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Breakdown of Anderson localization in the transport of Bose-Einstein condensates
through one-dimensional disordered potentials
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We study the transport of an interacting Bose–Einstein condensate through a 1D correlated disorder potential.
We use for this purpose the truncated Wigner method, which is, as we show, corresponding to the diagonal
approximation of a semiclassical van Vleck–Gutzwiller representation of this many-body transport process.
We also argue that semiclassical corrections beyond this diagonal approximation are vanishing under disorder
average, thus confirming the validity of the truncated Wigner method in this context. Numerical calculations
show that, while for weak atom-atom interaction strengths Anderson localization is preserved with a slight
modification of the localization length, for larger interaction strengths a crossover to a delocalized regime exists
due to inelastic scattering. In this case, the transport is fully incoherent.
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I. INTRODUCTION

Localization phenomena in disordered systems highlight
the fundamental role of interference of wave propagation [1].
A particular example of this is Anderson localization [2] (AL)
describing the metal-insulator quantum phase transition in a
3D medium containing random impurities. The waves are
coherently scattered over the impurities several times and yield
to waves with an exponential profile resulting in a suppression
of transport. Anderson localization has been experimentally
observed with light in diffusive media [3] and in photonic
crystals [4], with microwaves [5], and with sound waves [6].

The recent progress in the field of ultracold atoms has
opened the possibility to experimentally study AL with a
Bose-Einstein condensate (BEC), both in momentum space [7]
with a δ-kicked BEC [8] as well as in real space with the direct
observation of exponential tails of the density profiles [9,10].
The use of a BEC to study AL is very appealing since it is
possible to precisely tune the different properties of the BEC
such as the two-body interaction strength between bosonic
atoms via Feshbach resonances [11–13]. Research in the
field of localization of bosonic atoms is motivated by the
direct analogy with the electronic counterpart [14–17] and
the perspective to realize bosonic atomtronic devices [18–21]
such as an atomic transistor. In this case the interplay between
localization effects due to impurities and two-body interaction
can play a major role in transport properties.

An accurate and numerically efficient theoretical descrip-
tion of transport process in such an open system faces
the challenge of dealing with a many-body system with a
potentially high number of atoms. The size of the associated
Hilbert space renders techniques such as exact diagonalization
or density matrix renormalization group (DMRG) methods
inefficient or even practically impossible with the computa-
tional resources that are nowadays available. On the other
hand, in the mean-field limit, corresponding to a high number
of atoms and a weak two-body interaction, it is possible
to describe the dynamics of the BEC in an approximate
manner using the nonlinear Gross-Pitaevskii (GP) equation.
This limit has been extensively studied in the context of

bosonic transport and localization, both from the scattering
perspective [22–30] as well as in the framework of wave
packet expansion processes [31–35]. Furthermore, it has
been shown that, even for weak interactions between atoms,
inelastic scattering processes are not negligible [36,37] thus
potentially invalidating results obtained by the GP mean-field
description. Several methods exists to take into account effects
beyond the mean-field description. In particular a Bogoliubov
description [38–47] seems very promising and offers the
advantage of allowing for analytical solutions.

As was done in Refs. [24,30] we study, in this paper, the ef-
fect of atom-atom interactions on AL in the context of an atom
laser [48–51] which consists of a reservoir of atoms that are
outcoupled into a waveguide. The atoms eventually encounter
the disordered region within this waveguide. We describe the
system with the truncated Wigner (tW) method [52–58] that
essentially consists of representing the many-body bosonic
quantum fields in terms of classical fields. This method has
been successfully used to study several dynamical processes
in closed systems; see, e.g., Refs. [59,60]. The steps towards
a numerically efficient formulation of the truncated Wigner
method for a one-dimensional open system have been achieved
in Refs. [61,62]. Moreover, the tW method has been shown to
correctly model inelastic scattering [62] and to yield consistent
results in the continuous limit [63].

The main object of our study is the breakdown of AL in
correlated disorder potentials due to the presence of atom-atom
interaction, which is to be investigated with the truncated
Wigner method. To this end, we first describe, in Sec. II, the
one-dimensional transport scenario we are interested in and
then, in Sec. III, how the truncated Wigner method can be
implemented. In Sec. IV, using a semiclassical approach [64],
we calculate the leading corrections to the so-called diagonal
approximation, the latter being equivalent to the truncated
Wigner method [63]. These leading corrections are shown
to be negligibly small when performing a disorder average.
We finally compare numerically, in Sec. V, the transmission
and the density profiles across Gaussian-correlated disorder
potentials provided by the mean-field GP description and the
truncated Wigner method.
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FIG. 1. (a) Typical atom laser configuration inspired from
Ref. [48], consisting of a BEC within a magnetic trap of atoms
and an optical waveguide generated by a spatially focused light
field. (b) The atoms in the reservoir are outcoupled from the
trapped state |F,mF 〉 = |1,−1〉 to the untrapped state |1,0〉 thanks
to a radio-frequency field of energy �ωrf. In the untrapped state,
atoms are confined in the waveguide rendering the propagation
quasi-one-dimensional in the longitudinal x direction. A disorder
potential can then be engineered to study transport properties across
it. (c) The corresponding theoretical description involves a spatial
grid that is described in Sec. II B. We suppose, in addition, that the
potential has a finite support of length L and that atoms are interacting
only within this support.

II. GUIDED ATOM LASERS

A. Theoretical description

Let us consider a typical atom laser experiment such as the
one reported in Ref. [48], the working principle of which is
depicted in Fig. 1. The condensed 87Rb atoms are trapped in
a magnetic trap and constitute the reservoir containing a high
number N of atoms that are ideally in a perfect condensate
maintained at zero temperature. Theses atoms are spin polar-
ized in the trapped state |F,mF 〉 = |1,−1〉 with energy E1.
To release the atoms, i.e., transfer them to an untrapped state
|1,0〉 with energy E0, a radio-frequency field consisting of a
nearly resonant electromagnetic wave at energy �ωrf (∼2π�·
GHz) is used to couple the state |1,−1〉 to the state |1,0〉.
These atoms are insensitive to the external magnetic field and
propagate in the waveguide. The chemical potential is given
by μ = E1 − E0 − �ωrf and corresponds to the kinetic energy
per atom. The propagation of atoms can thus be considered
as a free quasi-one-dimensional motion. It is then possible to
engineer a correlated disorder potential (see, e.g., Ref. [65])
with a finite extent L and study the suppression of transport.

In order to represent the atoms in the atom laser system,
we define, within second quantization, the field operator of the

atoms in the trap φ̂mF=−1 (r,t) corresponding to the atoms in the
hyperfine state |1, − 1〉 and the field operator of the atoms in
the waveguide ψ̂mF=0 (r,t) corresponding to the atoms in the
hyperfine state |1,0〉 as

ψ̂mF=0 (r,t) = ψ̂(r,t)e−iμt/�, (1a)

φ̂mF=−1 (r,t) = φ̂(r,t)e−i(μ+�ωrf )t/�. (1b)

The corresponding evolution equation for the field operators
in the Heisenberg representation can be written as

i�
∂

∂t
ψ̂(r,t) =

[
− �

2

2m

∂2

∂r2
− μ + Vopt(r)

]
ψ̂(r,t)

+Uψ̂†(r,t)ψ̂(r,t)ψ̂(r,t) + D(t) φ̂(r,t), (2a)

i�
∂

∂t
φ̂(r,t) =

[
− �

2

2m

∂2

∂r2
+ Vtrap(r)

]
φ̂(r,t)

+D∗(t) ψ̂(r,t), (2b)

where Vopt is the optical potential including the waveguide
and Vtrap is the magnetic trapping potential. We consider a
slowly varying transverse confinement frequency ω⊥(x) of
the waveguide in such a way that the spatial variations of
this potential cannot induce excitation of transverse modes.
We take into account the interactions between the atoms
by the mean of a low-energy contact pseudopotential [66].
The interaction strength between the atoms in state |1,0〉 is
U = 4π�

2aS/m, where aS is the s-wave scattering length.
The coupling strength between the reservoir and the guide is
defined as D(t) and is adiabatically ramped from zero to a
constant value D.

