0,T]; HY(Q)), p €
CY([0,T]; HY(2)) be such that the triplet (p,p,0) satisfies with ¢(0) = @o and
0(0) = 0¢. Then, there exists a positive constant C' depending on T, 2, I, d, Ry, Ra,
R3, the parameters Ay, Aas Aes Xos Xes Poos, Mo, no, A, B, K, the initial-boundary data

0o 22(0,7522(r))s [9(0)|E1 () and [|o(0)] 12y, such that for all s € (0,T],

W () @) + [2() i) + 1o ()72

2 2 2 = (3:3)
+IVelz20,5220)) * 1Vo 72005220y + 1o 1720,5,02(1)) < C-
Proof. Let us denote
B o
co = ﬁ] I:A\I/(SOO) + E |V§00|2 + X? |0'0|2 + X(pUO(l - 900)] dx (34)

as the initial energy. Then, by the assumption on the ¢g and oy, Holder’s inequality and
Young’s inequality we see that ¢y is bounded.

Substituting ¢ = i, ¢ = Oy, and £ = X0 + (1 —¢) = N, into and adding the
resulting equations together, we obtain

d B o
& LA+ S1vel « Lot e xpo(1- )| ax

dt
2 2 2 d-1
v [ m@)H? +0() [V - X,V dx + [ Koo lof? i
+ [ () Qo0 + X (1= 9)) = O = Aa)p) dx

_fFK(XUU+X<p(1—gp))goo_wa(l_sp)Ude—l - 0.

(3.5)

We first estimate the mean 7z using ([2.6b)) by considering ¢ = 1 and using the growth
condition (2.4)), leading to

2

/Q AV (p) - xpo dx

_ 1 142
< |0 (ARs 190 + ARs|l 0] L2y 91 + Xl L2y 1217

7720 = 120 = 192

<310 (AP RE IO + A2 B3| ol 12+ 210 3y 192



Employing the Poincaré inequality ([2.1]) we have

|17z 0y < 2681Vl Z2(0y + 2070720

(3.6)
2 2 2 2 22 12 20 12

< 23| Viala oy + 6 (A2R3 9] + AR3|0l 200y + X2l 13200y ) -

Then, by Holder’s inequality and Young’s inequality, we can estimate the source term
involving p as follows,

| [ =h() 00 = Ao
2 2

4a1p lollz2(q) + Claz, Aa, hoo, () + (a1 + a2) | 1|72 (q) (3.7)
<2C% (a1 +a2) | Vi 72y + C(a1,a2, Aa, hoo, [, A, R3)

1
< heo (Mol z2gy + 2a 1907 2] 220

<

h2 \2
o0 2 2 2 152 2
N ( 4a1p +6(ay + a2)X<p) loll72¢q) + 6A"R3 (a1 + a2) @72 (q).

for some positive constants a; and as yet to be determined. For the term involving A., we
obtain from Holder’s inequality and Young’s inequality

[ (@) (00 + xo(1 - ) x|

< Achoo (XO’HJH%Q(Q) + Xl llolie ) + xe ”UHLI(Q)) (3.8)
a3z Xy
2

X
< Acheo (XU taq + ) HO-H%Q(Q) + )\chOOQ_CZ)HQDHQLQ(Q) + C(|Q| s Aes Pooy Xos X as),
for some positive constants as and a4 yet to be determined. For the terms involving
the boundary integral, we have by Hoélder’s inequality, Young’s inequality and the trace
theorem,

ﬂxw(l ~ )0 = X000 — Xgo(l - )0 dH*!

< Xe (||U||L1(r) + ||<P||L2(F)||UHL2(F)) + Xo||UHL2(F)HUoo ||L2(F)

+ X000 ”Ll(r) + chHSDHLQ(F)HUoo ||L2(F)
2

X 2 X 2 2
< a5 32 olBcey (5 ) B ry + st o X ID (1 Dol

(3.9)

2
Xo X
< (05 + 7) ||U||%2(r) +Cq (i + aﬁ) ||<P||1291(Q) + 0(1 + ||U<>oHi2(r)),

for some positive constants a5 and ag yet to be determined. Here, Cy; is the constant from
the trace theorem which depends only on €2 and d,

| flz2ry € Cull flay VFeH(Q).

Employing the estimates (3.7)), (3.8), and (3.9) into (3.5)), and using the lower bounds of
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m(-) and n(-), we have

if[“’(‘f’“—w + 2% o 4 xpo (1~ go)] dx

; fQ (mo - 2C2(ay + ag)) Vul® + 10 [ Vo = X Vel dx

X%
+ K [ (xo - a5 - %) 1o apt! - KfCE( +ae)lwl dx
2Xo
o o (3.10)
_fg( :;’Llp+6(a,1+a,2)xi+)\choo (Xa+a4+ 32%7))|0|2 dx
22
f (6A2R3(a1 +a2) + Achoo KCtr(2 £ +a6))|g0|2 dx
Xo

<C(1+lowlam))

where C' is independent of ¢, o and u. By the triangle inequality, Minkowski’s inequality
and Young’s inequality, we see that

2
Ixo Vo 720y < (] @ * XVl 20))” < 21VN o720y + 2IX0 Vol 720y (3:11)
We now choose the constants {a;}5, to be

mo Xo

a1 =03=—5, A5 = ——, A3 = Q4 = Qg = 1,
1=a2 80123 5= 7 @3= 04 =06
and denote
mo X X2
. o o o 2 ® 2
cl = 5 ey =K L c3 = KC’tr(QXJ +1)+X¢no,
2h2N2C2 3
. o \p“P mo 2 Xso)
= + + Achoo +1+
“ mo 203 Xe (XU 2 )’
3my 2
. 2 2
Cy = 202A R3 + Aehoo KC“(2><U + 1)

where the additional X?pno in the constant c3 comes from (3.11]). Then (3.10) becomes

if[“’(%")*—Wl + 2% o 4 xpo (1 - @)] dx

; f cl|w|2+%|w|2 dx + f eo|of? dHd (3.12)
Q 2 r
2 2 2 2
- [ ealol + csloP + ol vl dx <€ (1+ |owlFaqry )
Upon integrating with respect to ¢ from 0 to s € (0,7'] gives

