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Abstract

We show that the toric local height of a toric variety with respect to a toric semipositive
metrized line bundle over an arbitrary non-Archimedean eld can be witten as the integral
over a polytope of a concave function. For discrete non-Archimedean ks, this was
proved by Burgos Philippon Sombra in [ BPS144g. To show this statement, we rst prove
an induction formula for the non-Archimedean local height of a variety, geeralizing a
theorem of Chambert-Loir Thuillier. Then, in analogy to [ BPS144, we translate arithmetic-
geometric objects like toric divisors over arbitrary valuation rings of rank one and toric
semipositive metrics over non-discrete non-Archimedean eldsjn terms of convex analysis
like piecewise a ne and concave functions.

Furthermore, we prove that the global height of a variety over a nitel y generated eld
can be expressed as an integral of local heights over a set of places of thefd. In contrast
to a similar statement in [BPS141, it allows arbitrary non-Archimedean places. Combining
this expression with our results on toric geometry, we get an intereshg formula for the
global height. This formula will be illustrated in a nal natural exampl e where not all
relevant non-Archimedean places are discrete.
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Introduction

Height Theory

The height of rational points of a variety is a real-valued function which behaves well under
algebraic operations and which is a helpful tool to control the number anddistribution
of these rational points. Therefore, it plays a fundamental role in theproof of niteness
results in Diophantine geometry like the theorems of Mordell Weil and Faltings (see, for
instance, [BG06]).

In [Fal91], Faltings generalized the height of points to the height of (sub-)vareties using
arithmetic intersection theory by Gillet Soulé [ GS90. We sketch his de nition which
points out that the height of a variety is the arithmetic analogue of the degree in the
classical intersection theory. LetX be ann-dimensional smooth projective variety over
Q equipped with a regular properZ-model X . Then, by [GS9Q, there is an arithmetic

Chow ring &H (X )q and an arithmetic degree mapéeg: 6H" (X )Jo! R.LetL bea
line bundle on X endowed with aZ-modelL of L on X and a smooth metrick k on
its analyti cation L(C) on X (C). To each Hermitian line bundle L = (L ;k k), one can
associate its rst arithmetic Chern class é;(L ) 2 @H (X ). The height of X with respect
to L is de ned as

h—(X) = feg &,(L )" : (0.1)

In [BGS94], Bost Gillet Soulé proved important properties of this height, for e xample an
arithmetic Bézout theorem.

This de nition has the disadvantage that it only works for smooth project ive varieties and
smooth metrics. Moreover, it depends on the existence of modeldt is more general and
exible to use the adelic language by ZhangZha95, equipping the line bundle with a metric
at each place ofQ instead of a model and allowing uniform limits of semipositive metrcs.
A remarkable application of Zhang's height of varieties is his proof of the Bgomolov
conjecture for Abelian varieties over a number eld in [Zha98].

From the adelic point of view, it is more convenient to de ne the height as a sum of local
heights. Here, local means that we x a place of Q and work over the corresponding
completion Qy. Local heights can be studied for any eld with absolute value which was
systematically done by Gubler [Gub97], [Gub98], [Gub03].

In the following, we outline the case of a local height over a eldK which is complete
with respect to an arbitrary non-trivial non-Archimedean absolute value K. Let X be a
proper variety over K and denote by X 2" its analyti cation in the sense of Berkovich. On
a line bundle L on X, every model of some positive tensor powek € induces an algebraic
metric on L. A semipositive metric is the uniform limit of algebraic metrics that satisfy a
certain positivity property. Let L be a semipositive metrized line bundle onX and Z a
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idiv(so)j\  \j div(s)j\j Zj = ;: (0.2)

Then, Gubler showed the existence of a local height

(Liso);un(List

using re ned intersection theory and, since the valuation ring K is not necessarily
noetherian, methods from formal and rigid geometry. IfK is discrete, hence Noetherian,
and the metric is induced by an algebraicK -model, then this local height is the usual

In [ChaO€], Chambert-Loir introduced a measurecy(L) "t~ 7 on X" such that for
algebraic metrics an induction formula as in the Archimedean case holdsAn important
statement of my thesis is the following corresponding formula (cf.Theorem 1.4.3) which
generalizes a result of Chambert-Loir and Thuillier [CT09, Théoréme 4.1]

Theorem 1 (Induction formula) . Let notation be as above. For simplicity, we assume that
Z is a subvariety. If Z * jdiv(st)j, then let s;z = stjz, otherwise we choose any non-zero
meromorphic sections;.z of Lijz.
Then, the function logks;k is integrable with respect toci(L) '~ 7 and we have
Z

(ESO);:”;(ESI)(Z) = (Gso):(Tse 1)(CyC(5t;Z ) X an logkstz k Cl(E)At Nz
The proof is based on CT09] where the formula is demonstrated under the additional

such that their Cartier divisors intersect properly on Z. The heart of the proof is an
approximation theorem saying that logks;k can be approximated by suitable functions
logklk,, wherek k, are formal metrics on the trivial bundle Ox . To show this, we use
techniques from analytic and formal geometry.

In the case of Archimedean elds, local heights can be handled in a sirar way. We will
recall this in section 1.5.

Now, we come back to (global) heights. In Gub97], Gubler introduced the notion of
an M - eld. In this thesis, this is a eld K together with a measured setM of absolute
values onK satisfying the product formula (De nition 3.1.1). The easiest example is
Q together with the set of standard normalized absolute valuesM o, equipped with the
counting measure. But the notion of M - elds also includes number elds, function elds
and nitely generated elds.

Let us consider a projective variety X over anM - eld K and a line bundleL on X. A
semipositive M -metric on L is a family of semipositive metricsk ky onL,, v2 M. Write
L=(L;(k ky)y)and Ly =(Ly;k ky) for eachv 2 M. Let Z be at-dimensional cycle such
that the function

M ! R; v7!

is -integrable for any choice of sectionssy;:::;s; of L which satisfy condition (0.2). For
example, if we consider theM - eld Q, the -integrability is satis ed for every cycle Z
and a quasi-algebraic metrized line bundle_, i.e. almost all metrics of L are induced by a



Toric Geometry

common model overZ. The (global) height of Z is de ned as
z

ho(2) = v (Cv soyin(Cuis) (V) A (V) 0.3)
By the product formula, this de nition is independent of the choic e of sections. Note that
all the mentioned heights can be also de ned fort + 1 distinct line bundles.

In [Mor00], Moriwaki de ned the height of a variety over a nitely generated e Id K
over Q as an arithmetic intersection number as in(0.1) and generalized the Bogomolov
conjecture to such elds. As observed by Gubler Gub03, Example 11.22], this nitely
generated extension has aM - eld structure for a natural set of places M related to the
normal variety B with K = Q(B). Burgos Philippon Sombra proved in [ BPS14hb Theorem
2.4] that the height of Moriwaki can be written as an integral of local heights over M. In
this thesis, their result is generalized in a certain way as outlird in the following.

Let B be ab-dimensional normal proper variety over a global eld F. We denote by
K the function eld of B, which is a nitely generated extension of F. Choosing nef

structure (M; ) of an M-eld (see 3.2.4). Let : X ! B be a dominant morphism of
proper varieties overF of relative dimensionn and denote by X the generic ber of . Let
Lo;:::;L, be semipositive quasi-algebraic line bundles oX and choose any invertible

Theorem 2. The functon M ! R, w 7!
have Z

h Hagg HpiLosiln (X) = M (Low :80)3::55 (L nw JSn)(x ) d (W)

...............

(Com :50)::2% (Lo :sn) (X )1 IS -integrable and we

Burgos Philippon Sombra have shown this formula in the case whenF = Q and the
varieties X, B and the occuring metrized line bundles are induced by models &r Z
similarly as in (0.1). The main di culty in their proof appears at the Archimedean place,
where well-known techniques from complex geometry as the Ehresmats bration theorem
are used. In our proof, we can just copy the Archimedean part, but at the ron-Archimedean
places, we integrate over Berkovich spaces and we use methods frongabraic and formal
geometry instead.

Toric Geometry

Toric varieties are a special class of varieties that have a nice desption through combi-
natorial data from convex geometry. So they are well-suited for testingconjectures and
for computations in algebraic geometry. LetK be any eld, then a complete fan of

polyhedral cones in a vector spacéNr ' R" corresponds to a proper toric variety X over

object should have a certain invariance property with respect to ths action, in order to
describe it in terms of convex geometry.

A support function on , i.e. a concave function : Ngr! R which is linear on each
cone of and has integral slopes, corresponds to a base-point-free toridre bundle L
on X together with a toric section s. Moreover, one can associate to a polytope
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=fm2 Mgrjm g in the dual spaceMg of Ng. Then a famous result in classical
toric geometry is the degree formula:

deg (X )= nlvoly( );

where voly is the Haar measure onMg such that the underlying lattice M ' Z" has
covolume one. As mentioned above, the arithmetic analogue of the degree ofvariety with
respect to a line bundle is the height of a variety with respect toa metrized line bundle. So
it is a natural question if one can nd an analogous formula for the height. This problem
was tackled by Burgos, Philippon and Sombra in the monographBPS144 and they have
shown the following.

Assume that the pair (X ;L) lies over Q and let Mg be the set of places ofQ. To a
family (#y)v2m, Of concave functions on  with #, 0 for allmost all v, one can associate
an Mg-metrized lined bundle L = (L; (k ky)v). Then the height of X with respect to L
is given by 5 Z

h(X )=(n+1) #, dvoly :
V2Mq

Indeed, to state and prove this formula, Burgos Philippon Sombra systematically studied
in [BPS144 the arithmetic geometry of toric varieties in terms of convex geometry In
particular, they described models of toric divisors over discre¢ valuation rings by piecewise
a ne functions on polyhedral complexes. Furthermore, for a eld whic h is complete with
respect to an Archimedean or discrete non-Archimedean absolute valughey classi ed
semipositive toric metrized line bundles and their associated masures and local heights,
by concave functions and their associated Monge-Ampeére measures and Legee-Fenchel
duals.

As mentioned before, metrized line bundles and their associated nasures and local
heights can be also studied for non-Archimedean elds with non-necesrily discrete
valuation. So it is a quite natural question if the results in [BPS144 extend to arbitrary
non-Archimedean elds. This issue is handled in my thesis.

In analogy to [BPS143 Y 3.6], we describe toric divisors on toric schemes over arbitrary
valuation rings of rank one (see Theorem 2.3.3). This description is based otie theory of
toric schemes over valuation rings of rank one by GublerGub13] and the classi cation of
these schemes by admissible fans by Gubler and Soto [GS13].

Furthermore, we study metrics, measures and local heights over aan-necessarily discrete
non-Archimedean eld K , following the ideas of BPS143 Y 4]. LetL be a toric line bundle
on a proper toric variety X over K together with any toric section s, and let be the
corresponding support function on the complete fan . A continuous metric k k on L is
toric if the function p 7! ks(p)k is invariant under the action of a certain closed analytic
subgroup of T@" (De nition 2.4.1). We will give the following classi cation of toric met rics
over algebraically closed non-Archimedean elds (Theorem 2.5.8):

Theorem 3. There is a bijective correspondence between the sets of
(i) semipositive toric metrics on L;
(i) concave functions on Ng such that the function| j is bounded;

(iii) continuous concave functions # on
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For the rst bijection, one associates to the toric metric k k the function on Ng given
by (u) = logks trop (u)k, wheretrop: Ng ! T2 is the tropicalization map from
tropical geometry (see 2.4.5). The second bijection is given by the Legemd-Fenchel dual
from convex analysis (see A.7). Essential for the proof are characterizains of semipositive
formal metrics developed in GK15]. Note that the concave function = denes a
distinguished metric on L, called canonical.

Next, we show that the measurecy(L)" "~ x induced by a semipositive toric metrized
line bundle L = (L; k k), satis es the following formula

tl‘Op Cl(E)AnA X jTan = nIM M( ),

where is the concave function given byk k and M y () is the Monge-Ampére measure
of (see A.17).

Now, all ingredients are developed to state and show a formula for the loal height in
the toric setting as proved in [BPS14a Theorem 5.1.6] for a discrete non-Archimedean
eld. Let X be ann-dimensional projective toric variety over K and L a semipositive
toric metrized line bundle, and denote by L“" the same line bundle equipped with the
canonical metric. The toric local height of X with respect to L is de ned as

tfor (X )= Csoyn@smX ) @ so)yn@sn) X );

condition (0.2). We show the following main result (Theorem 2.6.6):

Theorem 4. Let notation be as above. Then we have
Z

2(X )=(n+1) #dvoly ;

where #: I R is the concave function associated tqL;s) given by Theorem 3.

The proof is analogous to BPS144. It is based on induction relative to n and uses the
induction formula (Theorem 1) in an essential way.

The formula in Theorem 4 has the following application as suggested to méy José
Burgos Gil. In the setting of Theorem 2, let : X | B be a dominant morphism of
varieties over a global eld F such that its generic ber X is an n-dimensional toric variety
over the function eld K = F(B). This eld is equipped with the M - eld structure induced
by the metrized line bundlesH;:::;Hp. Assume thatLg = = L, = L and that the
induced semipositiveM -metrized line bundle L is toric. Let s be any toric section ofL and

the associated support function. Then L de nes, for eachw 2 M, a concave function
Haw I R.

Note that in this setting a non-Archimedean placew 2 M is not necessarily discrete. So,
we cannot use only the formula for toric local heights from BPS144. However, combining
theorems 2 and 4 (resp. its Archimedean analogue), we obtain

zZ Z
h e R CetO= (D (g dvol(x)d (w): (0.4)
This formula allows us to compute the height of a non-toric variety coming from a bration
with toric generic ber. It generalizes Corollary 3.1 in [BPS14H where the global eld is
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Q and the metrized line bundles are induced by models oveZ, i.e. where the left-hand
side is an arithmetic intersection number as in(0.1). In this setting only Archimedean and
discrete non-Archimedean places occur.

In [BPS14b, the formula corresponding to (0.4) is considered in the special case that
X is a translate of a subtorus in the projective space and canonical metcs. This can be
imitated in our setting and we further particularize to the case when B is an elliptic curve
leading to a natural example to illustrate our theory.
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Conventions and Notations

N is the set of natural humbers containing zero. All occuring rings and algbras are
commutative with unity. For a ring R, the group of units is denoted byR .

A variety over a eld k is an irreducible and reduced scheme which is separated and of
nite type over k. The function eld of a variety X over k is denoted by k(X) or K(X).
For a proper schemeY over a eld, we denote by Y (") the set of subvarieties of codimension
n. A prime cycle onY is just a subvariety of Y.

By a line bundle we mean a locally free sheaf of rank one. For an invertie meromorphic
section s of a line bundle, we denote bydiv(s) the associated Cartier divisor and by cyc(s)
the associated Weil divisor. The support of div(s) is denoted by jdiv(s)j.

A measure is a signed measure, i. e. it is not necessarily non-negativA non-Archimedean
eld is a eld which is complete with respect to a non-trivial non- Archimedean absolute
valuej j.

For the notations used from convex geometry, we refer to Appendix A. Furhermore,
notations and terminology de ned in this thesis are listed in the index.



Chapter 1.

Metrics, Local Heights and Measures
over Non-Archimedean Fields

In this chapter, we prove an induction formula for the local height of a variety over a
non-Archimedean eld with respect to DSP metrized pseudo-diviors (Theorem 1.4.3),
generalizing a result of Chambert-Loir and Thuillier [CT09, Théoréme 4.1]. This formula
is important for our work on toric varieties since it serves as de nition for local heights in
our key source [BPS14a].

Before that, we recall the theory of local heights over non-Archimedan elds from
[Gub98] and [Gub03], and the theory of measures associated to metrized line bundles
introduced in [Cha06] and developed in [Gub07b].

In section 1.5, we give a short overview of local heights and measures oveomplex
varieties.

Let K be anon-Archimedean eld, i.e. a eld which is complete with respect to a
non-trivial non-Archimedean absolute valuej j. Its valuation ring is denoted by K , the
associated maximal ideal byK  and the residue eld by K = K =K

1.1. Analytic and Formal Geometry

In this section, we recall some facts about the (Berkovich-) analyti cation of schemes over
K and of formal schemes oveK . In the analytic part we follow [BPS143 Y 1.2]. See also
[Ber9(Q] and [Ber93] for further informations. The basic references for formal geometry are
[Gub98, Y 1] and [Gub07b, Y 2] and, for details, [Bos14].

Let X be a scheme of nite type overK.

1.1.1. Firstlet X = SpecA) be ane. Thenthe (Berkovich-) analytic spaceX 2" associated
to X is the set of multiplicative seminorms onA extending the absolute valuej j on K.
We endow it with the coarsest topology such that the functionsX2"! R, p7! p(f) are
continuous for everyf 2 A.

Next we will de ne a sheaf of ringsOyxan on X 3" Each p 2 X 2" induces a multiplicative
norm on the integral domain A=ker(p) and therefore a non-Archimedean absolute value on
its quotient eld extending j j on K. We write H (p) for the completion of this eld with
respect to that absolute value. The image off 2 A in H (p) is denoted byf (p) and we
write also j | for the absolute value inH (p). Then we havep(f ) = jf (p)j for eachf 2 A.

An analytic function s on an open setU of X @ is a function

a
s:U! H (p);
p2U
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such that, for eachp 2 U, we haves(p) 2 H (p) and there is an open neighborhood
p2V U with the property that, for all "> 0, there are elementd;g 2 A with jg(q)j& 0
andjs(g) f(g=g(g)j<" forall g2 V. These functions form a sheaf of ringOya and
we get a locally ringed space X @"; Ox an).

1.1.2. For any schemeX of nite type over K we de ne the analytic space X 2" by gluing
the a ne analytic spaces obtained from an open ane cover of X. For a morphism
" X ! Y of schemes of nite type overK we have a canonical map a": Xa"1 yan
dened by ' @(p):=p '! on suitable a ne open subsets.

The analyti cation functor preserves many properties of schemes and lteir morphisms.
So an analytic spaceX 2" is Hausdor (resp. compact) if and only if X is separated (resp.
proper). On the category of proper schemes oveK this functor is fully faithful and induces
an equivalence between the categories of coherefitx - and Oy an-modules. The proofs and
more such GAGA theorems can be found in [Ber90, Y 3.4].

The analyti cation of a formal scheme is more di cult because at rst we n eed arbitrary
analytic spaces. Here we only give an overview and not the precise de tion of these
spaces.

algebra (A;k k). The presentation and hence the induced norm of an a noid algebra
is not unique but two norms on A are equivalent and thus, de ne the same concept of
boundedness.

1.1.4. The Berkovich spectrumM (A) of a K -a noid algebra A is de ned as the set of
multiplicative seminorms p on A satisfying p(f) k fkforall f 2 A. It only depends on
the algebraic structure onA. As above, we endow it with the coarsest topology such that
the mapsp 7! p(f) are continuous for allf 2 A. Then M (A) is a non-empty compact
space.

f f . o -

M (A) it = TP2 M) IR o)l =155 mg;
wherefq;:::;fm; g2 A generate the unit ideal in A. It is the Berkovich spectrum of the
a noid algebra

rEry =Ky xn s inymi =(gyi fiji=15:00m)

More generally one de nes ana noid subdomain in M (A) as the Berkovich spectrum of
an a noid algebra de ned by a certain universal property (see [BGR84, 7.2.2]). Such a
domain is a nite union of rational domains by the theorem of Gerritzen-Grauert (|[BGR84,
7.3.5/3)).

A (Berkovich) analytic spaceover K is given by an atlas of a noid subdomains M (A).
The di culties in this construction arise because the charts M (A) are not open. Analytic
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functions on such a chart are given by the elements ofA. The precise de nition can be
found in [Ber90, Y 3] where such spaces are called strictly analytic spes.

for an ideal | and A has noK -torsion. If A is admissible, thenl is nitely generated
(see BL93a, Proposition 1.1]). A formal schemeX over K is called admissibleif there
is a locally nite covering of open subsets isomorphic to formal a ne schemesSpf(A) for
admissible K -algebrasA.

In this case, the generic ber X2" of X is the analytic space locally de ned by the
Berkovich spectrum of the K -a noid algebra A = A k K. Moreover we de ne the
special ber X of X as the K-scheme locally given bySpe¢A=K A), i.e. X is a scheme of
locally nite type over K with the same topological space asX and the structure sheaf
Og =0x k K.

There is areduction map red: X" ! X assigning each seminornp in a neighborhood
M (A k K)tothe primeideal fa2 Ajp(a 1)< 1g=K A. This map is surjective and
anti-continuous. If X is reduced, thenred coincides with the reduction map in [Ber90, 2.4].
In this case, for every irreducible componentV of X, there is a unique point \y 2 X@" such
that red( v) is the generic point of V (see [Ber90, Proposition 2.4.4]).

1.1.7. Assume that K is algebraically closed and letX = Spf(A) be an admissible formal
a ne scheme over K with reduced generic ber X2". Let A = A k K be the associated
K -a noid algebra and let A be the K -subalgebra of power bounded elements iA. Then

X9:=Spf (A ) is an admissible formal scheme oveK with X%®" = X" and with reduced

special ber X9 We have a canonical morphismx®! X whose restriction to the special
bers is nite and surjective. By gluing, these assertions also holdfor non-necessarily a ne

schemes. For details, we refer to [Gub98, Proposition 1.11 and 8.1].

1.1.8. Let X be a at scheme of nite type over K with generic ber X and let be
some non-zero element irK . Locally we can replace the coordinate ringA by the

-adic completion of A and get an admissible formal schem&” over K with special ber
equal to the special ber X of X . The generic ber x"an denoted by X , is an analytic
subdomain of X 2" and is locally given by

fp2 (SpecA «k K)*jp(a) 18a2Aqg:
Then the surjective reduction map red: X ! X is locally given by
p7'f a2 A jp(a< 1g=K A:

If X is proper overK , then X = X2 and the reduction map is de ned on the whole of
Xan 1f X is reduced, then each maximal point ofX hasa unigue inverse image X .
We refer to [Gub13, 4.9 4.13] for details.

If K is algebraically closed andX is reduced, then the construction in 1.1.7 gives us a
formal admissible schemeX over K with generic ber X3 = X and with reduced special
ber X such that the canonical morphismX ! X is nite and surjective.
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1.2. Metrics, Local Heights and Measures

From now on, we assume that the non-Archimedean eldK is algebraically closed. This
iS no serious restriction because we can always perform base change tetcompletion of
the algebraic closure of any non-Archimedean eld and local heights and meases do not
depend on the choice of the base eld.

Let X be a reduced proper scheme oveéf and L a line bundle onX . This de nes a line
bundle L@ on the compact spaceX a".

De nition 1.2.1. A metric k k on L is the datum, for any sections of L2" on a open
subsetU X @' of a continuous functionks()k: U! R g, such that

(i) it is compatible with the restriction to smaller open subsets;
(i) for all p2 U, ks(p)k =0 if and only if s(p) =0;
(iii) forany 2 Oxan(U)andforall p2 U, k(s)(pk=1] (p)j ks(p)k.

On the set of metrics onL we de ne the distance function
d(k kik k9:= sup log(ks(p)k=ks(p)k9 ;
pzx an

where s is any local section ofL 2" not vanishing at p. Clearly, this de nition is independent
of the choice ofs. The pair L :=(L; k k) is called ametrized line bundle Operations on
line bundles like tensor product, dual and pullback extend to metized line bundles.

De nition 1.2.2. A formal (K -)model of X is an admissible formal schemeX over
K with a xed isomorphism X&' X7 Note that we identify X" with X @" via this
isomorphism.

A formal (K -)model of (X;L) is a triple (X;L;e) consisting of a formal modelX of X,
a line bundleL on X and an integere 1, together with an isomorphismL2a"" (L €)a".
When e =1, we write ( X; L) instead of (X;L;1).

De nition 1.2.3.  To a formal K -model (X;L;e) of (X;L) we associate a metrick k on
L in the following way: If U is a formal trivialization of L and if s is a section ofL3" on
U?" such that s € corresponds to 2 O x an (U?") with respect to this trivialization, then

ks(pk = j (p)i*™

for all p2 U?". A metric on L obtained in this way is called a Q-formal metric and, if
e=1, a formal metric.

Such aQ-formal metric is said to be semipositive if the reduction E of L on the special
ber X is nef, i.e. we have deg(C) 0 for every closed integral curveC in X.

Remark 1.2.4. In the literature, Q-formal metrics are often just called formal metrics
(e.g. in [Cha0f and [CTO9]). In De nition 1.2.3, we basically follow the notation of [ CD12]
and the papers by W. Gubler.

1.2.5. The dual, the tensor product and the pullback of (Q-)formal metrics are again
(Q-)formal metrics. Furthermore, the tensor product and the pullback of semipositive
Q-formal metrics are semipositive.