Assuming that the atoms in the reservoir are all in the
ground state, we can decompose the associated field operator as
φ̂(r,t) = φ0(r)ψ̂S(t). During the coupling process, we suppose
that only the transverse ground mode χ0(y,z) is populated. We
can therefore decompose the field operator associated with
the waveguide as ψ̂(r,t) = χ0(y,z)ψ̂(x,t). Finally we neglect
both the (intraspecies) interaction between (mF = −1) atoms
in the reservoir and the (interspecies) interaction between
(mF = −1) atoms in the reservoir and (mF = 0) atoms in the
waveguide, assuming that the latter do not play any role in the
vicinity of the disordered system. These assumptions allow us
to simplify Eqs. (2) yielding

i�
∂

∂t
ψ̂(x,t) = H0ψ̂(x,t) + g(x)ψ̂†(x,t)ψ̂(x,t)ψ̂(x,t)

+K(x,t)ψ̂S(t), (3a)

i�
∂

∂t
ψ̂S(t) =

∫
dx K∗(x,t)ψ̂(x,t), (3b)

where we define

H0 = Hk − μ + V (x), (4a)

Hk = − �
2

2m

∂2

∂x2
, (4b)

g(x) = 2�ω⊥(x)aS, (4c)

K(x,t) = D(t)
∫∫

dy dz χ∗
0 (y,z) φ0(r). (4d)
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B. Discretization of space

Following the procedure described in Ref. [63], we dis-
cretize space by constructing a grid along the one-dimensional
guide by introducing an energy cutoff in momentum space at
p = ±π�/δ. We modify Hk accordingly by

Hδ
k = Eδ[1 − cos(δp̂/�)], (5)

with p̂ = −i�∂x and Eδ = �
2/mδ2. The eigenstates of the

modified Hamiltonian φ̃k(x) = exp(ikx)/
√

2π are identical to
the ones of Hk and the associated eigenvalues now read

Ek = Eδ[1 − cos(kδ)], (6)

where k ∈ [−π/δ,π/δ]. In the continuous limit, i.e., for
kδ → 0, we have Hδ

0 → H0 and the eigenvalues tend to the
continuous ones: Ek = �

2k2/2m.
Defining an effective Wannier basis composed of spatially

localized functions

φl(x) =
√

δ

2π

∫ π/δ

−π/δ

φ̃k(x)eilkδ dk (7)

for l ∈ Z, and the corresponding bosonic annihilation ψ̂l and
creation ψ̂

†
l operators, we have

ψ̂(x) =
∞∑

l=−∞
φl(x)ψ̂l . (8)

In addition, we suppose that the source is located at position xS

corresponding to the site lS . As a consequence, we can define
a coupling strength κ(t) on site lS as

K(x,t) = κ(t)φlS (x). (9)

Inserting Eqs. (8) and (9) in the evolution equations (3), we
obtain, in the limit δ → 0,

i�
∂ψ̂l(t)

∂t
= (Eδ + Vl − μ)ψ̂l(t) − Eδ

2
[ψ̂l−1(t) + ψ̂l+1(t)]

+ glψ̂
†
l (t)ψ̂l(t)ψ̂l(t) + κ(t)δl,lS ψ̂S(t), (10a)

i�
∂ψ̂S(t)

∂t
= κ∗(t)ψ̂lS (t), (10b)

with Vl = V (lδ), gl = g(lδ)/δ, Eδ = �
2/(mδ2), where

the coupling strength is well approximated by κ(t) 

K(xS,t)/

√
δ. A visual representation of this discretization

scheme is provided in Fig. 1(c).

III. TRUNCATED WIGNER METHOD

The truncated Wigner method [52–58] has been recently
adapted to deal with many-body bosonic scattering processes
in the context of a guided atom laser [62,63]. Describing
the latter with the evolution equations defined by Eqs. (10),
applying the tW method effectively amounts to solving the
equations [62]

i�
∂ψl

∂t
= (Eδ + Vl − μ)ψl − Eδ

2
(ψl+1 + ψl−1)

+ gl(|ψl|2 − 1)ψl + κ(t)ψSδl,lS , (11a)

i�
∂ψS

∂t
= κ∗(t)ψlS , (11b)

where ψl and ψS are the classical fields associated with site
l and the source, respectively. Denoting by A = {S,0, ± 1, ±
2, . . . } the ensemble of sites of the system, we can express
the corresponding classical Hamiltonian Hcl(ψ,ψ∗), where
ψ = (ψα)α∈A, as

Hcl(ψ,ψ∗) =
∑
l∈Z

[
(Eδ + Vl − μ)|ψl|2 + gl

2
|ψl|2(|ψl|2 − 2)

− Eδ

2
(ψ∗

l+1ψl + ψ∗
l ψl+1)

]
+ κ∗(t)ψ∗

SψlS + κ(t)ψ∗
lS
ψS. (12)

The classical fields ψl and ψS correctly sample, in the
framework of the tW method, the initial quantum state.
More specifically, for the empty waveguide, the initial field
amplitudes at t = t0 read

ψl(t0) = (Al + iBl)/2, (13)

with Al and Bl real, independent Gaussian random variables
with unit variance and zero mean; i.e., for each l,l′ ∈ Z we
have

Al = Bl = 0, (14a)

Al′Al = Bl′Bl = δl,l′ , (14b)

Al′Bl = 0, (14c)

where the overline denotes the average over the random vari-
ables. Since |ψl|2 = 1/2, this sampling effectively amounts to
having half a (pseudo)particle on each site of the numerical
grid from the classical point of view. The source of atoms
is a BEC with a high number N of atoms and can therefore
be represented as a coherent state |ψ0

S 〉. As N is very large,
the relative uncertainty of both the amplitude |ψ0

S | = √
N and

the associated phase of the source are negligibly small. We
therefore treat the source term completely classically and set
ψ0

S = √
N without loss of generality. Supposing, in addition,

that the coupling κ(t) tends to zero such that N |κ(t)|2 remains
finite, we can safely neglect the depletion of the source or any
back-action of the waveguide to the source. In this context, the
evolution of the source can be neglected and we can focus on
the evolution of the field in the waveguide only. The equation
of evolution finally reads

i�
∂ψl

∂t
= (Eδ + Vl − μ)ψl − Eδ

2
(ψl+1 + ψl−1)

+ gl(|ψl|2 − 1)ψl + κ(t)
√

Nδl,lS . (15)

The observables such as the density and the current are
then computed through the statistical average over all classical
initial states. This average will be denoted by an overline as
in Eqs. (14). For instance, the total density ρ(x = lδ,t) and

013612-3



JULIEN DUJARDIN, THOMAS ENGL, AND PETER SCHLAGHECK PHYSICAL REVIEW A 93, 013612 (2016)

current j (x = lδ,t) at position x = lδ are computed through

ρ(lδ,t) = 1

δ

(|ψl(t)|2 − 1/2
)
, (16)

j (lδ,t) = i�

2mδ2
(ψ∗

l+1(t)ψl(t) − ψ∗
l (t)ψl+1(t)). (17)

The half particle that is added through the sampling of the
initial state is subtracted after the time propagation. In the tW
framework, it is possible to decompose the total current and the
total density into coherent and incoherent contributions. The
first contribution comes from the coherent parts of the density
ρcoh(x = lδ,t) and the current j coh(x = lδ,t) at position x =
lδ, which represent the condensed atoms. They can be written
as