J[Ave ) « F vt + X jo(w )+ xoo w,5)(1- ol5))]

2 noX 2 2
! ”v:u'HLQ(O,s;LQ(Q)) + 5 . HVU”L?(o,s;L?(Q)) +C2 HUHLZ(o,s;L?(F)) (3.13)
- 04”0\\%2(0,8;9(9)) —Cs5 ”90”%2(0,5;L2(Q)) -G ”V‘P”%Q(O,S;LQ(Q))

<cg+C (s + 00 ||%2(0,5;L2(F))) ’
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where the constant ¢g is defined in (3.4). By Holder’s inequality and Young’s inequality,
we have

| [ xeo =0 ax| < xollol sy + xelolia Il 2oy

\ N 22 (3.14)
< g lolaqay + OO 190, x0) + 3 Loy + = 2Ll
and thus from (3.13)) we deduce that
B Xo X2
AH‘I’(<P(S))||L1(Q) + EHVSD(S)H%Q(Q) + IHU(S)H%Q(Q) - X_@HSO(S)H%?(Q)

2
nNoX s

+c1 ||VM||%2(0,5;L2(Q)) + THVUH%Q(O,S;L%Q)) + CQHUH%Q(QS;L?(F)) (3.15)

= callolZaos12(0)) ~ 11205220y — €31Vl T20,5:22(0
(0.5:12(9) (0.5:12(2) (0.5:L2(2)

SCO+C<1+T+||Uoo||%2(07T;L2(F))).
Now, by (2.4) we have
1 1 R
2 2 2
- ds—f\Il d RQ):—\II 22000, (3.16
ol = [l ax < o (o) dx + Ralgl) = 0@y + 2210, (316)
and for any s € (0,77,
1 Ry
Il 72052209 < R—1||‘I’(90)||L1(0,5;L1(Q)) "R €] s. (3.17)

Thus, using (3.16) and (3.17)), we obtain from (3.15))

2X2 B Xo
(4= i ey + 5 19y + S o

C5
_ R_lH\II(SO(S))HLI(O’S;[A(Q)) —C3 HV<P|’%2(07S;L2(Q)) - C4HO-”%2(O,S;L2(Q)) (318)

2
2 WX 2 2
+ Vil z20,5020)) + 5 ZVolza (05220 * 2lolz2(0.522(r))
2
<C (1 +T+ |0 HL2(0,T;L2(F))) =i Cxs
for some positive constant ¢, independent of s € (0,T], u(s), o(s), and p(s). Let

2x2 B
Cmin = Min - ﬁv P & y  Cmax = maX(C5/R1, 3, 04)- (319>
XURl 2 4

Then, ¢pin > 0 by assumption (see (2.5])), and we obtain from (3.18)) that,
cain (10 (2 () 110 + 1 96(5) 22 gy + 10(5) )
2 nOX(QT 2 2
+ 1| Vil Tz.502(0)) + T”VU”LQ(QS;L?(Q)) + 2] o) 720,502 (ry) (3.20)

< [ cmax (19510 + V6 120y + 120y ) dt + o
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Substituting

u(s) = (D 1rcay + 700 2oy + 10 2o, (3.21)
2
noXs
e G A L R A (322
Cx Cmax
a(s) = , B(t)=——, (3.23)
Cmin Cmin

into Lemma we obtain from ((3.20)
12 ()L + V() [ 720y + 1o()] 720

+

min

S
< & +f C*cmaxexp(cmax(s—t)) dt <oo Vse (0,7T].
0

. 2 .
Cmin min Cmin

2
noX
(Cl HVMH%Q(O,S;LQ(Q)) A = HVUH2L2(0,8;L2(Q)) tC2 ”U%Q(O,S;LQ(F))) (3.24)

Together with (3.16[), we find that there exists a positive constant C not depending on ¢,
 and o such that,

19 (o) + 1) gy + 10 () oo )
Vil 20 w2 ) + 1901 20,022 + 10172 0,0220)) < €
for all s (0,7T]. O

Remark 3.1. The necessity of (2.5) comes from the fact that in (3.12)), we cannot apply
Holder’s inequality and Young’s inequality like in (3.14) to estimate the term

d
T fﬂx(pa(l - p)dx,

as inequalities are not preserved under differentiation.

4 Global weak solutions

4.1 Galerkin approximation

We obtain global weak solutions via a suitable Galerkin procedure. Consider a basis
{w;}ien of HY(Q) which is orthonormal with respect to the L2-inner product, and without
loss of generality, we assume w; is constant and hence [jw;dx =0 for all ¢ > 2. In
the following we take {w;};en to be eigenfunctions for the Laplacian with homogeneous
Neumann boundary conditions,

-Aw; = Ajw; in €, (4.1a)
Vw;-v=0 onlT, (4.1b)

where A; is the eigenvalue corresponding to w;. It is well-known that the {w;};qy can be
chosen as an orthonormal basis of L?(Q) and then forms an orthogonal basis of H(Q).
As constant functions are eigenfunctions, w; can be chosen as a constant function with
A1 =0 (see for instance [12, Theorem 8.4]). Let

Wy = span{wy, ..., w;} ¢ H(Q)

