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Abstract

We show that the toric local height of a toric variety with respect to a toric semipositive
metrized line bundle over an arbitrary non-Archimedean �eld can be written as the integral
over a polytope of a concave function. For discrete non-Archimedean �elds, this was
proved by Burgos�Philippon�Sombra in [ BPS14a]. To show this statement, we �rst prove
an induction formula for the non-Archimedean local height of a variety, generalizing a
theorem of Chambert-Loir�Thuillier. Then, in analogy to [ BPS14a], we translate arithmetic-
geometric objects like toric divisors over arbitrary valuation rings of rank one and toric
semipositive metrics over non-discrete non-Archimedean �elds,in terms of convex analysis
like piecewise a�ne and concave functions.

Furthermore, we prove that the global height of a variety over a �nitel y generated �eld
can be expressed as an integral of local heights over a set of places of this�eld. In contrast
to a similar statement in [BPS14b], it allows arbitrary non-Archimedean places. Combining
this expression with our results on toric geometry, we get an interesting formula for the
global height. This formula will be illustrated in a �nal natural exampl e where not all
relevant non-Archimedean places are discrete.
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Introduction

Height Theory

The height of rational points of a variety is a real-valued function which behaves well under
algebraic operations and which is a helpful tool to control the number anddistribution
of these rational points. Therefore, it plays a fundamental role in theproof of �niteness
results in Diophantine geometry like the theorems of Mordell�Weil and Faltings (see, for
instance, [BG06]).

In [Fal91], Faltings generalized the height of points to the height of (sub-)varieties using
arithmetic intersection theory by Gillet�Soulé [ GS90]. We sketch his de�nition which
points out that the height of a variety is the arithmetic analogue of the degree in the
classical intersection theory. LetX be an n-dimensional smooth projective variety over
Q equipped with a regular proper Z-model X . Then, by [GS90], there is an arithmetic

Chow ring dCH
�
(X )Q and an arithmetic degree mapddeg: dCH

n+1
(X )Q ! R. Let L be a

line bundle on X endowed with a Z-model L of L on X and a smooth metric k � k on
its analyti�cation L(C) on X (C). To each Hermitian line bundle L = ( L ; k � k), one can
associate its �rst arithmetic Chern class ĉ1(L ) 2 dCH

�
(X ). The height of X with respect

to L is de�ned as

hL (X ) = ddeg
�
ĉ1(L )n+1

�
: (0.1)

In [BGS94], Bost�Gillet�Soulé proved important properties of this height, for e xample an
arithmetic Bézout theorem.

This de�nition has the disadvantage that it only works for smooth project ive varieties and
smooth metrics. Moreover, it depends on the existence of models.It is more general and
�exible to use the adelic language by Zhang [Zha95], equipping the line bundle with a metric
at each place ofQ instead of a model and allowing uniform limits of semipositive metrics.
A remarkable application of Zhang's height of varieties is his proof of the Bogomolov
conjecture for Abelian varieties over a number �eld in [Zha98].

From the adelic point of view, it is more convenient to de�ne the height as a sum of local
heights. Here, �local� means that we �x a place of Q and work over the corresponding
completion Qv . Local heights can be studied for any �eld with absolute value which was
systematically done by Gubler [Gub97], [Gub98], [Gub03].

In the following, we outline the case of a local height over a �eldK which is complete
with respect to an arbitrary non-trivial non-Archimedean absolute value K . Let X be a
proper variety over K and denote byX an its analyti�cation in the sense of Berkovich. On
a line bundle L on X , every model of some positive tensor powerL 
 e induces an algebraic
metric on L . A semipositive metric is the uniform limit of algebraic metrics that satisfy a
certain positivity property. Let L be a semipositive metrized line bundle onX and Z a
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Introduction

t-dimensional cycle ofX . Let s0; : : : ; st be non-zero meromorphic sections ofL satisfying

jdiv( s0)j \ � � � \ j div( st )j \ j Z j = ; : (0.2)

Then, Gubler showed the existence of a local height

� (L;s 0 );:::;(L;s t ) (Z ) 2 R ;

using re�ned intersection theory and, since the valuation ring K � is not necessarily
noetherian, methods from formal and rigid geometry. If K � is discrete, hence Noetherian,
and the metric is induced by an algebraicK � -model, then this local height is the usual
intersection product of the Cartier divisors div( s0); : : : ; div( st ) on the model.

In [Cha06], Chambert-Loir introduced a measure c1(L )^ t ^ � Z on X an such that for
algebraic metrics an induction formula as in the Archimedean case holds.An important
statement of my thesis is the following corresponding formula (cf.Theorem 1.4.3) which
generalizes a result of Chambert-Loir and Thuillier [CT09, Théorème 4.1].

Theorem 1 (Induction formula) . Let notation be as above. For simplicity, we assume that
Z is a subvariety. If Z * j div(st )j, then let st;Z := st jZ , otherwise we choose any non-zero
meromorphic section st;Z of L t jZ .

Then, the function logkst k is integrable with respect toc1(L )^ t ^ � Z and we have

� (L;s 0 );:::;(L;s t ) (Z ) = � (L;s 0 );:::;(L;s t � 1 ) (cyc(st;Z )) �
Z

X an
logkst;Z k c1(L )^ t ^ � Z :

The proof is based on [CT09] where the formula is demonstrated under the additional
assumptions that K is a completion of a number �eld and s0; : : : ; st are global sections
such that their Cartier divisors intersect properly on Z . The heart of the proof is an
approximation theorem saying that logkst k can be approximated by suitable functions
logk1kn , where k � kn are formal metrics on the trivial bundle OX . To show this, we use
techniques from analytic and formal geometry.

In the case of Archimedean �elds, local heights can be handled in a similar way. We will
recall this in section 1.5.

Now, we come back to (global) heights. In [Gub97], Gubler introduced the notion of
an M -�eld. In this thesis, this is a �eld K together with a measured setM of absolute
values on K satisfying the product formula (De�nition 3.1.1). The easiest example is
Q together with the set of standard normalized absolute valuesM Q, equipped with the
counting measure. But the notion of M -�elds also includes number �elds, function �elds
and �nitely generated �elds.

Let us consider a projective varietyX over an M -�eld K and a line bundle L on X . A
semipositive M -metric on L is a family of semipositive metricsk � kv on L v , v 2 M . Write
L = ( L; (k � kv)v) and L v = ( L v ; k � kv) for each v 2 M . Let Z be a t-dimensional cycle such
that the function

M �! R; v 7�! � (L v ;s0 );:::;(L v ;st ) (Zv)

is � -integrable for any choice of sectionss0; : : : ; st of L which satisfy condition (0.2). For
example, if we consider theM Q-�eld Q, the � -integrability is satis�ed for every cycle Z
and a quasi-algebraic metrized line bundleL , i. e. almost all metrics of L are induced by a
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common model overZ. The (global) height of Z is de�ned as

hL (Z ) =
Z

M
� (L v ;s0 );:::;(L v ;st ) (Zv) d� (v): (0.3)

By the product formula, this de�nition is independent of the choic e of sections. Note that
all the mentioned heights can be also de�ned fort + 1 distinct line bundles.

In [Mor00], Moriwaki de�ned the height of a variety over a �nitely generated �e ld K
over Q as an arithmetic intersection number as in(0.1) and generalized the Bogomolov
conjecture to such �elds. As observed by Gubler [Gub03, Example 11.22], this �nitely
generated extension has aM -�eld structure for a natural set of places M related to the
normal variety B with K = Q(B ). Burgos�Philippon�Sombra proved in [ BPS14b, Theorem
2.4] that the height of Moriwaki can be written as an integral of local heights over M . In
this thesis, their result is generalized in a certain way as outlined in the following.

Let B be a b-dimensional normal proper variety over a global �eld F . We denote by
K the function �eld of B , which is a �nitely generated extension of F . Choosing nef
quasi-algebraic metrized line bundlesH 1; : : : ; H b on B , we can equipK with a natural
structure (M ; � ) of an M -�eld (see 3.2.4). Let � : X ! B be a dominant morphism of
proper varieties overF of relative dimension n and denote byX the generic �ber of � . Let
L 0; : : : ; L n be semipositive quasi-algebraic line bundles onX and choose any invertible
meromorphic sectionss0; : : : ; sn of L 0; : : : ; L n respectively, which satisfy (0.2). These line
bundles induceM -metrized line bundlesL 0; : : : ; L n on X . We prove in Theorem 3.3.4:

Theorem 2. The function M ! R, w 7! � (L 0;w ;s0 );:::;(L n;w ;sn ) (X ), is � -integrable and we
have

h� � H 1 ;:::;� � H b;L 0 ;:::;L n
(X ) =

Z

M
� (L 0;w ;s0 );:::;(L n;w ;sn ) (X ) d� (w):

Burgos�Philippon�Sombra have shown this formula in the case whenF = Q and the
varieties X , B and the occuring metrized line bundles are induced by models over Z
similarly as in (0.1). The main di�culty in their proof appears at the Archimedean place,
where well-known techniques from complex geometry as the Ehresmann's �bration theorem
are used. In our proof, we can just copy the Archimedean part, but at the non-Archimedean
places, we integrate over Berkovich spaces and we use methods from algebraic and formal
geometry instead.

Toric Geometry

Toric varieties are a special class of varieties that have a nice description through combi-
natorial data from convex geometry. So they are well-suited for testingconjectures and
for computations in algebraic geometry. Let K be any �eld, then a complete fan � of
polyhedral cones in a vector spaceNR ' Rn corresponds to a proper toric varietyX � over
K with torus T ' SpecK [x � 1

1 ; : : : ; x � 1
n ]. The torus T acts on X � and hence, every toric

object should have a certain invariance property with respect to this action, in order to
describe it in terms of convex geometry.

A support function on �, i. e. a concave function 	 : NR ! R which is linear on each
cone of � and has integral slopes, corresponds to a base-point-free toric line bundle L
on X � together with a toric section s. Moreover, one can associate to 	 a polytope
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Introduction

� 	 = f m 2 M R j m � 	 g in the dual spaceM R of NR. Then a famous result in classical
toric geometry is the degree formula:

degL (X � ) = n! volM (� 	 );

where volM is the Haar measure onM R such that the underlying lattice M ' Zn has
covolume one. As mentioned above, the arithmetic analogue of the degree of avariety with
respect to a line bundle is the height of a variety with respect toa metrized line bundle. So
it is a natural question if one can �nd an analogous formula for the height. This problem
was tackled by Burgos, Philippon and Sombra in the monograph [BPS14a] and they have
shown the following.

Assume that the pair (X � ; L ) lies over Q and let M Q be the set of places ofQ. To a
family ( #v)v2 M Q of concave functions on � 	 with #v � 0 for allmost all v, one can associate
an M Q-metrized lined bundle L = ( L; (k � kv)v). Then the height of X � with respect to L
is given by

hL (X � ) = ( n + 1)!
X

v2 M Q

Z

� 	

#v dvolM :

Indeed, to state and prove this formula, Burgos�Philippon�Sombra systematically studied
in [BPS14a] the arithmetic geometry of toric varieties in terms of convex geometry. In
particular, they described models of toric divisors over discrete valuation rings by piecewise
a�ne functions on polyhedral complexes. Furthermore, for a �eld whic h is complete with
respect to an Archimedean or discrete non-Archimedean absolute value,they classi�ed
semipositive toric metrized line bundles and their associated measures and local heights,
by concave functions and their associated Monge-Ampère measures and Legendre-Fenchel
duals.

As mentioned before, metrized line bundles and their associated measures and local
heights can be also studied for non-Archimedean �elds with non-necessarily discrete
valuation. So it is a quite natural question if the results in [BPS14a] extend to arbitrary
non-Archimedean �elds. This issue is handled in my thesis.

In analogy to [BPS14a, Ÿ 3.6], we describe toric divisors on toric schemes over arbitrary
valuation rings of rank one (see Theorem 2.3.3). This description is based onthe theory of
toric schemes over valuation rings of rank one by Gubler [Gub13] and the classi�cation of
these schemes by admissible fans by Gubler and Soto [GS13].

Furthermore, we study metrics, measures and local heights over a non-necessarily discrete
non-Archimedean �eld K , following the ideas of [BPS14a, Ÿ 4]. LetL be a toric line bundle
on a proper toric variety X � over K together with any toric section s, and let 	 be the
corresponding support function on the complete fan �. A continuous metric k � k on L is
toric if the function p 7! k s(p)k is invariant under the action of a certain closed analytic
subgroup ofT an (De�nition 2.4.1). We will give the following classi�cation of toric met rics
over algebraically closed non-Archimedean �elds (Theorem 2.5.8):

Theorem 3. There is a bijective correspondence between the sets of

(i) semipositive toric metrics on L ;

(ii) concave functions  on NR such that the function j � 	 j is bounded;

(iii) continuous concave functions # on � 	 .

4
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For the �rst bijection, one associates to the toric metric k � k the function  on NR given
by  (u) = logks � trop � 1(u)k, where trop: NR ! T an is the tropicalization map from
tropical geometry (see 2.4.5). The second bijection is given by the Legendre-Fenchel dual
from convex analysis (see A.7). Essential for the proof are characterizations of semipositive
formal metrics developed in [GK15]. Note that the concave function  = 	 de�nes a
distinguished metric on L , called canonical.

Next, we show that the measurec1(L )^ n ^ � X � induced by a semipositive toric metrized
line bundle L = ( L; k � k), satis�es the following formula

trop �
�
c1(L )^ n ^ � X � jT an

�
= n!M M ( );

where  is the concave function given byk � k and M M ( ) is the Monge-Ampère measure
of  (see A.17).

Now, all ingredients are developed to state and show a formula for the local height in
the toric setting as proved in [BPS14a, Theorem 5.1.6] for a discrete non-Archimedean
�eld. Let X � be an n-dimensional projective toric variety over K and L a semipositive
toric metrized line bundle, and denote by L can the same line bundle equipped with the
canonical metric. The toric local height of X � with respect to L is de�ned as

� tor
L (X � ) = � (L;s 0 );:::;(L;s n ) (X � ) � � (L

can
;s0 );:::;(L

can
;sn ) (X � );

where s0; : : : ; sn are any invertible meromorphic sections ofL satisfying the intersection
condition (0.2). We show the following main result (Theorem 2.6.6):

Theorem 4. Let notation be as above. Then we have

� tor
L (X � ) = ( n + 1)!

Z

� 	

# dvolM ;

where # : � 	 ! R is the concave function associated to(L; s) given by Theorem 3.

The proof is analogous to [BPS14a]. It is based on induction relative to n and uses the
induction formula (Theorem 1) in an essential way.

The formula in Theorem 4 has the following application as suggested to meby José
Burgos Gil. In the setting of Theorem 2, let � : X ! B be a dominant morphism of
varieties over a global �eld F such that its generic �ber X is an n-dimensional toric variety
over the function �eld K = F (B ). This �eld is equipped with the M -�eld structure induced
by the metrized line bundles H 1; : : : ; H b. Assume that L 0 = � � � = L n = L and that the
induced semipositiveM -metrized line bundle L is toric. Let s be any toric section ofL and
	 the associated support function. Then L de�nes, for eachw 2 M , a concave function
#w : � 	 ! R.

Note that in this setting a non-Archimedean place w 2 M is not necessarily discrete. So,
we cannot use only the formula for toric local heights from [BPS14a]. However, combining
theorems 2 and 4 (resp. its Archimedean analogue), we obtain

h� � H 1 ;:::;� � H b;L ;:::;L (X ) = ( n + 1)!
Z

M

Z

� 	

#w(x) dvol( x) d� (w): (0.4)

This formula allows us to compute the height of a non-toric variety coming from a �bration
with toric generic �ber. It generalizes Corollary 3.1 in [BPS14b] where the global �eld is
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Q and the metrized line bundles are induced by models overZ, i. e. where the left-hand
side is an arithmetic intersection number as in(0.1). In this setting only Archimedean and
discrete non-Archimedean places occur.

In [BPS14b], the formula corresponding to (0.4) is considered in the special case that
X is a translate of a subtorus in the projective space and canonical metrics. This can be
imitated in our setting and we further particularize to the case when B is an elliptic curve
leading to a natural example to illustrate our theory.
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Conventions and Notations

N is the set of natural numbers containing zero. All occuring rings and algebras are
commutative with unity. For a ring R, the group of units is denoted byR� .

A variety over a �eld k is an irreducible and reduced scheme which is separated and of
�nite type over k. The function �eld of a variety X over k is denoted byk(X ) or K(X ).
For a proper schemeY over a �eld, we denote by Y (n) the set of subvarieties of codimension
n. A prime cycle on Y is just a subvariety of Y .

By a line bundle we mean a locally free sheaf of rank one. For an invertible meromorphic
section s of a line bundle, we denote bydiv(s) the associated Cartier divisor and bycyc(s)
the associated Weil divisor. The support of div(s) is denoted by jdiv( s)j.

A measure is a signed measure, i. e. it is not necessarily non-negative. A non-Archimedean
�eld is a �eld which is complete with respect to a non-trivial non- Archimedean absolute
value j � j .

For the notations used from convex geometry, we refer to Appendix A. Furthermore,
notations and terminology de�ned in this thesis are listed in the index.
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Chapter 1.

Metrics, Local Heights and Measures
over Non-Archimedean Fields

In this chapter, we prove an induction formula for the local height of a variety over a
non-Archimedean �eld with respect to DSP metrized pseudo-divisors (Theorem 1.4.3),
generalizing a result of Chambert-Loir and Thuillier [CT09, Théorème 4.1]. This formula
is important for our work on toric varieties since it serves as de�nition for local heights in
our key source [BPS14a].

Before that, we recall the theory of local heights over non-Archimedean �elds from
[Gub98] and [Gub03], and the theory of measures associated to metrized line bundles
introduced in [Cha06] and developed in [Gub07b].

In section 1.5, we give a short overview of local heights and measures over complex
varieties.

Let K be a non-Archimedean �eld , i. e. a �eld which is complete with respect to a
non-trivial non-Archimedean absolute value j � j . Its valuation ring is denoted by K � , the
associated maximal ideal byK �� and the residue �eld by ~K = K � =K �� .

1.1. Analytic and Formal Geometry

In this section, we recall some facts about the (Berkovich-) analyti�cation of schemes over
K and of formal schemes overK � . In the analytic part we follow [ BPS14a, Ÿ 1.2]. See also
[Ber90] and [Ber93] for further informations. The basic references for formal geometry are
[Gub98, Ÿ 1] and [Gub07b, Ÿ 2] and, for details, [Bos14].

Let X be a scheme of �nite type overK .

1.1.1. First let X = Spec(A) be a�ne. Then the (Berkovich-) analytic spaceX an associated
to X is the set of multiplicative seminorms onA extending the absolute valuej � j on K .
We endow it with the coarsest topology such that the functionsX an ! R, p 7! p(f ) are
continuous for every f 2 A.

Next we will de�ne a sheaf of ringsOX an on X an: Each p 2 X an induces a multiplicative
norm on the integral domain A= ker(p) and therefore a non-Archimedean absolute value on
its quotient �eld extending j � j on K . We write H (p) for the completion of this �eld with
respect to that absolute value. The image off 2 A in H (p) is denoted by f (p) and we
write also j � j for the absolute value in H (p). Then we havep(f ) = jf (p)j for each f 2 A.

An analytic function s on an open setU of X an is a function

s: U !
a

p2 U

H (p) ;

7
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such that, for each p 2 U, we have s(p) 2 H (p) and there is an open neighborhood
p 2 V � U with the property that, for all " > 0, there are elementsf; g 2 A with jg(q)j 6= 0
and js(q) � f (q)=g(q)j < " for all q 2 V . These functions form a sheaf of ringsOX an and
we get a locally ringed space (X an; OX an ).

1.1.2. For any schemeX of �nite type over K we de�ne the analytic spaceX an by gluing
the a�ne analytic spaces obtained from an open a�ne cover of X . For a morphism
' : X ! Y of schemes of �nite type overK we have a canonical map' an : X an ! Y an

de�ned by ' an(p) := p � ' ] on suitable a�ne open subsets.
The analyti�cation functor preserves many properties of schemes and their morphisms.

So an analytic spaceX an is Hausdor� (resp. compact) if and only if X is separated (resp.
proper). On the category of proper schemes overK this functor is fully faithful and induces
an equivalence between the categories of coherentOX - and OX an -modules. The proofs and
more such GAGA theorems can be found in [Ber90, Ÿ 3.4].

The analyti�cation of a formal scheme is more di�cult because at �rst we n eed arbitrary
analytic spaces. Here we only give an overview and not the precise de�nition of these
spaces.

1.1.3. The Tate algebra K hx1; : : : ; xn i consists of the formal power seriesf =
P

� a� x �

in K [[x1; : : : ; xn ]] such that ja� j ! 0 as j� j ! 1 . This K -algebra is the completion of
K [x1; : : : ; xn ] with respect to the Gauÿ norm kf k = max � ja� j.

A K -a�noid algebra is an algebraA over K which is isomorphic to K hx1; : : : ; xn i =I
for an ideal I . We may use the quotient norm from K hx1; : : : ; xn i to de�ne a K -Banach
algebra (A ; k � k). The presentation and hence the induced norm of an a�noid algebra
is not unique but two norms on A are equivalent and thus, de�ne the same concept of
boundedness.

1.1.4. The Berkovich spectrumM (A) of a K -a�noid algebra A is de�ned as the set of
multiplicative seminorms p on A satisfying p(f ) � k f k for all f 2 A . It only depends on
the algebraic structure on A . As above, we endow it with the coarsest topology such that
the maps p 7! p(f ) are continuous for all f 2 A . Then M (A) is a non-empty compact
space.

1.1.5. A rational subdomain of M (A) = M (K hx1; : : : ; xn i =I ) is de�ned by

M (A)
�

f 1

g
; : : : ;

f m

g

�
:= f p 2 M (A) j j f i (p)j � j g(p)j; i = 1 ; : : : ; mg;

where f 1; : : : ; f m ; g 2 A generate the unit ideal in A . It is the Berkovich spectrum of the
a�noid algebra

A
�

f 1

g
; : : : ;

f m

g

�
:= K hx1; : : : ; xn ; y1; : : : ; ym i =(I; gy i � f i j i = 1 ; : : : ; m) :

More generally one de�nes ana�noid subdomain in M (A) as the Berkovich spectrum of
an a�noid algebra de�ned by a certain universal property (see [BGR84, 7.2.2]). Such a
domain is a �nite union of rational domains by the theorem of Gerritzen-Grauert ([BGR84,
7.3.5/3]).

A (Berkovich) analytic space over K is given by an atlas of a�noid subdomains M (A).
The di�culties in this construction arise because the charts M (A) are not open. Analytic
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1.1. Analytic and Formal Geometry

functions on such a chart are given by the elements ofA . The precise de�nition can be
found in [Ber90, Ÿ 3] where such spaces are called strictly analytic spaces.

1.1.6. We say that a K � -algebra A is admissibleif it is isomorphic to K � hx1; : : : ; xn i =I
for an ideal I and A has no K � -torsion. If A is admissible, thenI is �nitely generated
(see [BL93a, Proposition 1.1]). A formal schemeX over K � is called admissible if there
is a locally �nite covering of open subsets isomorphic to formal a�ne schemesSpf(A) for
admissibleK � -algebrasA.

In this case, the generic �ber Xan of X is the analytic space locally de�ned by the
Berkovich spectrum of the K -a�noid algebra A = A 
 K � K . Moreover we de�ne the
special �ber eX of X as the ~K -scheme locally given bySpec(A=K �� A), i. e. eX is a scheme of
locally �nite type over ~K with the same topological space asX and the structure sheaf
OeX := OX 
 K � ~K .

There is a reduction map red: Xan ! eX assigning each seminormp in a neighborhood
M (A 
 K � K ) to the prime ideal f a 2 A j p(a 
 1) < 1g=K �� A. This map is surjective and
anti-continuous. If eX is reduced, thenred coincides with the reduction map in [Ber90, 2.4].
In this case, for every irreducible componentV of eX, there is a unique point � V 2 Xan such
that red( � V ) is the generic point of V (see [Ber90, Proposition 2.4.4]).

1.1.7. Assume that K is algebraically closed and letX = Spf(A) be an admissible formal
a�ne scheme over K � with reduced generic �ber Xan. Let A = A 
 K � K be the associated
K -a�noid algebra and let A � be the K � -subalgebra of power bounded elements inA . Then
X0:= Spf (A � ) is an admissible formal scheme overK � with X0an = Xan and with reduced
special �ber fX0. We have a canonical morphismX0 ! X whose restriction to the special
�bers is �nite and surjective. By gluing, these assertions also holdfor non-necessarily a�ne
schemes. For details, we refer to [Gub98, Proposition 1.11 and 8.1].

1.1.8. Let X be a �at scheme of �nite type over K � with generic �ber X and let � be
some non-zero element inK �� . Locally we can replace the coordinate ringA by the
� -adic completion of A and get an admissible formal scheme ^X over K � with special �ber
equal to the special �ber fX of X . The generic �ber ^X an, denoted by X � , is an analytic
subdomain ofX an and is locally given by

f p 2 (SpecA 
 K � K )an j p(a) � 1 8 a 2 A g:

Then the surjective reduction map red: X � ! fX is locally given by

p 7�! f a 2 A j p(a) < 1g=K �� A :

If X is proper over K � , then X � = X an and the reduction map is de�ned on the whole of
X an. If fX is reduced, then each maximal point of fX has a unique inverse image inX � .
We refer to [Gub13, 4.9�4.13] for details.

If K is algebraically closed andX is reduced, then the construction in 1.1.7 gives us a
formal admissible schemeX over K � with generic �ber Xan = X � and with reduced special
�ber eX such that the canonical morphism eX ! fX is �nite and surjective.
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Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

1.2. Metrics, Local Heights and Measures

From now on, we assume that the non-Archimedean �eldK is algebraically closed. This
is no serious restriction because we can always perform base change to the completion of
the algebraic closure of any non-Archimedean �eld and local heights and measures do not
depend on the choice of the base �eld.

Let X be a reduced proper scheme overK and L a line bundle on X . This de�nes a line
bundle L an on the compact spaceX an.

De�nition 1.2.1. A metric k � k on L is the datum, for any section s of L an on a open
subsetU � X an, of a continuous function ks(�)k : U �! R� 0, such that

(i) it is compatible with the restriction to smaller open subsets;

(ii) for all p 2 U, ks(p)k = 0 if and only if s(p) = 0;

(iii) for any � 2 O X an (U) and for all p 2 U, k(�s )(p)k = j� (p)j � ks(p)k.

On the set of metrics onL we de�ne the distance function

d(k � k; k � k0) := sup
p2 X an

�
� log(ks(p)k=ks(p)k0)

�
� ;

wheres is any local section ofL an not vanishing at p. Clearly, this de�nition is independent
of the choice ofs. The pair L := (L; k � k) is called a metrized line bundle. Operations on
line bundles like tensor product, dual and pullback extend to metrized line bundles.

De�nition 1.2.2. A formal (K � -)model of X is an admissible formal schemeX over
K � with a �xed isomorphism Xan ' X an. Note that we identify Xan with X an via this
isomorphism.

A formal (K � -)model of (X; L ) is a triple ( X; L; e) consisting of a formal modelX of X ,
a line bundle L on X and an integer e � 1, together with an isomorphism Lan ' (L 
 e)an.
When e = 1, we write ( X; L) instead of (X; L; 1).

De�nition 1.2.3. To a formal K � -model (X; L; e) of (X; L ) we associate a metrick � k on
L in the following way: If U is a formal trivialization of L and if s is a section ofL an on
Uan such that s
 e corresponds to� 2 O X an (Uan) with respect to this trivialization, then

ks(p)k = j� (p)j1=e

for all p 2 Uan. A metric on L obtained in this way is called a Q-formal metric and, if
e = 1, a formal metric .

Such aQ-formal metric is said to be semipositive if the reduction eL of L on the special
�ber eX is nef, i. e. we have degeL (C) � 0 for every closed integral curveC in eX.

Remark 1.2.4. In the literature, Q-formal metrics are often just called formal metrics
(e. g. in [Cha06] and [CT09]). In De�nition 1.2.3, we basically follow the notation of [ CD12]
and the papers by W. Gubler.

1.2.5. The dual, the tensor product and the pullback of (Q-)formal metrics are again
(Q-)formal metrics. Furthermore, the tensor product and the pullback of semipositive
Q-formal metrics are semipositive.

10
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1.2.6. Every line bundle L on X has a formal K � -model (X; L) and hence a formal metric
k � k. For proofs of this and the following statements we refer to [Gub98, Ÿ 7]. Since
K is algebraically closed andX is reduced, we may always assume thatX has reduced
special �ber (see 1.1.7). Then the formal metric determines theK � -model L on X up to
isomorphisms, more precisely we have canonically

L(U) �= f s 2 L an(Uan) j ks(p)k � 1 8p 2 Uang (1.1)

for each formal open subsetU of X.
A formal metric is characterized by the property that there exists an admissible covering

f Ui gi 2 I of X an by a�noid domains and non-vanishing regular sections si 2 L an(Ui ) such
that ksi (x)k = 1 for all x 2 Ui .

De�nition 1.2.7. An algebraic K � -model X of X is a �at and proper scheme overK �

together with an isomorphism of the generic �ber of X onto X . An algebraic K � -model
(X ; L ; e) of (X; L ) consists of a line bundleL on an algebraicK � -model X of X and a
�xed isomorphism L jX �= L e.

As in De�nition 1.2.3, an algebraic model (X ; L ; e) of (X; L ) induces a metric k � k on
L , called algebraic metric. Such a metric is said to besemipositive if, for every closed
integral curve C in the special �ber fX , we have degL (C) � 0.

The following relatively recent result shows that, on algebraic varieties, it is always
possible to work with algebraic in place ofQ-formal metrics.

Proposition 1.2.8. Let L be a line bundle on a proper varietyX over K and let k � k be
a metric on L . Then, k � k is Q-formal if and only if k � k is algebraic.

Proof. The fact that every algebraic metric is Q-formal follows easily from 1.1.8. The other
direction is [GK15, Corollary 5.12].

1.2.9. A metrized pseudo-divisorD̂ on X is a triple D̂ := (L; Y; s) where L is a metrized
line bundle, Y is a closed subset ofX and s is a nowhere vanishing section ofL on X n Y .
Then (O(D); jD j; sD ) := (L; Y; s) is a pseudo-divisor in the sense of [Ful98, 2.2]. We can
always de�ne the pullback of a metrized pseudo-divisorD̂ on X by a proper morphism
' : X 0 ! X , namely

' � D̂ :=( ' � O(D); ' � 1jD j; ' � sD ):

Note that this is an advantage over Cartier divisors in order to formulate intersection
theory.

Example 1.2.10. Let L be a metrized line bundle onX and s an invertible meromorphic
section of L , i. e. there is an open dense subsetU of X such that s restricts to a non-
vanishing local section ofL on U. Then the pair (L; s) determines a pseudo-divisor

ddiv( s) :=
�
L; j div( s)j; sjX nj div( s)j

�
;

where jdiv( s)j is the support of the Cartier divisor div( s).
Every real-valued continuous function ' on X an de�nes a metric on the trivial line

bundle OX given by k1k = e� ' . We denote this metrized line bundle byO(' ). Then we
get a metrized pseudo-divisor bO(' ) :=( O(' ); ; ; 1).