ρcoh(lδ,t) = ∣∣ψl(t)
∣∣2

/δ, (18)

j coh(lδ,t) = i�

2mδ2
(ψ∗

l+1(t) ψl(t) − ψ∗
l (t) ψl+1(t)). (19)

The incoherent parts of the density ρ incoh(x = lδ,t) and current
j incoh(x = lδ,t) at position x = lδ are defined as the difference
between the total part and the coherent part. They read

ρ incoh(lδ,t) = n(lδ,t) − ncoh(lδ,t), (20)

j incoh(lδ,t) = j (lδ,t) − j coh(lδ,t). (21)

The total transmission is then naturally defined as the ratio
of the total current in the downstream region and the stationary
current j∅ for a homogeneous waveguide with a vanishing
atom-atom interaction. It reads

T = lim
t→∞ j (t)/j∅, (22)

where we dropped the spatial dependence of the current. The
stationary current j∅ is given by

j∅ = δ

�

N |κ|2√
μ(2Eδ − μ)

. (23)

In the same way, one can define the coherent part of the
transmission and the incoherent part of the transmission as

T coh = lim
t→∞ j coh(t)/j∅, (24a)

T incoh = lim
t→∞ j incoh(t)/j∅. (24b)

Finally, we can also evaluate the stationary density ρ∅ in the
case of a homogeneous waveguide with vanishing atom-atom
interactions as

ρ∅ = 1

δ

N |κ|2
μ(2Eδ − μ)

. (25)

For the rest of the paper, we will consider that the on-
site potential Vl and the contact interaction strength gl are
nonvanishing only in a finite region of space. The latter region
will be called the scattering region and the regions on the
left- and right-hand sides of it will be named left and right
leads in close analogy with electronic mesoscopic physics [see
Fig. 1(c)]. An efficient way to numerically model the decay
of atoms to the leads is provided by the method of smooth

exterior complex scaling [61]. This method transforms the
infinite scattering system into a finite open system. The initial
quantum fluctuations of the leads take the form of a time-
dependent quantum noise that enters into the scattering region
by the first and the last site [62]. This allows one to efficiently
simulate scattering processes of guided matter waves using the
tW method [62].

IV. VALIDITY OF THE TRUNCATED WIGNER METHOD

As was shown in Ref. [63], the tW method corresponds
to the diagonal approximation [67] in the framework of the
semiclassical van Vleck–Gutzwiller description [68] of the
bosonic many-body system. This insight offers a scheme for
assessing the validity of the tW approach. We have to require,
on the one hand, that the actions of the trajectories involved in
the van Vleck–Gutzwiller approach be large compared to the
size of Planck’s constant, in which case the stationary phase
approximation of the Feynman propagator can be justified. The
validity of the diagonal approximation, on the other hand, can
be granted if the classical dynamics is fully chaotic and if some
sort of (energetic or disorder) averaging of the observables of
interest is performed.

It is known, however, that there exist systematic and robust
corrections beyond the diagonal approximation which may
significantly affect quantum transport processes. These are,
on the one hand, induced by coherent backscattering effects,
the relevance of which for closed bosonic many-body systems
has been studied in detail in Ref. [64]. On the other hand,
the apparent violation of norm conservation due to coherent
backscatttering is compensated by loop contributions arising
from Sieber-Richter trajectory pairs [69–78]. The purpose of
this section is to investigate these corrections in more detail for
the bosonic many-body transport problem under consideration.
We shall show in the end that they do not matter in the context
of open atom-laser-like scattering systems.

A. Semiclassical van Vleck–Gutzwiller theory
for Bose-Hubbard systems

Generally, the semiclassical approach can be understood as
an expansion in a small parameter, namely the effective Planck
constant �eff which vanishes in the classical limit. In a second
quantized many-body theory, the role of this effective Planck
constant is played by the inverse of the total number of particles
N ; i.e., we identify �eff = 1/N . Applying the semiclassical
theory to calculate the expectation value of some observable
Ô then yields results of the form [73,79]

〈Ô〉(t) = Ocl(t) +
∞∑

k=1

�
k
effO

(k)
corr(t), (26)

where Ocl is the result of the corresponding classical theory and
O(k)

corr is the kth-order quantum correction due to interference
between certain classical paths, which can typically expressed
in terms of Ocl. In the case considered here, it will turn out that
Ocl is given by the truncated Wigner result and all quantum
corrections vanish.

The starting point of the semiclassical approach is the path
integral representation of the propagator K̂(t) = exp(−iĤ t/�)
in a certain basis. For many-body systems, the most natural
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basis is constituted by the Fock states

|n〉 ≡ |nS〉 ⊗ | . . . ,n−1,n0,n1, . . . 〉
=

∏
α

1√
nα!

(
ψ̂†

α

)nα |0〉, (27)

which are determined by the occupation numbers (i.e., the
numbers of atoms) nα on the individual sites α (including the
source) and which are generated by applying the associated
creation operators to the so-called vacuum state |0〉. However,
it turns out that the semiclassical approximation for the
propagator in Fock states also requires large occupations of
each individual site [64,80] (typically nα � 2 [81]) which is
not granted in the scattering scenario considered here.

A possibility to circumvent this problem is to use the
quadrature representation,

K(Af,Ai; t) = 〈Af|e−iĤ t/�|Ai〉, (28)

where the quadrature states |A〉 are defined by the eigenvalue
equation [82]

1
2 (ψ̂α + ψ̂†

α)|A〉 = Aα|A〉 (29)

and can be expanded in Fock states according to

|A〉 =
∑

n

[∏
α

exp
(−A2

α

)
√

2nαnα!
√

π/2
Hnα

(
√

2Anα
)

]
|n〉. (30)

The analogy between these quadrature states and the position
states of the harmonic oscillator is completed by the closure
relation

1̂ =
∫ ∏

α

dAα|A〉〈A| (31)

and their overlap

〈A|A′〉 =
∏
α

δ(Aα − A′
α). (32)

Finally, the action of an annihilation or creation operator on a
quadrature state is given by

ψ̂α|A〉 =
(

Aα + 1

2

∂

∂Aα

)
|A〉, (33a)

ψ̂†
α|A〉 =

(
Aα − 1

2

∂

∂Aα

)
|A〉. (33b)

If the total number of particles in the scattering region
is large enough [83], the path integral for the propagator in
quadrature representation, given by Eq. (28), can be evaluated
in a stationary phase approximation yielding the semiclassical
propagator [64,68,84]

K
(
Af,Ai; t

) 

∑

γ

Dγ (Af,Ai; t)eiRγ (Af ,Ai ;t)/�, (34)

where the sum runs over all trajectories γ between |A〉 and
|A′〉 that satisfy the classical equations of motion

i�
∂ψα

∂t
(t) = ∂Hcl(ψ

∗,ψ)

∂ψ∗
α

, (35)

(a) (b)

(c) (d)

FIG. 2. While for an individual system one would have to take
into account all trajectories in the sum over partner orbits [(a)],
under disorder average only certain partner trajectories are selected
[(b)–(d)]. These pairs are, ordered from largest to smallest contri-
butions, the diagonal approximation [(b)], coherent backscattering
contributions [(c)], and loop contributions [(d)].

which are the same as in Eq. (11) with the classical Hamilto-
nian Hcl from Eq. (12), and under the boundary conditions on
the real parts of ψ ,

Re ψα(0) = Ai
α, (36a)

Re ψα(t) = Af
α. (36b)

It is this sum together with the phase factor given by the action
of the trajectory γ ,

Rγ (Af,Ai; t) =
∫ t

0
ds

[
2�B · d

ds
A − Hcl(ψ∗(s),ψ(s))

]
,

(37)

that accounts for the interference effects lying beyond the
truncated Wigner approach, the latter being, in the sense
of N → ∞, the classical limit of the quantum theory [63].
Here A(s) and B(s) are the real and imaginary part of ψ(s),
respectively. Finally, the semiclassical amplitude is given by

Dγ (Af,Ai; t) =
√

det

(
1

−2πi�

∂2Rγ (Af,Ai; t)

∂Af∂Ai

)

=
√

det

(
1

πi

∂B(0)

∂Af

)
, (38)

where the derivatives of the action with respect to the initial
and final quadratures

∂Rγ

∂Ai
= −2�B(0), (39a)

∂Rγ

∂Af
= 2�B(t) (39b)

have been used.
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In order to proceed further, it is important to know the initial
state |ψ0〉 of the system. According to the considerations in
Sec. III, it will be assumed that the initial state is given by the
vacuum in the waveguide and a coherent state in the source,

|ψ0〉 = ∣∣ψ0
S

〉 ⊗ |0〉, (40)

where due to the gauge freedom ψ0
S = √

N can be chosen to
be real.

