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Abstract

We show that the toric local height of a toric variety with respect to a toric semipositive
metrized line bundle over an arbitrary non-Archimedean field can be written as the integral
over a polytope of a concave function. For discrete non-Archimedean fields, this was
proved by Burgos—Philippon—Sombra in [BPS14a]. To show this statement, we first prove
an induction formula for the non-Archimedean local height of a variety, generalizing a
theorem of Chambert-Loir—Thuillier. Then, in analogy to [BPS14a], we translate arithmetic-
geometric objects like toric divisors over arbitrary valuation rings of rank one and toric
semipositive metrics over non-discrete non-Archimedean fields, in terms of convex analysis
like piecewise affine and concave functions.

Furthermore, we prove that the global height of a variety over a finitely generated field
can be expressed as an integral of local heights over a set of places of this field. In contrast
to a similar statement in [BPS14b], it allows arbitrary non-Archimedean places. Combining
this expression with our results on toric geometry, we get an interesting formula for the
global height. This formula will be illustrated in a final natural example where not all
relevant non-Archimedean places are discrete.
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Introduction

Height Theory

The height of rational points of a variety is a real-valued function which behaves well under
algebraic operations and which is a helpful tool to control the number and distribution
of these rational points. Therefore, it plays a fundamental role in the proof of finiteness
results in Diophantine geometry like the theorems of Mordell-Weil and Faltings (see, for
instance, [BGO06]).

In [Fal91], Faltings generalized the height of points to the height of (sub-)varieties using
arithmetic intersection theory by Gillet—Soulé [GS90]. We sketch his definition which
points out that the height of a variety is the arithmetic analogue of the degree in the
classical intersection theory. Let X be an n-dimensional smooth projective variety over
Q equipped with a regular proper Z-model 2". Then, by [GS90], there is an arithmetic

Chow ring éﬁ*(%)@ and an arithmetic degree map deg: (/JFInH(,%’)@ — R. Let L be a
line bundle on X endowed with a Z-model .Z of L on 2" and a smooth metric || - || on
its analytification L(C) on X (C). To each Hermitian line bundle £ = (%, || - ||), one can
associate its first arithmetic Chern class ¢1(.Z) € 61\{*(% ). The height of X with respect
to .Z is defined as

h(X) = deg (1(2)"1). (0.1)

In [BGS94], Bost—Gillet—Soulé proved important properties of this height, for example an
arithmetic Bézout theorem.

This definition has the disadvantage that it only works for smooth projective varieties and
smooth metrics. Moreover, it depends on the existence of models. It is more general and
flexible to use the adelic language by Zhang [Zha95], equipping the line bundle with a metric
at each place of QQ instead of a model and allowing uniform limits of semipositive metrics.
A remarkable application of Zhang’s height of varieties is his proof of the Bogomolov
conjecture for Abelian varieties over a number field in [Zha98].

From the adelic point of view, it is more convenient to define the height as a sum of local
heights. Here, “local” means that we fix a place of Q and work over the corresponding
completion Q,. Local heights can be studied for any field with absolute value which was
systematically done by Gubler [Gub97], [Gub98], [Gub03].

In the following, we outline the case of a local height over a field K which is complete
with respect to an arbitrary non-trivial non-Archimedean absolute value K. Let X be a
proper variety over K and denote by X" its analytification in the sense of Berkovich. On
a line bundle L on X, every model of some positive tensor power L®¢ induces an algebraic
metric on L. A semipositive metric is the uniform limit of algebraic metrics that satisfy a
certain positivity property. Let L be a semipositive metrized line bundle on X and Z a
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t-dimensional cycle of X. Let sq,...,s; be non-zero meromorphic sections of L satisfying
|div(sg)| N ---N|div(se)| N[ Z] = 0. (0.2)
Then, Gubler showed the existence of a local height

A (Z)eR,

(L,50),--,(L,s¢)
using refined intersection theory and, since the valuation ring K° is not necessarily
noetherian, methods from formal and rigid geometry. If K° is discrete, hence Noetherian,
and the metric is induced by an algebraic K°-model, then this local height is the usual
intersection product of the Cartier divisors div(sp),...,div(s;) on the model.

In [Cha06], Chambert-Loir introduced a measure c1(L)" A §z on X2 such that for
algebraic metrics an induction formula as in the Archimedean case holds. An important
statement of my thesis is the following corresponding formula (cf. Theorem 1.4.3) which
generalizes a result of Chambert-Loir and Thuillier [CT09, Théoreme 4.1].

Theorem 1 (Induction formula). Let notation be as above. For simplicity, we assume that
Z is a subvariety. If Z ¢ |div(sy)|, then let s¢ 7 = s¢|z, otherwise we choose any non-zero
meromorphic section sz of Li|z.

Then, the function log ||s|| is integrable with respect to c1(L)"t A 0z and we have
AT o) Tust) L) = NTso) s Toser) (€¥C(82.2)) — /Xanlog s, 2]l c1 (D) A dz.

The proof is based on [CT09] where the formula is demonstrated under the additional
assumptions that K is a completion of a number field and sq, ..., s; are global sections
such that their Cartier divisors intersect properly on Z. The heart of the proof is an
approximation theorem saying that log ||s;|| can be approximated by suitable functions
log||1||n, where || - ||, are formal metrics on the trivial bundle Ox. To show this, we use
techniques from analytic and formal geometry.

In the case of Archimedean fields, local heights can be handled in a similar way. We will
recall this in section 1.5.

Now, we come back to (global) heights. In [Gub97], Gubler introduced the notion of
an M-field. In this thesis, this is a field K together with a measured set M of absolute
values on K satisfying the product formula (Definition 3.1.1). The easiest example is
Q together with the set of standard normalized absolute values Mg, equipped with the
counting measure. But the notion of M-fields also includes number fields, function fields
and finitely generated fields.

Let us consider a projective variety X over an M-field K and a line bundle L on X. A
semipositive M-metric on L is a family of semipositive metrics || - ||, on L,, v € M. Write
L= (L,(|]|- |lo)) and L, = (Ly, || - ||v) for each v € M. Let Z be a t-dimensional cycle such
that the function

M—R, v+— )\(sto)r“,@m&)(Zv)

is p-integrable for any choice of sections sy, ..., s; of L which satisfy condition (0.2). For
example, if we consider the Mg-field Q, the p-integrability is satisfied for every cycle Z
and a quasi-algebraic metrized line bundle L, i.e. almost all metrics of L are induced by a
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common model over Z. The (global) height of Z is defined as

ho(Z) = /M ALsoroTonopy (Z0) da(0). (0.3)

By the product formula, this definition is independent of the choice of sections. Note that
all the mentioned heights can be also defined for ¢t 4 1 distinct line bundles.

In [Mor00], Moriwaki defined the height of a variety over a finitely generated field K
over Q as an arithmetic intersection number as in (0.1) and generalized the Bogomolov
conjecture to such fields. As observed by Gubler [Gub03, Example 11.22], this finitely
generated extension has a 9-field structure for a natural set of places 9 related to the
normal variety B with K = Q(B). Burgos—Philippon—Sombra proved in [BPS14b, Theorem
2.4] that the height of Moriwaki can be written as an integral of local heights over 9. In
this thesis, their result is generalized in a certain way as outlined in the following.

Let B be a b-dimensional normal proper variety over a global field F'. We denote by
K the function field of B, which is a finitely generated extension of F. Choosing nef
quasi-algebraic metrized line bundles H1,...,H;, on B, we can equip K with a natural
structure (9, u) of an M-field (see 3.2.4). Let m: X — B be a dominant morphism of
proper varieties over F' of relative dimension n and denote by X the generic fiber of 7. Let
Lo, ..., L, be semipositive quasi-algebraic line bundles on X and choose any invertible
meromorphic sections g, ..., s, of Lo, ..., L, respectively, which satisfy (0.2). These line
bundles induce 9-metrized line bundles Lo, ..., L, on X. We prove in Theorem 3.3.4:

’}f‘heorem 2. The function M — R, w — )‘(fo,w,SO),..-,(fn,w,sn)(X)’ s p-integrable and we
ave

Do, oo Ty B B (X) = /m AT 150) s (D) () A (0).

Burgos—Philippon—Sombra have shown this formula in the case when F' = Q and the
varieties X, B and the occuring metrized line bundles are induced by models over Z
similarly as in (0.1). The main difficulty in their proof appears at the Archimedean place,
where well-known techniques from complex geometry as the Ehresmann’s fibration theorem
are used. In our proof, we can just copy the Archimedean part, but at the non-Archimedean
places, we integrate over Berkovich spaces and we use methods from algebraic and formal
geometry instead.

Toric Geometry

Toric varieties are a special class of varieties that have a nice description through combi-
natorial data from convex geometry. So they are well-suited for testing conjectures and
for computations in algebraic geometry. Let K be any field, then a complete fan ¥ of
polyhedral cones in a vector space Ngr ~ R corresponds to a proper toric variety Xy over
K with torus T ~ Spec K[:pfl, ..., o1, The torus T acts on Xy and hence, every toric
object should have a certain invariance property with respect to this action, in order to
describe it in terms of convex geometry.

A support function on X, i.e. a concave function ¥: Ng — R which is linear on each
cone of ¥ and has integral slopes, corresponds to a base-point-free toric line bundle L
on Xy, together with a toric section s. Moreover, one can associate to ¥ a polytope
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Ay ={m € Mg | m > ¥} in the dual space Mr of Ng. Then a famous result in classical
toric geometry is the degree formula:

deg; (Xx) = n!voly (Ay),

where voly; is the Haar measure on My such that the underlying lattice M ~ Z™ has
covolume one. As mentioned above, the arithmetic analogue of the degree of a variety with
respect to a line bundle is the height of a variety with respect to a metrized line bundle. So
it is a natural question if one can find an analogous formula for the height. This problem
was tackled by Burgos, Philippon and Sombra in the monograph [BPS14a] and they have
shown the following.

Assume that the pair (Xx, L) lies over Q and let Mg be the set of places of Q. To a
family (9y)ye My of concave functions on Ay with 9, = 0 for allmost all v, one can associate
an Mg-metrized lined bundle L = (L, (|| - ||v)v). Then the height of X5, with respect to L
is given by

hy(Xy) = (n+1)! Y / Yy, dvolpy.
vEMg Ay

Indeed, to state and prove this formula, Burgos—Philippon—Sombra systematically studied
in [BPS14a] the arithmetic geometry of toric varieties in terms of convex geometry. In
particular, they described models of toric divisors over discrete valuation rings by piecewise
affine functions on polyhedral complexes. Furthermore, for a field which is complete with
respect to an Archimedean or discrete non-Archimedean absolute value, they classified
semipositive toric metrized line bundles and their associated measures and local heights,
by concave functions and their associated Monge-Ampeére measures and Legendre-Fenchel
duals.

As mentioned before, metrized line bundles and their associated measures and local
heights can be also studied for non-Archimedean fields with non-necessarily discrete
valuation. So it is a quite natural question if the results in [BPS14a] extend to arbitrary
non-Archimedean fields. This issue is handled in my thesis.

In analogy to [BPS14a, §3.6], we describe toric divisors on toric schemes over arbitrary
valuation rings of rank one (see Theorem 2.3.3). This description is based on the theory of
toric schemes over valuation rings of rank one by Gubler [Gub13] and the classification of
these schemes by admissible fans by Gubler and Soto [GS13].

Furthermore, we study metrics, measures and local heights over a non-necessarily discrete
non-Archimedean field K, following the ideas of [BPS14a, §4]. Let L be a toric line bundle
on a proper toric variety Xy over K together with any toric section s, and let ¥ be the
corresponding support function on the complete fan ¥. A continuous metric || - || on L is
toric if the function p — ||s(p)|| is invariant under the action of a certain closed analytic
subgroup of T#" (Definition 2.4.1). We will give the following classification of toric metrics
over algebraically closed non-Archimedean fields (Theorem 2.5.8):

Theorem 3. There is a bijective correspondence between the sets of
(i) semipositive toric metrics on L;
(ii) concave functions 1p on Ng such that the function |tb — ¥| is bounded;

(iii) continuous concave functions 9 on Ay.
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For the first bijection, one associates to the toric metric || - || the function ¢ on Nr given
by ¥(u) = log||s o trop~!(u)||, where trop: Ng — T?® is the tropicalization map from
tropical geometry (see 2.4.5). The second bijection is given by the Legendre-Fenchel dual
from convex analysis (see A.7). Essential for the proof are characterizations of semipositive
formal metrics developed in [GK15]. Note that the concave function ¢ = ¥ defines a
distinguished metric on L, called canonical.

Next, we show that the measure c1(L)"\" A dx,, induced by a semipositive toric metrized
line bundle L = (L, || - ||), satisfies the following formula

trop* (Cl(Z)/\n A\ (5X2|’]I‘an) = n'MM(¢),

where v is the concave function given by || - || and Mjs() is the Monge-Ampeére measure
of 1 (see A.17).

Now, all ingredients are developed to state and show a formula for the local height in
the toric setting as proved in [BPS14a, Theorem 5.1.6] for a discrete non-Archimedean
field. Let Xy, be an n-dimensional projective toric variety over K and L a semipositive
toric metrized line bundle, and denote by L®" the same line bundle equipped with the
canonical metric. The toric local height of Xy, with respect to L is defined as

)\tfor(XE> = )\(Z750)7m7(z’5n)(X2) - )\(fcanﬁo)’m’(zcan’sn)(XE),

where sq, ..., s, are any invertible meromorphic sections of L satisfying the intersection
condition (0.2). We show the following main result (Theorem 2.6.6):

Theorem 4. Let notation be as above. Then we have

M) = (1) [ wavoly

where ¥: Ay — R is the concave function associated to (L, s) given by Theorem 8.

The proof is analogous to [BPS14a]. It is based on induction relative to n and uses the
induction formula (Theorem 1) in an essential way.

The formula in Theorem 4 has the following application as suggested to me by José
Burgos Gil. In the setting of Theorem 2, let 7: X — B be a dominant morphism of
varieties over a global field F' such that its generic fiber X is an n-dimensional toric variety
over the function field K = F(B). This field is equipped with the 9t-field structure induced
by the metrized line bundles H1, ..., Hy. Assume that £y = --- = £,, = £ and that the
induced semipositive 9t-metrized line bundle L is toric. Let s be any toric section of L and
¥ the associated support function. Then L defines, for each w € 9, a concave function
’l9w: A\p — R.

Note that in this setting a non-Archimedean place w € 91 is not necessarily discrete. So,
we cannot use only the formula for toric local heights from [BPS14a]. However, combining
theorems 2 and 4 (resp. its Archimedean analogue), we obtain

bog oz 2(X) = (1) /Sm [ () avol(z) au(w) (0.4)

This formula allows us to compute the height of a non-toric variety coming from a fibration
with toric generic fiber. It generalizes Corollary 3.1 in [BPS14b] where the global field is
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Q and the metrized line bundles are induced by models over Z, i.e. where the left-hand
side is an arithmetic intersection number as in (0.1). In this setting only Archimedean and
discrete non-Archimedean places occur.

In [BPS14b], the formula corresponding to (0.4) is considered in the special case that
X is a translate of a subtorus in the projective space and canonical metrics. This can be
imitated in our setting and we further particularize to the case when B is an elliptic curve
leading to a natural example to illustrate our theory.
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Conventions and Notations

N is the set of natural numbers containing zero. All occuring rings and algebras are
commutative with unity. For a ring R, the group of units is denoted by R*.

A variety over a field k is an irreducible and reduced scheme which is separated and of
finite type over k. The function field of a variety X over k is denoted by k(X) or K(X).
For a proper scheme Y over a field, we denote by Y (™ the set of subvarieties of codimension
n. A prime cycle on Y is just a subvariety of Y.

By a line bundle we mean a locally free sheaf of rank one. For an invertible meromorphic
section s of a line bundle, we denote by div(s) the associated Cartier divisor and by cyc(s)
the associated Weil divisor. The support of div(s) is denoted by |div(s)].

A measure is a signed measure, i. e. it is not necessarily non-negative. A non-Archimedean
field is a field which is complete with respect to a non-trivial non-Archimedean absolute
value | - |.

For the notations used from convex geometry, we refer to Appendix A. Furthermore,
notations and terminology defined in this thesis are listed in the index.



Chapter 1.

Metrics, Local Heights and Measures
over Non-Archimedean Fields

In this chapter, we prove an induction formula for the local height of a variety over a
non-Archimedean field with respect to DSP metrized pseudo-divisors (Theorem 1.4.3),
generalizing a result of Chambert-Loir and Thuillier [CT09, Théoréme 4.1]. This formula
is important for our work on toric varieties since it serves as definition for local heights in
our key source [BPS14a].

Before that, we recall the theory of local heights over non-Archimedean fields from
[Gub98] and [Gub03], and the theory of measures associated to metrized line bundles
introduced in [Cha06] and developed in [Gub07b].

In section 1.5, we give a short overview of local heights and measures over complex

varieties.
Let K be a non-Archimedean field, i.e. a field which is complete with respect to a
non-trivial non-Archimedean absolute value | - |. Its valuation ring is denoted by K°, the

associated maximal ideal by K° and the residue field by K = K°/K°°.

1.1. Analytic and Formal Geometry

In this section, we recall some facts about the (Berkovich-) analytification of schemes over
K and of formal schemes over K°. In the analytic part we follow [BPS14a, §1.2]. See also
[Ber90] and [Ber93] for further informations. The basic references for formal geometry are
[Gub98, §1] and [Gub07b, §2] and, for details, [Bos14].

Let X be a scheme of finite type over K.

1.1.1. First let X = Spec(A) be affine. Then the (Berkovich-) analytic space X*" associated
to X is the set of multiplicative seminorms on A extending the absolute value | - | on K.
We endow it with the coarsest topology such that the functions X*" — R, p — p(f) are
continuous for every f € A.

Next we will define a sheaf of rings Oxan on X?": Each p € X?" induces a multiplicative
norm on the integral domain A/ ker(p) and therefore a non-Archimedean absolute value on
its quotient field extending |- | on K. We write .7 (p) for the completion of this field with
respect to that absolute value. The image of f € A in J#(p) is denoted by f(p) and we
write also | - | for the absolute value in .#°(p). Then we have p(f) = |f(p)| for each f € A.

An analytic function s on an open set U of X?" is a function

s: U — H%(p),

peU
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such that, for each p € U, we have s(p) € J#(p) and there is an open neighborhood
p € V C U with the property that, for all € > 0, there are elements f,g € A with |g(q)| # 0
and [s(q) — f(¢q)/g(q)| < € for all ¢ € V. These functions form a sheaf of rings O xan and
we get a locally ringed space (X2", Oxan).

1.1.2. For any scheme X of finite type over K we define the analytic space X" by gluing
the affine analytic spaces obtained from an open affine cover of X. For a morphism
p: X — Y of schemes of finite type over K we have a canonical map ¢?": X?* — Y?a”¢
defined by ©®*(p) :=p o ¢ on suitable affine open subsets.

The analytification functor preserves many properties of schemes and their morphisms.
So an analytic space X?" is Hausdorff (resp. compact) if and only if X is separated (resp.
proper). On the category of proper schemes over K this functor is fully faithful and induces
an equivalence between the categories of coherent Ox- and O xan-modules. The proofs and
more such GAGA theorems can be found in [Ber90, § 3.4].

The analytification of a formal scheme is more difficult because at first we need arbitrary
analytic spaces. Here we only give an overview and not the precise definition of these
spaces.

1.1.3. The Tate algebra K(z1,...,xy,) consists of the formal power series f =Y, a,x”
in K[[z1,...,2,]] such that |a,| — 0 as |v| — oco. This K-algebra is the completion of
K[x1,...,zy,] with respect to the Gaul norm || f|| = max, |a,|.

A K-affinoid algebra is an algebra A over K which is isomorphic to K(xy,...,zy)/I
for an ideal I. We may use the quotient norm from K(z1,...,x,) to define a K-Banach
algebra (A, || -||). The presentation and hence the induced norm of an affinoid algebra
is not unique but two norms on A are equivalent and thus, define the same concept of
boundedness.

1.1.4. The Berkovich spectrum #(A) of a K-affinoid algebra A is defined as the set of
multiplicative seminorms p on A satisfying p(f) < ||f|| for all f € A. It only depends on
the algebraic structure on A. As above, we endow it with the coarsest topology such that
the maps p — p(f) are continuous for all f € A. Then .#(A) is a non-empty compact
space.

1.1.5. A rational subdomain of M (A) = M (K (x1,...,xy,)/I) is defined by

{;f;”) ={pe ) 1D < lg@)i=1.....m},

) (
where fi1,..., fm,g € A generate the unit ideal in A. It is the Berkovich spectrum of the
affinoid algebra

A<'};1,...,j;n>::K(xl,...,xn,yl,...,ym>/(I,gyi—fi li=1,...,m).
More generally one defines an affinoid subdomain in .4 (A) as the Berkovich spectrum of
an affinoid algebra defined by a certain universal property (see [BGR84, 7.2.2]). Such a
domain is a finite union of rational domains by the theorem of Gerritzen-Grauert ([BGR84,
7.3.5/3]).

A (Berkovich) analytic space over K is given by an atlas of affinoid subdomains .Z(.A).
The difficulties in this construction arise because the charts .#(A) are not open. Analytic



1.1. ANALYTIC AND FORMAL GEOMETRY

functions on such a chart are given by the elements of A. The precise definition can be
found in [Ber90, § 3] where such spaces are called strictly analytic spaces.

1.1.6. We say that a K°-algebra A is admissible if it is isomorphic to K° (z1,...,x,) /I
for an ideal I and A has no K°-torsion. If A is admissible, then [ is finitely generated
(see [BL93a, Proposition 1.1]). A formal scheme X over K° is called admissible if there
is a locally finite covering of open subsets isomorphic to formal affine schemes Spf(A) for
admissible K°-algebras A.

In this case, the generic fiber X*"* of X is the analytic space locally defined by the
Berkovich spectrum of the K-affinoid algebra 4 = A ® o K. Moreover we define the
special fiber X of X as the K-scheme locally given by Spec(A/K°°A), i.e. X is a scheme of
locally finite type over K with the same topological space as X and the structure sheaf
O§ = Ox R Ko K

There is a reduction map red: X3 — X assigning each seminorm p in a neighborhood
M (A @Ko K) to the prime ideal {a € A | p(a® 1) < 1}/K°°A. This map is surjective and
anti-continuous. If X is reduced, then red coincides with the reduction map in [Ber90, 2.4].
In this case, for every irreducible component V' of 3%, there is a unique point & € X*" such
that red(&y) is the generic point of V' (see [Ber90, Proposition 2.4.4]).

1.1.7. Assume that K is algebraically closed and let X = Spf(A) be an admissible formal
affine scheme over K° with reduced generic fiber X?". Let A = A ®go K be the associated
K-affinoid algebra and let A° be the K°-subalgebra of power bounded elements in A. Then
X':=Spf(A°) is an admissible formal scheme over K° with X'*" = X*" and with reduced
special fiber X’. We have a canonical morphism X’ — X whose restriction to the special
fibers is finite and surjective. By gluing, these assertions also hold for non-necessarily affine
schemes. For details, we refer to [Gub98, Proposition 1.11 and 8.1].

1.1.8. Let 2 be a flat scheme of finite type over K° with generic fiber X and let 7 be
some non-zero element in K°°. Locally we can replace the coordinate ring & by the
m-adic completion of & and get an admissible formal scheme % over K° with special fiber
equal to the special fiber 2" of Z". The generic fiber 2 denoted by X°, is an analytic
subdomain of X" and is locally given by

{p € (Spec & Qo K)*" |p(a) <1Vae F}.
Then the surjective reduction map red: X° — 2 is locally given by
pr—{ae o |pla)<1}/K*d.

If 2" is proper over K°, then X° = X*" and the reduction map is defined on the whole of
Xan If 2 is reduced, then each maximal point of 2™ has a unique inverse image in X°.
We refer to [Gubl13, 4.9-4.13] for details.

If K is algebraically closed and X is reduced, then the construction in 1.1.7 gives us a
formal admissible scheme X over K with generic fiber X*" = X° and with reduced special
fiber X such that the canonical morphism X — 2 is finite and surjective.



CHAPTER 1. METRICS, LOCAL HEIGHTS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

1.2. Metrics, Local Heights and Measures

From now on, we assume that the non-Archimedean field K is algebraically closed. This
is no serious restriction because we can always perform base change to the completion of
the algebraic closure of any non-Archimedean field and local heights and measures do not
depend on the choice of the base field.

Let X be a reduced proper scheme over K and L a line bundle on X. This defines a line
bundle L*" on the compact space X?".

Definition 1.2.1. A metric || - || on L is the datum, for any section s of L*" on a open
subset U C X?" of a continuous function ||s(-)||: U — R>, such that

(i) it is compatible with the restriction to smaller open subsets;
(ii) for all p € U, ||s(p)|| = 0 if and only if s(p) = 0;
(iii) for any A € Oxan(U) and for all p € U, [|[(As)(p)|| = [A(p)| - Is(p)]l-

On the set of metrics on L we define the distance function
d( - 1151111 == sup [log(s() I/ Is(@)II")],
peXan

where s is any local section of L®" not vanishing at p. Clearly, this definition is independent
of the choice of s. The pair L:=(L, || - ||) is called a metrized line bundle. Operations on
line bundles like tensor product, dual and pullback extend to metrized line bundles.