13



denote the finite dimensional space spanned by the first k& basis functions. We now consider

k k
i (t, ) ;af(t)wi(:v), pr(t, ) = ;55(75)%(93)7 or(t, ) = % (Hwi(x)

and the following Galerkin ansatz

(4.2a)
[ i dx = [ =m0 Vi w; + Oy = A)h(er)w; dx, (4.32)
/Q pw; dx = fQ AV (pr)wj + By - Vwj = Xpokw; dx (4.3b)
fgc'“)takwg dx = fﬂ —n(pr) (XoVor = X Vipr) - Vwj = Acorh(pr)w; dx (4.3¢)
+ fr K (00 — op)w; dH* T,
for 1 < j < k. We define the following symmetric matrices with components
(M) i = /Q h(er)wiw; dx, (Mr)ji = frwiwj dH* !, (4.4)
(S* )ji = _/S;m(gok)Vwi -Vw;dx, (Sﬁ)ji = [ n(pr) Vw; - Vw;j dx

for 1 <4,j <k. Let d;; denote the Kronecker delta, and we introduce the notation
Py = /Q\Ill(gok)wj dx, Z? = ﬁamwj A h? = f h(pr)w;dx
P = (F, DT, B2k 8T

’ hk - (hk
Mij = wiiwj dx = (51']‘, Sij = f Vw; Vw] dx

YT, (4.7)

(4.8)
for 1 <i4,7 <k, so that we obtain the following initial value problem for a system of ordinary
differential equations for ay, := (af,

N ak;) ’ k _(ﬁlw"aﬁ]l:)-r?a‘nd 7/4) = (’va "7/YI<;)T
k k k
Eak —Smﬂk + )\th'7k - Ah", (4.9&)
B = Ap" + BSa -y, (4.9b)
S0 = ~Sh (e = Xpouk) =AMy, — KMy + K3 (4.9¢)
Substituting (4.9b)) into (4.9a)), we obtain
d
e ~Sk (A" + BSay — xoy1) + \pMpy - A\oh (4.10a)
d
0Tk = SOt~ Xetk) =AMk = K My + K3 (4.10b)
and we complete (4.10) with the initial conditions
(ax);(0) = —/Qcpowj dx, ();(0) = .[ngwj dx for 1<j<k (4.11)
which satisfy
k
<ol 1 (ay, Z Yi)i(0)w
HY(R) j=1

< HO'[)HLQ(Q) VkeN.
L2(Q)
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We remark that is a nonlinear ODE system and S¥ Sk *, M,’f depend in a
nonlinear way on the solution. Continuity of m(-), n(-), h(-) and ¥'(-) imply that the
right-hand sides of depend continuously on ay and ~x. Thus, we can appeal to the
theory of ODEs (via the Cauchy—Peano theorem) to infer that the initial value problem
has at least one local solution pair (o, ) defined on [0, ;] for each k € N.

4.2 A priori estimates

Next, we show that ¢ty = T for each k € N by deriving a priori estimates. By the Cauchy—

Peano theorem, (4.9b)), and (4.2)), we see that
o0k € CH[0,t: ], Wa), e € CO([0,84]; W),

We proceed similarly to the derivation of (3.3). Let d;; denote the Kronecker delta.
Multiplying (4.3c|) with XO"Y‘;? + X (witdy, - a?) and sum from j =1 to k leads to

J 200+ 0 (1= 900 + (1) o T = X Vil dx
= [ Aeoh(60) (o + (1 = 1)) dx (1.12)

+ [ K (0w = 0 (o o (1= 1))

Here, we used that wy is constant, Vw; = 0, and the linearity of the trace operator. Next,
we multiply (4.3a) with ,B]’?, and summing the product from j =1 to k leads to

| @rsor = 2prh(p1) + Aah (1)) + mlspi) [Tl e = 0. (4.13)

Similarly, we multiply (4.3b)) with %a? , and summing the product from j =1 to k gives

0= fQ(—uk + AV (¢r) = Xpok) ok + BV @y, - VOypr dx. (4.14)
Upon adding ([{.12), ([£13), and (£14) we obtain
d B 2, Xo 2
T fﬂ [A\If(v?k) + 0 |Vor|” + o lok|” + xpor(1 - s%)] dx

+ [ m(en) 9l + n(0) o Vor = xp Vol dx + [ Kxglowf® dme?
v Aol (xoo + X (1= 01)) + (ha = M) h((pi ) dx

- fFKUoo(XaUk + X (1= ) = Kopxo(1 - o) dHE = 0.

(4.15)

Thanks to Young’s inequality, Poincaré inequality and the trace theorem, we can deduce
that an analogue of holds for ¢, o and g via a similar calculation as in the proof
of Lemma Then, following the proof of Lemma [3.2] we obtain the following discrete
a priori estimate

sup (||‘1’(90k(5))”L1(Q) + ler(s)F oy + H%(S)H%%Q))

5€[0,T] B (4.16)
+ | Vg “%2(0,T;L2(Q)) + [ Vo ||2L2(0,T;L2(Q)) + ||‘71~cH%2(o,T;L2(F)) <C,
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where C is the constant in Lemma Setting j = 1 in (4.3b)) leads to

fQ s dx = fQ AV’ (¢r) = X0k dx,

and applying the same calculation as in (3.6) we obtain analogously

2
o

|l T2y < 2C31Vik| 220y + 2| | i dx
(@) (@) o

<203 |V, ”%2(5’2) +6A%R3 |y, ”%2(9) + GX?OHUkH%%Q) +C(A, Rs,[9).

(4.17)

Integrating with respect to time from 0 to 7', and using (4.16]), we obtain

el 7202y < C (IVmel B0y + lorl 2z + 10wl 2oy +1)
<C(1+0).
(4.18)
Thus, with (4.16)) and (4.18)), we see that there exists a positive constant C' depending on
C and T such that

S(ISI;] lor () ar ) + ekl 20,5 )y + okl 20,5 (@) < C

for all k. This a priori estimate in turn guarantees that the solution {yg, o, ux} to (4.10))
can be extended to the interval [0,7T], and thus ¢, =T for each k € N.