Inserting the resolution of unity (31), using the action of
annihilation and creation operators on quadrature states (33),
as well as inserting the semiclassical approximation for the
propagator (34) while letting the derivatives of the propagator
act on the exponential only [85] then yields

〈ψ̂†
l (t)ψ̂l′(t)〉 =

(∏
α

√
2

π

∫
dAi

α

∫
dAi′

α

∫
dAf

α

)

× exp

{
−

∑
l′′∈Z

[(
Ai

l′′
)2 + (

Ai′
l′′
)2]

− (
Ai

S −
√

N
)2 − (

Ai′
S −

√
N

)2
}

×
∑

γ1 : Ai → Af

γ2 : Ai′ → Af

Dγ1D∗
γ2

exp

[
i

�

(
Rγ1 − Rγ2

)]

×
[
ψ

(γ2)∗
l (t)ψ (γ1)

l′ (t) − 1

2
δll′

]
, (41)

where Eq. (39b) has been used and the superscript (γ1/2)
indicates that the quantity is computed along the trajectory
γ1/2. The first exponential in Eq. (41) results from the overlap
of quadrature states with the initial state and effectively reduces
the integrations to a very small region, such that the initial
quadratures Ai,Ai′ lie very close to each other. Following
standard semiclassical perturbation theory [86], we therefore
replace Ai′ with Ai in the definition of the trajectories γ2 and
account for the induced error by expanding the action in the
exponential up to linear order in the difference Ai′ − Ai. The
integration over Ai′ is then simply a Gaussian integral, which
can be performed exactly yielding

〈ψ̂†
l (t)ψ̂l′(t)〉



(∏

α

2
∫

dAi
α

∫
dAf

α

) ∑
γ1,γ2:A→Af

Dγ1
D∗

γ2

× exp

{
−2

∑
α∈Z

[(
Ai

α

)2 + 1

4

(
B(γ1)

α (0) + B(γ2)
α (0)

)2
]}

× exp

{
−2

∣∣∣∣Ai
S + i

2

[
B

(γ1)
S (0) + B

(γ2)
S (0)

]
−

√
N

∣∣∣∣
2
}

× exp

[
i

�

(
Rγ1 − Rγ2

)][
ψ

(γ2)
l

∗
(t)ψ (γ1)

l′ (t) − 1

2
δl l′

]
.

(42)

This equation represents the starting point for the discussion of
the diagonal approximation and the corresponding corrections
provided by coherent backscattering and loop contributions.

B. Closed systems

Let us first consider the case of a closed disordered system
with a finite number of sites, which could, e.g., describe an
ultracold Bose gas that is contained within a finite optical
lattice [64]. When performing a disorder average, the action
difference Rγ1 − Rγ2 arising in Eq. (42) varies strongly from
one disorder realization to the next one, as long as the
trajectories γ1 and γ2 are not correlated. Therefore, on average,
most of the contributions to the double sum will cancel out and
only pairs of trajectories that are close to each other during
the whole evolution time will contribute. A short pictorial
summary of the possible pairings is shown in Fig. 2.

For such pairs of trajectories, one can safely neglect the
tiny differences in the prefactors Dγj

and amplitudes B
(γj )
α (0)

(j = 1,2) between the two trajectories, such that only their
action difference Rγ1,γ2 = Rγ1 − Rγ2 is taken into account.
Equation (42) then becomes

〈ψ̂†
l (t)ψ̂l′(t)〉 


(∏
α

2
∫

dAi
α

∫
dAf

α

) ∑
γ :Ai→Af

|Dγ |2

× exp

{
−2

∑
l∈Z

[(
Ai

l

)2 + (
B

(γ )
l (0)

)2]}

× exp
{ − 2

(
Ai

S −
√

N
)2 − 2

(
B

(γ )
S (0)

)2}
×

[
ψ

(γ )
l

∗
(t)ψ (γ )

l′ (t) − 1

2
δl l′

]

×
∑
γp

exp

(
i

�
Rγ,γp

)
. (43)

Here the sum over γ runs over all possible trajectories while
the second sum over γp includes all partner trajectories whose
actions Rγp

are systematically correlated with the action Rγ of
the trajectory γ and whose contributions thereby survive the
disorder average.

1. Diagonal approximation

The easiest possibility for the partner trajectory γp to yield
a nonvanishing contribution on average is to choose it to
be the same as γ : γp = γ . This is known as the diagonal
approximation [67] and has obviously a vanishing action
difference. Then, by using the sum rule(∏

α

∫
dAf

α

) ∑
γ :A→Af

|Dγ |2 . . . =
(∏

α

1

π

∫
dBα

)
. . . ,

(44)

which is a direct consequence of |Dγ |2 =
| det[∂B(γ )(0)/∂Af]/π |, the integration over Af can be
transformed into an integration over B. This yields together
with the integration over Ai a Gaussian sampling over initial
conditions, which are then evolved according to the equations
of motion (11). The observable is then calculated from the
thereby evolved state only. Thus with Eq. (44) the shooting
problem, where the real parts of ψ at initial and final time
are fixed, is transformed into an initial value problem, which
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exactly yields the truncated Wigner method described in
Sec. III [63].

2. Coherent backscattering

The second possibility for the partner trajectory γp is to
choose it to be the time reverse of γ , provided the latter is
not identical to γ (in which case the trajectory retraces itself
in configuration space). Then obviously the action difference
again vanishes. This kind of pairing requires that Af 
 Ai,
i.e., that the trajectory comes back to its initial point. As
such trajectories can thus be paired with themselves and
with their time-reversed counterparts, their contributions to
Eq. (43) are therefore enhanced by a factor 2 as compared
to other trajectories. This yields a coherent enhancement of
backreflection [64].

However, when considering single-particle observables
such as the ones that we are focusing on here, the final quadra-
ture Af is integrated over, which leads to a suppression of the
coherent backscattering enhancement (or, more precisely, to a
reduction of this enhancement by a factor that is of the order
of the number of accessible many-body states with the same
number of particles and about the same energy as the initial
state [64]). This need not be the case for more sophisticated
observables: the inverse participation ratio in the quantum
many-body space, for instance, is enhanced by a factor 2 as
compared to its classical value [64]. Mean on-site densities and
intersite currents, however, are not expected to be appreciably
affected by coherent backscattering.

3. Loop corrections

Further possibilities for the partner trajectories have been
found to be obtained by what is now known as loop contri-
butions resulting from Sieber-Richter trajectory pairs [69–78],
such as the one shown in Fig. 2(d). These Sieber-Richter pairs
consist of trajectories which in a certain very small region
in phase space, the so-called encounter region, come close to
their own time reverse. The partner trajectory closely follows
then γ or its time reverse all along the trajectory, except within
the encounter region where it switches from following γ to
following its time reverse or vice versa.