Definition 1.2.2. A formal (K°-)model of X is an admissible formal scheme X over
K° with a fixed isomorphism X?" ~ X?2". Note that we identify X®" with X?" via this
isomorphism.

A formal (K°-)model of (X, L) is a triple (X, £, e) consisting of a formal model X of X,
a line bundle £ on X and an integer e > 1, together with an isomorphism £" ~ (L®¢)an
When e = 1, we write (X, £) instead of (X, £, 1).

Definition 1.2.3. To a formal K°-model (X, £,¢) of (X, L) we associate a metric || - || on
L in the following way: If 4l is a formal trivialization of £ and if s is a section of L®" on
4 such that s®¢ corresponds to A € Oxan (U") with respect to this trivialization, then

Is()l = [Ap)[*/*

for all p € U*". A metric on L obtained in this way is called a Q-formal metric and, if
e =1, a formal metric. N

Such a Q-formal metric is said to be semipositive if the reduction £ of £ on the special
fiber X is nef, i.e. we have degE(C) > 0 for every closed integral curve C' in X.

Remark 1.2.4. In the literature, Q-formal metrics are often just called formal metrics
(e.g. in [Cha06] and [CT09]). In Definition 1.2.3, we basically follow the notation of [CD12]
and the papers by W. Gubler.

1.2.5. The dual, the tensor product and the pullback of (Q-)formal metrics are again
(Q-)formal metrics. Furthermore, the tensor product and the pullback of semipositive
Q-formal metrics are semipositive.

10



1.2. METRICS, LOCAL HEIGHTS AND MEASURES

1.2.6. Every line bundle L on X has a formal K°-model (X, £) and hence a formal metric
| - |. For proofs of this and the following statements we refer to [Gub98, §7]. Since
K is algebraically closed and X is reduced, we may always assume that X has reduced
special fiber (see 1.1.7). Then the formal metric determines the K°-model £ on X up to
isomorphisms, more precisely we have canonically

L) = {s € L) [[ls(p)| <1 vp € 4™} (1.1)

for each formal open subset U of X.

A formal metric is characterized by the property that there exists an admissible covering
{U,;}icr of X2 by affinoid domains and non-vanishing regular sections s; € L*"(U;) such
that ||s;(z)]| =1 for all z € U;.

Definition 1.2.7. An algebraic K°-model 2" of X is a flat and proper scheme over K°
together with an isomorphism of the generic fiber of 2" onto X. An algebraic K°-model
(2, Z,e) of (X, L) consists of a line bundle . on an algebraic K°-model 2" of X and a
fixed isomorphism .Z|x = L°.

As in Definition 1.2.3, an algebraic model (27, %, e) of (X, L) induces a metric || - || on
L, called algebraic metric. Such a metric is said to be semipositive if, for every closed
integral curve C' in the special fiber 2", we have deg 4 (C) > 0.

The following relatively recent result shows that, on algebraic varieties, it is always
possible to work with algebraic in place of Q-formal metrics.

Proposition 1.2.8. Let L be a line bundle on a proper variety X over K and let || - || be
a metric on L. Then, || - || is Q-formal if and only if || - || is algebraic.

Proof. The fact that every algebraic metric is Q-formal follows easily from 1.1.8. The other
direction is [GK15, Corollary 5.12]. O

1.2.9. A metrized pseudo-divisor Don X is a triple D :=(L,Y, s) where L is a metrized
line bundle, Y is a closed subset of X and s is a nowhere vanishing section of L on X \ Y.
Then (O(D), |D|,sp):=(L,Y,s) is a pseudo-divisor in the sense of [Ful98, 2.2]. We can
always define the pullback of a metrized pseudo-divisor Don X by a proper morphism
¢: X' — X, namely

¢*D:=(p*0O(D), 9" |D|,¢*sp).

Note that this is an advantage over Cartier divisors in order to formulate intersection
theory.

Example 1.2.10. Let L be a metrized line bundle on X and s an invertible meromorphic
section of L, i.e. there is an open dense subset U of X such that s restricts to a non-
vanishing local section of L on U. Then the pair (L, s) determines a pseudo-divisor

div(s) = (fv | div(s)], 8\X\|div(s)\) ;

where |div(s)| is the support of the Cartier divisor div(s).

Every real-valued continuous function ¢ on X" defines a metric on the trivial line
bundle Ox given by ||1|| = e~%. We denote this metrized line bundle by O(¢). Then we
get a metrized pseudo-divisor O(p) :=(O(g), 0, 1).

11



CHAPTER 1. METRICS, LOCAL HEIGHTS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

1.2.11. Let Dy, ..., D; be metrized pseudo-divisors with Q-formal metrics and let Z be a
t-dimensional cycle on X with

|Do|N---N| D N |Z| = 0. (1.2)
Note that condition (1.2) is much weaker than the usual assumption that Ijg, ..., Dy
intersect properly on Z, that is, for all I C {0,...,t}, each irreducible component of

Z NNier | Di| has dimension ¢ — |1].

For Q-formal metrized pseudo-divisors there is a refined intersection product with cycles
on X developed by Gubler (see [Gub98, §8] and [Gub03, §5]). By means of this product,
one can define the local height )‘Do,...,f)t(z) as the real intersection number of Dy, ..., D;
and Z on a joint formal K°-model. For details, we refer to [Gub98, §9] and [Gub03, §9].
If K° is a discrete valuation ring, hence Noetherian, and all the K°-models are algebraic,
then we can use the usual intersection product.

Proposition 1.2.12. The local height \(Z) := Abo... Dt(Z) is characterized by the following
properties:

(i) It is multilinear and symmetric in Dy, ..., D, and linear in Z.

(i) For a proper morphism ¢: X' — X and a t-dimensional cycle Z' on X' satisfying
|Do| N -0 | Dy N |o(2)| =0, we have

)\P*ﬁO;-n;(P*lA)t(Z,) = )\ﬁo,n-yf)t (SO*Z/)

(iii) Let N'(Z) be the local height obtained by replacing the metric || - || of Dy by another
Q-formal metric || - ||". If the Q-formal metrics of D1, ..., Dy are semipositive and if
Z is effective, then

IMZ) =N (Z) < d(l- |11l ) - degopy),.. .o (£)- (1.3)

Proof. The properties (i) and (ii) are mentioned in [Gub03, Remark 9.3] for formal metrics
and easily extend to Q-formal metrics by multilinearity. The last property follows from
the metric change formula in [Gub03, Remark 9.5]. O

1.2.13. If 2 is an algebraic K°-model of X, then there is a K°-model % of X with
reduced special fiber and a proper K°-morphism % — 2" which is the identity on X. This
follows from [BLR95, Theorem 2.1°].

Moreover, let L, T’ be algebraic metrized line bundles on X induced by algebraic K°-
models (27, %, e) and (2", .%’, €') respectively. Taking the closure 2" of X in 2" X o 2~
and pulling back .2, .Z’ to 2", we obtain models inducing the given metrics on L and L’
but living on the same model 27".

Hence, we can always assume that . and ¢’ live on a common model with reduced
special fiber.

The same holds for formal models. Note that in the formal case it is much easier to
obtain a model with reduced special fiber, see 1.1.7.

For global heights and Archimedean local heights of subvarieties there is an induction
formula which can be taken as definition for the heights (see [BGS94, (3.2.2)] and [Gub03,

12



1.3. SEMIPOSITIVE METRICS, LOCAL HEIGHTS AND MEASURES

Proposition 3.5]). A. Chambert-Loir has introduced the following measure on X" such
that an analogous induction formula holds for non-Archimedean local heights (cf. [Cha06,
2.3)).

Definition 1.2.14. Let X be a reduced proper scheme over K of dimension n and let
L;, i =1,...,n, be Q-formal metrized line bundles on X. By 1.2.13, there is a formal
K°-model X of X with reduced special fiber and, for each i, a formal K°-model (X, £;, e;)
of (X, L;) inducing the metric of L;. We denote by X the set of irreducible components
of the special fiber X. Then we define a discrete (signed) measure on X" by

(T A Aer(Tn) = —

Z degghn_"jn (V) - dey»

€1 ey =
! " vexo

where d¢,, is the Dirac measure in the unique point § € X*" such that red(§y) is the
generic point of V' (see 1.1.6).
More generally, let Y be a t-dimensional subvariety of X, then we define

C1(L1) AR /\Cl(ft) Ay = ix (Cl(flly) VAR /\Cl(zt’y)) ,

where i: Y — X2 is the induced immersion. We also write shortly ¢y (L1) - --c1(L¢)dy.
This measure extends by linearity to t-dimensional cycles.

1.2.15. The measure in Definition 1.2.14 is multilinear and symmetric in metrized line
bundles. Moreover, the total mass of c1(L1)A- - -Ac1 (L) Ady equals the degree degy,,  1,(Y).
If the metrics of the L; are semipositive, then it is a positive measure.

Proposition 1.2.16 (Induction formula). Let Dy, ..., Dy be Q-formal metrized pseudo-
divisors and let Z be a t-dimensional prime cycle with |Do| N --- N |D¢| N |Z] = 0. If
|Z| € |Dyl, then let sp, z:=sp,|z, otherwise we choose any non-zero meromorphic section
spy,z of O(Dy)|z. LetY be the Weil divisor of sp, 7z considered as a cycle on X. Then we
have

oy 5y(Z) = Apy iy (V) = /X log |50, - c.(D(Do)) A - - A cr(D(Dy_1)) A 6.

Proof. This follows from [Gub03, Remark 9.5] and Definition 1.2.14. O

1.3. Semipositive Metrics, Local Heights and Measures

It would be nice if we could extend local heights to all continuous metrics. Although the
Q-formal metrics are dense in the space of continuous metrics, this is not possible because
the continuity property (1.3) in Proposition 1.2.12 only holds for semipositive Q-formal
metrics. So the best we can do here is to extend the heights to limits of semipositive
Q-formal metrics. Then the canonical local heights for subvarieties of an abelian variety
are contained in this theory (see [Gubl0, Ex. 3.7] for details).

In this and the following section, let X be a reduced proper scheme over the algebraically
closed field K.
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CHAPTER 1. METRICS, LOCAL HEIGHTS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

Definition 1.3.1. Let L = (L,|| - ||) be a metrized line bundle on X. The metric || - || is
called semipositive if there exists a sequence (|| - ||n)nen of semipositive Q-formal metrics
on L such that

T d(] - |- ) = 0.

In this case we say that L = (L, || - ||) is a semipositive (metrized) line bundle. The metric
is said to be DSP (for “difference of semipositive”) if there are semipositive metrized line
bundles M, N on X such that L = M@N""'. Then T is called DSP (metrized) line bundle

as well.

Remark 1.3.2. If || - || is a Q-formal metric, then [GK15, Proposition 7.2] says that || - ||
is semipositive in the sense of Definition 1.2.3 if and only if || - || is semipositive as defined
in Definition 1.3.1. So there is no ambiguity in the use of the term semipositive metric.
This answers the question raised in [BPS14a, Remark 1.4.2].

Remark 1.3.3. W. Gubler works with slightly more general metrics, called semipositive
admissible or g -metrics (cf. [Gub03, 10.2, 10.3]). We have choosen the same definition
of semipositive metrics as in [BPS14a] and the papers by A. Chambert-Loir because it
suffices for our purposes and is more suitable for toric geometry.

1.3.4. The tensor product and the pullback (with respect to a proper morphism) of
semipositive metrics are again semipositive. The tensor product, the dual and the pullback
of DSP metrics are also DSP.

1.3.5. By means of Proposition 1.2.12, we can easily extend the local heights to DSP
metrics. Concretely, let Y be a t-dimensional prime cycle and D; = (L, || - ||s, | Dil, 84),
1=0,...,t, a collection of semipositive metrized pseudo-divisors on X with

|Dol N---N D NY = 0.

By Definition 1.3.1, there is, for each i, an associated sequence of semipositive Q-formal
metrics || - [|;, on L; such that d(|| - [|in, || - ||i) = 0 for n — co. Then we define the local
height of Y with respect to Dy, ..., D; as

Aboon Dy (¥ ) 5= 10 XL 1010, Dol50)sos (L[, De ) (V) (1.4)

n—0o0

This extends obviously to cycles and DSP metrics. For details see [Gub97, § 1] or [Gub02,
Theorem 5.1.8].

Let Z be a t-dimensional cycle of X and (L;, s;), i = 0,...,t, DSP metrized line bundles
on X with invertible meromorphic sections such that

|div(so)| N ---N|div(sy)| N |Z] = 0.

By Example 1.2.10, we obtain DSP metrized pseudo-divisors d/i;(si), i =20,...,t. We
define the local height of Z with respect to (Lo, so), - - -, (Lt, s¢) as

A(Zo,so),...,(ft,st) (2):= /\JE(SO)W.E};(&) (2). (1.5)

The local heights with respect to DSP metrics have the expected properties as stated in
the following proposition.

14



1.3. SEMIPOSITIVE METRICS, LOCAL HEIGHTS AND MEASURES

Proposition 1.3.6. Let Z be a t-dimensional cycle of X and ﬁo, ceey D, DSP metrized
pseudo-divisors on X with |Do| N ---N|Dy| N |Z| = 0. Then there is a unique local height
ANZ):= Ab... f)t(Z) satisfying the following properties:

(i) If Do, ..., Dy are Q-formal metrized, then A(Z) is the local height of 1.2.11.
(ii) N Z) is multilinear and symmetric in Dy, ..., Dy and linear in Z.
(iii) For a proper morphism ¢: X' — X and a t-dimensional cycle Z' on X' satisfying
|Do| N -0 | D] N |p(Z)| =0, we have
gt Do D1\ Z) = My, 0, (9521).

In particular, )‘If)o Et(Z) does not change when restricting the metrized pseudo-
divisors to the prime cycle Z.

(iv) Let N(Z) be the local height obtained by replacing the metric || - || of Do by another
DSP metric || - ||'. If the metrics of D1, ..., Dy are semipositive and if Z is effective,
then

IMZ) =N (Z) < d(l- L1 1) - degopy)....owy) (£)-

(v) Let f be a rational function on X and let Dy = g;(f) be endowed with the trivial
metric on O(Dy) = Ox. IfY = > pnpP is a cycle representing Dy.--- .Dy.Z €
CHo (|D1| 0=+~ N [De[ N Z]), then

NZ) =3 np-log|f(P)|
P

Proof. This follows immediately from Proposition 1.2.12 and the construction in 1.3.5, and
is established in [Gub03, Theorem 10.6]. O

In the same manner we can generalize Chambert Loir’s measures to semipositive and
DSP line bundles:

Proposition 1.3.7. Let Y be a t-dimensional subvariety of X and L; = (L, | - |i),
i=1,...,t, semipositive line bundles. For each i, let (|| - ||in)nen be the corresponding
sequence of Q-formal semipositive metrics on L; converging to || - ||;. Then the measures

ct(Las [ - [lin) Ao Aer(Lel, || - llen) A by

converge weakly to a reqular Borel measure on X?*". This measure is independent of the
choice of the sequences.

Proof. This follows from [Gub07b, Proposition 3.12]. O

Definition 1.3.8. Let Y be a t-dimensional subvariety of X and L; = (L, ||-]l:),i = 1,...,t,
semipositive line bundles. We denote the limit measure in 1.3.7 by c¢1(L1) A« -+ Acy (L) Ady
or shortly by ¢1(L1)...c1(L¢)dy. By multilinearity, this notion extends to a t-dimensional
cycle Y of X and DSP line bundles Ly, ..., L;.

Chambert Loir’s measure is uniquely determined by the following property which is
taken as definition in [Gub07b, 3.8].
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CHAPTER 1. METRICS, LOCAL HEIGHTS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

Proposition 1.3.9. Let L1, ..., L; be DSP line bundles on X and let Z be a t-dimensional
cycle. For j =1,...,t we choose any metrized pseudo-divisor ﬁj with O(D;) = L;, for
example ﬁj = (L;, X, 0).

If g is any continuous real-valued function on X2, then there is a sequence of Q-formal
metrics (|| - ||ln)nen on Ox such that log||1||,;! tends uniformly to g for n — oo and

/ o qg- Cl(zl) VANEEIVAN Cl(ft) ANdyz = lim )\(OX,||'Hn,(2),l),ﬁ1,-..,ﬁt(Z)'

n—oo

Proof. By [Gub07b, Proposition 3.3], the Q-formal metrics are dense in the space of
continuous metrics on Ox. This implies the existence of the sequence (|| - ||n)nen. The
second part follows from [Gub07b, Proposition 3.8]. O

Corollary 1.3.10. Let Z be a cycle on X of dimension t and let Dy,...,Dy be DSP
metrized pseudo-divisors with |Do| N --- N |D| N |Z] = 0. Replacing the metric || - ||
on O(Dy) by another DSP metric || - ||, we obtain a metrized pseudo-divisor E. Then,
g:=log(|lsp,ll/1sD, ") extends to a continuous function on X and

Ayt = Apy5 (D)= [ - es(@(DD) A+ Aer(@(D1)) Az

Proof. Clearly g defines a continuous function on X. By means of Proposition 1.3.9,

e 9 c1(O(Dy)) ...c1(O(Dy))dy

= XOx 1 I/IH10.0),D1,.... 5, (Z)
= AO(D0), 1 Dols50). D1, 50 (Z) = N0 (Do) |11 | Dol,s0), D D ()

proving the statement. O

Proposition 1.3.11. Let Z be a t-dimensional cycle of X and L1, . .., L; DSP line bundles.
Then the measure c1(L1) A --- Aci(Ly) A Sz has the following properties:

(i) It is multilinear and symmetric in Ly, ..., L; and linear in Z.

(ii) Let ¢: X' — X be a morphism of proper schemes over K and Z' a t-dimensional
cycle of X', then

P (Cl(go*fl) JANCRRIAN Cl((p*ft) A (52/) = Cl(fl) JANCERIAN Cl(ft) A (590*2/.

(iii) If the metrics of Ly,..., Ly are semipositive, then c1(Li) A -+ Aci1(Ly) A Sz is a
positive measure with total mass degr, 1,(Z).

Proof. We refer to Corollary 3.9 and Proposition 3.12 in [Gub07b]. O

Remark 1.3.12. With the previous notation, let K’ be an algebraically closed extension
of K equipped with a complete absolute value extending | - |, and denote by 7: Xg» — X
the base change. Then, by [Gub07b, Remark 3.10],

mo (er(m Th) A Aea (T L) A by, ) = ea(Ta) A+ Aer(Ly) Ady.
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Thus, by base change to the completion of the algebraic closure and using linearity in
the irreducible components, we may extend the measures in Definition 1.3.8 to all proper
schemes X and cycles Y over an arbitrary non-Archimedean field.

1.4. Induction Formula for Local Heights

Now we generalize the induction formula from Proposition 1.2.16 to DSP metrized line
bundles. This formula enables us to define the local height inductively. Our proof is based
on [CT09, Théoreme 4.1] where the formula is shown under the additional assumptions
that X is projective over a completion of a number field and sq, ..., s; are global sections
such that their Cartier divisors intersect properly.

In this section let X be a reduced proper scheme over an algebraically closed non-
Archimedean field K.

At first, we prove the following approximation theorem corresponding to [CT09, Théoréme
3.1]. In contrast to [CT09] we show it in a more analytic fashion.

Proposition 1.4.1 (Approximation theorem). Let (L,|| - ||) be a semipositive formal
metrized line bundle on X with a global section s which is invertible as a meromorphic
section. Then there is a sequence (|| - ||n)nen of formal metrics on the trivial bundle Ox
with the following properties:

(i) The sequence (log ||1||771)neN converges pointwise to log ||s|| =" and it is monotonically
increasing.

(ii) For eachn € N, the metric || ||/|| - [|n on L ® O%' = L is semipositive.

Proof. We fix some non-zero element 7 in K°° and define, for each n € N, the closed sets

Ayi={z € X | [s(@)]| > [} and Byi={z € X | [s@)] < ="}, (L6)
By 1.2.6, the formal metric || - || on L is given by an admissible covering {U;};c; of X"
by affinoid domains, and non-vanishing regular sections t; € L*"(U;) with ||¢;|| = 1. Let

gij = t;/ti € O(U;NU;)* be the transition functions. Then the non-vanishing s|i,na, may
be identified with regular functions f; € O(U; N A,)* satisfying f; = gi;f; on Uy NU; N A,,.
Since the functions f; ' € O(U; N A,), 7" € O(U; N By) are local frames of Oxan on
affinoid domains, we get by 1.2.6 a formal metric || - ||, on Ox given by

Ll = |fil on U; M A, and ||1]|,, = |x"| on U; N B,.

Consider, for each n € N, the function
_ log|fi|™* onU;NA log|[s|[~! on A ) _ _
log |1]|;* = it L= 1 " =min{log ||s[| "}, nlog|x|~"}.
log || on U;N B, nlog|m| on By,

Clearly, the sequence (log||1[,,!) tends pointwise to log|/s||~! and is monotonically
increasing.

Moreover, we have to show that, for each n € N, the formal metric || - ||, ;=1 - [|/]| - [|n
is semipositive on L ® (’))_(1 = L. For the admissible covering {U; N A,,,U; N By, }ier by
affinoid domains, there exists a formal K°-model X, of X*" and a formal open covering

neN
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CHAPTER 1. METRICS, LOCAL HEIGHTS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

{8 n, Vi n}ier of X, such that U, =UiN Ay and U3, =U; N B, (see [BLI3b, Theorem
5.5]). We may assume that X,, has reduced special fiber (cf. 1.1.7). Then, by 1.2.6, the
formal metric || - ||}, is associated to the formal K°-model (£],%,,) of (X, L) given by

I
L) = {r e L") | r(z)[l, <1 Vo € u™} (1.7)
on a formal open subset 4l of X,,. Therefore, we can consider s as a global section of £/,

since we have
1 A
II's]l { ondn

Isll% = = <
" e sl |7 on B,

Let C' C X, be a closed integral curve. If s doesn’t vanish identically on C', then
degz, (O) = deg(c1(£],).C) = deg(div(s|c)) > 0.

If s vanishes identically on C, let 9B,, be the union of the formal open 2U;,’s. Then it
follows by (1.6) that B,, = red(B,,) contains C.

By refining the above trivialization {U;,t;} to {U; N A, U; N By}, the metric || - | is
induced by a formal model £,, which also lives on X, and which is given similarly as in
(1.7). This implies £, s, = £, |s, given by r — 7" - 7. Since B, is a neighborhood of C

and £, is nef, we obtain

which implies the semipositivity of || - ||/|| - ||»- O
Corollary 1.4.2. We use the notations from the approximation theorem and in addition,
we consider a t-dimensional cycle Z and semipositive line bundles Ly, ...,L;—1 on X. Let
w be a (signed) finite measure on X** such that, for every Q-formal metric || - || on Ox,

[ tog Il e O - ea(B) - er(Ten)dz = [ tog il e

Then the sequence (cl((’)x, |- lln)ci(Ly) ... cl(ft,l)csz) . of measures on X*" converges
n

weakly to .

PTOOf. Let v:= Cl(L, ||||) Cl(fl) ...C1 (ft,l)éz and Hn = Cq (OX, HHn) Cl(fl) PN Cl(zt,1)5Z
for each n € N. Then, by the approximation theorem 1.4.1 and Proposition 1.3.11 (iii), the
measures

V— up = C1 (L, [M] ) Cl(fl) . -Cl(ft—1>5Z

RIS

are positive with finite total mass degy, ,, 1, ,(Z), independent of n.

Let € > 0 and let f be any continuous function on X?". By [Gub07b, Proposition 3.3],
the set of Q-formal metrics on Ox is embedded into a dense subset of C'(X?"), i.e. there
is a Q-formal metric || - || such that for g:=—1log||1]|" we have

sup [o(x) — £(2)] - degrp,,..0,.,(2) < /3

and

Sup lg(z) = f(@)] - v — pl (X™) <e/3.
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Moreover, there is by assumption an N € N such that, for all n > N,

Jor fon

Finally, we obtain, for all n. > N,
ron= [t
— [ ==+ [glu=m)+ [la= D)

< supl|f—g|-deg,p, 1, ,(Z)+ ’/Q(M — [in)

<e€.

<e/3.

+suplg — f|- v — p| (X*)

This proves the result. O

Theorem 1.4.3 (Induction formula). Let Z be a t-dimensional prime cycle on X and let
D; = (L, |Dil,si), i =0,...,t, be DSP pseudo-divisors with |Do| N ---N|Dy| N|Z| = 0. If
|Z| & |Dy|, then let si 7 :=st|z, otherwise we choose any non-zero meromorphic section
stz of Li|z. Let cyc(st.z) be the Weil divisor of sz considered as a cycle on X.