10



1.2. Metrics, Local Heights and Measures

1.2.6. Every line bundle L on X has a formalK -model (X;L) and hence a formal metric
k k. For proofs of this and the following statements we refer to Gub98, Y 7]. Since
K is algebraically closed andX is reduced, we may always assume thak has reduced
special ber (see 1.1.7). Then the formal metric determines theK -modelL on X up to

isomorphisms, more precisely we have canonically

L(U)=fs2 L3(U*) jks(pk 18p2 U*g (1.1)

for each formal open subseU of X.

A formal metric is characterized by the property that there exists an admissible covering
fUigi2; of X" by a noid domains and non-vanishing regular sectionss; 2 L2"(U;) such
that ksj(x)k =1 for all x 2 U;.

De nition 1.2.7.  An algebraicK -model X of X is a at and proper scheme overK
together with an isomorphism of the generic ber of X onto X. An algebraicK -model
(X ;L ;e) of (X;L) consists of a line bundleL on an algebraicK -model X of X and a
xed isomorphism L jx = L°®.

As in De nition 1.2.3, an algebraic model (X ;L ;e) of (X;L) induces a metrick k on
L, called algebraic metric. Such a metric is said to besemipositive if, for every closed
integral curve C in the special ber X, we have deg (C) O.

The following relatively recent result shows that, on algebraic vareties, it is always
possible to work with algebraic in place ofQ-formal metrics.

Proposition 1.2.8. Let L be a line bundle on a proper varietyX over K and letk k be
a metric on L. Then, k k is Q-formal if and only if k k is algebraic.

Proof. The fact that every algebraic metric is Q-formal follows easily from 1.1.8. The other
direction is [GK15, Corollary 5.12]. O

1.2.9. A metrized pseudo-divisorlﬁ on X is a triple D= (L;Y;s) where L is a metrized
line bundle, Y is a closed subset oX and s is a nowhere vanishing section of. on X nY.
Then (O(D);jDj;sp) :=(L;Y;s) is a pseudo-divisor in the sense ofFul98, 2.2]. We can
always de ne the pullback of a metrized pseudo-divisorD on X by a proper morphism
' X0 X, namely

'+ B:=(" O(D);" YD}’ sp):

Note that this is an advantage over Cartier divisors in order to formulate intersection
theory.

Example 1.2.10. Let L be a metrized line bundle onX and s an invertible meromorphic
section of L, i.e. there is an open dense subsdl of X such that s restricts to a non-
vanishing local section ofL on U. Then the pair (L;s) determines a pseudo-divisor

fiv(s):= L;jdiv(S)j; Six njdiv(s)
where jdiv(s)j is the support of the Cartier divisor div( s).
Every real-valued continuous function' on X " de nes a metric on the trivial line

bundle Ox given by klk = e ' . We denote this metrized line bundle byO(' ). Then we
get a metrized pseudo—divisor@(' ):=(0( );;;1).

11



Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

t-dimensional cycle onX with

iDoj\  \] Duj\j Zj=;: 1.2)
Note that condition (1.2) is much weaker than the usual assumption thatDo;:::;D;
inter.ls:ect properly on Z, that is, for all | f 0;:::;tg, each irreducible component of

Z\ 5, jDijj has dimensiont j Ij.
For Q-formal metrized pseudo-divisors there is a re ned intersectionproduct with cycles
on X developed by Gubler (seeGub98, Y8] and Gub03, Y5]). By means of this product,

If K is a discrete valuation ring, hence Noetherian, and all thek -models are algebraic,
then we can use the usual intersection product.

Proposition 1.2.12.  The local height (Z):= 4 ...5 (Z) is characterized by the following
properties:

(i) For a proper morphism' : X% X and at-dimensional cycleZ®on X ° satisfying
iDoj\  \j Dyj\j ' (2)j=;,we have

..........

Q-formal metric k kO If the Q-formal metrics of Dy;:::;D; are semipositive and if
Z is e ective, then
i (2) Y2) dk kk K9 degy(p,y:omy(2): (1.3)

Proof. The properties (i) and (ii) are mentioned in [Gub03, Remark 9.3] for formal metrics
and easily extend to Q-formal metrics by multilinearity. The last property follows from
the metric change formula in [Gub03, Remark 9.5]. O

1.2.13. If X is an algebraicK -model of X, then there is aK -model Y of X with
reduced special ber and a properK -morphismY ! X which is the identity on X . This
follows from [BLR95, Theorem 2.17.

Moreover, let L, L°be algebraic metrized line bundles orX induced by algebraicK -
models (X ;L ;e)and (X %L ©e9 respectively. Taking the closureX %%fX in X ¢ X ©
and pulling back L , L °to X % we obtain models inducing the given metrics onL and L°
but living on the same model X 0

Hence, we can always assume thdt and L Olive on a common model with reduced
special ber.

The same holds for formal models. Note that in the formal case it is much easr to
obtain a model with reduced special ber, see 1.1.7.

For global heights and Archimedean local heights of subvarieties there ian induction
formula which can be taken as de nition for the heights (see BGS94, (3.2.2)] and [Gub03,

12



1.3. Semipositive Metrics, Local Heights and Measures

Proposition 3.5]). A. Chambert-Loir has introduced the following measure on X 2" such
that an analogous induction formula holds for non-Archimedean local heights ¢f. [ChaO06,
2.3)).

De nition 1.2.14. Let X be a reduced proper scheme ove of dimensionn and let

K -model X of X with reduced special ber and, for eachi, a formal K -model (X;L;; )
of (X;L i) inducing the metric of L;. We denote by R© the set of irreducible components
of the special ber X. Then we de ne a discrete (signed) measure oiX 2" by

1

ci(L)) ™ ~ ci(ln)= o

V2 &0

where |, is the Dirac measure in the unique point v 2 X" such that red( v) is the
generic point of V (see 1.1.6).
More generally, letY be at-dimensional subvariety of X , then we de ne

ca(C)r N o)™ v=i ca(tigy)™ » c(Liy) ;

wherei: Y3 X2 js the induced immersion. We also write shortlyc;(L1)  ci(Ly) v.
This measure extends by linearity to t-dimensional cycles.

1.2.15. The measure in De nition 1.2.14 is multilinear and symmetric in metrized line
bundles. Moreover, the total mass ot1(L1)* * ci(Lt)* v equals the degreeleg , ...  (Y).
If the metrics of the L; are semipositive, then it is a positive measure.

Proposition 1.2.16  (Induction formula) . Let Do;:::; D be Q-formal metrized pseudo-
divisors and let Z be at-dimensional prime cycle withjDgoj\ \j D¢j\j Zj = ;. If
jZj* jDy4j, then let sp,.z := sp,jz, otherwise we choose any non-zero meromorphic section
Sp,:z of O(Dyt)jz. Let Y be the Weil divisor of sp,.z considered as a cycle orX . Then we
have

Z

B8, (Z) = By, L(Y) o logksp,;zk c1(O(Dg)) " ci(O(Dy 1)) ™ z:

..........

Proof. This follows from [Gub03, Remark 9.5] and De nition 1.2.14. O

1.3. Semipositive Metrics, Local Heights and Measures

It would be nice if we could extend local heights to all continuous metics. Although the
Q-formal metrics are dense in the space of continuous metrics, this isot possible because
the continuity property (1.3) in Proposition 1.2.12 only holds for semipostive Q-formal
metrics. So the best we can do here is to extend the heights to liits of semipositive
Q-formal metrics. Then the canonical local heights for subvarieties of arabelian variety
are contained in this theory (see [Gubl10, Ex. 3.7] for details).

In this and the following section, let X be a reduced proper scheme over the algebraically
closed eld K.

13



Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

De nition 1.3.1. Let L =(L; k k) be a metrized line bundle onX . The metric k k is
called semipositive if there exists a sequencel kn)non Of semipositive Q-formal metrics
on L such that

nIli{n d(k kn;k k)=0:

In this case we say thatL = (L; k k) is a semipositive (metrized) line bundle The metric
is said to be DSP (for di erence of semipositive ) if there are semipositive metriz ed line

bundlesM, N on X suchthatL = M N *. Then L is called DSP (metrized) line bundle
as well.

Remark 1.3.2. If k k is a Q-formal metric, then [GK15, Proposition 7.2] says thatk k
is semipositive in the sense of De nition 1.2.3 if and only ifk k is semipositive as de ned
in De nition 1.3.1. So there is no ambiguity in the use of the term sempositive metric.
This answers the question raised in [BPS14a, Remark 1.4.2].

Remark 1.3.3.  W. Gubler works with slightly more general metrics, called semipodive
admissible or @ -metrics (cf. [Gub03, 10.2, 10.3]). We have choosen the same de nition
of semipositive metrics as in BPS144 and the papers by A. Chambert-Loir because it
su ces for our purposes and is more suitable for toric geometry.

1.3.4. The tensor product and the pullback (with respect to a proper morphism) of
semipositive metrics are again semipositive. The tensor product,he dual and the pullback
of DSP metrics are also DSP.

1.3.5. By means of Proposition 1.2.12, we can easily extend the local heights to DSP
metrics. Concretely, let Y be at-dimensional prime cycle andD; = (Li;k ki:jDij;si),
iDoj\  \j D\ Y =;:
By De nition 1.3.1, there is, for each i, an associated sequence of semipositiv@-formal
metrics k kin onL; such that d(k kin;k ki)! Oforn!1l . Then we de ne the local
Iﬁo;:::;lﬁt(Y) = rl]i!q'] (Loskkon ;jDoj;so);in(Lesk kgn ;thj;Sl)(Y): (1.4)

This extends obviously to cycles and DSP metrics. For details seeJub97, Y 1] or [Gub02,
Theorem 5.1.8].

on X with invertible meromorphic sections such that

jdiv(so)j\  \j div(s)j\j Zj=;:

(1.5)

The local heights with respect to DSP metrics have the expectegroperties as stated in
the following proposition.

14



1.3. Semipositive Metrics, Local Heights and Measures

Proposition 1.3.6. Let Z be at-dimensional cycle ofX and Do;:::;B; DSP metrized
pseudo-divisors onX with jDgj\ \j D¢j\j Zj = ;. Then there is a unique local height
(2):= By m(z) satisfying the following properties:

(i) (Z) is multilinear and symmetric in Dy;:::;D; and linear in Z.
(iii) For a proper morphism' : X°%!' X and at-dimensional cycleZ®on X © satisfying
jDoj\ \j Dy\j " (2)j=;, we have
" Bgn SI(Z% = 60;:::;6t(' Z%Z

In particular, By 61(2) does not change when restricting the metrized pseudo-

divisors to the prime cycleZ.

(iv) Let qZ) be the local height obtained by replacing the metrik k of Dy by another

then
i () A2)i dk kik kY degop,yomy(2):

(v) Let f be a rational function on X and let Do = aiv(f) be endowed with the trivial
metric on O(Dg) = Ox. If Y = p npP is a cycle representingD1:  :Dy:Z 2
CHo(jD1j\ \j Dij\j Zj), then

X
(2)=  np logjf (P)j:
P

Proof. This follows immediately from Proposition 1.2.12 and the construction in1.3.5, and
is established in [Gub03, Theorem 10.6]. O

In the same manner we can generalize Chambert Loir's measures to semippibge and
DSP line bundles:

Proposition 1.3.7. Let Y be at-dimensional subvariety of X and L; = (Lj;k k),
i =1;:::;t, semipositive line bundles. For each, let (k kin)n2n be the corresponding
sequence oQ-formal semipositive metrics onL; converging tok k;. Then the measures

ci(Ly;k kpn) ™ N bk ken) ™ v
converge weakly to a regular Borel measure oK 2". This measure is independent of the
choice of the sequences.

Proof. This follows from [GubO7b, Proposition 3.12]. O

De nition 1.3.8. Let Y be at-dimensional subvariety of X andL; = (Li;k ki), i =1;:::;t,
semipositive line bundles. We denote the limit measure in 1.3.7 bg;(L1)*  ~ c(Lo)” v
or shortly by c1(L1):::ci(L¢) y. By multilinearity, this notion extends to a t-dimensional
cycleY of X and DSP line bundlesLq;:::;L;.

Chambert Loir's measure is uniquely determined by the following poperty which is
taken as de nition in [Gub07b, 3.8].

15



Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

Proposition 1.3.9. Let Lq;:::;L¢ be DSP line bundles orX and let Z be at-dimensional
cycle. Forj =1;:::;t we choose any metrized pseudo—divisdﬁj with O(Dj) = L;j, for
exampleD; = (Lj;X; ;).
If gis any continuous real-valued function onX @", then there is a sequence of-formal
metrics (K kn)n2n On Ox such thatlogklk, ! tends uniformly togforn!1  and
Z

X an g al)” "~ al)” z= rlmi!rln (Ox ;kkn;;;l);ljl;:::;ljl(z):

Proof. By [Gub07b, Proposition 3.3], the Q-formal metrics are dense in the space of
continuous metrics onOyx . This implies the existence of the sequencek( kn)nan. The
second part follows from [GubO7b, Proposition 3.8]. O

Corollary 1.3.10. Let Z be a cycle onX of dimensiont and let Do;:::;D; be DSP
metrized pseudo-divisors withjDoj\  \j D¢j\j Zj = ;. Replacing the metric k k
on O(Dg) by another DSP metrick k° we obtain a metrized pseudo-divisoz. Then,
g:=log(ksp,k=ksp,k9 extends to a continuous function onX and

Z

B 61(2) BB, m(Z): Xang C1(6(D1))A A C1(6(Dt))/\ z-

..........

Proof. Clearly g de nes a continuous function on X . By means of Proposition 1.3.9,
Z

con 9 c1(O(Dy)) :::c1(O(Dy)) 2
= (Ox ;kk=kk°;;;l);lﬁl;:::;lﬁt(z)
= (O(Do);kk;jDoj:So):|51;::2;|51(Z) (O(Do);kkO;jDoj;so);Iﬁl;:::;lﬁt(Z);
proving the statement. O

Proposition 1.3.11.  Let Z be at-dimensional cycle ofX andLg;:::;L; DSP line bundles.
Then the measurecy(L1) » ~ ci(Ly)® z has the following properties:

(i) Let' : X%l X be a morphism of proper schemes ovef and Z° a t-dimensional
cycle of X9 then

oal Lyt M al L)” ozo =ci(b) N (k)N - zo

(i) If the metrics of Lq;:::;L are semipositive, thency(L1) » » cy(Ly) N 7z is a

Proof. We refer to Corollary 3.9 and Proposition 3.12 in [Gub07b]. O

Remark 1.3.12. With the previous notation, let K °be an algebraically closed extension
of K equipped with a complete absolute value extending j, and denote by : Xgo! X
the base change. Then, by [Gub07b, Remark 3.10],

a( Lor ~oal L) v =cil)”™ ~ el v:
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1.4. Induction Formula for Local Heights

Thus, by base change to the completion of the algebraic closure and usingnéarity in
the irreducible components, we may extend the measures in De tion 1.3.8 to all proper
schemesX and cyclesY over an arbitrary non-Archimedean eld.

1.4. Induction Formula for Local Heights

Now we generalize the induction formula from Proposition 1.2.16 to DSP meized line
bundles. This formula enables us to de ne the local height inductvely. Our proof is based
on [CTO09, Théoréme 4.1] where the formula is shown under the additional assuntipns

such that their Cartier divisors intersect properly.

In this section let X be a reduced proper scheme over an algebraically closed non-
Archimedean eld K.

At rst, we prove the following approximation theorem correspondin g to [CT09, Théoreme
3.1]. In contrast to [CT09] we show it in a more analytic fashion.

Proposition 1.4.1  (Approximation theorem). Let (L; k k) be a semipositive formal
metrized line bundle onX with a global sections which is invertible as a meromorphic
section. Then there is a sequencék kp)n2n Of formal metrics on the trivial bundle Ox
with the following properties:

(i) The sequence logklk,?® n2n converges pointwise tdog ksk 1 and it is monotonically
increasing.

(i) For each n 2 N, the metric k k=k k, onL O xl = L is semipositive.

Proof. We x some non-zero element in K and de ne, for eachn 2 N, the closed sets
Ap=fx2 X2 jks(x)k j "jg and Bn:=fx2 X jks(x)k j "jg: (1.6)

By 1.2.6, the formal metric k k on L is given by an admissible coverindg Ujgj», of X a@"
by a noid domains, and non-vanishing regular sectionst; 2 L2"(U;) with ktjk 1. Let
gj = =t 20(Ui\ Uj) be the transition functions. Then the non-vanishing sjy,\ o, may
be identi ed with regular functions f; 20 (U;\ Ap) satisfying fi = gj fj on Ui\ Uj\ A,.
Since the functionsf; 12 O(Ui\ Ap), 20U\ Bp) are local frames ofOxan 0ON
a noid domains, we get by 1.2.6 a formal metric k k, on Ox given by

kik, = jfij on Ui\ A, and kilk, =j "jon Ui\ By:
Consider, for eachn 2 N, the function

( (
logjfij . \ An  logksk 1 A

logkik, 1= (09Il 7 onUib An_logksk ©oon An Lok Thiog) |
logj "j ¥ onUj\ B, nlogj j * onBj,

1
Clearly, the sequence logklk,® ,, tends pointwise to logksk * and is monotonically
increasing.

Moreover, we have to show that, for eachn 2 N, the formal metric k kg =k k=k Kk
is semipositive onL O Xl = L. For the admissible coveringfU; \ An; U\ Bnhgio) by
a noid domains, there exists a formal K -model X, of X2" and a formal open covering
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Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

fUin:Vingi21 of Xy such that U1 = Ui\ Ay and VL = Ui\ B (see BL93b, Theorem
5.5]). We may assume thatX, has reduced special ber (cf. 1.1.7). Then, by 1.2.6, the
formal metric k k¢ is associated to the formalK -model (L9; X,,) of (X;L) given by

LO(Uy= r2 LW jkr(x)k% 18x 2 U™ (1.7)
on a formal open subsetU of X,. Therefore, we can consides as a global section of.?
since we have (

ksk 1 onA
kskO = X = n

klkn  ksk j "j onBp
Let C X, be a closed integral curve. Ifs doesn't vanish identically on C, then
degEg (C) = deg(c1(E2):C) = deg(div( sjc)) O

If s vanishes identically onC, let B, be the union of the formal openVi,'s. Then it
follows by (1.6) that B,, = red(B,) contains C.

By re ning the above trivialization fU;;tigto fUi\ A,; U\ Bnrg, the metric k k is
induced by a formal modelL,, which also lives onX, and which is given similarly as in
(1.7). This implies Lnjg, = L9g, givenbyr 7! " r. SinceB, is a neighborhood ofC
and E, is nef, we obtain

degEg )= deggn () 0o

which implies the semipositivity of k k=k k. O

Corollary 1.4.2. We use the notations from the approximation theorem and in adiion,

be a (signed) nite measure onX @ such that, for every Q-formal metric k k®on Oy,
z z
lim logk1k® c; (Ox:k kn)ci(Lq):::ci(Ci 1) z = log k1k®
H xan xan

Then the sequence ¢;(Ox ;k kp)ci(L1):::ci(Lt 1) 2 N of measures onX 2" converges
weakly to .

Proof. Let :=ci(L; kKk)ci(L1):::ci(Lt 1) zand :=c1(Ox;kkp)ci(Ly):::cai(lt 1) 2
for eachn 2 N. Then, by the approximation theorem 1.4.1 and Proposition 1.3.11 (iii), the
measures
n=C1 L; % ci(ly):iici(Ly 1) 2

are positive with nite total mass deg, ., ,....., ,(Z), independent of n.

Let "> 0 and letf be any continuous function onX @". By [Gub07b, Proposition 3.3],
the set of Q-formal metrics on Ox is embedded into a dense subset a2 (X "), i.e. there
is a Q-formal metric k k°such that for g:= logk1k® we have

and
sup jg(x)  f(x)j ] j(Xa) <=3
X2 X an
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1.4. Induction Formula for Local Heights

Moreover, there is by assumption anN 2 N such that, foralln N,

Z Z
g  gn <=3
Finally, we obtain, forall n N,
Z Z
f f q
Z Z Z
= (f o )t o nt (g ) )
Z

supjf g deg. ..., ,(Z)+ o n) tsupjg fjj j(xan

<||:

This proves the result. O

Theorem 1.4.3 (Induction formula) . Let Z be at-dimensional prime cycle onX and let
Di = Li;jDij;si ,i=0;:::;t, be DSP pseudo-divisors withiDoj\ \j Dij\j Zj= ;. If
jZj * |Dyj, then let stz = stjz, otherwise we choose any non-zero meromorphic section
Stz Of Ltjz. Let cyc(stz) be the Weil divisor of sz considered as a cycle orX .

Then the function logksz k is integrable with respect toci(Lo)® ~ ci(Lt 1) z and
we have

B m(Z)z BoiB, 1(CyC§St;Z)) (1.8)

X an logksiz k ci(Lo)® " ci(Ly )™ z:

Remark 1.4.4. |If Lg;:::;L; have Q-formal metrics, then this result is just Proposition
1.2.16. It is also evident ifL is the trivial bundle and hence, logks;.z k is a continuous
function on Z. The di culties of the general case arise from the relation between the limit
process de ning the measure, and the poles of the function loks;.z k.

Proof of the induction formula 1.4.3. By Proposition 1.3.6 (iii), we may assume thatX =
Z, especiallys; = sz . Furthermore, we can suppose thatX is projective by Chow's lemma
(see, for instance, GW10, Theorem 13.100]) and functoriality of the height (Proposition
1.3.6). Multiplying the metric k k on L by a constant, changes both sides of the equality
(1.8) by the same additive constant (see Corollary 1.3.10). Hence, we can assenthat

sup ksi(x)k 1 (1.9)
x2X an

Step 1: Reduction to the case of a global sectioss of L; and properly intersecting

(provided with some semipositive metric) and a non-trivial global section r of H such
that Ly H is also very ample ands; r is a global section ofL; H. By the moving

lemma (see for examplel[iu06, Exercise 9.1.2]) we nd invertible meromorphic sectionssj0
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properly on Z. Then we have

and D by Proposition 1.2.16. Now, we may replaceﬂiv(st) by
(L Hijdiv(s)ilj div(r)izse 1) (H;jdiv(r)j;r)
and the rst step follows from the multilinearity of the local height s.

Because, fori = 0;:::;t, the line bundle L; is DSP metrized, we haveL; = M; N; ! for
semipositive metrized bundlesM; and N;. There is, for eachi, a very ample line bundle
H; (provided with some semipositive metric) such thatN; H; is also very ample. By

Ni  Hij, i =0;:::;t, such that jdiv(ro)j;:::;jdiv(ry)j;jDoj;:::;jD¢j intersect properly,
too. Especially,
(iDoj[j div(ro))\ \ (jDoj[j div(ro)j) = ;:

(Li;iDij[j div(ri)j;si) = (M Hi;jDij[j div(rj;si ri)  (Ni Hy;jdiv(rij;ri)

is the di erence of two semipositive metrized pseudo-divisorsthe second step follows from
the multilinearity of the local heights.

corresponding metrized line bundle byM; and the metrized pseudo-divisor M ;jDij;si)
by E;. Then we can extend' ; = log ksik® logksik to a continuous function on X 2" and
Ox('i):=L; M, "isaDSP line bundle.

Step 3: Reduction to the case where the metric df; is formal. If the theorem holds for
logkstk® then logksik = logksik® ' is integrable with respect to cy(Lo) :::ci(Lt 1) 2z
and we get

Z
logksik ci(Lo):::ci(Lt 1) z
" z
_logksik® c(Lo):::ea(lt 1) 2 Xaz' ¢ c(lo):iiaa(ly 1) z

X

1
=3
o

----- 5, (cye(s) By, e (Z) o "t c(Lo)::ica(Ly 1) z:

By the metric change formula 1.3.10, we have
Z

"t Cl(fo)ilicl(tt 1) zZ = 60;:::;6t(2) BoiBy 1;I‘:°t(z)

.....