11



Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

1.2.11. Let D̂0; : : : ; D̂ t be metrized pseudo-divisors withQ-formal metrics and let Z be a
t-dimensional cycle onX with

jD0j \ � � � \ j D t j \ j Z j = ; : (1.2)

Note that condition (1.2) is much weaker than the usual assumption thatD̂0; : : : ; D̂ t

intersect properly on Z , that is, for all I � f 0; : : : ; tg, each irreducible component of
Z \

T
i 2 I jD i j has dimensiont � j I j.

For Q-formal metrized pseudo-divisors there is a re�ned intersectionproduct with cycles
on X developed by Gubler (see [Gub98, Ÿ8] and [Gub03, Ÿ5]). By means of this product,
one can de�ne the local height � D̂ 0 ;:::;D̂ t

(Z ) as the real intersection number ofD̂0; : : : ; D̂ t

and Z on a joint formal K � -model. For details, we refer to [Gub98, Ÿ9] and [Gub03, Ÿ9].
If K � is a discrete valuation ring, hence Noetherian, and all theK � -models are algebraic,
then we can use the usual intersection product.

Proposition 1.2.12. The local height� (Z ) := � D̂ 0 ;:::;D̂ t
(Z ) is characterized by the following

properties:

(i) It is multilinear and symmetric in D̂0; : : : ; D̂ t and linear in Z .

(ii) For a proper morphism ' : X 0 ! X and a t-dimensional cycleZ 0 on X 0 satisfying
jD0j \ � � � \ j D t j \ j ' (Z )j = ; , we have

� ' � D̂ 0 ;:::;' � D̂ t
(Z 0) = � D̂ 0 ;:::;D̂ t

(' � Z 0):

(iii) Let � 0(Z ) be the local height obtained by replacing the metrick � k of D̂0 by another
Q-formal metric k � k0. If the Q-formal metrics of D̂1; : : : ; D̂ t are semipositive and if
Z is e�ective, then

j� (Z ) � � 0(Z )j � d(k � k; k � k0) � degO(D 1 );:::;O(D t ) (Z ): (1.3)

Proof. The properties (i) and (ii) are mentioned in [Gub03, Remark 9.3] for formal metrics
and easily extend toQ-formal metrics by multilinearity. The last property follows from
the metric change formula in [Gub03, Remark 9.5].

1.2.13. If X is an algebraicK � -model of X , then there is a K � -model Y of X with
reduced special �ber and a properK � -morphism Y ! X which is the identity on X . This
follows from [BLR95, Theorem 2.1'].

Moreover, let L , L 0 be algebraic metrized line bundles onX induced by algebraicK � -
models (X ; L ; e) and (X 0; L 0; e0) respectively. Taking the closureX 00of X in X � K � X 0

and pulling back L , L 0 to X 00, we obtain models inducing the given metrics onL and L 0

but living on the same modelX 00.
Hence, we can always assume thatL and L 0 live on a common model with reduced

special �ber.
The same holds for formal models. Note that in the formal case it is much easier to

obtain a model with reduced special �ber, see 1.1.7.

For global heights and Archimedean local heights of subvarieties there isan induction
formula which can be taken as de�nition for the heights (see [BGS94, (3.2.2)] and [Gub03,
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Proposition 3.5]). A. Chambert-Loir has introduced the following measure on X an such
that an analogous induction formula holds for non-Archimedean local heights (cf. [Cha06,
2.3]).

De�nition 1.2.14. Let X be a reduced proper scheme overK of dimension n and let
L i , i = 1 ; : : : ; n, be Q-formal metrized line bundles onX . By 1.2.13, there is a formal
K � -model X of X with reduced special �ber and, for eachi , a formal K � -model (X; L i ; ei )
of (X; L i ) inducing the metric of L i . We denote by eX(0) the set of irreducible components
of the special �ber eX. Then we de�ne a discrete (signed) measure onX an by

c1(L 1) ^ � � � ^ c1(L n ) =
1

e1 � � � en

X

V 2 eX(0)

degeL1 ;:::;eLn
(V ) � � � V ;

where � � V is the Dirac measure in the unique point � V 2 X an such that red(� V ) is the
generic point of V (see 1.1.6).

More generally, let Y be a t-dimensional subvariety of X , then we de�ne

c1(L 1) ^ � � � ^ c1(L t ) ^ � Y = i �

�
c1(L 1jY ) ^ � � � ^ c1(L t jY )

�
;

where i : Y an ! X an is the induced immersion. We also write shortlyc1(L 1) � � � c1(L t )� Y .
This measure extends by linearity to t-dimensional cycles.

1.2.15. The measure in De�nition 1.2.14 is multilinear and symmetric in metr ized line
bundles. Moreover, the total mass ofc1(L 1)^� � �^ c1(L t )^ � Y equals the degreedegL 1 ;:::;L t

(Y ).
If the metrics of the L i are semipositive, then it is a positive measure.

Proposition 1.2.16 (Induction formula) . Let D̂0; : : : ; D̂ t be Q-formal metrized pseudo-
divisors and let Z be a t-dimensional prime cycle with jD0j \ � � � \ j D t j \ j Z j = ; . If
jZ j * jD t j, then let sD t ;Z := sD t jZ , otherwise we choose any non-zero meromorphic section
sD t ;Z of O(D t )jZ . Let Y be the Weil divisor of sD t ;Z considered as a cycle onX . Then we
have

� D̂ 0 ;:::;D̂ t
(Z ) = � D̂ 0 ;:::;D̂ t � 1

(Y ) �
Z

X an
logksD t ;Z k � c1(O(D0)) ^ � � � ^ c1(O(D t � 1)) ^ � Z :

Proof. This follows from [Gub03, Remark 9.5] and De�nition 1.2.14.

1.3. Semipositive Metrics, Local Heights and Measures

It would be nice if we could extend local heights to all continuous metrics. Although the
Q-formal metrics are dense in the space of continuous metrics, this isnot possible because
the continuity property (1.3) in Proposition 1.2.12 only holds for semipositive Q-formal
metrics. So the best we can do here is to extend the heights to limits of semipositive
Q-formal metrics. Then the canonical local heights for subvarieties of anabelian variety
are contained in this theory (see [Gub10, Ex. 3.7] for details).

In this and the following section, let X be a reduced proper scheme over the algebraically
closed �eld K .
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De�nition 1.3.1. Let L = ( L; k � k) be a metrized line bundle onX . The metric k � k is
called semipositive if there exists a sequence (k � kn )n2 N of semipositiveQ-formal metrics
on L such that

lim
n!1

d(k � kn ; k � k) = 0 :

In this case we say thatL = ( L; k � k) is a semipositive (metrized) line bundle. The metric
is said to beDSP (for �di�erence of semipositive�) if there are semipositive metriz ed line
bundlesM , N on X such that L = M 
 N � 1. Then L is called DSP (metrized) line bundle
as well.

Remark 1.3.2. If k � k is a Q-formal metric, then [GK15, Proposition 7.2] says that k � k
is semipositive in the sense of De�nition 1.2.3 if and only ifk � k is semipositive as de�ned
in De�nition 1.3.1. So there is no ambiguity in the use of the term semipositive metric.
This answers the question raised in [BPS14a, Remark 1.4.2].

Remark 1.3.3. W. Gubler works with slightly more general metrics, called semipositive
admissible or ĝ+

X -metrics (cf. [Gub03, 10.2, 10.3]). We have choosen the same de�nition
of semipositive metrics as in [BPS14a] and the papers by A. Chambert-Loir because it
su�ces for our purposes and is more suitable for toric geometry.

1.3.4. The tensor product and the pullback (with respect to a proper morphism) of
semipositive metrics are again semipositive. The tensor product, the dual and the pullback
of DSP metrics are also DSP.

1.3.5. By means of Proposition 1.2.12, we can easily extend the local heights to DSP
metrics. Concretely, let Y be a t-dimensional prime cycle andD̂ i = ( L i ; k � ki ; jD i j; si ),
i = 0 ; : : : ; t, a collection of semipositive metrized pseudo-divisors onX with

jD0j \ � � � \ j D t j \ Y = ; :

By De�nition 1.3.1, there is, for each i , an associated sequence of semipositiveQ-formal
metrics k � ki;n on L i such that d(k � ki;n ; k � ki ) ! 0 for n ! 1 . Then we de�ne the local
height of Y with respect to D̂0; : : : ; D̂ t as

� D̂ 0 ;:::;D̂ t
(Y ) := lim

n!1
� (L 0 ;k�k0;n ;jD 0 j;s0 );:::;(L t ;k�k t;n ;jD t j;st ) (Y ): (1.4)

This extends obviously to cycles and DSP metrics. For details see [Gub97, Ÿ 1] or [Gub02,
Theorem 5.1.8].

Let Z be a t-dimensional cycle ofX and (L i ; si ), i = 0 ; : : : ; t, DSP metrized line bundles
on X with invertible meromorphic sections such that

jdiv( s0)j \ � � � \ j div( st )j \ j Z j = ; :

By Example 1.2.10, we obtain DSP metrized pseudo-divisorsddiv( si ), i = 0 ; : : : ; t. We
de�ne the local height of Z with respect to (L 0; s0); : : : ; (L t ; st ) as

� (L 0 ;s0 );:::;(L t ;st ) (Z ) := � cdiv( s0 );:::; cdiv( st )
(Z ) : (1.5)

The local heights with respect to DSP metrics have the expectedproperties as stated in
the following proposition.
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Proposition 1.3.6. Let Z be a t-dimensional cycle ofX and D̂0; : : : ; D̂ t DSP metrized
pseudo-divisors onX with jD0j \ � � � \ j D t j \ j Z j = ; . Then there is a unique local height
� (Z ) := � D̂ 0 ;:::;D̂ t

(Z ) satisfying the following properties:

(i) If D̂0; : : : ; D̂ t are Q-formal metrized, then � (Z ) is the local height of 1.2.11.

(ii) � (Z ) is multilinear and symmetric in D̂0; : : : ; D̂ t and linear in Z .

(iii) For a proper morphism ' : X 0 ! X and a t-dimensional cycleZ 0 on X 0 satisfying
jD0j \ � � � \ j D t j \ j ' (Z )j = ; , we have

� ' � D̂ 0 ;:::;' � D̂ t
(Z 0) = � D̂ 0 ;:::;D̂ t

(' � Z 0):

In particular, � D̂ 0 ;:::;D̂ t
(Z ) does not change when restricting the metrized pseudo-

divisors to the prime cycleZ .

(iv) Let � 0(Z ) be the local height obtained by replacing the metrick � k of D̂0 by another
DSP metric k � k0. If the metrics of D̂1; : : : ; D̂ t are semipositive and ifZ is e�ective,
then

j� (Z ) � � 0(Z )j � d(k � k; k � k0) � degO(D 1 );:::;O(D t ) (Z ):

(v) Let f be a rational function on X and let D̂0 = ddiv(f ) be endowed with the trivial
metric on O(D0) = OX . If Y =

P
P nP P is a cycle representingD1: � � � :D t :Z 2

CH0 (jD1j \ � � � \ j D t j \ j Z j), then

� (Z ) =
X

P

nP � log jf (P)j:

Proof. This follows immediately from Proposition 1.2.12 and the construction in 1.3.5, and
is established in [Gub03, Theorem 10.6].

In the same manner we can generalize Chambert Loir's measures to semipositive and
DSP line bundles:

Proposition 1.3.7. Let Y be a t-dimensional subvariety of X and L i = ( L i ; k � ki ),
i = 1 ; : : : ; t, semipositive line bundles. For eachi , let (k � ki;n )n2 N be the corresponding
sequence ofQ-formal semipositive metrics on L i converging to k � ki . Then the measures

c1(L 1; k � k1;n ) ^ � � � ^ c1(L t j; k � kt;n ) ^ � Y

converge weakly to a regular Borel measure onX an. This measure is independent of the
choice of the sequences.

Proof. This follows from [Gub07b, Proposition 3.12].

De�nition 1.3.8. Let Y be at-dimensional subvariety ofX and L i = ( L i ; k�ki ), i = 1 ; : : : ; t,
semipositive line bundles. We denote the limit measure in 1.3.7 byc1(L 1) ^ � � � ^ c1(L t ) ^ � Y

or shortly by c1(L 1) : : : c1(L t )� Y . By multilinearity, this notion extends to a t-dimensional
cycle Y of X and DSP line bundlesL 1; : : : ; L t .

Chambert Loir's measure is uniquely determined by the following property which is
taken as de�nition in [Gub07b, 3.8].
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Proposition 1.3.9. Let L 1; : : : ; L t be DSP line bundles onX and let Z be at-dimensional
cycle. For j = 1 ; : : : ; t we choose any metrized pseudo-divisor̂D j with O(D j ) = L j , for
exampleD̂ j = ( L j ; X; ; ).

If g is any continuous real-valued function onX an, then there is a sequence ofQ-formal
metrics (k � kn )n2 N on OX such that logk1k� 1

n tends uniformly to g for n ! 1 and
Z

X an
g � c1(L 1) ^ � � � ^ c1(L t ) ^ � Z = lim

n!1
� (OX ;k�kn ;; ;1);D̂ 1 ;:::;D̂ t

(Z ):

Proof. By [Gub07b, Proposition 3.3], the Q-formal metrics are dense in the space of
continuous metrics on OX . This implies the existence of the sequence (k � kn )n2 N. The
second part follows from [Gub07b, Proposition 3.8].

Corollary 1.3.10. Let Z be a cycle onX of dimension t and let D̂0; : : : ; D̂ t be DSP
metrized pseudo-divisors withjD0j \ � � � \ j D t j \ j Z j = ; . Replacing the metric k � k
on O(D0) by another DSP metric k � k0, we obtain a metrized pseudo-divisorÊ . Then,
g := log( ksD 0 k=ksD 0 k0) extends to a continuous function onX and

� D̂ 0 ;:::;D̂ t
(Z ) � � Ê; D̂ 1 ;:::;D̂ t

(Z ) =
Z

X an
g � c1(O(D1)) ^ � � � ^ c1(O(D t )) ^ � Z :

Proof. Clearly g de�nes a continuous function on X . By means of Proposition 1.3.9,
Z

X an
g � c1(O(D1)) : : : c1(O(D t )) � Z

= � (OX ;k�k=k�k0;; ;1);D̂ 1 ;:::;D̂ t
(Z )

= � (O(D 0 );k�k ;jD 0 j;s0 );D̂ 1 ;:::;D̂ t
(Z ) � � (O(D 0 );k�k0;jD 0 j;s0 );D̂ 1 ;:::;D̂ t

(Z );

proving the statement.

Proposition 1.3.11. Let Z be at-dimensional cycle ofX and L 1; : : : ; L t DSP line bundles.
Then the measurec1(L 1) ^ � � � ^ c1(L t ) ^ � Z has the following properties:

(i) It is multilinear and symmetric in L 1; : : : ; L t and linear in Z .

(ii) Let ' : X 0 ! X be a morphism of proper schemes overK and Z 0 a t-dimensional
cycle of X 0, then

' �

�
c1(' � L 1) ^ � � � ^ c1(' � L t ) ^ � Z 0

�
= c 1(L 1) ^ � � � ^ c1(L t ) ^ � ' � Z 0:

(iii) If the metrics of L 1; : : : ; L t are semipositive, thenc1(L 1) ^ � � � ^ c1(L t ) ^ � Z is a
positive measure with total massdegL 1 ;:::;L t

(Z ).

Proof. We refer to Corollary 3.9 and Proposition 3.12 in [Gub07b].

Remark 1.3.12. With the previous notation, let K 0 be an algebraically closed extension
of K equipped with a complete absolute value extendingj � j , and denote by � : X K 0 ! X
the base change. Then, by [Gub07b, Remark 3.10],

� �

�
c1(� � L 1) ^ � � � ^ c1(� � L t ) ^ � YK 0

�
= c 1(L 1) ^ � � � ^ c1(L t ) ^ � Y :

16



1.4. Induction Formula for Local Heights

Thus, by base change to the completion of the algebraic closure and using linearity in
the irreducible components, we may extend the measures in De�nition 1.3.8 to all proper
schemesX and cyclesY over an arbitrary non-Archimedean �eld.

1.4. Induction Formula for Local Heights

Now we generalize the induction formula from Proposition 1.2.16 to DSP metrized line
bundles. This formula enables us to de�ne the local height inductively. Our proof is based
on [CT09, Théorème 4.1] where the formula is shown under the additional assumptions
that X is projective over a completion of a number �eld ands0; : : : ; st are global sections
such that their Cartier divisors intersect properly.

In this section let X be a reduced proper scheme over an algebraically closed non-
Archimedean �eld K .

At �rst, we prove the following approximation theorem correspondin g to [CT09, Théorème
3.1]. In contrast to [CT09] we show it in a more analytic fashion.

Proposition 1.4.1 (Approximation theorem) . Let (L; k � k) be a semipositive formal
metrized line bundle onX with a global sections which is invertible as a meromorphic
section. Then there is a sequence(k � kn )n2 N of formal metrics on the trivial bundle OX

with the following properties:

(i) The sequence
�
logk1k� 1

n
�

n2 N converges pointwise tologksk� 1 and it is monotonically
increasing.

(ii) For each n 2 N, the metric k � k=k � kn on L 
 O � 1
X = L is semipositive.

Proof. We �x some non-zero element� in K �� and de�ne, for each n 2 N, the closed sets

An := f x 2 X an j ks(x)k � j � n jg and Bn := f x 2 X an j ks(x)k � j � n jg : (1.6)

By 1.2.6, the formal metric k � k on L is given by an admissible coveringf Ui gi 2 I of X an

by a�noid domains, and non-vanishing regular sections t i 2 L an(Ui ) with kt i k � 1. Let
gij = t j =ti 2 O (Ui \ Uj ) � be the transition functions. Then the non-vanishing sjUi \ A n may
be identi�ed with regular functions f i 2 O (Ui \ An ) � satisfying f i = gij f j on Ui \ Uj \ An .
Since the functions f � 1

i 2 O (Ui \ An ), � � n 2 O (Ui \ Bn ) are local frames ofOX an on
a�noid domains, we get by 1.2.6 a formal metric k � kn on OX given by

k1kn = jf i j on Ui \ An and k1kn = j� n j on Ui \ Bn :

Consider, for eachn 2 N, the function

logk1k� 1
n =

(
log jf i j � 1 on Ui \ An

log j� n j � 1 on Ui \ Bn
=

(
logksk� 1 on An

n log j� j � 1 on Bn
=min

�
logksk� 1; n log j� j � 1	

:

Clearly, the sequence
�
logk1k� 1

n
�

n2 N tends pointwise to logksk� 1 and is monotonically
increasing.

Moreover, we have to show that, for eachn 2 N, the formal metric k � k0
n := k � k=k � kn

is semipositive onL 
 O � 1
X = L. For the admissible coveringf Ui \ An ; Ui \ Bngi 2 I by

a�noid domains, there exists a formal K � -model Xn of X an and a formal open covering

17



Chapter 1. Metrics, Local Heights and Measures over Non-Arc himedean Fields

f Ui;n ; V i;n gi 2 I of Xn such that Uan
i;n = Ui \ An and V an

i;n = Ui \ Bn (see [BL93b, Theorem
5.5]). We may assume thatXn has reduced special �ber (cf. 1.1.7). Then, by 1.2.6, the
formal metric k � k0

n is associated to the formalK � -model (L0
n ; Xn ) of (X; L ) given by

L0
n (U) =

�
r 2 L an(Uan) j kr (x)k0

n � 1 8x 2 Uan	
(1.7)

on a formal open subsetU of Xn . Therefore, we can considers as a global section ofL0
n

since we have

ksk0
n =

ksk
k1kn

=

(
1 on An

ksk � j � � n j on Bn
� 1:

Let C � eXn be a closed integral curve. Ifs doesn't vanish identically on C, then

degeL0
n
(C) = deg(c1( eL0

n ):C) = deg(div( sjC )) � 0:

If s vanishes identically on C, let B n be the union of the formal openV i;n 's. Then it
follows by (1.6) that eB n = red( Bn ) contains C.

By re�ning the above trivialization f Ui ; t i g to f Ui \ An ; Ui \ Bng, the metric k � k is
induced by a formal modelLn which also lives onXn and which is given similarly as in
(1.7). This implies Ln jB n

�= L0
n jB n given by r 7! � n � r . Since eB n is a neighborhood ofC

and eLn is nef, we obtain
degeL0

n
(C) = degeLn

(C) � 0;

which implies the semipositivity of k � k=k � kn .

Corollary 1.4.2. We use the notations from the approximation theorem and in addition,
we consider at-dimensional cycleZ and semipositive line bundlesL 1; : : : ; L t � 1 on X . Let
� be a (signed) �nite measure onX an such that, for everyQ-formal metric k � k0 on OX ,

lim
n!1

Z

X an
logk1k0� c1 (OX ; k � kn ) c1(L 1) : : : c1(L t � 1)� Z =

Z

X an
logk1k0� � :

Then the sequence
�
c1(OX ; k � kn ) c1(L 1) : : : c1(L t � 1)� Z

�

n2 N
of measures onX an converges

weakly to � .

Proof. Let � := c 1(L; k�k) c1(L 1) : : : c1(L t � 1)� Z and � n := c 1(OX ; k�kn ) c1(L 1) : : : c1(L t � 1)� Z

for each n 2 N. Then, by the approximation theorem 1.4.1 and Proposition 1.3.11 (iii), the
measures

� � � n = c 1

�
L; k�k

k�kn

�
c1(L 1) : : : c1(L t � 1)� Z

are positive with �nite total mass deg L;L 1 ;:::;L t � 1
(Z ), independent of n.

Let " > 0 and let f be any continuous function onX an. By [Gub07b, Proposition 3.3],
the set of Q-formal metrics on OX is embedded into a dense subset ofC(X an), i. e. there
is a Q-formal metric k � k0 such that for g := � logk1k0 we have

sup
x2 X an

jg(x) � f (x)j � degL;L 1 ;:::;L t � 1
(Z ) < "= 3

and
sup

x2 X an
jg(x) � f (x)j � j � � � j (X an) < "= 3:

18



1.4. Induction Formula for Local Heights

Moreover, there is by assumption anN 2 N such that, for all n � N ,
�
�
�
�

Z
g� �

Z
g� n

�
�
�
� < "= 3:

Finally, we obtain, for all n � N ,
�
�
�
�

Z
f � � �

Z
f � � n

�
�
�
�

=
�
�
�
�

Z
(f � g)( � � � n ) +

Z
g(� � � n ) +

Z
(g � f )( � � � )

�
�
�
�

� supjf � gj � degL;L 1 ;:::;L t � 1
(Z ) +

�
�
�
�

Z
g(� � � n )

�
�
�
� + sup jg � f j � j � � � j (X an)

< " :

This proves the result.

Theorem 1.4.3 (Induction formula) . Let Z be a t-dimensional prime cycle onX and let
D̂ i =

�
L i ; jD i j; si

�
, i = 0 ; : : : ; t, be DSP pseudo-divisors withjD0j \ � � � \ j D t j \ j Z j = ; . If

jZ j * jD t j, then let st;Z := st jZ , otherwise we choose any non-zero meromorphic section
st;Z of L t jZ . Let cyc(st;Z ) be the Weil divisor of st;Z considered as a cycle onX .

Then the function logkst;Z k is integrable with respect toc1(L 0)^ � � � ^ c1(L t � 1)^ � Z and
we have

� D̂ 0 ;:::;D̂ t
(Z ) = � D̂ 0 ;:::;D̂ t � 1

(cyc(st;Z )) (1.8)

�
Z

X an
logkst;Z k � c1(L 0)^ � � � ^ c1(L t � 1)^ � Z :

Remark 1.4.4. If L 0; : : : ; L t have Q-formal metrics, then this result is just Proposition
1.2.16. It is also evident if L t is the trivial bundle and hence, logkst;Z k is a continuous
function on Z . The di�culties of the general case arise from the relation between the limit
process de�ning the measure, and the poles of the function logkst;Z k.

Proof of the induction formula 1.4.3. By Proposition 1.3.6 (iii), we may assume that X =
Z , especiallyst = st;Z . Furthermore, we can suppose thatX is projective by Chow's lemma
(see, for instance, [GW10, Theorem 13.100]) and functoriality of the height (Proposition
1.3.6). Multiplying the metric k � k on L t by a constant, changes both sides of the equality
(1.8) by the same additive constant (see Corollary 1.3.10). Hence, we can assume that

sup
x2 X an

kst (x)k � 1: (1.9)

Step 1: Reduction to the case of a global sectionst of L t and properly intersecting
supports jD0j; : : : ; jD t j on Z . SinceX is projective, there is a very ample line bundleH
(provided with some semipositive metric) and a non-trivial global section r of H such
that L t 
 H is also very ample andst 
 r is a global section ofL t 
 H . By the moving
lemma (see for example [Liu06, Exercise 9.1.2]) we �nd invertible meromorphic sectionss0

j

of L j , j = 0 ; : : : ; t � 1, such that j div(s0
0)j; : : : ; j div(s0

t � 1)j and j div(st )j [ j div(r )j intersect
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properly on Z . Then we have

� D̂ 0 ;:::;D̂ t
(Z )� � D̂ 0 ;:::;D̂ t � 1

(cyc(st )) = � cdiv( s0
0 );:::; cdiv( s0

t � 1 );cdiv( st )
(Z )� � cdiv( s0

0 );:::; cdiv( s0
t � 1 )

(cyc(st )) ;

because both sides are given by a limit process as in (1.4) that only depends onL 0; : : : ; L t � 1

and D̂ t by Proposition 1.2.16. Now, we may replaceddiv( st ) by

(L t 
 H; j div( st )j [ j div( r )j; st 
 r ) � (H; j div( r )j; r )

and the �rst step follows from the multilinearity of the local height s.
Step 2: Reduction to the case of semipositive metrized pseudo-divisors D̂0; : : : ; D̂ t .

Because, fori = 0 ; : : : ; t, the line bundle L i is DSP metrized, we haveL i = M i 
 N � 1
i for

semipositive metrized bundlesM i and N i . There is, for eachi , a very ample line bundle
H i (provided with some semipositive metric) such that N i 
 H i is also very ample. By
the �rst step, jD0j; : : : ; jD t j intersect properly and so, we �nd hyperplane sectionsr i of
N i 
 H i , i = 0 ; : : : ; t, such that jdiv( r0)j ; : : : ; jdiv( r t )j ; jD0j ; : : : ; jD t j intersect properly,
too. Especially,

(jD0j [ j div( r0)j) \ � � � \ (jD0j [ j div( r0)j) = ; :

Hence, for i = 0 ; : : : ; t, we may replaceD̂ i by (L i ; jD i j [ j div( r i )j; si ). Because

(L i ; jD i j [ j div( r i )j; si ) = ( M i 
 H i ; jD i j [ j div( r i )j; si 
 r i ) � (N i 
 H i ; j div( r i )j; r i )

is the di�erence of two semipositive metrized pseudo-divisors,the second step follows from
the multilinearity of the local heights.

In the following we �x, for each i = 0 ; : : : ; t � 1, a semipositiveQ-formal metric k � k0

on L i and a semipositive formal metrick � k0 on L t . For each i = 0 ; : : : ; t, we denote the
corresponding metrized line bundle byM i and the metrized pseudo-divisor (M i ; jD i j; si )
by Ê i . Then we can extend' i := log ksi k0� logksi k to a continuous function on X an and
OX (' i ) := L i 
 M � 1

i is a DSP line bundle.
Step 3: Reduction to the case where the metric ofL t is formal. If the theorem holds for

logkst k0, then logkst k = logkst k0 � ' t is integrable with respect to c1(L 0) : : : c1(L t � 1)� Z

and we get
Z

X an
logkst k � c1(L 0) : : : c1(L t � 1)� Z

=
Z

X an
logkst k0� c1(L 0) : : : c1(L t � 1)� Z �

Z

X an
' t � c1(L 0) : : : c1(L t � 1)� Z

= � D̂ 0 ;:::;D̂ t � 1
(cyc(st )) � � D̂ 0 ;:::;D̂ t � 1 ;Ê t

(Z ) �
Z

X an
' t � c1(L 0) : : : c1(L t � 1)� Z :

By the metric change formula 1.3.10, we have
Z

X an
' t � c1(L 0) : : : c1(L t � 1)� Z = � D̂ 0 ;:::;D̂ t

(Z ) � � D̂ 0 ;:::;D̂ t � 1 ;Ê t
(Z )

and hence, the theorem is proved. Thus, we may assume that̂D t = ( L t ; jD t j; st ) is a
semipositive formal metrized pseudo-divisor.

Step 4: We prove by induction onk 2 f 0; : : : ; tg that the theorem holds ifL i is a Q-formal
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1.4. Induction Formula for Local Heights

metrized line bundle for i � k. The base casek = 0 is just the induction formula for
Q-formal metrics (see Proposition 1.2.16). We assume that the statement holds for k and
show it for k + 1. Since M k ; : : : ; M t � 1 are Q-formal metrized line bundles, we have

Z

X an
logkst k � c1(L 0) : : : c1(L k� 1) c1(M k ) : : : c1(M t � 1)� Z

= � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t � 1
(cyc(st )) � � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t

(Z ): (1.10)

Let L i be Q-formal for i � k + 1, that means we may assume thatL i = M i . Since
L k = M k 
 O (' k ), we obtain, by Proposition 1.3.11 (i),

c1(L 0) : : : c1(L k ) c1(M k+1 ) : : : c1(M t � 1)� Z

= c 1(L 0) : : : c1(L k� 1) c1(M k ) : : : c1(M t � 1)� Z (1.11)

+ c 1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z :

By the metric change formula 1.3.10, we get

� D̂ 0 ;:::;D̂ k ;Êk +1 ;:::;Ê t
(Z )

= � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t
(Z ) +

Z

X an
' k � c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t )� Z (1.12)

and

� D̂ 0 ;:::;D̂ k ;Êk +1 ;:::;Ê t � 1
(cyc(st )) (1.13)

= � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t � 1
(cyc(st )) +

Z

X an
' k � c1(L 0): : :c1(L k� 1) c1(M k+1 ): : :c1(M t � 1)� cyc(st ) :

The function logkst k is measurable and, by (1.9), non-positive. Hence, we can compute
the following integrals, where in�nite values are allowed,

Z

X an
logkst k � c1(L 0) : : : c1(L k ) c1(M k+1 ) : : : c1(M t � 1)� Z

(1:11)
=

Z

X an
logkst k � c1(L 0) : : : c1(L k� 1) c1(M k ) : : : c1(M t � 1)� Z

+
Z

X an
logkst k � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z

(1:10)
= � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t � 1

(cyc(st )) � � D̂ 0 ;:::;D̂ k � 1 ;Êk ;:::;Ê t
(Z )

+
Z

X an
logkst k � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z

(1:12);
(1:13)

= � D̂ 0 ;:::;D̂ k ;Êk +1 ;:::;Ê t � 1
(cyc(st )) �

Z

X an
' k c1(L 0): : :c1(L k� 1)c1(M k+1 ): : :c1(M t � 1)� cyc(st )

� � D̂ 0 ;:::;D̂ k ;Êk +1 ;:::;Ê t
(Z ) +

Z

X an
' k c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t )� Z

+
Z

X an
logkst k � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z :
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Thus, we have to prove
Z

X an
' k � c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t )� Z

=
Z

X an
' k � c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� cyc(st )

�
Z

X an
logkst k � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z :

By step 1�3, we can apply the approximation theorem 1.4.1: Let (k � kn )n2 N be a
sequence of formal metrics onOX such that the functions gn := log k1k� 1

n tend pointwise
to logkst k� 1, the sequence (gn )n2 N is monotonically increasing and (OX ; k � kn ) is a DSP
line bundle. Additionally, we may assume that the functions gn are non-negative by (1.9)
and by their construction in the approximation theorem. Applying Lebesgue's monotone
convergence theorem and using Proposition 1.3.9 and 1.3.11 (i), we obtain

Z

X an
logkst k� 1 � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z

= lim
n!1

Z

X an
gn � c1(O(' k )) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z

= lim
n!1

� bO(gn ); bO(' k );D̂ 0 ;:::;D̂ k � 1 ;Êk +1 ;:::;Ê t � 1
(Z )

= lim
n!1

� bO(' k ); bO(gn );D̂ 0 ;:::;D̂ k � 1 ;Êk +1 ;:::;Ê t � 1
(Z )

= lim
n!1

Z

X an
' k � c1(OX ; k � kn ) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z :

Finally, we must show the following equation for the continuous function ' k = log
�

k�k0
k

k�kk

�
:

lim
n!1

Z

X an
' k � c1(OX ; k � kn ) c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� Z

=
Z

X an
' k �

�
c1(L 0) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t )� Z (1.14)

� c1(L 1) : : : c1(L k� 1) c1(M k+1 ) : : : c1(M t � 1)� cyc(st )

�
:

The induction hypothesis implies that equation (1.14) always holds if k�k0
k

k�kk
is a Q-formal

metric. But then Corollary 1.4.2 (under the assumption of step 2) says that this equation
is also true if ' k is only continuous. This shows the induction formula (1.8) and hence,the
integrability of log kst k with respect to c1(L 0) � � � c1(L t � 1)� Z .