Then the function log ||s¢ z|| is integrable with respect to c1(Lo)A -+ Aci(Li—1)A dz and
we have

s D (Z) = Apy b, (€¥C(s1,2)) (1.8)

—/X log |se.zll - c1(To) A - A ey (Te1)A 6 -

Remark 1.4.4. If Ly, ..., L; have Q-formal metrics, then this result is just Proposition
1.2.16. It is also evident if L; is the trivial bundle and hence, log||s; z|| is a continuous
function on Z. The difficulties of the general case arise from the relation between the limit
process defining the measure, and the poles of the function log ||s: z||.

Proof of the induction formula 1.4.3. By Proposition 1.3.6 (iii), we may assume that X =
Z, especially s; = s; z. Furthermore, we can suppose that X is projective by Chow’s lemma
(see, for instance, [GW10, Theorem 13.100]) and functoriality of the height (Proposition
1.3.6). Multiplying the metric || - || on L; by a constant, changes both sides of the equality
(1.8) by the same additive constant (see Corollary 1.3.10). Hence, we can assume that

sup ||s¢(x)| < 1. (1.9)
reXan

Step 1: Reduction to the case of a global section s; of Ly and properly intersecting
supports |Dy|,...,|D¢| on Z. Since X is projective, there is a very ample line bundle H
(provided with some semipositive metric) and a non-trivial global section r of H such
that Ly ® H is also very ample and s; ® r is a global section of L; ® H. By the moving
lemma (see for example [Liu06, Exercise 9.1.2]) we find invertible meromorphic sections s
of Lj, j=0,...,t—1, such that |div(sp)|,...,|div(s;_;)| and | div(s;)| U |div(r)| intersect
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properly on Z. Then we have
Abors D (L) = Apy. b,y (CyC(st)) = Agi:/(s6),...,(fi?/(s;71),gi:/(st)(Z)_Aa(sg),...,gi;(séil)(Cyc(st))’

because both sides are given by a limit process as in (1. 4) that only depends on Lo, ..., Li_1
and D, by Proposition 1.2.16. Now, we may replace le(St) by

(L ® H, | div(sy)| U | div(r)], ss @ r) — (H, | div(r)|, )

and the first step follows from the multilinearity of the local heights.

Step 2: Reduction to the case of semipositive metrized pseudo-divisors ﬁo, . ,Dt.
Because, for i = 0,...,t, the line bundle L; is DSP metrized, we have L; = M; ® N, ! for
semipositive metrized bundles M; and N;. There is, for each i, a very ample line bundle
H; (provided with some semipositive metric) such that N; ® H; is also very ample. By
the first step, | Do, ..., |D;| intersect properly and so, we find hyperplane sections r; of
N; ® H;, i = 0,...,t, such that |div(rg)|,...,|div(r)|,|Dol,...,|D| intersect properly,
too. Especially,

(IDo| U [div(ro)[) M-+~ N (| Dol U |div(ro)|) = 0.

Hence, for i = 0,...,t, we may replace D; by (Li, | D;| U | div(r;)], s;). Because
(Li, | Di| U [div(ry)], 8:) = (M; @ Hy, |Ds| U | div(ri)], s @ 15) — (N3 @ Hy, | div(ry)],74)

is the difference of two semipositive metrized pseudo-divisors, the second step follows from
the multilinearity of the local heights.

In the following we fix, for each i = 0,...,t — 1, a semipositive Q-formal metric || - ||’
on L; and a semipositive formal metric || - ||' on L;. For each i = 0,...,t, we denote the
corresponding metrized line bundle by M; and the metrized pseudo-divisor (M, |D;|, s;)
by E;. Then we can extend ; :=1log ||s;|’ — log ||s;|| to a continuous function on X** and
Ox (i) :==L; ®M;1 is a DSP line bundle.

Step 3: Reduction to the case where the metric of Ly is formal. If the theorem holds for
log ||s¢]|’, then log ||s¢|| = log ||s¢||” — ¢ is integrable with respect to c¢1(Lg)...c1(Li—1)dz
and we get

[ toglsill e (o) .1 (Bo-1)b
—/ IOgHStH ( ) ..Cl(zt_l)éz—‘/xan (pt'Cl(ZO)...Cl(Zt_l)(sz

Do, ,Dt 1 (CyC(St)) /\bo,...,ﬁtfl,Et (Z) — on Ot - Cl(f{)) .. .Cl(zt_1)5z.

By the metric change formula 1.3.10, we have

Xan Yt - C1 (ZO) ...C1 (Lt_l)(SZ = )\ﬁo,...,Dt(Z) — AﬁOv“)thl)Et (Z)

and hence, the theorem is proved. Thus, we may assume that D; = (L¢, | Dy, s¢) is a
semipositive formal metrized pseudo-divisor.
Step 4: We prove by induction on k € {0, ...t} that the theorem holds if L; is a Q-formal
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1.4. INDUCTION FORMULA FOR LOCAL HEIGHTS

metrized line bundle for i > k. The base case k = 0 is just the induction formula for
Q-formal metrics (see Proposition 1.2.16). We assume that the statement holds for k and
show it for k + 1. Since My, ..., M;_1 are Q-formal metrized line bundles, we have

/Xan log ||st]| - ¢1(To) - - . c1(Tp1) 1 (M) . .. 1 (Ms_1)6

= ADo Dy BB (YE(S0)) = Ap b (D) (1.10)

Let L; be Q-formal for i > k + 1, that means we may assume that L; = M;. Since
Ly = M. ® O(py), we obtain, by Proposition 1.3.11 (i),

Cl(fk) Cl(ﬁk—i-l) e Cl(ﬁt—l)éZ
0 Cl(zk_l)cl(ﬁk)...Cl(Mtfl)(SZ (1.11)
+ Cl(O(C,Dk;)) Cl(fo) ce Cl(sz—l) Cl(Mk+1) .. .Cl(Mtfl)(SZ .

Cl(ZO)...
= Cl(z )

By the metric change formula 1.3.10, we get

ADoys D Brgrnr(Z)

= Abg,os Dy 1, BB (Z) +/Xam ¢ c1(Lo) .- c1(Lig-1) c1(My+1) . ..ci(My)oz  (1.12)

and

A Doy DBty e (CYC(52)) (1.13)

= Aﬁo,...,ﬁk,l,Ek,...,Et,l (Cyc(8t>) +/Xan<pk +C1 (fo) --C1 (kal) C1 (HkJrl)' -.C1 (Mt—l)écyc(St)'

The function log ||s;|| is measurable and, by (1.9), non-positive. Hence, we can compute
the following integrals, where infinite values are allowed,

/Xan log |[st]l - ¢1(To) - .1 (L) et (Msr) - . 1 (My_1)0
1.11 — — S S
[ togllsil - ea(To) e (Tma) s (W) e (Vr-1)bz

+ /Xan log ||8t” . Cl(O((pk)) C1 (zo) ...C1 (fk,l) Cl(Mk+1) ...C1 (Mt—l)(sz

(1.10)
= MDDy B (YE(50) = Apo by (D)

+ / ) log HStH . Cl(O((pk)) C1 (fg) e cl(fk,l) Cl(Mk-Jrl) e Cl(ﬁt—l)éZ
Xan

(1.12),
(1.13) _ _ _ _
= Aﬁo,...,ﬁk,Em,...,Et,l(CYC(St))—/Xanwk c1(Lo). - -c1(Lg—1)cr(Mp+1). - c1(Me—1)cye(s,)

VT N A O e c1(Lo) .- c1(Lp-1) c1(Mp41) . .. c1(My)dz

+ /X log [|s:]l - ¢1(O(or)) e1(To) - - er (Tir) 1 (Mss) - -1 (Ms1)87 .
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Thus, we have to prove

can (Vo) Cl(fo) . Cl(zk_l) Cl(ﬁk—&-l) .. .Cl(Mt)(SZ

= can Pk Cl(fo) e Cl(sz—l) Cl(Mk+1) . .cl(ﬁt,l)dcyc(&)

- /X og |[st]| - ¢1(O(or)) e1(Lo) - - e1(Tp1) e1 (M s ) - . o1 (My1)55 -

By step 1-3, we can apply the approximation theorem 1.4.1: Let (|| - |[n)nen be a
sequence of formal metrics on Ox such that the functions g, :=log ||1]|,;* tend pointwise
to log ||s¢|| =%, the sequence (gy)nen is monotonically increasing and (Ox, || - [|) is a DSP
line bundle. Additionally, we may assume that the functions g,, are non-negative by (1.9)
and by their construction in the approximation theorem. Applying Lebesgue’s monotone
convergence theorem and using Proposition 1.3.9 and 1.3.11 (i), we obtain

/Xan log HStHil . Cl(O(QOk)) Cl(ZO) ‘e .Cl(zk_l) Cl(ﬂk—i-l) ‘e Cl(Mt—l)(SZ

:nh—{go can adn - Cl(O(QDk)) C1 (LQ) AP Cl(fk—l) Cl(Mk—&-l) .. .Cl(Mt_l)(sZ
(Z)

2)

= lim A5 ~ - 5 . .
n—oo  O(gn),0(¢k), Do\ De—1,Ek 41, Er—1

= lim A ~ . . . .
n—o0 O(V’k)ao(gn)vDOwka—l:Ek+17--~7Et71(

= lim an (Vo) Cl(OX, || . ||n) Cl(fo) PN Cl(fk—l) Cl(Mk+1) PN Cl(Htfl)éZ .

Finally, we must show the following equation for the continuous function ¢y = 10g< HHk ):

o~ ~

lim an @k * C1 (OX, || . ”n) C1 (Zo) ...C1 (Zk—l) C1 (Mk+1) ...C1 (Mt—l)(sZ

n—o0

= /X Pr - (Cl(fo) cocet(Ly-1) et (Myg1) - . .cr(My)dz (1.14)

— Cl(fl) .. .cl(fk,l) Cl(Mk+1) .. -Cl(Mt—l)(scyc(st)) .

The induction hypothesis implies that equation (1.14) always holds if % is a Q-formal
metric. But then Corollary 1.4.2 (under the assumption of step 2) says that this equation
is also true if ¢y, is only continuous. This shows the induction formula (1.8) and hence, the

integrability of log||s¢|| with respect to ¢1(Lo) - -c1(Li—1)dz. O

Corollary 1.4.5. With the same notations as in Theorem 1.4.3, any proper closed subset
of Z has measure zero with respect to c1(Lo) A ... Aci(Li—1) Adz.

Proof. We may assume that X = Z and, by Chow’s lemma and Proposition 1.3.11 (ii),
that Z is projective. Then any proper closed subset A of Z is contained in the support of
an effective pseudo-divisor (L, |div(s)|,s) on Z. By the induction formula, the function
log ||s|| ! is integrable with respect to c1(Lg)...c1(Li_1)dz, but it takes the value +o0o on
|div(s)|. Thus the support |div(s)| and also the subset A have measure zero with respect

to ¢y (Z()) ...C1 (zt_1)5z. ]
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1.5. Metrics, Local heights and Measures over Archimedean
fields

Following [Gub03, §2,3 and 10], we recall some definitions and statements about Archi-
medean local heights. More details can be found in [Gub02]. Additionally we prove the
Archimedean counterpart of the induction formula (Theorem 1.4.3) which generalizes
slightly the Archimedean part of [CT09, Théoréme 4.1]. This theory is used later for the
study of global heights.

Let K be a field which is complete with respect to an Archimedean absolute value. As
before, we assume for simplicity that K is algebraically closed. Indeed, by Ostrowski’s
theorem, we have K = C.

In this section, let X be a reduced proper scheme over C and X" = X (C) the associated
compact complex analytic space. Let L be an algebraic line bundle on X and L?" its
analytification.

1.5.1. By Bloom and Herrera [BH69], differential forms on X®" are defined as follows.
There is an open covering {U;}; of X®" such that U; is a closed analytic subset of an
open complex ball. On each Uj;, the differential forms are given by restriction of smooth
complex-valued differential forms defined on such balls. Two forms on U; are identified
if they coincide on the non-singular locus of U;. We write A*(U;) for the complex of
differential forms on U;. By gluing, we obtain a sheaf A%... On this sheaf, we have
differential operators 0,0, an exterior product and pullbacks with respect to analytic
morphisms. These operations are defined locally on A*(U;) by extending the forms to a
ball as above and applying the corresponding constructions for complex manifolds. We
denote by Oxan the sheaf of analytic functions.

1.5.2. A metric on L, a metrized line bundle on X and a metrized pseudo-divisor on X
are defined as in Definition 1.2.1 and 1.2.9. A metric || - || on L is called smooth if, for each
local section s of L®", the function ||s(-)||? is smooth.

Let || - | be a smooth metric on L. The first Chern form of L = (L, || - ||), denoted ¢ (L),
is the differential form on X?2" defined, for any non-vanishing local section s of L?" on an
open subset U, as

— 1 —
c(L)u = Tmaabg 1%

Indeed, the first Chern form does not depend on the choice of s and it is a real and closed
(1,1)-form. Moreover, c; is linear in L and commutes with pullback.

Let D= {z € C| |z| <1}. A smooth metric || - || on L is called semipositive if, for each
holomorphic map ¢: D — X"

/Dgo* c1(L) > 0.

The pullback of a semipositive metrized line bundle by any analytic morphism is still
semipositive.

1.5.3. An arbitrary metric || - || on L is semipositive if there is a sequence (|| - || )nen of
semipositive smooth metrics on L that converges uniformly to || - ||. A metric || - || on L is
DSP if (L,|| - ||) is the quotient of two semipositive metrized line bundles.

Note that, for a smooth metric, the definitions of the term “semipositive” in 1.5.2 and
1.5.3 are equivalent. So there is no ambiguity in the use of this notion.
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1.5.4. A current of degree r on X" is a linear functional T on the space of compactly
supported forms in A"(X?*") with the following property: For each point in X?", there
is an open neighborhood U C X, which is a closed analytic subset of an open complex
ball B, and a current Ty on B such that T(w|y) = Ty(w) for every w € A"(B) with
compact support. As in the smooth case, the complex of currents on X?" is equipped
with a bigrading, differential operators 0, 0, pushforwards and an exterior product with
differential forms. Moreover, we have the current of integration dy along an analytic
subvariety Y2 and the current [n] associated to a L!-form 7. We refer to [Kin71] for
details and to [Gub02, 2.1.1] for an overview about currents on analytic varieties.

Definition 1.5.5. A Green current for a t-dimensional cycle Z on X is a (¢+1, t+1)-current
gz on X?" such that .
2 —
5.909z = [wz] — 07
T

for a smooth differential form wyz on X?a".

Example 1.5.6. Let L = (L, || - ||) be a smooth metrized line bundle and s an invertible
meromorphic section of L. Then the Poincaré-Lelong formula says

/l: . o p—
5200 |10 [1s]7*] = [e1(Z)] = deye(s)-

Hence, [log ||s|| 2] is a Green current for cyc(s).

Definition 1.5.7. Let D = (I,|D|,s) be a smooth metrized pseudo-divisor and gz a
Green current for a prime cycle Z on X. If Z ¢ |D|, then let sz :=s|z and if Z C |D|, we
choose any non-zero meromorphic section sz of L|z. Then we define the *-product by

Dxgyi=i, {log ”82H72] +c1(L) A gz,

where ¢: Z — X. We extend this definition to cycles by linearity.

Remark 1.5.8. The current D * g is only well-defined up to Yy [log | fw|~2], where W
ranges over finitely many subvarieties of |D| N |Z| and fy is a non-zero rational function
on W. When |D| intersects |Z| properly, the current is well-defined. In any case, Dxgyis
a Green current for a cycle representing D.Z € CH (|D| N |Z]).

Let s be an invertible meromorphic section of a smooth metrized line bundle L and
div(s) the associated metrized pseudo-divisor (cf. Example 1.2.10). If X is smooth and
|div(s)| intersects Z properly, then gi;(s)*gzzlogHsH_Q*gZ is the *-product of [GS90, §2].

1.5.9. Let ¢: Z — X be the embedding of a prime cycle and 0z the zero current on Z.
For smooth metrized pseudo-divisors D1,..., Dy on X, we set

A

Dl*,,.*f)k/\(iz;:i*(i*f)l*n-*i*ﬁk*OZ).

This is a well-defined current up to Yy [log | fW]*Q], where W ranges over the prime cycles
of [Di|N---N|Di|NZ and fyr € K(W)*. By linearity, it extends to arbitrary cycles Z.

Definition 1.5.10. Let Z be a t-dimensional cycle on X and ﬁo, .. ,15,5 smooth metrized
pseudo-divisors such that
|Do|N---N|D| N |Z| = 0.
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Then we define the local height of Z with respect to ﬁo, e ,ﬁt as

A

Mpy...y(Z):=(Dox -+ x Dy Ndz) (1/2).
1.5.11. The Archimedean local heights with respect to smooth metrized pseudo-divisors
have the properties listed in Proposition 1.2.12 for non-Archimedean local heights with
respect to Q-formal metrized pseudo-divisors. This is proved in [Gub03, § 3].

Thus, we can extend the Archimedean local heights to semipositive and DSP metrized
pseudo-divisors as in 1.3.5. By [Gub03, Theorem 10.6], they satisfy the same properties
stated in Proposition 1.3.6. for the non-Archimedean case.

1.5.12. Let Y be a t-dimensional subvariety of X and let Lq,...,L; be smooth metrized
line bundles on X. We denote by dy the current of integration along the analytic subvariety
Y?2". Then the current

Cl(Ll) VANREIWAN Cl(Lt) A Oy

defines a (signed) measure on X®". This notion extends linearly to a cycle Y.
Analogously to Proposition 1.3.7, we extend this measure to semipositive and DSP
metrized line bundles. It has the same properties as in Proposition 1.3.11.

Now we state and prove an induction formula similarly to Theorem 1.4.3. This formula
was proved in [CT09, Théoréme 4.1] under the stronger assumptions that X is projective
and that the supports of the Cartier divisors of the occuring sections intersect properly.

Theorem 1.5.13 (Induction formula). Let Z be a t-dimensional prime cycle on X and
let D; = (L;,|Dil,si), i=0,...,t, be DSP pseudo-divisors with

|Do|N---N|Df N Z| = 0.

If |Z] g |Dy|, then let Stz = st|z, otherwise we choose any non-zero meromorphic section
stz of Li|z. Let cyc(st,z) be the Weil divisor of sz considered as a cycle on X.

Then the function log ||s: z|| is integrable with respect to c1(Lo)A -+ Aci(Li—1)A 6z and
we have

Abors0i(Z) = Apy . Dy (€¥C(51,2)) —/Xan log [[st,z|| - c1(Lo)A -+ Aci(Li—1)A 0z .

Proof. We get an Archimedean version of the approximation theorem 1.4.1 just by copying
the proof of the Archimedean part of [CT09, Théoréme 3.1]. Then, replacing Q-formal
metrics by smooth metrics and using the corresponding properties of the Archimedean
local heights and measures, we can prove this theorem similarly as the non-Archimedean
induction formula 1.4.3. 0
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Chapter 2.

Metrics and Local Heights of Toric
Varieties

We show a formula to compute the local height of a toric variety over an arbitrary non-
Archimedean field (Theorem 2.6.6). For discrete non-Archimedean fields, this was proved
by Burgos—Philippon—Sombra in [BPS14a, Theorem 5.1.6]. To state and prove this formula,
we study toric divisors over arbitrary valuation rings of rank one (section 2.3) and toric
semipositive metrics over non-discrete non-Archimedean fields (section 2.5).

In this chapter, let M be a free Abelian group of rank n and N := M :=Hom(M, Z) its
dual group. The natural pairing between m € M and uw € N is denoted by (m,u) :=u(m).
We have the split torus T :=Spec(K[M]) over a field K of rank n. Then M can be
considered as the character lattice of T and N as the lattice of one-parameter subgroups.
For m € M we will write x™ for the corresponding character. If G is an Abelian group, we
set Ng = N ®z G. In particular, Ng = N ®7z R is an n-dimensional real vector space with
dual space Mp.

The needed notions and statements of convex geometry are summarized in Appendix A.

2.1. Toric Varieties

We give a short overview of the theory of (normal) toric varieties over a field K following
[BPS14a, 3.1-3.4], especially in the notation. For details and proofs, we also refer to
[KKMST73], [Ful93] and [CLS11].

The notations concerning polyhedra and their properties can be found in the appendix A.

Definition 2.1.1. Let K be a field and T a split torus over K. A (T-)toric variety is
a normal irreducible variety X over K containing T as an open subset such that the
translation action of T on itself extends to an algebraic action p: T x X — X.

2.1.2. There is a nice description of toric varieties in combinatorial data. At first we have
a bijection between the sets of

(i) strongly convex rational polyhedral cones o in Vg,
(ii) isomorphism classes of affine T-toric varieties X over K.

This correspondence is given by o +— U, = Spec(K[M,]), where K[M,] is the semigroup
algebra of
My=0"NM={me M| (mu)>0VYuco}.
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The action of T on U, is induced by
K[M,] = K[M]® K[M,], X" = x"@x™

More generally, we consider a fan ¥ in Ng (Definition A.4). If 0,0’ € X, then U, and
U, glue together along the open subset U,n,/. So, we obtain a T-toric variety

Xy = Us.
oED

This construction induces a bijection between the set of fans ¥ in Ng and the set of
isomorphism classes of toric varieties Xy, with torus T.

2.1.3. Many properties of toric varieties are encoded in their fans, for example:
(i) A toric variety Xy is proper if and only if the fan is complete, i.e. |X|:=J ey 0 = Ng.

(ii) A toric variety Xy is smooth if and only if the minimal generators of each cone o € X
are part of a Z-basis of N.

2.1.4. Let X5 be the toric variety of the fan ¥ in Ng. Then there is a bijective correspon-
dence between the cones in ¥ and the T-orbits in Xs.. The closures of the orbits in Xx
have a structure of toric varieties which we describe in the following: For o € ¥ we set

N(o)=N/(Nno), M(oc)=N(o)V=Mnot, O(c)=Spec(K[M(c))]),

where o denotes the orthogonal space to o. Then O(0) is a torus over K of dimension
n — dim(o) which can be identified with a T-orbit in Xy via the surjection

moif 1
K[M,] —s K[M(c)], "X HMET
0 otherwise.

We denote by V(o) the closure of O(o) in X5;. Then V(o) can be identified with the
O(o)-toric variety Xy (), which is given by the fan

Yo)={r+(Nno)g|TeX, 720} (2.1)
in N(O’)R = NR/ <Nﬂ0’>R.

Definition 2.1.5. Let X;, i = 1,2, be toric varieties with torus T;. We say that a
morphism ¢: X7 — Xs is toric if ¢ maps Ty into Ty and ¢|r, : Ty — T2 is a morphism of
group schemes.

2.1.6. Any toric morphism ¢: X1 — X5 is equivariant, i.e. we have a commutative
diagram

Tl XX1L>X1

50|T1><90\L i@

T1XX1N24>X2,

where p1, o denote the torus actions.
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Toric morphisms can be described in combinatorial terms.

2.1.7. For i = 1,2, let N; be a lattice with associated torus T; = Spec K[N,'] and let %,
be a fan in N;r. Let H: N; — N3 be a linear map which is compatible with X; and Xs.
That is, for each cone o1 € X1, there exists a cone oy € X9 with H(o;) C 03. Then H
induces a group morphism T; — T of tori and, by the compatibility of H, this group
morphism extends to a toric morphism pg: X5, = X5,.

We fix N;, T; and %;, ¢ = 1,2, as above. Then the assignment H — g induces a
bijection between the sets of

(i) linear maps H: N; — Na, which are compatible with 31 and ¥o;
(ii) toric morphisms ¢: X5, — Xr,.
A toric morphism ¢g: Xx, — Xy, is proper if and only if H~1(|Xs]) = [Z1].

Definition 2.1.8. A T-Cartier divisor on a T-toric variety X is a Cartier divisor D on
X which is invariant under the action of T on X, i.e. we have p*D = p5D denoting by
p: T x X — X the toric action and by p2: T x X — X the second projection.

Torus-invariant Cartier divisors can be described in terms of support functions:

Definition 2.1.9. A continuous function ¥: |¥X| — R is called a virtual support function
on X, if there exists a set {m,},ex of elements in M such that, for each cone o € X, we
have ¥(u) = (me,u) for all u € o. It is said to be strictly concave if, for different maximal
cones 0,7 € X, we have m, # m,. A support function is a concave virtual support function
on a complete fan.

2.1.10. Let ¥ be a virtual support function given by the data {m, }scx. Then ¥ determines
a T-Cartier divisor

Dy := {(Uav X_ma)}aez

on Xy. The map ¥ — Dy is an isomorphism between the group of virtual support
functions on ¥ and the group of T-Cartier divisors on Xy. The divisors Dy, and Dy, are
rationally equivalent if and only if ¥y — Wy is linear.

Definition 2.1.11. Let X be a toric variety. A toric line bundle on X is a pair (L, 2)
consisting of a line bundle L on X and a non-zero element z in the fiber L, of the unit
point zg of Uy = T. A toric section is a meromorphic section s of a toric line bundle which
is regular and non-vanishing on the torus Uy and such that s(zg) = 2.