4.3 Passing to the limit

Let II; denote the orthogonal projection onto Wy = span{wi,...,wr}. Then, for any
CeL?(0,T; H(Q)), we see that

k
[oprcax = [ apattecas =3 [ ooty ds,
Q Q j=17%

where {(ij}i<j<k © R* are the coefficients such that II;¢ = Z?zl Ckjw;. Thus, from (4.3a)),
the boundedness of m(-) and h(-), we find that

T
‘fo f(zﬁtQDdeX‘ <ma | Vil 22 (ax0,7) I VILEC | 22 (x(0,7)

1.1 4.19
+ hoo ()‘p”0k||L2(Q><(O,T)) +Aq [ Tz) ITLkC | 22 (2w (0,1) (4.19)

< Cl¢l 20,11 (92))5

for some constant C' > 0 independent of k. Similarly, we obtain from (4.3c]) that

T
‘ f f By04C dx
0 Q

<n1 (Xo IVor| L2 0.7)) + X | VRl 22(0x 0.7)) ) | VIR 22 (02x 0.7))

+ Achoo ok | 22w (0,10 TR C | 22 (2% 0,77))
+ KC (|00l 2(rx(0,my) + lokl 2(rx0ry) ) Mkl 220,711 ()

< Cl¢l p2(o,m;m1 (92))5
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for some constant C' > 0 independent of k. Hence, together with (4.16]) and (4.18]), we find
that

{x }ken bounded in L™ (0,T; H'(Q)) n H'(0,T; (H'(Q))*),
{01} weny bounded in L= (0,75 L*()) n L?(0,T; H(Q)) n L(0, T; L*(T")),
{901} keny bounded in H'(0,T; (H'(Q))*),
{ . ke bounded in L2(0,T; H'(Q)).
By standard compactness results (Banach—Alaoglu theorem and reflexive weak compact-
ness theorem) and [I3] §8, Corollary 4], we obtain, for a relabelled subsequence,
OE = @ weakly-+  in L®(0,T; H'(Q)),
) strongly  in C([0,T]; LP(Q)) n L*(0,T; LP(2)) and a.e. in Q x (0,T),
Owpr, — Orp  weakly in L2(0,T; (H(Q))*),
op—> 0o weakly-x in L?(0,T; H'(Q)) n L™(0,T; L*(Q)) n L*(0, T; L*(T")),
op >0 strongly  in L*(0,T;LP(2)) and a.e. in  x (0,7,
0o, ~ Opo weakly in L2(0,T; (H(Q))*),
Wi —> [ weakly in L*(0,T; H'(Q)),
where p € [1, 00) for dimensions d = 1,2 and p € [1, deQ) for dimensions d > 3. In particular,
the above compactness holds for p € [1,2] in any dimension d, i.e., ¢ — ¢ strongly in
L0, T; L2(2)) 2 L?(Q x (0,T)).
For a fixed j and § € C(0,T), we have §(t)w; € L*(0,T; H'(Q)), and so by the
triangle inequality and Holder’s inequality, we obtain

[ [ orl oD Gl dx db < Lo~ ol rizz@pluslizirizzay = 0 as b oo
In particular, we have
(1 +|er]) [dw;] = (1 +|¢|) |0w;] strongly in L'(Q x (0,T)) as k — oo.
By continuity and the growth assumptions on ¥'(-), we have
V(o) = V(@) ace. as koo, [U'(pr)0w;| < Ry(1+ |ok]) [yl .

Then, the generalised Lebesgue dominated convergence theorem (see [11, Theorem 1.9, p.
89], or [I, Theorem 1.23, p. 59]) yields that

W' (o) 0w;j — U (p)dw; strongly in L'(Q x (0,T)) as k — oo,

which leads to

T T
fo /Q\If'(gok)éwj dx dt - /0 _[Q\Il'(cp)éwj dx dt as k — oo.

Next, by continuity and boundedness of m(-), we see that m(pr) - m(p) a.e. in 2x(0,T),
and applying Lebesgue dominated convergence theorem to (m(yx) - m(p)) |0Vw;| yields

I(m(pr) = m(p))dVw;| £2(ax0,r)) = 0 as k — oo.
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Together with the weak convergence Vyy, — Vu in L?(0,T;L%*(Q)), we obtain by the
product of weak-strong convergence,

T T
[0 /Qm(gpk)(Sij-V,ukdx dt — _/0 Lm((p)&ij'V,udX dt as k — oo.
Terms involving n(-) and h(-) can be dealt with in a similar fashion.

Multiplying (4.3)) with 6 € C°(0,T"), integrating in time from 0 to 7, and passing to
the limit k& — oo, we obtain

[OT 5()(Bup,w;) dt = foT/Q(S(t) (=m(@) Vi Vi + (Ao — Aa)h(g)w;) dx dt,
T T
[0 _/Q (t)pw;dx dt = [0 /Q §5(t) (AV' (p)w; + BVg - Vw; — xwawj) dx dt,
T T
[ s wds = [7 [ 60 (n(o)(xeTo = x,V) - Ty = Aearh()uy) dx e
v [ ! [0 K (0w Yoy aH .

Since this holds for all § € C°(0,T'), we infer that (¢, i, o) satisfies

(Orp, wj) = fQ —m (@) V- Vwj + (Apo = Aa) h(p)w; dx, (4.20a)
/Q,uwj dx = /QA\I/'(go)wj + BV - Vw; - x,ow;dx, (4.20b)
(Opo,wy) = L (@) (Xe VO = X V@) - VW, — Acoh(p)w; dx (4.20¢)

+ /1: K(00 — 0)w; dHt ,

for a.e. t € (0,7) and for all j > 1. As {w;} ey is a basis for H'(9), we see that (¢, u,0)
satisfy for all {,\,& € HY(2). Moreover, the strong convergence of ¢ to ¢ in
C([0,T]; L*(R)) and the fact that o5 (0) - @ in L?(Q) imply that (0) = @. Similarly,
by the continuous embedding

L0, T H'(Q)) n HY (0,75 (H'(2))") < C([0, T} L*(92)),
and that 01,(0) = o in L2(Q), we have (0) = og in L?(€). This shows that (¢, u,0) is a
weak solution of (2.6).