Such loop contributions are generally arising in quantum
systems with a chaotic classical dynamics where the existence
of partner trajectories with the above properties is granted
by the shadowing theorem. While they turn out to signif-
icantly affect, e.g., transport properties within mesoscopic
systems [70,74–76,87] and the Loschmidt echo [88,89], they
can be shown to vanish for the evaluation of single-particle
observables in ordinary time-evolution processes taking place
within closed generic systems [77,78,90], in close analogy
with the absence of coherent backscattering contributions. This
also holds for the Bose-Hubbard systems that are considered
here, which exhibit a second constant of motion in addition
to the total energy, namely the total number of particles N .
In Appendix A we show how to incorporate this additional
conserved quantity.

C. Open systems

Open quantum many-body systems feature the complica-
tion that their number of classical degrees of freedom (i.e., the

total number of Bose-Hubbard sites in our case) is infinitely
large from a formal point of view, even if a discretization
of the configuration space is employed. While the diagonal
approximation can still be applied in this context without any
further considerations [63], one has to be more careful with
coherent backscattering and loop contributions.

On one hand, coherent backscattering contributions require
the existence of trajectories that come back to their initial
point, which is a very unlikely event to happen within an
infinite system. Indeed, in our context of a guided atom laser,
this would imply that all atoms of the condensate come back
to the reservoir after having explored the disordered region
within the waveguide. Already from this point of view, one
would expect that effects due to coherent backscattering in the
many-body space are completely suppressed in open systems.
On a more rigorous level, it can be shown (see Appendix B)
that in open systems the possibility of pairing a trajectory
with its time-reversed counterpart requires self-retracing of
the trajectory. This, however, implies that the trajectory would
be identical with its time-reversed counterpart, which means
that it does not contribute to coherent backscattering. Hence,
coherent backscattering contributions do indeed vanish in the
case of open systems.

A similar conclusion is obtained for the contributions of
possible loop corrections within open systems. To investigate
their relevance, it is convenient to employ a scattering approach
in which the two semi-infinite left and right leads are formally
separated from the finite scattering region which contains,
as is illustrated in Fig. 1(b), the disorder potential as well
as the coupling to the source. As the interaction strength is
vanishing outside the scattering region, the dynamics in the
leads can be exactly integrated yielding integro-differential
(i.e., temporally delayed) decay terms as well as quantum
noise terms in the effective tW description of the scattering
region [61,62]. We show in Appendix B how to derive the
corresponding semiclassical propagator describing the time
evolution within the finite scattering system.

As the dynamics outside the scattering region is noninter-
acting, the semiclassical approximation for the propagation in
the leads is exact and can thus be represented by a single
classical trajectory. Encounter regions where a trajectory
comes close to its time-reversed counterpart in phase space
may therefore arise only in the scattering region in which the
presence of interactions can give rise to classical chaos [91,92].
The resulting exponential sensitivity of the classical time
evolution with respect to variations of the initial conditions is
already sufficient for the existence of Sieber-Richter pairs [69].
Their contributions to the time-dependent expectation values
of single-particle observables can then again be evaluated
following the standard theory of loops [71,72,74–78,90,93].
By virtue of the same arguments that are put forward in closed
systems [77,78,90], we can again show that loop contributions
vanish in the context of many-body scattering.

V. NUMERICAL RESULTS

A. Anderson localization of weakly interacting atoms

We now apply the truncated Wigner method to investigate
the transmission of the BEC across a disordered region of
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FIG. 3. Transmission versus the length L of the Gaussian-
correlated disorder potential (45) with the parameters A = 0.265k3/2

and kσ = √
2 for the atom-atom interaction strengths (a) g =

0.00095μ/k and (b) g = 0.048μ/k. The coherent, incoherent, and
total transmissions obtained by the tW method are represented by
(red) squares, (green) diamonds, and (blue) triangles, respectively,
and the mean-field GP predictions for the transmission is shown by
(black) circles. While for very weak interactions (a) the transmitted
beam is fully coherent and subject to AL, a breakdown of AL
is encountered at stronger interactions beyond a certain disorder
length (b) yielding a fully incoherent beam in the transmitted region.
The maroon solid lines show fits of Eq. (46) to the decay of the
transmission within the coherent regime, yielding the localization
lengths kLloc 
 28 in panel (a) and kLloc 
 27 in panel (b). The
orange line in the latter panel shows a fit of a 1/(1 + L/L0) scaling
of the transmission in the incoherent regime with kL0 
 10.8, which
reproduces well the numerical data (as seen in the log-log plot in the
inset).

finite length L. We specifically consider a Gaussian-correlated
disorder potential that is generated in the same way as in
Ref. [94], i.e.,

V (x) = �
2A

m

∫ L

0

1√
2πσ

e
− (x−y)2

2σ2 η(y) dy. (45)

Here, the parameter A controls the height of the disor-
der potential, σ is the correlation length, and η(y) is a
Gaussian white noise with zero mean and unit variance,
i.e., 〈η(x)η(y)〉 = δ(x − y), where 〈·〉 denotes the average
over different realizations of the disorder. The potential is
constructed such that it vanishes on average, i.e., 〈V (x)〉 = 0.
We shall choose the parameters A = 0.265k3/2 and kσ = √

2
in the following where we have μ = �

2k2/(2m). The coupling
to the source is tuned such that a steady-state density of
ρ∅ = √

2k would be obtained within the waveguide if there
were no disorder or interaction between the atoms.

Figure 3(a) shows the coherent, incoherent, and total trans-
mission of the condensate across the disorder potential (45)
as a function of its length L in the presence of an artificially
weak interaction strength g = 0.00095μ/k. We can directly
notice that the coherent and total transmissions are nearly
identical and agree very well with the transmission obtained
from a mean-field GP calculation. The incoherent part of the
transmission is suppressed by several orders of magnitude, but
steadily increases with L, and we cannot exclude that it may
eventually dominate the transport process for sufficiently long
disorder regions.

A smoking gun of AL in disorder potentials is the
dependence of the average transmission versus the length L of

the potential. More precisely, defining ξ = L/Lloc, we have

〈T (ξ )〉 = e−ξ/4

2
√

πξ 3

∫ ∞

0
du

u2

cosh
(

u
2

) exp

(−u2

4ξ

)
, (46)

for the transmission of single particles across one-dimensional
disordered regions [95], where Lloc is defined as the localiza-
tion length which is proportional to the transport mean-free
path [96]. This formula was shown to be valid also in the
mean-field limit described by the GP equation [94], but does
not take into account the possibility of depletion of the
condensate beyond the mean-field approximation.

The maroon solid line in Fig. 3(a) shows a least-mean-
square fit of Eq. (46) to the total transmission, yielding
very good agreement with the numerical data. The coherent
flux of atoms therefore exhibits AL when passing through
the Gaussian-correlated disorder potential. Note that the
numerically extracted value kLloc 
 28 of the localization
length lies significantly below the theoretical value that would
be predicted by the Born approximation [94,97]. This is not
surprising since the latter requires �

2A/(mμk3/2) � 1 to be
valid, which is not satisfied in our case.

Figure 4 shows the corresponding density profile of the
atom laser beam for a fixed length of the disorder potential,
namely kL = 141.42, still in the case of very weak interaction.
We can see that the GP and tW calculations yield nearly
identical densities in the waveguide, both for individual
disorder realizations [panel (b); the inset confirms that a
stationary state has been reached] and on average [panel
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FIG. 4. Density profiles for weak interaction g = 0.00095μ/k

and a final propagation time of μT/� = 1000. Panel (a) shows one
realization of the disorder potential generated according to Eq. (45)
and (b) represents the stationary density of an incoming beam of
atoms going through the disorder potential represented in (a) with an
inset magnifying the transmitted beam. Panel (c) shows the disorder
average of the density profile taking into account 1000 realizations
of the disorder. The gray background helps the reader to locate the
disorder region. We can clearly see that the transport process is fully
coherent and that the mean-field GP description (black line) agrees
well with the truncated Wigner method (red line for the coherent and
green line for the incoherent part).
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(c)]. One should point out that some fluctuations remain in
the tW calculation, inherent to the stochastic nature of the
technique.

