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In this letter, we revise the QED gauge invariance for the hadron tensor of Drell–Yan type processes with 
the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and 
make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED 
gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon 
poles in the correlators 〈ψ̄γ⊥ A+ψ〉 related traditionally to dT (x, x)/dx. As a result, these terms disappear 
from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing
the corresponding light-cone Dirac algebra.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the recent times, we have observed the renaissance in the 
nucleon structure studies through the Drell–Yan type processes in 
the existing (FermiLab, Relativistic Heavy Ion Collider, see [1,2]) 
and future (J-Parc, NICA) experiments. One of the most interest-
ing subjects of such experimental studies in this direction is the 
so-called single spin asymmetry (SSA) which is expressed with the 
help of the hadron tensor, see for instance [3] or [4,5].

Lately, we have reconsidered [6] this process in the contour 
gauge. We have found that there is a contribution from the non-
standard diagram which produces the imaginary phase required to 
have the SSA. This additional contribution leads to an extra factor 
of 2 for the asymmetry. This conclusion was supported by analysis 
of the QED gauge invariance of the hadron tensor.

In comparison, the analysis presented in [7] which uses the ax-
ial and Feynman gauges does not support the latter conclusion. 
For this reason, we perform here the detailed analysis of hadron 
tensor in the Feynman gauge with the particular emphasis on the 
QED gauge invariance. We find that the QED gauge invariance can 
be maintained only by taking into account the non-standard dia-
gram. Moreover, the results in the Feynman and contour gauges 
coincide if the gluon poles in the correlators 〈ψ̄γ⊥ A+ψ〉 are ab-
sent. This is in agreement with the relation between gluon poles 
and the Sivers function which corresponds to the “leading twist” 
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Dirac matrix γ + . We confirm this important property by compar-
ing the light-cone dynamics for different correlators.

As a result, we derive the QED gauge invariant hadron tensor 
which completely coincides with the expression obtained within 
the light-cone contour gauge for gluons, see [6].

2. Kinematics

We study the hadron tensor which contributes to the single 
spin (left-right) asymmetry measured in the Drell–Yan process 
with the transversely polarized nucleon (see Fig. 1):

N(↑↓)(p1) + N(p2) → γ ∗(q) + X(P X )

→ �(l1) + �̄(l2) + X(P X ). (1)

Here, the virtual photon producing the lepton pair (l1 + l2 = q) has 
a large mass squared (q2 = Q 2) while the transverse momenta are 
small and integrated out. The left-right asymmetry means that the 
transverse momenta of the leptons are correlated with the direc-
tion S × ez where Sμ implies the transverse polarization vector of 
the nucleon while ez is a beam direction [8].

Since we perform our calculations within a collinear factoriza-
tion, it is convenient to fix the dominant light-cone directions as

p1 ≈ Q

xB
√

2
n∗ , p2 ≈ Q

yB
√

2
n,

n∗ μ = (1/
√

2, 0T , 1/
√

2), nμ = (1/
√

2, 0T , −1/
√

2). (2)

So, the hadron momenta p1 and p2 have the plus and minus dom-
inant light-cone components, respectively. Accordingly, the quark 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The Feynman diagrams which contribute to the polarized Drell–Yan hadron tensor.
and gluon momenta k1 and � lie along the plus direction while the 
antiquark momentum k2 – along the minus direction. The photon 
momentum reads (see Fig. 1)

q = l1 + l2 = k1 + k2 (3)

which, after factorization, will take the form:

q = x1 p1 + yp2 + qT . (4)

3. The DY hadron tensor

We work within the Feynman gauge for gluons. The standard 
hadron tensor generated by the diagram depicted in Fig. 1 (the left 
panel) reads

dWμν
(Stand.) =

∫
d4k1 d4k2 δ(4)(k1 + k2 − q)

×
∫

d4��
(A) [γβ ]
α (k1, �) �̄[γ −](k2)