5 Continuous dependence

Suppose we have two weak solution triplets {;, fti, 05 }i=1,2 to (L.1) satisfying (2.6]. Let
us denote the differences by

Qi=p1—p2, O=01-02, =[]~ {2, e = 0ol Ooco?2- (5.1)
Then, we see that

peL®(0,T;H' () n H'(0,T; (H'(2))*),
pe L*(0,T; H' (),
o€ L2(0,T;H1(Q)) N L°°(0,T;L2(Q)) N Hl(O,T; (Hl(Q))*)
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satisfy

(O, Q) = fﬂ =V VC+Ap(o1h(p1) = 02h(92))¢ = Aa(h(p1) = h(p2))(dx,  (5.2a)

fQMdX :fQA(\y'(cpl)—q;’(gpz))MBw.vA—X@aAdx, (5.2b)

<8t‘77§>:fQ_(XUVU—XapV<P)‘V§dX (5.2¢)
- [ Aclorh(e1) - oah(@2))dx + [ K(Sew o) R,

for all (,\,& € H'(Q) and for a.e. t € (0,T). Testing with ( =, £ =0, X = u— x,0 leads
to

%%”S"H%Z(Q) = fQ—W-W + Ap(a1h(p1) = a2h(p2))p = Aa(h(@1) = h(p2))pdx, (5.3a)

ol = “XoI 9012200y = Kl gy (5.3b)
+ [ XoTer Vo - Alorh(er) — aah(¢2))o dx + K [ Swodit™,

o) = [ AT (1) = ¥'(92)) (1= x00) + BV V(1 - xp0) s (5.3¢)

2 2
+ X(p ”UHLQ(Q)

Upon adding the products of B with and with , we obtain
Bd
2 dt
= [ (@1h(e1) = 02h(£2)) (4 B = A Bo) + A (1) = ¥'(92)) (4 = x0) dx
—BAan(h(gol) ~ h(y2))pdx +BKfrzooade*1

< fQ(Iall Li [l + hoo [o]) (Ap Bl + A B lo]) + AL [so] (|l + X lo]) dx

BK BK
2 2 202
+/QB)\aLh|<,0| dx + == [Zeo 20y + I N2y,

(HU”%%Q) + H90H2L2(Q)) + HMH%%Q) - XZHUH%%Q) + BXJHVUH%%Q) + BKHUH%%F)

(5.4)
where we have used Hélder’s inequality and Young’s inequality on the boundary term
involving ¥ and the Lipschitz assumptions on h(-) and ¥'(-) to deduce that

lo1h(p1) = o2h(2))] < |o1][h(p1) = h(p2)| + o] [h(w2)] < |o1| Ly @] + heo ||,
[’ (1) = ¥ (p2)| < Lur ||

Next, let us consider a constant X > 0 yet to be determined, and consider testing with
A =Xy in (5.2b). Then Holder’s inequality and Young’s inequality lead to

BE|VI3a(q) = X [ (0 AV (02) - (1)) + xp0) ¢ dx
<O, A xo L) (Il 2oy ol gy + Iol3agay + ol @ lelize)  (5.5)

1
< 732y + O, A xo L) (Il + Il
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Adding (5.5)) to ( . yields that

B d
S (|| [2) *+ 12l 209 = X217 720

BK
+ BXo| Vo720 + —”UHm(r) + BX[Vo[ 72 + lul72

BK
< Z”:U/“LQ(Q) +C(X, A, B,Lp, Aas X, Lur) (||80||L2(Q) + HU||L2(Q)) + T||Eoo||%2(r)

+ fQ(Ioll Li ol + hoo [o]) (Ap Bl + AcBo]) + AL || (|l + X lo]) dx.

(5.6)
By Holder’s inequality, Young’s inequality and the following Sobolev embedding

| flzac) < Cslfluy VfeH(Q), (5.7)
where Cg is a positive constant depending only on €2 and d, we have
fQ(Icnl Li el + oo [o]) (Ap Bl + AcB o) + ALw [sp] (|ul + xp |o]) dx
<LnApBloi] 2y leliay + LadeBloi] 2yl el L@ lol L@
+C O B, Aes hoos AL ) (Ilwlliz(n) +lola@) + (Il

(CsLhBA lolze=qo,7;z20) + 5 CSL iAclon 2o, Lz(g))) Il 0

Bxo
+0(llelzagay + ol 7o) + Zl\ullmm + =290 l32 ),

where the positive constant C' depends on A, B, A¢, heo, A, Lyr, X, and x,. In turn,

from (/5.6) we obtain

B d
e (IolZ20y + e liace))

Byx BK
+ §||MHL2(Q) ||VU”L2(Q) +—||U||L2(r) + BX|Vel72 0 )
(5.8
- BC3Ly o HL°°(O,T;L2(Q)) ()‘p + XCSLM\C oy HLw(O,T;L?(Q))) 1Vl 220

BK

<O (llelzagay + lolia@) + 5 S o).

where the constant C' depends on |01 L (0,7.22(0)), Cs, 4, B, L, Aps A, ooy X Xos X
and Lg/. We now choose

1
X > (Cth)\pHUl | Lo (0,122 (02)) + KCQLL%J\E lot H%oo(o,T;LZ(Q)))?
and so, there exist constants ¢, C' > 0 such that
d 2 2 2 2
= (IoZ20) * lelzay) = C (lolZ20) * Il ooy

+ HMH%%Q) + ”VUH%%Q) + HU“%Q(F) + HVSOH%Q(Q) = CHZOOH%Q(F)?

and a Gronwall argument yields

(HU(S)”%Q(Q) + H‘P(S)”%Q(Q)) + fo ”NH2L2(Q) + ”VU”%Q(Q) + HUHQL?(F) + HVQDH%Q(Q) dt
< cexp(CT)|Sool 720 7,12(ry) + exp(CT) (”U(O)H%Q(Q) + H@(O)H%Z(Q))

for any s € (0,T']. Taking the supremum in s on the left-hand side yields the desired result.
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6 Quasi-static nutrient

For the existence of weak solutions to (1.11)), we will only show the existence of solutions
at the level of the Galerkin approximation and provide the necessary a priori estimates.