2.1.12. Let D be a T-Cartier divisor on a toric variety Xs. Then there is an associated
line bundle O(D) and a meromorphic section sp such that div(sp) = D. Since the support
of D lies in the complement of T, the section sp is regular and non-vanishing on T. Thus,
D corresponds to a toric line bundle (O(D), sp(zg)) with toric section sp. This assignment
determines an isomorphism between the group of T-Cartier divisors on Xy and the group
of isomorphism classes of toric line bundles with toric sections.

Let ¥ be a virtual support function on . By 2.1.10, this function corresponds bijectively
to the isomorphism class of the toric line bundle with toric section ((O(Dvw ), spy (z0)), Dy ),
which we simply denote by (Ly, sy).

29



CHAPTER 2. METRICS AND LOCAL HEIGHTS OF TORIC VARIETIES

2.1.13. Let Xy be a T-toric variety. We denote by Pic(Xy) the Picard group of Xy, and
by Divy(Xsy) the group of T-Cartier divisors. Then we have a exact sequence of Abelian
groups

M — DiV"]l‘(XZ) — PIC(XE> — 0,

where the first morphism is given by m +— div(x"™). In particular, every toric line bundle
admits a toric section and, if s and s’ are two toric sections, then there is an m € M such
that s’ = x™s.

2.1.14. Let Dy be a T-Cartier divisor on a toric variety Xx,. Then the associated Weil
divisor cyc(sy) is invariant under the torus action. Indeed, let Y1) be the set of one-
dimensional cones in ¥. Each ray 7 € (!) gives a minimal generator v, € 7 N N and a
corresponding T-invariant prime divisor V(7) on Xy (see 2.1.4). Then we have

cyc(sy) = Z —U(v)V (7). (2.2)

rex)

2.1.15. We describe the intersection of a T-Cartier divisor with the closure of an orbit.
Let X be a fan in Ng and ¥ a virtual support function on X given by the defining vectors
{m+}rex. Let o be a cone of ¥ and V(o) the corresponding orbit closure. Each cone
T > o corresponds to a cone T of the fan (o) defined in (2.1). Since m, — my|, = 0, we
have m, —m, € M(c) = M No*. Thus, the defining vectors {m, — Mg frex (o) ives us a
well-defined virtual support function (¥ — m,)(c) on X(o).

When V|, # 0, then Dy and V(o) do not intersect properly. But Dy is rationally
equivalent to Dy_,,_ and the latter divisor properly intersects V(o). Moreover, we have
Dy, |v(e) = D(@—my)(o)- For details, we refer to [BPS14a, Proposition 3.3.14].

We end this section with some positivity statements about T-Cartier divisors. For this,
we consider a complete fan ¥ in N and a virtual support function ¥ on ¥ given by the
defining vectors {mg },ex.

2.1.16. Many properties of the associated toric line bundle O(Dy) are encoded in its
support function.

(i) O(Dy) is generated by global sections if and only if ¥ is concave;
(ii) O(Dy) is ample if and only if ¥ is strictly concave.

If ¥ is concave, then the stability set Ay from A.7 is a lattice polytope and {x"}mermnay
is a basis of the K-vector space I'( Xy, O(Dy)). Moreover, we have in this case

dego(p,) (Xs) = nlvoly (Ay). (2.3)

2.1.17. Assume that ¥ is strictly concave or equivalently that Dy is ample. We use the
notations and statements from A.20. Then the stability set A:= Ay is a full dimensional
lattice polytope and ¥ coincides with the normal fan X5 of A. Thus, a facet F' of A
correspond to a ray op of ¥ and we can reformulate (2.2),

cyc(sy) = Z —(F,up) V(op),
F

where the sum is over the facets F' of A and vg is the minimal inner facet normal of F
(see A.21).
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2.1.18. Assume that ¥ is concave or Dy is generated by global sections. Then A = Ay is
a (not necessarily full dimensional) lattic polytope. We set

M(A)=MnNLa, N(A)=M(A)Y =N /(NNLy),

where LA denotes the linear subspace of Mg associated to the affine hull aff(A) of A.
We choose any m € aff(A) N M. Then, the lattic polytope A — m is full dimensional in
La = M(A)r. Let ¥ be the normal fan of A —m in N(A)r (see A.20). The projection
H: N — N(A) is compatible with ¥ and XA and so, by 2.1.7, it induces a proper toric
morphism ¢: X5, - X5,. We set A’ = A —m and consider the function

Up: N(A)g — R, w+— min (m/,u).
m/eA!
This is a strictly concave support function on ¥A. By 2.1.16, the divisor Dy ,, is ample,
and

2.2. Toric Schemes over Valuation Rings of Rank One

In this section we summarize some facts from the theory of toric schemes over valuation
rings of rank one developed in [Gub13] and [GS13].

Let K be a field equipped with a non-Archimedean absolute value | - | and denote by
K?° its valuation ring. Then we have a valuation val:= —log| - | of rank one and a value
group I':'=val(K*) C R. As usual, we fix a free Abelian group M of rank n with dual
N. Let Tg bet the split torus Tg = Spec (K°[M]) over S = Spec(K°) with generic fiber

T = Spec(K[M]) and special fiber Tz = Spec(K[M]).

Definition 2.2.1. A (Tg-)toric scheme is a normal integral separated S-scheme 2~ of
finite type, such that the generic fiber 2, contains T as an open subset and the translation
action of T on itself extends to an algebraic action Tg xg & — 2 over S.

Remark 2.2.2. In [Gub13] and [GS13], a Tg-toric scheme is not necessarily normal and
of finite type over S where such a scheme is called normal Tg-toric variety. Here, we follow
the definition in [BPS14a).

Definition 2.2.3. Let X be a T-toric variety and let 2" be a Tg-toric scheme. Then 2~
is called a (Tg-)toric model of X if 2 is an algebraic model of X over S such that the
fixed isomorphism %, ~ X identifies (Tg), with T.

If 2" and 2" are toric models of X and a: 2" — 2" is an S-morphism, we say that «
is a morphism of toric models if its restriction to T is the identity.

2.2.4. By [Gubl3, Lemma 4.2], a toric scheme 2" is flat over S and the generic fiber .Z;,
is a T-toric variety over K. Thus, 2 is a Tg-toric model of Z;,.

In analogy to toric varieties over K, we can describe toric schemes over K° with torus
Tg in terms of convex geometry:
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2.2.5. A I'-admissible cone o in Nr x R>q is a strongly convex cone which is of the form

k
J:ﬂ{(u,r)eNRszol<mi,u)+li-r20} withm; e M, l; eT,i=1,... k.
i=1

For such a cone o, we define
K[M)° ::{ > amx™ € K[M] | (m,u) + val(am) -7 >0V (u,r) € a}.
meM

This is an M-graded K°-subalgebra of K[M] which is an integrally closed domain. It is
finitely generated as a K°-algebra if and only if the following condition (F) is fulfilled:

(F) The value group I' is discrete or the vertices of o N (Ng x {1}) are contained in
NF X {1}

Hence, we get an affine Tg-toric scheme %, := Spec(K[M]?) over S if and only if (F) holds.
If T is discrete or divisible, then (F) is always correct.

2.2.6. A fan in Ng X Ry¢ is called I'-admissible if it consists of I-admissible cones.
Given such a fan Z the affine Tg-toric schemes %,,0 € E glue together along the open
subschemes corresponding to the common faces as in the case of toric varieties. So we
obtain a scheme

2:=U % (2.5)

Py

over S. By [GS13, Theorem 3], & — 25 defines a bijection between the sets of
(i) I'-admissible fans in Ng x R>g whose cones satisfy condition (F),
(ii) isomorphism classes of Tg-toric schemes over S.

In this case, 25 is proper over S if and only if S is complete, i.e. \§| = Nr x R>¢ (see
[Gub13, Proposition 11.8]).

It is also possible to describe toric schemes in terms of polyhedra in Ng.
2.2.7. Let 0 be a cone in Ng x R>¢. For r € R, we set
or:={u € Ngr | (u,7) €0}.

Then o — o1 defines a bijection between the set of I'-admissible cones in Ng x R>¢, which
are not contained in Ng x {0}, and the set of strongly convex I'-rational polyhedra in
Ng. The inverse map is given by A — c¢(A), where ¢(A) is the closure of R-g(A x {1}) in
NR X RZO'

2.2.8. Let g) be a I'-admissible fan, whose cones satisfy (F'). Then we have two kinds of
cones o in X:

(i) If o is contained in Ng x {0}, then K[M]? = K[M,,]. Hence, %, is equal to the toric
variety Up, associated to oo (see 2.1.2) and it is contained in the generic fiber of 2.
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(ii) If o is not contained in Ng x {0}, then A:=o0; is a strongly convex I'-rational
polyhedron in Ng. It easily follows that K[M]° is equal to

KM i={ 3 amx™ € K[M] | (m, u) +val(an) > 0 Vu € A},
meM

Thus, %, equals the Tgs-toric scheme % :=Spec(K[M]*). The generic fiber of
U\ = U is identified with the T-toric variety Uy, = Usec(n), Where rec (A) is the
recession cone of A (see A.3).

We set X:={0p|o € £} and IT:={0; |0 € }. Then ¥ is a fan in Ng and II is a T-rational
polyhedral complex in Nr (see A.4 for the definition). Now we can rewrite the open cover
(2.5) as

%g = U U, U U U\

oEY A€ell

using the same gluing data. The generic fiber of this toric scheme is the T-toric variety Xx
associated to X, i.e. %g is a toric model of Xs..

2.2.9. If the value group I' is discrete, then the special fiber 5&% is reduced if and only if

the vertices of all A € IT are contained in Np. If the valuation is not discrete, then 3@% is
always reduced (see [Gub13, Proposition 7.11 and 7.12]).

2.2.10. Conversely, if we start with an arbitrary I'-rational polyhedral complex II, we
can’t expect that the cone

c(IT) :={c(A) | A e IT} U {rec(A) x {0} | A € II}

is a fan in Ng x R>g. However, the correspondence II — c(II) gives a bijection between
complete I'-rational polyhedral complexes in Nr and complete I'-admissible fans in Ng xR>q
(see [BS11, Corollary 3.11]).

We will consider I'-rational polyhedral complexes Il in Ng that satisfy the following
condition:

(F’) The value group I is discrete or, for each A € II, the vertices of A are contained in
Nr.

Proposition 2.2.11. The correspondence Il — Z 1y gives a bijection between the sets of

(i) complete T'-rational polyhedral complexes I1 in Ny which satisfy condition (F”);

(ii) isomorphism classes of proper Tg-toric schemes over S.

Proof. This follows from the results in [BS11], [GS13] and [Gub13] mentioned in 2.2.10
and 2.2.6. ]

Corollary 2.2.12. Let X be a complete fan in Ng. Then there is a bijective correspondence
between the sets of

(i) complete T'-rational polyhedral complexes II in Ng with rec(Il) = X (see A.5) and
satisfying condition (F’);
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(ii) isomorphism classes of proper Tg-toric models of Xy, over S.

We end this section with a description of the orbits of a toric scheme. We assume that
IT is a complete I-rational polyhedral complex in Ng which satisfies condition (F’). This
gives us a complete I-admissible fan ¢(II) in Ng x R>¢ and a complete fan rec(II) in Ng.
We set 211:= Zqr) and we identify the generic fiber 271, with the toric variety X,ec(m)-

Notation 2.2.13. For A € 11, let Ly be the R-linear subspace of Nr associated to the
affine space aff(A). We set

N(A) = N/(NNLy), M(A)=N(A)Y =MnLz,

generalizing the notation in 2.1.4. Furthermore, we define

M(A)={me M) | (mu) eT Yue A}, N(A)=M(A).

Because of the I-rationality of A, the lattice M(A) is of finite index in M(A). We define
the multiplicity of a polyhedron A € II by

mult(A) = [M(A) : M(A)]. (2.6)
Let A’ € IT and A a face of A’. The local cone (or angle) of A’ at A is defined as
ZAAN) :={t(u—v) |lue N jve A t>0}.
This is a polyhedral cone.

There is a bijection between torus orbits of 211 and the two kinds of cones in ¢(II)
corresponding to cones in rec(II) and polyhedra in II.

First, the cones in rec(II) correspond to the T-orbits on the generic fiber 211, = X;ecm)
via o0 — O(0) as in 2.1.4. We denote by ¥ (o) the Zariski closure of O(c) in 2. Then
¥ (o) is a scheme of relative dimension n — dim(o) over S. Moreover, we have 7 < o if
and only if O(o) C 7/(7).

Proposition 2.2.14. There is a canonical isomorphism from ¥ (o) to the Spec(K°[M (o)])-
toric scheme 21y over K° which is given by the I'-rational polyhedral complex

(o) = {A+ (NNo)g | A €I, rec(A) D o}
in N(o)gr = N/ (N No)p.
Proof. This follows from [Gubl13, Proposition 7.14]. 0

Second, the polyhedra of II correspond to the T j-orbits on the special fiber % This
bijective correspondence is given by

O: A — red(trop L (ri A)),

where red is the reduction map from 1.1.8, trop is the tropicalization map from 2.4.5 and
ri(A) is the relative interior of A from A.1. For details, we refer to [Gub13, Proposition
6.22 and 7.9]. For A € II, we denote by V(A) the Zariski closure of O(A) in Z71. Then
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V(A) is contained in the special fiber 27; and has dimension n — dim(A). Moreover, we
have

A=N < ON)CV(A) and o <rec(A) < O(A) C ¥ (o). (2.7)

Proposition 2.2.15. The variety V(A) is equivariantly (but non-canonically) isomorphic
to the Spec(K[M (A)])-toric variety Xiyny over K which is given by the fan

TI(A) = {Z(A,A)) +1Ly | A €1, A’ D A} (2.8)

in N(A)gp = N(A)g = Ng/Ly.
Proof. This is [Gub13, Proposition 7.15]. O

2.2.16. In particular, there is a bijection between vertices of I and the irreducible
components of the special fiber 27;. For each v € I1°, the associated component V (v) is a
toric variety over K with torus associated to the character lattice {m € M | (m,v) € T'}
and given by the fan II(v) = {R>o(A’ —v) | A € II, A’ 3 v} in Ng.

2.3. Tg-Cartier Divisors on Toric Schemes

We extend the theory of T-Cartier divisors to toric schemes over a valuation ring of rank
one. This generalizes [KKMS73, §IV.3] and [BPS14a, §3.6] where the case of discrete
valuation is handled and which we use as a guideline.

We keep the notations of the previous section. Furthermore, we only consider I'-rational
polyhedral complexes which satisfy the following condition:

(F’) The value group I is discrete or, for each A € II, the vertices of A are contained in
Nr.

This ensures that the regarded schemes are of finite type over K° and hence, they are
models of their generic fiber in the sense of Definition 1.2.7. In principle we could work
without this assumption. But it is no restriction because we can always perform base
change to the algebraic closure of K. Then the value group of this algebraically closed field
is divisible and the second condition of (F’) is always satisfied.

Definition 2.3.1. A Tg-Cartier divisor on a Tg-toric scheme £ is a Cartier divisor D
on 2" which is invariant under the action of Tg on 27, i.e. we have p*D = p5D denoting
by p: Tg x Z — £ the toric action and by py: Tg x 2 — 2 the second projection.

For simplicity we only study Tg-Cartier divisors on proper schemes.

2.3.2. Let IT be a complete I'-rational polyhedral complex in Ny satisfying (F’) and 271
the associated proper Tg-toric scheme. Let v be a I'-lattice function on II given by defining
vectors {(mp,Ix)taerr in M x T' (see A.11). These vectors have to satisfy the condition

((ma,-) + 1) |anar = ((mar, <) +1a7) [anar - for all A, A" € T (2.9)

On each open subset %, the vector (my,l)) determines a rational function axlemA,
where apy € K* is any element with val(ay) = 15. For A, A’ € TI, condition (2.9) implies
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that
val(apr/ap) + (mar —mp,u) =0 forallu e ANA,

and therefore, ap XA /apx™? is regular and non-vanishing on %y N %y = Unnar- Since
IT is complete, the set {Z) }acrr is an open cover of 2. Thus, ¢ defines a Cartier divisor

o= {0} 210

where ay € K* is any element with val(ay) = [5. The divisor Dy, only depends on ¢ and
not on the particular choice of defining vectors and elements ay. It is easy to see that D,
is Tg-invariant.

We can classify Tg-Cartier divisors in terms of I'-lattice functions:

Theorem 2.3.3. Let II be a complete I'-rational polyhedral complex in N satisfying (F’)
and let 211 be the corresponding proper Tg-toric scheme.

(i) The assignment 1 — Dy, is an isomorphism between the group of I'-lattice functions
on II and the group of Tg-Cartier divisors on Z1.

(it) The divisors Dy, and Dy, are rationally equivalent if and only if Y1 — g is affine.
For the proof, we need the following helpful lemma.
Lemma 2.3.4. Let A € Il. Then, for each Tg-Cartier divisor D on %, we have
D = div(ax™)
for some m € M and o € K*.

Proof. Let us consider the K°-algebra A:= Oy, (%) = K[M]* and the fractional ideal
I:'=T(%\,0,(—D)) of A. Since D is Tg-invariant, the K°-module I is graded by M, i.e.
we can write I = @,,,c s Im, where I, is a K°-submodule contained in Kx". Because K°
is a valuation ring of rank one, either I,,, = (0) or I, = K°°a;, X" or I, = K°a,, X" or
L, = Kx™ for some m € M, a,,, € K*. Since [ is finitely generated as an A-module, we
deduce

I= P Koomx™. (2.11)

amx™el

Now we fix a point p € O(A). Then D is principal on an open neighborhood U of p in .
We may assume that U = Spec(Ay) for some h € A with h(p) # 0. Hence, D|y = div(f)|v
for some f € K(M)* = Quot(A)*. This implies

I, = Og (=D)(U) = [ - Oy, (U) = f - Ap, .

In particular, f € I, and by (2.11), we can write

[ = Z%amixmi with ¢; € K°\ {0}, k € Ny.
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Since am, X"/ f € Oz, (U) and p € U, we deduce (om;x™/f) (p) # 0 for some i. There
exists an open neighborhood W C U of p on which oy, X"/ f is non-vanishing and thus,

div (e, x™) | = div(f)lw = Dlw- (2.12)

By [GS13, Corollary 2.12 (c)], we have an injective homomorphism D +— cyc(D) from
the group of Cartier divisors on %, to the group of Weil divisors on %), which restricts to
a homomorphism of the corresponding groups of Tg-invariant divisors. The Tg-invariant
prime (Weil) divisors are exactly the Tg-orbit closures of codimension one. By (2.7),

peO(A) C ﬂ V(v)n ﬂ vV (T),
vellf, Terec(IN)?!,
v=A T=rec(A)

and therefore, W meets each Tg-invariant prime divisor of %,. Thus, equation (2.12)
implies cyc(D) = cyc (div(am,x™)) and hence, D = div(au,, x™). O

Proof of Theorem 2.3.3. (i) Let 1 be a I'-lattice function on II given by defining vectors
{(ma,val(ap))}pcrr- Then, by the construction in 2.3.2, Dy, is a well-defined Tg-Cartier
divisor on Z2711. It is easy to see that this assignment defines a group homomorphism.

To prove injectivity, we assume that ¢ maps to the zero divisor (21, 1). Then, for each
A € 11, the function 041_\1 x~ ™A is invertible on % or equivalently,

P(u) = (mp,u) +val(ap) =0 for all u € A.

Therefore, v is identically zero and we proved injectivity.
For surjectivity, let D be an arbitrary Tg-Cartier divisor on 271;. By Lemma 2.3.4, there
exist, for each A € II, elements ay € K* and my € M, such that D|y, = div(ay x™)|%,-

Since D is a Cartier divisor, we have, for A, A’ € TII,
div(ap x™) = div(apy x™)

|%AQA’ |%A’MA ’

which implies that
val(apy) + (mp,u) = val(apr) + (mpr,u)  for allu € ANA. (2.13)

For each A € II, we set ¥ (u) := (—my, u) —val(ay) for all w € A. By (2.13), this determines
a well-defined I'-lattice function ¢ : Ng — R and, by (2.10), ¢ maps to D.

(ii) We claim that a Tg-Cartier divisor on Z7y is principal if and only if it has the form
div(ax™) for « € K*,m € M. Indeed, let D be any principal Tg-Cartier divisor on 27,
i.e. D = div(f) for some f € K(Z11)*. The support of D is disjoint from the torus T.
Therefore, when regarded as an element of K (T)*, f has zero divisor on T. This implies
f € K[M]* and thus, f = ax™ for some o € K* and m € M.

Using this equivalence, statement (ii) follows easily from (i). O

2.3.5. Let 2 be a toric scheme over S. A toric line bundle on 2 is a pair (.Z, z) consisting
of a line bundle . on £  and a non-zero element z in the fiber .2, of the unit point
xo € Zy. A toric section is a meromorphic section s of a toric line bundle which is regular
and non-vanishing on the torus T C .2;, and such that s(xg) = 2.
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As in 2.1.12, each T-Cartier divisor D on 2~ defines a toric line bundle (O(D), sp(x¢))
with toric section sp as well as each I'-lattice function ¢ defines a toric line bundle with
toric section ((O(Dy), sp,,(20)), sp,,), which we simply denote by (£, sy).

Let (X5, Dg) be a proper toric variety with a T-Cartier divisor. A toric model of
(Xy, Dy) is a triple (£, D, e) consisting of a Tg-toric model 2" of Xy, a Tg-Cartier
divisor D on 2" and an integer e > 0 such that D|x,, = eDy.

Clearly, every toric model (2, D, e) of (X5, Dy) induces an algebraic model (27, O(D), e)
of (Xy, Ly) in the sense of Definition 1.2.7 such that the toric section sp|x,, of O(D)|x, is
identified with the toric section s%e of L%e. Such algebraic models are called toric models.

Theorem 2.3.6. Let 3 be a complete fan in Nr and ¥ a virtual support function on 3.
Then the assignment (I1,1)) — (211, Dy) gives a bijection between the sets of

(i) pairs (IL,v), where II is a complete I'-rational polyhedral complezx in Nr satisfying
(F’) and rec(Il) = X, and v is a T'-lattice function on II with rec(y) = ¥;

(ii) isomorphism classes of toric models (2, D, 1) of (Xx, Dy).

Proof. Let (I1,1)) be a pair as in (i) and let {(my, val(ay))}aen be defining vectors of .
Then

Dy|xy, = { (%, ay'x ™)}

Kooy = W Wrec(a)s X} = Drec(y) = D -
Hence, (211, Dy, 1) is a toric model of (Xx, Dy). The statement follows from Corollary
2.2.12 and Theorem 2.3.3. [

Now we describe the restriction of Tg-Cartier divisors to closures of orbits. But we
are only interested in the case of orbits lying in the special fiber. The other case can be
handled analogously to [BPS14a, Proposition 3.6.12].

Let II be a complete I'-rational polyhedral complex in Ng satisfying (F’) and 27 the
associated proper Tg-toric scheme. Let 1 be a I'-lattice function on II given by defining
vectors {(ma,Ir) }aen and let Dy, be the associated Tg-Cartier divisor.

Let A € II be a polyhedron. We assume that |, = 0. Using Notation 2.2.13 and (2.8),
we define a virtual support function ¢(A) on the rational fan II(A) in N(A)gr given by the
following defining vectors {mq },cri(a):

For each cone o € TI(A), let A, € II be the unique polyhedron with A < A, and
Z(A,As)+ Ly = 0. The condition 1|5 = 0 implies that mp_ € ]Lf\- and (mp_,u) = —lp €T
for all u € A. Therefore, my, lies in M(A). We set mg :=my, .

Proposition 2.3.7. Let notation be as above. If 1|y =0, then Dy, properly intersects the
orbit closure V(A). Moreover, the restriction of Dy, to V(A) is the divisor Dyy)-

Proof. The Tg-Cartier divisor Dy, is given by {(%j, axlx*mA)}Aen, where apy € K* is
any element of K* with val(ay) = ly. If ¥|p = 0, then val(ap) + (my,u) = 0 for all u € A.
Thus, the local equation axlx_m/\ of Dy in % is a unit in Og; (%) = K[M]A. Hence,
the orbit O(A) C %, does not meet the support of Dy and so, V(A) and D, intersect
properly. Furthermore,

Dw‘V(A) = {(%Aﬂ NV(A), O‘XiX_mAﬁ ‘OZ/AWHV(A)) }ﬂeH(A) )

38



2.4. Toric METRICS

Using the non-canonical isomorphism K[U,] ~ K[%,y_ NV (A)], we get

Dylvay = {Ur: X""™) brenia) = Do)
proving the claim. ]
Proposition 2.3.8. Let Il be a complete I'-rational polyhedral complex in Nr and ¢ a

concave I'-lattice function on II. Let A € II be a k-dimensional polyhedron and v € ri(A).
Then,

mult(A) degp, (V(A)) = (n — k)!volps(a) (9v(v)), (2.14)

where mult(A) is the multiplicity of A (see (2.6)) and 0y (v) is the sup-differential of v at
v (see A.15). Note that the affine space of 0v(v) is associated to the linear space M(A)g
and hence, the measure volyy () is also defined on aff(9y(v)) (see A.16).