Corollary 1.4.5. With the same notations as in Theorem 1.4.3, any proper closed subset
of Z has measure zero with respect toc1(L 0) ^ : : : ^ c1(L t � 1) ^ � Z .

Proof. We may assume thatX = Z and, by Chow's lemma and Proposition 1.3.11 (ii),
that Z is projective. Then any proper closed subsetA of Z is contained in the support of
an e�ective pseudo-divisor (L; jdiv( s)j ; s) on Z . By the induction formula, the function
logksk� 1 is integrable with respect to c1(L 0) : : : c1(L t � 1)� Z , but it takes the value + 1 on
jdiv( s)j. Thus the support jdiv( s)j and also the subsetA have measure zero with respect
to c1(L 0) : : : c1(L t � 1)� Z .
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1.5. Metrics, Local heights and Measures over Archimedean
�elds

Following [Gub03, Ÿ 2,3 and 10], we recall some de�nitions and statements about Archi-
medean local heights. More details can be found in [Gub02]. Additionally we prove the
Archimedean counterpart of the induction formula (Theorem 1.4.3) which generalizes
slightly the Archimedean part of [CT09, Théorème 4.1]. This theory is used later for the
study of global heights.

Let K be a �eld which is complete with respect to an Archimedean absolute value. As
before, we assume for simplicity thatK is algebraically closed. Indeed, by Ostrowski's
theorem, we haveK = C.

In this section, let X be a reduced proper scheme overC and X an = X (C) the associated
compact complex analytic space. LetL be an algebraic line bundle onX and L an its
analyti�cation.

1.5.1. By Bloom and Herrera [BH69], di�erential forms on X an are de�ned as follows.
There is an open coveringf Ui gi of X an such that Ui is a closed analytic subset of an
open complex ball. On eachUi , the di�erential forms are given by restriction of smooth
complex-valued di�erential forms de�ned on such balls. Two forms on Ui are identi�ed
if they coincide on the non-singular locus ofUi . We write A � (Ui ) for the complex of
di�erential forms on Ui . By gluing, we obtain a sheafA �

X an . On this sheaf, we have
di�erential operators @;@, an exterior product and pullbacks with respect to analytic
morphisms. These operations are de�ned locally onA � (Ui ) by extending the forms to a
ball as above and applying the corresponding constructions for complex manifolds. We
denote by OX an the sheaf of analytic functions.

1.5.2. A metric on L , a metrized line bundleon X and a metrized pseudo-divisoron X
are de�ned as in De�nition 1.2.1 and 1.2.9. A metric k � k on L is called smooth if, for each
local sections of L an, the function ks(�)k2 is smooth.

Let k � k be a smooth metric onL . The �rst Chern form of L = ( L; k � k), denoted c1(L ),
is the di�erential form on X an de�ned, for any non-vanishing local sections of L an on an
open subsetU, as

c1(L )jU =
1

2�i
@@logksk2:

Indeed, the �rst Chern form does not depend on the choice ofs and it is a real and closed
(1; 1)-form. Moreover, c1 is linear in L and commutes with pullback.

Let D = f z 2 C j jzj � 1g. A smooth metric k � k on L is called semipositive if, for each
holomorphic map ' : D ! X an, Z

D
' � c1(L ) � 0:

The pullback of a semipositive metrized line bundle by any analyticmorphism is still
semipositive.

1.5.3. An arbitrary metric k � k on L is semipositive if there is a sequence (k � kn )n2 N of
semipositive smooth metrics onL that converges uniformly to k � k. A metric k � k on L is
DSP if ( L; k � k) is the quotient of two semipositive metrized line bundles.

Note that, for a smooth metric, the de�nitions of the term �semipositiv e� in 1.5.2 and
1.5.3 are equivalent. So there is no ambiguity in the use of this notion.
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1.5.4. A current of degreer on X an is a linear functional T on the space of compactly
supported forms in A r (X an) with the following property: For each point in X an, there
is an open neighborhoodU � X , which is a closed analytic subset of an open complex
ball B , and a current TU on B such that T(! jU ) = TU (! ) for every ! 2 A r (B ) with
compact support. As in the smooth case, the complex of currents onX an is equipped
with a bigrading, di�erential operators @;@, pushforwards and an exterior product with
di�erential forms. Moreover, we have the current of integration � Y along an analytic
subvariety Y an and the current [� ] associated to aL 1-form � . We refer to [Kin71] for
details and to [Gub02, 2.1.1] for an overview about currents on analytic varieties.

De�nition 1.5.5. A Green current for a t-dimensional cycleZ on X is a (t+1 ; t+1)-current
gZ on X an such that

i
2�

@@gZ = [ ! Z ] � � Z

for a smooth di�erential form ! Z on X an.

Example 1.5.6. Let L = ( L; k � k) be a smooth metrized line bundle ands an invertible
meromorphic section ofL . Then the Poincaré-Lelong formula says

i
2�

@@
h
logksk� 2

i
=

�
c1(L )

�
� � cyc(s) :

Hence,
�
logksk� 2�

is a Green current for cyc(s).

De�nition 1.5.7. Let D̂ = ( L; jD j; s) be a smooth metrized pseudo-divisor andgZ a
Green current for a prime cycleZ on X . If Z * jD j, then let sZ := sjZ and if Z � j D j, we
choose any non-zero meromorphic sectionsZ of L jZ . Then we de�ne the � -product by

D̂ � gZ := i �

h
logksZ k� 2

i
+ c 1(L ) ^ gZ ;

where i : Z ,! X . We extend this de�nition to cycles by linearity.

Remark 1.5.8. The current D̂ � gZ is only well-de�ned up to
P

W
�
log jf W j � 2�

, where W
ranges over �nitely many subvarieties of jD j \ j Z j and f W is a non-zero rational function
on W . When jD j intersects jZ j properly, the current is well-de�ned. In any case, D̂ � gZ is
a Green current for a cycle representingD:Z 2 CH (jD j \ j Z j).

Let s be an invertible meromorphic section of a smooth metrized line bundle L and
ddiv(s) the associated metrized pseudo-divisor (cf. Example 1.2.10). IfX is smooth and
jdiv( s)j intersects Z properly, then ddiv(s)� gZ = logksk� 2� gZ is the � -product of [GS90, Ÿ 2].

1.5.9. Let i : Z ,! X be the embedding of a prime cycle and 0Z the zero current on Z .
For smooth metrized pseudo-divisorsD̂1; : : : ; D̂k on X , we set

D̂1 � � � � � D̂k ^ � Z := i �

�
i � D̂1 � � � � � i � D̂k � 0Z

�
:

This is a well-de�ned current up to
P

W
�
log jf W j � 2�

, whereW ranges over the prime cycles
of jD1j \ � � � \ j Dk j \ Z and f W 2 K (W ) � . By linearity, it extends to arbitrary cycles Z .

De�nition 1.5.10. Let Z be a t-dimensional cycle onX and D̂0; : : : ; D̂ t smooth metrized
pseudo-divisors such that

jD0j \ � � � \ j D t j \ j Z j = ; :

24



1.5. Metrics, Local heights and Measures over Archimedean f ields

Then we de�ne the local height of Z with respect to D̂0; : : : ; D̂ t as

� D̂ 0 ;:::;D̂ t
(Z ) :=

�
D̂0 � � � � � D̂ t ^ � Z

�
(1=2) :

1.5.11. The Archimedean local heights with respect to smooth metrized pseudo-divisors
have the properties listed in Proposition 1.2.12 for non-Archimedean local heights with
respect to Q-formal metrized pseudo-divisors. This is proved in [Gub03, Ÿ 3].

Thus, we can extend the Archimedean local heights to semipositive and DSP metrized
pseudo-divisors as in 1.3.5. By [Gub03, Theorem 10.6], they satisfy the same properties
stated in Proposition 1.3.6. for the non-Archimedean case.

1.5.12. Let Y be a t-dimensional subvariety of X and let L 1; : : : ; L t be smooth metrized
line bundles onX . We denote by � Y the current of integration along the analytic subvariety
Y an. Then the current

c1(L 1) ^ � � � ^ c1(L t ) ^ � Y

de�nes a (signed) measure onX an. This notion extends linearly to a cycle Y .
Analogously to Proposition 1.3.7, we extend this measure to semipositive and DSP

metrized line bundles. It has the same properties as in Proposition 1.3.11.

Now we state and prove an induction formula similarly to Theorem 1.4.3. This formula
was proved in [CT09, Théorème 4.1] under the stronger assumptions thatX is projective
and that the supports of the Cartier divisors of the occuring sectionsintersect properly.

Theorem 1.5.13 (Induction formula) . Let Z be at-dimensional prime cycle onX and
let D̂ i =

�
L i ; jD i j; si

�
, i = 0 ; : : : ; t, be DSP pseudo-divisors with

jD0j \ � � � \ j D t j \ j Z j = ; :

If jZ j * jD t j, then let st;Z := st jZ , otherwise we choose any non-zero meromorphic section
st;Z of L t jZ . Let cyc(st;Z ) be the Weil divisor of st;Z considered as a cycle onX .

Then the function logkst;Z k is integrable with respect toc1(L 0)^ � � � ^ c1(L t � 1)^ � Z and
we have

� D̂ 0 ;:::;D̂ t
(Z ) = � D̂ 0 ;:::;D̂ t � 1

(cyc(st;Z )) �
Z

X an
logkst;Z k � c1(L 0)^ � � � ^ c1(L t � 1)^ � Z :

Proof. We get an Archimedean version of the approximation theorem 1.4.1 just by copying
the proof of the Archimedean part of [CT09, Théorème 3.1]. Then, replacingQ-formal
metrics by smooth metrics and using the corresponding propertiesof the Archimedean
local heights and measures, we can prove this theorem similarly as thenon-Archimedean
induction formula 1.4.3.

25





Chapter 2.

Metrics and Local Heights of Toric
Varieties

We show a formula to compute the local height of a toric variety over an arbitrary non-
Archimedean �eld (Theorem 2.6.6). For discrete non-Archimedean �elds, this was proved
by Burgos�Philippon�Sombra in [ BPS14a, Theorem 5.1.6]. To state and prove this formula,
we study toric divisors over arbitrary valuation rings of rank one (section 2.3) and toric
semipositive metrics over non-discrete non-Archimedean �elds (section 2.5).

In this chapter, let M be a free Abelian group of rankn and N := M _ := Hom (M; Z) its
dual group. The natural pairing between m 2 M and u 2 N is denoted by hm; ui := u(m).
We have the split torus T := Spec(K [M ]) over a �eld K of rank n. Then M can be
considered as the character lattice ofT and N as the lattice of one-parameter subgroups.
For m 2 M we will write � m for the corresponding character. IfG is an Abelian group, we
set NG = N 
 Z G. In particular, NR = N 
 Z R is an n-dimensional real vector space with
dual spaceM R.

The needed notions and statements of convex geometry are summarized in Appendix A.

2.1. Toric Varieties

We give a short overview of the theory of (normal) toric varieties over a�eld K following
[BPS14a, 3.1�3.4], especially in the notation. For details and proofs, we also referto
[KKMS73], [Ful93] and [CLS11].

The notations concerning polyhedra and their properties can be found in the appendix A.

De�nition 2.1.1. Let K be a �eld and T a split torus over K . A ( T-)toric variety is
a normal irreducible variety X over K containing T as an open subset such that the
translation action of T on itself extends to an algebraic action� : T � X ! X .

2.1.2. There is a nice description of toric varieties in combinatorial data. At �rst we have
a bijection between the sets of

(i) strongly convex rational polyhedral cones� in NR,

(ii) isomorphism classes of a�ne T-toric varieties X over K .

This correspondence is given by� 7! U� = Spec(K [M � ]), where K [M � ] is the semigroup
algebra of

M � = � _ \ M = f m 2 M j hm; ui � 0 8u 2 � g:
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Chapter 2. Metrics and Local Heights of Toric Varieties

The action of T on U� is induced by

K [M � ] ! K [M ] 
 K [M � ]; � m 7! � m 
 � m :

More generally, we consider a fan � in NR (De�nition A.4). If �; � 0 2 �, then U� and
U� 0 glue together along the open subsetU� \ � 0. So, we obtain aT-toric variety

X � =
[

� 2 �

U� :

This construction induces a bijection between the set of fans � in NR and the set of
isomorphism classes of toric varietiesX � with torus T.

2.1.3. Many properties of toric varieties are encoded in their fans, for example:

(i) A toric variety X � is proper if and only if the fan is complete, i. e. j� j :=
S

� 2 � � = NR.

(ii) A toric variety X � is smooth if and only if the minimal generators of each cone� 2 �
are part of a Z-basis ofN .

2.1.4. Let X � be the toric variety of the fan � in NR. Then there is a bijective correspon-
dence between the cones in � and theT-orbits in X � . The closures of the orbits inX �

have a structure of toric varieties which we describe in the following: For � 2 � we set

N (� ) = N= hN \ � i ; M (� ) = N (� )_ = M \ � ? ; O(� ) = Spec(K [M (� )]) ;

where � ? denotes the orthogonal space to� . Then O(� ) is a torus over K of dimension
n � dim( � ) which can be identi�ed with a T-orbit in X � via the surjection

K [M � ] �! K [M (� )]; � m 7�!

(
� m if m 2 � ? ;

0 otherwise:

We denote by V(� ) the closure of O(� ) in X � . Then V(� ) can be identi�ed with the
O(� )-toric variety X �( � ) , which is given by the fan

�( � ) = f � + hN \ � i R j � 2 � ; � � � g (2.1)

in N (� )R = NR=hN \ � i R.

De�nition 2.1.5. Let X i , i = 1 ; 2, be toric varieties with torus T i . We say that a
morphism ' : X 1 ! X 2 is toric if ' maps T1 into T2 and ' jT1 : T1 ! T2 is a morphism of
group schemes.

2.1.6. Any toric morphism ' : X 1 ! X 2 is equivariant, i. e. we have a commutative
diagram

T1 � X 1
� 1 //

' jT1 � '
��

X 1

'
��

T1 � X 1
� 2 //X 2 ;

where � 1; � 2 denote the torus actions.
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Toric morphisms can be described in combinatorial terms.

2.1.7. For i = 1 ; 2, let N i be a lattice with associated torusT i = SpecK [N _
i ] and let � i

be a fan in N i; R. Let H : N1 ! N2 be a linear map which iscompatible with � 1 and � 2.
That is, for each cone� 1 2 � 1, there exists a cone� 2 2 � 2 with H (� 1) � � 2. Then H
induces a group morphismT1 ! T2 of tori and, by the compatibility of H , this group
morphism extends to a toric morphism ' H : X � 1 ! X � 2 .

We �x N i , T i and � i , i = 1 ; 2, as above. Then the assignmentH 7! ' H induces a
bijection between the sets of

(i) linear maps H : N1 ! N2, which are compatible with � 1 and � 2;

(ii) toric morphisms ' : X � 1 ! X � 2 .

A toric morphism ' H : X � 1 ! X � 2 is proper if and only if H � 1(j� 2j) = j� 1j.

De�nition 2.1.8. A T-Cartier divisor on a T-toric variety X is a Cartier divisor D on
X which is invariant under the action of T on X , i. e. we have� � D = p�

2D denoting by
� : T � X ! X the toric action and by p2 : T � X ! X the second projection.

Torus-invariant Cartier divisors can be described in terms of support functions:

De�nition 2.1.9. A continuous function 	 : j� j �! R is called avirtual support function
on �, if there exists a set f m� g� 2 � of elements inM such that, for each cone� 2 �, we
have 	( u) = hm� ; ui for all u 2 � . It is said to be strictly concave if, for di�erent maximal
cones�; � 2 �, we have m� 6= m� . A support function is a concave virtual support function
on a complete fan.

2.1.10. Let 	 be a virtual support function given by the data f m� g� 2 � . Then 	 determines
a T-Cartier divisor

D 	 :=
��

U� ; � � m �
�	

� 2 �

on X � . The map 	 7! D 	 is an isomorphism between the group of virtual support
functions on � and the group of T-Cartier divisors on X � . The divisors D 	 1 and D 	 2 are
rationally equivalent if and only if 	 1 � 	 2 is linear.

De�nition 2.1.11. Let X be a toric variety. A toric line bundle on X is a pair (L; z )
consisting of a line bundleL on X and a non-zero elementz in the �ber L x0 of the unit
point x0 of U0 = T. A toric section is a meromorphic sections of a toric line bundle which
is regular and non-vanishing on the torusU0 and such that s(x0) = z.

2.1.12. Let D be a T-Cartier divisor on a toric variety X � . Then there is an associated
line bundle O(D) and a meromorphic sectionsD such that div(sD ) = D . Since the support
of D lies in the complement ofT, the section sD is regular and non-vanishing onT. Thus,
D corresponds to a toric line bundle (O(D); sD (x0)) with toric section sD . This assignment
determines an isomorphism between the group ofT-Cartier divisors on X � and the group
of isomorphism classes of toric line bundles with toric sections.

Let 	 be a virtual support function on �. By 2.1.10, this function correspon ds bijectively
to the isomorphism class of the toric line bundle with toric section ((O(D 	 ); sD 	 (x0)) ; sD 	 ),
which we simply denote by (L 	 ; s	 ).
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2.1.13. Let X � be a T-toric variety. We denote by Pic(X � ) the Picard group of X � and
by Div T(X � ) the group of T-Cartier divisors. Then we have a exact sequence of Abelian
groups

M �! Div T(X � ) �! Pic(X � ) �! 0;

where the �rst morphism is given by m 7! div(� m ). In particular, every toric line bundle
admits a toric section and, if s and s0 are two toric sections, then there is anm 2 M such
that s0 = � m s.

2.1.14. Let D 	 be a T-Cartier divisor on a toric variety X � . Then the associated Weil
divisor cyc(s	 ) is invariant under the torus action. Indeed, let � (1) be the set of one-
dimensional cones in �. Each ray � 2 � (1) gives a minimal generatorv� 2 � \ N and a
correspondingT-invariant prime divisor V (� ) on X � (see 2.1.4). Then we have

cyc(s	 ) =
X

� 2 � (1)

� 	( v� )V (� ): (2.2)

2.1.15. We describe the intersection of aT-Cartier divisor with the closure of an orbit.
Let � be a fan in NR and 	 a virtual support function on � given by the de�ning vectors
f m� g� 2 � . Let � be a cone of � and V(� ) the corresponding orbit closure. Each cone
� � � corresponds to a cone� of the fan �( � ) de�ned in (2.1). Since m� � m� j � = 0, we
have m� � m� 2 M (� ) = M \ � ? . Thus, the de�ning vectors f m� � m� g� 2 �( � ) gives us a
well-de�ned virtual support function (	 � m� )( � ) on �( � ).

When 	 j � 6= 0, then D 	 and V(� ) do not intersect properly. But D 	 is rationally
equivalent to D 	 � m � and the latter divisor properly intersects V (� ). Moreover, we have
D 	 � m � jV (� ) = D (	 � m � )( � ) . For details, we refer to [BPS14a, Proposition 3.3.14].

We end this section with some positivity statements aboutT-Cartier divisors. For this,
we consider a complete fan � in NR and a virtual support function 	 on � given by the
de�ning vectors f m� g� 2 � .

2.1.16. Many properties of the associated toric line bundleO(D 	 ) are encoded in its
support function.

(i) O(D 	 ) is generated by global sections if and only if 	 is concave;

(ii) O(D 	 ) is ample if and only if 	 is strictly concave.

If 	 is concave, then the stability set � 	 from A.7 is a lattice polytope and f � m gm2 M \ � 	

is a basis of theK -vector space �(X � ; O(D 	 )). Moreover, we have in this case

degO(D 	 ) (X � ) = n! volM (� 	 ): (2.3)

2.1.17. Assume that 	 is strictly concave or equivalently that D 	 is ample. We use the
notations and statements from A.20. Then the stability set � := � 	 is a full dimensional
lattice polytope and � coincides with the normal fan � � of �. Thus, a facet F of �
correspond to a ray� F of � and we can reformulate (2.2),

cyc(s	 ) =
X

F

� h F; vF i V (� F );

where the sum is over the facetsF of � and vF is the minimal inner facet normal of F
(see A.21).
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2.1.18. Assume that 	 is concave or D 	 is generated by global sections. Then � = � 	 is
a (not necessarily full dimensional) lattic polytope. We set

M (�) = M \ L � ; N (�) = M (�) _ = N
��

N \ L?
�

�
;

where L � denotes the linear subspace ofM R associated to the a�ne hull a� (�) of �.
We choose anym 2 a� (�) \ M . Then, the lattic polytope � � m is full dimensional in
L � = M (�) R. Let � � be the normal fan of � � m in N (�) R (see A.20). The projection
H : N ! N (�) is compatible with � and � � and so, by 2.1.7, it induces a proper toric
morphism ' : X � ! X � � . We set � 0 = � � m and consider the function

	 � 0 : N (�) R �! R; u 7�! min
m02 � 0



m0; u

�
:

This is a strictly concave support function on � � . By 2.1.16, the divisor D 	 � 0 is ample,
and

D 	 = ' � D 	 � 0 + div( � � m ): (2.4)

2.2. Toric Schemes over Valuation Rings of Rank One

In this section we summarize some facts from the theory of toric schemes over valuation
rings of rank one developed in [Gub13] and [GS13].

Let K be a �eld equipped with a non-Archimedean absolute valuej � j and denote by
K � its valuation ring. Then we have a valuation val := � log j � j of rank one and a value
group � := val (K � ) � R. As usual, we �x a free Abelian group M of rank n with dual
N . Let TS bet the split torus TS = Spec (K � [M ]) over S = Spec(K � ) with generic �ber
T = Spec(K [M ]) and special �ber T eK = Spec(fK [M ]).

De�nition 2.2.1. A ( TS-)toric scheme is a normal integral separatedS-schemeX of
�nite type, such that the generic �ber X � contains T as an open subset and the translation
action of T on itself extends to an algebraic actionTS � S X ! X over S.

Remark 2.2.2. In [Gub13] and [GS13], a TS-toric scheme is not necessarily normal and
of �nite type over S where such a scheme is called normalTS-toric variety. Here, we follow
the de�nition in [BPS14a].

De�nition 2.2.3. Let X be a T-toric variety and let X be a TS-toric scheme. ThenX
is called a (TS-)toric model of X if X is an algebraic model ofX over S such that the
�xed isomorphism X � ' X identi�es ( TS) � with T.

If X and X 0 are toric models ofX and � : X ! X 0 is an S-morphism, we say that �
is a morphism of toric models if its restriction to T is the identity.

2.2.4. By [Gub13, Lemma 4.2], a toric schemeX is �at over S and the generic �ber X �

is a T-toric variety over K . Thus, X is a TS-toric model of X � .

In analogy to toric varieties over K , we can describe toric schemes overK � with torus
TS in terms of convex geometry:
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2.2.5. A � -admissible cone� in NR � R� 0 is a strongly convex cone which is of the form

� =
k\

i =1

f (u; r ) 2 NR � R� 0 j hmi ; ui + l i � r � 0g with mi 2 M; l i 2 � ; i = 1 ; : : : ; k:

For such a cone� , we de�ne

K [M ]� :=
n X

m2 M

� m � m 2 K [M ] j hm; ui + val( � m ) � r � 0 8 (u; r ) 2 �
o

:

This is an M -graded K � -subalgebra ofK [M ] which is an integrally closed domain. It is
�nitely generated as a K � -algebra if and only if the following condition (F) is ful�lled:

(F) The value group � is discrete or the vertices of � \ (NR � f 1g) are contained in
N � � f 1g.

Hence, we get an a�ne TS-toric schemeU � := Spec(K [M ]� ) over S if and only if (F) holds.
If � is discrete or divisible, then (F) is always correct.

2.2.6. A fan in NR � R� 0 is called � -admissible if it consists of �-admissible cones.
Given such a fan e� , the a�ne TS-toric schemesU � ; � 2 e� , glue together along the open
subschemes corresponding to the common faces as in the case of toric varieties. So we
obtain a scheme

X e� =
[

� 2 e�

U � (2.5)

over S. By [GS13, Theorem 3],e� 7! X e� de�nes a bijection between the sets of

(i) �-admissible fans in NR � R� 0 whose cones satisfy condition (F),

(ii) isomorphism classes ofTS-toric schemes overS.

In this case, X e� is proper over S if and only if e� is complete, i. e. j e� j = NR � R� 0 (see
[Gub13, Proposition 11.8]).

It is also possible to describe toric schemes in terms of polyhedrain NR.

2.2.7. Let � be a cone inNR � R� 0. For r 2 R� 0, we set

� r := f u 2 NR j (u; r ) 2 � g :

Then � 7! � 1 de�nes a bijection between the set of �-admissible cones inNR � R� 0, which
are not contained in NR � f 0g, and the set of strongly convex �-rational polyhedra in
NR. The inverse map is given by � 7! c(�), where c(�) is the closure of R> 0(� � f 1g) in
NR � R� 0.

2.2.8. Let e� be a �-admissible fan, whose cones satisfy (F). Then we have two kinds of
cones� in e�:

(i) If � is contained in NR � f 0g, then K [M ]� = K [M � 0 ]. Hence,U � is equal to the toric
variety U� 0 associated to� 0 (see 2.1.2) and it is contained in the generic �ber ofX e� .
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(ii) If � is not contained in NR � f 0g, then � := � 1 is a strongly convex �-rational
polyhedron in NR. It easily follows that K [M ]� is equal to

K [M ]� :=
n X

m2 M

� m � m 2 K [M ] j hm; ui + val( � m ) � 0 8 u 2 �
o

:

Thus, U � equals the TS-toric scheme U � := Spec(K [M ]� ). The generic �ber of
U � = U � is identi�ed with the T-toric variety U� 0 = Urec(�) , where rec (�) is the
recession cone of � (see A.3).

We set � :=
�
� 0 j � 2 e�

	
and � :=

�
� 1 j � 2 e�

	
. Then � is a fan in NR and � is a �-rational

polyhedral complex in NR (see A.4 for the de�nition). Now we can rewrite the open cover
(2.5) as

X e� =
[

� 2 �

U� [
[

� 2 �

U �

using the same gluing data. The generic �ber of this toric scheme is the T-toric variety X �

associated to �, i. e. X e� is a toric model of X � .

2.2.9. If the value group � is discrete, then the special �ber fX e� is reduced if and only if

the vertices of all � 2 � are contained in N � . If the valuation is not discrete, then fX e� is
always reduced (see [Gub13, Proposition 7.11 and 7.12]).

2.2.10. Conversely, if we start with an arbitrary �-rational polyhedral complex � , we
can't expect that the cone

c(�) := f c(�) j � 2 � g [ f rec(�) � f 0g j � 2 � g

is a fan in NR � R� 0. However, the correspondence �7! c(�) gives a bijection between
complete�-rational polyhedral complexes in NR and complete�-admissible fans in NR � R� 0

(see [BS11, Corollary 3.11]).

We will consider �-rational polyhedral complexes � in NR that satisfy the following
condition:

(F') The value group � is discrete or, for each � 2 �, the vertices of � are contained in
N � .

Proposition 2.2.11. The correspondence� 7! X c(�) gives a bijection between the sets of

(i) complete � -rational polyhedral complexes� in NR which satisfy condition (F');

(ii) isomorphism classes of properTS-toric schemes overS.

Proof. This follows from the results in [BS11], [GS13] and [Gub13] mentioned in 2.2.10
and 2.2.6.

Corollary 2.2.12. Let � be a complete fan inNR. Then there is a bijective correspondence
between the sets of

(i) complete � -rational polyhedral complexes� in NR with rec(�) = � (see A.5) and
satisfying condition (F');
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Chapter 2. Metrics and Local Heights of Toric Varieties

(ii) isomorphism classes of properTS-toric models of X � over S.

We end this section with a description of the orbits of a toric scheme. We assume that
� is a complete �-rational polyhedral complex in NR which satis�es condition (F'). This
gives us a complete �-admissible fanc(�) in NR � R� 0 and a complete fanrec(�) in NR.
We set X � := X c(�) and we identify the generic �ber X � ;� with the toric variety X rec(�) .

Notation 2.2.13. For � 2 �, let L � be the R-linear subspace ofNR associated to the
a�ne space a�(�). We set

N (�) = N=(N \ L � ); M (�) = N (�) _ = M \ L?
� ;

generalizing the notation in 2.1.4. Furthermore, we de�ne

fM (�) = f m 2 M (�) j hm; ui 2 � 8 u 2 � g; eN (�) = fM (�) _ :

Because of the �-rationality of �, the lattice fM (�) is of �nite index in M (�). We de�ne
the multiplicity of a polyhedron � 2 � by

mult(�) =
�
M (�) : fM (�)

�
: (2.6)

Let � 0 2 � and � a face of � 0. The local cone(or angle) of � 0 at � is de�ned as

\ (� ; � 0) :=
�
t(u � v) j u 2 � 0; v 2 � ; t � 0

	
:

This is a polyhedral cone.