6.1 Existence of Galerkin solutions

Similar to Section |4.1] we consider the Galerkin ansatz

/Q Orprw;dx = L —m(g) Vs - Vw;j + (Apor — Ao h(pr)w; dx, (6.1a)
fQ prw;idx = fQ AV (pr)wj + BVy - Vwj — X,0,w; dx, (6.1b)
[F K (0o —op)wj dH! = /Q D(pr)(Vor —nVer) - Vwj + Acoph(pp)wjdx,  (6.1c)

with the finite-dimensional functions ¢, o and py as defined in (4.2). Then, (6.1)) can
be written in terms of the following initial value problem

d
kT =S5, Bk + ApMyvi = Aah", (6.2a)
By = Ap* + BSou - XY (6.2b)
0 = 8% (v - new) + AeMfy, + K My, - KEF, (6.2¢)

with initial data a(0) defined in (4.11)). Here, the matrix S’jkj is defined as

(Sh)si = [ Dlgr)Vwi- v dx.
for 1 <4,j < k. Upon rearranging, we see that (6.2c) can be written as
(SF + A\eMF + KMr)~y, = nSh oy, + KX

Note that for a general coefficient vector & = (&1,...,&)T € R¥ corresponding to v :=
Zf:l &w; € Wy, we have

€7(Sh+AMf + KMp)¢ = [ D) [vof + Ach(oi) o dx + [ K Jof ax >0,

where we used that A. >0, A(-) >0 and D(-) > 0. This in turn implies that S% + A\ M} +
K M is positive semi-definite. Moreover, by the Poincaré inequality (2.2)) it is clear that

0=£"(SK+ \M}+ KMp)t <= v=0<=¢=0,

and thus, Sg + AeM }’f + K My is an invertible positive definite matrix. We can now write
(6.2) in terms of an initial value problem in ay,

d k k k .k
= —BSE Say — A\hF - ASE
at m> Xk v (6.3)

+ (X SE + N MF)(SE + A\ Mf + KMr) ' (nSpay + K=F),

with ax(0) as defined in (4.11)). We find that the right-hand side of (6.3) depends con-
tinuously on ay, and for every k € N the existence of a local solution defined on [0,#] is
guaranteed by the Cauchy—Peano theorem.

21



6.2 A priori estimates

The derivation of a priori estimates for the Galerkin solutions follows in a similar manner

to Section Multiplying (6.1al) with ﬁk + X<p7] and (| with 3 , and summing
from j =1 to k gives

jtf[A\I/ (m)+—\wk! ]dX+Am(¢k)VNk-V(Nk+X¢VUk)dX o
:_[Q(Apo-k_Aa)h((p’f)(:uk"‘)(gp(fk)dx.

Let W denote a positive constant yet to be determined. We multiply (6.1c|) with )/V’yjl»C
and sum from j =1 to k, leading to

w ]QD(SOk)(|VUk|2 ~NVr - Vog) + Ae|ox h(pr) dx

(6.5)
:ﬁWK(aw—Uk)aded_l.
Summing (6.4 and ) leads to
d B 2 2 1gd-1
<[ aw i d f Koy d
dtfg[ <wk)+2|wk\] x+ [ WKl an
+ fﬂm(%) Viel” + WD (1) [Vorl? + WA () low|* dx 66)

= /S;()\pffk = Aa) (k) (ke + Xpok) = Xem(r) Vg - Vo dx

+ fQ WD(pr)nVer - Vo dx + [F WK 00}, dH*!.
Neglecting the non-negative term [, Ac(¢k) |O’k|2 dx, and using the boundedness of m(-),
D(-), and h(-), and applying Hélder’s inequality and Young’s inequality we have

d

< [Aq/(%) + 2 [V ]

||VMk||L2(Q)+W HVO—’C”LZ(Q)"_W HUk”L?(r)

x2m

wh ”UooHL2(r) + =2 — Va2 LW ”V(PkHLQ(Q)

dy
(h ot +d2)||uk|]L2(m+h (Apﬁmpxwdg)ak”pm)
+C(d27d37X§0a>\a7hOOa|Q|)’

for some positive constants di, ds, ds yet to be determined. Employing (2.2)), we see that

ok 13200 <263 (1V08 320y + lowl32ry ) (6.8)

and from (4.17)) and (3.16) we have

| 121 ”%2(Q) < 201% |V 1 H%%Q) + 6A2R§H¥?k ”%2(Q) + 6XiHUk ”%2(9) +C(4, R3, ()

p ) GAQRQ 6.9
<208 Vil 220y + —5— 1% (k) L1 () +6X¢H‘7k“L2(Q) (6.9)

+ C(A7 Rla R2> R3a |Q|)
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Substituting and into leads to

d Dﬂl

B
A+ IVl | - W Vel )

dt

dy
1l (52 - 203 (s 3 + )

K 1 dy
+|ad%%m(vva——26%(hm(Apmh-k&ﬂ¢4wk)+ﬁxw(h Ap— +¢J))

Dy Xom 1 d
+ HVakH%Q(Q) (W?O _ %"2 -2C3 (hoo ()\p o0 + ApXp + dg) + GXQ (h Ap— + dg)))

6A%R3 dq
¥ (o)l 21 (o) R (h Ap—= +d2)

< C(Rl,RZ,R[’),A,W)Ku d27d3)ti7)\a7 h°°7 |Q|) (1 + ”Uoo H%Q(F)) :