Xaﬂ

and hence, the theorem is proved. Thus, we may assume thdd; = (L;jDj;st) is a
semipositive formal metrized pseudo-divisor.
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1.4. Induction Formula for Local Heights

metrized line bundle fori k. The base casek = 0 is just the induction formula for
Q-formal metrics (see Proposition 1.2.16). We assume that the statement hdk for k and

show it for k + 1. Since M ;:::; M 1 are Q-formal metrized line bundles, we have
Z
o logkstk c1(Lo):::ci(Lk 1)ci(My):::ci(My 1) 2
= BomBy 1B 1 (CYC(S) BoiBy 1By (Z): (1.10)

Let L; be Q-formal for i  k + 1, that means we may assume thatL; = M. Since
Lx = Mg O (' k), we obtain, by Proposition 1.3.11 (i),

ci(Lo) ::ici(Li)caMys1) iiica(My 1) 2
= cy(Lo):::ci(Lk 1)caMy) My 1) 2z (1.11)
+c1(O(" k))c1(Lo):::ca(lk 1)caMysr):iicai(My 1) 7z ¢

By the metric change formula 1.3.10, we get

Do BiiBrar sinE (2)
= BounBi 1Bk (2)+ yan "k c(Lo):iic(Lk 1)ca(Mysr)ica(My) z - (1.12)

BoriDy Bray kL 1(cyc(st)) . (1.13)

..........

= BoriB, 1B L (CYC(SD) + Xan' k Ci(Lo):iica(Lk 1)CaMiys1)iiiCci(My 1) eye(sy):

The function logks;k is measurable and, by (1.9), non-positive. Hence, we can compute
the following integrals, where in nite values are allowed,
z

o Iog kStk Cl(to) - C]_(Ek) C1(Mk+1) A C]_(Mt 1) Z

1:11 — _ _ _
(2D oy P8k (Lo el DM sz 1) 2
T logkstk c1(O(" k))c1(Lo):::ci(lx 1)Ci(Mksr):::ci(My 1) 2

(1:10)
- Iﬁ%:::;lﬁk LB Ey 1(cyc(st)) Do Dy 1;I‘:“k;:::;l‘:“t(z)

+ o logkstk c1(O(" k))c1(Lo):::ci(lk 1)Ci(Mys1)::ica(My 1) 2
(1:12); Z
= BBy B B, (CYC(St)) Xan' kCi(Lo):i:ca(Lk 1)CaMis1)iiica(My 1) cye(sy)
Z

..........

BouiB Byt (Z)F Xan' kCi(Lo):iica(Lk 1)c1(Mys1):i:ci(My) 2
z

+ o logksik c1(O(" k))c1(Lo):::ci(Li 1)ciMs1):iica(My 1) z -
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Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

Thus, we have to prove
Z
y "k C(Lo):irc(bk 1)ci(Mksr):iici(My) 2
Z an
= "k a(lo):ia(lk 1)eaMys1) iica(Mt 1) cy(sy)

o logksik c1(O(" «))ca(Lo)::iici(bk 1)Ca(Mk+1)iiiCa(My 1) z ¢

By step 13, we can apply the approximation theorem 1.4.1: Let kK kp)non be a
sequence of formal metrics orOyx such that the functions g, :=log k1k, * tend pointwise
to logksik 1, the sequence @,)n2n is monotonically increasing and Ox ;k ky) is a DSP
line bundle. Additionally, we may assume that the functions g, are non-negative by (1.9)
and by their construction in the approximation theorem. Applying Lebe sgue's monotone
convergence theorem and using Proposition 1.3.9 and 1.3.11 (i), we obtain

Z
o logkstk 1 c1(O( k))c1(Lo)::ica(Ck 1)ci(Myar):::ca(My 1) z
Z
= lim e O c1(O(" W) ca(Lo):iica(lk 1)ci(Mys1):i:ica(My 1) 2

= rl1|!r1n B(90)iOC )iBoiBi 1:Bkan B .(2)
= am SOC 0i0(gn):Bo;:Bk 1Bk 3B .(2)

= lim Xan' k C1(Ox;k kn)ci(Lo):::ci(Lk 1)Ci(Mys1):::ct(My 1) z -
Finally, we must show the following equation for the continuous fundion ' = log % :
Z
El!i{n Xan' k C1(Ox;k kn)ci(Lo)::ici(Lk 1)ca(Mysr):iici(My 1) 2z
= "k c(lo):iic(lk 1)ci(Mysr):ici(My) z (1.14)

ci(La)::ici(by 1)ci(Mysr):iici(Mt 1) oye(s)
The induction hypothesis implies that equation (1.14) always holds if% is a Q-formal
metric. But then Corollary 1.4.2 (under the assumption of step 2) says hat this equation
is also true if' ¢ is only continuous. This shows the induction formula (1.8) and hencethe
integrability of log ks¢k with respect to c3(Lg)  ci(Lt 1) z. O

Corollary 1.4.5. With the same notations as in Theorem 1.4.3, any proper closed fiset
of Z has measure zero with respect ta1(Lo) » :::” ci(Ly )" z.

Proof. We may assume thatX = Z and, by Chow's lemma and Proposition 1.3.11 (ii),
that Z is projective. Then any proper closed subsef of Z is contained in the support of
an e ective pseudo-divisor (L; jdiv(s)j;s) on Z. By the induction formula, the function
logksk ! is integrable with respect to ci(Lo):::ci(Lt 1) z, but it takes the value + 1 on
jdiv(s)j. Thus the support jdiv(s)j and also the subsetA have measure zero with respect
toci(Lo):::ca(ly 1) z. O
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1.5. Metrics, Local heights and Measures over Archimedean f ields

1.5. Metrics, Local heights and Measures over Archimedean
elds

Following [Gub03, Y 2,3 and 10], we recall some de nitions and statements about Archi-
medean local heights. More details can be found inGub02]. Additionally we prove the
Archimedean counterpart of the induction formula (Theorem 1.4.3) which generalizes
slightly the Archimedean part of [CT09, Théoréme 4.1]. This theory is used later for the
study of global heights.

Let K be a eld which is complete with respect to an Archimedean absolute alue. As
before, we assume for simplicity thatK is algebraically closed. Indeed, by Ostrowski's
theorem, we haveK = C.

In this section, let X be a reduced proper scheme ovel and X @ = X (C) the associated
compact complex analytic space. LetL be an algebraic line bundle onX and L?2" its
analyti cation.

1.5.1. By Bloom and Herrera [BH69], di erential forms on X @ are de ned as follows.
There is an open coveringf Ujg; of X @ such that U; is a closed analytic subset of an
open complex ball. On eachU;, the di erential forms are given by restriction of smooth
complex-valued di erential forms de ned on such balls. Two forms on U; are identi ed
if they coincide on the non-singular locus ofU;. We write A (U;) for the complex of
di erential forms on U;. By gluing, we obtain a sheafAy ... On this sheaf, we have
di erential operators @@ an exterior product and pullbacks with respect to analytic
morphisms. These operations are de ned locally oA (U;) by extending the forms to a
ball as above and applying the corresponding constructions for complex amifolds. We
denote by Ox an the sheaf of analytic functions.

1.5.2. A metric on L, a metrized line bundleon X and a metrized pseudo-divisoron X
are de ned as in De nition 1.2.1 and 1.2.9. A metric k k on L is called smooth if, for each
local sections of L2", the function ks( )k? is smooth.

Let k k be a smooth metric onL. The rst Chern form of L = (L; k k), denoted c¢(L),
is the di erential form on X 2" de ned, for any non-vanishing local sections of L2" on an
open subsetU, as

o 1 _
ci(Dju = ﬁ@@ogkskz:

Indeed, the rst Chern form does not depend on the choice of and it is a real and closed
(1; 1)-form. Moreover, ¢ is linear in L and commutes with pullback.
Let D=fz2 Cjjzj 1g. A smooth metric k k onL is called semipositiveif, for each
holomorphic map"' : D! X2, 7
" c(L) O
D

The pullback of a semipositive metrized line bundle by any analytic morphism is still
semipositive.

1.5.3. An arbitrary metric k k on L is semipositiveif there is a sequenceK kp)non Of
semipositive smooth metrics onL that converges uniformly to k k. A metric k konL is
DSP if (L; k k) is the quotient of two semipositive metrized line bundles.

Note that, for a smooth metric, the de nitions of the term semipositiv e in 1.5.2 and
1.5.3 are equivalent. So there is no ambiguity in the use of this notion.
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Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

1.5.4. A current of degreer on X" is a linear functional T on the space of compactly
supported forms in A" (X a") with the following property: For each point in X 2" there
is an open neighborhoodd X, which is a closed analytic subset of an open complex
ball B, and a current Ty on B such that T(! jy) = Ty(!) for every ! 2 A"(B) with
compact support. As in the smooth case, the complex of currents oiX @ is equipped
with a bigrading, di erential operators @@ pushforwards and an exterior product with
di erential forms. Moreover, we have the current of integration v along an analytic
subvariety Y@ and the current [ ] associated to aL'-form . We refer to [Kin71] for
details and to [Gub02, 2.1.1] for an overview about currents on analytic variges.

De nition 1.5.5. A Green current for a t-dimensional cycleZ on X isa (t+1;t+1)-current
gz on X @ such that

i
7@ =[!z] z
for a smooth di erential form ! z on X 2",

Example 1.5.6. Let L =(L; k k) be a smooth metrized line bundle ands an invertible
meromorphic section ofL. Then the Poincaré-Lelong formula says

; h i
I . JR—
>-@logksk * = ci(l)  eyeqs):

Hence, logksk 2 is a Green current for cycE).

De nition 1.5.7. Let D = (L;jDj;s) be a smooth metrized pseudo-divisor andy; a
Green current for a prime cycleZ on X. If Z * jDj, thenlet sz :=sjz andif Z j Dj, we
choose any non-zero meromorphic sectiosz of Ljz. Then we de ne the -product by

h i
D gz:=i logkszk 2 +ci(L)” gz;

wherei: Z ! X. We extend this de nition to cycles by linearity.

Remark 1.5.8. The current B gz is only well-de ned up to P w logjfwj 2, whereW
ranges over nitely many subvarieties of jDj\j Zj and fy is a non-zero rational function
on W. When jDj intersectsjZ] properly, the current is well-de ned. In any case, 3 gz is
a Green current for a cycle representingd:Z 2 CH(jDj\]j Zj).

Let s be an invertible meromorphic section of a smooth metrized line buntk L and
fiv(s) the associated metrized pseudo-divisor (cf. Example 1.2.10). K is smooth and
jdiv(s)j intersects Z properly, then éiv(s) gz = logksk 2 g is the -product of [GS9Q Y 2].

159. Leti:Z ! X be the embedding of a prime cycle and  the zero current onZ.

61 6k’\ 7z =i i|§1 i[ljk 0z
P
This is a well-de ned currentup to =, logjfwj 2, whereW ranges over the prime cycles
of iD1j\ \] Dgj\ Z andfw 2 K(W) . By linearity, it extends to arbitrary cycles Z.

De nition 1.5.10. Let Z be at-dimensional cycle onX and 130; i Iﬁt smooth metrized
pseudo-divisors such that
iDoj\  \] Dij\j Zj=;:

24
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B0, (£) = Do D~z (1=2):

1.5.11. The Archimedean local heights with respect to smooth metrized psado-divisors
have the properties listed in Proposition 1.2.12 for non-Archimedean loal heights with
respect to Q-formal metrized pseudo-divisors. This is proved in [Gub03, Y 3.

Thus, we can extend the Archimedean local heights to semipositive ahDSP metrized
pseudo-divisors as in 1.3.5. ByGub03, Theorem 10.6], they satisfy the same properties
stated in Proposition 1.3.6. for the non-Archimedean case.

line bundles onX . We denote by vy the current of integration along the analytic subvariety
Y@, Then the current

ci(Ly)® "~ c(l)” v

de nes a (signed) measure orX 2", This notion extends linearly to a cycle Y.
Analogously to Proposition 1.3.7, we extend this measure to semipositive ahDSP
metrized line bundles. It has the same properties as in Proposition B.11.

Now we state and prove an induction formula similarly to Theorem 1.4.3. Ths formula
was proved in [CT09, Théoréme 4.1] under the stronger assumptions thakX is projective
and that the supports of the Cartier divisors of the occuring sectionsintersect properly.

Theorem 1.5.13 (Induction formula) . Let Z be at-dimensional prime cycle onX and
let Iﬁi = L;;jDij;si ,i=0;:::;t, be DSP pseudo-divisors with

iDoj\  \j Dyj\j Zj=;:

If jZj* jDyj, then let s;z = stjz, otherwise we choose any non-zero meromorphic section
Stz Of Ltjz. Let cyc(stz) be the Weil divisor of sz considered as a cycle orX .
Then the function logkst.z k is integrable with respect toc;(Lo)* » (Lt 1) z and
we have
z

Bo:0(Z) = Bgup, ,(€YC(Stz)) o logkstz k ci(Lo)® * cu(lLy )™ z:

Proof. We get an Archimedean version of the approximation theorem 1.4.1 just by coying
the proof of the Archimedean part of [CT09, Théoréme 3.1]. Then, replacingQ-formal
metrics by smooth metrics and using the corresponding propertie®f the Archimedean
local heights and measures, we can prove this theorem similarly as theon-Archimedean
induction formula 1.4.3. O
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Chapter 2.

Metrics and Local Heights of Toric
Varieties

We show a formula to compute the local height of a toric variety over an abitrary non-
Archimedean eld (Theorem 2.6.6). For discrete non-Archimedean elds this was proved
by Burgos Philippon Sombra in [ BPS14a Theorem 5.1.6]. To state and prove this formula,
we study toric divisors over arbitrary valuation rings of rank one (section 2.3) and toric
semipositive metrics over non-discrete non-Archimedean elds gection 2.5).

In this chapter, let M be a free Abelian group of rankn and N := M- :=Hom (M; Z) its
dual group. The natural pairing betweenm 2 M and u 2 N is denoted by hm; ui := u(m).
We have the split torus T :=Spec(K[M]) over a eld K of rank n. Then M can be
considered as the character lattice off and N as the lattice of one-parameter subgroups.
For m 2 M we will write ™ for the corresponding character. IfG is an Abelian group, we
setNg = N 7 G. In particular, Ngr = N 7 R is an n-dimensional real vector space with
dual spaceMg.

The needed notions and statements of convex geometry are summarized in Apndix A.

2.1. Toric Varieties

We give a short overview of the theory of (normal) toric varieties over a eld K following
[BPS14a 3.1 3.4], especially in the notation. For details and proofs, we also refetto
[KKMS73], [Ful93] and [CLS11].

The notations concerning polyhedra and their properties can be foundri the appendix A.

De nition 2.1.1. Let K be a eld and T a split torus over K. A (T-)toric variety is
a normal irreducible variety X over K containing T as an open subset such that the
translation action of T on itself extends to an algebraic action : T X ! X.

2.1.2. There is a nice description of toric varieties in combinatorial data. At rst we have
a bijection between the sets of

(i) strongly convex rational polyhedral cones in Ng,
(i) isomorphism classes of a ne T-toric varieties X over K.

This correspondence is given by 7! U = Spe¢K [M ]), where K[M ] is the semigroup
algebra of
M = -\M=fm2M jhmyui 08u2 qg:
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Chapter 2. Metrics and Local Heights of Toric Varieties

The action of T on U is induced by
KM ]! KIM] K[M J; m7rm m:

More generally, we consider a fan in Ng (De nition A.4). If ; °2 ,then U and
U o glue together along the open subset | o. So, we obtain aT-toric variety

[
X = U :
2

This construction induces a bijection between the set of fans in Ng and the set of
isomorphism classes of toric varieties with torus T.

2.1.3. Many properties of toric varieties are encoded in their fans, for examje:
(i) Atoricvariety X is proper if and only if the fan is complete, i.e.j j:== 5, = Ng.

(il) A toric variety X is smooth if and only if the minimal generators of each cone 2
are part of a Z-basis ofN.

2.1.4. Let X be the toric variety of the fan in Ng. Then there is a bijective correspon-
dence between the cones in and theT-orbits in X . The closures of the orbits inX
have a structure of toric varieties which we describe in the follaing: For 2 we set

N()=N=HN\ i; M()=N()-=M\ ?; O()=SpecK[M()D;

where ? denotes the orthogonal space to . Then O( ) is a torus over K of dimension
n dim( ) which can be identi ed with a T-orbit in X via the surjection

moifm2 7
KM 1! KM(); ™7 tme
0 otherwise

We denote by V( ) the closure of O( ) in X . Then V( ) can be identi ed with the
O( )-toric variety X ( y, which is given by the fan

()=f +WN\ igj] 2 ; 9 (2.1)
in N( )r= Ng=hN\ ig.

De nition 2.1.5. Let X;, i = 1;2, be toric varieties with torus T;. We say that a
morphism"' : X1 ! Xjzistoric if * mapsTyinto Toand' jr,: T1! T, is a morphism of
group schemes.

2.1.6. Any toric morphism ' : X1 ! X5 is equivariant, i.e. we have a commutative
diagram
Ty Xi—IK,

Ti Xi—=IKy;

where 1; , denote the torus actions.
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Toric morphisms can be described in combinatorial terms.

2.1.7. Fori=1;2, let N; be a lattice with associated torusT; = SpecK [N-] and let ;
be a fan inN;.r. Let H: N1 ! Ny be a linear map which iscompatible with 1 and ».
That is, for each cone 1 2 1, there exists a cone , 2 , with H( 1) »>. Then H
induces a group morphismT; ! T, of tori and, by the compatibility of H, this group
morphism extends to a toric morphism' y: X ;! X ,.

We x Nj, T and ;,i =1;2, as above. Then the assignment 7! ' induces a
bijection between the sets of

() linear maps H: N1 ! Ny, which are compatible with ; and »;
(i) toric morphisms ' : X , I X .
A toric morphism ' y: X ! X ,is properifandonly if H 1( 2)=j ij.

De nition 2.1.8. A T-Catrtier divisor on a T-toric variety X is a Cartier divisor D on
X which is invariant under the action of T on X, i.e. we have D = p,D denoting by
T X1 X thetoricactionand by p,: T X ! X the second projection.

Torus-invariant Cartier divisors can be described in terms of suppot functions:

De nition 2.1.9. A continuous function :j j! R is called avirtual support function
on , if there exists aset fm g » of elements inM such that, for each cone 2 , we

have (u)= hm ;ui forall u2 . Itis said to be strictly concave if, for di erent maximal

cones; 2 ,wehave m 6 m . A support function is a concave virtual support function
on a complete fan.

2.1.10. Let be avirtual support function given by thedata fm g , . Then determines
a T-Cartier divisor
D= uUu; ™

onX . Themap 7! D is an isomorphism between the group of virtual support
functions on and the group of T-Cartier divisors on X . The divisorsD , and D , are
rationally equivalent if and only if 2 is linear.

De nition 2.1.11. Let X be a toric variety. A toric line bundle on X is a pair (L;z)
consisting of a line bundleL on X and a non-zero element in the ber Ly, of the unit
point xg of Ug = T. A toric section is a meromorphic sections of a toric line bundle which
is regular and non-vanishing on the torusUg and such that s(xo) = z.

2.1.12. Let D be aT-Cartier divisor on a toric variety X . Then there is an associated
line bundle O(D) and a meromorphic sectionsp such that div(sp) = D. Since the support
of D lies in the complement of T, the section sp is regular and non-vanishing onT. Thus,
D corresponds to a toric line bundle ©O(D); sp (Xo)) with toric section sp. This assignment
determines an isomorphism between the group of -Cartier divisors on X and the group
of isomorphism classes of toric line bundles with toric sections.

Let be a virtual support function on . By 2.1.10, this function correspon ds bijectively
to the isomorphism class of the toric line bundle with toric section (O(D );sp (Xo0));Sp ),
which we simply denote by L ;s ).
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2.1.13. Let X be aT-toric variety. We denote by Pic(X ) the Picard group of X and
by Divt(X ) the group of T-Cartier divisors. Then we have a exact sequence of Abelian
groups

M ! Divi(X )! Pig(X )! O©;

where the rst morphism is given by m 7! div( ™). In particular, every toric line bundle
admits a toric section and, if s and s® are two toric sections, then there is anm 2 M such
that s= ™Ms,

2.1.14. Let D be aT-Cartier divisor on a toric variety X . Then the associated Weil
divisor cyc(s ) is invariant under the torus action. Indeed, let @) be the set of one-
dimensional cones in . Eachray 2 @ gives a minimal generatorv 2 \ N and a
correspondingT-invariant prime divisor V( ) on X (see 2.1.4). Then we have

X
cyc(s ) = (VIV(): (2.2)
2 O

2.1.15. We describe the intersection of aT-Cartier divisor with the closure of an orbit.
Let be afanin Ngr and a virtual support function on given by the de ning vectors
fm g, . Let be acone of and V( ) the corresponding orbit closure. Each cone

corresponds to a cone of the fan ( ) dened in (2.1). Sincem m j =0, we
have m m 2M( )= M\ ?. Thus, the de ning vectors fm m g ( ) gives us a
well-de ned virtual support function ( m)( )on ( ).

When | 60, then D and V( ) do not intersect properly. But D is rationally
equivalentto D , and the latter divisor properly intersects V( ). Moreover, we have
D mive)=D( my)- Fordetails, we refer to [BPS14a, Proposition 3.3.14].

We end this section with some positivity statements about T-Cartier divisors. For this,
we consider a complete fan in Ng and a virtual support function on given by the
de ning vectors fm g » .

2.1.16. Many properties of the associated toric line bundleO(D ) are encoded in its
support function.

(i) O(D ) is generated by global sections if and only if is concave;
(i) O(D ) is ample if and only if is strictly concave.

If is concave, then the stability set from A.7 is a lattice polytope and f ™gmom\
is a basis of theK -vector space (X ;O(D )). Moreover, we have in this case

degp (X )= nlvoly( ): (2.3)
2.1.17. Assume that is strictly concave or equivalently that D is ample. We use the
notations and statements from A.20. Then the stability set := is a full dimensional
lattice polytope and coincides with the normal fan of . Thus, a facet F of

correspond to a ray g of and we can reformulate (2.2),

X
cyc(s )= hF;veiV( F);
F

where the sum is over the facetd of and vg is the minimal inner facet normal of F
(see A.21).
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2.1.18. Assume that is concave or D is generated by global sections. Then = is
a (not necessarily full dimensional) lattic polytope. We set

M()= M\L ; N(O= M()-=N N\L?;

where L  denotes the linear subspace oMy associated to the ane hull a () of .

We choose anym 2 a () \ M. Then, the lattic polytope m is full dimensional in
L =M() . Let be the normal fan of m in N() r (see A.20). The projection
H:N ! N()is compatible with and and so, by 2.1.7, it induces a proper toric
morphism' : X | X . Weset 9= m and consider the function
o:N() r! R; u7! mrpzlnom,u.

This is a strictly concave support function on . By 2.1.16, the divisorD  is ample,
and

D ="' D ,+div( ™): (2.4)

2.2. Toric Schemes over Valuation Rings of Rank One

In this section we summarize some facts from the theory of toric schenseover valuation
rings of rank one developed in [Gub13] and [GS13].

Let K be a eld equipped with a non-Archimedean absolute valugl j and denote by
K its valuation ring. Then we have a valuation val:= logj j of rank one and a value
group :=val(K ) R. Asusual, we x a free Abelian group M of rank n with dual
N. Let Tg bet the split torus Ts = SpecK [M]) over S = SpedK ) with generic ber
T = Spec(K [M]) and special ber T = Spec(K [M]).

De nition 2.2.1. A (Ts-)toric schemeis a normal integral separatedS-schemeX of
nite type, such that the generic ber X contains T as an open subset and the translation
action of T on itself extends to an algebraic actionTs X ! X overS.

Remark 2.2.2. In[Gubl13] and [GS13, a Ts-toric scheme is not necessarily normal and
of nite type over S where such a scheme is called normdls-toric variety. Here, we follow
the de nition in [BPS14a].

De nition 2.2.3. Let X be aT-toric variety and let X be aTs-toric scheme. ThenX
is called a (Ts-)toric model of X if X is an algebraic model ofX over S such that the
xed isomorphism X ' X identies (Ts) with T.

If X and X %are toric models ofX and : X ! X %is an S-morphism, we say that
is a morphism of toric modelsif its restriction to T is the identity.

2.2.4. By [Gubl13 Lemma 4.2], a toric schemeX is at over S and the generic ber X
is a T-toric variety over K. Thus, X is a Ts-toric model of X .

In analogy to toric varieties over K, we can describe toric schemes ovdf with torus
Ts in terms of convex geometry:

31



Chapter 2. Metrics and Local Heights of Toric Varieties

2.2.5. A -admissible cone in Ng R g is a strongly convex cone which is of the form
\k

f(ur)2Ng R gjhmj;ui+ 1l r 0g withmy2M; ;2 ;i=1;:::;k
i=1

For such a cone , we de ne

n x o
K[M] = m " 2K[M]jhmiui+val( m) r 08(u;r)2
m2M

This is an M -graded K -subalgebra ofK [M ] which is an integrally closed domain. It is
nitely generated as a K -algebra if and only if the following condition (F) is ful lled:

(F) The value group is discrete or the vertices of \ (Nr f 1g) are contained in
N f 1g.