Proof. Let (ma,ly) € M x I' be a defining vector of ¢ on A. Then D, is rationally

equivalent to Dy_p,,—1, and 0(¢p — mp — ly)(v) = 0y (v) — my. Thus, replacing ¢ by

1 —my — I does not change both sides of equation (2.14) and we may assume that ¢|, = 0.
By Proposition 2.3.7 and (2.3),

degp, (V(A)) = degp,,, (Xn()) = (n = k)Ivol 7 (Aya)):
It is easy to see that dy(v) = d1(A)(0) € M(A)r. So we deduce from Proposition A.19,

VOlM(A)(%(U))
[M(A) : M(A)]

Y

vol 7y (Byy) = vol gz ) (09 (A)(0)) = vol gy (8¢(v)) =

proving the result. O

2.4. Toric Metrics

In this section, we recall the basic facts about toric metrics from [BPS14a, §4.3]. These
are metrics on a toric line bundle that satisfy a certain invariance property with respect to
the torus action, and they can be classified by a certain class of continuous functions on
Ng. Note that in [BPS14a, §4.1-4.3] the non-Archimedean fields are not assumed to be
discrete, in contrast to the rest of this chapter §4.

We fix the following notation. Let K be either C or an algebraically closed field which is
complete with respect to a non-trivial non-archimedean absolute value |-|. Then we have a
valuation val:= —log| - | and a divisible value group I' :=val(K*) of rank one. The theory
could be developed for arbitrary non-Archimedean fields, but it is no serious restriction to
assume that K is algebraically closed because this theory is stable under base change and
in the classical setting, the analysis is also done over C.

We fix a free Abelian group M of rank n with dual N and denote by T = Spec(K[M]) the
n-dimensional split torus over K. Let 3 be a complete fan in Ng and Xy, the corresponding
proper toric variety. Furthermore, let ¥ be a virtual support function on ¥ and (L, s) the
associated toric line bundle with toric section.
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If K = C, then X&" = X5(C) is the associated complex analytic space with complex
torus T?" ~ (C*)". If K is non-Archimedean, then X" is the Berkovich analytic space
associated to Xx: as defined in 1.1.2. In both cases, the algebraic line bundle L defines an
analytic line bundle L*" on X3".

Definition 2.4.1. A metric || - || on L is called toric if, for all p,q € T?" satisfying
X" (p)| = [x"(q)| for each m € M, we have ||s(p)|| = [s(q)]-

It easily follows from 2.1.13 that this definition is independent of the choice of the toric
section s.

Remark 2.4.2. In [BPS14a, 4.2], the authors study the action of the analytic group T?"
on X§" and in particular, the action of the compact analytic subgroup

S={peT||x"(p)|=1forallme M},
called compact torus. By [BPS14a, (4.2.1) and Proposition 4.2.15], we have for p € Ta"

S-p={geT* [[x"(p)| = x"(q)] for all m € M}.

Hence, a metric || - || is toric if and only if the function p — ||s(p)|| is invariant under the
action of S.
2.4.3. Given an arbitrary metric || - || on L, we can associate to it a toric metric in the

following way: For o € X, let s, be a toric section of L which is regular and non-vanishing
in U,.
It K = C, then we set, for p € UZ",

(@)l =exp ( [ og Ise - )l diat))

where ..y denotes the Haar measure on S of total mass 1.
If K is non-Archimedean, we set, for p € U2",

150 ()lls := lls- (D),

where p € U2" is given by

> ™ max |am|[x™ (p)].
meMy

We easily deduce that these assignments define a toric metric || - ||s on L. This process
is called torification of || - ||.

Proposition 2.4.4. Toric metrics are invariant under torification. Moreover, torification
is multiplicative with respect to products of metrized line bundles and continuous with
respect to uniform convergence of metrics.

Proof. This is established in [BPS14a, Proposition 4.3.4] and follows easily from the
definition. O
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2.4.5. We have the tropicalization map trop: T*" — N, p — trop(p), where trop(p) is
the element of Ng = Hom(M,R) given by

(m, trop(p)) := — log [x""(p)|-

This defines a proper surjective continuous map. For details, we refer to [Pay09, §3].

Let || - || be a toric metric on L. Then consider the following diagram
Tan log [|s () R
7
\ /
trop P -
Ng
Since || - || is toric, the function log ||s(-)|| is constant along the fibers of trop. Moreover,

trop is surjective and closed, and hence, there exists a unique continuous function on Ng
making the above diagram commutative. This causes the following definition.

Definition 2.4.6. Let L = (L, || - ||) be a metrized toric line bundle on Xy, and s a toric
section of L. We define the function

Ut Ne — R, ur—log|s(p)[s,

where p € T?" is any element with trop(p) = w. The line bundle and the toric section are
usually clear from the context and we alternatively denote this function by 9.

2.4.7. For an alternative description of ¥; _ in the non-Archimedean case, we consider the

)

canonical section p: Ng — T?" which is given, for each u € Ng, by the multiplicative norm

p(u): K[M] — R>o, Z am X" — max |, |exp(— (m,u)).
me M meM

By [Ber90, Example 5.2.12], we deduce that this section is a homeomorphism of Ng onto a
closed subset of T#". It is easy to see that ¢y (u) = log||s(p(uw))| for all u € Ng.

Proposition 2.4.8. Let notation be as in Definition 2.4.6 and let K' be a complete valued
field extension of K. Let (f/, ') be the metrized toric line bundle with toric section obtained
by base change to K'. Then

@bf’s/ = @Z’ZS .

)

Proof. This follows from the definition of /7 . and propositions 4.1.5 and 4.2.16 in [BPS14a).
O

Proposition 2.4.9. Let L = (L,|-||) and T be metrized toric line bundles on Xs with toric
sections s and s', respectively. Let o: Xsy — Xy, be a toric morphism with corresponding
linear map H as in 2.1.7. Then

¢f®f/,s®s/ = %,s + d)f/,s/ ’ d}f_l,s*l = 7% and djga*f,go*s = (pf,s oH.
Moreover, if (||-||n)nen is a sequence of metrics on L that converges to || ||, then (¢,
converges uniformly to ..

neN
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Proof. This is established in propositions 4.3.14 and 4.3.19 in [BPS14a] and follows easily
from the definitions. O

2.4.10. In order to characterize toric metrics by functions on Ng, we need the Kajiwara-
Payne tropicalization of Xy, introduced by [Kaj08] and [Pay09]. This is a topological space
Ny, together with a tropicalization map X&" — Nyx. As a set, Ny is a disjoint union of
linear spaces
Ny =[] N(o)r,
oeY

where N(o) = N/ (N No) is the quotient lattice as in 2.1.4. Following [Pay09, Remark
3.4], the topology on X7y is determined by the following basis. Let o be a cone in ¥ and 7 a
face of 0. We choose a finite set of generators my, ..., m, for the semigroup M, = M NoV.
If m; € 71, then m; can be evaluated on N(7)g. For each open set U C N(o)g and real
number A > 0, let C'(U, ) be the truncated cylinder

C(U,N) = U{UEN(T)R | m(u) € U and (my,u) > X for m; € 75\ ot,i=1,...,r},

T=0

where m: N(7)r — N(o)r is the canonical projection. Then these truncated cylinders
define a basis for the topology on Ny. A sequence of points in N(7)r tends to a point
u € N(o)g if and only if their images under 7 tend to u in N(o)r and they move toward
infinity in the image of the cone o in N(p)r for all cones p such that 7 < p < 0.

The toric variety Xy is the disjoint union of tori Ty (,) = Spec K[M(c)],o € ¥. Hence,
we can define the tropicalization map

trop: X3' — Ny,

as the disjoint union of tropicalization maps trop: ']I‘?\‘,l(a) — N(o)r as defined in 2.4.5. This
is also a proper surjective continuous map. Especially, Ny, = trop(X3{") is a compact space.

Proposition 2.4.11. Let ¥ be a complete fan in Ng and ¥ a virtual support function on
. Weset L= Ly.

Then, for any metric || - || on L, the function ). — ¥ extends to a continuous function
on Ns. In particular, the function |1y — V| is bounded.
Moreover, the assignment || - || = 1. is a bijection between the sets of

(i) toric metrics on L;

(ii) continuous functions 1p: Ng — R sucht that ©» — U can be extended to a continuous
function on Ny,

Proof. This is proved in Proposition 4.3.10 and Corollary 4.3.13 in [BPS14a]. The inverse
map is given as follows: Let 1) be a function as in (ii) and let {m,} be a set of defining
vectors of W. For each cone o € X, the section s, = x"*“ s is a non-vanishing regular section
on U,. Then we obtain a toric metric || - ||, on L characterized by

150 (p) [l := exp((¢ — mo)(trop(p))) (2.15)

on U,. O
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Definition 2.4.12. Let L be a toric line bundle on Xy, with toric section s and let ¥ be
the associated virtual support function on . By Proposition 2.4.11, the function ¢ := WV
defines a toric metric on L. This metric is called the canonical metric of L. We denoted it
by || - |lcan and write L = (L, || - |lcan)-

Remark 2.4.13. By [BPS14a, Proposition 4.3.15], the canonical metric only depends on
the structure of toric line bundle of L and not on the choice of s.

Proposition 2.4.14. Let L, L' be toric line bundles on Xx, and let p: X5, — Xy, be a
toric morphism. Let o € ¥ and v: V(o) — Xy the closed immersion of 2.1.4. Then

T = 7 s/an = can FCan —F _qCan —Fcany — — rcan —can — rcan - can
L () ='T =T

Ll =L"L ,  w*L and *L

Proof. The first two statements are established in [BPS14a, Proposition 4.3.16]. The last
two statements are the corollaries 4.3.20 and 4.3.18 in [BPS14a]. O

2.5. Semipositive Toric Metrics and Measures over
Non-Archimedean Fields

In the case of an algebraically closed non-Archimedean field, we study algebraic metrics
induced by toric models. Then we classify semipositive toric metrics in terms of concave
functions (Theorem 2.5.8). Moreover, we characterize the measures associated to semi-
positive metrics (Corollary 2.5.11). These results are proved in [BPS14a, §4.5-4.8] in the
case of a discrete non-Archimedean and an Archimedean field. We follow their ideas of the
proofs using in particular our theory of Tg-Cartier divisors developed in section 2.3.

In this section, let K be an algebraically closed field which is complete with respect to a
non-trivial non-Archimedean absolute value | - |. Then we have a valuation val:= —log]| - |
and a divisible value group I':=val(K*) C R. We fix a free Abelian group M of rank n
with dual N and denote by T = Spec(K[M]) the n-dimensional split torus over K.

Let ¥ be a complete fan in Ng and Xy the corresponding proper toric variety. Further-
more, let U be a virtual support function on ¥ and (L, s) the associated toric line bundle
with toric section.

2.5.1. Let II be a complete I'-rational polyhedral complex in Ng with rec(Il) = X, and let
1 be a I-rational piecewise affine function on IT with rec(¢)) = W. Let e > 0 be an integer
such that et is a I-lattice function given by the defining vectors {(my,lz)}aen in M x T
Then ey defines a Tg-Cartier divisor

Do = { (™)}

where ay € K* with val(ay) = I, and the pair (II, et)) defines a toric model (211, Dey, €)
of (X5, Dy) (see Theorem 2.3.6). We write .Z = O(Dgy) and L = O(Dy) for the
corresponding toric line bundles. By Definition 1.2.7, the model (211, -Z, e¢) induces an
algebraic metric || - || on L.

Proposition 2.5.2. Let notation be as above. Then the metric || - ||.& is toric. Moreover,
the equalities V)., =¥ and || - [z = || - || hold.
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Proof. Let A € II. Recall that %, := Spec(K[M]*) is an algebraic K°-model of Uyec(a)-
By 1.1.8, the associated formal scheme has generic fiber

Uree(n) = {P € Ureoay | P(f) < 1Vf € K[M]A} ,

Then %) is a trivialization of .Z on which sge, considered as a meromorphic section of .Z,
corresponds to the rational function axl x~"A. Hence, by Definition 1.2.7, we have

Isw(p)lle = lay x ™ (p)["/*

o

for all p € rec(A)* Let u € A and p € T* with trop(p) = u. The below-mentioned Lemma
2.5.3 implies that p € U? (A) and we obtain

rec

tog s (p)ll» = log |z X ™ (p)|V* = T ((ma,u) +1a) = Y(u).

This shows that the metric || - [| ¢ is toric. We deduce, by Definition 2.4.6, that v, = v
and, by Proposition 2.4.11, that || - || = || - |- O

Lemma 2.5.3. Let II be a complete I'-rational polyhedral complex in Ng with rec(Il) = X
and let red: X — 211 be the reduction map from 1.1.8. Let A € II and p € T?". Then

trop(p) € A <= p € Ugyn) < red(p) € Uy .
Proof. By [Gubl3, Lemma 6.21], we have trop(p) € A if and only if p € T?*" satisfies

Ip(f)| < 1 for all f € K[M]" or, in other words, p € Uree(r)- By the description of the
reduction map in 1.1.8, this is equivalent to red(p) € Uy. O

Corollary 2.5.4. Let v be a I'-rational piecewise affine concave function on Nr with
rec(v) = W. Then the metric || - ||y s induced by a toric model.

Proof. As in the proof of [BPS14a, Theorem 3.7.3|, we can show that there exists a complete
[-rational polyhedral complex IT in Ny such that rec(IT) = 3 and 1) is piecewise affine on
IT. Since T is divisible, the complex II gives a proper toric scheme 271;. Then Proposition
2.5.2 says that | - || is induced by a toric model (211, Dey, €) of (X, Dy). O

Proposition 2.5.5. Let | - || be an algebraic metric on L. Then the function . is
I'-rational piecewise affine.

Proof. There exists a proper K°-model (27, .Z,e) of (Xx, L) inducing the metric || - [|. Let
{}ic1 be a trivialization of .. Then the subsets U = redfl(% N Z") form a finite
closed cover of X2*. On %; the meromorphic section s®¢ corresponds to a rational function
Ai € K(M)* such that on U? we have

sl = [Ni(p)M*.

We write A\; = Maﬁ[mim Using the continuous map p: Ng — T?" from 2.4.7, we have
meM 7™M

44



2.5. SEMIPOSITIVE TORIC METRICS AND MEASURES OVER NON-ARCHIMEDEAN FIELDS

on the closed subset A;:=p~ (U N T*) C Ng,
Py () = log [s(p(w)) ||
= log | Xi(p(u))|"/*
1 1
= _log (glgﬁ |atm | exp(— (m, U>)) — - log (gg} |Bm| exp(— <m,U>))

_1 mi}r\14 ({m,u) + val(By,)) — ! mi]\n4 ((m,u) + val(ay,)) .

€ me € me

We see that 1. |4, is the difference of two I'-rational piecewise affine concave functions.
Since {A;}ier is a finite closed cover of Nr, we deduce that Y. is I-rational piecewise
affine. O

Next we study semipositive toric metrics on L.

Proposition 2.5.6. Let || - || be an algebraic metric on L.
(i) If || - || is semipositive, then .| is concave.
(i) We assume that || - || is toric. Then || - || is semipositive if and only if ¥y is concave.

Proof. (ii) Because each algebraic metric is Q-formal (see Proposition 1.2.8), this follows
from [GK15, Corollary 8.12].

(i) For [ - || semipositive, we have to show that 1. is concave along any affine line.
By a density argument, we may assume that the line is I'-rational. Similarly as in the
proof of [BPS14a, Proposition 4.7.1], we use pullback with respect to a suitable equivariant
morphism to reduce the concavity on the affine line to the case of ]P’}{. By [GH15, Corollary
B.18], the torification of a semipositive algebraic metric on P}, is semipositive. Hence, the
claim follows from (ii). O

Corollary 2.5.7. Let || - || be a semipositive algebraic metric on L. Then the toric metric
| - ||s is also algebraic and semipositive.

Proof. By the propositions 2.5.6 (i), 2.5.5 and 2.4.11, the function ¢ = v is concave
I-rational piecewise affine with rec(v)) = ¥. Then Corollary 2.5.4 says that the metric
|- lls =l - ||l is algebraic and Proposition 2.5.6 (ii) implies that it is semipositive. O

Now, we can characterize semipositive toric metrics.

Theorem 2.5.8. Let ¥ be a virtual support function on the complete fan 3 in Ng and set
L = Ly. Then there is a bijection between the sets of

(i) semipositive toric metrics on L;
(7i) concave functions v on Nr such that the function |¢p — ¥| is bounded;
(iii) continuous concave functions on Ay.

The bijections are given by || - || = .| d’ﬁ/‘”'
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Proof. The bijection between (ii) and (iii) follows from Proposition A.9. To prove the
bijection between (i) and (ii), let || - || be a semipositive toric metric on L. By Proposition
2.4.11, the function [¢).| — ¥[ is bounded. Furthermore, there exists a sequence (|| - [[n)nen
of semipositive algebraic metrics converging to the toric metric || - |. Proposition 2.5.6 (i)
says that the functions 1), are concave. By Proposition 2.4.9, the sequence (.|, Jnen
converges uniformly to 1. and hence, the latter is also concave.

Conversely, let ¢ be a concave function on Ny such that ¢ — U] is bounded. Then V¥ is
also concave and, by Proposition A.14, there is a sequence of I'-rational piecewise affine
concave functions (1 )ren with rec(¢) = ¥, that uniformly converges to . Because 9y, is
a piecewise affine concave function with rec(¢;) = ¥, the function ¢ — ¥ continuously
extends on Ny;. Thus, ¥ — ¥ extends to a continuous function on Ny, too. By Proposition
2.4.11, we obtain toric metrics || - ||y and || - [|g,,k € N, given as in (2.15). Then the

sequence of metrics (|| - ||y, )ken converges to || - ||. By Proposition 2.5.2, the metric || - ||y,
is algebraic and therefore, by Proposition 2.5.6 (ii), semipositive. Thus, the metric || - ||, is
also semipositive. O

Remark 2.5.9. Theorem 2.5.8 also holds in the Archimedean setting of the sections 1.5
and 2.4. This is proved side by side to the discrete non-Archimedean case in [BPS14a,
Theorem 4.8.1].

We characterize Chambert-Loir’s measure associated to a semipositive toric metrized line
bundle. Let ¢p: Ng — R be a concave function. We extend the Monge-Ampeére measure
M (1) on Ng (Definition A.17) to a measure Mys(¢)) on Ny by setting

My (P)(E) = Mu(¥) (EN Ng)

for any Borel subset £ of Ny.

Theorem 2.5.10. Let || - || be a semipositive algebraic toric metric on L and ¢ = || the
associated function on Nr. Then

trop, (c1 (L, | - I)") = nt Mas (4.

Proof. By the propositions 2.5.5, 2.5.6 (i) and 2.4.11, the function v is I'-rational piecewise
affine concave with rec(¢)) = ¥. Then Corollary 2.5.4 implies that the metric | - || is
defined by a toric K°-model (211, Dey, €) of (Xx, L).

By 2.2.16, the vertices of II correspond bijectively to the irreducible components of
the special fiber Z1. Since the valuation of K is not discrete, the special fiber 277 is
reduced (see 2.2.9). For each v € T, let V(v) be the corresponding component and &, the
unique point of (Xx)*" such that red(&,) is the generic point of V(v) (see 1.1.8). Then, by
Definition 1.2.14,

Since red(&,) is the generic point of the n-dimensional irreducible component V' (v), it
is clear that &, € T?®'. We have red({,) € V(v) = %, and hence, by Lemma 2.5.3,
trop(&,) = v. Therefore,

trop, (c1(L)") = ei” > degp,, (V(v)) dv.
velld
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On the other hand, by Proposition A.19 and Proposition 2.3.8,

Mas(i) = = Mg (ex)

= Y ol (@) () 6,
vell0

= 1 Z mult(v) degDew (V(v)) 6, .

n!len
v€eIl0

Since the value group of K is divisible, the multiplicity mult(v) of a vertex v is one. The
statement follows from the definition of M (v). O

Corollary 2.5.11. Let ||-|| be a semipositive toric metric on L and ¢ = 1| the associated
concave function on Ng. Then

trop, (c1 (L, [[ - )") = n! Mar ().

Proof. Let (|| - ||x)zen be a sequence of semipositive algebraic metrics that converges to || - |.
Taking the torifications and using Proposition 2.4.4 and Corollary 2.5.7, we may assume
that the ||-||x, k¥ € N, are also toric. By Proposition 1.3.7, the measures trop, (c1(L, | - ||x)™)
converge weakly to trop, (c1(L,| - ||)™) on Nx.

By Proposition 2.4.9, the functions 1., converge uniformly to ). Thus, by Proposition
A.18, the measures M (1)) converge weakly to Mps(). Theorem 2.5.10 implies that

trop, (c1(L, || - 1)) [vg = n! Mar (). (2.16)
By Corollary 1.4.5, the set X&" \ T?" has measure zero with respect to c¢1(L, || - ||)" and so,
Ny \ Ng has measure zero with respect to trop,(c1(L,| - ||)"). Since the M ys(1))-measure
of Ny \ Ng is also zero, the statement follows from equation (2.16). O

At the end of this section, we quote a result about the restriction of semipositive metrics
to toric orbits which will be useful in the proof of the local height formula. Let ¥ be a
support function on ¥ and (L, s) the associated toric line bundle with toric section. Let
o be a cone of ¥ and V(o) the corresponding orbit closure with the structure of a toric
variety (cf. 2.1.4). We denote by ¢: V(o) — X5 the closed immersion. Let m, € M be
a defining vector of ¥ at o and set s, = x™°s. By 2.1.15, the divisor Dy _,, = div(s,)
properly intersects V(o) and we can restrict s, to V(o) to obtain a toric section ¢t*s, of
the toric line bundle O(D(y_p, )(s)) =~ ¢*L.

Proposition 2.5.12. Let notation be as above and denote by Fy the face of Ay associated
to o (see A.20). Let || - || be a semipositive toric metric on L. Then, for allm € Fy —m,,

Z{*Z,L*sg (m) = ¢%,s(m + mo) '

Proof. We can prove the statement as in [BPS14a, Proposition 4.8.8] since the discreteness
of the valuation doesn’t play a role in that proof. O
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2.6. Toric Local Heights over Non-Archimedean Fields

Now, all ingredients are developed to state and prove a formula for the local height of a
toric variety over an arbitrary non-Archimedean field. This generalizes work by Burgos—
Philippon—Sombra who showed this formula under the additional assumption that the field
is discretely valued (see [BPS14a, Theorem 5.1.6]).

Let K be an algebraically closed field which is complete with respect to a non-Archimedean
non-trivial absolute value | - | and denote by I' = —log | K *| the associated divisible value
group. As explained before, the algebraic closedness of K is no restriction since local
heights are stable under base change. We fix a lattice M ~ Z" with dual MY = N and
denote by T = Spec(K[M]) the n-dimensional split torus over K. Let ¥ be a complete fan
on N and Xy the associated proper T-toric variety.

Following [BPS14a, §5.1], we define a local height for toric metrized line bundles that
does not depend on the choice of sections. Even though it differs from the definition of a
local height, we can use it to compute global heights of the toric variety X5 and, more
generally, of orbit closures and images under toric morphisms (cf. Proposition 3.4.2).

Definition 2.6.1. Let L;, i = 0,...,t, be toric line bundles on Xy, equipped with DSP
toric metrics. We denote by ;" the same toric line bundle endowed with the canonical
metric. Let Y be a t-dimensional prime cycle of Xy and let ¢: Y/ — Y be a birational
morphism such that Y’ is projective. Recall the definition of local heights in 1.3.5. Then
the toric local height of Y with respect to Ly, ..., L; is defined as

tor _ _ — N _ —can —ca !
A T V) = AT o Tes) V) ~ AT )0 T sy (V)
where sg..., s are any invertible meromorphic sections with
|div(so)| N ---Ndiv(sy)|NY = 0. (2.17)
This definition extends to cycles by linearity. When Lo = --- = L; = L, we write shortly
)\%Or(Y) = )\tfor —(Y).
0y Lot

Remark 2.6.2. Proposition 1.3.6 (iii, v) implies that the toric local height does not depend
on the choice of ¢ and Y’ nor on the choice of sections. When div(sy), ..., div(s;) intersect
properly on Y, then condition (2.17) is fullfilled.

Proposition 2.6.3. The toric local height is symmetric and multilinear in the metrized
line bundles.

Proof. This follows easily from Proposition 1.3.6 (ii). O

Definition 2.6.4. Let L = (L,|| - ||) be a semipositive metrized toric line bundle with a
toric section s. Let ¥ be the corresponding support function on 3 and v , the associated

concave function on Ng. The roof function associated to (L, s) is the concave function
vz .+ Ay — R given by

0Z,S - /(/}%757
where ¢% , denotes the Legendre-Fenchel dual (see A.7). We will denote 97 , by ). if the
line bundle and section are clear from the context.
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2.6.5. Let notation be as above. By Proposition 2.4.8, the roof function 97 _ is invariant
under complete valued field extensions. If || - || is an algebraic metric, then, by Proposition
2.5.5 and A.12, the roof function 9| is piecewise affine concave.