(6.10)
We choose
mo

8hoo \pC3’

mo

dy = 0
! 16C2°

d2: d3:17

and

2 2 2
2 2\ (xpm1 3 9 9 4N heo Cp
W>m1n(K Do)( 7 +z_1m0X9"+20Ph°° m—0+)\px¢+1

so that there exists a positive constant ¢ such that

d B 9 3A2R§mo
— [AH\I/(gok)HLl(Q) + 5V90k”L2(Q)] ~ 4CZR,

2
17
¥ (pr)ll L1 () = IV ekl 720

dt

+E(||V/Mc||%2(g) + HVUkH%%Q) + ||Uk\|%2(r)) < C(l + ||Uoo||%2(r))-

A Gronwall argument gives

sup [ W (r($))] L1 (o) + |Ver(s) 720
s€(0,T)

+ [V ek ”%Q(O,T;LZ(Q)) + ”vakH%Q(O,T;LQ(Q)) + lok H%Q(O,T;LQ(F)) (6.11)
<C (1 +[os H%z(o,T;Lz(r)))

for some positive constant C' that does not depend on ¢y, o and ui. Here we see that
for the quasi-static model (|1.11)), the assumption (2.5 for the constant A is not used.

Invoking and give
“Mk ||2L2(0,T;L2(Q)) + “UkH%Q(O,T;LQ(Q)) <C (1 + ||0'<>o H%Z(O’T;LQ(F))) . (6.12)

The above a priori estimates (6.11) and (6.12)) imply that we can extend the solution
{©k, pr, ok } to the interval [0,7T], and thus ¢, = T for all k¥ € N. Together with (4.19) we
obtain

{@ }reny bounded in L=(0,T; HY(Q)) n H'(0,T; (H'(Q))"),
{1} weny bounded in L2(0,T; H'(Q)),
{0} }rewy bounded in L2(0,T; H'(Q)) n L?(0,T; L*(T)).

Uniform boundedness in the above spaces and the standard compactness arguments allow
us to pass to the limit & — oo in (6.1)) to deduce the existence of a weak solution (¢, i, o)

to (L1.11]) in the sense of Definition
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6.3 Further regularity
Suppose that oo € L%(0,T; L*(T")), then substituting ¢ = ¢ in (2.10c) leads to

ﬁ K(0w —0)odH! = _/Q D(p)(Vo-nVe) Vo + A \U|2 h(p)dx.

By the non-negativity of A. and h(-), the boundedness of D(-), Holder’s inequality and
Young’s inequality, we obtain

DO K K D177
7“VU“%2(Q) + 3”0\\2L2w) <5 llow 12y + THVSOHZH(Q)- (6.13)

As @ e L®(0,T; HY(Q)) and 0o € L(0,T; L*(I")), taking the supremum of ¢ € (0,7] in
(6.13) and by applying the Poincaré inequality ([2.2]), we find that

o e L=(0,T; H ().

6.4 Continuous dependence

Suppose we have two weak solution triplets {¢;, 115, 0; }i=1,2 to (2.10)) satisfying the assump-
tions of Theorem Let ¢, p and o denote the differences respectively. Then it holds
that

peL®(0,T;H'(Q)nH'(0,T; (H'(2))"),
peL?(0,T;H' (),
o e L=(0,T; H'(Q)),

and
(Orp, C) = fQ =V V¢ +Ap(a1h(p1) = o2h(92))¢ = Aa(h(p1) — h(p2))(dx,  (6.14a)
fﬂ phdx = /Q A (91) - W' (02))A + BV VA - Yoo dx, (6.14b)
0= [ D(Vo-nve) - veds + [ A(oih(er) - onh(p2))é dx (6.14c)
‘ er(g-zw)gd’Hd‘l,

for all ¢,\, & € HY(Q2) and for a.e. t € (0,7). Testing with ( = ¢, £ =0, A=, and X = p
leads to

ey = [ ~Ti- Vo Mplorh(or) ~ o3h(e2))e ~ Aalhler) ~ (@), (6.150)

D|Voliz = ~KlolZz) + [QDWVSD Vo = Ac(o1h(ip1) — 02h(ip2))o dx (6.15Db)
+K/1:Eooo—d7-ld‘1,

[onpax = [ AW (e1) =W (e2))e - xpopdx + BITEl g, (6.15¢)

|l 720y = fQ A(W' (1) = V' (p2))pu + BV V= xpopdx, (6.15d)

We proceed similarly to Section Let YV, Z denote two positive constants yet to be
determined. Upon adding the product of B with (6.15al), the product of Z with (6.15b)),
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the product of Y with (6.15c]), and (6.15d)), we obtain

B d
55”80“%2(9) +|ul 72y + BYIVAIZ2 ()
+ Z2( DIV gy + Klolfay +Xe [ hga)lof dx )
= [ BA(01h(91) - 02h(2)) - BAa(h(i1) - h(ip2))pdx (6.16)

; fQDnzw Vo - AZor(h(g1) = h(p9))o dx +ZKfFEooad’Hd’1
+ fﬂ Ypp = AW (1) = ¥'(02))(0Y = 1) + X0 (Vi - ) dx,
where we have used the splitting

(a1h(1) = 02h(02))0 = o> h(p2) + o1(h(p1) - h(y2))o.

By Holder’s inequality, Young’s inequality and the Sobolev embedding (5.7)), we find that
the first line on the right-hand side of (6.16]) can be estimated as

[ BA(orhlen) = aah(22))e - Bha(h(r) = h(g2))p dx

< Bplon ||L2(Q)LhH<PH%4(Q) + BA\phoo o] r2¢ay el L2 (o) + B)‘aLhH‘PH%Q(Q)

(6.17)
< (BALfo ”L°°(O,T;L2(Q))C§ + BAJLp, + BQ}\ihi) ”ﬁp”%z(g)

1
+ BA\Lnflon]l L (0,7522(02) Ca Vel 22 ) + 1 lo 720y
Meanwhile, the second line on the right-hand side of (6.16)) can be estimated as
fQDnzw Vo - AZo1(h(p1) - h(p2))o dx + ZK [F oo dH4

ZD ZDn?