× tr
[
γ μγ βγ νγ +γ α S(� − k2)

]
, (5)

where

�
(A) [γβ ]
α (k1, �) = F2

[
〈p1,S T |ψ̄(η1)γβ g Aα(z)ψ(0)|S T ,p1〉

]
, (6)

�̄[γ −](k2) = F1

[
〈p2|ψ̄(η2)γ

−ψ(0)|p2〉
]
. (7)

Throughout this paper, F1 and F2 denote the Fourier transforma-
tion with the measures

d4η2 eik2·η2 and d4η1 d4z e−ik1·η1−i�·z, (8)

respectively, while F−1
1 and F−1

2 mark the inverse Fourier trans-
formation with the measures

dy eiyλ and dx1dx2 eix1λ1+i(x2−x1)λ2 . (9)

We now implement the factorization procedure (see for instance 
[9,11]) which contains the following steps: (a) the decomposition 
of loop integration momenta around the corresponding dominant 
direction: ki = xi p + (ki · p)n + kT within the certain light cone 
basis formed by the vectors p and n (in our case, n∗ and n); 
(b) the replacement: d4ki =⇒ d4ki dxiδ(xi − ki · n) that introduces 
the fractions with the appropriated spectral properties; (c) the de-
composition of the corresponding propagator products around the 
dominant direction. In Eqn. (5), we have (here, xij = xi − x j)
S(� − k2) = S(x21 p1 − yp2)

+ ∂ S(� − k2)

∂�ρ

∣∣∣∣∣
k2=yp2

�=x21 p1

�T
ρ + . . . ; (10)

(d) the use of the collinear Ward identity:

∂ S(k)

∂kρ
= S(k)γρ S(k), S(k) = −/k

k2 + iε
;

(e) performing of the Fierz decomposition for ψα(z) ψ̄β(0) in the 
corresponding space up to the needed projections.

After factorization, the standard tensor, see Eqn. (5), is split 
into two terms: the first term includes the correlator without the 
transverse derivative, while the second term contains the correla-
tor with the transverse derivative, see Eqns. (10) and (16)–(18).

The non-standard contribution comes from the diagram de-
picted in Fig. 1 (the right panel). The corresponding hadron tensor 
takes the form [6]:

dWμν
(Non-stand.)

=
∫

d4k1 d4k2 δ(4)(k1 + k2 − q)tr
[
γ μF(k1)γ

ν�̄(k2)
]
, (11)

where the function F(k1) reads

F(k1) = S(k1)γ
α

∫
d4η1 e−ik1·η1

× 〈p1, S T |ψ̄(η1) g Aα(0)ψ(0)|S T , p1〉 . (12)

For convenience, we introduce the unintegrated tensor Wμν for 
the factorized hadron tensor Wμν of the process. It reads

Wμν =
∫

d2�qT dWμν = 2

q2

∫
d2�qT δ(2)(�qT )

× i

∫
dx1 dy

[
δ(x1/xB − 1)δ(y/yB − 1)

]
Wμν

. (13)

After calculation of all relevant traces in the factorized hadron 
tensor and after some algebra, we arrive at the following con-
tributions for the unintegrated hadron tensor (which involves all 
relevant contributions except the mirror ones): the standard dia-
gram depicted in Fig. 1, the left panel, gives us

Wμν
(Stand.) +Wμν

(Stand., ∂⊥)

= q̄(y)

{
− pμ

1

y
εν S T −p2

∫
dx2

x1 − x2

x1 − x2 + iε
B(1)(x1, x2)



I.V. Anikin, O.V. Teryaev / Physics Letters B 751 (2015) 495–499 497
−
[ pν

2

x1
εμS T −p2 + pμ

2

x1
εν S T −p2

]
x1

∫
dx2

B(2)(x1, x2)

x1 − x2 + iε

+ pμ
1

y
εν S T −p2

∫
dx2

B(⊥)(x1, x2)

x1 − x2 + iε

}
, (14)

while the non-standard diagram presented in Fig. 1, the right 
panel, contributes as