B. Breakdown of Anderson localization

We now focus our attention on the transition to incoherent
transport. In Fig. 3(b) we use the same parameter set as
in Fig. 3(a) except for the interaction strength which is
increased to g = 0.048μ/k = 0.034�

2/(mσ ). This latter value
would correspond to the case of 87Rb atoms with the s-
wave scattering length as 
 5.3 nm being confined in a har-
monic waveguide with the transverse confinement frequency
ω⊥/(2π ) = 1.2 kHz, where we choose the correlation length
of the disorder potential to be equal to the transverse oscillator
length: σ = √

�/(mω⊥) 
 0.31 μm. One can directly see that
for small kL we are still in the mean-field regime since the
incoherent transmission is still several orders of magnitude
below the coherent part. However, we now observe a rapid
increase of the incoherent part of the transmission with kL. It
becomes nonnegligible at about kL 
 100, and for kL > 100
the transport is fully incoherent.

The dark (maroon) solid line in Fig. 3(b) shows a fit of
Eq. (46) to the numerically computed transmission data for
kL < 50 and the dark (maroon) dashed line extrapolates this
fit in order to visualize what would happen if the transport
remained fully coherent. The resulting localization length
kLloc 
 27 appears to be slightly smaller than the one that
was obtained in panel (a) for weaker atom-atom interaction.
Indeed, the effect of a weak interaction can be accounted
for in the theory of AL through replacing the wave number
k by an effective wave number k̃ = k

√
1 − 1/(2ξ 2k2) < k

taking into account the finite healing length ξ = �/
√

2mρg

of the propagating condensate [22,94,98], thus decreasing the
localization length as seen in the results.

While AL is therefore preserved for kL < 50, we can
see that for large disorder lengths kL > 150 the appearance
of incoherent atoms allows for a higher transmission than
predicted by the fit of Eq. (46). In this regime the decay
of the transmission with L is well fitted by a 1/(1 + L/L0)
scaling with kL0 
 10.8 [light (orange) line in Fig. 3(b)]
which is characteristic for transport in systems with a loss of
phase coherence between scattering events and which implies
the breakdown of AL [24]. On the mean-field GP level, a
nonstationary (turbulent) flow of atoms across the disordered
region is expected in this regime [24,30]. Interestingly, the GP
and tW simulations are nevertheless in very good agreement,
even though the coherence of the atom laser beam appears to
be completely destroyed.

This latter observation is confirmed in the comparison of
the density profiles related to Fig. 3(b) which are displayed
in Fig. 5 for a disorder potential length of kL = 141.42.
Figure 5(b) shows significantly different results predicted by
the GP and tW calculations for an individual realization of
the disorder. This illustrates that the mean-field description of
the transport process is not valid any longer. Inspecting the
inset one can furthermore infer that the GP simulation does
not reach a stationary state, which is a consequence of the
strong nonlinearity resulting from the atom-atom interaction,
while the tW simulation attains a stationary density profile
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FIG. 5. Density profiles in the nonlocalized regime for finite
interaction g = 0.048μ/k and a final propagation time of μT/� =
1000. Panel (a) shows one realization of the disorder potential and
panel (b) displays the corresponding density profile of an atom laser
beam that propagates across this disorder potential. We can clearly
see that the tW description of the transport process (red line for the
coherent and green line for the incoherent part) features a breakdown
of coherence and differs from the GP prediction (black line). The latter
represents a “snapshot” of a nonstationary scattering process, which
is reflected by the nonuniform GP density profile in the downstream
region shown in the inset. Panel (c) displays the disorder average of the
density profiles taking into account 1000 realizations. Despite the fact
that the coherence is quickly lost within the disordered region (which
is indicated by the shaded area), the disorder-averaged densities are
nearly identical for both the GP and the tW method.

up to quantum fluctuations, featuring a nonnegligible part
of incoherent atoms. This shows that permanently time-
dependent scattering processes in the mean-field limit amount
to incoherent transport in tW calculations. However, as far as
the disorder-averaged density profile is concerned, we see in
Fig. 5(c) that the GP and tW results again coincide very well.

VI. CONCLUSIONS

In summary, we studied in this work the one-dimensional
transport of Bose-Einstein condensates across disorder poten-
tials within a guided atom laser configuration. We used the
truncated Wigner method for this purpose, which was recently
adapted to deal with open systems [62]. Corrections beyond
the mean-field Gross-Pitaveskii description of the transport
process are mainly accounted for by means of quantum
noise that results from the vacuum fluctuations within the
waveguide [62]. From a semiclassical point of view, the tW
method corresponds to the diagonal approximation within
the framework of the van Vleck–Gutzwiller approach [63].
Systematic and robust corrections beyond this diagonal ap-
proximation can arise from coherent backscattering and loop
contributions [64] but do not play any role in the transport
context as we argued in this paper.

013612-9



JULIEN DUJARDIN, THOMAS ENGL, AND PETER SCHLAGHECK PHYSICAL REVIEW A 93, 013612 (2016)

As for previous studies that were based on the mean-field
GP description [24,94,98], we find that Anderson localization
is preserved for very weak interactions and/or short disordered
regions. For stronger interaction a breakdown of AL is
encountered, which is manifested by a crossover from an
exponential to an algebraic ∝ 1/L decrease of the transmission
with the disorder length L. This crossover is accompanied
by a transition from a nearly perfectly coherent flux in the
Anderson localized regime to a fully incoherent flux of atoms
across the disordered region in the delocalized regime. We
notice that this transition is remarkably well modeled by the
mean-field GP method [see Figs. 3(b) and 5(b)] even though
the latter is not valid in the incoherent regime. Evidently, this
is a consequence of the disorder average that is performed.
While an individual GP trajectory cannot correctly reproduce
the many-body bosonic transport process due to the emergence
of chaos in the nonstationary regime [see Fig. 5(a)], any
averaging procedure removes the sensitivity of mean densities
or transmissions on details of the chaotic dynamics and
therefore yields rather similar results as a tW calculation that
involves quantum noise.

We finally point out that the comparison between the GP and
the tW method may possibly lead to more subtle conclusions
in transport problems of Bose-Einstein condensates that
involve more than one spatial dimension. Specifically for
two-dimensional disordered systems it was shown that the
presence of the nonlinearity in the GP equation may predict
an inversion of the peak of coherent backscattering [99]
(which is here defined on the level of wave propagation in
two spatial dimensions, and not in the Fock space of the
many-body system) while a simple dephasing of the coherent
backscattering peak in the presence of interaction is expected
from a more microscopic point of view [36,37]. The tW method
appears to be well suited to investigate this issue in more detail
and to study other transport and localization phenomena of
interacting bosonic matter waves in disordered systems, such
as the Anderson transition in three spatial dimensions [100].
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APPENDIX A: LOOP CONTRIBUTIONS IN CLOSED
BOSE-HUBBARD SYSTEMS

In this appendix we briefly explain how to evaluate loop
contributions to Eq. (43) for the specific case of a closed
Bose-Hubbard system containing a finite number of L sites
and a finite number of N particles. Generally, such loop
contributions originate from trajectories γ that exhibit one
or several nearby encounters in phase space with themselves
or their time-reversed counterparts T γ . Provided the classical

(a) (b)

(c) (d)

(e) (f) (g)

FIG. 6. Loop contributions up to second order. For the one-leg
loops [(b), (d), (f)] only one of the two possible cases of shifting
one end into the encounter region is shown. Diagrams (a) and (b) are
the leading order loop contributions, while the remaining ones are of
next-to-leading order.

dynamics is chaotic, there exist then partner trajectories γp

that follow pieces of γ and/or T γ and, as is illustrated
in Fig. 6, switch from one piece to another one within
the encounter region [69–79,101]. The overall contribution
of the sum over the partner trajectories γp in Eq. (43)
is then obtained by determining and counting all possible
constructions of such partner trajectories and adding up their
individual contributions [101].