There is a bijection between torus orbits of X � and the two kinds of cones inc(�)
corresponding to cones in rec(�) and polyhedra in �.

First, the cones in rec(�) correspond to the T-orbits on the generic �ber X � ;� = X rec(�)
via � 7! O(� ) as in 2.1.4. We denote byV (� ) the Zariski closure of O(� ) in X � . Then
V (� ) is a scheme of relative dimensionn � dim(� ) over S. Moreover, we have� � � if
and only if O(� ) � V (� ).

Proposition 2.2.14. There is a canonical isomorphism fromV (� ) to the Spec(K � [M (� )]) -
toric schemeX �( � ) over K � which is given by the� -rational polyhedral complex

�( � ) = f � + hN \ � i R j � 2 � ; rec(�) � � g

in N (� )R = NR=hN \ � i R.

Proof. This follows from [Gub13, Proposition 7.14].

Second, the polyhedra of � correspond to the T eK -orbits on the special �ber fX � . This
bijective correspondence is given by

O: � 7�! red(trop � 1(ri �)) ;

where red is the reduction map from 1.1.8,trop is the tropicalization map from 2.4.5 and
ri (�) is the relative interior of � from A.1. For details, we refer to [ Gub13, Proposition
6.22 and 7.9]. For � 2 �, we denote by V(�) the Zariski closure of O(�) in X � . Then
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2.3. TS -Cartier Divisors on Toric Schemes

V(�) is contained in the special �ber fX � and has dimensionn � dim(�). Moreover, we
have

� � � 0 () O(� 0) � V (�) and � � rec(�) () O(�) � V (� ) : (2.7)

Proposition 2.2.15. The variety V (�) is equivariantly (but non-canonically) isomorphic
to the Spec(fK [ fM (�)]) -toric variety X �(�) over fK which is given by the fan

�(�) =
�
\ (� ; � 0) + L � j � 0 2 � ; � 0 � �

	
(2.8)

in eN (�) R = N (�) R = NR=L � .

Proof. This is [Gub13, Proposition 7.15].

2.2.16. In particular, there is a bijection between vertices of � and the ir reducible
components of the special �ber fX � . For each v 2 � 0, the associated componentV (v) is a
toric variety over fK with torus associated to the character lattice f m 2 M j hm; vi 2 � g
and given by the fan �( v) = f R� 0(� 0� v) j � 0 2 � ; � 0 3 vg in NR.

2.3. TS-Cartier Divisors on Toric Schemes

We extend the theory of T-Cartier divisors to toric schemes over a valuation ring of rank
one. This generalizes [KKMS73, Ÿ IV.3] and [BPS14a, Ÿ 3.6] where the case of discrete
valuation is handled and which we use as a guideline.

We keep the notations of the previous section. Furthermore, we only consider �-rational
polyhedral complexes which satisfy the following condition:

(F') The value group � is discrete or, for each � 2 �, the vertices of � are contained in
N � .

This ensures that the regarded schemes are of �nite type overK � and hence, they are
models of their generic �ber in the sense of De�nition 1.2.7. In principle we could work
without this assumption. But it is no restriction because we can always perform base
change to the algebraic closure ofK . Then the value group of this algebraically closed �eld
is divisible and the second condition of (F') is always satis�ed.

De�nition 2.3.1. A TS-Cartier divisor on a TS-toric schemeX is a Cartier divisor D
on X which is invariant under the action of TS on X , i. e. we have� � D = p�

2D denoting
by � : TS � X ! X the toric action and by p2 : TS � X ! X the second projection.

For simplicity we only study TS-Cartier divisors on proper schemes.

2.3.2. Let � be a complete �-rational polyhedral complex in NR satisfying (F') and X �

the associated properTS-toric scheme. Let be a �-lattice function on � given by de�ning
vectors f (m� ; l � )g� 2 � in M � � (see A.11). These vectors have to satisfy the condition

(hm� ; �i + l � ) j � \ � 0 = ( hm� 0; �i + l � 0) j � \ � 0 for all � ; � 0 2 � : (2.9)

On each open subsetU � , the vector (m� ; l � ) determines a rational function � � 1
� � � m � ,

where � � 2 K � is any element with val(� � ) = l � . For � ; � 0 2 �, condition (2.9) implies
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that
val(� � 0=� � ) + hm� 0 � m� ; ui = 0 for all u 2 � \ � 0;

and therefore, � � 0� m � 0=� � � m � is regular and non-vanishing onU � \ U � 0 = U � \ � 0. Since
� is complete, the set f U � g� 2 � is an open cover ofX � . Thus,  de�nes a Cartier divisor

D  =
n�

U � ; � � 1
� � � m �

�o

� 2 �
; (2.10)

where � � 2 K � is any element with val(� � ) = l � . The divisor D  only depends on and
not on the particular choice of de�ning vectors and elements� � . It is easy to see thatD  

is TS-invariant.

We can classifyTS-Cartier divisors in terms of �-lattice functions:

Theorem 2.3.3. Let � be a complete� -rational polyhedral complex in NR satisfying (F')
and let X � be the corresponding properTS-toric scheme.

(i) The assignment 7! D  is an isomorphism between the group of� -lattice functions
on � and the group ofTS-Cartier divisors on X � .

(ii) The divisors D  1 and D  2 are rationally equivalent if and only if  1 �  2 is a�ne.

For the proof, we need the following helpful lemma.

Lemma 2.3.4. Let � 2 � . Then, for each TS-Cartier divisor D on U � , we have

D = div( �� m )

for some m 2 M and � 2 K � .

Proof. Let us consider theK � -algebra A := OU � (U � ) = K [M ]� and the fractional ideal
I := �( U � ; OU � (� D )) of A. SinceD is TS-invariant, the K � -module I is graded byM , i. e.
we can write I =

L
m2 M I m , where I m is a K � -submodule contained inK� m . BecauseK �

is a valuation ring of rank one, either I m = (0) or I m = K �� � m � m or I m = K � � m � m or
I m = K� m for somem 2 M , � m 2 K � . SinceI is �nitely generated as an A-module, we
deduce

I =
M

� m � m 2 I

K � � m � m : (2.11)

Now we �x a point p 2 O(�). Then D is principal on an open neighborhoodU of p in U � .
We may assume thatU = Spec(Ah) for someh 2 A with h(p) 6= 0. Hence, D jU = div(f )jU
for somef 2 K (M ) � = Quot( A) � . This implies

I h = OU � (� D )(U) = f � OU � (U) = f � Ah :

In particular, f 2 I h , and by (2.11), we can write

f =
X

i

ci

hk � m i �
m i with ci 2 K � n f 0g; k 2 N0:
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2.3. TS -Cartier Divisors on Toric Schemes

Since� m i �
m i =f 2 O U � (U) and p 2 U, we deduce(� m i �

m i =f ) (p) 6= 0 for some i . There
exists an open neighborhoodW � U of p on which � m i �

m i =f is non-vanishing and thus,

div( � m i �
m i )jW = div( f )jW = D jW : (2.12)

By [GS13, Corollary 2.12 (c)], we have an injective homomorphismD 7! cyc(D) from
the group of Cartier divisors on U � to the group of Weil divisors on U � , which restricts to
a homomorphism of the corresponding groups ofTS-invariant divisors. The TS-invariant
prime (Weil) divisors are exactly the TS-orbit closures of codimension one. By (2.7),

p 2 O(�) �
\

v2 � 0 ;
v� �

V(v) \
\

� 2 rec(�) 1 ;
� � rec(�)

V (� );

and therefore, W meets eachTS-invariant prime divisor of U � . Thus, equation (2.12)
implies cyc(D) = cyc (div( � m i �

m i )) and hence,D = div( � m i �
m i ).

Proof of Theorem 2.3.3. (i) Let  be a �-lattice function on � given by de�ning vectors
f (m� ; val(� � ))g� 2 � . Then, by the construction in 2.3.2, D  is a well-de�ned TS-Cartier
divisor on X � . It is easy to see that this assignment de�nes a group homomorphism.

To prove injectivity, we assume that  maps to the zero divisor (X � ; 1). Then, for each
� 2 �, the function � � 1

� � � m � is invertible on U � or equivalently,

 (u) = hm� ; ui + val( � � ) = 0 for all u 2 � :

Therefore,  is identically zero and we proved injectivity.
For surjectivity, let D be an arbitrary TS-Cartier divisor on X � . By Lemma 2.3.4, there

exist, for each � 2 �, elements � � 2 K � and m� 2 M , such that D jU � = div(� � � m � )jU � .
SinceD is a Cartier divisor, we have, for � ; � 0 2 �,

div( � � � m � )jU � \ � 0 = div( � � 0 � m � 0)jU � 0\ �
;

which implies that

val(� � ) + hm� ; ui = val( � � 0) + hm� 0; ui for all u 2 � \ � 0: (2.13)

For each � 2 �, we set  (u) := h� m� ; ui � val(� � ) for all u 2 �. By (2.13), this determines
a well-de�ned �-lattice function  : NR ! R and, by (2.10),  maps to D .

(ii) We claim that a TS-Cartier divisor on X � is principal if and only if it has the form
div(�� m ) for � 2 K � ; m 2 M . Indeed, let D be any principal TS-Cartier divisor on X � ,
i. e. D = div(f ) for some f 2 K (X � ) � . The support of D is disjoint from the torus T.
Therefore, when regarded as an element ofK (T) � , f has zero divisor onT. This implies
f 2 K [M ]� and thus, f = �� m for some� 2 K � and m 2 M .

Using this equivalence, statement (ii) follows easily from (i).

2.3.5. Let X be a toric scheme overS. A toric line bundle on X is a pair (L ; z) consisting
of a line bundle L on X and a non-zero elementz in the �ber L x0 of the unit point
x0 2 X � . A toric section is a meromorphic sections of a toric line bundle which is regular
and non-vanishing on the torusT � X � and such that s(x0) = z.

37



Chapter 2. Metrics and Local Heights of Toric Varieties

As in 2.1.12, eachT-Cartier divisor D on X de�nes a toric line bundle (O(D); sD (x0))
with toric section sD as well as each �-lattice function  de�nes a toric line bundle with
toric section ((O(D  ); sD  (x0)) ; sD  ), which we simply denote by (L  ; s ).

Let (X � ; D 	 ) be a proper toric variety with a T-Cartier divisor. A toric model of
(X � ; D 	 ) is a triple ( X ; D; e) consisting of a TS-toric model X of X � , a TS-Cartier
divisor D on X and an integer e > 0 such that D jX � = eD	 .

Clearly, every toric model (X ; D; e) of (X � ; D 	 ) induces an algebraic model (X ; O(D); e)
of (X � ; L 	 ) in the sense of De�nition 1.2.7 such that the toric sectionsD jX � of O(D)jX � is
identi�ed with the toric section s
 e

	 of L 
 e
	 . Such algebraic models are calledtoric models.

Theorem 2.3.6. Let � be a complete fan inNR and 	 a virtual support function on � .
Then the assignment(� ;  ) 7! (X � ; D  ) gives a bijection between the sets of

(i) pairs (� ;  ), where � is a complete� -rational polyhedral complex in NR satisfying
(F') and rec(�) = � , and  is a � -lattice function on � with rec( ) = 	 ;

(ii) isomorphism classes of toric models(X ; D; 1) of (X � ; D 	 ).

Proof. Let (� ;  ) be a pair as in (i) and let f (m� ; val(� � ))g� 2 � be de�ning vectors of  .
Then

D  jX � =
��

U � ; � � 1
� � � m �

�	 �
�
X rec(�)

=
��

Urec(�) ; � � m �
�	

= D rec( ) = D 	 :

Hence, (X � ; D  ; 1) is a toric model of (X � ; D 	 ). The statement follows from Corollary
2.2.12 and Theorem 2.3.3.

Now we describe the restriction ofTS-Cartier divisors to closures of orbits. But we
are only interested in the case of orbits lying in the special �ber. The other case can be
handled analogously to [BPS14a, Proposition 3.6.12].

Let � be a complete �-rational polyhedral complex in NR satisfying (F') and X � the
associated properTS-toric scheme. Let  be a �-lattice function on � given by de�ning
vectors f (m� ; l � )g� 2 � and let D  be the associatedTS-Cartier divisor.

Let � 2 � be a polyhedron. We assume that  j � = 0. Using Notation 2.2.13 and (2.8),
we de�ne a virtual support function  (�) on the rational fan �(�) in N (�) R given by the
following de�ning vectors f m� g� 2 �(�) :

For each cone� 2 �(�), let � � 2 � be the unique polyhedron with � � � � and
\ (� ; � � )+ L � = � . The condition  j � = 0 implies that m� � 2 L?

� and hm� � ; ui = � l � 2 �
for all u 2 �. Therefore, m� � lies in fM (�). We set m� := m� � .

Proposition 2.3.7. Let notation be as above. If j � = 0 , then D  properly intersects the
orbit closure V (�) . Moreover, the restriction of D  to V (�) is the divisor D  (�) .

Proof. The TS-Cartier divisor D  is given by f (U � ; � � 1
� � � m � )g� 2 � , where � � 2 K � is

any element ofK � with val(� � ) = l � . If  j � = 0, then val(� � ) + hm� ; ui = 0 for all u 2 �.
Thus, the local equation � � 1

� � � m � of D  in U � is a unit in OX � (U � ) = K [M ]� . Hence,
the orbit O(�) � U � does not meet the support ofD  and so, V (�) and D  intersect
properly. Furthermore,

D  jV (�) =
n�

U � � \ V (�) ; � � 1
� �

� � m � � jU � � \ V (�)

�o

� 2 �(�)
:

38



2.4. Toric Metrics

Using the non-canonical isomorphismfK [U� ] ' fK [U � � \ V (�)], we get

D  jV (�) =
��

U� ; � � m �
�	

� 2 �(�) = D � (�) ;

proving the claim.

Proposition 2.3.8. Let � be a complete� -rational polyhedral complex in NR and  a
concave� -lattice function on � . Let � 2 � be ak-dimensional polyhedron andv 2 ri (�) .
Then,

mult(�) deg D  
(V (�)) = ( n � k)! volM (�) (@ (v)) ; (2.14)

where mult (�) is the multiplicity of � (see (2.6)) and @ (v) is the sup-di�erential of  at
v (see A.15). Note that the a�ne space of @ (v) is associated to the linear spaceM (�) R

and hence, the measurevolM (�) is also de�ned on a�( @ (v)) (see A.16).

Proof. Let (m� ; l � ) 2 M � � be a de�ning vector of  on �. Then D  is rationally
equivalent to D  � m � � l � and @( � m� � l � )(v) = @ (v) � m� . Thus, replacing  by
 � m� � l � does not change both sides of equation (2.14) and we may assume that j � = 0.

By Proposition 2.3.7 and (2.3),

degD  
(V (�)) = deg D  (�)

�
X �(�)

�
= ( n � k)! vol eM (�) (�  (�) ):

It is easy to see that@ (v) = @ (�)
�
0
�

� fM (�) R. So we deduce from Proposition A.19,

vol eM (�)

�
�  (�)

�
= vol eM (�)

�
@ (�)( 0)

�
= vol eM (�) (@ (v)) =

volM (�) (@ (v))
�
M (�) : fM (�)

� ;

proving the result.

2.4. Toric Metrics

In this section, we recall the basic facts about toric metrics from [BPS14a, Ÿ 4.3]. These
are metrics on a toric line bundle that satisfy a certain invariance property with respect to
the torus action, and they can be classi�ed by a certain class of continuous functions on
NR. Note that in [ BPS14a, Ÿ 4.1�4.3] the non-Archimedean �elds are not assumed to be
discrete, in contrast to the rest of this chapter Ÿ 4.

We �x the following notation. Let K be either C or an algebraically closed �eld which is
complete with respect to a non-trivial non-archimedean absolute value j � j . Then we have a
valuation val := � log j � j and a divisible value group � := val (K � ) of rank one. The theory
could be developed for arbitrary non-Archimedean �elds, but it is no serious restriction to
assume thatK is algebraically closed because this theory is stable under base change and
in the classical setting, the analysis is also done overC.

We �x a free Abelian group M of rank n with dual N and denote byT = Spec(K [M ]) the
n-dimensional split torus over K . Let � be a complete fan in NR and X � the corresponding
proper toric variety. Furthermore, let 	 be a virtual support funct ion on � and ( L; s) the
associated toric line bundle with toric section.
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If K = C, then X an
� = X � (C) is the associated complex analytic space with complex

torus T an ' (C� )n . If K is non-Archimedean, thenX an
� is the Berkovich analytic space

associated toX � as de�ned in 1.1.2. In both cases, the algebraic line bundleL de�nes an
analytic line bundle L an on X an

� .

De�nition 2.4.1. A metric k � k on L is called toric if, for all p; q 2 T an satisfying
j� m (p)j = j� m (q)j for each m 2 M , we haveks(p)k = ks(q)k.

It easily follows from 2.1.13 that this de�nition is independent of the choice of the toric
section s.

Remark 2.4.2. In [BPS14a, 4.2], the authors study the action of the analytic group T an

on X an
� and in particular, the action of the compact analytic subgroup

S = f p 2 T an j j � m (p)j = 1 for all m 2 M g;

called compact torus. By [BPS14a, (4.2.1) and Proposition 4.2.15], we have forp 2 T an,

S � p = f q 2 T an j j � m (p)j = j� m (q)j for all m 2 M g:

Hence, a metrick � k is toric if and only if the function p 7! k s(p)k is invariant under the
action of S.

2.4.3. Given an arbitrary metric k � k on L , we can associate to it a toric metric in the
following way: For � 2 �, let s� be a toric section ofL which is regular and non-vanishing
in U� .

If K = C, then we set, for p 2 Uan
� ,

ks� (p)kS := exp
� Z

S
logks� (t � p)k d� Haar (t)

�
;

where � Haar denotes the Haar measure onS of total mass 1.
If K is non-Archimedean, we set, forp 2 Uan

� ,

ks� (p)kS := ks� (~p)k;

where ~p 2 Uan
� is given by

X

m2 M �

� m � m 7�! max
m

j� m jj � m (p)j:

We easily deduce that these assignments de�ne a toric metrick � kS on L. This process
is called tori�cation of k � k.

Proposition 2.4.4. Toric metrics are invariant under tori�cation. Moreover, tori�ca tion
is multiplicative with respect to products of metrized line bundlesand continuous with
respect to uniform convergence of metrics.

Proof. This is established in [BPS14a, Proposition 4.3.4] and follows easily from the
de�nition.
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2.4.5. We have the tropicalization map trop: T an ! NR, p 7! trop(p), where trop(p) is
the element ofNR = Hom( M; R) given by

hm; trop( p)i := � log j� m (p)j:

This de�nes a proper surjective continuous map. For details, we refer to [Pay09, Ÿ 3].
Let k � k be a toric metric on L . Then consider the following diagram

T an log ks(�)k //

trop ""

R

NR

;;

:

Sincek � k is toric, the function logks(�)k is constant along the �bers of trop. Moreover,
trop is surjective and closed, and hence, there exists a unique continuous function on NR

making the above diagram commutative. This causes the following de�nition.

De�nition 2.4.6. Let L = ( L; k � k) be a metrized toric line bundle on X � and s a toric
section of L . We de�ne the function

 L;s : NR �! R; u 7�! logks(p)kS;

where p 2 T an is any element with trop(p) = u. The line bundle and the toric section are
usually clear from the context and we alternatively denote this function by  k�k .

2.4.7. For an alternative description of  L;s in the non-Archimedean case, we consider the
canonical section� : NR ! T an which is given, for eachu 2 NR, by the multiplicative norm

� (u) : K [M ] �! R� 0;
X

m2 M

� m � m 7�! max
m2 M

j� m j exp(� h m; ui ):

By [Ber90, Example 5.2.12], we deduce that this section is a homeomorphism ofNR onto a
closed subset ofT an. It is easy to see that  L;s (u) = log ks(� (u))k for all u 2 NR.

Proposition 2.4.8. Let notation be as in De�nition 2.4.6 and let K 0 be a complete valued
�eld extension of K . Let (L 0; s0) be the metrized toric line bundle with toric section obtained
by base change toK 0. Then

 L
0
;s0 =  L;s :

Proof. This follows from the de�nition of  L;s and propositions 4.1.5 and 4.2.16 in [BPS14a].

Proposition 2.4.9. Let L = ( L; k�k) and L 0 be metrized toric line bundles onX � with toric
sectionss and s0, respectively. Let ' : X � 0 ! X � be a toric morphism with corresponding
linear map H as in 2.1.7. Then

 L 
 L
0
;s
 s0 =  L;s +  L

0
;s0 ;  

L
� 1

;s� 1 = �  L and  ' � L;' � s = ' L;s � H :

Moreover, if (k �kn )n2 N is a sequence of metrics onL that converges tok �k, then
�
 k�kn

�
n2 N

converges uniformly to k�k .
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Proof. This is established in propositions 4.3.14 and 4.3.19 in [BPS14a] and follows easily
from the de�nitions.

2.4.10. In order to characterize toric metrics by functions on NR, we need theKajiwara-
Payne tropicalization of X � introduced by [Kaj08] and [Pay09]. This is a topological space
N � together with a tropicalization map X an

� ! N � . As a set, N � is a disjoint union of
linear spaces

N � =
a

� 2 �

N (� )R ;

where N (� ) = N= hN \ � i is the quotient lattice as in 2.1.4. Following [Pay09, Remark
3.4], the topology onX � is determined by the following basis. Let� be a cone in � and � a
face of� . We choose a �nite set of generatorsm1; : : : ; mr for the semigroupM � = M \ � _ .
If mi 2 � ? , then mi can be evaluated onN (� )R. For each open setU � N (� )R and real
number � > 0, let C(U; � ) be the truncated cylinder

C(U; � ) =
[

� � �

f u 2 N (� )R j � (u) 2 U and hmi ; ui > � for mi 2 � ? n � ? ; i = 1 ; : : : ; r g;

where � : N (� )R ! N (� )R is the canonical projection. Then these truncated cylinders
de�ne a basis for the topology onN � . A sequence of points inN (� )R tends to a point
u 2 N (� )R if and only if their images under � tend to u in N (� )R and they move toward
in�nity in the image of the cone � in N (� )R for all cones� such that � � � � � .

The toric variety X � is the disjoint union of tori TN (� ) = SpecK [M (� )]; � 2 �. Hence,
we can de�ne the tropicalization map

trop: X an
� �! N �

as the disjoint union of tropicalization maps trop: Tan
N (� ) ! N (� )R as de�ned in 2.4.5. This

is also a proper surjective continuous map. Especially,N � = trop(X an
� ) is a compact space.

Proposition 2.4.11. Let � be a complete fan inNR and 	 a virtual support function on
� . We set L = L 	 .

Then, for any metric k � k on L , the function  k�k � 	 extends to a continuous function
on N � . In particular, the function j k�k � 	 j is bounded.

Moreover, the assignmentk � k 7!  k�k is a bijection between the sets of

(i) toric metrics on L ;

(ii) continuous functions  : NR ! R sucht that  � 	 can be extended to a continuous
function on N � .

Proof. This is proved in Proposition 4.3.10 and Corollary 4.3.13 in [BPS14a]. The inverse
map is given as follows: Let be a function as in (ii) and let f m� g be a set of de�ning
vectors of 	. For each cone � 2 �, the section s� = � m � s is a non-vanishing regular section
on U� . Then we obtain a toric metric k � k on L characterized by

ks� (p)k := exp
�
( � m� )(trop( p))

�
(2.15)

on U� .
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De�nition 2.4.12. Let L be a toric line bundle on X � with toric section s and let 	 be
the associated virtual support function on �. By Proposition 2.4.11, the fu nction  := 	
de�nes a toric metric on L . This metric is called the canonical metric of L . We denoted it
by k � kcan and write L can = ( L; k � kcan).

Remark 2.4.13. By [BPS14a, Proposition 4.3.15], the canonical metric only depends on
the structure of toric line bundle of L and not on the choice ofs.

Proposition 2.4.14. Let L , L 0 be toric line bundles onX � and let ' : X 0
� ! X � be a

toric morphism. Let � 2 � and � : V (� ) ! X � the closed immersion of 2.1.4. Then

L 
 L 0can
= L can 
 L 0can

; L � 1can
= ( L can) � 1; ' � L can = ' � L can and � � L can = � � L can:

Proof. The �rst two statements are established in [BPS14a, Proposition 4.3.16]. The last
two statements are the corollaries 4.3.20 and 4.3.18 in [BPS14a].

2.5. Semipositive Toric Metrics and Measures over
Non-Archimedean Fields

In the case of an algebraically closed non-Archimedean �eld, we study algebraic metrics
induced by toric models. Then we classify semipositive toric metrics in terms of concave
functions (Theorem 2.5.8). Moreover, we characterize the measures associated to semi-
positive metrics (Corollary 2.5.11). These results are proved in [BPS14a, Ÿ 4.5�4.8] in the
case of a discrete non-Archimedean and an Archimedean �eld. We follow their ideas of the
proofs using in particular our theory of TS-Cartier divisors developed in section 2.3.

In this section, let K be an algebraically closed �eld which is complete with respect to a
non-trivial non-Archimedean absolute value j � j . Then we have a valuationval := � log j � j
and a divisible value group � := val (K � ) � R. We �x a free Abelian group M of rank n
with dual N and denote byT = Spec(K [M ]) the n-dimensional split torus over K .

Let � be a complete fan in NR and X � the corresponding proper toric variety. Further-
more, let 	 be a virtual support function on � and ( L; s) the associated toric line bundle
with toric section.

2.5.1. Let � be a complete �-rational polyhedral complex in NR with rec(�) = �, and let
 be a �-rational piecewise a�ne function on � with rec( ) = 	. Let e > 0 be an integer
such that e is a �-lattice function given by the de�ning vectors f (m� ; l � )g� 2 � in M � �.
Then e de�nes a TS-Cartier divisor

De =
n�

U � ; � � 1
� � � m �

�o

� 2 �
;

where � � 2 K � with val(� � ) = l � , and the pair (� ; e ) de�nes a toric model (X � ; De ; e)
of (X � ; D 	 ) (see Theorem 2.3.6). We writeL = O(De ) and L = O(D 	 ) for the
corresponding toric line bundles. By De�nition 1.2.7, the model (X � ; L ; e) induces an
algebraic metric k � kL on L.

Proposition 2.5.2. Let notation be as above. Then the metrick � kL is toric. Moreover,
the equalities k�kL

=  and k � kL = k � k hold.
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Proof. Let � 2 �. Recall that U � := Spec
�
K [M ]�

�
is an algebraicK � -model of Urec(�) .

By 1.1.8, the associated formal scheme has generic �ber

U �
rec(�) :=

n
p 2 Uan

rec(�) j p(f ) � 1 8f 2 K [M ]�
o

:

Then U � is a trivialization of L on which s
 e
	 , considered as a meromorphic section ofL ,

corresponds to the rational function � � 1
� � � m � . Hence, by De�nition 1.2.7, we have

ks	 (p)kL = j� � 1
� � � m � (p)j1=e

for all p 2 U �
rec(�) . Let u 2 � and p 2 T an with trop(p) = u. The below-mentioned Lemma

2.5.3 implies that p 2 U �
rec(�) and we obtain

logks	 (p)kL = log j� � 1
� � � m � (p)j1=e =

1
e

(hm� ; ui + l � ) =  (u):

This shows that the metric k � kL is toric. We deduce, by De�nition 2.4.6, that  k�kL
=  

and, by Proposition 2.4.11, that k � kL = k � k .

Lemma 2.5.3. Let � be a complete� -rational polyhedral complex in NR with rec(�) = �
and let red: X �

� ! fX � be the reduction map from 1.1.8. Let� 2 � and p 2 T an. Then

trop( p) 2 � () p 2 U �
rec(�) () red(p) 2 fU � :

Proof. By [Gub13, Lemma 6.21], we havetrop(p) 2 � if and only if p 2 T an satis�es
jp(f )j � 1 for all f 2 K [M ]� or, in other words, p 2 U �

rec(�) . By the description of the

reduction map in 1.1.8, this is equivalent to red(p) 2 fU � .

Corollary 2.5.4. Let  be a � -rational piecewise a�ne concave function on NR with
rec( ) = 	 . Then the metric k � k is induced by a toric model.

Proof. As in the proof of [BPS14a, Theorem 3.7.3], we can show that there exists a complete
�-rational polyhedral complex � in NR such that rec(�) = � and  is piecewise a�ne on
�. Since � is divisible, the complex � gives a proper toric scheme X � . Then Proposition
2.5.2 says thatk � k is induced by a toric model (X � ; De ; e) of (X � ; D 	 ).

Proposition 2.5.5. Let k � k be an algebraic metric onL . Then the function  k�k is
� -rational piecewise a�ne.

Proof. There exists a properK � -model (X ; L ; e) of (X � ; L ) inducing the metric k � k. Let
f U i gi 2 I be a trivialization of L . Then the subsetsU �

i = red� 1�
U i \ fX

�
form a �nite

closed cover ofX an
� . On U i the meromorphic sections
 e corresponds to a rational function

� i 2 K (M ) � such that on U �
i we have

ks(p)k = j� i (p)j1=e:

We write � i =
P

m 2 M
� m � m

P
m 2 M

� m � m . Using the continuous map� : NR ! T an from 2.4.7, we have
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on the closed subset �i := � � 1(U �
i \ T an) � NR,

 k�k (u) = log ks(� (u))k

= log j� i (� (u)) j1=e

=
1
e

log
�

max
m2 M

j� m j exp(� h m; ui )
�

�
1
e

log
�

max
m2 M

j� m j exp(� h m; ui )
�

=
1
e

min
m2 M

(hm; ui + val( � m )) �
1
e

min
m2 M

(hm; ui + val( � m )) :

We see that  k�k j � i is the di�erence of two �-rational piecewise a�ne concave function s.
Since f � i gi 2 I is a �nite closed cover of NR, we deduce that  k�k is �-rational piecewise
a�ne.

Next we study semipositive toric metrics on L .

Proposition 2.5.6. Let k � k be an algebraic metric onL .

(i) If k � k is semipositive, then k�k is concave.

(ii) We assume thatk � k is toric. Then k � k is semipositive if and only if  k�k is concave.

Proof. (ii) Because each algebraic metric isQ-formal (see Proposition 1.2.8), this follows
from [GK15, Corollary 8.12].

(i) For k � k semipositive, we have to show that k�k is concave along any a�ne line.
By a density argument, we may assume that the line is �-rational. Similarly as in the
proof of [BPS14a, Proposition 4.7.1], we use pullback with respect to a suitable equivariant
morphism to reduce the concavity on the a�ne line to the case ofP1

K . By [GH15, Corollary
B.18], the tori�cation of a semipositive algebraic metric on P1

K is semipositive. Hence, the
claim follows from (ii).

Corollary 2.5.7. Let k � k be a semipositive algebraic metric onL . Then the toric metric
k � kS is also algebraic and semipositive.

Proof. By the propositions 2.5.6 (i), 2.5.5 and 2.4.11, the function =  k�k is concave
�-rational piecewise a�ne with rec( ) = 	. Then Corollary 2.5.4 says that the metric
k � kS = k � k is algebraic and Proposition 2.5.6 (ii) implies that it is semipositive.