Hence, we get an a ne Ts-toric schemeU :=Spec(K[M] ) over S if and only if (F) holds.
If is discrete or divisible, then (F) is always correct.

226. Afanin N R g is called -admissible if it consists of -admissible cones.
Given such a fan€, the ane Tg-toric schemesU ; 2 €, glue together along the open
subschemes corresponding to the common faces as in the case of toric etigs. So we
obtain a scheme [
Xe= U (2.5)
2€e

over S. By [GS13, Theorem 3],€ 7! X o de nes a bijection between the sets of
(i) -admissible fansin Ng R o whose cones satisfy condition (F),
(if) isomorphism classes ofT s-toric schemes overs.

In this case, X ¢ is proper overS if and only if € is complete, i.e.j€j = Ng R o (see
[Gub13, Proposition 11.8]).

It is also possible to describe toric schemes in terms of polyhedra Ng.
2.2.7. Let beaconeinNg R . Forr 2 R g, we set
r=fu2 Ngrj(u;r)2 g:

Then 7! ; denes a bijection between the set of -admissible cones iANg R ¢, which
are not contained in Ng f 0g, and the set of strongly convex -rational polyhedra in
Ngr. The inverse map is given by 7! c(), where c() is the closure of R-o( f 1g)in
Ng R 0.

2.2.8. Let € be a -admissible fan, whose cones satisfy (F). Then we have two kids of
cones in €

(i) If iscontainedinNg f Og,then K[M] = K[M ,]. Hence,U is equal to the toric
variety U , associated to o (see 2.1.2) and it is contained in the generic ber ofX 4.
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2.2. Toric Schemes over Valuation Rings of Rank One

(i) If is not contained in Ng f Og, then = 1 is a strongly convex -rational
polyhedron in Ng. It easily follows that K[M] is equal to
n x 0
KM] = m mM2K[M]jhm;ui+val( ) 08u?2
m2M

Thus, U equals the Ts-toric schemeU :=Spec(K[M] ). The generic ber of
U = U isidenti ed with the T-toric variety U ; = Uee) , Whererec() is the
recession cone of (see A.3).

Weset = gj 2€ and := 1j 2 .Then isafanin Nr and isa -rational
polyhedral complex in Ngr (see A.4 for the de nition). Now we can rewrite the open cover
(25) as [ [
Xea= U | U
2 2

using the same gluing data. The generic ber of this toric scheme is tk T-toric variety X
associated to , i.e. X 4 is a toric model of X .

2.2.9. If the value group is discrete, then the special ber X e is reduced if and only if

the vertices of all 2 are contained in N . If the valuation is not discrete, then X e IS
always reduced (see [Gub13, Proposition 7.11 and 7.12]).

2.2.10. Conversely, if we start with an arbitrary -rational polyhedral complex , we
can't expect that the cone

c() =fc() j 2 g[frec() f Ogj 2 g

isafaninNg R . However, the correspondence 7! c¢() gives a bijection between
complete -rational polyhedral complexes in Ng and complete -admissible fansin Ng R ¢
(see [BS11, Corollary 3.11]).

We will consider -rational polyhedral complexes in Ng that satisfy the following
condition:

(F) The value group is discrete or, for each 2 , the vertices of are contained in
N .

Proposition 2.2.11.  The correspondence 7! X ¢y gives a bijection between the sets of

(i) complete -rational polyhedral complexes in Ngr which satisfy condition (F";

(i) isomorphism classes of properTs-toric schemes overS.

Proof. This follows from the results in [BS11], [GS13 and [Gubl13] mentioned in 2.2.10
and 2.2.6. O

Corollary 2.2.12. Let be a complete fan inNr. Then there is a bijective correspondence
between the sets of

(i) complete -rational polyhedral complexes in Ngr with rec() = (see A.5) and
satisfying condition (F";
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(i) isomorphism classes of properTs-toric models of X over S.

We end this section with a description of the orbits of a toric scheme We assume that
is a complete -rational polyhedral complex in Ng which satis es condition (F'). This
gives us a complete -admissible fanc() in Nr R g and a complete fanrec() in Ng.
We setX =X and we identify the generic ber X . with the toric variety X ec() -

Notation 2.2.13. For 2 ,let L be the R-linear subspace ofNr associated to the
ane space a (). We set

N()= N=(N\L ) M()= N(O-=M\L%
generalizing the notation in 2.1.4. Furthermore, we de ne
()= fm2M() jhmui2 8u2 g 8O= fM() -:

Because of the -rationality of , the lattice K1 () is of nite index in M (). We de ne
the multiplicity of a polyhedron 2 by

mult()= M(): &) : (2.6)
Let 92 and aface of © The local cone(or angle) of Cat is de ned as
V(9= tu vju2 %2 t 0:
This is a polyhedral cone.

There is a bijection between torus orbits of X and the two kinds of cones inc()
corresponding to cones in rec() and polyhedra in .

First, the cones inrec() correspond to the T-orbits on the generic ber X . = X
via 7! O( )asin 2.1.4. We denote byV ( ) the Zariski closure of O( ) in X . Then
V ( ) is a scheme of relative dimensiom dim( ) over S. Moreover, we have if

andonlyif O( ) V().

Proposition 2.2.14.  There is a canonical isomorphism fromV ( ) to the Spe¢K [M ( )])-
toric schemeX ( ) over K which is given by the -rational polyhedral complex

()=f+ N\ igj] 2 ;rec() g
in N( )r = Ng=IN'\ .
Proof. This follows from [Gub13, Proposition 7.14]. O

Second, the polyhedra of correspond to the T g -orbits on the special ber X . This
bijective correspondence is given by

O: 7! red(trop (ri)) ;

wherered is the reduction map from 1.1.8,trop is the tropicalization map from 2.4.5 and
ri() is the relative interior of from A.1l. For details, we refer to [ Gub13, Proposition
6.22 and 7.9]. For 2 , we denote by V() the Zariski closure of O()in X . Then
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V() is contained in the special ber X and has dimensionn dim(). Moreover, we
have

°0 o(9 V() and rec() 0 O() V(): (2.7)

Proposition 2.2.15. The variety V() is equivariantly (but non-canonically) isomorphic
to the SpecK [ ()]) -toric variety X (, over K which is given by the fan

O= \(; 9%+Lj %2 ;0 (2.8)

in N() R = N() r= Ngr=L .
Proof. This is [Gub13, Proposition 7.15]. O

2.2.16. In particular, there is a bijection between vertices of and the ir reducible
components of the special berX . Foreachv2 0 the associated component (v) is a
toric variety over K with torus associated to the character latticefm 2 M jhm;vi2 g
and given by the fan (v)=fR o( © v)j °2 : %3 vgin Ng.

2.3. Tg-Cartier Divisors on Toric Schemes

We extend the theory of T-Cartier divisors to toric schemes over a valuation ring of rank
one. This generalizes{KMS73, Y IV.3] and [BPS14a Y 3.6] where the case of discrete
valuation is handled and which we use as a guideline.

We keep the notations of the previous section. Furthermore, we only cosider -rational
polyhedral complexes which satisfy the following condition:

(F) The value group is discrete or, for each 2 , the vertices of are contained in
N .

This ensures that the regarded schemes are of nite type oveK and hence, they are
models of their generic ber in the sense of De nition 1.2.7. In prindple we could work
without this assumption. But it is no restriction because we can alwgs perform base
change to the algebraic closure oK . Then the value group of this algebraically closed eld
is divisible and the second condition of (F') is always satis ed.

De nition 2.3.1. A Tg-Cartier divisor on a Tg-toric schemeX is a Cartier divisor D
on X which is invariant under the action of Ts on X , i.e. we have D = p,D denoting
by :Ts X ! X thetoric actionand by p,: Ts X ! X the second projection.

For simplicity we only study Ts-Cartier divisors on proper schemes.

2.3.2. Let be a complete -rational polyhedral complex in Ng satisfying (F") and X
the associated properTs-toric scheme. Let be a -lattice function on given by de ning
vectorsf(m ;I )g, inM (see A.11). These vectors have to satisfy the condition

(m ;i+1)j, o=(tmoi+lo)j, o foral ; %2 (2.9)

On each open subset) , the vector (m ;| ) determines a rational function 1 ™ |
where 2 K isanyelementwithval( )=1 . For ; 92 , condition (2.9) implies
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that
vall o= )+tmo m;ui=0 foralu2 \ ©
and therefore, o M °= M is regular and non-vanishingonU \ U o= U | o Since
is complete, the set fU g , is an open cover ofX . Thus, de nes a Cartier divisor
n )
D= u; &t m , (2.10)
where 2 K is any element withval( )= 1 . The divisor D only depends on and

not on the particular choice of de ning vectors and elements . It is easy to see thatD
is Ts-invariant.

We can classifyTs-Cartier divisors in terms of -lattice functions:

Theorem 2.3.3. Let be a complete -rational polyhedral complex in Nr satisfying (F")
and let X be the corresponding propeiT s-toric scheme.

(i) The assignment 7! D is an isomorphism between the group of -lattice functions
on and the group ofTg-Cartier divisors on X

(i) The divisors D , and D , are rationally equivalent if and only if 1 2 is ane.
For the proof, we need the following helpful lemma.
Lemma 2.3.4. Let 2 . Then, for each Tg-Cartier divisor D on U , we have
D=div( ™M)
forsomem2 M and 2K

Proof. Let us consider theK -algebraA:= Oy (U )= K[M] and the fractional ideal
= (U ;0y ( I_D)) of A. SinceD is Tg-invariant, the K -module | is graded byM , i.e.
we can writel = oy Im, wherel, is aK -submodule contained inK ™. BecauseK
is a valuation ring of rank one, eitherl, = Q) or I, =K n Morlpn=K , Mor
Im =K ™forsomem2 M, 2K . Sincel is nitely generated as an A-module, we
deduce

| = K m ™ (2.11)

Now we x a point p2 O(). Then D is principal on an open neighborhoodJ of pin U .
We may assume thatU = SpedAy) for someh 2 A with h(p) 6 0. Hence, Djy = div(f)ju
for somef 2 K(M) = Quot( A) . This implies

Ih=0y ( D)(U)=f Oy (U)=1f An:

In particular, f 2 I}, and by (2.11), we can write

g2 G m
hk M

with ¢ 2 K nf0g;k 2 Np:
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2.3. Ts-Cartier Divisors on Toric Schemes

Since n,, Mi=f 20y (U)and p2 U, we deduce( m, Mi=f)(p) 60 for somei. There
exists an open neighborhoodV U of p on which ,, ™ =f is non-vanishing and thus,

div( m, ™)jw =div(f)jw = Djw: (2.12)

By [GS13 Corollary 2.12(c)], we have an injective homomorphismD 7! cyc(D) from
the group of Cartier divisors on U to the group of Weil divisors on U , which restricts to
a homomorphism of the corresponding groups of s-invariant divisors. The Tg-invariant
prime (Weil) divisors are exactly the Tg-orbit closures of codimension one. By (2.7),

\ \
p20O() V(V)\ V()
v2 O 2rec() 1;
v rec()

and therefore, W meets eachT s-invariant prime divisor of U . Thus, equation (2.12)
implies cyc(D) = cyc(div( m; ™)) and hence,D =div( n, ™). O

Proof of Theorem 2.3.3. (i) Let be a -lattice function on given by de ning vectors

f(m ;val( ))g , . Then, by the construction in 2.3.2, D is a well-de ned Ts-Cartier

divisor on X . It is easy to see that this assignment de nes a group homomorphism.
To prove injectivity, we assume that maps to the zero divisor X ;1). Then, for each
2 , the function 1 m s invertible on U or equivalently,

(W=hm ;ui+vall )=0 forall u2

Therefore, is identically zero and we proved injectivity.

For surjectivity, let D be an arbitrary Ts-Cartier divisor on X . By Lemma 2.3.4, there
exist, for each 2 , elements 2K andm 2 M, suchthat Djy = div( M ju -
SinceD is a Cartier divisor, we have, for ; 22 |

div( ™ )ju, o=div( o " u 4 ;
which implies that
val( )+ hm ;ui=val( o+ hmoui foralu2 \ @ (2.13)

Foreach 2 ,weset (u):=h m ;ui val( )forall u2 . By (2.13), this determines
a well-de ned -lattice function :Nr! Rand, by (2.10), mapstoD.

(i) We claim that a Tg-Cartier divisor on X is principal if and only if it has the form
div( M™)for 2K ;m2 M. Indeed, letD be any principal Ts-Cartier divisor on X ,
i.e. D = div(f) for somef 2 K(X ) . The support of D is disjoint from the torus T.
Therefore, when regarded as an element & (T) , f has zero divisor onT. This implies
f 2K[M] andthus,f = ™forsome 2K andm2 M.

Using this equivalence, statement (ii) follows easily from (i). O

2.3.5. Let X be atoric scheme ovelS. A toric line bundle on X is a pair (L ;z) consisting
of a line bundleL on X and a non-zero elementz in the ber L 4, of the unit point
Xp 2 X . A toric section is a meromorphic sections of a toric line bundle which is regular
and non-vanishing on the torusT X and such that s(xg) = z.
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As in 2.1.12, eachT-Cartier divisor D on X de nes a toric line bundle (O(D); sp (Xo))
with toric section sp as well as each -lattice function de nes a toric line bundle with
toric section ((O(D );sp (Xo));Sp ), which we simply denote by L ;s ).

Let (X ;D ) be a proper toric variety with a T-Cartier divisor. A toric model of
(X ;D ) is a triple (X ;D;e) consisting of a Ts-toric model X of X , a Tg-Cartier
divisor D on X and an integere > 0 such thatDjx = eD .

Clearly, every toric model (X ;D;e) of (X ;D )induces an algebraic modelX ;O(D);e€)
of (X ;L ) in the sense of De nition 1.2.7 such that the toric sectionspjx of O(D)jx is
identi ed with the toric section s € of L €. Such algebraic models are calledoric models.

Theorem 2.3.6. Let be a complete fan inNg and  a virtual support function on
Then the assignment( ; ) 7! (X ;D ) gives a bijection between the sets of

(i) pairs ( ; ), where is a complete -rational polyhedral complex inNg satisfying
(FYand rec()= ,and isa -lattice functionon withrec( )= ;

(i) isomorphism classes of toric models(X ;D; 1) of (X ;D ).

Proof. Let( ; )beapairasin (i) andletf(m ;val( ))g » be de ning vectors of
Then

Dix = Ui & " % Ui ™ =Dre)=D
Hence, X ;D ;1) is a toric model of (X ;D ). The statement follows from Corollary
2.2.12 and Theorem 2.3.3. O

Now we describe the restriction of Tg-Cartier divisors to closures of orbits. But we
are only interested in the case of orbits lying in the special ber. The other case can be
handled analogously to [BPS14a, Proposition 3.6.12].

Let be a complete -rational polyhedral complex in Ng satisfying (F") and X the
associated properTs-toric scheme. Let be a -lattice function on given by de ning
vectorsf(m ;| )g » andlet D be the associatedl s-Cartier divisor.

Let 2 be a polyhedron. We assume that j = 0. Using Notation 2.2.13 and (2.8),
we de ne a virtual support function () on the rational fan () in N () r given by the
following de ning vectors fm g » ()

For each cone 2 (), let 2 be the unique polyhedron with and
\'(; )+L = .Theconditon j =Oimpliesthat m 2L? andtm ;ui= | 2
forall u2 . Therefore, m liesinf1 (). Weset m = m

Proposition 2.3.7.  Let notation be as above. If j =0, then D properly intersects the
orbit closure V() . Moreover, the restriction of D to V() is the divisorD (y .

Proof. The Ts-Cartier divisor D isgivenbyf(U ; ' ™)g, ,where 2K is

any element ofK with val( )=1 .If j =0,thenval( )+ hm ;ui=0forall u2 .

Thus, the local equation * ™ of D inU isaunitin Ox (U )= K[M] . Hence,
the orbit O() U does not meet the support ofD and so,V() and D intersect
properly. Furthermore,

n (0]

Divo = U \WVO: ' ™ jy v 20
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Using the non-canonical isomorphismK [U J' K[U \ V()], we get

Divp= U: ™ L4 =Dg;

proving the claim. O

Proposition 2.3.8. Let be a complete -rational polyhedral complex inNg and a
concave -lattice functionon . Let 2 be ak-dimensional polyhedron andv 2 ri() .
Then,

mult()deg p (V())=( n k)!voIM() (@ (v); (2.14)

where mult() is the multiplicity of  (see (2.6)) and @ (v) is the sup-di erential of  at
v (see A.15). Note that the a ne space of @ (v) is associated to the linear spacéM () gr
and hence, the measurevoly, () is also de ned ona ( @ (v)) (see A.16).

Proof. Let (m ;1 ) 2 M be a de ning vector of on . Then D is rationally
equivalenttoD , | and @ m I )(v) = @ (v) m . Thus, replacing by
m | does not change both sides of equation (2.14) and we may assume thaf = 0.
By Proposition 2.3.7 and (2.3),
de(\:b (V())=deg D () X 0 =(n k)|VO||\@() ( 0O ):

It is easy to see that@ (v)= @ () 0 () . So we deduce from Proposition A.19,

voly () (@ (V) .
M(): ®()

vol

() () =Volg, @QO(0) =volg, (@(V))=

proving the result. O]

2.4. Toric Metrics

In this section, we recall the basic facts about toric metrics from BPS14a Y 4.3]. These
are metrics on a toric line bundle that satisfy a certain invariance poperty with respect to
the torus action, and they can be classi ed by a certain class of continuos functions on
Ng. Note that in [BPS143 Y 4.1 4.3] the non-Archimedean elds are not assumed to be
discrete, in contrast to the rest of this chapter Y 4.

We x the following notation. Let K be either C or an algebraically closed eld which is
complete with respect to a non-trivial non-archimedean absolute vale j j. Then we have a
valuation val:= logj j and a divisible value group :=val (K ) of rank one. The theory
could be developed for arbitrary non-Archimedean elds, but it is no srious restriction to
assume thatK is algebraically closed because this theory is stable under base changedan
in the classical setting, the analysis is also done oveC.

We x a free Abelian group M of rank n with dual N and denote by T = SpedK [M ]) the
n-dimensional split torus overK . Let be a complete fan in Ng and X the corresponding
proper toric variety. Furthermore, let be a virtual support funct ion on and ( L;s) the
associated toric line bundle with toric section.
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If K = C, then X2 = X (C) is the associated complex analytic space with complex
torus Ta "' (C )". If K is non-Archimedean, thenX 2" is the Berkovich analytic space
associated toX as dened in 1.1.2. In both cases, the algebraic line bundlé. de nes an
analytic line bundle L@" on X @",

De nition 2.4.1. A metric k k on L is called toric if, for all p;q 2 T2" satisfying
i ™(P)j=] ™(q)j for eachm 2 M, we haveks(p)k = ks(g)k.

It easily follows from 2.1.13 that this de nition is independent of the choice of the toric
section s.

Remark 2.4.2. In [BPS14a 4.2], the authors study the action of the analytic group T 2"
on X @ and in particular, the action of the compact analytic subgroup

S=fp2T2jj ™"(p)j=1foral m2 Mg;
called compact torus. By [BPS14a, (4.2.1) and Proposition 4.2.15], we have fop 2 T 2",
S p=1q2Tjj "(pi=j "(g)jforal m2 Mag:

Hence, a metrick k is toric if and only if the function p 7! ks(p)k is invariant under the
action of S.

2.4.3. Given an arbitrary metric k k on L, we can associate to it a toric metric in the
following way: For 2 ,let s be a toric section ofL which is regular and non-vanishing
inU .
If K = C, then we set, forp 2 U2a",
Z

ks (p)ks:=exp Slogks (t pkd Haar(t) ;

where naar denotes the Haar measure org of total mass 1.
If K is non-Archimedean, we set, forp 2 U23",

ks (p)ks:= ks (p)k;

where p-2 U" is given by
X
m 70 maxj mjj "(p)i:
m2M

We easily deduce that these assignments de ne a toric metri&k ks on L. This process
is calledtori cation of k k.

Proposition 2.4.4.  Toric metrics are invariant under tori cation. Moreover, torica tion
is multiplicative with respect to products of metrized line bundlesand continuous with
respect to uniform convergence of metrics.

Proof. This is established in BPS14a Proposition 4.3.4] and follows easily from the
de nition. O
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2.4.5. We have the tropicalization map trop: T2 ! Ng, p 7! trop(p), where trop(p) is
the element of Ng = Hom( M; R) given by

tm; trop(p)i := logj ™(p)j:

This de nes a proper surjective continuous map. For details, we reér to [Pay09, Y 3].
Let k k be a toric metric on L. Then consider the following diagram

Tan log ks( )k /R

/’1
Ve
e

NRr

Sincek K is toric, the function logks( )k is constant along the bers of trop. Moreover,
trop is surjective and closed, and hence, there exists a unique contious function on Ng
making the above diagram commutative. This causes the following de niion.

De nition 2.4.6. Let L =(L; k k) be a metrized toric line bundle onX and s a toric
section of L. We de ne the function

Cs:Nr! Ry u7! logks(p)ks;
wherep 2 T2 is any element with trop(p) = u. The line bundle and the toric section are
usually clear from the context and we alternatively denote this functon by .

2.4.7. For an alternative description of . in the non-Archimedean case, we consider the
canonical section : Ng ! T2" which is given, for eachu 2 Ng, by the multiplicative norm

(W:KM]! R o m 7! maxj mjexp( h m;ui):
m2M m2M

By [Ber90, Example 5.2.12], we deduce that this section is a homeomorphism &g onto a
closed subset off 2. It is easy to see that r(u) =log ks( (u))k for all u2 Ng.

Proposition 2.4.8.  Let notation be as in De nition 2.4.6 and let K °be a complete valued
eld extension of K. Let (fo; sY be the metrized toric line bundle with toric section obtained
by base change t& © Then

[%s0 RS :
Proof. This follows from the de nition of - and propositions 4.1.5 and 4.2.16 inBPS144.
O]

Proposition 2.4.9. LetL =(L; k k) and L°be metrized toric line bundles orX  with toric
sectionss and s respectively. Let' : X o! X be a toric morphism with corresponding
linear map H as in 2.1.7. Then

L % s~ Ls + [%s0° Clst1™ r and . 0 s~ s H:
Moreover, if (k kn)non IS @ sequence of metrics ol that converges tok k, then
converges uniformly to .

kkn n2N
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Proof. This is established in propositions 4.3.14 and 4.3.19 inBPS144 and follows easily
from the de nitions. O

2.4.10. In order to characterize toric metrics by functions on N, we need theKajiwara-

Payne tropicalization of X introduced by [Kaj08] and [Pay09]. This is a topological space
N together with a tropicalization map X2"! N . As a set,N is a disjoint union of

linear spaces a
N = N( r;

2

whereN( )= N=hN\ i is the quotient lattice as in 2.1.4. Following [Pay09, Remark
3.4], the topology onX is determined by the following basis. Let be aconein and a
face of . We choose a nite set of generatoramy;:::;m; for the semigroupM = M\ -.
If m 2 7, then m; can be evaluated onN ( )g. For each open setJ N{( )gr and real
number > 0, let C(U; ) be the truncated cylinder

[
C(U; )=  fu2N()rj (W2Uand mj;ui> formi2 " n ?;i=1;:::;rq;

where :N( )r! N( )r is the canonical projection. Then these truncated cylinders
de ne a basis for the topology onN . A sequence of points inN( )r tends to a point
u2 N( )gr if and only if their images under tend to uin N( )r and they move toward
in nity in the image of the cone  in N( )gr for all cones such that .

The toric variety X is the disjoint union of tori Ty ()= SpecK[M( )]; 2 . Hence,
we can de ne the tropicalization map

trop: X" 1 N

as the disjoint union of tropicalization maps trop: Tﬁ‘l”( y! N( )rasdenedin2.4.5. This
is also a proper surjective continuous map. Especiallyi\ = trop (X 2") is a compact space.

Proposition 2.4.11. Let be a complete fan inNg and a virtual support function on
. We setL = L
Then, for any metric k k on L, the function extends to a continuous function
on N . In particular, the function j j is bounded.
Moreover, the assignmentk k 7! | is a bijection between the sets of

(i) toric metrics on L;

(ii) continuous functions : Nr! R sucht that can be extended to a continuous
function on N .

Proof. This is proved in Proposition 4.3.10 and Corollary 4.3.13 in BPS144. The inverse
map is given as follows: Let be a function as in (ii) and let fm g be a set of de ning

vectors of . For each cone 2 ,the section s = ™ sis a non-vanishing regular section
on U . Then we obtain a toric metric k k on L characterized by

ks (p)k =exp ( m )(trop( p)) (2.15)
onU . ]
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De nition 2.4.12. Let L be a toric line bundle onX with toric section s and let be
the associated virtual support function on . By Proposition 2.4.11, the fu nction :=
de nes a toric metric on L. This metric is called the canonical metric of L. We denoted it
by k kean and write L°" = (L; k Kcan).