We generally distinguish two-leg, one-leg, and no-leg
loops, depending on how many (initial or final) ends of the
trajectory lie outside the encounter regions. To evaluate their
respective contributions, we follow the standard literature on
Sieber-Richter pairs [71–76,79,101] where we replace the role
of Planck’s constant � by the effective one �eff = 1/N . We
furthermore have to account for the presence of an additional
constant of motion besides the total energy, namely the
total number of particles N . This requires performing the
calculations in a reduced phase space with a fixed global phase
and a fixed number of particles (see also [84]).

The contribution of two-leg loops is then given
by [73,76,79]

∑
γp

(2ll)
exp

(
i

�
Rγ,γp

)

=
∑

v

N (v)
∫ c

−c

d (L−2)(O−Nenc)s

×
∫ c

−c

d (L−2)(O−Nenc)uP(s,u,v) exp (iNs · u), (A1)

where the sum runs over all partners giving rise to two-leg
loops and v = (v2,v3, . . .) is a vector whose entries are the
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numbers vo of o-encounters, with o determined by counting
how often the partner trajectory γp differs from γ within
one self-encounter. Each term in the sum is weighted by the
number N (v) of combinations of encounters for a given v.
Furthermore, the integrations run, roughly speaking, over the
separations s and u along the stable and unstable manifolds,
respectively, between the trajectories within each encounter,
which determine the action difference Rγ,γp

= �Ns · u, with
c � N being some classical bound, which finally will drop
out. The dimensionality of these integrations is determined by
the total number O = ∑

o ovo of traversals of encounters and
the number Nenc = ∑

o vo of encounters as well as the number
L − 2 of degrees of freedom obtained by fixing the energy E,
which is determined by the energy of the trajectory γ , and the
total number of particles N .

Finally

P(s,u,v) =
[
t − ∑

β oβt
(β)
enc(s,u)

]O

O!�O−Nenc
N

∏
β t

(β)
enc

(A2)

is the probability that the trajectory γ indeed exhibits the
corresponding set of self-encounters, which follows from
ergodicity arguments [73,76,79]. Here,

t (β)
enc = 1

λ
min

k,k′∈β
ln

c2

|skuk′ | (A3)

is the encounter time of the βth encounter with λ being
the Lyapunov exponent of the classical limit, where sk and
uk denote the phase-space coordinates of the kth trajectory
stretch along the stable and unstable manifold of the encounter,
respectively (with k ∈ β indicating that the kth trajectory
stretch participates at the βth encounter), and

�N (E) =
∫

d2Lψδ

(
N −

∑
α

(
|ψα|2 − 1

2

))

×δ(θ1)δ(Hcl(ψ
∗,ψ) − E) (A4)

is the phase space volume for fixed total number N of particles,
a fixed energy E which is is determined by γ , and for
an arbitrary choice of the global phase which is fixed by
setting θ1 = 0. Performing the integrations over the stable and
unstable separations [101] finally yields [73,76,79,101]

∑
γp

(2ll)
exp

(
i

�
Rγ,γp

)
=

∑
v

N (v)

(
2π

N

)(L−2)(O−Nenc)

× tO−Nenc
∏

o (−o)vo

(O − Nenc)!�O−Nenc
N

. (A5)

If the trajectory starts within an encounter region, the cor-
responding encounter has to be treated differently. Following
Refs. [77–79], the resulting one-leg loop contribution can be
obtained by replacing in Eq. (A1) the sum over all possible
combinations of encounters according to

∑
v

N (v) · · · =
∑

v

∑
o1

vo1o1
N (v)

O
· · · , (A6)

to make the dependence on the first encounter explicit.
Equation (A1) then still holds provided we redefine

P(s,u,v) =
∫ 1

λ
mink∈1 ln c

|sk |

0
dt ′

[
t − ∑

β oβt
(β)
enc(s,u)

]O−1

(O − 1)!�O−Nenc
N

∏
β t

(β)
enc

,

(A7)

where the first encounter time is given by

t (1)
enc = t ′ + 1

λ
min
k∈1

ln
c

|uk| . (A8)

After again performing the integrations, one obtains [78,79]∑
γp

(1ll)
exp

(
i

�
Rγ,γp

)

=
∑

v

∑
o1

o1vo1

N (v)

O

×
(

2π

N

)(L−2)(O−Nenc) tO−Nenc
∏

β>1(−oβ)

(O − Nenc)!�O−Nenc
N

. (A9)

The same considerations hold if the trajectory ends instead
of starts within an encounter region. Furthermore, for no-
leg loops, where the trajectory both starts and ends within
encounter regions [see Fig. 6(g)], an analogous derivation
yields [78,79]∑

γp

(0ll)
exp

(
i

�
Rγ,γp

)

=
∑

v

∑
o1,oNenc

No1,oNenc
(v)

×
(

2π

N

)(L−2)(O−Nenc) tO−Nenc
∏Nenc−1

β=2 (−oβ)

(O − Nenc)!�O−Nenc
N

, (A10)

with No1,oNenc
(v) being the number of combinations of encoun-

ters for given v, if the first and last one are fixed to be an o1-
and oNenc -encounter, respectively.

Summing up all these contributions is now a purely
combinatorial problem and boils down to evaluatingN (v)(1 −
2Nenc/O) + ∑

o1,oNenc
No1,oNenc

/(o1oNenc ). It has been shown in
Ref. [90] that this expression vanishes. As a consequence, loop
contributions do not play a role for the evaluation of Eq. (43)
within closed systems.

APPENDIX B: EFFECTIVE PROPAGATOR FOR
THE SCATTERING REGION

In this appendix we explain how to derive an effective
van Vleck propagator within an open scattering region that
is coupled to leads. To this end, it is convenient to write the
quantum Hamiltonian in the form

Ĥ = Ĥscat + ĤL + ĤR

− Eδ

2
(ψ̂†

0ψ̂1 + ψ̂
†
1ψ̂0 + ψ̂

†
L+1ψ̂L + ψ̂

†
Lψ̂L+1), (B1)

where in analogy with Refs. [61,62] we assume that the
scattering region (which is here denoted by the subscript
“scat”) consists of L waveguide sites labeled by 1, . . . ,L and
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one source site labeled by S (see Fig. 1). The dynamics within
the scattering region is governed by the Hamiltonian

Ĥscat =
L∑

l=1

[Eδ + Vl − μ + gl(ψ̂
†
l ψ̂l − 1)]ψ̂†

l ψ̂l

−
L−1∑
l=1

Eδ

2
(ψ̂†

l ψ̂l+1 + ψ̂
†
l+1ψ̂l) + κψ̂

†
lS
ψ̂S + κ∗ψ̂†

Sψ̂lS
,

(B2)

while the Hamiltonians within the left and right leads are
respectively given by

ĤL =
−∞∑
l=−1

[
(Eδ − μ)ψ̂†

l ψ̂l − Eδ

2
(ψ̂†

l ψ̂l−1 + ψ̂
†
l−1ψ̂l)

]
,

(B3a)

ĤR =
∞∑

l=L+1

[
(Eδ − μ)ψ̂†

l ψ̂l − Eδ

2
(ψ̂†

l ψ̂l+1 + ψ̂
†
l+1ψ̂l)

]
.