Theorem 2.6.6. Let & be a complete fan on Ng. Let L = (L, || -||) be a toric line bundle
on Xy, equipped with a semipositive toric metric. We choose any toric section s of L and
denote by W the corresponding support function on 3. Then, the toric local height of Xx
with respect to L is given by

)\%OI(XE) = (n+1)' Ay 19175 dVOlM, (218)
where Ay is the stability set of ¥ and volys is the Haar measure on Mg such that M has
covolume one.

Proof. We prove this theorem analogously to [BPS14a, Theorem 5.1.6]. Since the metric
| - || is semipositive, the functions ¢ and ¥ = rec(¢.) are concave. We set A = Ay,
¥ =1 and 9 =10y,

First, we reduce to the case of an ample line bundle L. Let ¥ be the normal fan of A in
N(A)r (see A.20). We choose any m € aff(A) N M and set A" = A —m. By 2.1.18, there
is a proper toric morphism ¢: X5 — Xy, and an ample divisor Dy, on Xy, such that
Dy = ¢*Dy, +div(x™™). The function (1) —m)" lives on A’ = Ay ,, € M(A)gr and so,
by Theorem 2.5.8, it defines a semipositive metric || - [|a- on the the line bundle O(Dy,,)
on Xx,.. Set Lar = (O(Dw,,), || - ||ar). Using Proposition 2.4.9, we obtain an isometry

L= (0(Dy), |l ll¢) == (O(Dy—m), | - llp—m) = ¢* (Lar).

By Proposition 2.4.14, there is also an isometry between L™ and ¢*(Lxs ). Thus, by the
functoriality of the local height (Proposition 1.3.6 (iii)),

A (Xs) = A0 (Xs) = A7 (9. Xn).

If dim(A) < n, then on the one hand, the integral in (2.18) is zero. On the other
hand, dim(Xy) = n > dim(Xy,, ) implies ¢, X5, = 0 and hence, X“Li’r(Xz) is also zero. If
dim(A) = n, then ¢ is a birational morphism and ¢, Xy, = Xy,,. Moreover,

(n+1)!/vadvolM:(n+1)!/A

—m

(iﬂ - m)v dVOlM = (n + 1)'/ ’(/Jﬁ/.HA, dVOlM(A).
N

So it is enough to prove the theorem for the ample line bundle LA/ on the projective variety

Xy, . Hence, we may assume that L is ample and Xy, is projective.

We prove the theorem by induction on n = dim(Xy). If n = 0, then Xy, = Spec K = P,
VU =0, A={0} and L = O(Dy) = Opo. By the induction formula (Theorem 1.4.3) and
Definition 2.4.6, we obtain

AT.5)(Xz) = —log|[s]| = =¢(0) and A gen (X5) = —log||s]lcan = —¥(0) = 0.

Therefore,
)\tfor(XE) _ —1[1(0) = 19(()) =1! /AﬂdvolM.
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Let n > 1 and let sgp,...,s,—1 be invertible meromorphic sections of L such that
|div(so)| N -+ N |div(sp—1)| N|div(s)| = . By the induction formula 1.4.3,

)‘(f,s),...,(f,s) (Xz) = )\(f,so)

20ty

(En—)((8)) = /X log [|s|| e1(L)" . (2.19)
b3}

For each facet F' of A, let vp € N be the minimal inner facet normal of F' (see A.21)
and or = R>gvr the corresponding ray in . Since L is ample, we obtain by 2.1.17,

)\(Z,So),...7(z75n71)(Cyc(s)) = ; - <F7 ’UF> )\(f,so)

Ty V(OF)), (2.20)

[RRS}

where the sum is over the facets F' of A. By functoriality, the local height of V(o)
with respect to L coincides with the local height with respect to Z|V(O'F)‘ Moreover, by
Proposition 2.4.14, the restriction of the canonical metric of L to the toric variety V(or)
coincides with the canonical metric of L[y(4,). Subtracting from equation (2.20) the
analogous formula for the canonical metric, we get

> —(Fop) M (V(0F)) = AT

" v (op) (L) (¥(5)) (2.21)

— )\(ann’so),.“’(fcan78n71) (Cyc(s)) .

Corollary 1.4.5 says that the measure of X" \ T?" with respect to ¢;(L)" is zero. Since
the tropicalization map is continuous and, by Definition 2.4.6, log ||s|| = trop* ¢, we deduce

[ toslisll @y = [ wrop* () 1 (@) = [ trop, (er(Z)").
Xan Tan Ng
By Corollary 2.5.11, trop, (c1(L)") = n! M (3) and therefore,

[ tosllsl @ =n! [ v dMu(w). (2.22)
Xan Ng

By Proposition A.19, we have M;(¥) = volps(A)dp. Hence, in the case of the canonical
metric, equation (2.22) is reduced to

/ 10g |8 can c1(Z°™)"™ = n!volpy (A)¥(0) = 0. (2.23)
Xan

by

Subtracting from (2.19) the analogous induction formula for the canonical metric and
using (2.21), (2.22) and (2.23), we obtain

N (Xn) = Y- (Fop) Mg (Vo) -t [ v dMu(e). (220
Ia F R

We set temporarily o = o and denote by ¢: V(o) — Xy, the closed immersion. Choose
any element m, in F N M, i.e. m, is a defining vector of ¥ at o, and set s, = x™’s. By
2.1.15, t*s, is a toric section of the toric line bundle ¢* L ~ O(D(\Il—ma)(o))' Hence, by the
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induction hypothesis,

L (V (o)) = n! / Vo dvoly .
A —mo) (o) ’

By Proposition 2.5.12, the function " is the translate of ¢¥|, by —m, and we have

L% se

AWw—m,)(o) = F —mg. Since A is of dimension n, we get M(op) = M(F) and therefore,

AT (V (0p) :n!/

7 P (m + mg) dvol () (m) = n!/ Jdvoly(py - (2.25)
V(or) F—mg F

Inserting (2.25) into (2.24) and applying Proposition A.22, we obtain

MO (X)) = —nl S (F, vF>/ 9 dvolyypy —nl | ¥ dMu(¥) = (n+ 1>!/ ¥ dvols,
I F Nr A

proving the theorem. O

Remark 2.6.7. In the Archimedean case, we define toric local heights and roof functions
in the exact same manner as above, using the notions of sections 1.5 and 2.4. Then Theorem
2.6.6 also holds in the Archimedean setting. This is proved in the same way as the discrete
non-Archimedean case in [BPS14a, Theorem 5.1.6]. Note that here we implicitly make use
of the induction formula 1.5.13.

The following two corollaries correspond to the propositions 5.1.11 and 5.1.13 in [BPS14a].

Corollary 2.6.8. Let notation be as in Theorem 2.6.6. Let o € 3 be a cone of codimension
d and V(o) the corresponding orbit closure. Then

Nt (V () = (d + 1)! /F 97, dvolyy)

where Fy is the face of Ay associated to o (see A.20) and voly(,) is the Haar measure
with respect to the lattice M (o) = M N o+ on the affine space containing F, (see A.16).

Proof. The propositions 2.4.14 and 1.3.6 (iii) imply A\*"(V (o)) = )\%"'r( )(V(O’)). The
V(e

result can be proved similarly to (2.25) using Theorem 2.6.6 instead of the induction
hypothesis. O

Corollary 2.6.9. Let Let N’ be a lattice of rank d and ¥’ a complete fan on Ng. Let
H: N'— N be a linear map which is compatible with ¥/ and X, and let p: Xs» — X5 be
the corresponding proper toric morphism (see 2.1.7). We denote by HY: M — M’ the dual
map and by H(N')5 the saturation of the lattice H(N') in N.

Let L be a toric line bundle on Xy, with a semipositive toric metric. Choose any toric
section s of L and let ¥ be the associated support function.

(i) If H is not injective, then )\fpofz(XZ/) =0.

(it) If H is injective, then

N (Xs) = [HON') 5 HON] A2 (X)) = (@d+ 1)1 [

(qu)HH OH)\/ dVOlM/ .
HY(Aw)
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Proof. This result can be proved analogously to Corollary [BPS14a, 5.1.13] using the
corresponding results from this thesis. O

Remark 2.6.10. In [BPSl4a, §5.1], the formula corresponding to Theorem 2.6.6 is
extended to toric local heights with respect to distinct line bundles. Moreover, the toric
local height of a translated toric subvariety and its behavior with respect to equivariant
morphisms is studied. For arbitrary non-Archimedean fields, these results can be stated
and proved analogously using the herein developed theory.
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Chapter 3.

Global Heights of Varieties over Finitely
Generated Fields

In [Mor00], Moriwaki defined the height of a variety over a finitely generated field over Q
with respect to Hermitian line bundles as an arithmetic intersection number in the sense of
Gillet—Soulé [GS90]. Then Burgos-Philippon-Sombra showed in [BPS14b| that this height
can be written as an integral of local heights over a measured set of places of the finitely
generated field. Furthermore, they applied their formulas for local heights of toric varieties
from [BPS14a] to compute some arithmetic intersection numbers of non-toric arithmetic
varieties coming from a fibration with toric generic fiber.

In this chapter, we extend these results to finitely generated fields over a global field
and quasi-algebraic metrized line bundles. Note that in this setting non-discrete non-
Archimedean places occur. Hence, we actually need our theory developed in Chapter 1 and
2. This generalization was suggested to me by José Burgos Gil. At the end, we particularize
to the case of the function field of an elliptic curve leading to a natural example to illustrate
our theory.

3.1. Global Heights of Varieties over an M-Field

First we explain the notion of M-fields introduced by Gubler in [Gub97, Definition 2.1].
Theses fields include global fields and more generally, finitely generated fields over global
fields. Then we construct global heights of subvarieties by integrating local heights over M.
Note that Gubler’s definition of an M-field is more general than ours.

Definition 3.1.1. Let K be a field and M a family of inequivalent absolute values on K
together with a positive measure p on M. Then K is called an M -field if, for each f € K*,

(i) the function M — R, v — log|flv, is p-integrable;
(ii) the product formula [,,log|f|, du(v) = 0 holds.

Example 3.1.2. A global field F is either a number field or the function field of a smooth
projective curve over a countable field. We endow F' with the following structure of an
M p-field.

If F =Q, then let Mg be the set consisting of the Archimedean and the p-adic absolute
values, normalized in the standard way, and equip Mg with the counting measure.

If F = k(C) is the function field of a smooth projective curve C' over a countable field &,
let My be the set of absolute values | - |, indexed by the closed points v € C', which are

53



CHAPTER 3. GLOBAL HEIGHTS OF VARIETIES OVER FINITELY GENERATED FIELDS

given, for a € k(C)*, by

lafy = ¢; @ g =0 ° if k] = o0
b ’ k| if |k| < oo ,

where ord, is the discrete valuation of the local ring O¢,,. We endow My, with the point
measure 4 given by u(v) = [k(v) : k.

Let Fy denote either Q or k(C). If F is a finite extension of Fy, let Mg be the set of
absolute values | - |, extending an absolute value | - |,, on Fy. We equip Mp with the point
measure p given by

B [Fy : F ,Uo]
u(v) = ﬁu(vo), (3.1)

where I, denotes the completion of F' with respect to |- |,, and similarly for Fp .
In all cases, it can be shown that F' together with (Mp, ) is an Mp-field. For details,
we refer to [BPS14c, 2.1] and, for more advanced examples, to [Gub97, §2].

Remark 3.1.3. In the above definition of a global field we assumed in the case of a
function field k(C') that k is countable to ensure the construction of the Mi-field in 3.2.4.
This assumption is just made for simplicity. In general, we are concerned with finitely
many varieties, metrized line bundles or meromorphic sections and hence, we can find a
countable finitely generated subfield over which all these objects are defined.

Definition 3.1.4. Let K be an M-field and let K, be the completion of an algebraic
closure of the completion of K with respect to v € M. Let X be a proper variety over
K and L a line bundle on X. We set X, = X xg Spec(K,) and L, = L ®x K,. If v is
Archimedean, then we denote by X2" = X, (K,) the complex analytic space associated to
X. If v is non-Archimedean, then X3" is the Berkovich analytic space associated to X,
over K, as defined in 1.1.2. We call X3" the analytification of X with respect to v (or
1)

An (M-)metric on L is a family of metrics || - ||, v € M, where | - ||, is a metric on
L2, The corresponding (M -)metrized line bundle is denoted by L = (L, (|| - [|v)»). An (M-
)metric on L is said to be semipositive if || - [, is semipositive for all v € M (cf. Definition
1.3.1 and 1.5.3). Moreover, a metrized line bundle L is DSP if there are semipositive
metrized line bundles M, N on X such that L = M ® v

Let Z be a t-dimensional cycle on X and (L;, s;), i = 0,...,t, DSP metrized line bundles
on X with invertible meromorphic sections such that | div(sg)| N--- N |div(sy)| N |Z] = 0.
For v € M, we set for the local height at v,

A (Tou50) s Tsst) 20V = AT (0 odlio(se) (Z0)
where d/i?/(si)v is the pseudo-divisor on X, induced by d/ﬁ(sl) (cf. Example 1.2.10).

Definition 3.1.5. Let K be an M-field and X a proper variety over K. A ¢-dimensional
prime cycle Y of X is called integrable with respect to DSP metrized line bundles L;,
i =0,...,t, on X if there is a birational proper map ¢: Y’/ — Y with Y’ projective, and
invertible meromorphic sections s; of *L;, i = 0,...,t, meeting Y’ properly, such that the
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function

!/

M —R, v A Y’ v) (3.2)

(90*30750)7---7(90*3157815)(
is p-integrable on M. A t-dimensional cycle is integrable if its components are integrable.
3.1.6. For an integrable cycle Y, the p-integrability of (3.2) holds for any choice of a
morphism ¢, a cycle Y’ and invertible meromorphic sections s, ..., s; satisfying only

|div(sp)| M-+ N |div(sy)| = 0.

Moreover, the notion of integrability of cycles is closed under tensor product and pullback
of DSP metrized line bundles. This can be proved as in [BPS14a, Proposition 1.5.8] by
means of [Gub03, Proposition 11.5].

Definition 3.1.7. Let X be a proper variety over an M-field K and Y a t-dimensional
prime cycle on X which is integrable with respect to DSP metrized line bundles Ly, ..., L;
on X. Let Y/ and s, ..., s; be as in Definition 3.1.5. Then the global height of Y with
respect to L, . .., L; is defined as

hfo,---it (Y) = /M /\(¢*fo,so),...,(¢*ft,st)(Y/’U) dp(v).

By linearity, we extend this definition to all t-dimensional cycles on X.
Using Corollary 1.3.6 (iii), the Archimedean analogon mentioned in 1.5.11 and the product
formula of K, we see that this definition is independent of the choice of the sections.

Proposition 3.1.8. The global height of integrable cycles has the following basic properties:

(i) It is symmetric and multilinear with respect to tensor products of DSP metrized line
bundles.

(ii) Let o: X' — X be a morphism of proper varieties over K and let Z' be a t-dimensional
cycle such that o, Z' is integrable with respect to DSP metrized line bundles Lo, . .., Ly
on X. Then we have

he gy o7 (Z) =hg 7 (pZ)).

Proof. Using 3.1.6, we get the results by integrating the corresponding formulas stated in
Proposition 1.3.6 (non-Archimedean case) and in 1.5.11 (Archimedean case). O

We consider the special case of the global height over a global field.

Definition 3.1.9. Let F be a global field with the structure (Mg, ) of an Mp-field as in
Example 3.1.2. Let X be a proper variety over a global field F' and £ a line bundle on X.
We call an Mp-metric on £ quasi-algebraic if there exist a finite subset S C Mp containing
the Archimedean places and a proper algebraic model (27, .Z, e) of (X, L) over the ring

Fs={aeF|la, <1Vv ¢S},
such that, for each v ¢ S, the metric || - ||, is induced by the localization

(3{ XFg SpeCFf],f@Fg Fg,e).
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Proposition 3.1.10. Let X be a proper variety over a global field F'. Then every cycle of
X is p-integrable with respect to DSP quasi-algebraic Mp-metrized line bundles on X .

Proof. This is [BPS14a, Proposition 1.5.14]. O

Proposition 3.1.11 (Global induction formula). Let X' be a d-dimensional proper variety
over a global field F and Lo, . .., Lq quasi-algebraic DSP metrized line bundles on X. If sq
is any invertible meromorphic section of Lqg = (L4, (|| - la)v), then there is only a finite
number of v € Mg such that

/)(‘an log HSde,v CI(ZOa'U) ASERRA Cl(zdil’v) # 0

and we have

hz,,..z,(¥) =hz

= X 1) [ g llsallaner@ou) Ao A,

vEMp v
with p(v) as in (3.1).

Proof. The first part follows from the proof of [BPS14a, Proposition 1.5.14]. For the second
part, we use Proposition 3.1.10 and integrate the local induction formulas (theorems 1.4.3
and 1.5.13) over Mp. O

Proposition 3.1.12. Let F be a global field and F' a finite extension of F with the induced
structure of an Mg -field (see Example 3.1.2). Let X be an F-variety, L;, i = 0,...,t,
quasi-algebraic DSP metrized line bundles on X and Z a t-dimensional cycle on X. We
denote by m: X' — X the morphism, by Z' the cycle and by 7 L; the Mp:-metrized line
bundles obtained by base change to F'. Then

h + (2 = hz (2).

Loy, Lt 05--, Lt

Proof. This follows from [BPS14a, Proposition 1.5.10]. O

3.2. IM-Fields from Varieties over a Global Field

Let F be a global field with the canonical Mp-field structure from Example 3.1.2. Let B
be a b-dimensional normal proper variety over I’ with function field K = F(B).

In this section, we endow the field K with the structure of an 9i-field where 91 is a
natural set of places induced by nef quasi-algebraic Mp-metrized line bundles on B. This
generalizes the M-fields obtained by Moriwaki’s construction in [Mor00, § 3] where the
function field of an arithmetic variety and a family of nef Hermitian line bundles are
considered (see also [Gub03, Example 11.22]).

Definition 3.2.1. Let L be a quasi-algebraic Mp-metrized line bundle on B. We say that

L is nef if || - || is semipositive and, for each point p € B(F'), the global height hz(p) is
non-negative.
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Example 3.2.2. Let L = (L, (|| - ||[v)v) be a semipositive quasi-algebraic metrized line
bundle. We assume that L is generated by small global sections, i.e. for each point

p € B(F), there exists a global section s such that p ¢ |div(s)| and supgepgan [[s(2)[ly <1
for all v € Mp. Then L is nef.

The idea of the following proof was suggested to me by José Burgos Gil.

Lemma 3.2.3. Let V be a d-dimensional subvariety of B and let L1, ..., Lq be nef quasi-
algebraic Mp-metrized line bundles on B. Then,

hg, .z,(V) =0

Proof. We may assume that V = B and, by Chow’s Lemma and Proposition 3.1.8 (ii),
that there is a closed immersion ¢: B < Pj. Consider the line bundle ¢*Opr (1) on B,
equipped with the metric %go* I| - ||can,vo at one place vo € Mp and with the metric ¢*|| - ||can,v
at all other places v # vg. This Mp-metrized line bundle is denoted by L. For each point

p € B(F) with function field F(p), there exists a homogeneous coordinate x;, considered
as a global section of Opm (1), such that p ¢ [div(¢*z;)| and hence,

hi(p) =— > ww)logllzjo@@)lcanw+ Y, mw)log2>log2>0.  (3.3)
WEMp () WEMp(p)
wlvo

We extend the group of isomorphism classes of Mp-metrized line bundles on B by
Q-coefficients and write its group structure additively. For ¢ = 1,...,d, and a positive
rational number ¢, we set L;.:=L; + L. Since L; is nef, we obtain, by (3.3) and the

multilinearity of the heights, for each point p € B(F),

hz. .(p) = by, (p) +ehp(p) > elog2 > 0. (3.4)

Now, we distinguish between number fields and function fields. First, let F' be a number
field. Since L;. is semipositive quasi-algebraic, there exists a sequence (L. )ren that
converges to L; . and that consists of Mp-metrized line bundles which are induced by
vertically nef smooth Hermitian Q-line bundles yi,s,kv k € N, on a common model %, j,
over the ring of integers Op. By propositions 1.3.6 (iv) and 1.5.11, we have, for all k € N
and all p € B(F),

g < X p@) A fiokws |- licw) -

wEMF(p)

i,e,k (p) o hf

1,€

Note that the sum is finite and does not depend on p. Hence, by (3.4), there is a ky € N

such that for all k£ > kg and all p € B(F),

hz, ({p}) =hz _ () >0

1,6,k

Thus, for all £ > kg, we have nef smooth Hermitian Q-line bundles yl,e,k, e ,?d@k in
the sense of Moriwaki [Mor00, §2]. So we can apply [Mor00, Proposition 2.3 (1)], which
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also holds for number fields, to get

hfl,s,kv---vfd,s,k (B) = h§1,s,k,m,§d,a,k(B) 2 0. (3'5)

Next, let F' be the function field of a smooth projective curve C' over any field. Since

L;. is semipositive quasi-algebraic, there exists a sequence (L; i)ren that converges to
L;. and that consists of Mp-metrized line bundles which are induced by vertically nef
Q-line bundles .Z; . 1, k € N, on a common model 7, j: %, — C. As in the number field

case, we can deduce, for sufficiently large k’s and for all p € B(F),

hy  (p) = 0. (3.6)

Li,e,k

By [Gub08, Theorem 3.5(d)], the height with respect to such algebraic metrized line
bundles is given as an algebraic intersection number of the associated models. So, the
inequality (3.6) just says that the line bundles £ ., ..., %y, on the model A, are
horizontally nef. Using that they are also vertically nef, it follows from Kleiman’s Theorem
[Kle66, Theorem II1.2.1] that

hfl,s,kw-yfd,s,k (B) = degc ((7T57k)*(01 (31’5716) N Cl(gd,g,k))) Z 0. (37)

Finally, by (3.5) for number fields and by (3.7) for function fields, we obtain, by continuity
of heights in metrized line bundles,

hy 7 (B)=limhy 7 (B)=lim lim hg

e—0 Ll,s:-n:Ld,s e—0 k—oo l,s,kw"»Ld,e,k

(B) =0,

proving the lemma. O

Now, we equip the field K = F(B) with the structure of an 9-field induced by nef
quasi-algebraic metrized line bundles.

3.2.4. Let Hy,...,Hp be nef quasi-algebraic line bundles on B. Let B(!) denote the
set of one-codimensional subvarieties of B. By Lemma 3.2.3, each V € B® induces a
non-Archimedean absolute value on K given, for f € K, by

flv = e ") o) (3.8)

where ordy is the discrete valuation associated to the regular local ring Opy. We equip
BW with the counting measure figy.
Let us fix a place v € M. Then we define the generic points of B5" as

en _ an an
BEr =B\ ) v
VveB®)

Since each V € BW is contained in the support of the divisor of a rational function, a point
p € B3" lies in BS" if and only if, for each f € K*, p does not lie in the analytification
(with respect to v) of the support of div(f). Thus, each p € B&™" defines a well-defined
absolute value on K given by

|f

vp = |f(P)]- (3.9)
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If v is non-Archimedean, then this absolute value is just p. On B3" we have the positive
measure

Hy = C1 (Fl,v) AERNA Cl(ﬁb,v)a

as defined in Definition 1.3.8 (non-Archimedean case) and 1.5.12 (Archimedean case). Each
vavVeB (1) has measure zero with respect to p, by Corollary 1.4.5 (non-Archimedean
case) and by [CT09, Corollaire 4.2] (Archimedean case). Since F is countable, B() is
also countable and therefore B5" \ B has measure zero with respect to j,. So we get a
positive measure on B&*", which we also denote by .

In conclusion, we obtain a measure space

M, ) = (BW, pgn) U (|| BE™, || o) (3.10)
vEMF vEMF

which is in bijection with a set of absolute values on K.
The following shows that (K, 9, 1) satisfies the product formula and so it is an 9-field:

Proposition 3.2.5. Let f € K*, then the function M — R, w +— log|fl|w is integrable
with respect to p and we have the product formula

/ log |flw du(w) =
m

Proof. Let f € K* be a non-zero rational function on B. Then, for almost every V e B(1),
we have f € OF ,. Hence, the function on BW given by V s log | f|y is pgn-integrable.
For each v € M r, the function on B2 given by p +— log|f(p)| is puy-integrable (see
theorems 1.4.3 and 1.5.13). Since the trivially metrized line bundle Op and Hy, ..., Hy, are
quasi-algebraic, there is, by Proposition 3.1.11, only a finite number of v € MF such that

/B pen 108 [ ()] dpao(p) # 0.

Summing up, the function MM — R, w + log | f|., is p-integrable.
By the global induction formula 3.1.11, we obtain

[ 10815k dutw) = 30 —ordv(hg, 5, (V)+ 3 ) [ logls)] dun(p)

veBW) vEMp Bn
= b, g (eve(f)+ 2 wlw) [ 105 1£@)] duslp)
’UEMF J
~ho, #,..m,(B)
:0’
which concludes the proof. =

3.3. Relative Varieties over a Global Field

Let B be a normal proper variety over a global field F' and let 7: X — B be a dominant
morphism of proper varieties over F. We denote by K = F(B) the function field of B and
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by X the generic fiber of 7, that means X = X x g Spec(K) is a proper variety over K. We
assume that K is equipped with the structure of an 91-field induced by nef quasi-algebraic
metrized line bundles Hy, ..., Hy on B as in (3.10).