Remark 2.4.13. By [BPS14g Proposition 4.3.15], the canonical metric only depends on
the structure of toric line bundle of L and not on the choice ofs.

Proposition 2.4.14.  Let L, L°be toric line bundles onX andlet' : X%! X be a
toric morphism. Let 2 and :V( )! X the closed immersion of 2.1.4. Then

can

ﬁd:an: Ecan r@an_ ﬁcanz (Ecan) 1. Tcan: . Ecan and L= fcan.
Proof. The rst two statements are established in [BPS14g Proposition 4.3.16]. The last
two statements are the corollaries 4.3.20 and 4.3.18 in [BPS14a]. O

2.5. Semipositive Toric Metrics and Measures over
Non-Archimedean Fields

In the case of an algebraically closed non-Archimedean eld, we study algehic metrics
induced by toric models. Then we classify semipositive toric meaics in terms of concave
functions (Theorem 2.5.8). Moreover, we characterize the measures assated to semi-
positive metrics (Corollary 2.5.11). These results are proved inBPS14a Y 4.5 4.8] in the
case of a discrete non-Archimedean and an Archimedean eld. We follow thir ideas of the
proofs using in particular our theory of Tg-Cartier divisors developed in section 2.3.

In this section, let K be an algebraically closed eld which is complete with respect to a
non-trivial non-Archimedean absolute valuej j. Then we have a valuationval := logj |
and a divisible value group :=val(K ) R. We x a free Abelian group M of rank n
with dual N and denote by T = Spec(K [M]) the n-dimensional split torus over K .

Let be a complete fan in Ng and X the corresponding proper toric variety. Further-
more, let be a virtual support function on and ( L;s) the associated toric line bundle
with toric section.

2.5.1. Let be a complete -rational polyhedral complex in Ng with req() = , and let

be a -rational piecewise a ne function on with rec¢( )= . Let e > 0 be an integer
such that e is a -lattice function given by the de ning vectors f(m ;I )g o in M
Then e de nes a Tg-Cartier divisor

n L om
De = U ,

where 2 K with val( )= 1, and the pair ( ;e ) de nes a toric model (X ;D¢ ;€)
of (X ;D ) (see Theorem 2.3.6). We writeL = O(De ) and L = O(D ) for the
corresponding toric line bundles. By De nition 1.2.7, the model (X ;L ;e) induces an
algebraic metrick k. onlL.

Proposition 2.5.2.  Let notation be as above. Then the metridk k, is toric. Moreover,
the equalities ,, = andk k. =k k hold.
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Proof. Let 2 . Recallthat U := SpecK[M] is an algebraicK -model of Uy .
By 1.1.8, the associated formal scheme has generic ber

(o]

n
U P2 UX, jp(f) 18f 2K[M]

rec() =

Then U is a trivialization of L on which s ©

corresponds to the rational function !

, considered as a meromorphic section df |,
M . Hence, by De nition 1.2.7, we have

ks (k. = * ™ ()"

forall p2 U, - Letu2 and p2 T3 with trop(p) = u. The below-mentioned Lemma
2.5.3 implies thatp2 U and we obtain

rec()
logks (p)ke =logj 1 ™ (p)'== C(m jui+l)= (u)

This shows that the metric k k_ is toric. We deduce, by De nition 2.4.6, that ,, =
and, by Proposition 2.4.11, thatk k. = k k . O

Lemma 2.5.3. Let be a complete -rational polyhedral complex in Ng with rec() =
and letred: X ! X be the reduction map from 1.1.8. Let 2 andp2 T2. Then

trop(p)2 0 P2Ugyy 0 red(p)2 U

Proof. By [Gub13, Lemma 6.21], we havetrop(p) 2 if and only if p 2 T?2" satis es
jp(f)j 1forallf 2 K[M] or, in other words, p 2 U, . By the description of the

reduction map in 1.1.8, this is equivalent to red() 2 g . O

Corollary 2.5.4. Let be a -rational piecewise a ne concave function on Nr with
rec( )= . Then the metric k k is induced by a toric model.

Proof. As in the proof of [BPS14a Theorem 3.7.3], we can show that there exists a complete

-rational polyhedral complex in Ng such that re¢() = and is piecewise a ne on
. Since s divisible, the complex gives a proper toric scheme X . Then Proposition
2.5.2 says thatk k is induced by a toric model X ;D¢ ;€) of (X ;D ). O

Proposition 2.5.5. Let k k be an algebraic metric onL. Then the function | is
-rational piecewise a ne.

Proof. There exists a properK -model (X ;L ;e) of (X ;L) inducing the metric k k. Let

fUigi2) be a trivialization of L . Then the subsetsU; = red Lui X form a nite

closed cover ofX . On U; the meromorphic sections € corresponds to a rational function
i 2K(M) such that on U, we have

ks(pk = j i(p)i*™:
P

We write ; = Pm2zv T __ ysing the continuous map : Nr! T2 from 2.4.7, we have
m2m M
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on the closed subset j := (U, \ T3) Ng,

kk(u) =log ks( (u))k
log j i( (u)j**

1 o o 1 . o
éIog rrrpza’\zq mjexp( h m;ui) 6Iog nrpza'&q mjexp( h m;ui)

1 . o 1 o .
érgy'\r} (hm;ui +val( m)) émlg (hm;ui +val( m)):

We see that ) , is the di erence of two -rational piecewise a ne concave function s.
Sincef g2, is a nite closed cover of Ng, we deduce that | is -rational piecewise
ane. O

Next we study semipositive toric metrics onL.
Proposition 2.5.6. Let k k be an algebraic metric onL.
() If k k is semipositive, then  is concave.
(i) We assume thatk k is toric. Then k k is semipositive if and only if |, is concave.

Proof. (ii) Because each algebraic metric iQ-formal (see Proposition 1.2.8), this follows
from [GK15, Corollary 8.12].

(i) For k k semipositive, we have to show that , is concave along any a ne line.
By a density argument, we may assume that the line is -rational. Similarly as in the
proof of [BPS144a Proposition 4.7.1], we use pullback with respect to a suitable equiariant
morphism to reduce the concavity on the a ne line to the case of Pk . By [GH15, Corollary
B.18], the tori cation of a semipositive algebraic metric on P} is semipositive. Hence, the
claim follows from (ii). O

Corollary 2.5.7. Let k k be a semipositive algebraic metric orL. Then the toric metric
k ks is also algebraic and semipositive.

Proof. By the propositions 2.5.6 (i), 2.5.5 and 2.4.11, the function = | is concave
-rational piecewise a ne with rec( ) = . Then Corollary 2.5.4 says that the metric
k ks= k k is algebraic and Proposition 2.5.6 (ii) implies that it is semipositive. O

Now, we can characterize semipositive toric metrics.

Theorem 2.5.8. Let be a virtual support function on the complete fan in Nr and set
L = L . Then there is a bijection between the sets of

(i) semipositive toric metrics on L;
(i) concave functions on Ng such that the function]j j is bounded;
(iii) continuous concave functions on

The bijections are given byk k7! 7! .
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Proof. The bijection between (ii) and (iii) follows from Proposition A.9. To p rove the
bijection between (i) and (ii), let k k be a semipositive toric metric onL. By Proposition
2.4.11, the functionj j is bounded. Furthermore, there exists a sequencek( Kn)non
of semipositive algebraic metrics converging to the toric metrick k. Proposition 2.5.6 (i)
says that the functions are concave. By Proposition 2.4.9, the sequence [, )n2n
converges uniformly to ,, and hence, the latter is also concave.

Conversely, let be a concave function onNg such that j j is bounded. Then is
also concave and, by Proposition A.14, there is a sequence of -rational peewise a ne
concave functions ( k)k2n With rec( ) = , that uniformly converges to . Because g is
a piecewise a ne concave function with req( ) = , the function k continuously
extends onN . Thus, extends to a continuous function on N , too. By Proposition
2.4.11, we obtain toric metricsk k and k k ,;k 2 N, given as in (2.15). Then the
sequence of metricsk k , )kon converges tok k . By Proposition 2.5.2, the metrick k ,
is algebraic and therefore, by Proposition 2.5.6 (ii), semipositive. This, the metrick k is
also semipositive. O

Remark 2.5.9. Theorem 2.5.8 also holds in the Archimedean setting of the sections 1.5
and 2.4. This is proved side by side to the discrete non-Archimedeacase in BPS143
Theorem 4.8.1].

We characterize Chambert-Loir's measure associated to a semipositivtoric metrized line
bundle. Let :Ngr! R be a concave function. We extend the Monge-Ampére measure
M m () on Ng (De nition A.17) to a measure M y( ) on N by setting

Mwm( )E)=Mwm( )(E\ NR)

for any Borel subsetE of N .

Theorem 2.5.10. Let k k be a semipositive algebraic toric metric onL and = | the
associated function onNg. Then

trop (c1(L;k K)")Y=nIMy( ):

Proof. By the propositions 2.5.5, 2.5.6 (i) and 2.4.11, the function is -rational piecewise
a ne concave with re¢( ) = . Then Corollary 2.5.4 implies that the metric k k s
de ned by a toric K -model X ;D¢ ;e of (X ;L).

By 2.2.16, the vertices of correspond bijectively to the irreducible components of
the special ber X . Since the valuation of K is not discrete, the special ber X is
reduced (see 2.2.9). For eaclr 2 ©, let V(v) be the corresponding component and , the
unique point of (X )" such that red( ) is the generic point of V (v) (see 1.1.8). Then, by
De nition 1.2.14,

—n_1X .
caL = o degp, (V(V)) ,:

v2 0
Sincered( y) is the generic point of the n-dimensional irreducible componentV (v), it
is clear that , 2 T2". We havered( v) 2 V(v) = U, and hence, by Lemma 2.5.3,
trop( v) = v. Therefore,
_ 1 X
trop ¢ L " = -

v2 0

dego, (V(V)) v:
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On the other hand, by Proposition A.19 and Proposition 2.3.8,

Mu( )= =Mue )

en
1 X
=5 volu(@e )(V) v
v2 ©
X
= T mult(v)degp, (V(V)) v:
v2 ©
Since the value group ofK is divisible, the multiplicity mult(v) of a vertex v is one. The
statement follows from the de nition of M y ( ). O
Corollary 2.5.11. Let k k be a semipositive toric metric onL and = | the associated

concave function onNg. Then
trop (ci(L;k K)")=nIMy( ):

Proof. Let (k k)., b€ @ sequence of semipositive algebraic metrics that converges kok.
Taking the tori cations and using Proposition 2.4.4 and Corollary 2.5.7, we may assume
that the k kg, k 2 N, are also toric. By Proposition 1.3.7, the measuresrop (c1(L; k ky)")
converge weakly to trop (ci(L; k k)")on N .

By Proposition 2.4.9, the functions , converge uniformly to . Thus, by Proposition
A.18, the measuresM y ( k) converge weakly toM y (). Theorem 2.5.10 implies that

trop (Ca(L;k K))jng = N'M w( ): (2.16)

By Corollary 1.4.5, the set X 2" nT 2" has measure zero with respect te;(L; k k)" and so,
N nNg has measure zero with respect tarop (ci(L; k k)"). Since theM y ( )-measure
of N nNg is also zero, the statement follows from equation (2.16). O

At the end of this section, we quote a result about the restriction of €mipositive metrics
to toric orbits which will be useful in the proof of the local height formula. Let be a
support function on and ( L;s) the associated toric line bundle with toric section. Let

be a cone of and V( ) the corresponding orbit closure with the structure of a toric
variety (cf. 2.1.4). We denote by :V( )! X the closed immersion. Letm 2 M be
a de ning vector of at and sets = ™ s. By 2.1.15, the divisorD , = div(s )
properly intersects V( ) and we can restricts to V( ) to obtain a toric section s of
the toric line bundle O D¢, ) " L.

Proposition 2.5.12.  Let notation be as above and denote by the face of associated
to (see A.20). Let k k be a semipositive toric metric onL. Then, forall m2 F m |,

= (M= g (mem):

Proof. We can prove the statement as in BPS14a Proposition 4.8.8] since the discreteness
of the valuation doesn't play a role in that proof. O
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2.6. Toric Local Heights over Non-Archimedean Fields

Now, all ingredients are developed to state and prove a formula for thedcal height of a
toric variety over an arbitrary non-Archimedean eld. This generalizes work by Burgos
Philippon Sombra who showed this formula under the additional assunption that the eld
is discretely valued (see [BPS14a, Theorem 5.1.6]).

Let K be an algebraically closed eld which is complete with respect to a norArchimedean
non-trivial absolute value j j and denote by = logjK | the associated divisible value
group. As explained before, the algebraic closedness &f is no restriction since local
heights are stable under base change. We x a latticeM ' Z" with dual M- = N and
denote by T = SpedK [M ]) the n-dimensional split torus over K. Let be a complete fan
on Ngr and X the associated properT-toric variety.

Following [BPS144a Y 5.1], we de ne a local height for toric metrized line bundles that
does not depend on the choice of sections. Even though it di ers from th de nition of a
local height, we can use it to compute global heights of the toric varietyX and, more
generally, of orbit closures and images under toric morphisms (cf. Propatson 3.4.2).

De nition 2.6.1. Let Li, i =0;:::;t, be toric line bundles onX equipped with DSP
toric metrics. We denote by L;*" the same toric line bundle endowed with the canonical
metric. Let Y be at-dimensional prime cycle ofX and let' : Y°! Y be a birational
morphism such that Y %is projective. Recall the de nition of local heights in 1.3.5. Then

the toric local height of Y with respect to Lo;:::;L; is de ned as
tor —_ .
Lot (V) = ¢ Tomo)sc ft;st)(Y(b ¢ Lolso)un( Lo §5t)(Y(5'

where s :::; st are any invertible meromorphic sections with

jdiv(sg)j\  \j div(s)j\ Y = (2.17)
This de nition extends to cycles by linearity. When Lo= = L; = L, we write shortly
Lry)= (V).
L Loyisbe

Remark 2.6.2. Proposition 1.3.6 (iii, v) implies that the toric local height does not depend

properly on Y, then condition (2.17) is full lled.

Proposition 2.6.3.  The toric local height is symmetric and multilinear in the metrized
line bundles.

Proof. This follows easily from Proposition 1.3.6 (ii). O

De nition 2.6.4.  Let L =(L; k k) be a semipositive metrized toric line bundle with a
toric section s. Let be the corresponding support function on and ¢ the associated
concave function onNg. The roof function associated to (;s) is the concave function
#rs ! ' R given by

# =

Ls Ts?

where T denotes the Legendre-Fenchel dual (see A.7). We will denot‘a:leS by # if the

line bundle and section are clear from the context.
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2.6.5. Let notation be as above. By Proposition 2.4.8, the roof function#r is invariant
under complete valued eld extensions. Ifk k is an algebraic metric, then, by Proposition
2.5.5 and A.12, the roof function#,  is piecewise a ne concave.

Theorem 2.6.6. Let be a complete fan orfNg. Let L = (L; k k) be a toric line bundle
on X equipped with a semipositive toric metric. We choose any toric seath s of L and
denote by the corresponding support function on . Then, the toric local height of X
with respect to L is given by
z
(X )=(n+1) #r dvoly ; (2.18)

where is the stability set of and voly is the Haar measure onM such thatM has
covolume one.

Proof. We prove this theorem analogously to BPS14g Theorem 5.1.6]. Since the metric
k k is semipositive, the functions ,, and = red k) are concave. We set = ,
= yxand # = #,.
First, we reduce to the case of an ample line bundl&.. Let be the normal fan of in

N() r (see A.20). We choose anyn2 a () \ M and set °= m. By 2.1.18, there
is a proper toric morphism' : X I X  and an ample divisorD ,on X  such that
D ="' D ,+div( ™). The function ( m)- lives on = o M() rand so,

by Theorem 2.5.8, it de nes a semipositive metrick k o on the the line bundleO(D )
onX .SetL o= OD ,;k k o. Using Proposition 2.4.9, we obtain an isometry

CL=(OMD )k k)! (OD m:kk m="' T o:

T-can

By Proposition 2.4.14, there is also an isometry betwee " and ' (L°%). Thus, by the
functoriality of the local height (Proposition 1.3.6 (iii)),

DX )= P X )= X))

If dim() < n, then on the one hand, the integral in (2.18) is zero. On the other
hand, dm(X )= n> dim(X )implies' X =0 and hence, tLEV(X ) is also zero. If
dim()= n, then' is a birational morphismand' X = X . Moreover,
z Z Z
(n+1)! -dvoly =(n+1)! ( m)- dvoly =(n+1)! Kk odvoly () :
m 0

So it is enough to prove the theorem for the ample line bundld. o on the projective variety
X . Hence, we may assume that is ample andX is projective.

We prove the theorem by induction onn = dim(X ). If n =0, then X = SpecK = PP,
=0, = fOgandL = O(Dg) = Opo. By the induction formula (Theorem 1.4.3) and
De nition 2.4.6, we obtain

(ES)(X )= logksk = (0) and (E“‘”;s)(x )= logkskcan= (0)=0

Therefore, Z
%or (X )= (0) = #(0) = 1! #dvoly :
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Let n 1 and let sp;:::;sn 1 be invertible meromorphic sections ofL such that
jdiv(sp)j\  \j div(sy 1)j\]j div(s)j = ;. By the induction formula 1.4.3,
Z
(ES);Z::;(Es)(X )= (iso)izi(Lisn l)(cyc(s)) «an logksk c1(L)": (2.19)

For each facetF of , let v 2 N be the minimal inner facet normal of F (see A.21)
and g = R Vg the corresponding ray in . Since L is ample, we obtain by 2.1.17,

X
(Tso)p(Tsn 1) (CYC(S)) = . hEVED Csoyun@sn ) (VOF) (2.20)

where the sum is over the facets= of . By functoriality, the local height of V( )
with respect to L coincides with the local height with respect to fjv( -)- Moreover, by
Proposition 2.4.14, the restriction of the canonical metric ofL to the toric variety V( g)
coincides with the canonical metric of Ljy( ). Subtracting from equation (2.20) the
analogous formula for the canonical metric, we get

X
h F;vei t[()j:/( F)(V( F)= (Cso):i(Tisn 1) (cyc(s)) (2.21)

.....

F

.....

Corollary 1.4.5 says that the measure ofX 2" n T @ with respect to cy(L)" is zero. Since
the tropicalization map is continuous and, by De nition 2.4.6, logksk = trop , we deduce
VA VA Z
o logksk cy(L)" = o trop ( ) cy(L)" = y trop cy(L)" :

R

By Corollary 2.5.11, trop cy(L)" = n!M v ( ) and therefore,

Z Z
logksk ci(L)" = n! dM v (): (2.22)
Xan

NRr

By Proposition A.19, we haveM v () = wvolu () o. Hence, in the case of the canonical
metric, equation (2.22) is reduced to
Z

logkskean €1 L0 " = nlvoly () 0)=0 (2.23)
Xan

Subtracting from (2.19) the analogous induction formula for the canonical metic and
using (2.21), (2.22) and (2.23), we obtain
4

X
It_i’r(x )= h F;vgi }_E.r V( g)) n! dM m( ): (2.24)
E JV( F) NR
We set temporarily = ¢ anddenote by :V( )! X the closed immersion. Choose
any elementm in F\ M,i.e. m is adening vector of at ,andsets = ™ s. By

2.1.15, s is a toric section of the toric line bundle L 'O D¢ m ) - Hence, by the
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induction hypothesis,

4
©Po(V ()= n! T s dvoly(y:
C om0
By Proposition 2.5.12, the function - _ isthe translate of -j- by m and we have
( m)y)=F m.Since is ofdimension n, we getM ( )= M (F) and therefore,
Z A

tto.r V(e)=n! -(m+ m )dvoly y(m)=n!  #dvoly ) : (2.25)

() F om F

Inserting (2.25) into (2.24) and applying Proposition A.22, we obtain
X z z z
P(X )= nl BV I:#dvoIM(F) n! y dM m( )=(n+1)!  #dvoly ;
E R

proving the theorem. O

Remark 2.6.7. In the Archimedean case, we de ne toric local heights and roof functios
in the exact same manner as above, using the notions of sections 1.5 and 2.4héh Theorem
2.6.6 also holds in the Archimedean setting. This is proved in the samevay as the discrete
non-Archimedean case in BPS14g Theorem 5.1.6]. Note that here we implicitly make use
of the induction formula 1.5.13.

The following two corollaries correspond to the propositions 5.1.11 and 5.13 in [BPS144.

Corollary 2.6.8. Let notation be as in Theorem 2.6.6. Let 2 be a cone of codimension
d and V( ) the corresponding orbit closure. Then
z
2V ) =(d+1) i #rg AVOly ( ) ;

where F is the face of associated to (see A.20) andvoly ( y is the Haar measure

with respect to the latticeM ( )= M \ 7 on the a ne space containing F (see A.16).

Proof. The propositions 2.4.14 and 1.3.6 (iii) imply }_Br(V( ) = ‘E"j’ ( )(V( )). The
\%

result can be proved similarly to (2.25) using Theorem 2.6.6 instead ofhe induction

hypothesis. O

Corollary 2.6.9. Let Let N%be a lattice of rankd and °a complete fan onNJ. Let
H:NO% N be a linear map which is compatible with ®and , and let' : X o! X be
the corresponding proper toric morphism (see 2.1.7). We denotéy H-: M ! M %the dual
map and byH (N 92 the saturation of the lattice H(N9 in N.

Let L be a toric line bundle onX with a semipositive toric metric. Choose any toric
sections of L and let  be the associated support function.

() If H is not injective, then (X o) =0.

(i) If H is injective, then
h i z
PE(X )= H(INY® U H(NG  27( (X ) =(d+1)! oy e ~ dvolyo:
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Proof. This result can be proved analogously to Corollary BPS14g 5.1.13] using the
corresponding results from this thesis. O

Remark 2.6.10. In [BPS143 Y5.1], the formula corresponding to Theorem 2.6.6 is
extended to toric local heights with respect to distinct line bundles. Moreover, the toric
local height of a translated toric subvariety and its behavior with respect to equivariant
morphisms is studied. For arbitrary non-Archimedean elds, these results can be stated
and proved analogously using the herein developed theory.
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Chapter 3.

Global Heights of Varieties over Finitely
Generated Fields

In [Mor00], Moriwaki de ned the height of a variety over a nitely generated e Id over Q
with respect to Hermitian line bundles as an arithmetic intersecton number in the sense of
Gillet Soulé [ GS90. Then Burgos Philippon Sombra showed in [BPS14H that this height
can be written as an integral of local heights over a measured set of placed the nitely
generated eld. Furthermore, they applied their formulas for local heights of toric varieties
from [BPS144 to compute some arithmetic intersection numbers of non-toric arithmetic
varieties coming from a bration with toric generic ber.

In this chapter, we extend these results to nitely generated elds over a global eld
and quasi-algebraic metrized line bundles. Note that in this settingnon-discrete non-
Archimedean places occur. Hence, we actually need our theory develogpén Chapter 1 and
2. This generalization was suggested to me by José Burgos Gil. At the end,enparticularize
to the case of the function eld of an elliptic curve leading to a natural example to illustrate
our theory.

3.1. Global Heights of Varieties over an M -Field

First we explain the notion of M - elds introduced by Gubler in [ Gub97, De nition 2.1].
Theses elds include global elds and more generally, nitely generaied elds over global
elds. Then we construct global heights of subvarieties by integrating local heights overM .
Note that Gubler's de nition of an M - eld is more general than ours.

De nition 3.1.1. Let K be a eld and M a family of inequivalent absolute values onK
together with a positive measure on M. Then K is called anM - eld if, for eachf 2 K ,

(i) the function M ! R, v 7! logjfjy, is -integrable;
R
(i) the product formula , logjf j, d (v) =0 holds.

Example 3.1.2. A global eld F is either a number eld or the function eld of a smooth
projective curve over a countable eld. We endowF with the following structure of an
ME- eld.

If F = Q, then let Mg be the set consisting of the Archimedean and thep-adic absolute
values, normalized in the standard way, and equipM o with the counting measure.

If F = k(C) is the function eld of a smooth projective curve C over a countable eld k,
let My c) be the set of absolute valueg |y, indexed by the closed pointsv 2 C, which are
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given, for 2 k(C) , by

(

L ordy( ). e ifjkj=1
b lv= & CORT ki ki<t
where ordy is the discrete valuation of the local ring Oc.,. We endowM ¢ with the point
measure given by (v) =[k(V) : k].