(B3b)

We now make the ansatz

〈A| exp

(
− i

�
Ĥ t

)
|A′〉 = K̃

(
A,A′,t

) ∏
j∈{L,R}

Kj (A,A′,t),

(B4)
with the free propagators for the leads

KL/R
(
A,A′,t

) = 〈AL/R| exp

(
− i

�
ĤL/Rt

)
|A′

L/R〉, (B5)

where |AL/R〉 denote the quadrature states for the leads.
A path integral representation for K̃ can then be found
according to

K̃(A,A′,t) = lim
M→∞

∫
dL+1Ã(1)

∫
dL+1B̃(1)

(4π )L+1 · · ·
∫

dL+1Ã(M−1)
∫

dL+1B̃(M−1)

(4π )L+1

∫
dL+1B̃(M)

(4π )L+1

× exp

{
it

4�M

M∑
m=1

[
2�B̃(m) · Ã(m) − Ã(m−1)

t/M
− H̃cl(ψ̃

(m)∗
,ψ̃

(m)
,mt/M)

]}
(B6)

with ψ̃
(m) = Ã(m−1) + iB̃(m), Ã(0) = Ã′, and Ã(M) = Ã, where the tilde indicates that the concerned amplitudes and quadratures

are restricted to the scattering region. The classical Hamiltonian of the scattering region is given by

H̃cl(ψ̃
(m)∗

,ψ̃
(m)

,mt/M)

= Hcl(ψ̃
(m)∗

,ψ̃
(m)

) + EδALIm
[
UT

L (t)
]
Im

[
U

†
L(mt/M)e(L)ψ̃

(m)
0

] − EδA′
LIm

[
UL(t)

]
Im

[
U

†
L(t − mt/M)e(L)ψ̃

(m)
0

]
+EδARIm

[
UT

R(t)
]
Im

[
U

†
R(mt/M)e(R)ψ̃

(m)
L

] − EδA′
RIm

[
UR(t)

]
Im

[
U

†
R(t − mt/M)e(R)ψ̃

(m)
L

]
+ tE2

δ

2M�

m−1∑
m′=1

Im
[
ψ̃

(m)∗
0 e(L)TU

†
L(t − mt/M)

]
Im

[
UT

L (t)
]
Im

[
U

†
L(m′t/M)e(L)ψ̃

(m′)
0

]

+ tE2
δ

2M�

m−1∑
m′=1

Im
[
ψ̃

(m)∗
L e(R)TU

†
R(t − mt/M)

]
Im

[
UT

R(t)
]
Im

[
U

†
R(m′t/M)e(R)ψ̃

(m′)
L

]
, (B7)

which parametrically depends on the initial and final quadra-
tures AL and AR within the leads. Here,

Hcl(ψ,ψ∗) =
L∑

l=1

[
(Eδ + Vl − μ − gl)|ψl|2 + gl

2
|ψl|4

]

− Eδ

2

L−1∑
l=1

[(ψ∗
l+1ψl + ψ∗

l ψl+1)]

+ κ∗(t)ψ∗
SψlS + κ(t)ψ∗

lS
ψS (B8)

is the classical Hamiltonian in the scattering region without
the leads, and we define

e(L) = (e(L))l�0, e
(L)
0 = 1, e

(L)
l �=0 = 0, (B9a)

e(R) = (
e

(R)
l

)
l>L

, e
(R)
L+1 = 1, e

(R)
l �=L+1 = 0. (B9b)

UL/R(t) are the classical (single-particle) propagators for the
leads, i.e., the (unitary) solutions to the equations

i�
∂UL(t)

∂t
= H

(L)
cl UL(t), UL(0) = 1, (B10a)

i�
∂UR(t)

∂t
= H

(R)
cl UR(t), UR(0) = 1, (B10b)

where H
(L/R)
cl denote the single-particle Hamiltonian matrices

within the left and right lead, respectively. They have the matrix
elements(

H
(L/R)
cl

)
l,l′ = (Eδ − μ)δl ,l′ − Eδ

2
(δl ,l′+1 + δl ,l′−1), (B11)

with l ,l′ ∈ {. . . , − 2, − 1,0} for the left and l ,l′ ∈ {L + 1,L +
2,L + 3, . . .} for the right lead.

The semiclassical approximation is then obtained by eval-
uating the integrals in Eq. (B6) using the stationary phase
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approximation and finally taking the limit M → ∞ of an
infinite number of intermediate time steps. This yields the
effective van Vleck propagator

K̃
(
A,A′; t

) =
∑

γ :Ã→Ã′

D̃γ

(
A,A′,t

)
exp

[
i

�
R̃γ

(
A,A′,t

)]
,

(B12)
where the trajectories γ are determined by the equations of
motion

i� ˙̃ψl(t) = ∂H̃cl(ψ̃
∗
(t),ψ̃(t),t)

∂ψ̃∗
l (t)

, (B13)

[which are now integro-differential equations that, however,
can still be transformed into Eq. (11)] and by the boundary
conditions

Re ψ̃l(0) = Ã′
l , (B14a)

Re ψ̃l(t) = Ãl (B14b)

on the real parts of ψ̃l with l ∈ {S,1, . . . ,L}. The action of the
trajectory is given by

R̃γ (Af,Ai,t) =
∫ t

0
dt ′[2�B̃ · ˙̃A − H̃cl(ψ̃

∗
(t ′),ψ̃(t ′),t ′)],

(B15)

where, again, Ã(t ′) and B̃(t ′) denote the real and imaginary
parts of ψ̃(t ′), respectively. Finally, the semiclassical ampli-
tude is given by

D̃γ

(
A,A′,t

) =
√

det

(
1

−2πi�

∂2R̃γ (A,A′,t)
∂Ã∂Ã′

)
, (B16)

where the tilde indicates that the derivatives are taken with
respect to the components corresponding to the scattering
region only. Since the exponential in the path integral
for the propagators within the leads is quadratic in the
fields, its corresponding semiclassical approximation is exact
and yields

KL/R(A,A′,t) =
exp

[
− i

4

(
A′

L/R
AL/R

)(
Im[UL/R(t)]−1Re[UL/R(t)] −Im[UL/R(t)]−1

−Im[UT
L/R(t)]−1 Re[UL/R(t)]Im[UL/R(t)]−1

)(
A′

L/R
AL/R

)]
√

det[−4πiUL/R(t)Im[UL/R(t)]T]
. (B17)

By construction, the pairing of trajectories takes then place in
the scattering region only.

The fact that the total number of particles is not conserved
allows us to deal with the coherent backscattering contribution
on the level of the quadrature representation. However, when
pairing a trajectory with its time-reversed counterpart, one
needs A′ 
 A. Hence, we replace again A′ with A in
the definition of the trajectories that contribute to coherent
backscattering; i.e., we sum over trajectories that return from
A to A. The thereby introduced error is accounted for by
expanding the action in the exponential up to first order in
A′ − A:

(R̃γ − R̃γp
)cbs 
 2�(B̃(γ )(t) + B̃(γ )(0)) · (Ã′ − Ã)

+ terms independent of Ã′, (B18)

where the subscript “cbs” indicates that the action difference
is evaluated choosing finally γp = T γ with T denoting
(classical) time reversal. Here it has been used that B̃(T γ )(t) =
−B̃(γ )(0). Performing now the integration over Ã′ yields∫

dL+1Ã′ exp{2i[B̃(γ )(t) + B̃(γ )(0)] · (Ã′ − Ã)}

= πL+1δ(B̃(γ )(t) + B̃(γ )(0)), (B19)

which is nonvanishing only if B̃(γ )(t) = −B̃(γ )(0) = B̃(T γ )(t),
i.e., if the trajectory is self-retracing. In that case, however,
we have γ ≡ T γ by construction. Pairing γ with γp = T γ

then amounts to pairing γ with itself, which is already done
on the level of the diagonal approximation. Hence, there are
no coherent backscattering contributions within open systems,
due to the nonconserved number of particles.
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