In this section, we prove the main result of this chapter (Theorem 3.3.4) showing that
the height h .7 .7, 7, 7. (X) with respect to DSP quasi-algebraic Mp-metrized line
bundles £; is equal to the height hfo,...,fn(X ) with respect to induced 9t-metrized line
bundles L;. Note that the first height is a sum of local heights over My whereas the second
is an integral over 9. This generalizes Theorem 2.4 in [BPS14a] where the global field is
Q and the metrized line bundles are induced by models over Z.

3.3.1. Let L= (L,(]| - |lu)») be an Mp-metrized line bundle on X. Then £ induces an
M-metric on the line bundle L = £L ® K on X given as follows:

For each V € BW, consider the non-Archimedean absolute value | - [,y on K from (3.8)
and let Ky be the completion of an algebraic closure of the completion of K with respect
to | - [y. We get a proper K{,-model

(Xv, ,Cv) = (X XB SpecK“’/, L® K(\)/)

of (X, L). By Definition 1.2.7, the model (Xy, L) induces a metric || - ||y on the analytifi-
cation L{ over X{" with respect to |- |y.

Let us fix a place v € Mp. By (3.9), a generic point p € B&™" induces an absolute value
| - |op on K. We denote by K, , the completion of an algebraic closure of the completion of
K with respect to | - [, , and by X%, the analytification of X with respect to |- |, ;. Then

the projection X, xp, SpecK, , — X induces a morphism
ip: Xoy = A (3.11)

Note that 4, is injective if v is an Archimedean place (cf. [BPS14b, (2.1)]), but not

necessarily in the non-Archimedean case. The analytification L%, of L with respect to |- |,

can be identified with the line bundle iy £5" and we equip it with the metric |- ||y, ==y - [[ -
Summing up, we obtain an - metrlzed line bundle

L= (L, (Il lw)wem) (3.12)

on X.

Lemma 3.3.2. Let iy: X3, — X3 be the morphism from (8.11) and m,: X" — BJ" the
morphism of Fy-analytic spaces induced by w: X — B. Then we have

ip(X53) = 7, (D).

Proof. We only show this for a non-Archimedean place v, the Archimedean case is es-
tablished at the beginning of [BPS14b, §2]. We may assume that B = Spec(A) resp.
X = Spec(C) for finitely generated F-algebras A and C. Then 7 corresponds to an
injective F-algebra homomorphism A < C and we have X = Spec(C ®4 K) with
K = F(B) = Quot(A).

Let ¢ € X2 that means ¢ is a multiplicative seminorm on C ® F,, satisfying q|r, = | |v-
Then ¢ lies in zp(X an) if and only if it extends to a multiplicative seminorm ¢ on C ®4 K,
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with G|k, , = | - |v,p- This is illustrated in the following diagram,

A®pF,—>K,

On the one hand, if we have such a commutative diagram, then

77'0(‘]) = Q|A®FU = | : |v,p AQF, = P-

On the other hand, if 7,(q) = p, then we have a multiplicative seminorm ¢ given by
C®aKup = (C@rFy) @aar,) Kop — () ©1r)Kop — Rxo,

where y is some element of the non-empty Berkovich spectrum .# (%ﬂ (q) @(yf(p)KU,p) (cf.

[Duc09, 0.3.2]). It follows easily that we obtain a commutative diagram as above. This
proves the result. O

We need the following projection formula for heights in the proof of the main theorem.

Proposition 3.3.3. Let m: W — V be a morphism of proper varieties over a global field
F of dimensions n +b— 1 and b — 1 respectively, with b,n > 0. Let H;, i =1,...,b, and
Zj, j=1,...,n, be DSP quasi-algebraic line bundles on V and W respectively. Then

hd o, 2 OV) =dege, e Wa)bhg 5, (V),

where W, denotes the generic fiber of w. In particular, if dim(7(W)) < b — 2, then
hﬂ'*ﬁ *Hb Li,...Lon (W) = 0.

----------

Proof. By continuity of the height, we may assume that the metrics in H; and £; are
smooth or algebraic for all ¢, 5. We prove this proposition by induction on n. If n = 0,
then we obtain by functoriality of the height (Proposition 3.1.8),

hﬂ*ﬁl,...,ﬂ'*ﬁb (W) = hﬁl,...,ﬁb (W*(W)) = deg(wn) hﬁl,...,ﬁb(v)'

Let n > 1. We choose any invertible meromorphic section s, of £, and denote by
Il ln = (|| - [[nw)v the metric of £,,. Then the global induction formula 3.1.11 implies

hﬂ-*ﬁlv"'?ﬂ-*ﬁb7zlv“'72’ﬂ(W) = hﬂ-*ﬁl T Hb [:17 ) TL l(CyC(Sn))

b —
o Z M / 1OgHSTLHTLU /\Cl *sz /\ Z

vEMFE

If v is Archimedean, then AY_, c1(H; ) is the zero measure on V2" since dim(V?") = b— 1.
Thus, the measure in the above integral vanishes and so the integral is zero.
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If v is non-Archimedean, then the metrics in H;,, i = 1,...,b, are induced by models
I, of Hf;] on a common model ¥ of V,, over SpecF;. By linearity, we may assume that
e; = 1 for all . Analogously, the metrics in Zjﬂ,, j=1,...,n, are induced by models .Z;
of L;, on a common model # of W,.

We may assume that the morphism 7,: W, — V,, extends to a morphism 7: # — ¥
over SpecF7. Indeed, let #' be the closure of the image of 7, in # xgo #". This is a
proper model of W, equipped with morphisms 7': #’ — ¥ and f: #' — # such that
m'lw, = m and || - |z, = || - [[f=.2;. Then replace #" by #' and .Z; by f*.Z;.

Since the special fiber ¥ of ¥ has dimension b— 1, the degree with respect to J4, ..., 74
of a cycle of ¥ is zero. Hence, for every irreducible component Y of the special fiber of #,
we have by means of the projection formula,

deg . 1oy ... 2, (Y)=degy  p (Tu(ci(£1)...c1(Lh1).Y)) =0.

Therefore, for each v € Mp, the measure in the above integral vanishes and so the integral
is zero.
Finally, we obtain by the induction hypothesis,

T*Hy,...,m*Hy,L1,....Ln W) = hﬂ'*ﬁl,---77r*ﬁb7217---7zn*1(Cyc(sn))
=degz, .z, (eye(sn)y) b, 77,(V)
= degﬁlv---vﬁvL(Wn) hﬁl:--wﬁl:(‘/)’

proving the result. O

Theorem 3.3.4. Let B be a b-dimensional normal proper variety over a global field F and
let Hy, ..., Hy be nef quasi-algebraic line bundles on B. Let K = F(B) be the function
field of B and (I, ) the associated structure of an M-field on K as in (3.10).

Let m: X — B be a dominant morphism of proper varieties over F and X the generic fiber
of m. LetY be an n-dimensional prime cycle of X and Y its closure in X. For j =0,...,n,
let L be an 9M-metrized line bundle on X which is induced by a DSP quasi-algebraic line
bundle L; on X as in (3.12).

Then'Y is integrable with respect to Ly, ..., Ly, and we have

hp 2. Y)=h_.5 77,7, ) (3.13)

Proof. By Chow’s lemma (see, for instance, [GW10, Theorem 13.100]) and functoriality
of the height (Proposition 3.1.8 (ii)), we reduce to the case when the proper varieties are
projective over F. Then 7 is also projective. By (multi-)linearity of the height (Proposition
3.1.8(i)), we may assume that the line bundles £; are very ample and their Mp-metrics are
semipositive. Making a finite base change and using Proposition 3.1.12, we may suppose
that B and X are geometrically integral.

We prove this theorem by induction on the dimension of Y. If dim(Y) = —1, thus Y = 0,
then Y is integrable since the local heights of Y are zero. Equation (3.13) holds in this
case because ) is empty as well.
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From now on we suppose that dim(Y) = n > 0. Then the restriction n|y: Y — B
is dominant. By Proposition 3.1.8 (ii), the height does not change if we restrict the
corresponding metrized line bundles to ). So we may assume that Y = X, Y = X and
n=dim(Y) = dim(X).

Let sg, ..., s, be global sections of Ly, ..., L, respectively, whose Cartier divisors intersect
properly on X, and consider the function

p:IM—R, w+—— A X, w).

(ZovsolX)v“'v(fnvsn|X)(

We must show that p is p-integrable and that

) dut) =bog gz, ()

By the induction formula of local heights (Theorem 1.4.3 in the non-Archimedean and
Theorem 1.5.13 in the Archimedean case), there is a decomposition p = p; + p2 into
well-defined functions p1, p2: 9T — R given by

p1(w) = )‘(fo,so|x),...,(fn,1,sn,l\X)(CYC(SH|X)’ w)

and
po(w) = [ toglsulx, ks e1(Zo) -+ Aer(Tor)

w

Moreover, we can write the cycle cyc(sy,) in X as

cye(sn) = cye(sn) hor/B T Cyc(sn)vert/Ba

where cyc(s,) nor/p contains the components which are dominant over B and cyc(sn)vert/B
contains the components not meeting the generic fiber X of .

By the induction hypothesis, the function p; is p-integrable and

) dutw) =hg, 7 (eye(salx))

=N g, T Ton Loy (€YC(SR) hor/B)- (3.14)

n—1

If w=V € BYD, then we just can copy the corresponding part of the proof of [BPS14b,
Theorem 2.4]. In this case we obtain

p2(V) = Z hﬁhmjb(V)ordW(sn)deg507...’£n71(Wv), (3.15)

wex®)
T(W)=V

where Wy denotes the generic fiber of 7|yy: W — V. This formula implies the integrability
of py on BW with respect to the counting measure g, because there are only finitely
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many W € X such that ordyy(s,) # 0. By (3.15) and Proposition 3.3.3,

> p(V)

VveB®)

= > > by g, (V)ordw(sy)degs, . r, (W)

veBM ywex®)
T(W)=V

= > > odwla) g wm iz z V)
veBM wex®

/B<1> p2(w) dpgn (w)

T(W)=V
+ > odw(sa) by, 7.z, V)
wex™
dim(m (V) <b—2 =0
= hﬁ*ﬁl,.A.,W*FZHZO,..,,ZTLil (Cyc(sn)vert/B) . (316)

Now, let v be a place of Mr and p a generic point of B5". We have to show that the
function

n—1
polp) = [ Togislsallih A\ (i)
v,p 7=0

is integrable with respect to p, = ¢1(H1,4) A+ Aci1(Hp,). Furthermore, we have to prove
that

Cl(ﬂ'*ﬁi,v) (317)

n—1 b
=1

/gen p2(p) dpsw(p) :/ 10g [|snllnn /\ 1(Lj0) A
BS xan /

7=0 7

and that this integral is zero for all but finitely many v € Mp.
If v € MF is an Archimedean place, then the proof of [BPS14b, Theorem 2.4] shows that
p2 is py-integrable on BE™ and that the equation (3.17) holds.

From now on, we consider the case where v € Mp is non-Archimedean. We first assume
that, for each j =0,...,n—1and ¢ = 1,--- ,b, the metrics on L;, and H;, are algebraic.
Then the function ps is u,-integrable because p, is a discrete finite measure.

We choose, for each j, a proper model (2}, %}, ;) of (Xy, L) over SpecF; that induces
the metric of £;,. Note that we omit the place v in the notation of the models in order not
to burden the notation. By linearity, we may assume that e; = 1 for all j. Furthermore, we
can suppose that the models Z; agree with a common model 2" with reduced special fiber
(cf. Remark 1.2.13). In the same way, we have a proper Fy-model % of B, with reduced
special fiber and, for each ¢ = 1,...,b, a model JZ of H; ,, on % inducing the corresponding
metric. As in the proof of Proposition 3.3.3, we can asume that the morphism m,: X, — B,
extends to a morphism 7: 2" — % over Fj.

To construct a suitable model of X, , = X X SpecK,, over K
commutative diagram

[e)

vp» We consider the
’.

SpecK, p B

| |

SpeclF, — Spec F' .
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The universal property of the fiber product induces a unique morphism SpecK, , — B,.
Because # is proper over F; and by the valuative criterion, this morphism extends to
SpecKy , = Z. Let Z) be the fiber product 2 x4 SpecKj ,. This is a model of X,

over K7 ,,, indeed
2.

Zp ¥y, SpecKyp = 27 x5 B xgg SpecFy x g, Spec K, p, = Xy x g, SpecKy p = Xop.
———
=B,

We denote the special fibers of 4, 2" and %), by @J, 2 and 3&7;, respectively. By 1.1.8,
there exists a formal admissible scheme X, over Kj , with generic fiber X3" = X7 and

with reduced special fiber %p such that the canonical morphism ¢,: .’%p — % is finite and
surjective. We obtain the following commutative diagram

xan _ = xan ip Jan v Ban
v,p v,p v v
red \L red l/ red l red l
4 P )

where red is the reduction map from 1.1.6 and 1.1.8. Note that 3;)/; = vaxé Kv,p-
By Definition 1.2.14, the left-hand side of equation (3.17) is equal to

n—1 b
Lo tomizlsallah A @i2i0)) A a(few)() (319
By X =0 i=1
— ; -1 ~ ~
- Z < Z lOg HSTL(ZEZ(SV)” n,v degbgzjgz‘%7~~~7L§ngzfn—1(V)> deg,%ﬁ,...,%f,(z)a

ZeBO) Ve%é‘;)

where £z (resp. {y) denotes the unique point whose reduction is the generic point of Z
(resp. V).
First, we consider the inner sum. Let Z be an irreducible component of % with generic

point nz = red(£z). For W € %ZO)’ let & = &y for any V € %g;) with ¢¢, (V) = W. Then
i¢, (&w) does not depend on the particular choice of V. Hence, Lemma 3.3.5 below implies

10g || (i, (§v))llnw deg (. . - (V)
Vezi:ém ¢ ’ (9, %) 0
A
= 2 1ogllsnlies (w)lly m(W, Ze,) deg. 5y W), (3.19)
We,ﬁfg(;) £z k=0,..., n—1

where m(W, 2¢,) denotes the multiplicity of W in 2¢,,.

By [EGAI Ch. 0, (2.1.8)], there is a bijective map
YezO|#v)=2} — 20, YoV, (3.20)

nz 7’

The special fiber of Z is reduced and hence, applying [Ber90, 2.4.4(ii)] and using the
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compatibility of reduction and algebraic closure, we deduce K@,gz = H(&z) = k(nz).

Therefore, Z¢, = f&”vxgg Ky, is the base change of the fiber %72 = 2 x5 k(nz) by

k(nz) = Kk(nz). Thus, by [Stals, Lemma 32.6.10], we obtain a surjective map
2-(0) 20
25— 20, (3.21)
Composing the maps (3.20) and (3.21), we get a canonical surjective map
(0 —>0) | ~
2 —{v e 20| #y) =z}

with finite fibers. More precisely, for each irreducible component Y in 2 with 7(Y)=2,
the scheme Y, =Y x 7 SpecK, ¢, is a finite union of (non-necessarily reduced) irreducible

components of é;f(zo). Since ¢, (§w) = & for W € Yg(g), we deduce

> loglsn(ies (Ew)llny m(W, Z,) deg;, 5y (W)
wez N
= 2 logllsn(év)ly deg (Ye)  (3:22)

Ye2 (0 e
)=z

Let Y be an irreducible component of 2 with generic point ny such that 7(Y) = Z.
Then Lemma 3.3.6 below shows that

degy, 2 oo, oY) = degjg ot g Yeg)deg s s (2). (3.23)
Z zZ

Combining the equations (3.18), (3.19), (3.22) and (3.23), we obtain

n—1 b
Joo (L, oilisnli A iZia) ) A s
Bg Xan i=1

v,p 7=0

= > Y loglsa(&y)llns dege. 2y o oY)
ZeB0) yeq (0)

FV)=2
= Y logllsn(&y)llny degy, oy ez (Y)
Yez 0
n—1 .
= [ togllsallh A i) A A er(r' L)
7=0 i=1

using in the next-to-last equality that, for an irreducible component Y of 2 with
dim(7(Y)) < b — 1, the degree is zero. This proves equation (3.17) in the algebraic
case.

We next assume that, for each j =0, ...,n, the metric || - ||;, on £, is algebraic, but
that the metrics on H;,, 7 = 1,...,b, are not necessarily algebraic. For this case, we once
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again show that ps is u,-integrable and that the equality (3.17) holds.

As in the previous case, we may assume that, for each j = 0,...,n, there is a proper
model (&, Z) of (L, Xy) over Fy inducing the corresponding metric. We choose any
projective model Z over I;, of the projective variety B, and suppose, as in the previous case,
that m,: X, — B, extends to a proper morphism 7: 2~ — %. Because X, is projective
over F,, and by [Gub03, Proposition 10.5], we may assume that 2" is projective over I,
and thus, 7 is projective. Using Serre’s theorem (see [GW10, Theorem 13.62]), the line
bundle .} is the difference of two very ample line bundles relative to 7. By multilinearity
of the height, we reduce to the case where .Z; is very ample relative to 7. Because %
is projective over Iy, we deduce by [GW10, Summary 13.71 (3)] that there is a closed

immersion f;: 2" < ng such that £ ~ ffO_~; (1).
B

For projective spaces PVi, j =0,...,n, let P:=PNo x ... x PV» be the multiprojective
space and let Op(e;) be the pullback of Opn; (1) by the j-th projection. Since B is geomet-
rically integral, we have the function field K, = F,(B,) and we define X,, = X, xp, K,
and L;, = L;, ® K,. We obtain the following commutative diagram

z X Spec K&p (L- PK&p

e 7

9Ip
- 1 o
Xv7p ]P)K’lhp

hyp iARS !

pd 7

X, c 95 Pk,

Py .

Note that each horizontal arrow is a closed immersion because f is a closed immersion
and the other morphisms are obtained by base change.

Let p € B§*™. Then the metric || - [lop, = 33| - [lv on Ljp = g5 Opy,  (€;) is induced by
JpZj = Jpf Orylej) = f;OPKgﬁp (e)-

Hence, Lj,p, = g;@]pKU,p (ej), where @pKU,p (ej) is endowed with the canonical metric. By
Proposition 3.2.5, the field K, together with (B2°", u,) is a B5"-field in the sense of
[Gub02, 5.2]. Therefore, [Gub02, Proposition 5.3.7(d)] says that every n-dimensional cycle
on Py, is pu,-integrable on BE™" with respect to Op,. (€o), ..., Opy, (€n). Since integrability
is closed under tensor product and pullback (see 3.1.6), the local height p is u,-integrable
on Bg®. By the induction hypothesis, we deduce that pa = p — p1 is also p,-integrable on
Bg".

For proving the equality (3.17), we study p in more detail. We can choose global sections
tj of Opy (ej), j=0,...,n, such that

(|div(g*to)| U |div(sow)]) N -+ N (|div(g*ty)| U |div(spe)|) N Xy = 0.
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Then we get, by Proposition 1.3.6 (iii) and (v),

p(p) = )\(fo,so),---7(zn75n) (X7p)

g*t;
Y.
5 (Y;)

= M@y, (€0)t0).n @ (en) ) (95 (X0):P) + ZO log )
J= v

where Y} is any zero dimensional representative of the refined intersection
div(g*to) ... div(g*tj—1). div(sjt1,0) - - - div(spe). Xo

We can express p in terms of the Chow form of the n-dimensional subvariety X, of the
multiprojective space Pg,. This is a multihomogenous polynomial Fx, (&, ...,&,) with
coefficients in K, and in the variables §; = (ST S Nj) viewed as dual coordinates on

IP’%JU (see [Gub02, Remark 2.4.17] for details). By (3.24) and [Gub02, Example 4.5.16], we
obtain

95 (vy)

S]”U

n
p(p) =1log |Fx, |vp — log |Fx, (to, ., tn)|vp + Y log
=0

, (3.25)

’U,p

where in the first term we use the Gauss norm and in the second term t; denotes the dual
coordinate of ¢;.

The next goal is to express p(p) in the form log||s|| in order to apply the induction
formula (Theorem 1.4.3). The last two summands in (3.25) already have this form since
a rational function is an invertible meromorphic section on the trivial bundle. For the
first term, let Fx, (&) = Y., am &™, where ay, € K, € = (&, ...,&,) and we use the usual
multi-index notation. Since F, is only unique up to multiples of K,*, we may assume
that there exists an m’ such that a,, = 1. Let N be the number of the multi-indices m
with am # 0. We consider the rational map

¢: By --» IP’I]F\;A, x +— (am(T))m-

Using a blow-up of B, as in [Har77, Example 11.7.17.3] and functoriality of the measure p,

(Proposition 1.3.11 (ii)), we may assume that ¢ is a morphism. Let | - || be the pullback of

the canonical metric on Opy-1(1) and let 2y be the coordinate of IP’I]FV ~! corresponding to
F v

m’, considered as a global section of O(1). Then we have

10g [|¢* 2 (p) ||

a
22 ()] = log ngx am ()] = o Fx. |,

= log max
m m’

Hence, p(p) is of the form log ||s|| for a suitable DSP metrized line bundle on B, and an
invertible meromorphic section s.

Now, for each ¢ = 1,...,n, we choose a sequence of algebraic semipositive metrics
(Il - ls0.%)ken on H;, that converges to the semipositive metric | - ||;, on H;. Denote
Hip k= (Hip, || - [livk) and set

pog = c1(Hipp) A Act(Hpuk)-

Applying, for each k£ € N, the induction formula (Theorem 1.4.3) to fBgen p(p) At k(D)
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then using the continuity of local heights with respect to metrics (see 1.3.5) and applying
the induction formula again, we obtain

tim [ o) k@) = [ op) dio) (3.26)

k—o00 Bgen Bgen

Analogously we can show this for the local height p; and hence, we get

tim [ o) dies) = [ 2(p) dnol). (3.27)

k—o00 B%en B%en

On the other hand, using Theorem 1.4.3 as above,

n—1 b
dim [ g lsallu A e1(Zio) A A\ (i)
7=0 i=1
n—1 o b o
= [ 108 lsallne A e1@i) A A er(m i), (3.28)
xgn j=0 i=1

Thus, the equality (3.17) for semipositive metrics on H;, and algebraic metrics on £j,
follows by (3.27), (3.28) and the algebraic case.

In the last step, we assume that the metrics on H;, and L;, are semipositive and not
necessarily algebraic. We can proceed similarly to the corresponding part in [BPS14b,

Theorem 2.4] and choose, for each j = 0,...,n, a sequence of algebraic semipositive metrics
(I llj,0,6 ) ken on Lj, that converges to || - ||;,. For p € B&™", we set
n—1 o
pos®)= [ Jogiyllsallihi A 15
X 5=0

By the induction formula 1.2.16 and Proposition 1.2.12 (iii), we obtain for each k,l € N,

1p2.k(p) — p21(p)| = ’ A Tos50)seesTnessn) L) = AT 1 s0) Ty o) (Y C(Snlx), P)

~ATorso) ooy PV F AT 0 @ (eve(salx),p) |

n
S Zd(H ' Hj:vyk7 || ' H]‘,U,l)degLo,...7Lj,1,Lj+17...7Ln(X)
j=0
n—1
+ 2 AUl Mok T o) degry, n; s 1y 1. Loy (E(50] X))
7=0

Hence, the sequence (p2 1 )ren converges uniformly to pp. The measure p, has finite total
mass and, by the previous case, the functions ps j, are p,-integrable. So, we deduce that ps
is p,-integrable and that

lim P2k At (p) = /B son P2(P) At (p).

k—oo ] ggen

Thus, using (3.17) for the functions py;, and applying the induction formula 1.4.3, the
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equality (3.17) also holds in the case when all the metrics are semipositive.
By Proposition 3.1.11, the integral in (3.17) is zero for all but finitely many v € Mp
because the line bundles 7*Hy, ..., 7*Hy, Lo, ..., L, are quasi-algebraic.

In conclusion, the function p = p1 + p2 is u—integrable and we obtain, by using the
induction hypothesis (3.14), (3.16), (3.17) and the global induction formula 3.1.11,

hy  7,(X)= /Mpl<w)dﬂ(w)+/B(l>P( dpgn(w) + > p(v /Bgen 2(p) dpt (p)

vEMp
= hﬂ-*ﬁl7"'77T*ﬁb)207"~7zn71(CyC(Sn) hor/B)
+ hﬂ'*ﬁl,...,ﬂ*ﬁb,ZO,...,Zn_l (Cyc(sn)vert/B)
n—1 b
+ Z ,U, / IOgHSanv /\ /\ /\Cl *sz
vEMp 7=0 i=1
= heeqp o Hy o T (X)
proving the theorem. O

Lemma 3.3.5. Let notation be as in the proof of Theorem 3.3.4, in particular W & %(ZO).
Then,

de V) =m(W, 2z,) - deg, . W),
ZO) g(ézjéz ) :0,.A.,n—1( ) ( 52) g(Jﬁ Ek)k o,m,n—l( )
Vex! tr
e, (V)=W

where m (W, ,%AEZ) denotes the multiplicity of W in ,%AEZ.