Let Fo denote eitherQ or k(C). If F is a nite extension of Fg, let Mg be the set of
absolute valuesj j, extending an absolute valuej jy, on Fo. We equip Mg with the point
measure given by

[Fv : Foul

M= TF Rl

(Vo); (3.1)
where F, denotes the completion ofF with respect to j j,, and similarly for Fo,y,.

In all cases, it can be shown thatF together with (Mg; ) is an Mg - eld. For details,
we refer to [BPS14c, 2.1] and, for more advanced examples, to [Gub97, Y 2].

Remark 3.1.3. In the above de nition of a global eld we assumed in the case of a
function eld k(C) that k is countable to ensure the construction of theM - eld in 3.2.4.
This assumption is just made for simplicity. In general, we are conceared with nitely
many varieties, metrized line bundles or meromorphic sections anddnce, we can nd a
countable nitely generated sub eld over which all these objects are de ned.

De nition 3.1.4. Let K be anM-eld and let K, be the completion of an algebraic
closure of the completion ofK with respectto v2 M. Let X be a proper variety over
K and L aline bundle onX. We setX, = X  SpedK,)andL, =L « Ky. Ifvis
Archimedean, then we denote byX @" = X, (Ky) the complex analytic space associated to
X. If v is non-Archimedean, thenX 2" is the Berkovich analytic space associated tXy
over Ky as de ned in 1.1.2. We callX2" the analyti cation of X with respect to v (or
J v).

An (M -)metric on L is a family of metrics k ky, v2 M, wherek k, is a metric on
L3, The corresponding(M -)metrized line bundleis denoted byL = (L; (k ky)v). An (M -
)Jmetric on L is said to be semipositiveif k k, is semipositive for allv 2 M (cf. De nition
1.3.1 and 1.5.3). Moreover, a metrized line bundle_ is DSP if there are semipositive
metrized line bundlesM, N on X suchthatL=M N .

on X with invertible meromorphic sections such that jdiv(sp)j\ \j div(s)j\j Zj=;.
For v 2 M, we set for the local height atv,

(Lo;so);s(Le ;Sx)(Z;V) =

where fiv(sj)y is the pseudo-divisor onX, induced by 8iv(s;) (cf. Example 1.2.10).

De nition 3.1.5. Let K be anM - eld and X a proper variety over K. A t-dimensional
prime cycle Y of X is called integrable with respect to DSP metrized line bundlesL;,
i =0;:::;t, on X if there is a birational proper map ' : YO! Y with Y9 projective, and
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3.1. Global Heights of Varieties over an M -Field

function

M! R; v7! Loy (YOV) (3.2)

(" Loiso)us(’
is -integrable on M. A t-dimensional cycle isintegrable if its components are integrable.
3.1.6. For an integrable cycleY, the -integrability of (3.2) holds for any choice of a

jdiv(s)j\  \j div(s)j = ;:

Moreover, the notion of integrability of cycles is closed under tensoproduct and pullback
of DSP metrized line bundles. This can be proved as inBPS14g Proposition 1.5.8] by
means of [Gub03, Proposition 11.5].

De nition 3.1.7. Let X be a proper variety over anM - eld K and Y a t-dimensional

prime cycle onX which is integrable with respect to DSP metrized line bundlesLy;::: ;L
on X. Let Y%and sg;:::;st be as in De nition 3.1.5. Then the global heightof Y with
respecttoL;:::; L; is de ned as

Z

..........

hryanr, (Y) = L Tosoin Csy (YW d (v):

By linearity, we extend this de nition to all t-dimensional cycles onX .
Using Corollary 1.3.6 (iii), the Archimedean analogon mentioned in 1.5.11 andhe product
formula of K, we see that this de nition is independent of the choice of the sedbns.

Proposition 3.1.8.  The global height of integrable cycles has the following basic propes:

() It is symmetric and multilinear with respect to tensor products of DSP metrized line
bundles.

(i) Let' : X°! X be amorphism of proper varieties oveK and letZ°be at-dimensional

Proof. Using 3.1.6, we get the results by integrating the corresponding formuls stated in
Proposition 1.3.6 (non-Archimedean case) and in 1.5.11 (Archimedean case). O

We consider the special case of the global height over a global eld.

De nition 3.1.9.  Let F be a global eld with the structure (Mg; ) of an Mg-eld as in
Example 3.1.2. LetX be a proper variety over a global eld F and L a line bundle on X.
We call an Mg -metric on L quasi-algebraicif there exist a nite subset S Mg containing
the Archimedean places and a proper algebraic model{ ;L ;e) of (X;L) over the ring

Fs=f 2Fjj jy 18v2Sg;
such that, for eachv 2 S, the metric k ky is induced by the localization

(X g, Speck,;L g Fyie):
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Proposition 3.1.10. Let X be a proper variety over a global eldF. Then every cycle of
X is -integrable with respect to DSP quasi-algebrai®/  -metrized line bundles onX.

Proof. This is [BPS14a, Proposition 1.5.14]. O
Proposition 3.1.11 (Global induction formula) . Let X be ad-dimensional proper variety

is any invertible meromorphic section ofLy = (Lg;(k Kg.v)v), then there is only a nite
number ofv 2 Mg such that
Z
on logksgkgy c1(Loy) ®  ~ ci(Lg 1v) 60

and we have

..... Lg 1

.....

(cyc(sa))
X 4

(v) wan log kSdkd;v Cl(EO;V) A n Cl(td 1;v) ;

v

V2MEg
with (v) as in (3.1).

Proof. The rst part follows from the proof of [ BPS144a Proposition 1.5.14]. For the second
part, we use Proposition 3.1.10 and integrate the local induction formulas theorems 1.4.3
and 1.5.13) overMe. O

Proposition 3.1.12.  Let F be a global eld andF®a nite extension of F with the induced

guasi-algebraic DSP metrized line bundles oiX and Z a t-dimensional cycle onX. We
denote by : X% X the morphism, byZ°the cycle and by L; the Mgo-metrized line
bundles obtained by base change B° Then

Proof. This follows from [BPS14a, Proposition 1.5.10]. O

3.2. M -Fields from Varieties over a Global Field

Let F be a global eld with the canonical Mg - eld structure from Example 3.1.2. Let B
be ab-dimensional normal proper variety over F with function eld K = F(B).

In this section, we endow the eld K with the structure of an M- eld where M is a
natural set of places induced by nef quasi-algebrai®/ g -metrized line bundles onB. This
generalizes theM - elds obtained by Moriwaki's construction in [Mor00, Y 3]where the
function eld of an arithmetic variety and a family of nef Hermitian line bundles are
considered (see also [Gub03, Example 11.22]).

De nition 3.2.1.  Let L be a quasi-algebraidV ¢ -metrized line bundle onB. We say that
L is nef if k k is semipositive and, for each pointp 2 B (F), the global height h(p) is
non-negative.
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Example 3.2.2. Let L = (L;(k ky)y) be a semipositive quasi-algebraic metrized line
bundle. We assume thatL is generated by small global sections, i.e. for each point
p 2 B(F), there exists a global sections such that p 2jdiv(s)j and SUpopan ks(X)ky 1

forall v2 Mg. Then L is nef.

The idea of the following proof was suggested to me by José Burgos Gil.

Proof. We may assume thatV = B and, by Chow's Lemma and Proposition 3.1.8 (ii),
that there is a closed immersion' : B ! P{f. Consider the line bundle’ Opr (1) on B,
equipped with the metric ' Kk Kcany, at one placevp 2 Mg and with the metric * K Kean;y
at all other placesv 6 vg. This Mg -metrized line bundle is denoted byL. For each point
p 2 B(F) with function eld F(p), there exists a homogeneous coordinatg;, considered
as a global section ofOpr (1), such that p Zjdiv(’ x;)j and hence,

X X
h(p) = (W) logkx; " (P)Kcanw + (w)log2 log2> O: (3.3)
W2ME (p) W2ME (p)
WjVo

We extend the group of isomorphism classes oflg-metrized line bundles onB by

Q-coe cients and write its group structure additively. For i =1;:::;d, and a positive
rational number ", we setL;- :=L; + "L. Sincel; is nef, we obtain, by (3.3) and the
multilinearity of the heights, for each point p2 B(F),

he,.(P)=h (M + "he(p) "log2> 0: (3.4)

Now, we distinguish between number elds and function elds. First, let F be a number
eld. Since L~ is semipositive quasi-algebraic, there exists a sequence i )kzn that
converges toL;~ and that consists of Mg -metrized line bundles which are induced by
vertically nef smooth Hermitian Q-line bundlesL -y , k 2 N, on a common modelB
over the ring of integersOg. By propositions 1.3.6 (iv) and 1.5.11, we have, for alk 2 N
and all p2 B(F),

X
he,, ( he. () WA (K Kimow 1K K )
W2ME (p)

Note that the sum is nite and does not depend onp. Hence, by(3.4), there is ako 2 N
such that for all k ko and all p2 B(F),

hI-7i;";k (@) =h Limk (p) 0:

Thus, for all k ko, we have nef smooth HermitianQ-line bundlesL gy ;:::;L gk in
the sense of Moriwaki Mor00, Y 2]. So we can applyNlor00, Proposition 2.3 (1)], which
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also holds for number elds, to get

..... ~(B) O (3.5)

Next, let F be the function eld of a smooth projective curve C over any eld. Since
L~ is semipositive quasi-algebraic, there exists a sequenckif.x )x2n that converges to
Li» and that consists of Mg -metrized line bundles which are induced by vertically nef
Q-line bundlesL i~ , k 2 N, on a common model =, : B« ! C. As in the number eld
case, we can deduce, for su ciently largek's and for all p 2 B (F),

hEi;";k (p O (3.6)

By [Gub08, Theorem 3.5(d)], the height with respect to such algebraic metrizd line
bundles is given as an algebraic intersection number of the associatedadels. So, the

horizontally nef. Using that they are also vertically nef, it follows from Kleiman's Theorem
[Kle66, Theorem 111.2.1] that

heLy ety (B) = dege (( ) (ea(l p) iicn(L ) O (3.7)

Finally, by (3.5) for number elds and by (3.7) for function elds, we obtain, by continuity
of heights in metrized line bundles,
hr,..t, (B)= Ij{nohfl;" ..... Tar (B)= Ijlr!nOkI!ilm h— .. Can (B) O

---------- Ll;";k yeeny
proving the lemma. O

Now, we equip the eld K = F(B) with the structure of an M - eld induced by nef
guasi-algebraic metrized line bundles.

set of one-codimensional subvarieties oB. By Lemma 3.2.3, eachV 2 B® induces a
non-Archimedean absolute value orK given, forf 2 K, by

h— Wb(V) ordv(f);

jifiv=e MHus (3.8)
where ordy is the discrete valuation associated to the regular local ringOg.y . We equip
B® with the counting measure .

Let us x a place v2 Mg. Then we de ne the generic points of B" as

[

gen — an an.
BY" = B2"n v@n:
V2B®

Since eachv 2 B s contained in the support of the divisor of a rational function, a point
p2 B3" lies in B®" if and only if, for eachf 2 K , p does not lie in the analyti cation
(with respect to v) of the support of div(f ). Thus, eachp 2 BJ®" de nes a well-de ned
absolute value onK given by

itivp = jf (DI (3.9)
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If v is non-Archimedean, then this absolute value is justp. On B2" we have the positive
measure

v = Cl(ﬁl;v) non Cl(ﬁb;v);

as de ned in De nition 1.3.8 (non-Archimedean case) and 1.5.12 (Archimedan case). Each
V2", v 2 BM, has measure zero with respect to , by Corollary 1.4.5 (non-Archimedean
case) and by £T09, Corollaire 4.2] (Archimedean case). Sincé is countable, B is
also countable and thereforeB2@" n BJ" has measure zero with respect to ,. So we get a
positive measure onBJ®", which we also denote by .

In conclusion, we obtain a measure space

G G
(M; )=(BM; )t ( BN W); (3.10)
V2|V||: V2M|:

which is in bijection with a set of absolute values onK .
The following shows that (K; M ; ) satis es the product formula and so it is an M - eld:

Proposition 3.2.5. Letf 2 K , then the function M ! R, w 7! logjf jw is integrable
with respect to and we have the product formula
VA
logjf jw d (w)=0:
M

Proof. Let f 2 K be a non-zero rational function onB. Then, for almost everyV 2 B®,
we havef 2 Og,, . Hence, the function onB™ given by V 7! logjfjy is p -integrable.
For eachv 2 Mg, the function on BJ¢" given by p 7! logjf (p)j is v-integrable (see

guasi-algebraic, there is, by Proposition 3.1.11, only a nite number ofv 2 Mg such that
4

Joen 109IF (P D (P) 6 0:

Summing up, the function M ! R, w 7! logjf jw, is -integrable.
By the global induction formula 3.1.11, we obtain

Z X X Z
logjf jw d (W) = ordy (F) hir, .7, (V) + (v)  logjf ()i d v(p)
M v2B® \QMF B
= hg g (cye(f)) + (v) logjf (p)j d v(p)
V2M g By
= h63 ;Wl;:::;ﬁb(B)
= 0'
which concludes the proof. O

3.3. Relative Varieties over a Global Field

Let B be a normal proper variety over a global eld F and let : X! B be a dominant
morphism of proper varieties overF. We denote by K = F(B) the function eld of B and
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Chapter 3. Global Heights of Varieties over Finitely Generat ed Fields

by X the generic ber of ,thatmeansX = X g SpecK) is a proper variety over K. We
assume thatK is equipped with the structure of an M - eld induced by nef quasi-algebraic

the height h ... HyCoCn (X)) with respect to DSP quasi-algebraicM g -metrized line

bundlesL;. Note that the rst height is a sum of local heights over Mg whereas the second
is an integral over M. This generalizes Theorem 2.4 in [BPS14a] where the global eld is
Q and the metrized line bundles are induced by models ovez.

3.3.1. Let L =(L;(k ky)y) be an Mg-metrized line bundle onX. Then L induces an
M -metric on the line bundleL = L K on X given as follows:

For eachV 2 B(®, consider the non-Archimedean absolute valug jy on K from (3.8)
and let Ky be the completion of an algebraic closure of the completion oK with respect
toj jv. We get a properK,,-model

(Xv;Lv)=(X g SpecKy;L Ky)

of (X;L). By De nition 1.2.7, the model ( Xy ;Ly) induces a metrick ky on the analyti -
cation L&" over X §" with respecttoj jyv.

Let us x a place v2 Mg. By (3.9), a generic pointp 2 BJ®" induces an absolute value
j Jv;p on K. We denote byK,., the completion of an algebraic closure of the completion of
K with respect to j jv;p and by X the analyti cation of X with respectto j jy;p. Then
the projection X, g, SpecKyp ! X y induces a morphism

ip: XA IX 2 (3.11)

Note that iy is injective if v is an Archimedean place (cf. BPS14b (2.1)]), but not

necessarily in the non-Archimedean case. The analyti cationL 7%, of L with respectto j jv;p

can be identi ed with the line bundle i,L 5" and we equip it with the metric k ky;p 1= ik ky.
Summing up, we obtain anM -metrized line bundle

L=(L (k kw)wam) (3.12)
on X.

Lemma 3.3.2. Letip: X@y !X 3" be the morphism from (3.11) and : X{"! BZ" the
morphism of F,-analytic spaces induced by : X ! B. Then we have

ip(X§p) = H(p):

Proof. We only show this for a non-Archimedean placev, the Archimedean case is es-
tablished at the beginning of BPS14b, Y 2]. We may assume that8 = SpedA) resp.
X = SpedC) for nitely generated F-algebrasA and C. Then corresponds to an

injective F-algebra homomorphismA | C and we have X = SpedC A K) with
K = F(B) = Quot( A).
Let g2 X 2", that means g is a multiplicative seminorm on C ¢ Fy satisfying gjg, = | jv.

Then g lies inip(X Zp) if and only if it extends to a multiplicative seminorm g¢onC A Ky;p
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with €jk,, =] jv;p- This is illustrated in the following diagram,

A R —K,,

On the one hand, if we have such a commutative diagram, then
v(d)=da F =] Jupla F, =P
On the other hand, if () = p, then we have a multiplicative seminorm g-given by
C aAKwp=(C FFR) (a ryKup! H (@ Py pKup Y R o;

wherey is some element of the non-empty Berkovich spectrunM  H (q) Py mKvp (cf.

[Duc09, 0.3.2]). It follows easily that we obtain a commutative diagram as above. Ths
proves the result. O

We need the following projection formula for heights in the proof of the main theorem.

Proposition 3.3.3. Let :W /! V be a morphism of proper varieties over a global eld
F of dimensionsn+ b 1andb 1 respectively, withb;n 0. Let Hj,i=1;:::;b, and
Lj,j =1;:::;n, be DSP quasi-algebraic line bundles ok and W respectively. Then

...............

where W denotes the generic ber of . In particular, if dim( (W)) b 2, then

Proof. By continuity of the height, we may assume that the metrics in H; and L; are
smooth or algebraic for alli;j . We prove this proposition by induction on n. If n =0,
then we obtain by functoriality of the height (Proposition 3.1.8),

Let n 1. We choose any invertible meromorphic sections, of L, and denote by
k kn =(k kny)v the metric of L,. Then the global induction formula 3.1.11 implies

h Hi: Hyp Ll;:::;Ln(W) = Hi: HpLansLa 1(CyC(Sn))
X z b o mi
(V) logksnknv c( Hiv)" ci(Ljv):
V2MEg win i=1 j=1

. . A — . . .
If v is Archimedean, then £, ¢;(Hy) is the zero measure oV sincedim(V2@") = b 1.
Thus, the measure in the above integral vanishes and so the integral izero.
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If v is non-Archimedean, then the metrics inH.,, i = 1;:::;b, are induced by models
Hi of HS on a common modelV of \, over SpecF,. By linearity, we may assume that
e =1 for all i. Analogously, the metrics inLjy,j =1;:::;n, are induced by modelsL

of Ljy on a common modelW of W,.

We may assume that the morphism ,: W, ! V, extends to a morphism :W ! V
over Speck,. Indeed, let WO be the closure of the image of y in W F, V. Thisis a
proper model of W, equipped with morphisms % W%l V andf:W°! W such that

Gw, = vandk k., =k ki ;. Then replacew by W%and L by f Lj.

of a cycle of \E is zero. Hence, for every irreducible componeny of the special ber of W,
we have by means of the projection formula,

deg Haqo HpL 15 Ln 1(Y):degH1 """ Hb( (Cl(L l)Cl(Ln l)Y)):O

...............

Therefore, for eachv 2 Mg, the measure in the above integral vanishes and so the integral
is zero.
Finally, we obtain by the induction hypothesis,

----------

----------

proving the result. O

Theorem 3.3.4. Let B be ab-dimensional normal proper variety over a global eldF and
let Hy;:::;Hy, be nef quasi-algebraic line bundles oB. Let K = F(B) be the function
eld of B and (M; ) the assaociated structure of anM - eld on K as in (3.10).

Let : X ! B be adominant morphism of proper varieties oveF and X the generic ber
of . LetY be ann-dimensional prime cycle ofX andY its closure in X. For j =0;:::;n;
let Lj be anM -metrized line bundle onX which is induced by a DSP quasi-algebraic line
bundleL; on X as in (3.12).

Coin (Y) =h Hoo Holoiiln (Y) (313)

..........

Proof. By Chow's lemma (see, for instance, GW10, Theorem 13.100]) and functoriality
of the height (Proposition 3.1.8 (ii)), we reduce to the case when the per varieties are
projective over F. Then is also projective. By (multi-)linearity of the height (Propositi on
3.1.8(i)), we may assume that the line bundled.; are very ample and their M g -metrics are
semipositive. Making a nite base change and using Proposition 3.1.12, we ay suppose
that B and X are geometrically integral.

We prove this theorem by induction on the dimension ofY. If dim(Y)= 1,thusY = ;,
then Y is integrable since the local heights ofY are zero. Equation (3.13) holds in this
case becaus®’ is empty as well.
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From now on we suppose thatdim(Y) = n 0. Then the restriction jy:Y ! B
is dominant. By Proposition 3.1.8(ii), the height does not change if we retrict the
corresponding metrized line bundles toY. So we may assume thaty = X, Y = X and
n=dim(Y)=dim( X).

properly on X, and consider the function

M1 R, w7! (X;w):

(Cossojx )i(Lnssnix )

We must show that is -integrable and that
z
(w)d (w)=h

By the induction formula of local heights (Theorem 1.4.3 in the non-Archimedean and
Theorem 1.5.13 in the Archimedean case), there is a decomposition= 1+  into
well-de ned functions 1; 2: M ! R given by

1(w) = (Lo;soix );is(Ln 1:8n 1jx)(CyC(San);W)

and z
2W) = 10gksnix, Knw Ci(Low) " calln sw):

Moreover, we can write the cycle cyc§,) in X as
CYC(Sn) = €yc(Sn) nhor=B * CYC(Sn)vert=8;
where cyc(sn) nor=g CONtains the components which are dominant oveB and cyc(Sn)vert=g

contains the components not meeting the generic berX of

By the induction hypothesis, the function 1 is -integrable and
Z

= Ao ApLoiiln 1(CyC(Sn) hOI’=B): (314)

If w=V 2 B®, then we just can copy the corresponding part of the proof of BPS14h
Theorem 2.4]. In this case we obtain

X
(V) = N o, (V) OFdw (Sn) deg g, (W) (3.15)

e
W)=V

where W\, denotes the generic ber of jw: W ! V. This formula implies the integrability
of » on BM with respect to the counting measure , because there are only nitely
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many W 2 X ) such that ordw (s,) 6 0. By (3.15) and Proposition 3.3.3,
Z X
2(w)d p(w) = 2(V)
vgB®
= hﬁl;:::;ﬁb(v)ordw (Sn)degLo;ZZZ;Ln 1(WV)
v2B@® wax @
(W)=V
X X

= ordw (Sn) P &, HyTonTn (W)
V2B® wax @

B@

(W)= V
+ ordw (sn) h Hi; Hplopiln 1(W)
dim( (W)) b 2 =0
= h Wl::::: ﬁb;fo;:::;tn l(CyC(Sn)Vel‘t:B): (316)

Now, let v be a place ofMg and p a generic point of B&". We have to show that the

function
Z m 1

2(p) = logipksn kn;\% Ca(i ptj;v)
X =0
is integrable with respectto , = ¢;(H1y)® * c1(Hpy). Furthermore, we have to prove
that

Z Z m 1 o)

2Pd v(P) = logksakyy b))t ol Hi) o @17)
v j=0 i=1

B\g/;en

and that this integral is zero for all but nitely many v 2 Mg.
If v2 Mg is an Archimedean place, then the proof of BPS14b, Theorem 2.4] shows that
2 is y-integrable on BZ®" and that the equation (3.17) holds.

From now on, we consider the case where 2 Mg is non-Archimedean. We rst assume
that, foreachj =0;:::;n 1landi=1; ; b, the metrics on L, and Hj, are algebraic.
Then the function 5 is -integrable because , is a discrete nite measure.

We choose, for each, a proper model (X ;L j;g) of (Xy;Ljy) over SpecF, that induces
the metric of fj;\,. Note that we omit the place v in the notation of the models in order not
to burden the notation. By linearity, we may assume that g =1 for all j. Furthermore, we
can suppose that the modelsX; agree with a common modelX with reduced special ber
(cf. Remark 1.2.13). In the same way, we have a propef,-model B of B, with reduced

metric. As in the proof of Proposition 3.3.3, we can asume that the morphism : Xy ! By
extends to a morphism : X ! B overF,.
To construct a suitable model of Xy, = X« SpecKy;, over K,.,, we consider the

commutative diagram
SpeKyp —/B

SpecF, —/SpecF :
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3.3. Relative Varieties over a Global Field

The universal property of the ber product induces a unique morphism SpecKy,, ! By.
BecauseB is proper over F, and by the valuative criterion, this morphism extends to
SpecK,, ! B. Let X, be the ber product X g SpecK,.,. This is a model of Xy
over K., indeed

:BV

We denote the special bers ofB, X and X , by B, X and X, respectively. By 1.1.8,
there exists a formal admissible schem&,, over K., with generic ber X5" = X} and

with reduced special ber X, such that the canonical morphism ,: X, ! X, is nite and
surjective. We obtain the following commutative diagram

= i v
X\e,‘;?) //X\";‘;'E, P //X\;"‘” //B\z;m

red

SIS LI G [ Y

red red red

where red is the reduction map from 1.1.6 and 1.1.8. Note thatd , = X o Ryp.
By De nition 1.2.14, the left-hand side of equation (3.17) is equal to
z z m 1 B b o
logipksnkny  Caliphiv)  ca(Hiv)(p) (3.18)
By X3 j=0 i=1
X X _ )
= logksn(i , ( v))kn.y deg i 8 )18 (V) degy, ..., (2);

720 yv2gO
VA

where 7 (resp. v) denotes the unique point whose reduction is the generic point oZ
(resp. V).