Now, we can characterize semipositive toric metrics.

Theorem 2.5.8. Let 	 be a virtual support function on the complete fan� in NR and set
L = L 	 . Then there is a bijection between the sets of

(i) semipositive toric metrics on L ;

(ii) concave functions  on NR such that the function j � 	 j is bounded;

(iii) continuous concave functions on � 	 .

The bijections are given byk � k 7!  k�k 7!  _
k�k .
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Proof. The bijection between (ii) and (iii) follows from Proposition A.9. To p rove the
bijection between (i) and (ii), let k � k be a semipositive toric metric onL . By Proposition
2.4.11, the function j k�k � 	 j is bounded. Furthermore, there exists a sequence (k � kn )n2 N

of semipositive algebraic metrics converging to the toric metrick � k. Proposition 2.5.6 (i)
says that the functions  k�kn are concave. By Proposition 2.4.9, the sequence ( k�kn )n2 N

converges uniformly to  k�k and hence, the latter is also concave.
Conversely, let  be a concave function onNR such that j � 	 j is bounded. Then 	 is

also concave and, by Proposition A.14, there is a sequence of �-rational piecewise a�ne
concave functions ( k )k2 N with rec( k ) = 	, that uniformly converges to  . Because k is
a piecewise a�ne concave function with rec( k ) = 	, the function  k � 	 continuously
extends onN � . Thus,  � 	 extends to a continuous function on N � , too. By Proposition
2.4.11, we obtain toric metrics k � k and k � k k ; k 2 N, given as in (2.15). Then the
sequence of metrics (k � k k )k2 N converges tok � k . By Proposition 2.5.2, the metric k � k k

is algebraic and therefore, by Proposition 2.5.6 (ii), semipositive. Thus, the metric k � k is
also semipositive.

Remark 2.5.9. Theorem 2.5.8 also holds in the Archimedean setting of the sections 1.5
and 2.4. This is proved side by side to the discrete non-Archimedeancase in [BPS14a,
Theorem 4.8.1].

We characterize Chambert-Loir's measure associated to a semipositive toric metrized line
bundle. Let  : NR ! R be a concave function. We extend the Monge-Ampère measure
M M ( ) on NR (De�nition A.17) to a measure M M ( ) on N � by setting

M M ( )(E ) = M M ( ) (E \ NR)

for any Borel subsetE of N � .

Theorem 2.5.10. Let k � k be a semipositive algebraic toric metric onL and  =  k�k the
associated function onNR. Then

trop � (c1 (L; k � k)n ) = n! M M ( ):

Proof. By the propositions 2.5.5, 2.5.6 (i) and 2.4.11, the function is �-rational piecewise
a�ne concave with rec( ) = 	. Then Corollary 2.5.4 implies that the metric k � k is
de�ned by a toric K � -model

�
X � ; De ; e

�
of (X � ; L ).

By 2.2.16, the vertices of � correspond bijectively to the irreducib le components of
the special �ber fX � . Since the valuation of K is not discrete, the special �ber fX � is
reduced (see 2.2.9). For eachv 2 � 0, let V (v) be the corresponding component and� v the
unique point of (X � )an such that red(� v) is the generic point of V (v) (see 1.1.8). Then, by
De�nition 1.2.14,

c1
�
L

� n =
1
en

X

v2 � 0

degD e 
(V (v)) � � v :

Since red(� v) is the generic point of the n-dimensional irreducible componentV (v), it
is clear that � v 2 T an. We have red(� v) 2 V (v) = fUv and hence, by Lemma 2.5.3,
trop( � v) = v. Therefore,

trop �
�
c1

�
L

� n �
=

1
en

X

v2 � 0

degD e 
(V (v)) � v :
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On the other hand, by Proposition A.19 and Proposition 2.3.8,

M M ( ) =
1
en M M (e )

=
1
en

X

v2 � 0

volM (@(e )(v)) � v

=
1

n! en

X

v2 � 0

mult( v) degD e 
(V (v)) � v :

Since the value group ofK is divisible, the multiplicity mult (v) of a vertex v is one. The
statement follows from the de�nition of M M ( ).

Corollary 2.5.11. Let k �k be a semipositive toric metric onL and  =  k�k the associated
concave function onNR. Then

trop � (c1 (L; k � k)n ) = n! M M ( ):

Proof. Let (k � kk )k2 N be a sequence of semipositive algebraic metrics that converges tok �k.
Taking the tori�cations and using Proposition 2.4.4 and Corollary 2.5.7, we may assume
that the k�kk , k 2 N, are also toric. By Proposition 1.3.7, the measurestrop � (c1(L; k � kk )n )
converge weakly to trop� (c1(L; k � k)n ) on N � .

By Proposition 2.4.9, the functions  k�kk
converge uniformly to  . Thus, by Proposition

A.18, the measuresM M ( k ) converge weakly toM M ( ). Theorem 2.5.10 implies that

trop � (c1(L; k � k)) jNR = n! M M ( ): (2.16)

By Corollary 1.4.5, the set X an
� n T an has measure zero with respect toc1(L; k � k)n and so,

N � n NR has measure zero with respect totrop � (c1(L; k � k)n ). Since the M M ( )-measure
of N � n NR is also zero, the statement follows from equation (2.16).

At the end of this section, we quote a result about the restriction of semipositive metrics
to toric orbits which will be useful in the proof of the local height formula. Let 	 be a
support function on � and ( L; s) the associated toric line bundle with toric section. Let
� be a cone of � and V(� ) the corresponding orbit closure with the structure of a toric
variety (cf. 2.1.4). We denote by � : V (� ) ! X � the closed immersion. Letm� 2 M be
a de�ning vector of 	 at � and set s� = � m � s. By 2.1.15, the divisor D 	 � m � = div(s� )
properly intersects V (� ) and we can restrict s� to V (� ) to obtain a toric section � � s� of
the toric line bundle O

�
D (	 � m � )( � )

�
' � � L.

Proposition 2.5.12. Let notation be as above and denote byF� the face of� 	 associated
to � (see A.20). Let k � k be a semipositive toric metric onL . Then, for all m 2 F� � m� ,

 _
� � L;� � s�

(m) =  _
L;s (m + m� ) :

Proof. We can prove the statement as in [BPS14a, Proposition 4.8.8] since the discreteness
of the valuation doesn't play a role in that proof.
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2.6. Toric Local Heights over Non-Archimedean Fields

Now, all ingredients are developed to state and prove a formula for the local height of a
toric variety over an arbitrary non-Archimedean �eld. This generalizes work by Burgos�
Philippon�Sombra who showed this formula under the additional assumption that the �eld
is discretely valued (see [BPS14a, Theorem 5.1.6]).

Let K be an algebraically closed �eld which is complete with respect to a non-Archimedean
non-trivial absolute value j � j and denote by � = � log jK � j the associated divisible value
group. As explained before, the algebraic closedness ofK is no restriction since local
heights are stable under base change. We �x a latticeM ' Zn with dual M _ = N and
denote by T = Spec(K [M ]) the n-dimensional split torus over K . Let � be a complete fan
on NR and X � the associated properT-toric variety.

Following [BPS14a, Ÿ 5.1], we de�ne a local height for toric metrized line bundles that
does not depend on the choice of sections. Even though it di�ers from the de�nition of a
local height, we can use it to compute global heights of the toric varietyX � and, more
generally, of orbit closures and images under toric morphisms (cf. Proposition 3.4.2).

De�nition 2.6.1. Let L i , i = 0 ; : : : ; t, be toric line bundles onX � equipped with DSP
toric metrics. We denote by L can

i the same toric line bundle endowed with the canonical
metric. Let Y be a t-dimensional prime cycle ofX � and let ' : Y 0 ! Y be a birational
morphism such that Y 0 is projective. Recall the de�nition of local heights in 1.3.5. Then
the toric local height of Y with respect to L 0; : : : ; L t is de�ned as

� tor
L 0 ;:::;L t

(Y ) = � ( ' � L 0 ;s0 );:::;( ' � L t ;st ) (Y
0) � � ( ' � L

can
0 ;s0 );:::;( ' � L

can
t ;st ) (Y

0) ;

where s0 : : : ; st are any invertible meromorphic sections with

jdiv( s0)j \ � � � \ j div( st )j \ Y = ; : (2.17)

This de�nition extends to cycles by linearity. When L 0 = � � � = L t = L, we write shortly
� tor

L
(Y ) = � tor

L 0 ;:::;L t
(Y ).

Remark 2.6.2. Proposition 1.3.6 (iii, v) implies that the toric local height does not depend
on the choice of' and Y 0 nor on the choice of sections. Whendiv(s0); : : : ; div(st ) intersect
properly on Y , then condition (2.17) is full�lled.

Proposition 2.6.3. The toric local height is symmetric and multilinear in the metrized
line bundles.

Proof. This follows easily from Proposition 1.3.6 (ii).

De�nition 2.6.4. Let L = ( L; k � k) be a semipositive metrized toric line bundle with a
toric section s. Let 	 be the corresponding support function on � and  L;s the associated
concave function onNR. The roof function associated to (L; s) is the concave function
#L;s : � 	 ! R given by

#L;s =  _
L;s ;

where  _
L;s

denotes the Legendre-Fenchel dual (see A.7). We will denote#L;s by #k�k if the
line bundle and section are clear from the context.
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2.6.5. Let notation be as above. By Proposition 2.4.8, the roof function#L;s is invariant
under complete valued �eld extensions. Ifk � k is an algebraic metric, then, by Proposition
2.5.5 and A.12, the roof function#k�k is piecewise a�ne concave.

Theorem 2.6.6. Let � be a complete fan onNR. Let L = ( L; k � k) be a toric line bundle
on X � equipped with a semipositive toric metric. We choose any toric section s of L and
denote by	 the corresponding support function on� . Then, the toric local height of X �

with respect to L is given by

� tor
L (X � ) = ( n + 1)!

Z

� 	

#L;s d volM ; (2.18)

where � 	 is the stability set of 	 and volM is the Haar measure onM R such that M has
covolume one.

Proof. We prove this theorem analogously to [BPS14a, Theorem 5.1.6]. Since the metric
k � k is semipositive, the functions k�k and 	 = rec( k�k ) are concave. We set � = � 	 ,
 =  k�k and # = #k�k .

First, we reduce to the case of an ample line bundleL . Let � � be the normal fan of � in
N (�) R (see A.20). We choose anym 2 a� (�) \ M and set � 0 = � � m. By 2.1.18, there
is a proper toric morphism ' : X � ! X � � and an ample divisorD 	 � 0 on X � � such that
D 	 = ' � D 	 � 0 + div( � � m ). The function (  � m)_ lives on � 0 = � 	 � 0 � M (�) R and so,
by Theorem 2.5.8, it de�nes a semipositive metrick � k� 0 on the the line bundle O(D 	 � 0)
on X � � . Set L � 0 =

�
O

�
D 	 � 0

�
; k � k� 0

�
. Using Proposition 2.4.9, we obtain an isometry

L = ( O(D 	 ); k � k ) ��! (O(D 	 � m ); k � k � m ) = ' � �
L � 0

�
:

By Proposition 2.4.14, there is also an isometry betweenL can and ' � (L can
� 0 ). Thus, by the

functoriality of the local height (Proposition 1.3.6 (iii)),

� tor
L (X � ) = � tor

' � L � 0
(X � ) = � tor

L � 0
(' � X � ):

If dim(�) < n , then on the one hand, the integral in (2.18) is zero. On the other
hand, dim(X � ) = n > dim(X � � ) implies ' � X � = 0 and hence, � tor

L
(X � ) is also zero. If

dim(�) = n, then ' is a birational morphism and ' � X � = X � � . Moreover,

(n + 1)!
Z

�
 _ dvolM = ( n + 1)!

Z

� � m
( � m)_ dvolM = ( n + 1)!

Z

� 	 � 0

 _
k�k � 0

dvolM (�) :

So it is enough to prove the theorem for the ample line bundleL � 0 on the projective variety
X � � . Hence, we may assume thatL is ample andX � is projective.

We prove the theorem by induction on n = dim(X � ). If n = 0, then X � = SpecK = P0,
	 = 0, � = f 0g and L = O(D0) = OP0 . By the induction formula (Theorem 1.4.3) and
De�nition 2.4.6, we obtain

� (L;s ) (X � ) = � logksk = �  (0) and � (L
can

;s) (X � ) = � logkskcan = � 	(0) = 0 :

Therefore,

� tor
L (X � ) = �  (0) = #(0) = 1!

Z

�
# dvolM :
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Let n � 1 and let s0; : : : ; sn� 1 be invertible meromorphic sections ofL such that
jdiv( s0)j \ � � � \ j div( sn� 1)j \ j div( s)j = ; . By the induction formula 1.4.3,

� (L;s );:::;(L;s ) (X � ) = � (L;s 0 );:::;(L;s n � 1 ) (cyc(s)) �
Z

X an
�

logksk c1(L )n : (2.19)

For each facetF of �, let vF 2 N be the minimal inner facet normal of F (see A.21)
and � F = R� 0vF the corresponding ray in �. Since L is ample, we obtain by 2.1.17,

� (L;s 0 );:::;(L;s n � 1 ) (cyc(s)) =
X

F

� h F; vF i � (L;s 0 );:::;(L;s n � 1 ) (V (� F )) ; (2.20)

where the sum is over the facetsF of �. By functoriality, the local height of V (� F )
with respect to L coincides with the local height with respect to L jV (� F ) . Moreover, by
Proposition 2.4.14, the restriction of the canonical metric ofL to the toric variety V (� F )
coincides with the canonical metric of L jV (� F ) . Subtracting from equation (2.20) the
analogous formula for the canonical metric, we get

X

F

� h F; vF i � tor
L jV ( � F )

(V (� F )) = � (L;s 0 );:::;(L;s n � 1 ) (cyc(s)) (2.21)

� � (L
can

;s0 );:::;(L
can

;sn � 1 ) (cyc(s)) :

Corollary 1.4.5 says that the measure ofX an
� n T an with respect to c1(L )n is zero. Since

the tropicalization map is continuous and, by De�nition 2.4.6, logksk = trop �  , we deduce
Z

X an
�

logksk c1(L )n =
Z

T an
trop � ( ) c1(L )n =

Z

NR

 trop �
�
c1(L )n �

:

By Corollary 2.5.11, trop�
�
c1(L )n �

= n! M M ( ) and therefore,

Z

X an
�

logksk c1(L )n = n!
Z

NR

 dM M ( ) : (2.22)

By Proposition A.19, we haveM M (	) = volM (�) � 0. Hence, in the case of the canonical
metric, equation (2.22) is reduced to

Z

X an
�

logkskcan c1
�
L can� n = n! volM (�)	(0) = 0 : (2.23)

Subtracting from (2.19) the analogous induction formula for the canonical metric and
using (2.21), (2.22) and (2.23), we obtain

� tor
L (X � ) =

X

F

� h F; vF i � tor
L jV ( � F )

(V (� F )) � n!
Z

NR

 dM M ( ) : (2.24)

We set temporarily � = � F and denote by � : V (� ) ! X � the closed immersion. Choose
any elementm� in F \ M , i. e. m� is a de�ning vector of 	 at � , and set s� = � m � s. By
2.1.15, � � s� is a toric section of the toric line bundle � � L ' O

�
D (	 � m � )( � )

�
. Hence, by the
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2.6. Toric Local Heights over Non-Archimedean Fields

induction hypothesis,

� tor
� � L (V (� )) = n!

Z

� (	 � m � )( � )

 _
� � L;� � s�

dvolM (� ) :

By Proposition 2.5.12, the function  _
� � L;� � s�

is the translate of  _ jF by � m� and we have

� (	 � m � )( � ) = F � m� . Since � is of dimension n, we get M (� F ) = M (F ) and therefore,

� tor
L jV ( � F )

(V (� F )) = n!
Z

F � m �

 _ (m + m� ) dvolM (F ) (m) = n!
Z

F
# dvolM (F ) : (2.25)

Inserting (2.25) into (2.24) and applying Proposition A.22, we obtain

� tor
L (X � ) = � n!

X

F

hF; vF i
Z

F
# dvolM (F ) � n!

Z

NR

 dM M ( ) = ( n + 1)!
Z

�
# dvolM ;

proving the theorem.

Remark 2.6.7. In the Archimedean case, we de�ne toric local heights and roof functions
in the exact same manner as above, using the notions of sections 1.5 and 2.4. Then Theorem
2.6.6 also holds in the Archimedean setting. This is proved in the sameway as the discrete
non-Archimedean case in [BPS14a, Theorem 5.1.6]. Note that here we implicitly make use
of the induction formula 1.5.13.

The following two corollaries correspond to the propositions 5.1.11 and 5.1.13 in [BPS14a].

Corollary 2.6.8. Let notation be as in Theorem 2.6.6. Let� 2 � be a cone of codimension
d and V(� ) the corresponding orbit closure. Then

� tor
L (V (� )) = ( d + 1)!

Z

F �

#L;s dvolM (� ) ;

where F� is the face of � 	 associated to� (see A.20) and volM (� ) is the Haar measure
with respect to the lattice M (� ) = M \ � ? on the a�ne space containing F� (see A.16).

Proof. The propositions 2.4.14 and 1.3.6 (iii) imply � tor
L

(V (� )) = � tor
L jV ( � )

(V (� )). The

result can be proved similarly to (2.25) using Theorem 2.6.6 instead of the induction
hypothesis.

Corollary 2.6.9. Let Let N 0 be a lattice of rank d and � 0 a complete fan onN 0
R. Let

H : N 0 ! N be a linear map which is compatible with� 0 and � , and let ' : X � 0 ! X � be
the corresponding proper toric morphism (see 2.1.7). We denoteby H _ : M ! M 0 the dual
map and byH (N 0)sat the saturation of the lattice H (N 0) in N .

Let L be a toric line bundle onX � with a semipositive toric metric. Choose any toric
section s of L and let 	 be the associated support function.

(i) If H is not injective, then � tor
' � L

(X � 0) = 0 .

(ii) If H is injective, then

� tor
' � L (X � 0) =

h
H (N 0)sat : H (N 0)

i
� tor

L (' (X � 0)) = ( d+1)!
Z

H _ (� 	 )

�
 k�k � H

� _ dvolM 0 :
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Proof. This result can be proved analogously to Corollary [BPS14a, 5.1.13] using the
corresponding results from this thesis.

Remark 2.6.10. In [BPS14a, Ÿ 5.1], the formula corresponding to Theorem 2.6.6 is
extended to toric local heights with respect to distinct line bundles. Moreover, the toric
local height of a translated toric subvariety and its behavior with respect to equivariant
morphisms is studied. For arbitrary non-Archimedean �elds, these results can be stated
and proved analogously using the herein developed theory.
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Chapter 3.

Global Heights of Varieties over Finitely
Generated Fields

In [Mor00], Moriwaki de�ned the height of a variety over a �nitely generated �e ld over Q
with respect to Hermitian line bundles as an arithmetic intersection number in the sense of
Gillet�Soulé [ GS90]. Then Burgos�Philippon�Sombra showed in [BPS14b] that this height
can be written as an integral of local heights over a measured set of placesof the �nitely
generated �eld. Furthermore, they applied their formulas for local heights of toric varieties
from [BPS14a] to compute some arithmetic intersection numbers of non-toric arithmetic
varieties coming from a �bration with toric generic �ber.

In this chapter, we extend these results to �nitely generated �elds over a global �eld
and quasi-algebraic metrized line bundles. Note that in this settingnon-discrete non-
Archimedean places occur. Hence, we actually need our theory developed in Chapter 1 and
2. This generalization was suggested to me by José Burgos Gil. At the end, we particularize
to the case of the function �eld of an elliptic curve leading to a natural example to illustrate
our theory.

3.1. Global Heights of Varieties over an M -Field

First we explain the notion of M -�elds introduced by Gubler in [ Gub97, De�nition 2.1].
Theses �elds include global �elds and more generally, �nitely generated �elds over global
�elds. Then we construct global heights of subvarieties by integrating local heights overM .
Note that Gubler's de�nition of an M -�eld is more general than ours.

De�nition 3.1.1. Let K be a �eld and M a family of inequivalent absolute values onK
together with a positive measure� on M . Then K is called anM -�eld if, for each f 2 K � ,

(i) the function M ! R, v 7! log jf jv , is � -integrable;

(ii) the product formula
R

M log jf jv d� (v) = 0 holds.

Example 3.1.2. A global �eld F is either a number �eld or the function �eld of a smooth
projective curve over a countable �eld. We endowF with the following structure of an
M F -�eld.

If F = Q, then let M Q be the set consisting of the Archimedean and thep-adic absolute
values, normalized in the standard way, and equipM Q with the counting measure.

If F = k(C) is the function �eld of a smooth projective curve C over a countable �eld k,
let M k(C) be the set of absolute valuesj � j v , indexed by the closed pointsv 2 C, which are
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Chapter 3. Global Heights of Varieties over Finitely Generat ed Fields

given, for � 2 k(C) � , by

j� jv = c� ordv (� )
k ; ck =

(
e if jkj = 1

jkj if jkj < 1 ;

where ordv is the discrete valuation of the local ring OC;v . We endowM k(C) with the point
measure� given by � (v) = [ k(v) : k].

Let F0 denote either Q or k(C). If F is a �nite extension of F0, let M F be the set of
absolute valuesj � j v extending an absolute valuej � j v0 on F0. We equip M F with the point
measure� given by

� (v) =
[Fv : F0;v0 ]

[F : F0]
� (v0); (3.1)

where Fv denotes the completion ofF with respect to j � j v , and similarly for F0;v0 .
In all cases, it can be shown thatF together with ( M F ; � ) is an M F -�eld. For details,

we refer to [BPS14c, 2.1] and, for more advanced examples, to [Gub97, Ÿ 2].

Remark 3.1.3. In the above de�nition of a global �eld we assumed in the case of a
function �eld k(C) that k is countable to ensure the construction of theM -�eld in 3.2.4.
This assumption is just made for simplicity. In general, we are concerned with �nitely
many varieties, metrized line bundles or meromorphic sections and hence, we can �nd a
countable �nitely generated sub�eld over which all these objects are de�ned.

De�nition 3.1.4. Let K be an M -�eld and let K v be the completion of an algebraic
closure of the completion ofK with respect to v 2 M . Let X be a proper variety over
K and L a line bundle on X . We set X v = X � K Spec(K v) and L v = L 
 K K v. If v is
Archimedean, then we denote byX an

v = X v(K v) the complex analytic space associated to
X . If v is non-Archimedean, thenX an

v is the Berkovich analytic space associated toX v

over K v as de�ned in 1.1.2. We call X an
v the analyti�cation of X with respect to v (or

j � j v).
An (M -)metric on L is a family of metrics k � kv, v 2 M , where k � kv is a metric on

L an
v . The corresponding(M -)metrized line bundle is denoted byL = ( L; (k � kv)v). An ( M -

)metric on L is said to besemipositive if k � kv is semipositive for all v 2 M (cf. De�nition
1.3.1 and 1.5.3). Moreover, a metrized line bundleL is DSP if there are semipositive
metrized line bundlesM , N on X such that L = M 
 N � 1.

Let Z be a t-dimensional cycle onX and (L i ; si ), i = 0 ; : : : ; t, DSP metrized line bundles
on X with invertible meromorphic sections such that j div(s0)j \ � � � \ j div(st )j \ j Z j = ; .
For v 2 M , we set for the local height at v,

� (L 0 ;s0 );:::;(L t ;st ) (Z; v) := � cdiv( s0 )v ;:::; cdiv( st )v
(Zv);

where ddiv( si )v is the pseudo-divisor onX v induced by ddiv( si ) (cf. Example 1.2.10).

De�nition 3.1.5. Let K be an M -�eld and X a proper variety over K . A t-dimensional
prime cycle Y of X is called integrable with respect to DSP metrized line bundlesL i ,
i = 0 ; : : : ; t, on X if there is a birational proper map ' : Y 0 ! Y with Y 0 projective, and
invertible meromorphic sectionssi of ' � L i , i = 0 ; : : : ; t, meeting Y 0 properly, such that the
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function

M �! R; v 7�! � ( ' � L 0 ;s0 );:::;( ' � L t ;st ) (Y
0; v) (3.2)

is � -integrable on M . A t-dimensional cycle isintegrable if its components are integrable.

3.1.6. For an integrable cycle Y , the � -integrability of (3.2) holds for any choice of a
morphism ' , a cycleY 0 and invertible meromorphic sectionss0; : : : ; st satisfying only

jdiv( s0)j \ � � � \ j div( st )j = ; :

Moreover, the notion of integrability of cycles is closed under tensorproduct and pullback
of DSP metrized line bundles. This can be proved as in [BPS14a, Proposition 1.5.8] by
means of [Gub03, Proposition 11.5].

De�nition 3.1.7. Let X be a proper variety over anM -�eld K and Y a t-dimensional
prime cycle onX which is integrable with respect to DSP metrized line bundlesL 0; : : : ; L t

on X . Let Y 0 and s0; : : : ; st be as in De�nition 3.1.5. Then the global heightof Y with
respect to L; : : : ; L t is de�ned as

hL 0 ;:::;L t
(Y ) =

Z

M
� ( ' � L 0 ;s0 );:::;( ' � L t ;st ) (Y

0; v) d� (v):

By linearity, we extend this de�nition to all t-dimensional cycles onX .
Using Corollary 1.3.6 (iii), the Archimedean analogon mentioned in 1.5.11 and the product

formula of K , we see that this de�nition is independent of the choice of the sections.

Proposition 3.1.8. The global height of integrable cycles has the following basic properties:

(i) It is symmetric and multilinear with respect to tensor products of DSP metrized line
bundles.

(ii) Let ' : X 0 ! X be a morphism of proper varieties overK and let Z 0be at-dimensional
cycle such that' � Z 0 is integrable with respect to DSP metrized line bundlesL 0; : : : ; L t

on X . Then we have

h' � L 0 ;:::;' � L t
(Z 0) = h L 0 ;:::;L t

(' � Z 0):

Proof. Using 3.1.6, we get the results by integrating the corresponding formulas stated in
Proposition 1.3.6 (non-Archimedean case) and in 1.5.11 (Archimedean case).

We consider the special case of the global height over a global �eld.

De�nition 3.1.9. Let F be a global �eld with the structure ( M F ; � ) of an M F -�eld as in
Example 3.1.2. Let X be a proper variety over a global �eld F and L a line bundle on X .
We call an M F -metric on L quasi-algebraicif there exist a �nite subset S � M F containing
the Archimedean places and a proper algebraic model (X ; L ; e) of (X ; L ) over the ring

F �
S = f � 2 F j j � jv � 18v =2 Sg;

such that, for each v =2 S, the metric k � kv is induced by the localization

(X � F �
S

SpecF�
v ; L 
 F �

S
F�

v ; e):
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Proposition 3.1.10. Let X be a proper variety over a global �eldF . Then every cycle of
X is � -integrable with respect to DSP quasi-algebraicM F -metrized line bundles onX .

Proof. This is [BPS14a, Proposition 1.5.14].

Proposition 3.1.11 (Global induction formula) . Let X be ad-dimensional proper variety
over a global �eld F and L 0; : : : ; L d quasi-algebraic DSP metrized line bundles onX . If sd

is any invertible meromorphic section ofL d = ( L d; (k � kd;v)v), then there is only a �nite
number of v 2 M F such that

Z

X an
v

logksdkd;v c1(L 0;v) ^ � � � ^ c1(L d� 1;v) 6= 0

and we have

hL 0 ;:::;L d
(X ) = h L 0 ;:::;L d� 1

(cyc(sd))

�
X

v2 M F

� (v)
Z

X an
v

logksdkd;v c1(L 0;v) ^ � � � ^ c1(L d� 1;v) ;

with � (v) as in (3.1).

Proof. The �rst part follows from the proof of [ BPS14a, Proposition 1.5.14]. For the second
part, we use Proposition 3.1.10 and integrate the local induction formulas (theorems 1.4.3
and 1.5.13) overM F .

Proposition 3.1.12. Let F be a global �eld andF 0 a �nite extension of F with the induced
structure of an M F 0-�eld (see Example 3.1.2). Let X be an F -variety, L i , i = 0 ; : : : ; t,
quasi-algebraic DSP metrized line bundles onX and Z a t-dimensional cycle onX . We
denote by� : X 0 ! X the morphism, byZ 0 the cycle and by� � L i the M F 0-metrized line
bundles obtained by base change toF 0. Then

h� � L 0 ;:::;� � L t

�
Z 0� = h L 0 ;:::;L t

(Z ):

Proof. This follows from [BPS14a, Proposition 1.5.10].

3.2. M -Fields from Varieties over a Global Field

Let F be a global �eld with the canonical M F -�eld structure from Example 3.1.2. Let B
be a b-dimensional normal proper variety over F with function �eld K = F (B ).

In this section, we endow the �eld K with the structure of an M -�eld where M is a
natural set of places induced by nef quasi-algebraicM F -metrized line bundles onB . This
generalizes theM -�elds obtained by Moriwaki's construction in [Mor00, Ÿ 3]where the
function �eld of an arithmetic variety and a family of nef Hermitian line bundles are
considered (see also [Gub03, Example 11.22]).

De�nition 3.2.1. Let L be a quasi-algebraicM F -metrized line bundle on B . We say that
L is nef if k � k is semipositive and, for each pointp 2 B (F ), the global height hL (p) is
non-negative.
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Example 3.2.2. Let L = ( L; (k � kv)v) be a semipositive quasi-algebraic metrized line
bundle. We assume thatL is generated by small global sections, i. e. for each point
p 2 B (F ), there exists a global sections such that p =2 j div( s)j and supx2 B an

v
ks(x)kv � 1

for all v 2 M F . Then L is nef.

The idea of the following proof was suggested to me by José Burgos Gil.