Wμν
(Non-stand.) = q̄(y)

pμ
2

x1
εν S T −p2

×
∫

dx2

{
B(1)(x1, x2) + B(2)(x1, x2)

}
. (15)

Here we introduce the shorthand notation: εABC D =
εμ1μ2μ3μ4 Aμ1 Bμ2 Cμ3 Dμ4 with ε0123 = 1. Moreover, the parame-
trizing functions are associated with the following correlators:

iεα+S T −(p1 p2) B(1)(x1, x2)

= F2

[
〈p1, S T |ψ̄(η1)γ

+ g Aα⊥(z)ψ(0)|S T , p1〉
]
, (16)

iε+β S T −(p1 p2) B(2)(x1, x2)

= F2

[
〈p1, S T |ψ̄(η1)γ

β
⊥ g A+(z)ψ(0)|S T , p1〉

]
, (17)

ip+
1 ερ+S T −(p1 p2)B(⊥)(x1, x2)

= F2

[
〈p1, S T |ψ̄(η1)γ

+ (
∂
ρ
⊥ g A+(z)

)
ψ(0)|S T , p1〉

]
, (18)

where η1 = λ1ñ, z = λ2ñ, and the light-cone vector ñ is a dimen-
sionful analog of n (ñ− = p−

2 /(p1 p2)).
As known from [6], the function B(1)(x1, x2) for the DY process 

can be unambiguously written as

B(1)(x1, x2) = T (x1, x2)

x1 − x2 + iε
, (19)

where the function T (x1, x2) ∈ �e parametrizes the corresponding 
projection of 〈ψ̄ Gαβ ψ〉, i.e.

εα+S T − (p1 p2) T (x1, x2)

= F2

[
〈p1, S T |ψ̄(η1)γ

+ ñν Gνα
T (z)ψ(0)|S T , p1〉

]
. (20)

Notice that we have derived (see [6]) the certain complex prescrip-
tion in the r.h.s. of (19) within the contour gauge. In this letter, 
we assume that the same prescription takes place in the Feyn-
man gauge too.1 With respect to the functions B(2)(x1, x2) and 
B(⊥)(x1, x2), we demonstrate below that these functions do not 
possess the gluon poles and, therefore, cannot be presented in the 
form of (19).

Summing up all contributions from the standard and non-
standard diagrams, we finally obtain the expression for the unin-
tegrated hadron tensor as

Wμν = Wμν
(Stand.) +Wμν

(Stand., ∂⊥) +Wμν
(Non-stand.)

= q̄(y)

{[ pμ
2

x1
− pμ

1

y

]
εν S T −p2

∫
dx2 B(1)(x1, x2)

+ pμ
2

x1
εν S T −p2

∫
dx2 B(2)(x1, x2)

1 Generally speaking, in the Feynman gauge the arguments how to derive the 
certain complex prescription differ from that we used in [6]. For example, the 
prescription can be defined by ordering of operator positions on the light-cone di-
rection.
−
[ pν

2

x1
εμS T −p2 + pμ

2

x1
εν S T −p2

]
x1

∫
dx2

B(2)(x1, x2)

x1 − x2 + iε

+ pμ
1

y
εν S T −p2

∫
dx2

B(⊥)(x1, x2)

x1 − x2 + iε

}
. (21)

Notice that the first term in Eqn. (21) coincides with the hadron 
tensor calculated within the light-cone gauge A+ = 0.

4. QED gauge invariance of hadron tensor

Let us now discuss the QED gauge invariance of the hadron 
tensor. From Eqn. (21), we can see that the QED gauge invariant 
combination is

T μν =
[ pμ

2

x1
− pμ

1

y

]
εν S T −p2 ,

with qμT μν = qνT μν = 0. (22)

We can see that there is a single term with pν
2 which does not 

have a counterpart to construct the gauge-invariant combination

pμ
2

x1
− pμ

1

y
. (23)

Therefore, the second term in Eqn. (14) should be equal to zero. 
This also leads to nullification of the second term in Eqn. (15).