First, we consider the inner sum. LetZ be an irreducible component oft with generic
point 7z = red( z). For W 2 X (Zo), let w= v foranyV 2 X(CZ)) with (V)= W. Then
i, ( w) does not depend on the particular choice oV. Hence, Lemma 3.3.5 below implies

logksn (i , ( v))kny deg | L8 V)
VZQ(O) zZ°Z k=0 ;:;n 1
z
X
= logksn (i , ( W))kn;\l, m W; X , deg. e W); (3.19
sze(o) ! z k=0 ;n 1
z
where m W; X , denotes the multiplicity of W in X S
By [EGAI, Ch. 0, (2.1.8)], there is a bijective map
n [0}
Y2XOjqv)y=z 1+ XO; vy71 v,: (3.20)

The special ber of B is reduced and hence, applyingBer90, 2.4.4(ii)] and using the
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Chapter 3. Global Heights of Varieties over Finitely Generat ed Fields

compatibility of reduction and algebraic closure, we deduceR,. , = I—I|\ (z2)= (2).
Therefore, X , = X ¢ Ry, , is the base change of the berX , = X o (2) by
(z2)! ( z). Thus, by [Stal5, Lemma 32.6.10], we obtain a surjective map

X O o (3.21)

Composing the maps (3.20) and (3.21), we get a canonical surjective map

n (0]
XO1 vy xXOj«y)=z

with nite bers. More precisely, for each irreducible component Y in X with ~Y)= Z,
the schemeY , = Y 7 SpecR,., is a nite union of (non-necessarily reduced) irreducible

components ofX (Zo). Sincei ,( w)= vy for W 2 Y(Zo), we deduce
logksn(i , ( w))knt m W;X , deg. P (W)
j .
sze(o) Z k=0 ;::; n 1
z X
= logksn( v)k,i deg . (Y,): (322
: o z
Y2)(€(0) z k=0 ;:; n 1

~(Y)=2

Let Y be an irreducible component of¥ with generic point v such that (YY) = Z.
Then Lemma 3.3.6 below shows that

deg ;L. 1 Hise H(Y)=deg. & L8, l(Yz)deng;:::;Hb(Z): (3.23)
z z

Combining the equations (3.18), (3.19), (3.22) and (3.23), we obtain

Z Z m 1 B b o
- logipksnkny  ca(ipliv) ci(Hiv)(p)
B)Z X @ i=0 i=1
= logksn ( Y)kn;\% deg_o;:::Ln 1; Hap Hb(Y)
Z2EO Y2xeO
~(Y):Z

logksn ( Y)kn;\lx deg ;inL, 1 Hins Hb(Y)

Y 2 X€0)
4 m 1 o b o
= logksnkny  a(ljv)™ e Hiv)
Xgn j=0 i=1

using in the next-to-last equality that, for an irreducible component Y of X with
dim(~(Y)) b 1, the degree is zero. This proves equation (3.17) in the algebraic
case.
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3.3. Relative Varieties over a Global Field

again show that , is -integrable and that the equality (3.17) holds.

model (L j;X ) of (Ljyv;Xy) over F, inducing the corresponding metric. We choose any
projective model B over F, of the projective variety B, and suppose, as in the previous case,
that : X, ! B, extends to a proper morphism : X ! B. BecauseX, is projective
over Fy and by [Gub03, Proposition 10.5], we may assume thatX is projective over F,
and thus, is projective. Using Serre's theorem (seeW10, Theorem 13.62]), the line
bundle L j is the di erence of two very ample line bundles relative to . By multilinearity

of the height, we reduce to the case wheré& j is very ample relative to . BecauseB

is projective over F,, we deduce by GW10, Summary 13.71 (3)] that there is a closed

immersionfj: X | P:;'j suchthat L j " f; OPNJ- (2).
B

For projective spacesPVi, j =0;:::;n, let P:= PNo PNn be the multiprojective
space and letOp(g; ) be the pullback of Opy; (1) by the j-th projection. Since B is geomet-
rically integral, we have the function eld K, = F,(By) and we dene X, = Xy, g, Ky
andLjy = Ljy Ky. We obtain the following commutative diagram

o f |
X B. SpeCKv:p - ./.PKv;p

P e

L D
XV:IO : ! PKv;p
° f
o X /Py
Xy — 9  Jp, ,

Note that each horizontal arrow is a closed immersion becausk is a closed immersion
and the other morphisms are obtained by base change.

Let p2 BY®". Then the metric kK ky;p = igk ky onLjyp = ngPKV;p (g) is induced by
iply = ipf Ops (8)= 0, _(&):

Hence,Ljy,p = gpﬁpKv;p (g), where 6pKV;p (g) is endowed with the canonical metric. By
Proposition 3.2.5, the eld K, together with (BJ®"; ) is a BJ®"- eld in the sense of
[Gub02, 5.2]. Therefore, [Gub02, Proposition 5.3.7(d)] says that everyn-dimensional cycle

on Py, is y-integrable on BJ®" with respect to Op,  (€o);:::;Op,, (€n). Since integrability
is closed under tensor product and pullback (see 3.1.6), the local hghit is -integrable
on BJ®". By the induction hypothesis, we deduce that ; = 1 is also -integrable on
Bgen.

For proving the equality (3.17), we study in more detail. We can choose global sections

(idiv(g to)i [ div(sow)i)\  \ (jdiv(g tn)i[J div(snv)))\ Xv = ;-

67



Chapter 3. Global Heights of Varieties over Finitely Generat ed Fields

Then we get, by Proposition 1.3.6 (iii)) and (v),

(p) = (Losso);is (fn;Sn)(X;p)

X
(Opy, (€0)ito);7::5(Opy, (en)itn) (g Xv);p+ IOg (YJ) ; (3.24)
j=0 vip

whereY; is any zero dimensional representative of the re ned intersection
div(g to) :::div(g tj 1):div(Sj+1.v) :i:div(Sny): Xy :

We can express in terms of the Chow form of the n- dimensional subvariety X, of the

PE"V (see Bub02, Remark 2.4.17] for details). By (3.24) and Gub02, Example 4.5.16], we
obtain

. . tj
(P) =100 Fx,jup  10gjFx, (to; 353 tn)ivp + iy (3.25)

j=0 iV v;p

where in the rst term we use the Gauss norm and in the second ternt; denotes the dual
coordinate oft;.

The next goal is to express (p) in the form logksk in order to apply the induction
formula (Theorem 1.4.3). The last two summands in(3.25) already have this form since
a rational function is ag |nvert|ble meromorphic section on the trivial bundle. For the
rstterm, let Fx,( )= ,,am ™,wherean 2 Ky, =( ¢:::; ,)and we use the usual
multi-index notation. Slnce Fx, is only unique up to multiples of K, , we may assume
that there exists an m®such that ano= 1. Let N be the number of the multi-indices m
with a;,, 6 0. We consider the rational map

1By 99KPY 1 x 7! (am (X)) m:

Using a blow-up of B, as in [Har77, Example 11.7.17.3] and functoriality of the measure
(Proposition 1.3.11 (ii)), we may assume that is a morphism. Letk k be the pullback of
the canonical metric on OPN 1(1) and let xmo be the coordinate ofPN 1 corresponding to

m©¢ considered as a global section oD(1). Then we have
1 _ am _ . . . . .
logk  xmo(p)k * =log max %(p) = logmax jam (p)j = log jFx, jyp :

Hence, (p) is of the form logksk for a suitable DSP metrized line bundle onB, and an
invertible meromorphic section s.

Now, for eachi = 1;:::;n, we choose a sequence of algebraic semipositive metrics
(k Kivk)kan On Hiy that converges to the semipositive metrick ki, on H;. Denote
Hivik = (Hiv;k kivk) and set

vk = Cl(ql;v;k) A A Cl(ﬁb;v;k):

R
Applying, for each k 2 N, the induction formula (Theorem 1.4.3) to Bgen (Pd vk(p),
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3.3. Relative Varieties over a Global Field

then using the continuity of local heights with respect to metrics (see 1.3.5) and applying
the induction formula again, we obtain
Z Z
lim (P d vik(p) = (Pd v(p: (3.26)

kll Bgen Bgen

Analogously we can show this for the local height 1 and hence, we get
Z Z

lim 2(p)d vik(p) = . 2(p)d v(p): (3.27)

k | 1 B 9en \?eﬂ

On the other hand, using Theorem 1.4.3 as above,

z m1i o o
k1 Xan i=0 i=1

z m1i b o
X j=0 i=1

Thus, the equality (3.17) for semipositive metrics onH;,, and algebraic metrics onLjy
follows by (3.27), (3.28) and the algebraic case.

In the last step, we assume that the metrics onH;, and L, are semipositive and not
necessarily algebraic. We can proceed similarly to the correspondinpart in [BPS14h,

(k Kjvik )kan on Ljy that converges tok ki, . For p2 B{®", we set

Z m 1

2k (p) = logipksnkpvy  CalipLjvi):
X & =0

A

By the induction formula 1.2.16 and Proposition 1.2.12 (iii), we obtain for ead k;1 2 N,

I 2x(P) 21(P)i = (Lo :50);::5 (Lnk :Sn)(X;p) (Lo :s0)i5(Ln 1k3Sn 1)(Cyc(san);p)

..........

X
d(k kj;V;k K I(J';V;I )degLo;:::;Lj 1L+ siibon (X)
i=0
X 1
+ d(k Kjvik ik K )dEQLo;:::;Lj 1iljer ln L(cyc(snjx )):
j=0
Hence, the sequence {x)k2n converges uniformly to . The measure , has nite total
mass and, by the previous case, the functions,.x are -integrable. So, we deduce that ;
is y-integrable and that
Z Z
lim 2xd v(p) = 2(p)d v(p):

k11 ggen ! ggen

Thus, using (3.17) for the functions 2 and applying the induction formula 1.4.3, the
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Chapter 3. Global Heights of Varieties over Finitely Generat ed Fields

equality (3.17) also holds in the case when all the metrics are semiposit.
By Proposition 3.1.11, the integral in (3.17) is zero for all but nitely many v 2 Mg

because the line bundles H1;:::; Hy, Lo;:::;L, are quasi-algebraic.
In conclusion, the function = 1+ 5 is -integrable and we obtain, by using the
induction hypothesis (3.14), (3.16), (3.17) and the global induction formula 31.11,
z z X z
hrpenD, (X) = i(w)d (w) + 2(w)d (W) + (v) 2(p)d v(p)
0 M B@ Bgen
V2ME v
= h Haqi Wb;to;:::;fn 1(Cyc(sn) hor:B)
+ h Hqin Wb:fo;:::;fn l(cyc(sn)vert=B)
X z m 1 o nb o
+ (v) logksn kn;\l/ ca(Lbjv) " ci( Hiv)
V2ME X j=0 i=1
=h Hy W“ﬁ;ﬂ;(x)
proving the theorem. O

Lemma 3.3.5. Let notation be as in the proof of Theorem 3.3.4, in particular W 2 X (20).
Then,

§ (V)=m(W;X ) deg.

v2g©
,(V)EW

wherem W;X  denotes the multiplicity of W in X .

Proof. In order not to burden the notation, we omit each . For V 2 (@ the projection
formula says

deg (V) =[K(V) :KC (V)deg ;o

k=0 ;::;n 1 k=0 ;:;n

((v): (3.29)

Let be any non-zero element in the maximal ideaK,. , . Applying the projection formula

in [Gub98, Proposition 4.5] to the Cartier divisor div( ), we get (R) = cyc(X ). This
implies

[K(V) : K(W)]deg (W) =m(W:;X )deg . (W): (3.30)
LQ k=0 ;:n 1 ! Le( k=0 ;n 1
V28RO - -
(V)=w
The statement follows from (3.29) and (3.30). O

Lemma 3.3.6. We keep the notations of the proof of Theorem 3.3.4. Then,

.....
.....

P
Proof. Let waxem Nw W be any cycle representingci(L o) :::ci(Lnh 1):Y 2 CHb()f )
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and letj , be the projectionX , ! X . Since~ (W) =0if dim( (W)) b 1, we obtain

X X
W = nw K(W):K(=(W)) ~W)

W 2 xe(n)
dim>%~ (W)=n

nw K(W):K(Z) Z

w2 xe(n)
_~(W):Z
X

w2xem "W

= deg nwW, Z

w2 xem)
=deg o ,Uo):ial U )Y, Z
=deg gy g ,(Y2) Z:

.....

deg_o;:::;Ln 1, Hay Hb(Y)

proving the result. O

3.4. Global Heights of Toric Varieties over Finitely
Generated Fields

Following [BPS14b, Y 3] closely, we apply the theory of toric varieties developed inrgPS144
and Chapter 2, to get some combinatorial formulas for heights of non-toric variées over
global elds. Indeed, our non-discrete non-Archimedean toric geometryis necessary since
the measure spacev from (3.10) contains arbitrary non-Archimedean absolute values, in
contrast to the measure space considered in [BPS14b, Y 1].

As usual, we x a lattice M ' Z" with dual M- = N and use the respective notations
from Chapter 2.

At rst, we consider an arbitrary M - eld K with associated set of absolute value$
and positive measure on M. Let be a complete fanin Nr and let X be the associated
proper toric variety over K with torus T = SpecK [M].

3.4.1. Let L be atoric line bundle onX . An M -metric k k=(k ky)yvam onL is toric
if, for eachv 2 M, the metric k ky on Ly is toric (see De nition 2.4.1). The canonical
M -metric on L, denotedk Kkcan, is given, for eachv 2 M, by the canonical metric onL,
(see De nition 2.4.12). We will write L°" = (L; k Kean).

Let s be a toric section onL and the associated virtual support function. Then a
toric M -metric (k ky)y on L induces a family of real-valued functions onNg

Lisv v2M
as in De nition 2.4.6. If k k is semipositive, then each ., is concave and we obtain a
family #-.., ., Of concave functions on  called v-adic roof functions (cf. De nition
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2.6.4 and Remark 2.6.7). WhenL and s are clear from the context, we also denote .,
by v and#-_ by #,.

L;s;v
Proposition 3.4.2. For eachi =0;:::;t, let L; be a toric line bundle onX equipped
with a DSP toric M -metric and denote byL;"" the same toric line bundle endowed with

the canonical M -metric. Let Y be either the closure of an orbit or the image of a proper
T—can T—can

toric morphism, of dimension t. Then Y is integrable with respect toL, ;:::;L; and
hl_ﬂ(:)an;::;ftcan (Y)=0: (3.32)
Furthermore, if Y is integrable with respect toLo;:::;L¢, then the global height is given by
Z
hfo;:::;ft(Y) = M tfo(:;:::;ft (Y:vyd (v); (3.32)

Proof. The rst statement and equation (3.31) can be shown using the same argumda as

in [BPS14a Proposition 5.2.4]. Reducing toY = X andLg = = L, = L, the proof

is based on an inductive argument over the dimension oK , using, for eachv 2 M, the

local induction formula and the fact that, for a toric section s of L, we have as in (2.23),
Z

T (Yy) is the toric local height from De nition 2.6.1.

T—can n .
x an |Og kskcan;v Cl LV = 0 .

The second equation follows easily from the rst one. O

Corollary 3.4.3. Let L = (L;(k ky)v) be a toric line bundle onX equipped with
a semipositive toric M -metric. Choose any toric sections of L and denote by the
corresponding support function on . If X is integrable with respect toL, then
zZ Z
ho(X )=(n+1)! y #rg, dvoly d (V):

Proof. This is a direct consequence of Proposition 3.4.2 and the formulas for thiric local
height (Theorem 2.6.6 if v is non-Archimedean, and [BPS14a, Theorem 5.1.6] else). [

Now we consider the particular case of arM - eld which is induced by a variety over a
global eld as in section 3.2. Let B be ab-dimensional normal proper variety over a global

the function eld K = F(B) with the structure (M; ) of an M-eld as in (3.10). Let X
be ann-dimensional proper toric variety over K with torus T = SpecK [M ], described by
a complete fan in Nr. We choose a base-point-free toric line bundlé. on X together
with a toric section s and denote by the associated support function on .

Let : X! B be a dominant morphism of proper varieties overF such that X is the
generic ber of . We equip L with a toric M -metric k k such that L = (L; k k) is induced
by a semipositive quasi-algebraid r -metrized line bundle L on X as in (3.12). Then it
follows easily that L is also semipositive and so, for eacki 2 M, the function  is concave.

The following result generalizes Corollary 3.1 in BPS14l], where the global eld is Q
and the metrized line bundles are induced by models over. It is essentially based on our
main theorems 2.6.6 and 3.3.4.
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Corollary 3.4.4. Let notation be as above. Then the function
4
M! R, wT7! #L s (M) dvoly (M) (3.33)

is -integrable and,
Z Z
h & .. Ay Conr(X) =h (X)) = (n+1)! y #y(m)dvoly (m)d (w): (3.34)
Proof. By Theorem 2.6.6 (non-Archimedean case) andgPS14a Theorem 5.1.6] (Archime-
dean case), we have
VA

(n +1)! #y dvoly = tg’glw_::_fnw (Xw): (3.35)
Hence, Theorem 3.3.4 implies the -integrability of the function (3.33). The rst equality
of (3.34) is Theorem 3.3.4. The second follows readily from (3.32) and (3.35). O

Proposition 3.4.5. We use the same notation as above.

(i) For each m 2 , the function M ! R, w7! #,(m)is -integrable.
(i) The function 7
#rs: ' R, m7! y #rsw (M)d (W)
is continuous and concave.
(i) The function M ' R, (w;m) 7! #u(m) is ( voly )-integrable.
(iv) We have
Z
h Hyo Wb;f;:::;f(x) =h f(X) = ( n+ 1)' #Es(m) dvoly (m),

where #i is the function in (ii).

Proof. The proof of (i) (iii) respectively (iv) is analogous to [ BPS14b, Theorem 3.2 respec-
tively Corollary 3.4] using Corollary 3.4.4 in place of BPS14h Corollary 3.1]. It utilizes in
an essential way that#,, is concave (see Theorem 2.5.8 and Remark 2.5.9). O

3.5. Heights of Translates of Subtori over the Function

Field of an Elliptic Curve
In [BPS14b, Y 4], the corresponding formulas in section 3.4 are particularized tohe case
when X is the normalization of a translate of a subtorus in the projective spaceand

canonical metrics. We will recall their statements in our setting and apply these to the
case of the function eld of an elliptic curve.

be nef quasi-algebraicM g -metrized line bundles onB. We equip K = F(B) with the
structure (M ; ) of an M-eld as in (3.10).
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For r 1, let us consider the projective spacd®’; = Pr ¢ B over B and the universal
line bundle Op; (1). We equip Op; (1) with the metric obtained by pulling back the

canonical Mg -metric of Op: (1) and denote this by O(1) = Ogy, (1).

Form; 2Z"andf; 2K ,j =0;:::;r, we consider the morphism
mK ! o t7l (fot™o: f ™),
wheref;t™ = f;t{"* ™" . For simplicity, we assume thatmgo =0, fo =1 and that

morphism. Then Y is a translated toric subvariety of Pj, (cf. [BPS14a De nition 3.2.6]),
but not a toric variety over K since it is not necessarily normal.

Let Y be the closure ofY in Py and let :Y ! B be the morphism obtained
by restricting Py ! B. Our goal is to compute the arithmetic intersection number
h - m;m;:::;mm using formula (3.34). SinceY is not necessarily normal, we

consider the normalization X of Y and the induced dominant morphismX ! B which we
also denote by . Then the generic ber X = X g K is a G« -toric variety over K. Let
L be the pullback of O(1) to X and L the associatedM -metrized line bundle onX as in
(3.12). Then L is a toric semipositive M -metrized line bundle on X .

Analogously to [BPS14b, Proposition 4.1], we have the following description of the
associatedw-adic roof functions.

Proposition 3.5.1. Let notation be as above and les be the toric section ofL induced
by the sectionxy of O(1). The polytope assaociated tqL;s) is given by

=conv( mo;:::;my)
and, for w 2 M, the w-adic roof function #,,: ! R is the upper envelope of the extended
polytope  R" R given by
( .
_conv(mj; hg g (V)ordy(fj)j=ouyr i ifw=V2 BO:
conv (mj;logjfj (pP)jv)j=o:r 5 if w=p2B¥hv2 Mg:

Now we di er from the setting in [ BPS14h Y 4] and consider the special case of the
function eld of an elliptic curve equipped with a canonical metrized line bundle. Note
that in this case non-discrete non-Archimedean absolute values naturé} occur.

3.5.2. Let E be an elliptic curve over the global eld F and let H be an ample symmetric
line bundle on E. We choose any rigidi cation of H, i.e. 2 Ho(F)nf0g. By the
theorem of the cube, we have, for eaclm 2 Z, a canonical identi cation [m] H = H m? of
rigidi ed line bundles. Then there exists a unique Mg -metric k k =(k k., )y on H such
that, forall v2 Mg, m 2 Z,

Ml k ky =k k™

For details, see BG06, Theorem 9.5.7]. We call such anM g -metric canonical because
it is canonically determined by H up to (jajy)vam,. for somea2 F . By [Gub07a 3.5],
the canonical metric k k is quasi-algebraic and, sinced is ample and symmetric, it is
semipositive.

The global height associated toH = (H; k k ) is equal to the Néron-Tate height iy (see
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[BGO6, Corollary 9.5.14]). In particular, it does not depend on the choice of the anonical
metric. SinceH is ample, we have k- = iy 0.

For eachv 2 Mg, the canonically metrized line bundleH induces the canonical measure
ci(Hy) = ci(Hy;k k. ) which does not depend on the choice of the canonical metric (see
[Gub07b, 3.15]) and which is positive. It has the properties

ci(HV)(E2") =degy (E) and [m] ci(Hy) = m2cy(Hy) forall m 2 Z:

For a detailed description of these measures, we have to considerrére kinds of places
V2 MF.

(i) The set of Archimedean places inMg is denoted by M} . For v Archimedean,
EZ" = E(C) is a complex analytic space which is biholomorphic to a complex torus
C=(Z+ Z ), = > 0. The canonical measurec;(H) corresponds to the Haar measure on
this torus with total mass degy (E).

(i) The set of non-Archimedean placesv with E of good reduction atv is denoted by
M S For such av, the canonical measureci(H ) is a Dirac measure at a single point of
E2". Indeed, let E, be the Néron model ofE, over F,. SinceE has good reduction at
v, the schemek, is proper and smooth, and its special berk, is an elliptic curve over
Fy. Let , be the unique point of EZ" such that red( ) is the generic point of &,. Then
cy(Hy) = degy (E) .

(iii) The set of non-Archimedean placesv with E of bad reduction at v is denoted
by M2. Let v2 M®, then EZ" is a Tate elliptic curve over Fy, i.e. EZ" is isomorphic
as an analytic group to G3,=¢f, where Gp, is the multiplicative group over F, with
xed coordinate x and g is an element ofGn.v(Fy) = F, with jgjy < 1 (see, for instance,
[BGR84, 9.7.3]). Denote bytrop: G&, ! R, p7! logp(x), the tropicalization map and
set := logjgyZ. Then we obtain a commutative diagram

trop
Gy ——R

fop
E2" R=":

Consider the continuous section : R! Gg, of trop, where (u) is given by

X
mX™ 7! maxj mjexp( m u) (3.36)
m27 m2Z

as in 2.4.7. UsingEZ" = Ga) =cf, this section descends to a continuous section

:R= ! E@& of trop. The image of is a canonical subsetS(E@") of E&" which
is called the skeletonof EZ". By [Ber90, Ex. 5.2.12 and Thm. 6.5.1], this is a closed subset
of E&" and trop restricts to a homeomorphism from S(E&") onto R= . By [Gub07b,
Corollary 9.9], the canonical measure g(H,) on E2" is supported on the skeletonS(E2a")
and corresponds to the unique Haar measure oR= , with total mass deg, (E).

Recall that we consider the morphism

mk ! Pk t70 (@ofgt™Mi o ft™n)
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with my:::;m, 2 Z" generatingZ" as a group andf;;:::f; 2 K = F(B) . The closure
of the image of this morphism in P; is denoted byY.

Corollary 3.5.3.  With notations as above, we particularize to the case where the viaty
B is an elliptic curve E over F and H is an ample symmetric line bundle onE together
with a canonical Mg -metric as in 3.5.2.