< THVUH%P(Q) + THVSOH%z(Q) + ZX (ol zayLnlelzayllolz2))
ZK ZK

+ T||Zoo||%2(r) + THUH%‘Z(F)

ZD z
< == |voliagq) + + 22N o s () Ol ) 192720
> (@ (0,15 (@) (@)

1
+ Z2La N2 o1 F e 0 11 (02)) Cs 101 T2y + ZHUH%%Q)

ZK ZK
+ T||Zoo||%2(r) + THUH%z(r)-

Here we point out that we use the assumption o1 € L= (0,7; H*(R2)). Similarly, the last
term on the right-hand side of (6.16) can be estimated as

[ Vo= AV (1) = ¥(02)) (0Y = 1) + xp0 (Vo = 1) dx

< y”MHB(Q)”SDHm(Q) + ALy (37’\%0\\%2(9) + H‘PHB(Q)HMHL?(Q)) (6.19)
+ XsoyHUHB(Q) HSOHL2(Q) T Xop ”UHL2(Q) ”MHL2(Q)

3
< SplFa ) + CA Y, Lo xo) 1@l 72y + 22X 10120y -
PRI (@) (@)
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Substituting (6.17)), (6.18]) and (6.19)) into (6.16)) leads to

d B

1 DZ ZK
EE”‘P||%2(Q) + Z\|M||%2(Q) + THVU”%%Q) + 7”0”%2(1“) = Cllel2q

ZDn?
+|Veliaq (By ~ 5~ BhLafon | o (0,7:22(2)) CF = 2222 o ‘%W(O,T;Hl(ﬂ))Licé)

1 ZK
ot (24 +3) s - 1Bwlaqy,

where we have used the non-negativity of h(-) and . to neglect the term A.h(¢2) o/,
and C is a positive constant depending on A, B, Y, Z, Ly, Lu, X¢, Ap, A4, Ae, Cs,
lo1 ]l Lo 0,7;11 (2))> @0d hoo. By (6.8)), we see that

1 1
SZ(DIVolaay + Klolia) - (262 + 3 ) o s

2
> lzmin(D K)-2C% (2 2, 1 (Hw\P + o) )
{3 ) P | <Xy 5 L2(Q) L2(T) ) >
and so in choosing
403 5 1
>—————— | 2x + =
min(D, K) ( Xe 2)7

1 (ZDn2

Y>35\ 3

+ BA\ Lo 10,7502 (0))C8 + Z°A2] o ”%w(O,T;Hl(Q))LZCél) ;
we find that there exist constants C,¢ > 0 such that

d _
EHV)H%?(Q) _CHSOH%Q(Q) t ||M||%2(Q) + HVUH%%Q) + ||0’||%2(r) + ||V<P||%2(Q) < C\|Zoo||%2(r),

and an similar argument to Section [5| yields the desired result.

7 Discussion

We point out that we are not able to improve our class of admissible potentials to those
with polynomial growth of order higher than 2. In particular, our well-posedness results
do not cover the case of the classical quartic double-well potential. This is due to the fact
that in the derivation of (specifically in (3.7])), we encounter a term of the form

Il 2oy (1 + 1ol r2e)) - (7.1)
If we use the equation for the chemical potential, this leads to a term of the form
1% () 20y (1+ o] 22(0)) - (7.2)

If ¥’ has polynomial growth of order g, i.e., |¥'(t)| < R(1+[t|?) for some positive constant
R and for all t € R, then we have to control the product

Il eagqy (1+ ol 2y)

with the H'-norms of ¢ and o. In the absence of any a priori bounds before (3.3)), we
have to consider g = 1, that is, ¥ has at most quadratic growth.
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This differs from the analysis of [4] [6], where the Lyapunov-type energy identity
automatically gives a first a priori estimate without the need to estimate the mean of u,
or equivalently an estimate on [W'(¢)|11(q), which is present in our setting. Instead of
(2.4), we may also consider potentials that satisfies

|0’ ()] < k1 /U (s) + ko, (7.3)

for positive constants k1 and ko. This yields

1 1
%' (@) Lr(0y < kalVE(@) 10y + k2 19 < K [Q12 [T(0) [ 71 ) + 219

This allows us to estimate using |W(p)|11(q) instead of relying on any growth as-
sumptions on ¥'. However, a scaling argument with ¥(s) ~ |s|" shows that is satisfied
only if 7 < 2. Thus, we do not gain much if we replace (2.4)), with . Moreover,
seems to be a more restrictive assumption than ([2.4)),.

Lastly, we note that [0, Lemma 2] provides an approximation procedure to potentials
with polynomial growth of order 6 by a sequence of regular potentials with quadratic
growth. This is accomplished by means of a Yosida regularisation of the derivative ¥'.
However, we are not able to apply this idea to our analysis as the key priori estimate
(3.3) is not uniform in the constant Rs, which acts as the regularisation parameter in the
corresponding Yosida approximation.

8 Conclusion

In this work, we provide well-posedness results for a system coupling a Cahn—Hilliard equa-
tion and a parabolic reaction-diffusion equation to model tumour growth with chemotaxis
and active transport. The existence of weak solutions is shown using a Galerkin procedure.
In contrast to some diffuse interface models for tumour growth studied in the literature,
the models presented here admits an energy equality with non-dissipative right-hand sides
and allows for some realistic source terms. The presence of the source terms places some
restrictions on the class of admissible potentials, namely potentials with quadratic growth.
In addition, we also study a system coupling a Cahn—Hilliard equation and an elliptic equa-
tion, which is realistic when bulk diffusion of the nutrient is fast and is often the case in
applications. We are also able to prove the continuous dependence on initial and bound-
ary data for the chemical potential x in L?(Q x (0,7)) and for the order parameter ¢ in
L*(0,T; L(2)).
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