Hence, the only way to get the QED gauge invariant combi-
nation (see (22)) is to combine the first terms in Eqns. (14) and 
(15). This combination justifies the treatment of gluon pole in 
B(1)(x1, x2) using the complex prescription.

In addition, we conclude that the third term in (14) does not 
contribute to SSA.

The suggested proof explores only the gauge and Lorentz invari-
ance. Let us consider the other reasoning to justify these proper-
ties of correlators, starting with the correlator which generates the 
function B(2)(x1, x2):∫

(dλ1 dλ2)e−ix1λ1−i(x2−x1)λ2

× 〈p1, S T |ψ̄(λ1ñ)γ
β
⊥ A+(λ2ñ)ψ(0)|S T , p1〉

= iε+β S T − (p1 p2) B(2)(x1, x2) . (24)

We are going over to the momentum representation for the corre-
lator from the l.h.s. of Eqn. (24). Schematically, we have[

ū(k1)γ
⊥
β u(k2)

]
× . . . × 1

�2 + iε
, (25)

where the gluon momentum is � = k2 −k1 and k1 = (x1 p+
1 ,k−

1 ,�k1⊥), 
k2 = (x2 p+

1 , k−
2 , �k2 ⊥). This situation has been illustrated in Fig. 2, 

see the left panel. Up to the order of g , we are also able to write 
down that (see Fig. 2, the right panel)[

ū(k1)γ
⊥
β S(k2)u(k1)

]
× . . . × 1

�2 + iε
, (26)

where S(k2) = S(k2)γ
+ . From both these equations, it is clear that 

to get the non-zero contribution we must have either �k1 ⊥ �= 0 or 
�k2 ⊥ �= 0. Indeed,[
ū(k1)γ

⊥
β S(k2)u(k1)

]
⇒ Sβk2+k1 = k⊥

2 βk+
1 + k⊥

1 βk+
2 . (27)

Therefore, the gluon propagator in Eqns. (25) and (26) takes the 
following form (cf. [10]):

1

�2 + iε
= 1

2(x − x )p+�− −�l2 + iε
. (28)
2 1 1 ⊥
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Fig. 2. The matrix element (correlator) of nonlocal twist-3 quark–gluon operator within the momentum representation. Here � = k2 − k1 and k1 = (x1 p+
1 , k−

1 , �k1 ⊥), k2 =
(x2 p+

1 , k−
2 , �k2 ⊥).
One can conclude that, in the case of the substantial transverse 
component of the momentum, there are no sources for the gluon 
poles at x1 = x2. As a result, the function B(2)(x1, x2) has no gluon 
poles and, due to T-invariance [11] (B(2)(x1, x2) = −B(2)(x2, x1)), 
obeys B(2)(x, x) = 0.

On the other hand, if we have γ + in the correlator (see Eqn. 
(16)), the transverse components of gluon momentum are not sub-
stantial and can be neglected. That ensures the existence of the 
gluon poles for the function B(1)(x1, x2). This corresponds to the 
fact that the Sivers function, being related to gluon poles, contains 
the “leading twist” projector γ + . Moreover, we may conclude that 
the structure γ +(∂⊥ A+) does not produce the imaginary part as 
well as SSA in the Feynman gauge.

5. Conclusions and discussions

Working within the Feynman gauge, we derive the QED gauge 
invariant (unintegrated) hadron tensor for the polarized DY pro-
cess:

Wμν
GI = Wμν

(Non-stand.) +Wμν
(Stand.)