Then h WTQ;:::;W(Y) is equal to
z x Z z
deg, (E) #p (X) dvol(x) + #p(x) dvol(x)d Haar(P)
P2C VAVF:
X Z X Z Z :
+ # ,(x) dvol(x) + # ((x)dvol(X)d paar(T) ;

R=
g
v2Mm{ v2aMm P Y

(n+1)!degy (E) ——

is the Lebesgue measure oR" and naar is the Haar probability measure of the respective
space.

Proof. Since the height is invariant under normalization, we haveh

h & 0(X). We get the result by Theorem 3.3.4, Corollary 3.4.3, Proposition 3.5.1 and
the description in 3.5.2. O

Example 3.5.4. Let F = Q and let E be an elliptic curve over Q with origin O and
j -invariant j. For simplicity, we assume that E has good reduction at 2 and 3. ThenE is
given by an (a ne) Weierstray equation

gx;y):=y?> (x3+ Ax+B)=0 (3.37)

with coe cients A;B in Z, which is minimal at each placev 6 2; 3 (cf. [Sil92, Proposition
VI11.8.7]). This Weierstray equation also de nes a model E P2 of E over Z. We set
A= 0O(EnfOg) = Z[x;y]=(g). Then we haveK = Q(E) = Quot( A).

family fo;:::;f 2A K of pairwise coprime polynomials withfg = 1 as before. Then
=[0 ;r]. Letw2 M and #,: [0;r]! R the w-adic roof function. We have to consider
four cases corresponding to the four summands in Corollary 3.5.3.

() Let w= P 2 ED If P = O, then Ay (P) =0 and thus #o 0. Otherwise, there is
Since orcb (fo) =0, An(P) 0 and orde(fi) 0O, Proposition 3.5.1 implies
Z, 1
#p(X)dx = éﬁH (P)ordp (f,): (3.38)
0

(i) Let w= p2 E(C)%". By Proposition 3.5.1, we obtain

o (00! R;Xﬂo max logjf«(p)j !ongj(p)J(

X ko K | x j)+logjfj(p)j : (3.39)
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In particular, #,(0) =log jfo(p)j = 0. We deduce

‘r X1, ()
- - P
. Hp(x)dx = #Hp(i) + >

i=1

By [Sil94, Corollary 1.4.3], there exists a unique lattice C such that the map
C= 1! E@©); z7' }(@2:3}%2);

is a complex analytic isomorphism of complex Lie groups, wheré is the Weierstray
} -function associated to . Then,

VA Z,
#P(X) dxd Haar(p)
E(C)%en 0
Z 1 #
_ 1 X . (4 (2):41 %2y (1)
Tvol() e o @iy )+ — 5 ———dz  (3.40)

with #, (2):1}9z)) @S in (3.39) and where vol() denotes the covolume of .

(iii) Let w=p2 EJ", v 2 Mg. Then the schemeE, = E 7 SpecC, is proper and
smooth overC,. Thus, the special ber & is an elliptic curve over €, = F,. By Corollary
3.5.3, we have to study the unique point , 2 EZ" such that red( ) is the generic point of
. By [Kna00, Theorem 2.4], the local ringOg, .req( ,) admits a real-valued valuation ord,.
Then  is given by log y = ordy. In particular, logjfi( v)j 0 andlogjfi( v)j < O if

z

;
# ()dx = ordy(f)
0

2

: (3.41)

(iv) Let w=p2 E¥" v 2 Mg. Since E has bad reduction atv, we have for the
j -invariant jjjy > 1. Thus, by [Sil94, Theorem V.5.3], there is a uniqueq, = g2 Q, with
jaiv = jjjy * < 1 such that Ey is isomorphic overC, to the Tate curve Eq de ned by

y@+ x4%= x®+ AQg)x°+ BYq); (3.42)

where AYq) and BYq) are universal integral power series inq that converge in Q,. By
[Sil94, Theorem V.3.1], we get an isomorphism of analytic group$Ga, = ! EJ" given
on the Cy-rational points by

( (xAw); yAw)) ;  if w2 o

w o 7!
q O; if w2 of;
where
R n » n
qw ng
xq(w) = 3.43
0( ) =1 (1 qnW)2 o1 1 qn ( )
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and
X q2n w2 » ng"

1 q”W)3+ 4 1 q”:
n=1

yqw) =

(3.44)
n=1

By the change of coordinates(x;y¥) = x%+ 5; y%+ 1x0 | the elliptic curve E4 can be
written in the form

¥W=x3+ Ax+ B (3.45)
- - 3 - — 1 1 :
where A = A(q) = AYq) 13 and B = B(g) = BYqg) $5A%qQ) + 454 are power series

in g with coe cients in Z[1=6]. Let , = = (AB=AB)™2. Using the proof of [Sil92,
Proposition 111.1.4 (b)], we have the following relations between the coordinates,
(xy)= 9 Uy = 0 X% 0y 0 (3.46)

As in the Archimedean case (ii), we get

z zZ,
- # (@ (x)dvol(x) d Haar (U)
R= logjgvZ O
1 Zoogiii X o _
ool 0, @WT P ede 347

where (U) is de ned after (3.36) and # (g is given as in (3.39) with the values

logifi( (@)j=log fi *(xIw)+ &) yAw)+ 3xqw) (3.48)

Conclusion: Inserting (3.38), (3.40), (3.41) and (3.47) into the formula of Corollary 3.5.3,
the arithmetic intersection number h WW‘@(Y) is equal to

Z 1
X # 1 (n
An (P)ordp (f,) + w #4 @iy dey () % dz
P2jdiv(fr)j vol() C= =1
X logjjjv X # (1
deg, (E) ordy(f;) + w # () + (“2)( ) du;
where, forp= (U) 2 EJ*" and p=(} (2); %} Yz)) 2 E(C)%",
. logjf i logjfi(p)j,. . . .
wp()= max  CHKPL OOy g 0 (349)
i |kk r k J
|6

Example 3.5.5. We keep the assumptions and notations from Example 3.5.4, choosing
now r = 2 and the specic functions fog = 1, f; = y and f, = px for a prime p. For
simplicity, we assume that E has good or multiplicative reduction at each place ofQ (cf.
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Remark 3.5.6). Then the concluding formula in Example 3.5.4 can be furtlkr simpli ed:

The zeros off, = px are (0; P B) and ord(o; Pg) (f2) = 1. Furthermore, if v = p, then
ordy(px) = logjpjp = log(p), and otherwise, ord,(px) = 0.

In the case of bad reduction, i.e.v 2 Mg, we have to computelogjf (x(w);y(W))] (-
Recall that in this casev 6 2; 3. First, we considerjy(w)j () for u2 (0; logjqjy). For
v = asin (3.46), we obtain, by (3.46), (3.43) and (3.44),

3 X W+ 2" w2
ywi= ° xwig+ ywig = o ﬁ5 (3.50)

n=1

For n 0, we havejq'wj () = jgjy exp( u) < 1. Thus, for eachn 0,

qnW+ q2nW2 _ 5 X B . . o, , o |
@ oqwy T WA T MR s T, = Iy el w:

Sincejqi¥ exp( u) < jqj, exp( u) for k >1 0, we obtain

ps o'w + q2nWZ

o @ gw? = exp( u): (3.51)

(u)

Forn< Oandu 2 O;logjg, !, we have g®"w? w > w2 w > jd"wj > 1, and

therefore,
2N \p2
M = m = jq'wj
Y S (W)
Sincejafwj i, < jdwj , for k < 1, we deduce
q(l qqnw)3 = q'w = jdvexp(u): (3.52)

n=1 (u)

Using (3.48), (3.50), (3.51), (3.52) and % v = 1, we conclude

C | .

. . . j iZexp( u); ifO<u<  3Zlogjdjy;

ifaC @)= iyw;j wy = . .a . . . . (3.53)
! 7} PBigyexpu); if Llogjgy<u< logjgy:

Sinceu 7! jy(w;q)j (y) is continuous, we can replace < by in (3.53). Analogously,
one can show that

(exp( u); if0 u  3logjgy;

xXw; @) = . - .
W jgyexp(u); if ilogjgy u  logjgjy:

(3.54)

Hence, (3.48) and (3.54) imply, for almost allu 2 [0; logjdgjv],

if2( (@)= ipxW)j ) = | Zviply XTW) + & )
=} 2ivipiv max(xw)j i) =J Zpiv:  (3.55)
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Sinceu 7! jfo( (T))j is continuous, the equality (3.55) holds for allu 2 [0; logjqjy]-

Recall that jjj, = jqgj,*. Using (3.49) and the formulas (3.53) and (3.55), the roof
functions in the case of bad reduction are given by )(0) =0, # )(2) = log j i2ipiv
and

L
3 max log(j évlplv

):3logj jy u : ifo u  Llogjjjy;
# (1) = Z
(@ | 2ipiv . .
Mﬁlogj jv logjjjy+u ; if Zlogjijy u logjjjy:

(3.56)

.B max

Now, we use the assumption that the bad reduction ofE at v is multiplicative. Let
L = Qv( ). Then we have eitherL = Qy (split case) or L=Qy is unrami ed of degree 2
(non-split case), see $il94, Exercise 5.11]. By the proof of §il92, Proposition VII.5.4 (a)],
the Weierstray equation (3.37) is still minimal over L. Moreover, the Weierstray equation
(3.42) is minimal over L (see [fat74, Theorem 5]) and thus, sincev 6 2; 3, the equation
(3.45) is minimal over L as well. We deduce by [Sil92, VII.1.3 (b)] thatj j, = 1.

In particular, if v 6 p, the function # () is identically zero. If v = p, an easy computation
shows that

log jj jp # (2 du = 1(logjjjp)® ilog(p)logijjp; if logjijp log(p);
2 2(log(p)?  log(p) log j jp; if logjjjp log(p):

# )+

The invariant j is a rational number with integral p-adic valuation ,(j) < 0. Hence,
logjjjp=log(p) = (i) 1, and we can omit the rst case.

Conclusion: The height h (YY) in our speci c Example 3.5.5 is given by

H;0(1);0(1)

deg (E) ©

W) o max logjp }(2)j;2log2}%z) +logijp }(z)jdz (3.57)

p_
2k 0B degy(E) log(p) Bp);
where 8

b()—<1; ifp2MZ;
PP=ior 10 ifp2mg;

25(3)°
denoting by , the usual p-adic valuation.

We see that this height is, at the Archimedean place, an integral of termdncluding the
Weierstray } -function, and with concrete terms at the non-Archimedean places.

Example 3.5.6. In the previous example it is important that, for each place v 2 Mg, the

reduction is multiplicative in order to ensure that j jy =1 for = (AB=AB)*2 as in
(3.46). Keeping the notations of Example 3.5.5, we consider a concrete elligticurve, now
allowing additive reduction at some place: LetE be the elliptic curve over Q given by

y2=x3 283352 x +24335%71:
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Then E is described by the invariants
- ol2gl2g7y. j =185 17 1. ¢, = 2103452

Using [Sil92, Proposition VII.5.1], we see that E has additive reduction at the placev =5,
multiplicative reduction a& v = 7 and good reduction at the other places. We havg 7j7 = 1.

Let us compute sjs= jAB(gs)=A(0gs)Bjs. On the one hand, we have

jA=Bjg= 2’5171 ' =5:
On the other hand, we consider B(gs)=A(gs) where, as in (3.45),

_ 3 X n¢g _ 1 7R n°q
Al%) = 172 5n11 o and - B(%) = g7 12 .1 &

Using josjs = jj j51: % an easy computation shows thatjA(gs)js = max j%‘j5;j5j5jq5j5 =1
and jB(gs)js = max j%ﬂs;j%]ﬁ = 1. Hence, we obtain

. 1= P
j sis= AB(®k)=A(6)B ; = 5
By (3.56), we get# (;)(0) =0, # )(2) =log (5 jpjs) and

(
3log5 u; f0 u 3log5

# (1) =
@ (1) llog5+u; if Llog5 u log5
Thus, . (
logjjj . 5 2. . —c-
" (1) @ - é(log 5)2, !f p=5;
2 s(log5)7;  ifp=7:
Then the height h . 547.5;(Y) in this concrete Example 3.5.6 is given by
deg (E) ©

vol() o ™ logjp }(2)j;2log3}4z) +logijp }(2)jdz

2fy 0;° B degy(E) log(p) b(p);

where 8
3 5 ifp=5;
bp) = L ifp=7;
-1, else.

Note that this result di ers from the formula (3.57) if p=5or p=7.
This example was constructed by means of§JAGE] and the table on page 108 in BK75].
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Appendix A.

Convex Geometry

In this appendix, we collect the notions and statements of convex geomeyf that we need
for the study of toric geometry. We follow the notation of [BPS143 Y 2] which is based on
the classical book [Roc70].

Let M be a free Abelian group of rankn and N := M - :=Hom (M; Z) its dual group.
The natural pairing between m 2 M and u 2 N is denoted bym; ui := u(m). If G is an
Abelian group, we setNg:=N 7 G = Hom(M;G). In particular, Nk = N z R is an
n-dimensional real vector space with dual spacéMr = Hom(N; R). We denote by a
subgroup ofR.

A.1. A polyhedron in Ng is a hon-empty set de ned as the intersection of nitely many
close half-spaces, i. e.
\I‘
= fu2 Ngjhmj;ui  lig; wherem; 2 Mg; i 2R;i=1;:::;r (A.1)
i=1
A polytope is a bounded polyhedron. Aface °of a polyhedron , denoted by ©
is either itself or of the form \ H where H is the boundary of a closed half-space

containing . A face of of codimension 1 is called a facet, a face of dimension O is a
vertex. The relative interior of , denoted by ri , is the interior of in its a ne hull.

A.2. Let be a polyhedronin Ngr. We call strongly convexif it does not contain any
ane line. We say that is  -rational if there is a representation as (A.1) with m; 2 M
andl; 2 . If = Q, we justsay is rational. We say that a polytope in Mg is lattice if
its vertices lie in M .

A.3. A polyhedral conein Ng is a polyhedron suchthat = for all 0. Its dual is
de ned as
-=fm2 Mgrjhmjui 08u2 g:

We denote by ? the set ofm 2 Mg with hm;ui =0 forall u2 . The recession coneof a
polyhedron is de ned as

rec() :=fu2 Ngju+ o

If has a representation as (A.1), the recession cone can be written as

\I’
rec() = fu2 Ngjhmj;ui  Og:
i=1
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A.4. A polyhedral complex in Ng is a nhon-empty nite set of strongly convex polyhedra
such that

(i) every face of 2 liesalsoin ;
(i) if ; 92 ,then \ Cis empty or a face of and °©

Note that, in contrast to the notion in [ BPS14g De nition 2.1.4], a polyhedral complex
only contains strongly convex polyhedra.

A polyhedral complex is called -rational (resp. rational)geach 2 is -rational
(resp. rational). The support of isdened astheset j j:== , . We saythat is
completeif j j = Ng. We will denote by ¥ the subset ofk-dimensional polyhedra of .

A fan in Ngr is a polyhedral complex inNg consisting of (strongly convex) rational
polyhedral cones.

A5. Let be a polyhedral complex in Ng. The recessionrec() of is de ned as
rec()= frec() | 2 o

If is a complete -rational polyhedral complex, then rec() is a complete fan in Ng.
This follows from [BS11, Theorem 3.4].

A.6. Let C be a convex set in a real vector space. A functiorfi : C! R is concaveif
ftur+(1  tuz) tf (u)+ (@1 t)f (u2) (A.2)

forall uj;u, 2 C and O<t< 1.
Note that we use the same terminology as in convex analysis. In the classicaboks on
toric varieties [KKMS73], [Ful93], [CLS11], our concave functions are cald convex.

A.7. Let f be a function on Ng. We de ne the stability set of f as
f:=fm2 Mgrjhm; i f is bounded belovg:

This is a convex set inMg. The de nition is only useful in case of a concave function as
otherwise ; = ;. The (Legendre-Fenchel) dualof f is the function

f-: ¢! R, m7! inf (hm;ui f(u)):
UZNR
It is a continuous concave function.

A.8. Letf:Ngr! R be a concave function. Therecession functionrec(f ) of f is de ned
as

recf):Ng! R; u7! Ililm fu) :
By [Roc7Q Theorem 13.1],rec(f ) is the support function of the stability set ¢, i.e. itis
given by
rec(f )(u) = inf hm;ui
m2 ¢
for u 2 Ng.
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Proposition A.9. Let be a complete fan inNg and let : Nr! R be a virtual support

function on , i.e. it is a function given by j = hm ;i wherem 2 M, 2
(De nition 2.1.9). Then the assignment 7! - gives a bijection between the sets of
(i) concave functions on Ng such that]j j i1s bounded,

(i) continuous concave functions on

Proof. If is concave, this follows from the propositions 2.5.20(2) and 2.5.23 in BPS144.
If is not concave, both sets are empty O

A.10. A continuous function f : Ng ! R is piecewise a ne if there is a nite cover f gio)
of Nr by closed subsets such thaf j , is an a ne function.

Let be a complete polyhedral complex in Ngr. We say that f is a piecewise a ne
function on if f is ane on each polyhedron of .

A.1ll. Letf:Ngr! R be a piecewise ane function on Ng. Then there is a complete
polyhedral complex in Ng such that, for each 2 ,

fji(w=tm ;ui+l with(m ;l )2Mrg R: (A.3)

The setf(m ;I )g » is called a set ofde ning vectors of f . We call f a -lattice function
if it has a representation as (A.3) with (m ;1 )2 M foreach 2 . We saythat f is
a -rational piecewise a ne function if there is an integer e > 0 such that ef is a -lattice
function.

A.12. Let f be a concave piecewise a ne functionf on Ng. Then there arem; 2 Mg,

The stability set ; is a polytope in Mg which is the convex hull of mq;:::;m,. The
function f is piecewise a ne concave if and only iff — is a piecewise a ne concave function
on ¢. The recession function off is given by

recf): Ng! R; u7! ,_rPin hmj; ui:
The function rec(f ) has integral slopes if and only if the stability set ¢ is a lattice
polytope.

A.13. Let f be a piecewise a ne function on Ng. Then we can writef = g h, whereg
and h are concave piecewise a ne functions onNr. The recesssion functionof f is de ned
as recf) =rec(g) rec(h).

In Theorem 2.5.8 we need the following assertion.

Proposition A.14. Let be a non-trivial subgroup ofR. Let be a support function on a

complete fan in N (De nition 2.1.9) and a concave function onNg such thatj jis
bounded. Then there is a sequence of-rational piecewise a ne concave functions ( k)k2n,
with rec( ) = , that uniformly converges to
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Proof. Since is a support function with | j bounded, the stability set is a lattice
polytope in Mg with = . Thus, by Proposition [BPS14g Proposition 2.5.23 (2)],
there is a sequence of piecewise a ne concave functions ()kon With . = , that

converges uniformly to . Because the divisible hull of lies dense inR, we may assume
that the 's are -rational. Finally, Proposition 2.3.10 in [ BPS144 says that =

k
implies rec( k) = . O

A.15. Let f be a concave function onNgr. The sup-di erential of f at u 2 Ny is de ned
as

@fu)=fm2 Mrjhm;v ui f(v) f(u)forall v2 Ngg:
For eachu 2 Ng, the sup-di erential @fu) is a non-empty compact convex set. For a
subsetE of Ngr, we set

@KE)::[ @fu):

u2E

A.16. Let L be a lattice. We denote byvol, the unique Haar measure orLg such that
L has covolume one. IfA is an a ne space with associated vector space_g, then vol_
induces a measure oA which we also denote by val .

A.17. Let f be a concave function onNg. The Monge-Ampére measureof f with respect
to M is de ned, for any Borel subsetE of Ng, as

M wm (f)(E) :=vol y (@FE)) ;
where voly is the measure from A.16. Then the total mass iV v (f )(NR) =vol m ( ).

Proposition A.18. Let (fx)kan be a sequence of concave functions dig that converges
uniformly to a function f. Then the Monge-Ampére measureM y (fx) converge weakly to

M wm(F).
Proof. This follows from [BPS14a, Proposition 2.7.2]. O

Proposition A.19. Let f be a piecewise a ne concave function on a complete polyhedral
complex in Nr. Then X
Mwm(f)= voly (@1V)) v;

v2 0

where  is the Dirac measure supported orv. In particular, if is a support function on
a complete fan inNg, then

Mm()=vol m( ) o

Proof. This is Proposition 2.7.4 and Example 2.7.5 in [BPS14a]. O

A.20. Let be an n-dimensional lattice polytope in Mg and let F be a face of . Then
we set
r= U2Ngjm m®u Oforalm2 ;mP°2F

This is a strongly convex rational polyhedral cone which is normal toF. By setting
=f FjF g, we obtain a complete fan inNr. We call the normal fan of .
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The assignmentF 7! ¢ de nes a bijective order reversing correspondence between faze
of and cones of . The inverse map sends a cone to the face

F:=fm2 jm° mu Oforallm®2 :u2 g (A.4)

For details, we refer to [CLS11, Y 2.3].

We also use the notationF in the following situation. Let be a fanin Ng and a
support function on with associated lattice polytope . For 2 , we denote by F
the face of given as in (A.4).

A.21. Let F be a lattice polytope in Mg. We denote bya (F) the ane hull of F and
by Lg the linear subspace ofMr associated toa (F). Then M(F):=M \ L denes a
lattice in Lg. By A.16, we have a measurevoly gy on L = M (F)r as well as an induced
measure on a (F) which we also denote by vo|; (g).

If is a full dimensional lattice polytope in Mg and F is a facet of , we denote by
Ve 2 N the unique minimal generator of the ray ¢ 2 (see A.20). We callvg the
minimal inner facet normal of F.

Proposition A.22. Let f be a concave function onNr such that the stability set ¢ is a
lattice polytope of dimensionn. With the notations in A.21 we have
z z X z
fdM u(f)=(n+1) f - dvoly + hF; vEi Ff—dvol,\,,(F);
R f F

where the sum is over the facetf of .

Proof. This is [BPS14a, Corollary 2.7.10]. O
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analytic space, 8
of a complex scheme, 23
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eld, 7, 8
analyti cation
of a complex scheme, 23, 54
of a scheme over a non-Archimedean
eld, 7, 8, 54
angle, 34
approximation theorem, 17

Berkovich spectrum, 8

canonical measure

over an elliptic curve, 75
canonical metric, 43
compact torus, 40
compatible linear map, 29
concave function, 84
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local, 34

of a polyhedral complex, 33

polyhedral, 83
current, 24

Green, 24
cycle

integrable, 55

prime, 6

integrable, 54
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of a piecewise a ne function, 85
di erential form, 23
dual

of a concave function, 84
of a polyhedral cone, 83

equivariant morphism, 28

face, 83

facet, 83
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normal, 86

rst Chern form, 23
formal scheme
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generic ber

of a formal scheme, 9
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toric local, 48

induction formula, 19, 25
Kajiwara-Payne tropicalization, 42
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line bundle, 6
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of a toric line bundle, 71
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(M -), see also(M -)metric
semipositive, 14, 23
semipositive Q-formal, 10
semipositive algebraic, 11
semipositive smooth, 23
smooth, 23
toric, 40
metrized line bundle, 10, 23
DSP, 14
semipositive, 14
metrized pseudo-divisor, 11, 23
minimal inner facet normal, 87
model
algebraic
of a line bundle, 11
of a variety, 11
formal
of a line bundle, 10
of a variety, 10
Monge-Ampeére measure, 86
morphism
equivariant, 28
of toric models, 31
toric, 28
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of a polyhedron, 34

non-Archimedean eld, 7

piecewise a ne function, 85
de ning vectors of, 85
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-rational, 85
on a polyhedral complex, 85

polyhedral complex, 84

complete, 84
-rational, 84
rational, 84
recession of, 84
support of, 84

polyhedral cone, 83
polyhedron, 83

-rational, 83

rational, 83

recession cone of, 83
strongly convex, 83

polytope, 83

lattice, 83

product formula, 53
proper intersection, 12

recession cone, 83
recession function

of a concave function, 84
of a piecewise a ne function, 85

reduction map, 9
relative interior, 83
roof function, 48

v-adic, 71

skeleton, 75
special ber

of a formal scheme, 9

stability set, 84
subdomain

anoid, 8
rational, 8

sup-di erential, 86
support function, 29

strictly concave, 29
virtual, 29

T-Cartier divisor

on a toric variety, 29

Tg-Cartier divisor

on a toric scheme, 35

Tate algebra, 8
toric line bundle

on a toric scheme, 37
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toric metric, 40
toric model
of a T-Cartier divisor, 38
of a toric line bundle, 38
of a toric variety, 31
toric morphism, 28
toric scheme, 31
toric section
over a toric scheme, 37
over a toric variety, 29
toric variety, 27
tori cation, 40
tropicalization, 42
tropicalization map, 41, 42

variety, 6
vertex, 83
virtual support function, 29
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