Lemma 3.2.3. Let V be ad-dimensional subvariety ofB and let L 1; : : : ; L d be nef quasi-
algebraic M F -metrized line bundles onB . Then,

hL 1 ;:::;L d
(V ) � 0:

Proof. We may assume thatV = B and, by Chow's Lemma and Proposition 3.1.8 (ii),
that there is a closed immersion' : B ,! Pm

F . Consider the line bundle ' � OPm
F

(1) on B ,
equipped with the metric 1

2 ' � k�kcan;v0 at one placev0 2 M F and with the metric ' � k�kcan;v

at all other places v 6= v0. This M F -metrized line bundle is denoted byL . For each point
p 2 B (F ) with function �eld F (p), there exists a homogeneous coordinatex j , considered
as a global section ofOPm

F
(1), such that p =2 j div( ' � x j )j and hence,

hL (p) = �
X

w2 M F ( p)

� (w) log kx j � ' (p)kcan;w +
X

w2 M F ( p)

wjv0

� (w) log 2 � log 2 > 0: (3.3)

We extend the group of isomorphism classes ofM F -metrized line bundles on B by
Q-coe�cients and write its group structure additively. For i = 1 ; : : : ; d, and a positive
rational number " , we set L i;" := L i + "L . Since L i is nef, we obtain, by (3.3) and the
multilinearity of the heights, for each point p 2 B (F ),

hL i ;"
(p) = h L i

(p) + " hL (p) � " log 2 > 0: (3.4)

Now, we distinguish between number �elds and function �elds. First, let F be a number
�eld. Since L i;" is semipositive quasi-algebraic, there exists a sequence (L i;";k )k2 N that
converges toL i;" and that consists of M F -metrized line bundles which are induced by
vertically nef smooth Hermitian Q-line bundles L i;";k , k 2 N, on a common modelB ";k

over the ring of integersOF . By propositions 1.3.6 (iv) and 1.5.11, we have, for allk 2 N
and all p 2 B (F ),

�
�
�hL i;";k

(p) � hL i;"
(p)

�
�
� �

X

w2 M F ( p)

� (w) d (k � ki;";k;w ; k � ki;";w ) :

Note that the sum is �nite and does not depend onp. Hence, by(3.4), there is a k0 2 N
such that for all k � k0 and all p 2 B (F ),

hL i;";k
(f pg) = h L i;";k

(p) � 0:

Thus, for all k � k0, we have nef smooth HermitianQ-line bundles L 1;";k ; : : : ; L d;";k in
the sense of Moriwaki [Mor00, Ÿ 2]. So we can apply [Mor00, Proposition 2.3 (1)], which
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also holds for number �elds, to get

hL 1;";k ;:::;L d;";k
(B ) = h L 1;";k ;:::;L d;";k

(B ) � 0: (3.5)

Next, let F be the function �eld of a smooth projective curve C over any �eld. Since
L i;" is semipositive quasi-algebraic, there exists a sequence (L i;";k )k2 N that converges to
L i;" and that consists of M F -metrized line bundles which are induced by vertically nef
Q-line bundles L i;";k , k 2 N, on a common model� ";k : B ";k ! C. As in the number �eld
case, we can deduce, for su�ciently largek's and for all p 2 B (F ),

hL i;";k
(p) � 0: (3.6)

By [Gub08, Theorem 3.5 (d)], the height with respect to such algebraic metrized line
bundles is given as an algebraic intersection number of the associated models. So, the
inequality (3.6) just says that the line bundles L 1;";k ; : : : ; L d;";k on the model B ";k are
horizontally nef. Using that they are also vertically nef, it follows from Kleiman's Theorem
[Kle66, Theorem III.2.1] that

hL 1;";k ;:::;L d;";k
(B ) = degC (( � ";k ) � (c1(L 1;";k ) : : : c1(L d;";k ))) � 0: (3.7)

Finally, by (3.5) for number �elds and by (3.7) for function �elds, we obtain, by continuity
of heights in metrized line bundles,

hL 1 ;:::;L n
(B ) = lim

" ! 0
hL 1;" ;:::;L d;"

(B ) = lim
" ! 0

lim
k!1

hL 1;";k ;:::;L d;";k
(B ) � 0;

proving the lemma.

Now, we equip the �eld K = F (B ) with the structure of an M -�eld induced by nef
quasi-algebraic metrized line bundles.

3.2.4. Let H 1; : : : ; H b be nef quasi-algebraic line bundles onB . Let B (1) denote the
set of one-codimensional subvarieties ofB . By Lemma 3.2.3, eachV 2 B (1) induces a
non-Archimedean absolute value onK given, for f 2 K , by

jf jV = e
� hH 1 ;:::; H b

(V ) ord V (f )
; (3.8)

where ordV is the discrete valuation associated to the regular local ringOB;V . We equip
B (1) with the counting measure � �n .

Let us �x a place v 2 M F . Then we de�ne the generic points of B an
v as

B gen
v = B an

v n
[

V 2 B (1)

V an
v :

Since eachV 2 B (1) is contained in the support of the divisor of a rational function, a point
p 2 B an

v lies in B gen
v if and only if, for each f 2 K � , p does not lie in the analyti�cation

(with respect to v) of the support of div(f ). Thus, each p 2 B gen
v de�nes a well-de�ned

absolute value onK given by

jf jv;p = jf (p)j: (3.9)
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If v is non-Archimedean, then this absolute value is justp. On B an
v we have the positive

measure
� v = c 1(H 1;v) ^ � � � ^ c1(H b;v);

as de�ned in De�nition 1.3.8 (non-Archimedean case) and 1.5.12 (Archimedean case). Each
V an

v , V 2 B (1) , has measure zero with respect to� v by Corollary 1.4.5 (non-Archimedean
case) and by [CT09, Corollaire 4.2] (Archimedean case). SinceF is countable, B (1) is
also countable and thereforeB an

v n B gen
v has measure zero with respect to� v . So we get a

positive measure onB gen
v , which we also denote by� v .

In conclusion, we obtain a measure space

(M ; � ) = ( B (1) ; � �n ) t (
G

v2 M F

B gen
v ;

G

v2 M F

� v); (3.10)

which is in bijection with a set of absolute values onK .

The following shows that (K; M ; � ) satis�es the product formula and so it is an M -�eld:

Proposition 3.2.5. Let f 2 K � , then the function M ! R, w 7! log jf jw is integrable
with respect to � and we have the product formula

Z

M
log jf jw d� (w) = 0 :

Proof. Let f 2 K � be a non-zero rational function onB . Then, for almost every V 2 B (1) ,
we havef 2 O �

B;V . Hence, the function onB (1) given by V 7! log jf jV is � �n -integrable.
For each v 2 M F , the function on B gen

v given by p 7! log jf (p)j is � v-integrable (see
theorems 1.4.3 and 1.5.13). Since the trivially metrized line bundleOB and H 1; : : : ; H b are
quasi-algebraic, there is, by Proposition 3.1.11, only a �nite number ofv 2 M F such that

Z

B gen
v

log jf (p)j d� v(p) 6= 0 :

Summing up, the function M ! R, w 7! log jf jw , is � -integrable.
By the global induction formula 3.1.11, we obtain
Z

M
log jf jw d� (w) =

X

V 2 B (1)

� ordV (f ) hH 1 ;:::;H b
(V ) +

X

v2 M F

� (v)
Z

B an
v

log jf (p)j d� v(p)

= � hH 1 ;:::;H b
(cyc(f )) +

X

v2 M F

� (v)
Z

B an
v

log jf (p)j d� v(p)

= � hOB ;H 1 ;:::;H b
(B )

= 0 ;

which concludes the proof.

3.3. Relative Varieties over a Global Field

Let B be a normal proper variety over a global �eld F and let � : X ! B be a dominant
morphism of proper varieties overF . We denote by K = F (B ) the function �eld of B and
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by X the generic �ber of � , that means X = X � B Spec(K ) is a proper variety over K . We
assume thatK is equipped with the structure of an M -�eld induced by nef quasi-algebraic
metrized line bundlesH 1; : : : ; H b on B as in (3.10).

In this section, we prove the main result of this chapter (Theorem 3.3.4) showing that
the height h� � H 1 ;:::;� � H b;L 0 ;:::;L n

(X ) with respect to DSP quasi-algebraicM F -metrized line
bundles L i is equal to the height hL 0 ;:::;L n

(X ) with respect to induced M -metrized line
bundlesL i . Note that the �rst height is a sum of local heights over M F whereas the second
is an integral over M . This generalizes Theorem 2.4 in [BPS14a] where the global �eld is
Q and the metrized line bundles are induced by models overZ.

3.3.1. Let L = ( L ; (k � kv)v) be an M F -metrized line bundle on X . Then L induces an
M -metric on the line bundle L = L 
 K on X given as follows:

For each V 2 B (1) , consider the non-Archimedean absolute valuej � j V on K from (3.8)
and let KV be the completion of an algebraic closure of the completion ofK with respect
to j � j V . We get a proper K �

V -model

(XV ; L V ) := ( X � B SpecK �
V ; L 
 K �

V )

of (X; L ). By De�nition 1.2.7, the model ( XV ; L V ) induces a metric k � kV on the analyti�-
cation L an

V over X an
V with respect to j � j V .

Let us �x a place v 2 M F . By (3.9), a generic point p 2 B gen
v induces an absolute value

j � j v;p on K . We denote by K v;p the completion of an algebraic closure of the completion of
K with respect to j � j v;p and by X an

v;p the analyti�cation of X with respect to j � j v;p. Then
the projection Xv � B v SpecK v;p ! X v induces a morphism

i p : X an
v;p ! X an

v : (3.11)

Note that i p is injective if v is an Archimedean place (cf. [BPS14b, (2.1)]), but not
necessarily in the non-Archimedean case. The analyti�cationL an

v;p of L with respect to j � j v;p

can be identi�ed with the line bundle i �
pL an

v and we equip it with the metric k �kv;p := i �
pk�kv .

Summing up, we obtain anM -metrized line bundle

L = ( L; (k � kw)w2 M ) (3.12)

on X .

Lemma 3.3.2. Let i p : X an
v;p ! X an

v be the morphism from (3.11) and� v : X an
v ! B an

v the
morphism of Fv-analytic spaces induced by� : X ! B . Then we have

i p(X an
v;p) = � � 1

v (p):

Proof. We only show this for a non-Archimedean placev, the Archimedean case is es-
tablished at the beginning of [BPS14b, Ÿ 2]. We may assume thatB = Spec(A) resp.
X = Spec(C) for �nitely generated F -algebras A and C. Then � corresponds to an
injective F -algebra homomorphism A ,! C and we have X = Spec(C 
 A K ) with
K = F (B ) = Quot( A).

Let q 2 X an
v , that means q is a multiplicative seminorm on C 
 F Fv satisfying qjFv = j � j v .

Then q lies in i p(X an
v;p) if and only if it extends to a multiplicative seminorm ~q on C 
 A K v;p
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with ~qjKv;p = j � j v;p. This is illustrated in the following diagram,

A 
 F Fv
�• //

•_

��

K v;p•_

�� j�j v;p

��

C 
 F Fv
�• //

q
--

C 
 A K v;p
~q

%%
R� 0 :

On the one hand, if we have such a commutative diagram, then

� v(q) = qjA
 Fv = j � j v;pjA
 Fv = p:

On the other hand, if � v(q) = p, then we have a multiplicative seminorm ~q given by

C 
 A K v;p = ( C 
 F Fv) 
 (A 
 Fv ) K v;p �! H (q) b
 H (p)K v;p
y

�! R� 0 ;

where y is some element of the non-empty Berkovich spectrumM
�
H (q) b
 H (p)K v;p

�
(cf.

[Duc09, 0.3.2]). It follows easily that we obtain a commutative diagram as above. This
proves the result.

We need the following projection formula for heights in the proof of the main theorem.

Proposition 3.3.3. Let � : W ! V be a morphism of proper varieties over a global �eld
F of dimensionsn + b� 1 and b� 1 respectively, with b; n � 0. Let H i , i = 1 ; : : : ; b, and
L j , j = 1 ; : : : ; n, be DSP quasi-algebraic line bundles onV and W respectively. Then

h� � H 1 ;:::;� � H b;L 1 ;:::;L n
(W) = degL 1 ;:::;L n

(W� ) hH 1 ;:::;H b
(V );

where W� denotes the generic �ber of � . In particular, if dim(� (W)) � b � 2, then
h� � H 1 ;:::;� � H b;L 1 ;:::;L n

(W) = 0 .

Proof. By continuity of the height, we may assume that the metrics in H i and L j are
smooth or algebraic for all i; j . We prove this proposition by induction on n. If n = 0,
then we obtain by functoriality of the height (Proposition 3.1.8),

h� � H 1 ;:::;� � H b
(W) = h H 1 ;:::;H b

(� � (W)) = deg( W� ) hH 1 ;:::;H b
(V ):

Let n � 1. We choose any invertible meromorphic sectionsn of L n and denote by
k � kn = ( k � kn;v )v the metric of L n . Then the global induction formula 3.1.11 implies

h� � H 1 ;:::;� � H b;L 1 ;:::;L n
(W) = h � � H 1 ;:::;� � H b;L 1 ;:::;L n � 1

(cyc(sn ))

�
X

v2 M F

� (v)
Z

W an
v

logksnkn;v

b̂

i =1

c1(� � H i;v ) ^
n� 1^

j =1

c1(L j;v ):

If v is Archimedean, then
V b

i =1 c1(H i;v ) is the zero measure onV an
v sincedim(V an

v ) = b� 1.
Thus, the measure in the above integral vanishes and so the integral iszero.

61
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If v is non-Archimedean, then the metrics inH i;v , i = 1 ; : : : ; b, are induced by models
H i of H ei

i;v on a common modelV of Vv over SpecF�
v. By linearity, we may assume that

ei = 1 for all i . Analogously, the metrics in L j;v , j = 1 ; : : : ; n, are induced by modelsL j

of L j;v on a common modelW of Wv .
We may assume that the morphism� v : Wv ! Vv extends to a morphism� : W ! V

over SpecF�
v. Indeed, let W 0 be the closure of the image of� v in W � F�

v
V . This is a

proper model of Wv equipped with morphisms � 0: W 0 ! V and f : W 0 ! W such that
� 0jWv = � v and k � kL j = k � kf � L j . Then replaceW by W 0 and L j by f � L j .

Since the special �ber eV of V has dimensionb� 1, the degree with respect toH 1; : : : ; H b

of a cycle of eV is zero. Hence, for every irreducible componentY of the special �ber of W,
we have by means of the projection formula,

deg� � H 1 ;:::;� � H b;L 1 ;:::;L n � 1
(Y ) = degH 1 ;:::;H b

(� � (c1(L 1) : : : c1(L n� 1):Y )) = 0 :

Therefore, for eachv 2 M F , the measure in the above integral vanishes and so the integral
is zero.

Finally, we obtain by the induction hypothesis,

h� � H 1 ;:::;� � H b;L 1 ;:::;L n
(W) = h � � H 1 ;:::;� � H b;L 1 ;:::;L n � 1

(cyc(sn ))

= degL 1 ;:::;L n � 1
(cyc(sn ) � ) hH 1 ;:::;H b

(V )

= degL 1 ;:::;L n
(W� ) hH 1 ;:::;H b

(V );

proving the result.

Theorem 3.3.4. Let B be ab-dimensional normal proper variety over a global �eldF and
let H 1; : : : ; H b be nef quasi-algebraic line bundles onB . Let K = F (B ) be the function
�eld of B and (M ; � ) the associated structure of anM -�eld on K as in (3.10).

Let � : X ! B be a dominant morphism of proper varieties overF and X the generic �ber
of � . Let Y be ann-dimensional prime cycle ofX and Y its closure in X . For j = 0 ; : : : ; n;
let L j be anM -metrized line bundle onX which is induced by a DSP quasi-algebraic line
bundle L j on X as in (3.12).

Then Y is integrable with respect toL 0; : : : ; L n and we have

hL 0 ;:::;L n
(Y ) = h � � H 1 ;:::;� � H b;L 0 ;:::;L n

(Y): (3.13)

Proof. By Chow's lemma (see, for instance, [GW10, Theorem 13.100]) and functoriality
of the height (Proposition 3.1.8 (ii)), we reduce to the case when the proper varieties are
projective over F . Then � is also projective. By (multi-)linearity of the height (Propositi on
3.1.8 (i)), we may assume that the line bundlesL j are very ample and theirM F -metrics are
semipositive. Making a �nite base change and using Proposition 3.1.12, we may suppose
that B and X are geometrically integral.

We prove this theorem by induction on the dimension ofY . If dim(Y ) = � 1, thus Y = ; ,
then Y is integrable since the local heights ofY are zero. Equation (3.13) holds in this
case becauseY is empty as well.
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From now on we suppose thatdim(Y) = n � 0. Then the restriction � jY : Y ! B
is dominant. By Proposition 3.1.8 (ii), the height does not change if we restrict the
corresponding metrized line bundles toY. So we may assume thatY = X , Y = X and
n = dim( Y ) = dim( X ).

Let s0; : : : ; sn be global sections ofL 0; : : : ; L n respectively, whose Cartier divisors intersect
properly on X , and consider the function

� : M �! R; w 7�! � (L 0 ;s0 jX );:::;(L n ;sn jX ) (X; w ):

We must show that � is � -integrable and that
Z

M
� (w) d� (w) = h � � H 1 ;:::;� � H b;L 0 ;:::;L n

(X ):

By the induction formula of local heights (Theorem 1.4.3 in the non-Archimedean and
Theorem 1.5.13 in the Archimedean case), there is a decomposition� = � 1 + � 2 into
well-de�ned functions � 1; � 2 : M ! R given by

� 1(w) = � (L 0 ;s0 jX );:::;(L n � 1 ;sn � 1 jX ) (cyc(sn jX ); w)

and
� 2(w) =

Z

X an
w

logksn jX w k� 1
n;w c1(L 0;w ) ^ � � � ^ c1(L n� 1;w ):

Moreover, we can write the cycle cyc(sn ) in X as

cyc(sn ) = cyc( sn ) hor=B + cyc( sn )vert =B ;

where cyc(sn ) hor=B contains the components which are dominant overB and cyc(sn )vert =B
contains the components not meeting the generic �berX of � .

By the induction hypothesis, the function � 1 is � -integrable and
Z

M
� 1(w) d� (w) = h L 0 ;:::;L n � 1

(cyc(sn jX ))

= h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(cyc(sn ) hor=B ): (3.14)

If w = V 2 B (1) , then we just can copy the corresponding part of the proof of [BPS14b,
Theorem 2.4]. In this case we obtain

� 2(V ) =
X

W2X (1)

� (W )= V

hH 1 ;:::;H b
(V ) ordW (sn ) degL 0 ;:::;L n � 1

(WV ); (3.15)

whereWV denotes the generic �ber of� jW : W ! V . This formula implies the integrability
of � 2 on B (1) with respect to the counting measure� �n because there are only �nitely
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many W 2 X (1) such that ordW (sn ) 6= 0. By (3.15) and Proposition 3.3.3,
Z

B (1)
� 2(w) d� �n (w) =

X

V 2 B (1)

� 2(V )

=
X

V 2 B (1)

X

W2X (1)

� (W )= V

hH 1 ;:::;H b
(V ) ordW (sn ) degL 0 ;:::;L n � 1

(WV )

=
X

V 2 B (1)

X

W2X (1)

� (W )= V

ordW (sn ) h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(W)

+
X

W2X (1)

dim( � (W )) � b� 2

ordW (sn ) h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(W)

| {z }
=0

= h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(cyc(sn )vert =B ): (3.16)

Now, let v be a place ofM F and p a generic point of B an
v . We have to show that the

function

� 2(p) =
Z

X an
v;p

log i �
pksnk� 1

n;v

n� 1^

j =0

c1(i �
pL j;v )

is integrable with respect to � v = c1(H 1;v) ^ � � � ^ c1(H b;v). Furthermore, we have to prove
that

Z

B gen
v

� 2(p) d� v(p) =
Z

X an
v

logksnk� 1
n;v

n� 1^

j =0

c1(L j;v ) ^
b̂

i =1

c1(� � H i;v ) (3.17)

and that this integral is zero for all but �nitely many v 2 M F .
If v 2 M F is an Archimedean place, then the proof of [BPS14b, Theorem 2.4] shows that

� 2 is � v-integrable on B gen
v and that the equation (3.17) holds.

From now on, we consider the case wherev 2 M F is non-Archimedean. We �rst assume
that, for each j = 0 ; : : : ; n � 1 and i = 1 ; � � � ; b, the metrics on L j;v and H i;v are algebraic.
Then the function � 2 is � v-integrable because� v is a discrete �nite measure.

We choose, for eachj , a proper model (X j ; L j ; ej ) of (Xv ; L j;v ) over SpecF�
v that induces

the metric of L j;v . Note that we omit the place v in the notation of the models in order not
to burden the notation. By linearity, we may assume that ej = 1 for all j . Furthermore, we
can suppose that the modelsX j agree with a common modelX with reduced special �ber
(cf. Remark 1.2.13). In the same way, we have a properF�

v-model B of Bv with reduced
special �ber and, for eachi = 1 ; : : : ; b, a modelH i of H i;v on B inducing the corresponding
metric. As in the proof of Proposition 3.3.3, we can asume that the morphism� v : Xv ! Bv

extends to a morphism� : X ! B over F�
v .

To construct a suitable model of X v;p = X � K SpecK v;p over K �
v;p, we consider the

commutative diagram
SpecK v;p //

��

B

��
SpecFv //SpecF :
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The universal property of the �ber product induces a unique morphism SpecK v;p ! Bv.
BecauseB is proper over F�

v and by the valuative criterion, this morphism extends to
SpecK �

v;p ! B . Let X p be the �ber product X � B SpecK �
v;p. This is a model of X v;p

over K �
v;p, indeed

X p � K �
v;p

SpecK v;p = X � B B � F�
v

SpecFv
| {z }

= B v

� B v SpecK v;p = Xv � B v SpecK v;p = X v;p:

We denote the special �bers ofB , X and X p by fB , fX and fX p respectively. By 1.1.8,
there exists a formal admissible schemeXp over K �

v;p with generic �ber Xan
p = X an

v;p and

with reduced special �ber eXp such that the canonical morphism�p : eXp ! fX p is �nite and
surjective. We obtain the following commutative diagram

X an
v;p

= //

red
��

X an
v;p

i p //

red
��

X an
v

� v //

red
��

B an
v

red
��

eXp
� p // fX p

j p // fX ~� // fB ;

where red is the reduction map from 1.1.6 and 1.1.8. Note that fX p = fX � eB
eK v;p.

By De�nition 1.2.14, the left-hand side of equation (3.17) is equal to

Z

B gen
v

� Z

X an
v;p

log i �
pksnk� 1

n;v

n� 1^

j =0

c1(i �
pL j;v )

� b̂

i =1

c1(H i;v )(p) (3.18)

=
X

Z 2 eB (0)

� X

V 2 eX(0)
� Z

logksn (i � Z (� V ))k� 1
n;v deg

� �
� Z

j �
� Z

eL 0 ;:::;� �
� Z

j �
� Z

eL n � 1
(V )

�
degH 1 ;:::;H b

(Z );

where � Z (resp. � V ) denotes the unique point whose reduction is the generic point ofZ
(resp. V ).

First, we consider the inner sum. LetZ be an irreducible component of fB with generic
point � Z = red(� Z ). For W 2 fX (0)

� Z
, let � W = � V for any V 2 X(0)

� Z
with � � Z (V ) = W . Then

i � Z (� W ) does not depend on the particular choice ofV . Hence, Lemma 3.3.5 below implies

X

V 2 eX(0)
� Z

logksn (i � Z (� V ))k� 1
n;v deg�

� �
� Z

j �
� Z

eL k

�
k =0 ;:::;n � 1

(V )

=
X

W 2 eX (0)
� Z

logksn (i � Z (� W ))k� 1
n;v m

�
W; fX � Z

�
deg�

j �
� Z

eL k

�
k =0 ;:::;n � 1

(W ) ; (3.19)

where m
�
W; fX � Z

�
denotes the multiplicity of W in fX � Z .

By [EGAI, Ch. 0, (2.1.8)], there is a bijective map
n

Y 2 fX (0) j ~� (Y ) = Z
o

�! fX (0)
� Z

; Y 7�! Y� Z : (3.20)

The special �ber of B is reduced and hence, applying [Ber90, 2.4.4(ii)] and using the
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compatibility of reduction and algebraic closure, we deduceeK v;� Z = Ĥ (� Z ) = � (� Z ).
Therefore, fX � Z = fX � eB

eK v;� Z is the base change of the �ber fX � Z = fX � eB � (� Z ) by

� (� Z ) ! � (� Z ). Thus, by [Sta15, Lemma 32.6.10], we obtain a surjective map

fX (0)
� Z

�! fX (0)
� Z

: (3.21)

Composing the maps (3.20) and (3.21), we get a canonical surjective map

fX (0)
� Z

�!
n

Y 2 fX (0) j ~� (Y ) = Z
o

with �nite �bers. More precisely, for each irreducible component Y in fX with ~� (Y ) = Z ,
the schemeY� Z = Y � Z SpeceK v;� Z is a �nite union of (non-necessarily reduced) irreducible

components of fX (0)
� Z

. Sincei � Z (� W ) = � Y for W 2 Y (0)
� Z

, we deduce

X

W 2 eX (0)
� Z

logksn (i � Z (� W ))k� 1
n;v m

�
W; fX � Z

�
deg�

j �
� Z

eL k

�
k =0 ;:::;n � 1

(W )

=
X

Y 2 eX (0)

~� (Y )= Z

logksn (� Y )k� 1
n;v deg�

j �
� Z

eL k

�
k =0 ;:::;n � 1

(Y� Z ): (3.22)

Let Y be an irreducible component of fX with generic point � Y such that ~� (Y ) = Z .
Then Lemma 3.3.6 below shows that

degL 0 ;:::;L n � 1 ;� � H 1 ;:::;� � H b
(Y ) = deg

j �
� Z

eL 0 ;:::;j �
� Z

eL n � 1
(Y� Z ) degH 1 ;:::;H b

(Z ): (3.23)

Combining the equations (3.18), (3.19), (3.22) and (3.23), we obtain

Z

B gen
v

� Z

X an
v;p

log i �
pksnk� 1

n;v

n� 1^

j =0

c1(i �
pL j;v )

� b̂

i =1

c1(H i;v )(p)

=
X

Z 2 eB (0)

X

Y 2 eX (0)

~� (Y )= Z

logksn (� Y )k� 1
n;v degL 0 ;:::L n � 1 ;� � H 1 ;:::;� � H b

(Y )

=
X

Y 2 eX (0)

logksn (� Y )k� 1
n;v degL 0 ;:::L n � 1 ;� � H 1 ;:::;� � H b

(Y )

=
Z

X an
v

logksnk� 1
n;v

n� 1^

j =0

c1(L j;v ) ^
b̂

i =1

c1(� � H i;v ) ;

using in the next-to-last equality that, for an irreducible component Y of fX with
dim(~� (Y )) � b � 1, the degree is zero. This proves equation (3.17) in the algebraic
case.

We next assume that, for eachj = 0 ; : : : ; n, the metric k � kj;v on L j;v is algebraic, but
that the metrics on H i;v , i = 1 ; : : : ; b, are not necessarily algebraic. For this case, we once
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again show that � 2 is � v-integrable and that the equality (3.17) holds.

As in the previous case, we may assume that, for eachj = 0 ; : : : ; n, there is a proper
model (L j ; X ) of (L j;v ; Xv) over F�

v inducing the corresponding metric. We choose any
projective model B over F�

v of the projective variety Bv and suppose, as in the previous case,
that � v : Xv ! Bv extends to a proper morphism� : X ! B . BecauseXv is projective
over Fv and by [Gub03, Proposition 10.5], we may assume thatX is projective over F�

v
and thus, � is projective. Using Serre's theorem (see [GW10, Theorem 13.62]), the line
bundle L j is the di�erence of two very ample line bundles relative to � . By multilinearity
of the height, we reduce to the case whereL j is very ample relative to � . BecauseB
is projective over F�

v, we deduce by [GW10, Summary 13.71 (3)] that there is a closed
immersion f j : X ,! PN j

B such that L j ' f �
j O

P
N j
B

(1).

For projective spacesPN j , j = 0 ; : : : ; n, let P:= PN0 � � � � � PNn be the multiprojective
space and letOP(ej ) be the pullback of OPN j (1) by the j -th projection. Since B is geomet-
rically integral, we have the function �eld K v = Fv(Bv) and we de�ne X v = Xv � B v K v

and L j;v = L j;v 
 K v . We obtain the following commutative diagram

X � B SpecK �
v;p

�• f p //

j p

��

PK �
v;p

��

X v;p
�• gp //

hp

��

::

PKv;p

��

::

X �• f //PB :

X v
�• g //

::

PK v

::

Note that each horizontal arrow is a closed immersion becausef is a closed immersion
and the other morphisms are obtained by base change.

Let p 2 B gen
v . Then the metric k � kv;p = i �

pk � kv on L j;v;p = g�
pOPKv;p

(ej ) is induced by

j �
pL j = j �

p f � OPB (ej ) = f �
p OPK�

v;p
(ej ):

Hence,L j;v;p = g�
pOPKv;p

(ej ), where OPKv;p
(ej ) is endowed with the canonical metric. By

Proposition 3.2.5, the �eld K v together with ( B gen
v ; � v) is a B gen

v -�eld in the sense of
[Gub02, 5.2]. Therefore, [Gub02, Proposition 5.3.7(d)] says that everyn-dimensional cycle
on PK v is � v-integrable on B gen

v with respect to OPK v
(e0); : : : ; OPK v

(en ). Since integrability
is closed under tensor product and pullback (see 3.1.6), the local height � is � v-integrable
on B gen

v . By the induction hypothesis, we deduce that� 2 = � � � 1 is also � v-integrable on
B gen

v .

For proving the equality (3.17), we study � in more detail. We can choose global sections
t j of OPK v

(ej ), j = 0 ; : : : ; n, such that

(jdiv(g� t0)j [ j div( s0;v)j) \ � � � \ (jdiv(g� tn )j [ j div( sn;v )j) \ X v = ; :
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Then we get, by Proposition 1.3.6 (iii) and (v),

� (p) = � (L 0 ;s0 );:::;(L n ;sn ) (X; p)

= � (OPKv
(e0 );t 0 );:::;(OPKv

(en );t n ) (g� (X v); p) +
nX

j =0

log
�
�
�
�
g� t j

sj;v
(Yj )

�
�
�
�
v;p

; (3.24)

where Yj is any zero dimensional representative of the re�ned intersection

div(g� t0) : : : div(g� t j � 1): div( sj +1 ;v) : : : div( sn;v ):X v :

We can express� in terms of the Chow form of the n-dimensional subvariety X v of the
multiprojective space PK v . This is a multihomogenous polynomialFX v (� 0; : : : ; � n ) with
coe�cients in K v and in the variables � j = ( � j 0; : : : ; � jN j ) viewed as dual coordinates on

PN j
K v

(see [Gub02, Remark 2.4.17] for details). By (3.24) and [Gub02, Example 4.5.16], we
obtain

� (p) = log jFX v jv;p � log jFX v (t 0; : : : ; t n )jv;p +
nX

j =0

log
�
�
�
�
g� t j

sj;v
(Yj )

�
�
�
�
v;p

; (3.25)

where in the �rst term we use the Gauss norm and in the second termt j denotes the dual
coordinate of t j .

The next goal is to express� (p) in the form logksk in order to apply the induction
formula (Theorem 1.4.3). The last two summands in(3.25) already have this form since
a rational function is an invertible meromorphic section on the trivial bundle. For the
�rst term, let FX v (� ) =

P
m am � m , where am 2 K v , � = ( � 0; : : : ; � n ) and we use the usual

multi-index notation. Since FX v is only unique up to multiples of K v
� , we may assume

that there exists an m 0 such that am 0 = 1. Let N be the number of the multi-indices m
with am 6= 0. We consider the rational map

� : Bv 99KPN � 1
Fv

; x 7�! (am (x))m :

Using a blow-up of Bv as in [Har77, Example II.7.17.3] and functoriality of the measure� v

(Proposition 1.3.11 (ii)), we may assume that � is a morphism. Let k � k be the pullback of
the canonical metric on OPN � 1

Fv
(1) and let xm 0 be the coordinate ofPN � 1

Fv
corresponding to

m 0, considered as a global section ofO(1). Then we have

logk� � xm 0(p)k� 1 = log max
m

�
�
�
�
am

am 0
(p)

�
�
�
� = log max

m
jam (p)j = log jFX v jv;p :

Hence,� (p) is of the form logksk for a suitable DSP metrized line bundle onBv and an
invertible meromorphic section s.