= q̄(y)
[ pμ

2

x1
− pμ

1

y

]
εν S T −p2

∫
dx2 B(1)(x1, x2). (29)

After calculating the imaginary part (or, in other words, after 
adding the mirror contributions), and, then integrating over x1 and 
y (see Eqn. (13)), we get the QED gauge invariant hadron tensor as

W μν
GI = q̄(yB)

[ pμ
2

xB
− pμ

1

yB

]
εν S T −p2 T (xB , xB) . (30)

This expression fully coincides with the hadron tensor which has 
been derived within the light-cone gauge for gluons.

Moreover, the factor of 2 in the hadron tensor that we found 
within the axial-type gauge [6] is still present in the frame of the 
Feynman gauge. In order to show this factor of 2, let us introduce 
the mutually orthogonal basis (see [8]) as

Zμ = p̂1 μ − p̂2 μ ≡ xB p1 μ − yB p2 μ (31)

and

Xμ = −2

s

[
(Zp2)

(
p1 μ − qμ

2xB

)
− (Zp1)

(
p2 μ − qμ

2yB

)]
,

Yμ = 2
εμp1 p2q. (32)
s

Here p̂i μ are the partonic momenta (qμ = p̂1 μ + p̂2 μ). With the 
help of (31) and (32), the lepton momenta can be written as (this 
is the lepton c.m. system)

l1 μ = 1

2
qμ + Q

2
fμ(θ,ϕ; X̂, Ŷ , Ẑ) ,

l2 μ = 1

2
qμ − Q

2
fμ(θ,ϕ; X̂, Ŷ , Ẑ) , (33)

where Â = A/
√−A2 and

fμ(θ,ϕ; X̂, Ŷ , Ẑ)

= X̂μ cosϕ sin θ + Ŷμ sinϕ sin θ + Ẑμ cos θ . (34)

Within this frame, the contraction of the lepton tensor with the 
gauge invariant hadron tensor (30) reads

Lμν W μν
GI = −2 cos θ εl1 S T p1 p2 q̄(yB) T (xB , xB) . (35)

We want to emphasize that this expression in (35) differs by the 
factor of 2 in comparison with the case where only one diagram 
(presented in Fig. 1, the left panel) has been included in the (gauge 
non-invariant) hadron tensor, i.e.

Lμν W μν
(Stand.) = 1

2
Lμν W μν

GI . (36)

Therefore, from the practical point of view, if we neglect the dia-
gram in Fig. 1 (right panel) or, in other words, if we use the QED 
gauge non-invariant hadron tensor, it yields the error of the factor 
of two.

Further, based on the light-cone dynamics we argue that there 
are no gluon poles in the correlators 〈ψ̄γ⊥ A+ψ〉. This means that 
the function B(2)(x1, x2) does not have the representation similar 
to (19). We also show that the Lorentz and QED gauge invariances 
of the hadron tensor calculated within the Feynman gauge require 
that the function B(2)(x1, x2) cannot have gluon poles.

The fact that the function B(2)(x1, x2) cannot be presented in 
the form of (19) directly leads to the absence of dT /dx in the final 
expression of the gauge-invariant hadron tensor. Indeed, from (14), 
one can see that B(2)(x1, x2) contributes to the standard hadron 
tensor as[

pν
2ε

μS T −p2 + pμ
2 εν S T −p2

]∫
dx2

B(2)(x1, x2)

x1 − x2 + iε
. (37)

In order to obtain the dT /dx-contribution, we have to impose the 
representation (19) on B(2)(x1, x2) and, then perform the integra-
tion over dx2 by part. However, as shown above, B(2)(x1, x2) does 
not have the representation (19).
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This property seems to be natural from the point of view of 
gluon poles relation [12] to Sivers functions as the latter is re-
lated to the projection γ + . As for the function B(⊥)(x1, x2), the 
transverse derivative of Sivers function resulting from taking its 
moments may act on both integrand and boundary value. Our re-
sult suggests that only the action on the boundary value related to 
B(1)(x1, x2) should produce SSA. It is certainly not unnatural keep-
ing in mind that the integrand differentiation is present even for 
simple straight-line contours which are not producing SSA.
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