Now, for each i = 1 ; : : : ; n, we choose a sequence of algebraic semipositive metrics
(k � ki;v;k )k2 N on H i;v that converges to the semipositive metrick � ki;v on H i . Denote
H i;v;k = ( H i;v ; k � ki;v;k ) and set

� v;k = c 1(H 1;v;k ) ^ � � � ^ c1(H b;v;k):

Applying, for each k 2 N, the induction formula (Theorem 1.4.3) to
R

B gen
v

� (p) d� v;k (p),
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then using the continuity of local heights with respect to metrics (see 1.3.5) and applying
the induction formula again, we obtain

lim
k!1

Z

B gen
v

� (p) d� v;k (p) =
Z

B gen
v

� (p) d� v(p): (3.26)

Analogously we can show this for the local height� 1 and hence, we get

lim
k!1

Z

B gen
v

� 2(p) d� v;k (p) =
Z

B gen
v

� 2(p) d� v(p): (3.27)

On the other hand, using Theorem 1.4.3 as above,

lim
k!1

Z

X an
v

logksnkn;v

n� 1^

j =0

c1(L j;v ) ^
b̂

i =1

c1(� � H i;v;k )

=
Z

X an
v

logksnkn;v

n� 1^

j =0

c1(L j;v ) ^
b̂

i =1

c1(� � H i;v ): (3.28)

Thus, the equality (3.17) for semipositive metrics onH i;v and algebraic metrics onL j;v

follows by (3.27), (3.28) and the algebraic case.

In the last step, we assume that the metrics onH i;v and L j;v are semipositive and not
necessarily algebraic. We can proceed similarly to the corresponding part in [BPS14b,
Theorem 2.4] and choose, for eachj = 0 ; : : : ; n, a sequence of algebraic semipositive metrics
(k � kj;v;k )k2 N on L j;v that converges to k � kj;v . For p 2 B gen

v , we set

� 2;k (p) :=
Z

X an
v;p

log i �
pksnk� 1

n;v;k

n� 1^

j =0

c1(i �
pL j;v;k ):

By the induction formula 1.2.16 and Proposition 1.2.12 (iii), we obtain for each k; l 2 N,

j� 2;k (p) � � 2;l (p)j =
�
�
� � (L 0;k ;s0 );:::;(L n;k ;sn ) (X; p) � � (L 0;k ;s0 );:::;(L n � 1;k ;sn � 1 ) (cyc(sn jX ); p)

� � (L 0;l ;s0 );:::;(L n;l ;sn ) (X; p) + � (L 0;l ;s0 );:::;(L n � 1;l ;sn � 1 ) (cyc(sn jX ); p)
�
�
�

�
nX

j =0

d(k � kj;v;k ; k � kj;v;l ) degL 0 ;:::;L j � 1 ;L j +1 ;:::;L n
(X )

+
n� 1X

j =0

d(k � kj;v;k ; k � kj;v;l ) degL 0 ;:::;L j � 1 ;L j +1 ;:::;L n � 1
(cyc(sn jX )) :

Hence, the sequence (� 2;k )k2 N converges uniformly to � 2. The measure� v has �nite total
mass and, by the previous case, the functions� 2;k are � v-integrable. So, we deduce that� 2

is � v-integrable and that

lim
k!1

Z

B gen
v

� 2;k d� v(p) =
Z

B gen
v

� 2(p) d� v(p):

Thus, using (3.17) for the functions � 2;k and applying the induction formula 1.4.3, the
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equality (3.17) also holds in the case when all the metrics are semipositive.
By Proposition 3.1.11, the integral in (3.17) is zero for all but �nitely many v 2 M F

because the line bundles� � H 1; : : : ; � � H b, L 0; : : : ; L n are quasi-algebraic.
In conclusion, the function � = � 1 + � 2 is � -integrable and we obtain, by using the

induction hypothesis (3.14), (3.16), (3.17) and the global induction formula 3.1.11,

hL 0 ;:::;L n
(X ) =

Z

M
� 1(w) d� (w) +

Z

B (1)
� 2(w) d� �n (w) +

X

v2 M F

� (v)
Z

B gen
v

� 2(p) d� v(p)

= h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(cyc(sn ) hor=B )

+ h � � H 1 ;:::;� � H b;L 0 ;:::;L n � 1
(cyc(sn )vert =B )

+
X

v2 M F

� (v)
Z

X an
v

logksnk� 1
n;v

n� 1^

j =0

c1(L j;v ) ^
b̂

i =1

c1(� � H i;v )

= h � � H 1 ;:::;� � H b;L 0 ;:::;L n
(X );

proving the theorem.

Lemma 3.3.5. Let notation be as in the proof of Theorem 3.3.4, in particular W 2 fX (0)
� Z

.
Then,

X

V 2 eX(0)
� Z

� � Z (V )= W

deg�
� �
� Z

j �
� Z

eL k

�
k =0 ;:::;n � 1

(V ) = m( W; fX � Z ) � deg�
j �

� Z
eL k

�
k =0 ;:::;n � 1

(W );

where m
�
W; fX � Z

�
denotes the multiplicity of W in fX � Z .

Proof. In order not to burden the notation, we omit each � Z . For V 2 eX(0) , the projection
formula says

deg�
� � j � eL k

�
k =0 ;:::;n � 1

(V ) = [K( V ) : K( � (V ))] deg�
j � eL k

�
k =0 ;:::;n � 1

(� (V )) : (3.29)

Let � be any non-zero element in the maximal idealK ��
v;� Z

. Applying the projection formula

in [Gub98, Proposition 4.5] to the Cartier divisor div(� ), we get � � ( eX) = cyc( fX ). This
implies

X

V 2 eX(0)

� (V )= W

[K( V ) : K( W )] deg�
� � j � eL k

�
k =0 ;:::;n � 1

(W ) = m( W; fX ) deg�
j � eL k

�
k =0 ;:::;n � 1

(W ): (3.30)

The statement follows from (3.29) and (3.30).

Lemma 3.3.6. We keep the notations of the proof of Theorem 3.3.4. Then,

degL 0 ;:::;L n � 1 ;� � H 1 ;:::;� � H b
(Y ) = deg

j �
� Z

eL 0 ;:::;j �
� Z

eL n � 1
(Y� Z ) degH 1 ;:::;H b

(Z ):

Proof. Let
P

W 2 eX ( n ) nW W be any cycle representingc1(L 0) : : : c1(L n� 1):Y 2 CHb( fX )
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and let j � Z be the projection fX � Z ! fX . Since~� � (W ) = 0 if dim(� (W )) � b� 1, we obtain

~� �

� X

W 2 eX ( n ) nW W
�

=
X

W 2 eX ( n )

dim(~� (W ))= n

nW
�
K( W ) : K(~� (W ))

�
� ~� (W )

=
X

W 2 eX ( n )

~� (W )= Z

nW
�
K( W ) : K( Z )

�
� Z

= deg
� X

W 2 eX ( n ) nW W� Z

�
� Z

= deg
�
c1(j �

� Z
fL 0) : : : c1(j �

� Z
fL n� 1):Y� Z

�
� Z

= deg
j �

� Z
eL 0 ;:::;j �

� Z
eL n � 1

(Y� Z ) � Z :

Since the degree is stable under base change, we deduce

degL 0 ;:::;L n � 1 ;� � H 1 ;:::;� � H b
(Y )

= degH 1 ;:::;H b
(~� � (c1(L 0) : : : c1(L n� 1):Y ))

= deg
j �

� Z
eL 0 ;:::;j �

� Z
eL n � 1

(Y� Z ) degH 1 ;:::;H b
(Z )

= deg
j �

� Z
eL 0 ;:::;j �

� Z
eL n � 1

(Y� Z ) degH 1 ;:::;H b
(Z ) ;

proving the result.

3.4. Global Heights of Toric Varieties over Finitely
Generated Fields

Following [BPS14b, Ÿ 3] closely, we apply the theory of toric varieties developed in [BPS14a]
and Chapter 2, to get some combinatorial formulas for heights of non-toric varieties over
global �elds. Indeed, our non-discrete non-Archimedean toric geometryis necessary since
the measure spaceM from (3.10) contains arbitrary non-Archimedean absolute values, in
contrast to the measure space considered in [BPS14b, Ÿ 1].

As usual, we �x a lattice M ' Zn with dual M _ = N and use the respective notations
from Chapter 2.

At �rst, we consider an arbitrary M -�eld K with associated set of absolute valuesM
and positive measure� on M . Let � be a complete fan in NR and let X � be the associated
proper toric variety over K with torus T = SpecK [M ].

3.4.1. Let L be a toric line bundle on X � . An M -metric k � k = ( k � kv)v2 M on L is toric
if, for each v 2 M , the metric k � kv on L v is toric (see De�nition 2.4.1). The canonical
M -metric on L , denoted k � kcan, is given, for eachv 2 M , by the canonical metric on L v

(see De�nition 2.4.12). We will write L can = ( L; k � kcan).
Let s be a toric section onL and 	 the associated virtual support function. Then a

toric M -metric (k � kv)v on L induces a family
�
 L;s;v

�
v2 M of real-valued functions onNR

as in De�nition 2.4.6. If k � k is semipositive, then each L;s;v is concave and we obtain a
family

�
#L;s;v

�
v2 M of concave functions on � 	 called v-adic roof functions (cf. De�nition
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2.6.4 and Remark 2.6.7). WhenL and s are clear from the context, we also denote L;s;v
by  v and #L;s;v by #v .

Proposition 3.4.2. For each i = 0 ; : : : ; t, let L i be a toric line bundle onX � equipped
with a DSP toric M -metric and denote byL can

i the same toric line bundle endowed with
the canonical M -metric. Let Y be either the closure of an orbit or the image of a proper
toric morphism, of dimension t. Then Y is integrable with respect toL can

0 ; : : : ; L can
t and

hL
can
0 ;:::;L

can
t

(Y ) = 0 : (3.31)

Furthermore, if Y is integrable with respect toL 0; : : : ; L t , then the global height is given by

hL 0 ;:::;L t
(Y ) =

Z

M
� tor

L 0 ;:::;L t
(Y; v) d� (v); (3.32)

where � tor
L 0 ;:::;L t

(Y; v) = � tor
L 0;v ;:::;L t;v

(Yv) is the toric local height from De�nition 2.6.1.

Proof. The �rst statement and equation (3.31) can be shown using the same arguments as
in [BPS14a, Proposition 5.2.4]. Reducing toY = X � and L 0 = � � � = L n = L, the proof
is based on an inductive argument over the dimension ofX � , using, for eachv 2 M , the
local induction formula and the fact that, for a toric section s of L , we have as in (2.23),

Z

X an
� ;v

logkskcan;v c1
�
L can

v
� n = 0 :

The second equation follows easily from the �rst one.

Corollary 3.4.3. Let L = ( L; (k � kv)v) be a toric line bundle on X � equipped with
a semipositive toric M -metric. Choose any toric section s of L and denote by	 the
corresponding support function on� . If X � is integrable with respect toL , then

hL (X � ) = ( n + 1)!
Z

M

Z

� 	

#L;s;v dvolM d� (v):

Proof. This is a direct consequence of Proposition 3.4.2 and the formulas for thetoric local
height (Theorem 2.6.6 if v is non-Archimedean, and [BPS14a, Theorem 5.1.6] else).

Now we consider the particular case of anM -�eld which is induced by a variety over a
global �eld as in section 3.2. Let B be a b-dimensional normal proper variety over a global
�eld F and let H 1; : : : ; H b be nef quasi-algebraic metrized line bundles onB . This provides
the function �eld K = F (B ) with the structure ( M ; � ) of an M -�eld as in (3.10). Let X
be an n-dimensional proper toric variety over K with torus T = SpecK [M ], described by
a complete fan � in NR. We choose a base-point-free toric line bundleL on X together
with a toric section s and denote by 	 the associated support function on �.

Let � : X ! B be a dominant morphism of proper varieties overF such that X is the
generic �ber of � . We equip L with a toric M -metric k � k such that L = ( L; k � k) is induced
by a semipositive quasi-algebraicM F -metrized line bundle L on X as in (3.12). Then it
follows easily that L is also semipositive and so, for eachv 2 M , the function  v is concave.

The following result generalizes Corollary 3.1 in [BPS14b], where the global �eld is Q
and the metrized line bundles are induced by models overZ. It is essentially based on our
main theorems 2.6.6 and 3.3.4.
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Corollary 3.4.4. Let notation be as above. Then the function

M �! R; w 7�!
Z

� 	

#L;s;w (m) dvolM (m) (3.33)

is � -integrable and,

h� � H 1 ;:::;� � H b;L ;:::;L (X ) = h L (X ) = ( n + 1)!
Z

M

Z

� 	

#w(m) dvolM (m) d� (w): (3.34)

Proof. By Theorem 2.6.6 (non-Archimedean case) and [BPS14a, Theorem 5.1.6] (Archime-
dean case), we have

(n + 1)!
Z

� 	

#w dvolM = � tor
L 0;w ;:::;L n;w

(X w): (3.35)

Hence, Theorem 3.3.4 implies the� -integrability of the function (3.33). The �rst equality
of (3.34) is Theorem 3.3.4. The second follows readily from (3.32) and (3.35).

Proposition 3.4.5. We use the same notation as above.

(i) For each m 2 � 	 , the function M �! R, w 7�! #w(m) is � -integrable.

(ii) The function

#L;s : � 	 �! R; m 7�!
Z

M
#L;s;w (m) d� (w)

is continuous and concave.

(iii) The function M � � 	 �! R, (w; m) 7�! #w(m) is (� � volM )-integrable.

(iv) We have

h� � H 1 ;:::;� � H b;L ;:::;L (X ) = h L (X ) = ( n + 1)!
Z

� 	

#L;s (m) dvolM (m);

where #L;s is the function in (ii).

Proof. The proof of (i)�(iii) respectively (iv) is analogous to [ BPS14b, Theorem 3.2 respec-
tively Corollary 3.4] using Corollary 3.4.4 in place of [BPS14b, Corollary 3.1]. It utilizes in
an essential way that #w is concave (see Theorem 2.5.8 and Remark 2.5.9).

3.5. Heights of Translates of Subtori over the Function
Field of an Elliptic Curve

In [BPS14b, Ÿ 4], the corresponding formulas in section 3.4 are particularized to the case
when X is the normalization of a translate of a subtorus in the projective spaceand
canonical metrics. We will recall their statements in our setting and apply these to the
case of the function �eld of an elliptic curve.

Let B be a b-dimensional normal proper variety over a global �eld F and let H 1; : : : ; H b

be nef quasi-algebraicM F -metrized line bundles onB . We equip K = F (B ) with the
structure (M ; � ) of an M -�eld as in (3.10).
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For r � 1, let us consider the projective spacePr
B = Pr

F � F B over B and the universal
line bundle OPr

B
(1). We equip OPr

B
(1) with the metric obtained by pulling back the

canonical M F -metric of OPr
F

(1) and denote this by O(1) = OPr
B

(1).
For m j 2 Zn and f j 2 K � , j = 0 ; : : : ; r , we consider the morphism

Gn
m;K �! Pr

K ; t 7�! (f 0t m 0 : � � � : f r t m r );

where f j t m j = f j tm j; 1
1 � � � tm j;n

n . For simplicity, we assume that m 0 = 0, f 0 = 1 and that
m 0; : : : ; m r generateZn as an abelian group. Denote byY the closure of the image of this
morphism. Then Y is a translated toric subvariety of Pr

K (cf. [BPS14a, De�nition 3.2.6]),
but not a toric variety over K since it is not necessarily normal.

Let Y be the closure of Y in Pr
B and let � : Y ! B be the morphism obtained

by restricting Pr
B ! B . Our goal is to compute the arithmetic intersection number

h� � H 1 ;:::;� � H b;O(1) ;:::;O(1) (Y) using formula (3.34). SinceY is not necessarily normal, we
consider the normalization X of Y and the induced dominant morphism X ! B which we
also denote by� . Then the generic �ber X = X � B K is a Gn

m;K -toric variety over K . Let

L be the pullback of O(1) to X and L the associatedM -metrized line bundle on X as in
(3.12). Then L is a toric semipositive M -metrized line bundle on X .

Analogously to [BPS14b, Proposition 4.1], we have the following description of the
associatedw-adic roof functions.

Proposition 3.5.1. Let notation be as above and lets be the toric section ofL induced
by the sectionx0 of O(1). The polytope associated to(L; s) is given by

� = conv( m 0; : : : ; m r )

and, for w 2 M , the w-adic roof function #w : � ! R is the upper envelope of the extended
polytope � w � Rn � R given by

� w =

(
conv

�
(m j ; � hH 1 ;:::;H b

(V ) ordV (f j )) j =0 ;:::;r
�
; if w = V 2 B (1) ;

conv
�
(m j ; log jf j (p)jv) j =0 ;:::;r

�
; if w = p 2 B gen

v ; v 2 M F :

Now we di�er from the setting in [ BPS14b, Ÿ 4] and consider the special case of the
function �eld of an elliptic curve equipped with a canonical metrized line bundle. Note
that in this case non-discrete non-Archimedean absolute values naturally occur.

3.5.2. Let E be an elliptic curve over the global �eld F and let H be an ample symmetric
line bundle on E. We choose any rigidi�cation � of H , i. e. � 2 H0(F ) n f 0g. By the
theorem of the cube, we have, for eachm 2 Z, a canonical identi�cation [ m]� H = H 
 m2

of
rigidi�ed line bundles. Then there exists a unique M F -metric k � k� = ( k � k�;v )v on H such
that, for all v 2 M F , m 2 Z,

[m]� k � k�;v = k � k
 m2

�;v :

For details, see [BG06, Theorem 9.5.7]. We call such anM F -metric canonical because
it is canonically determined by H up to ( jajv)v2 M F for somea 2 F � . By [Gub07a, 3.5],
the canonical metric k � k� is quasi-algebraic and, sinceH is ample and symmetric, it is
semipositive.

The global height associated toH = ( H; k � k� ) is equal to the Néron-Tate height ĥH (see
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[BG06, Corollary 9.5.14]). In particular, it does not depend on the choice of the canonical
metric. Since H is ample, we have hH = ĥH � 0.

For each v 2 M F , the canonically metrized line bundleH induces thecanonical measure
c1(H v) = c1(Hv ; k � k�;v ) which does not depend on the choice of the canonical metric (see
[Gub07b, 3.15]) and which is positive. It has the properties

c1(H v)(E an
v ) = degH (E ) and [m]� c1(H v) = m2 c1(H v) for all m 2 Z:

For a detailed description of these measures, we have to consider three kinds of places
v 2 M F .

(i) The set of Archimedean places inM F is denoted by M 1
F . For v Archimedean,

E an
v = E(C) is a complex analytic space which is biholomorphic to a complex torus

C=(Z + Z� ), = � > 0. The canonical measurec1(H v) corresponds to the Haar measure on
this torus with total mass degH (E ).

(ii) The set of non-Archimedean placesv with E of good reduction at v is denoted by
M g

F . For such a v, the canonical measurec1(H v) is a Dirac measure at a single point of
E an

v . Indeed, let Ev be the Néron model ofEv over F�
v. Since E has good reduction at

v, the schemeEv is proper and smooth, and its special �ber eEv is an elliptic curve over
eFv. Let � v be the unique point of E an

v such that red(� v) is the generic point of eEv. Then
c1(H v) = degH (E ) � � v .

(iii) The set of non-Archimedean placesv with E of bad reduction at v is denoted
by M b

F . Let v 2 M b
F , then E an

v is a Tate elliptic curve over Fv, i. e. E an
v is isomorphic

as an analytic group to Gan
m;v=qZ , where Gm;v is the multiplicative group over Fv with

�xed coordinate x and q is an element ofGm;v(Fv) = F�
v with jqjv < 1 (see, for instance,

[BGR84, 9.7.3]). Denote bytrop: Gan
m;v ! R, p 7! � logp(x), the tropicalization map and

set � v := � log jqjvZ. Then we obtain a commutative diagram

Gan
m;v

trop //

��

R

��
E an

v
trop //R=� v :

Consider the continuous section� : R ! Gan
m;v of trop, where � (u) is given by

X

m2 Z

� m xm 7�! max
m2 Z

j� m j exp(� m � u) (3.36)

as in 2.4.7. UsingE an
v = Gan

m;v=qZ , this section � descends to a continuous section
�� : R=� v ! E an

v of trop. The image of �� is a canonical subsetS(E an
v ) of E an

v which
is called the skeletonof E an

v . By [Ber90, Ex. 5.2.12 and Thm. 6.5.1], this is a closed subset
of E an

v and trop restricts to a homeomorphism from S(E an
v ) onto R=� v. By [Gub07b,

Corollary 9.9], the canonical measure c1(H v) on E an
v is supported on the skeletonS(E an

v )
and corresponds to the unique Haar measure onR=� v with total mass degH (E ).

Recall that we consider the morphism

Gn
m;K �! Pr

K ; t 7�! (1 : f 1t m 1 : � � � : f r t m r )
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with m 1 : : : ; m r 2 Zn generating Zn as a group andf 1; : : : f r 2 K � = F (B ) � . The closure
of the image of this morphism in Pr

B is denoted by Y.

Corollary 3.5.3. With notations as above, we particularize to the case where the variety
B is an elliptic curve E over F and H is an ample symmetric line bundle onE together
with a canonical M F -metric as in 3.5.2.

Then h� � H; O(1) ;:::;O(1) (Y) is equal to

(n + 1)! degH (E )

 
1

degH (E )

X

P 2 C

Z

�
#P (x) dvol( x) +

X

v2 M 1
F

Z

E (C)

Z

�
#p(x) dvol( x) d� Haar (p)

+
X

v2 M g
F

Z

�
#� v (x) dvol( x) +

X

v2 M b
F

Z

R=� v

Z

�
# �� (u) (x) dvol( x) d� Haar (u)

!

;

whereC � E (1) is the set of irreducible components of the divisorscyc(f j ); j = 0 ; : : : ; r , vol
is the Lebesgue measure onRn and � Haar is the Haar probability measure of the respective
space.

Proof. Since the height is invariant under normalization, we haveh� � H; O(1) ;:::;O(1) (Y) =
h� � H; L ;:::;L (X ). We get the result by Theorem 3.3.4, Corollary 3.4.3, Proposition 3.5.1 and
the description in 3.5.2.

Example 3.5.4. Let F = Q and let E be an elliptic curve over Q with origin O and
j -invariant j . For simplicity, we assume that E has good reduction at 2 and 3. ThenE is
given by an (a�ne) Weierstraÿ equation

g(x; y) := y2 � (x3 + Ax + B ) = 0 (3.37)

with coe�cients A; B in Z, which is minimal at each placev 6= 2 ; 3 (cf. [Sil92, Proposition
VIII.8.7]). This Weierstraÿ equation also de�nes a model E � P2

Z of E over Z. We set
A := O(E n f Og) = Z[x; y]=(g). Then we haveK = Q(E) = Quot( A ).

Furthermore, we consider the case whenn = 1 and mi = i , i = 0 ; : : : ; r , and we choose a
family f 0; : : : ; f r 2 A � K of pairwise coprime polynomials with f 0 = 1 as before. Then
� = [0 ; r ]. Let w 2 M and #w : [0; r ] ! R the w-adic roof function. We have to consider
four cases corresponding to the four summands in Corollary 3.5.3.

(i) Let w = P 2 E (1) . If P = O, then ĥH (P) = 0 and thus #O � 0. Otherwise, there is
at most one i 2 f 0; : : : ; r g such that ordP (f i ) 6= 0 becausef 0; : : : ; f r are pairwise coprime.
Since ordP (f 0) = 0, ĥH (P) � 0 and ordP (f i ) � 0, Proposition 3.5.1 implies

Z r

0
#P (x) dx = �

1
2

ĥH (P) ordP (f r ): (3.38)

(ii) Let w = p 2 E(C)gen. By Proposition 3.5.1, we obtain

#p : [0; r ] ! R; x 7! max
0� j � x � k� r

j 6= k

�
log jf k (p)j � log jf j (p)j

k � j
(x � j ) + log jf j (p)j

�
: (3.39)
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In particular, #p(0) = log jf 0(p)j = 0. We deduce

Z r

0
#p(x) dx =

r � 1X

i =1

#p(i ) +
#p(r )

2
:

By [Sil94, Corollary I.4.3], there exists a unique lattice � � C such that the map

C=� �! E (C); z 7�!
�
} (z); 1

2} 0(z)
�
;

is a complex analytic isomorphism of complex Lie groups, where} is the Weierstraÿ
} -function associated to �. Then,

Z

E (C)gen

Z r

0
#p(x) dx d� Haar (p)

=
1

vol(�)

Z

C=�

r � 1X

i =1

#(} (z); 1
2 } 0(z)) (i ) +

#(} (z); 1
2 } 0(z)) (r )

2
dz (3.40)

with #(} (z); 1
2 } 0(z)) as in (3.39) and where vol(�) denotes the covolume of �.

(iii) Let w = p 2 E gen
v , v 2 M g

Q. Then the schemeEv = E � Z SpecC�
v is proper and

smooth over C�
v . Thus, the special �ber eEv is an elliptic curve over eCv = Fv . By Corollary

3.5.3, we have to study the unique point� v 2 E an
v such that red(� v) is the generic point of

eEv . By [Kna00, Theorem 2.4], the local ringOEv ;red( � v ) admits a real-valued valuation ordv .
Then � v is given by � log � v = ordv. In particular, log jf i (� v)j � 0 and log jf i (� v)j < 0 if
and only if f i 2 C��

v A. Sincef 0; : : : ; f r are pairwise coprime, we deduce as in the �rst case,

Z r

0
#� v (x) dx = �

ordv(f r )
2

: (3.41)

(iv) Let w = p 2 E gen
v , v 2 M b

Q. Since E has bad reduction at v, we have for the
j -invariant jj jv > 1. Thus, by [Sil94, Theorem V.5.3], there is a uniqueqv = q 2 Q�

v with
jqjv = jj j � 1

v < 1 such that Ev is isomorphic overCv to the Tate curve Eq de�ned by

y02 + x0y0 = x03 + A0(q)x0+ B 0(q); (3.42)

where A0(q) and B 0(q) are universal integral power series inq that converge in Q�
v. By

[Sil94, Theorem V.3.1], we get an isomorphism of analytic groupsGan
m;v=qZ ! E an

v given
on the Cv-rational points by

w � qZ 7�!

(
(x0(w); y0(w)) ; if w =2 qZ ;

O; if w 2 qZ ;

where

x0(w) =
1X

n= �1

qnw
(1 � qnw)2 � 2

1X

n=1

nqn

1 � qn (3.43)
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and

y0(w) =
1X

n= �1

q2nw2

(1 � qnw)3 +
1X

n=1

nqn

1 � qn : (3.44)

By the change of coordinates(~x; ~y) =
�
x0+ 1

12; y0+ 1
2x0

�
, the elliptic curve Eq can be

written in the form

~y2 = ~x3 + ~A ~x + ~B (3.45)

where ~A = ~A(q) = A0(q) � 3
144 and ~B = ~B (q) = B 0(q) � 1

12A0(q) + 1
864 are power series

in q with coe�cients in Z[1=6]. Let � v = � = ( A ~B= ~AB )1=2. Using the proof of [Sil92,
Proposition III.1.4 (b)], we have the following relations between the coordinates,

(x; y) =
�
� 2

v ~x; � 3
v ~y

�
=

�
� 2

v

�
x0+ 1

12

�
; � 3

v

�
y0+ 1

2x0
��

: (3.46)

As in the Archimedean case (ii), we get
Z

R=� log jqjv Z

Z r

0
# �� (u) (x) dvol( x) d� Haar (u)

=
1

log jj jv

Z log jj jv

0

r � 1X

i =1

# �� (u) (i ) +
1
2

# �� (u) (r ) du ; (3.47)

where �� (u) is de�ned after (3.36) and # �� (u) is given as in (3.39) with the values

log jf i ( �� (u)) j = log
�
�f i

�
� 2(x0(w) + 1

12); � 3(y0(w) + 1
2x0(w))

� �
�
�� (u) : (3.48)

Conclusion: Inserting (3.38), (3.40), (3.41) and (3.47) into the formula of Corollary 3.5.3,
the arithmetic intersection number h � � H; O(1) ;O(1) (Y) is equal to

�
X

P 2j div( f r )j

ĥH (P) ordP (f r ) +
2 degH (E )

vol(�)

Z

C=�

r � 1X

i =1

#(} (z); 1
2 } 0(z)) (i ) +

#(} (z); 1
2 } 0(z)) (r )

2
dz

� degH (E )
X

v2 M g
Q

ordv(f r ) +
X

v2 M b
Q

2 degH (E )
log jj jv

Z log jj jv

0

r � 1X

i =1

# �� (u) (i ) +
# �� (u) (r )

2
du;

where, for p = �� (u) 2 E gen
v and p = ( } (z); 1

2} 0(z)) 2 E(C)gen,

#p(i ) = max
0� j � i � k� r

j 6= k

�
log jf k (p)j � log jf j (p)j

k � j
(i � j ) + log jf j (p)j

�
; (3.49)

and logjf i ( �� (u)) j, i = 1 ; : : : ; r , is given by (3.48) and the series (3.43), (3.44).

Example 3.5.5. We keep the assumptions and notations from Example 3.5.4, choosing
now r = 2 and the speci�c functions f 0 = 1, f 1 = y and f 2 = px for a prime p. For
simplicity, we assume that E has good or multiplicative reduction at each place ofQ (cf.
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Remark 3.5.6). Then the concluding formula in Example 3.5.4 can be further simpli�ed:

The zeros off 2 = px are (0; �
p

B ) and ord(0;�
p

B ) (f 2) = 1. Furthermore, if v = p, then
ordv(px) = � log jpjp = log( p), and otherwise, ordv(px) = 0.

In the case of bad reduction, i.e.v 2 M b
Q, we have to computelog jf i (x(w); y(w)) j �� (u) .

Recall that in this case v 6= 2 ; 3. First, we consider jy(w)j � (u) for u 2 (0; � log jqjv). For
� v = � as in (3.46), we obtain, by (3.46), (3.43) and (3.44),

y(w; q) = � 3
�

1
2x0(w; q) + y0(w; q)

�
=

� 3

2

1X

n= �1

qnw + q2nw2

(1 � qnw)3 : (3.50)

For n � 0, we havejqnwj � (u) = jqjnv exp(� u) < 1. Thus, for eachn � 0,

�
�
�
�
�
qnw + q2nw2

(1 � qnw)3

�
�
�
�
�
� (u)

=
�
�
�qnw + q2nw2

�
�
�
� (u)

= max
�
jqnwj � (u) ;

�
�
�q2nw2

�
�
�
� (u)

�
= jqjnv exp(� u):

Sincejqjkv exp(� u) < jqj lv exp(� u) for k > l � 0, we obtain
�
�
�
�
�

1X

n=0

qnw + q2nw2

(1 � qnw)3

�
�
�
�
�
� (u)

= exp( � u): (3.51)

For n < 0 and u 2
�
0; log jqj � 1

v
�
, we have

�
�q3nw3

�
�
� (u) >

�
�q2nw2

�
�
� (u) > jqnwj � (u) > 1, and

therefore, �
�
�
�
�
qnw + q2nw2

(1 � qnw)3

�
�
�
�
�
� (u)

=

�
�q2nw2

�
�
� (u)

jq3nw3j � (u)
= jqnwj � 1

� (u) :

Sincejqkwj � 1
� (u) < jql wj � 1

� (u) for k < l � � 1, we deduce

�
�
�
�
�

1X

n=1

q� nw + q� 2nw2

(1 � q� nw)3

�
�
�
�
�
� (u)

=
�
�q� 1w

�
� � 1
� (u) = jqjv exp(u): (3.52)

Using (3.48), (3.50), (3.51), (3.52) and
�
� 1

2

�
�
v = 1, we conclude

jf 1( �� (u)) j = jy(w; q)j � (u) =

(
j� j3v exp(� u); if 0 < u < � 1

2 log jqjv ;

j� j3v jqjv exp(u); if � 1
2 log jqjv < u < � log jqjv :

(3.53)

Sinceu 7! j y(w; q)j � (u) is continuous, we can replace �< � by � � � in (3.53). Analogously,
one can show that

�
�x0(w; q)

�
�
� (u) =

(
exp(� u); if 0 � u � � 1

2 log jqjv ;

jqjv exp(u); if � 1
2 log jqjv � u � � log jqjv :

(3.54)

Hence, (3.48) and (3.54) imply, for almost allu 2 [0; � log jqjv ],

jf 2( �� (u)) j = jpx(w)j � (u) = j� 2jv jpjv
�
�x0(w) + 1

12

�
�
� (u)

= j� 2jv jpjv max(jx0(w)j � (u) ; 1) = j� j2v jpjv : (3.55)
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Sinceu 7! j f 2( �� (u)) j is continuous, the equality (3.55) holds for all u 2 [0; � log jqjv ].

Recall that jj jv = jqj � 1
v . Using (3.49) and the formulas (3.53) and (3.55), the roof

functions in the case of bad reduction are given by# �� (u) (0) = 0, # �� (u) (2) = log
�
j� j2v jpjv

�

and

# �� (u) (1) =

8
>><

>>:

max
�

log( j � j2v jpjv )
2 ; 3 logj� jv � u

�
; if 0 � u � 1

2 log jj jv ;

max
�

log( j � j2v jpjv )
2 ; 3 logj� jv � log jj jv + u

�
; if 1

2 log jj jv � u � log jj jv :

(3.56)

Now, we use the assumption that the bad reduction ofE at v is multiplicative. Let
L = Qv(� ). Then we have either L = Qv (split case) or L=Qv is unrami�ed of degree 2
(non-split case), see [Sil94, Exercise 5.11]. By the proof of [Sil92, Proposition VII.5.4 (a)],
the Weierstraÿ equation (3.37) is still minimal over L . Moreover, the Weierstraÿ equation
(3.42) is minimal over L (see [Tat74, Theorem 5]) and thus, sincev 6= 2 ; 3, the equation
(3.45) is minimal over L as well. We deduce by [Sil92, VII.1.3 (b)] that j� jv = 1.

In particular, if v 6= p, the function # �� (u) is identically zero. If v = p, an easy computation
shows that

Z log jj jp

0
# �� (u) (1) +

# �� (u) (2)

2
du =

(
� 1

4 (log jj jp)2 � 1
2 log(p) log jj jp; if log jj jp � log(p);

1
4(log(p))2 � log(p) log jj jp; if log jj jp � log(p):

The invariant j is a rational number with integral p-adic valuation � p(j ) < 0. Hence,
log jj jp=log(p) = � � p(j ) � 1, and we can omit the �rst case.

Conclusion: The height h� � H; O(1) ;O(1) (Y) in our speci�c Example 3.5.5 is given by

degH (E )
vol(�)

Z

C=�
max

�
log jp � } (z)j; 2 log

�
� 1

2} 0(z)
�
�
�

+ log jp � } (z)j dz (3.57)

� 2ĥH
�
0;

p
B

�
� degH (E ) � log(p) � b(p);

where

b(p) =

8
<

:

1; if p 2 M g
Q;

2 + 1
2� p (j ) ; if p 2 M b

Q;

denoting by � p the usual p-adic valuation.

We see that this height is, at the Archimedean place, an integral of termsincluding the
Weierstraÿ } -function, and with concrete terms at the non-Archimedean places.

Example 3.5.6. In the previous example it is important that, for each place v 2 M b
Q, the

reduction is multiplicative in order to ensure that j� v jv = 1 for � v = ( A ~B= ~AB )1=2 as in
(3.46). Keeping the notations of Example 3.5.5, we consider a concrete elliptic curve, now
allowing additive reduction at some place: LetE be the elliptic curve over Q given by

y2 = x3 � 263352 � x + 2 4335371:
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Then E is described by the invariants

� = � 212312577; j = 2 185� 17� 1; c4 = 2 103452:

Using [Sil92, Proposition VII.5.1], we see that E has additive reduction at the placev = 5,
multiplicative reduction at v = 7 and good reduction at the other places. We havej� 7j7 = 1.

Let us compute j� 5j5 =
q

jA ~B (q5)= ~A(q5)B j5. On the one hand, we have

jA=B j5 =
�
� � 225� 171� 1�

�
5 = 5 :

On the other hand, we consider
�
�
� ~B (q5)= ~A(q5)

�
�
� where, as in (3.45),

~A(q5) = �
3

144
� 5

1X

n� 1

n3qn
5

1 � qn
5

and ~B (q5) =
1

864
�

7
12

1X

n� 1

n5qn
5

1 � qn
5

:

Using jq5j5 = jj j � 1
5 = 1

5 , an easy computation shows thatj ~A(q5)j5 = max
�
j 3
144j5; j5j5jq5j5

�
=1

and j ~B (q5)j5 = max
�
j 1
864j5; jq5j5

�
= 1. Hence, we obtain

j� 5j5 =
� �

�A ~B (q5)= ~A(q5)B
�
�
5

� 1=2
=

p
5:

By (3.56), we get # �� (u) (0) = 0, # �� (u) (2) = log (5 � jpj5) and

# �� (u) (1) =

(
3
2 log 5� u; if 0 � u � 1

2 log 5;
1
2 log 5 + u; if 1

2 log 5 � u � log 5:

Thus,
Z log jj jp

0
# �� (u) (1) +

# �� (u) (2)

2
du =

(
5
4(log 5)2; if p = 5 ;
7
4(log 5)2; if p = 7 :

Then the height h� � H; O(1) ;O(1) (Y) in this concrete Example 3.5.6 is given by

degH (E )
vol(�)

Z

C=�
max

�
log jp � } (z)j; 2 log

�
� 1

2} 0(z)
�
�
�

+ log jp � } (z)j dz

� 2ĥH
�
0;

p
B

�
� degH (E ) � log(p) � b(p);

where

b(p) =

8
>><

>>:

� 5
2 ; if p = 5 ;

� 7
2 ; if p = 7 ;

1; else.

Note that this result di�ers from the formula (3.57) if p = 5 or p = 7.
This example was constructed by means of [SAGE] and the table on page 108 in [BK75].
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Appendix A.

Convex Geometry

In this appendix, we collect the notions and statements of convex geometry that we need
for the study of toric geometry. We follow the notation of [BPS14a, Ÿ 2] which is based on
the classical book [Roc70].

Let M be a free Abelian group of rankn and N := M _ := Hom (M; Z) its dual group.
The natural pairing between m 2 M and u 2 N is denoted byhm; ui := u(m). If G is an
Abelian group, we setNG := N 
 Z G = Hom(M; G ). In particular, NR = N 
 Z R is an
n-dimensional real vector space with dual spaceM R = Hom(N; R). We denote by � a
subgroup of R.

A.1. A polyhedron � in NR is a non-empty set de�ned as the intersection of �nitely many
close half-spaces, i. e.

� =
r\

i =1

f u 2 NR j hmi ; ui � l i g; where mi 2 M R; l i 2 R; i = 1 ; : : : ; r: (A.1)

A polytope is a bounded polyhedron. Aface � 0 of a polyhedron �, denoted by � 0 � �,
is either � itself or of the form � \ H where H is the boundary of a closed half-space
containing �. A face of � of codimension 1 is called a facet, a face of dimension 0 is a
vertex. The relative interior of �, denoted by ri �, is the interior of � in its a�ne hull.

A.2. Let � be a polyhedron in NR. We call � strongly convexif it does not contain any
a�ne line. We say that � is � -rational if there is a representation as (A.1) with mi 2 M
and l i 2 �. If � = Q, we just say � is rational . We say that a polytope in M R is lattice if
its vertices lie in M .

A.3. A polyhedral conein NR is a polyhedron � such that �� = � for all � � 0. Its dual is
de�ned as

� _ := f m 2 M R j hm; ui � 0 8u 2 � g:

We denote by � ? the set of m 2 M R with hm; ui = 0 for all u 2 � . The recession coneof a
polyhedron � is de�ned as

rec(�) := f u 2 NR j u + � � � g:

If � has a representation as (A.1), the recession cone can be written as

rec(�) =
r\

i =1

f u 2 NR j hmi ; ui � 0g:

83



Appendix A. Convex Geometry

A.4. A polyhedral complex� in NR is a non-empty �nite set of strongly convex polyhedra
such that

(i) every face of � 2 � lies also in �;

(ii) if � ; � 0 2 �, then � \ � 0 is empty or a face of � and � 0.

Note that, in contrast to the notion in [ BPS14a, De�nition 2.1.4], a polyhedral complex
only contains strongly convex polyhedra.

A polyhedral complex � is called � -rational (resp. rational ) if each � 2 � is �-rational
(resp. rational). The support of � is de�ned as the set j� j :=

S
� 2 � �. We say that � is

complete if j� j = NR. We will denote by � k the subset ofk-dimensional polyhedra of �.
A fan in NR is a polyhedral complex in NR consisting of (strongly convex) rational

polyhedral cones.

A.5. Let � be a polyhedral complex in NR. The recessionrec(�) of � is de�ned as

rec(�) = f rec(�) j � 2 � g:

If � is a complete �-rational polyhedral complex, then rec(�) is a complete fan in NR.
This follows from [BS11, Theorem 3.4].

A.6. Let C be a convex set in a real vector space. A functionf : C ! R is concaveif

f (tu1 + (1 � t)u2) � tf (u1) + (1 � t)f (u2) (A.2)

for all u1; u2 2 C and 0 < t < 1.
Note that we use the same terminology as in convex analysis. In the classicalbooks on

toric varieties [KKMS73], [Ful93], [CLS11], our concave functions are called �convex�.

A.7. Let f be a function on NR. We de�ne the stability set of f as

� f := f m 2 M R j hm; �i � f is bounded belowg:

This is a convex set inM R. The de�nition is only useful in case of a concave function as
otherwise � f = ; . The (Legendre-Fenchel) dualof f is the function

f _ : � f �! R; m 7�! inf
u2 NR

(hm; ui � f (u)) :

It is a continuous concave function.

A.8. Let f : NR ! R be a concave function. Therecession function rec(f ) of f is de�ned
as

rec(f ) : NR �! R; u 7�! lim
� !1

f (�u )
�

:

By [Roc70, Theorem 13.1],rec(f ) is the support function of the stability set � f , i. e. it is
given by

rec(f )(u) = inf
m2 � f

hm; ui

for u 2 NR.
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Proposition A.9. Let � be a complete fan inNR and let 	 : NR ! R be a virtual support
function on � , i. e. it is a function given by 	 j � = hm� ; �i where m� 2 M , � 2 �
(De�nition 2.1.9). Then the assignment  7!  _ gives a bijection between the sets of

(i) concave functions  on NR such that j � 	 j is bounded,

(ii) continuous concave functions on � 	 .

Proof. If 	 is concave, this follows from the propositions 2.5.20 (2) and 2.5.23 in [BPS14a].
If 	 is not concave, both sets are empty

A.10. A continuous function f : NR ! R is piecewise a�ne if there is a �nite cover f � i gi 2 I

of NR by closed subsets such thatf j � i is an a�ne function.
Let � be a complete polyhedral complex in NR. We say that f is a piecewise a�ne

function on � if f is a�ne on each polyhedron of �.

A.11. Let f : NR ! R be a piecewise a�ne function on NR. Then there is a complete
polyhedral complex � in NR such that, for each � 2 �,

f j � (u) = hm� ; ui + l � with ( m� ; l � ) 2 M R � R : (A.3)

The set f (m� ; l � )g� 2 � is called a set ofde�ning vectors of f . We call f a � -lattice function
if it has a representation as (A.3) with (m� ; l � ) 2 M � � for each � 2 �. We say that f is
a � -rational piecewise a�ne function if there is an integer e > 0 such that ef is a �-lattice
function.

A.12. Let f be a concave piecewise a�ne functionf on NR. Then there are mi 2 M R,
l i 2 R, i = 1 ; : : : ; r , such that f is given by

f (u) = min
i =1 ;:::;r

hmi ; ui + l i for u 2 NR:

The stability set � f is a polytope in M R which is the convex hull of m1; : : : ; mr . The
function f is piecewise a�ne concave if and only if f _ is a piecewise a�ne concave function
on � f . The recession function off is given by

rec(f ) : NR �! R; u 7�! min
i =1 ;:::;r

hmi ; ui :

The function rec(f ) has integral slopes if and only if the stability set � f is a lattice
polytope.

A.13. Let f be a piecewise a�ne function on NR. Then we can write f = g � h, where g
and h are concave piecewise a�ne functions onNR. The recesssion functionof f is de�ned
as rec(f ) = rec( g) � rec(h).

In Theorem 2.5.8 we need the following assertion.

Proposition A.14. Let � be a non-trivial subgroup ofR. Let 	 be a support function on a
complete fan in NR (De�nition 2.1.9) and  a concave function onNR such that j � 	 j is
bounded. Then there is a sequence of� -rational piecewise a�ne concave functions ( k )k2 N,
with rec( k ) = 	 , that uniformly converges to  .

85



Appendix A. Convex Geometry

Proof. Since 	 is a support function with j � 	 j bounded, the stability set � 	 is a lattice
polytope in M R with � 	 = �  . Thus, by Proposition [BPS14a, Proposition 2.5.23 (2)],
there is a sequence of piecewise a�ne concave functions ( k )k2 N with �  k = � 	 , that
converges uniformly to  . Because the divisible hull of � lies dense inR, we may assume
that the  k 's are �-rational. Finally, Proposition 2.3.10 in [ BPS14a] says that �  k = � 	

implies rec( k ) = 	.

A.15. Let f be a concave function onNR. The sup-di�erential of f at u 2 NR is de�ned
as

@f(u) := f m 2 M R j hm; v � ui � f (v) � f (u) for all v 2 NRg:

For each u 2 NR, the sup-di�erential @f(u) is a non-empty compact convex set. For a
subsetE of NR, we set

@f(E) :=
[

u2 E

@f(u):

A.16. Let L be a lattice. We denote byvolL the unique Haar measure onL R such that
L has covolume one. IfA is an a�ne space with associated vector spaceL R, then volL
induces a measure onA which we also denote by volL .

A.17. Let f be a concave function onNR. The Monge-Ampère measureof f with respect
to M is de�ned, for any Borel subsetE of NR, as

M M (f )(E ) := vol M (@f(E)) ;

where volM is the measure from A.16. Then the total mass isM M (f )(NR) = vol M (� f ).

Proposition A.18. Let (f k )k2 N be a sequence of concave functions onNR that converges
uniformly to a function f . Then the Monge-Ampère measuresM M (f k ) converge weakly to
M M (f ).

Proof. This follows from [BPS14a, Proposition 2.7.2].

Proposition A.19. Let f be a piecewise a�ne concave function on a complete polyhedral
complex � in NR. Then

M M (f ) =
X

v2 � 0

volM (@f(v)) � v ;

where � v is the Dirac measure supported onv. In particular, if 	 is a support function on
a complete fan in NR, then

M M (	) = vol M (� 	 )� 0:

Proof. This is Proposition 2.7.4 and Example 2.7.5 in [BPS14a].

A.20. Let � be an n-dimensional lattice polytope in M R and let F be a face of �. Then
we set

� F :=
�
u 2 NR j



m � m0; u

�
� 0 for all m 2 � ; m0 2 F

	
:

This is a strongly convex rational polyhedral cone which is normal toF . By setting
� � := f � F j F � � g, we obtain a complete fan inNR. We call � � the normal fan of �.
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The assignmentF 7! � F de�nes a bijective order reversing correspondence between faces
of � and cones of � � . The inverse map sends a cone� to the face

F� := f m 2 � j


m0� m; u

�
� 0 for all m0 2 � ; u 2 � g: (A.4)

For details, we refer to [CLS11, Ÿ 2.3].
We also use the notationF� in the following situation. Let � be a fan in NR and 	 a

support function on � with associated lattice polytope � 	 . For � 2 �, we denote by F�

the face of � 	 given as in (A.4).

A.21. Let F be a lattice polytope in M R. We denote by a� (F ) the a�ne hull of F and
by LF the linear subspace ofM R associated toa� (F ). Then M (F ) := M \ LF de�nes a
lattice in LF . By A.16, we have a measurevolM (F ) on LF = M (F )R as well as an induced
measure on a�(F ) which we also denote by volM (F ) .

If � is a full dimensional lattice polytope in M R and F is a facet of �, we denote by
vF 2 N the unique minimal generator of the ray � F 2 � � (see A.20). We callvF the
minimal inner facet normal of F .

Proposition A.22. Let f be a concave function onNR such that the stability set� f is a
lattice polytope of dimensionn. With the notations in A.21 we have

�
Z

NR

f dM M (f ) = ( n + 1)
Z

� f

f _ dvolM +
X

F

hF; vF i
Z

F
f _ dvolM (F ) ;

where the sum is over the facetsF of � f .

Proof. This is [BPS14a, Corollary 2.7.10].

87





Bibliography

[Ber90] Berkovich , V.G.: Spectral theory and analytic geometry over non-
Archimedean �elds. Bd. 33. American Mathematical Society, 1990

[Ber93] Berkovich , V.G.: Étale cohomology for non-Archimedean analytic spaces.
In: Publ. Math. IHÉS (1993), Nr. 78, S. 5�161

[BG06] Bombieri , E. ; Gubler , W.: Heights in Diophantine Geometry. Cambridge
University Press, 2006

[BGR84] Bosch , S. ; Güntzer , U. ; Remmert , R.: Non-Archimedean analysis.
Springer, 1984

[BGS94] Bost , J.B. ; Gillet , H. ; Soulé , C.: Heights of projective varieties and
positive Green forms. In: Journal of the American Mathematical Society 7
(1994), Nr. 4, S. 903

[BH69] Bloom , T. ; Herrera , M.: De Rham cohomology of an analytic space. In:
Inventiones Mathematicae7 (1969), S. 275�296

[BK75] Birch , B.J. (Hrsg.) ; Kuyk , W. (Hrsg.): Modular functions of one variable.
IV . Springer, 1975 (Lecture Notes in Mathematics, Vol. 476). � iv+151 S.

[BL93a] Bosch , S. ; Lütkebohmert , W.: Formal and rigid geometry. I. Rigid spaces.
In: Math. Ann. 295 (1993), Nr. 2, S. 291�317

[BL93b] Bosch , S. ; Lütkebohmert , W.: Formal and rigid geometry. II. Flattening
techniques. In: Math. Ann. 296 (1993), Nr. 3, S. 403�429

[BLR95] Bosch , S. ; Lütkebohmert , W. ; Raynaud , M.: Formal and rigid geometry.
IV. The reduced �bre theorem. In: Invent. Math. 119 (1995), Nr. 2, S. 361�398

[Bos14] Bosch , S.: Lecture Notes in Mathematics. Bd. 2105: Lectures on formal and
rigid geometry. Springer, 2014. � viii+254 S.

[BPS14a] Burgos Gil , J.I. ; Philippon , P. ; Sombra , M.: Arithmetic geometry of
toric varieties. Metrics, measures and heights. In:Astérisque 360 (2014)

[BPS14b] Burgos Gil , J.I. ; Philippon , P. ; Sombra , M.: Height of varieties over
�nitely generated �elds. In: arXiv preprint arXiv:1408.3222 (2014)

[BPS14c] Burgos Gil , J.I. ; Philippon , P. ; Sombra , M.: Successive minima of toric
height functions. In: arXiv preprint arXiv:1403.4048 (2014)

[BS11] Burgos Gil , J.I. ; Sombra , M.: When do the recession cones of a polyhedral
complex form a fan? In: Discrete & Computational Geometry 46 (2011), Nr.
4, S. 789�798

89



Bibliography

[CD12] Chambert-Loir , A. ; Ducros , A.: Formes di�éerentielles réelles et courants
sur les espaces de Berkovich. In:arXiv preprint arXiv:1204.6277 (2012)

[Cha06] Chambert-Loir , A.: Mesures et équidistribution sur les espaces de Berkovich.
In: Journal für die reine und angewandte Mathematik (Crelles Journal)595
(2006), S. 215�235

[CLS11] Cox , D.A. ; Little , J.B. ; Schenck , H.K.: Toric Varieties . American
Mathematical Society, 2011 (Graduate studies in mathematics)

[CT09] Chambert-Loir , A. ; Thuillier , A.: Mesures de Mahler et équidistribution
logarithmique. In: Annales de l'institut Fourier 59 (2009), Nr. 3, S. 977�1014

[Duc09] Ducros , A.: Les espaces de Berkovich sont excellents. In:Ann. Inst. Fourier
(Grenoble) 59 (2009), Nr. 4, S. 1443�1552

[EGAI] Dieudonné , J.A. ; Grothendieck , A.: Éléments de géométrie algébrique:
I. Le langage des schémas. In:Publ. Math. IHÉS 4 (1960), S. 5�228

[Fal91] Faltings , G.: Diophantine approximation on abelian varieties. In: Ann. of
Math. (2) 133 (1991), Nr. 3, S. 549�576

[Ful93] Fulton , W.: Introduction to Toric Varieties . Princeton University Press,
1993 (Annals of mathematics studies)

[Ful98] Fulton , W.: Intersection Theory. Springer, 1998

[GH15] Gubler , W. ; Hertel , J.: Local heights of toric varieties over non-
Archimedean �elds. (2015). � preprint

[GK15] Gubler , W. ; Künnemann , K.: Positivity properties of metrics and delta-
forms. In: arXiv preprint arXiv:1509.09079 (2015)

[GS90] Gillet , H. ; Soulé , C.: Arithmetic intersection theory. In: Inst. Hautes
Études Sci. Publ. Math. (1990), Nr. 72, S. 93�174 (1991)

[GS13] Gubler , W. ; Soto , A.: Classi�cation of normal toric varieties over a
valuation ring of rank one. In: arXiv preprint arXiv:1303.1987 (2013)

[Gub97] Gubler , W.: Heights of subvarieties overM -�elds. In: Arithmetic geometry
(Cortona, 1994). Cambridge Univ. Press, Cambridge, 1997 (Sympos. Math.,
XXXVII), S. 190�227

[Gub98] Gubler , W.: Local heights of subvarieties over non-Archimedean �elds. In:
Journal für die reine und angewandte Mathematik498 (1998), S. 61�113

[Gub02] Gubler , W.: Basic Properties of Heights of Subvarieties. ETH Zürich
(Mathematikdepartement), 2002. � Habilitation thesis

[Gub03] Gubler , W.: Local and Canonical Heights of Subvarieties. In:Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze-Serie V2 (2003), Nr. 4,
S. 711�760

90



Bibliography

[Gub07a] Gubler , W.: The Bogomolov conjecture for totally degenerate abelian
varieties. In: Inventiones Mathematicae169 (2007), Nr. 2, S. 377�400

[Gub07b] Gubler , W.: Tropical varieties for non-Archimedean analytic spaces. In:
Inventiones mathematicae169 (2007), Nr. 2, S. 321�376

[Gub08] Gubler , W.: Equidistribution over function �elds. In: Manuscripta Math.
127 (2008), Nr. 4, S. 485�510

[Gub10] Gubler , W.: Non-Archimedean canonical measures on abelian varieties. In:
Compositio Mathematica 146 (2010), 4, S. 683�730

[Gub13] Gubler , W.: A guide to tropicalizations. In: Algebraic and combinatorial
aspects of tropical geometryBd. 589. Amer. Math. Soc., Providence, RI, 2013,
S. 125�189

[GW10] Görtz , U. ; Wedhorn , T.: Algebraic Geometry I: Schemes With Examples
and Exercises. Vieweg+Teubner Verlag, 2010

[Har77] Hartshorne , R.: Algebraic Geometry. Springer, 1977

[Kaj08] Kajiwara , T.: Tropical toric geometry. In: Toric topology Bd. 460. American
Mathematical Society, Providence, RI, 2008, S. 197�207

[Kin71] King , J.R.: The currents de�ned by analytic varieties. In: Acta Mathematica
127 (1971), Nr. 3-4, S. 185�220

[KKMS73] Kempf , G. ; Knudsen , F. ; Mumford , D. ; Saint-Donat , B.: Toroidal
Embeddings 1. Springer, 1973 (Lecture Notes in Mathematics)

[Kle66] Kleiman , S.L.: Toward a numerical theory of ampleness. In:Ann. of Math.
(2) 84 (1966), S. 293�344

[Kna00] Knaf , H.: Divisors on varieties over valuation domains. In: Israel J. Math.
119 (2000), S. 349�377

[Liu06] Liu , Q.: Algebraic Geometry and Arithmetic Curves. Oxford University
Press, 2006

[Mor00] Moriwaki , A.: Arithmetic height functions over �nitely generated �elds. In :
Invent. Math. 140 (2000), Nr. 1, S. 101�142

[Pay09] Payne , S.: Analyti�cation is the limit of all tropicalizations. In: Mathematical
Research Letters16 (2009), Nr. 3, S. 543�556

[Roc70] Rockafellar , R. T.: Convex analysis. Princeton University Press, 1970
(Princeton Mathematical Series, No. 28). � xviii+451 S.

[SAGE] Sage Developers , The: Sage Mathematics Software (Version 6.9), 2015. �
http://www.sagemath.org

[Sil92] Silverman , J.H.: Graduate Texts in Mathematics. Bd. 106: The arithmetic
of elliptic curves. Springer, 1992. � xii+400 S.

91



Bibliography

[Sil94] Silverman , J.H.: Graduate Texts in Mathematics. Bd. 151: Advanced topics
in the arithmetic of elliptic curves. Springer, 1994. � xiv+525 S.

[Sta15] Stacks Project Authors , The: Stacks Project. http://stacks.math.
columbia.edu , 2015

[Tat74] Tate , J.: The arithmetic of elliptic curves. In: Invent. Math. 23 (1974), S.
179�206

[Zha95] Zhang , S.-W.: Small points and adelic metrics. In: J. Algebraic Geom. 4
(1995), Nr. 2, S. 281�300

[Zha98] Zhang , S.-W.: Equidistribution of small points on abelian varieties. In: Ann.
of Math. (2) 147 (1998), Nr. 1, S. 159�165

92



Index

algebra
K -a�noid, 8
admissible, 9

analytic function, 7
analytic space, 8

of a complex scheme, 23
of a scheme over a non-Archimedean

�eld, 7, 8
analyti�cation

of a complex scheme, 23, 54
of a scheme over a non-Archimedean

�eld, 7, 8, 54
angle, 34
approximation theorem, 17

Berkovich spectrum, 8

canonical measure
over an elliptic curve, 75

canonical metric, 43
compact torus, 40
compatible linear map, 29
concave function, 84
cone

�-admissible, 32
local, 34
of a polyhedral complex, 33
polyhedral, 83

current, 24
Green, 24

cycle
integrable, 55
prime, 6

integrable, 54

de�ning vectors
of a piecewise a�ne function, 85

di�erential form, 23
dual

of a concave function, 84
of a polyhedral cone, 83

equivariant morphism, 28

face, 83
facet, 83
fan, 84

�-admissible, 32
normal, 86

�rst Chern form, 23
formal scheme

admissible, 9

generic �ber
of a formal scheme, 9

generic points, 58
global �eld, 53

height
global, 55
local

of metrized line bundles, 14
of metrized pseudo-divisors, 12, 14,

25
toric local, 48

induction formula, 19, 25

Kajiwara-Payne tropicalization, 42

Legendre-Fenchel dual, 84
line bundle, 6
local cone, 34

M -�eld, 53
(M -)metric, 54

canonical
of a toric line bundle, 71
over an elliptic curve, 74
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quasi-algebraic, 55
semipositive, 54
toric, 71

(M -)metrized line bundle, 54
DSP, 54
nef, 56
quasi-algebraic, 55
semipositive, 54

meromorphic section
invertible, 11

metric, 10, 23
Q-formal, 10
algebraic, 11
canonical, 43
DSP, 14, 23
formal, 10
(M -), see also(M -)metric
semipositive, 14, 23
semipositive Q-formal, 10
semipositive algebraic, 11
semipositive smooth, 23
smooth, 23
toric, 40

metrized line bundle, 10, 23
DSP, 14
semipositive, 14

metrized pseudo-divisor, 11, 23
minimal inner facet normal, 87
model

algebraic
of a line bundle, 11
of a variety, 11

formal
of a line bundle, 10
of a variety, 10

Monge-Ampère measure, 86
morphism

equivariant, 28
of toric models, 31
toric, 28

multiplicity
of a polyhedron, 34

non-Archimedean �eld, 7

piecewise a�ne function, 85
de�ning vectors of, 85

�-lattice, 85
�-rational, 85
on a polyhedral complex, 85

polyhedral complex, 84
complete, 84
�-rational, 84
rational, 84
recession of, 84
support of, 84

polyhedral cone, 83
polyhedron, 83

�-rational, 83
rational, 83
recession cone of, 83
strongly convex, 83

polytope, 83
lattice, 83

product formula, 53
proper intersection, 12

recession cone, 83
recession function

of a concave function, 84
of a piecewise a�ne function, 85

reduction map, 9
relative interior, 83
roof function, 48

v-adic, 71

skeleton, 75
special �ber

of a formal scheme, 9
stability set, 84
subdomain

a�noid, 8
rational, 8

sup-di�erential, 86
support function, 29

strictly concave, 29
virtual, 29

T-Cartier divisor
on a toric variety, 29

TS-Cartier divisor
on a toric scheme, 35

Tate algebra, 8
toric line bundle

on a toric scheme, 37
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on a toric variety, 29
toric metric, 40
toric model

of a T-Cartier divisor, 38
of a toric line bundle, 38
of a toric variety, 31

toric morphism, 28
toric scheme, 31
toric section

over a toric scheme, 37
over a toric variety, 29

toric variety, 27
tori�cation, 40
tropicalization, 42
tropicalization map, 41, 42

variety, 6
vertex, 83
virtual support function, 29
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