Proof. In order not to burden the notation, we omit each £z. For V € 3~€(0), the projection
formula says

deg(L*j*_gk)k: (V) = [K(V) : K((V))] deg,. & (V). (3.29)

Let 7 be any non-zero element in the maximal ideal K% . Applying the projection formula

in [Gub98, Proposition 4.5] to the Cartier divisor div(w), we get 1,(X) = cye(Z). This
implies

S KOV):KOVJdeg( oy (W) =m(W.2)deg(. ;) (W), (330)
~(0> k=0,..., n—1 =0,..., n—1
Vex
(V)=W
The statement follows from (3.29) and (3.30). O

Lemma 3.3.6. We keep the notations of the proof of Theorem 3.3.4. Then,

degf(),...,gn71,7'*% ..... T*%( ) deg * (Y%z) deg%ﬂl (Z)

ngiﬂoy I,

Proof. Let ) nw W be any cycle representing ¢1(%) ... c1(Zu-1).Y € CHy(2)

Wez ()

70



3.4. GLOBAL HEIGHTS OF TORIC VARIETIES OVER FINITELY GENERATED FIELDS

and let j,, be the projection z@;z — 2. Since 7, (W) = 0 if dim(7(W)) < b— 1, we obtain

(e W) = > nw[KW) : KFEW))] - #(W)

wez ("
dim(7(W))=n

= Y nw[KW):K(2)]-Z
wez
F(W)=2
= deg (ZWegﬁn) nw an) "z
= deg (C1(j;;zga) . cl(j;ZZ_l)_ynZ) .7
- degji‘,ze%,...,j;zjl_l(ynz) Z .

Since the degree is stable under base change, we deduce

degy, o 1 oom,..rom(Y)
= deg%w’% (7~'*(C1 (fo) ...C1 (gn_l)Y))

=deg, 2 i Zu (Yy,) degm.....5(2)

= degjg2%7.__7jgzz_l(}/%z) degﬁfi,...,t%‘i,(z) )

proving the result. O

3.4. Global Heights of Toric Varieties over Finitely
Generated Fields

Following [BPS14b, § 3] closely, we apply the theory of toric varieties developed in [BPS14a]
and Chapter 2, to get some combinatorial formulas for heights of non-toric varieties over
global fields. Indeed, our non-discrete non-Archimedean toric geometry is necessary since
the measure space 9 from (3.10) contains arbitrary non-Archimedean absolute values, in
contrast to the measure space considered in [BPS14b, §1].

As usual, we fix a lattice M ~ Z" with dual MV = N and use the respective notations
from Chapter 2.

At first, we consider an arbitrary M-field K with associated set of absolute values M
and positive measure u on M. Let ¥ be a complete fan in Ng and let Xy, be the associated
proper toric variety over K with torus T = Spec K[M].

3.4.1. Let L be a toric line bundle on Xy. An M-metric || - || = (|| - [|v)ver on L is toric
if, for each v € M, the metric || - ||, on L, is toric (see Definition 2.4.1). The canonical
M -metric on L, denoted || - ||can, is given, for each v € M, by the canonical metric on L,
(see Definition 2.4.12). We will write L°" = (L, || - ||can)-

Let s be a toric section on L and ¥ the associated virtual support function. Then a
toric M-metric (|| - [lv)v on L induces a family (Y7, ,),c,, of real-valued functions on Ng
as in Definition 2.4.6. If || - [| is semipositive, then each ¢ _ is concave and we obtain a

family (ﬁfs v) of concave functions on Ay called v-adic roof functions (cf. Definition

veM
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2.6.4 and Remark 2.6.7). When L and s are clear from the context, we also denote ¢
by 1, and ¥ by 0.

’S7U

Proposition 3.4.2. For each i = 0,...,t, let L; be a toric line bundle on Xy, equipped
with a DSP toric M-metric and denote by L; the same toric line bundle endowed with
the canonical M-metric. Let'Y be either the closure of an orbit or the image of a proper

—Fcan

toric morphism, of dimension t. Then Y is integrable with respect to Z(C)an, ..., L and

hpean  Fean (Y) =0. (3.31)

Furthermore, if Y is integrable with respect to Lo, ..., L, then the global height is given by

bz, z.(Y)= /M Ao g, (Yv)dp(v), (3.32)
where /\%)or,...,ft (Y,v) = A%ﬁmm’ft’v(%) is the toric local height from Definition 2.6.1.

Proof. The first statement and equation (3.31) can be shown using the same arguments as
in [BPS14a, Proposition 5.2.4]. Reducing to Y = Xy, and Ly = --- = L,, = L, the proof
is based on an inductive argument over the dimension of X, using, for each v € M, the
local induction formula and the fact that, for a toric section s of L, we have as in (2.23),

[, 108 lsllcns e (T5)" = 0.

PIR)
The second equation follows easily from the first one. O

Corollary 3.4.3. Let L = (L,(|| - ||lu)») be a toric line bundle on Xx equipped with
a semipositive toric M-metric. Choose any toric section s of L and denote by W the
corresponding support function on X. If Xy is integrable with respect to L, then

hf(Xg)z(n—l—l)!// 9= dvoly du(v).
M JAg ”

Proof. This is a direct consequence of Proposition 3.4.2 and the formulas for the toric local
height (Theorem 2.6.6 if v is non-Archimedean, and [BPS14a, Theorem 5.1.6] else). [

Now we consider the particular case of an 9i-field which is induced by a variety over a
global field as in section 3.2. Let B be a b-dimensional normal proper variety over a global
field F and let Hy, ..., Hy, be nef quasi-algebraic metrized line bundles on B. This provides
the function field K = F(B) with the structure (9, ) of an M-field as in (3.10). Let X
be an n-dimensional proper toric variety over K with torus T = Spec K[M], described by
a complete fan X in Ng. We choose a base-point-free toric line bundle L on X together
with a toric section s and denote by ¥ the associated support function on X.

Let 7: X — B be a dominant morphism of proper varieties over F' such that X is the
generic fiber of 7. We equip L with a toric 9t-metric || - || such that L = (L, || - ||) is induced
by a semipositive quasi-algebraic Mp-metrized line bundle £ on X as in (3.12). Then it
follows easily that L is also semipositive and so, for each v € 9, the function 1), is concave.

The following result generalizes Corollary 3.1 in [BPS14b], where the global field is Q
and the metrized line bundles are induced by models over Z. It is essentially based on our
main theorems 2.6.6 and 3.3.4.
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Corollary 3.4.4. Let notation be as above. Then the function

MmM—R, wr— U+ . (m)dvolpys(m) (3.33)

Ay L,s,w

is p-integrable and,

bttty £ 20 = D) = ([ [ i) avolag(m) (). (334

-----

Proof. By Theorem 2.6.6 (non-Archimedean case) and [BPS14a, Theorem 5.1.6] (Archime-
dean case), we have

(n+1)! [ b dvoly = AT (Xu). (3.35)
. , ,

Hence, Theorem 3.3.4 implies the p-integrability of the function (3.33). The first equality
of (3.34) is Theorem 3.3.4. The second follows readily from (3.32) and (3.35). O

Proposition 3.4.5. We use the same notation as above.
(i) For each m € Ay, the function M — R, w — Uy (m) is p-integrable.
(i) The function
Uz Aw — R, mi— /mt V4 (M) dpp(w)
is continuous and concave.
(iii) The function M x Ay — R, (w, m) — 9y, (m) is (u x volys)-integrable.

(iv) We have

hw*ﬁl,...,w*ﬁbf ’’’’’ Z(X) = hf(X) = (Tl + 1)‘ Ay 19175(7’)1) dVOlM(m),

where 9 _ is the function in (ii).

Proof. The proof of (i)-(iii) respectively (iv) is analogous to [BPS14b, Theorem 3.2 respec-
tively Corollary 3.4] using Corollary 3.4.4 in place of [BPS14b, Corollary 3.1]. It utilizes in
an essential way that v,, is concave (see Theorem 2.5.8 and Remark 2.5.9). O

3.5. Heights of Translates of Subtori over the Function
Field of an Elliptic Curve

In [BPS14b, §4], the corresponding formulas in section 3.4 are particularized to the case
when X is the normalization of a translate of a subtorus in the projective space and
canonical metrics. We will recall their statements in our setting and apply these to the
case of the function field of an elliptic curve.

Let B be a b-dimensional normal proper variety over a global field F and let Hy, ..., H,
be nef quasi-algebraic Mp-metrized line bundles on B. We equip K = F(B) with the
structure (9, 1) of an M-field as in (3.10).
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For r > 1, let us consider the projective space Pz = P} xp B over B and the universal
line bundle (’)]prB(l). We equip O]p% (1) with the metric obtained by pulling back the

canonical Mp-metric of Opr (1) and denote this by O(1) = Opr, (1).
For m; € Z" and f; € K*, j=0,...,7, we consider the morphism

mi — P, b= (fot™ 1o s £,

where f;t™i = f;t]7" . -1;7". For simplicity, we assume that mg = 0, fo = 1 and that
my, ..., m, generate Z" as an abelian group. Denote by Y the closure of the image of this
morphism. Then Y is a translated toric subvariety of P (cf. [BPS14a, Definition 3.2.6]),
but not a toric variety over K since it is not necessarily normal.

Let Y be the closure of Y in P%; and let m: ) — B be the morphism obtained
by restricting P’z — B. Our goal is to compute the arithmetic intersection number
hn*ﬁl,...,w*ﬁb,m,...,@(y) using formula (3.34). Since Y is not necessarily normal, we
consider the normalization X of Y and the induced dominant morphism X — B which we
also denote by 7. Then the generic fiber X = X xp K is a G, g-toric variety over K. Let
L be the pullback of O(1) to X and L the associated 9M-metrized line bundle on X as in
(3.12). Then L is a toric semipositive 9M-metrized line bundle on X.

Analogously to [BPS14b, Proposition 4.1], we have the following description of the
associated w-adic roof functions.

Proposition 3.5.1. Let notation be as above and let s be the toric section of L induced
by the section xog of O(1). The polytope associated to (L, s) is given by

A = conv(my,...,m,)

and, for w € M, the w-adic roof function ¥,: A — R is the upper envelope of the extended
polytope A, CTR™ X R given by

A :{conv((mj,— 7, (V) ordv (£5))j=0,...r), ifw=V e BW),
"= conv{(my Loz ) )0, ifw=pe BE" v e Mp.

Now we differ from the setting in [BPS14b, §4] and consider the special case of the
function field of an elliptic curve equipped with a canonical metrized line bundle. Note
that in this case non-discrete non-Archimedean absolute values naturally occur.

3.5.2. Let F be an elliptic curve over the global field F' and let H be an ample symmetric
line bundle on E. We choose any rigidification p of H, i.e. p € Ho(F) \ {0}. By the
theorem of the cube, we have, for each m € Z, a canonical identification [m]*H = H om? of
rigidified line bundles. Then there exists a unique Mp-metric || - ||, = (|| - ||5,0)» on H such
that, for all v € Mp, m € Z,

=&

[m]*” : Pt

pv

For details, see [BG06, Theorem 9.5.7]. We call such an Mp-metric canonical because
it is canonically determined by H up to (|a|y)ven, for some a € F*. By [Gub07a, 3.5],
the canonical metric || - ||, is quasi-algebraic and, since H is ample and symmetric, it is
semipositive.

The global height associated to H = (H, || - ||,) is equal to the Néron-Tate height hy (see
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[BGO6, Corollary 9.5.14]). In particular, it does not depend on the choice of the canonical
metric. Since H is ample, we have ho = hy > 0.

For each v € My, the canonically metrized line bundle H induces the canonical measure

c1(Hy) = c1(Hy, || - ||p,v) which does not depend on the choice of the canonical metric (see
[Gub07b, 3.15]) and which is positive. It has the properties

c1(H,)(E™) = degy(E) and  [m]*ci(H,) = m?cy(H,) for all m € Z.

For a detailed description of these measures, we have to consider three kinds of places
v E Mp.

(i) The set of Archimedean places in Mp is denoted by Mz°. For v Archimedean,
E2" = E(C) is a complex analytic space which is biholomorphic to a complex torus
C/(Z + Z7), ST > 0. The canonical measure c;(H,) corresponds to the Haar measure on
this torus with total mass degy (E).

(ii) The set of non-Archimedean places v with E of good reduction at v is denoted by
MgE. For such a v, the canonical measure c1(H,) is a Dirac measure at a single point of
E3". Indeed, let &, be the Néron model of E, over ;. Since E has good reduction at
v, the scheme &, is proper and smooth, and its special fiber &, is an elliptic curve over
F,. Let &, be the unique point of E3™ such that red(&,) is the generic point of &,. Then
e1(H,) = degy(E) 3,

(iii) The set of non-Archimedean places v with E of bad reduction at v is denoted
by MP«“- Let v € M2, then E2" is a Tate elliptic curve over F,, i.e. E2" is isomorphic
as an analytic group to G, / q%, where Gm,v is the multiplicative group over F, with
fixed coordinate x and ¢ is an element of Gy, (F,) = F;\ with |g|, < 1 (see, for instance,
[BGR84, 9.7.3]). Denote by trop: G, — R, p = —logp(z), the tropicalization map and
set A, :=—1log|q|yZ. Then we obtain a commutative diagram

trop

Consider the continuous section p: R — G§, of trop, where p(u) is given by

Z Q™ — max |, | exp(—m - u) (3.36)
meZ
meZ
as in 2.4.7. Using EJ" = G}, /g%, this section p descends to a continuous section

p: R/A, — E5™ of trop. The image of p is a canonical subset S(E3") of E2" which
is called the skeleton of E3". By [Ber90, Ex. 5.2.12 and Thm. 6.5.1], this is a closed subset
of E3" and trop restricts to a homeomorphism from S(E7") onto R/A,. By [Gub07b,

Corollary 9.9], the canonical measure ¢;(H,) on E5" is supported on the skeleton S(E3")
and corresponds to the unique Haar measure on R/A,, with total mass degy (E).

Recall that we consider the morphism

Gux — Pk, t—— (1: fit™ ot fit™)
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with my ..., m, € Z" generating Z" as a group and fi,... f, € K* = F(B)*. The closure
of the image of this morphism in P is denoted by V.

Corollary 3.5.3. With notations as above, we particularize to the case where the variety
B is an elliptic curve E over F' and H is an ample symmetric line bundle on E together
with a canonical Mp-metric as in 3.5.2.

Then hw*ﬁ,Wl) 77777 W()ﬂ) is equal to

n+ 1)!degy(FE /19p ) dvol(z) +
(n+ 1)1 e ><degH >

3> [ fo 7000 40 dtacp)

veEME®

+ 3 /ﬁg ) dvol(z) + Y //A /19 z) dvol(z )duHaar(U)>,

veEME, veMP,

where C C EW s the set of irreducible components of the divisors cye(fj),=0,...,r, vol
is the Lebesgue measure on R™ and paar s the Haar probability measure of the respective
space.

Proof. Since the height is invariant under normalization, we have hﬂ*ﬁm m(y) =

h .57z 7(&). We get the result by Theorem 3.3.4, Corollary 3.4.3, Proposition 3.5.1 and
the description in 3.5.2. O

Example 3.5.4. Let FF = Q and let E be an elliptic curve over Q with origin O and
j-invariant j. For simplicity, we assume that E has good reduction at 2 and 3. Then F is
given by an (affine) Weierstrafl equation

g(z,y)=y* — (23 + Az + B) =0 (3.37)

with coefficients A, B in Z, which is minimal at each place v # 2,3 (cf. [Sil92, Proposition
VIIL.8.7]). This Weierstrafl equation also defines a model & C P% of E over Z. We set
A:=0(&\{0}) = Z[z,y]/(g). Then we have K = Q(E) = Quot(A).

Furthermore, we consider the case when n =1 and m; = 4,7 =0,...,r, and we choose a
family fo,..., fr € A C K of pairwise coprime polynomials with fy = 1 as before. Then
A =1[0,7]. Let w € M and ¥y, : [0,r] = R the w-adic roof function. We have to consider
four cases corresponding to the four summands in Corollary 3.5.3.

(i) Let w =P e EW. If P = O, then hy(P) = 0 and thus 9o = 0. Otherwise, there is
at most one i € {0,...,7} such that ordp(f;) # 0 because fy, ..., f, are pairwise coprime.
Since ordp(fo) = 0, BH(P) > 0 and ordp(f;) > 0, Proposition 3.5.1 implies

/0 " p(z) dz = —%BH(P) ordp(f,). (3.38)

(ii) Let w = p € E(C)&". By Proposition 3.5.1, we obtain

1 —log|f;
9, [0,7] > R, 7~  max <0g|fk(p)| 0g|f;(P)]
0<j<a<hs<r k—j

i#k

@=3)+loglfp]) . (339
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In particular, ¥,(0) = log | fo(p)| = 0. We deduce

" _ = . ﬁp(T)
/0 Up(z) d:z:—izzlvﬂp(z)—i— 5

By [Sil94, Corollary 1.4.3], there exists a unique lattice A C C such that the map
C/A — E(C), 2+ (p(2),36(2));

is a complex analytic isomorphism of complex Lie groups, where p is the Weierstrafl
p-function associated to A. Then,

/ / 7917('1‘) dw dMHaar(p)
E(C)gen JO

U p(2), 10 () ()
= / Z p(2), 1o ( )+—(p( )’25()) dz (3.40)
C/A T

vol

with ﬁ(p(z)’%go,(z)) as in (3.39) and where vol(A) denotes the covolume of A.

(iii) Let w = p € E&", v € Mé. Then the scheme &, = & xgz SpecC;, is proper and
smooth over C;. Thus, the special fiber &, is an elliptic curve over C, = TF,,. By Corollary
3.5.3, we have to study the unique point §, € E3" such that red(&,) is the generic point of
&,. By [Kna00, Theorem 2.4], the local ring Oy, red(e,) admits a real-valued valuation ord,.
Then &, is given by —logé&, = ord,. In particular, log|fi(&)| < 0 and log|f;(&)| < O if
and only if f; € C;°A. Since fy, ..., fr are pairwise coprime, we deduce as in the first case,

/ Ve, (z) da = Ord;f’"). (3.41)

(iv) Let w = p € E§™, v € Ma. Since E has bad reduction at v, we have for the
j-invariant |j|, > 1. Thus, by [Sil94, Theorem V.5.3], there is a unique ¢, = ¢ € Q. with
lglo = |j]; ! < 1 such that E, is isomorphic over C, to the Tate curve E, defined by

%t aly =" + A(q)a’ + B'(q), (3.42)

where A’(¢q) and B’(q) are universal integral power series in ¢ that converge in Q5. By
[Sil94, Theorem V.3.1], we get an isomorphism of analytic groups Gg;,/ ¢ — E given
on the C,-rational points by

w - qZ N (x/(w)vy,(w)) 9 if w ¢ qZ>
0, if w € ¢%,

where

(3.43)
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and
00 on, 2 0 n
/ q-w nq
= —_— . 3.44
= 2 Ty T AT 34
= n=1

By the change of coordinates (Z,7) = (;U’ + %, y + %x’), the elliptic curve E, can be
written in the form

P =i"+Ai+B (3.45)

where A = A(q) = A'(q) — 13; and B = B(q) = B'(q) — :54/(q) + g&; are power series
in ¢ with coefficients in Z[1/6]. Let o, = o = (AB/AB)'Y2. Using the proof of [Sil92,
Proposition I11.1.4 (b)], we have the following relations between the coordinates,

(z,y) = (a?ﬁc, aggj) = (a?] (;U’ + %) ol (y' + %x’)) ) (3.46)
As in the Archimedean case (ii), we get
/ / 9 5y () AvOl(z) dpittans (1)
R/—log|qlvZ JO

1 IOg‘j‘v _119 . 119 . .
- log\j\v/o ; p@) (1) + 5@ (r) du, — (3.47)

where p(u) is defined after (3.36) and () is given as in (3.39) with the values

p(w

log | £;(p(w))| = log| fi (0*(&/(w) + &), *(y/(w) + 32/ (w))) |y - (3:48)

Conclusion: Inserting (3.38), (3.40), (3.41) and (3.47) into the formula of Corollary 3.5.3,

the arithmetic intersection number hﬂ*Em’m(J}) is equal to
A~ — 19 z 1 /(2 (T‘)
B Z b (P) ordp(f,) + 2degy(E / Z i (i) + (p(2),50'(2)) ds
Peldiv(f)] vol(A) - Jeya i3 e 2
2d log \J\v Y53
— degy(E) Z ord,(fr) + Z egH / 5@ (z) + M du,
veMé eMb log |]| 2
where, for p = () € E&™ and p = (p(2), 1¢/(2)) € B(C)#™,
. log | fx(p)| —log|f;(p)
Up(7) =O<]@?§k<r< | A 75 ; J) +log | f;(p )I) (3.49)
itk

and log |fi(p(w))|, i =1,...,r, is given by (3.48) and the series (3.43), (3.44).

Example 3.5.5. We keep the assumptions and notations from Example 3.5.4, choosing
now r = 2 and the specific functions fo = 1, fi = y and fo = px for a prime p. For
simplicity, we assume that E has good or multiplicative reduction at each place of Q (cf.
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Remark 3.5.6). Then the concluding formula in Example 3.5.4 can be further simplified:

The zeros of fo = px are (0,4v/B) and Ord(od:\/g)(fQ) = 1. Furthermore, if v = p, then
ord,(pz) = —log |p|, = log(p), and otherwise, ord,(pz) = 0.

In the case of bad reduction, i.e. v € M(g, we have to compute log | f;(z(w), y(w))|5@)
Recall that in this case v # 2,3. First, we consider |y(w)|,,) for u € (0, —log|ql,). For
a, = « as in (3.46), we obtain, by (3.46), (3.43) and (3.44),

2n,,,2

y(w,q) = o® (' (w,q) + ¢/ (w,q)) = af Z ! IU_Jrqzww : (3.50)

For n > 0, we have |¢"w|,,) = |q|; exp(—u) < 1. Thus, for each n > 0,

q"w + ¢*"w?

(1 —gqmw)?

_ | n 2n, 2 _ n 2n, 2 _ n _
= ’q w+ ¢"w ‘p(u)—max(\q W0 5 |47 W ’p(u))— gl exp(—u).

p(u)

Since |q|F exp(—u) < |q|} exp(—u) for k > 1 > 0, we obtain

o0 2n,,,2

qgw+qwe "w + ¢“"w
(1-q"w)3

= exp(—u). (3.51)
p(u)

For n < 0 and u € (0,log|q|, 1), we have ‘q3"w3]p(u) > |q2”w2‘p(u) > |q"wl,,) > 1, and
therefore,

2n 2 27’L 2 |

o

ottt
(1 —q w) p(w) |q3nw3|p (u) pl)”
Since |¢* w]p(u < |qlw|;(t) for k <1 < —1, we deduce
q- w_|_q 2nw2 IR
Z (1—q"w)3 w - |q w’p(u) = |q|v exp(u). (3.52)
p(u

Using (3.48), (3.50), (3.51), (3.52) and ]%‘U = 1, we conclude

|| exp(—u), fo<u< —%log lq]v,

[f1(p(@)] = ly(w; @)l p(w) { (3.53)

a|3]qlyexp(u), if —3log|gly < u < —log|qlo.

Since u +— |y(w, q)
one can show that

w) 18 continuous, we can replace “<” by “<” in (3.53). Analogously,
p(w)

exp(—u), if 0 <u<—1logl|gle,
2" (w, q)| (w) = { ( e 1 2 logldl. (3.54)
|qloexp(u), if —5loglgly < u < —log|qlo.
Hence, (3.48) and (3.54) imply, for almost all u € [0, —log |q].],
12 (F(@)] = o)y = [0l lplela () + &1,
=la®|u|plo max(|z’ (w) |y 1) = |allplo- (3.55)
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Since u +— | f2(p(@))| is continuous, the equality (3.55) holds for all u € [0, —log |q|,].

Recall that [j], = |¢|,!. Using (3.49) and the formulas (3.53) and (3.55), the roof
functions in the case of bad reduction are given by 95 (0) = 0, ¥;57)(2) = log (|a|Z|pl.)
and

2
max 71%(‘&2'“'1)'”) ,3log|al, — u) , ifo<u< %log 17]v,
Yy (1) =
p(u) 2
max wﬁlogmn — log |7]v +u> , if %log l7]v < u <log|jlo.

(3.56)

Now, we use the assumption that the bad reduction of E at v is multiplicative. Let
L = Qu(). Then we have either L = Q, (split case) or L/Q, is unramified of degree 2
(non-split case), see [Sil94, Exercise 5.11]. By the proof of [Sil92, Proposition VII.5.4 (a)],
the Weierstrafl equation (3.37) is still minimal over L. Moreover, the Weierstral equation
(3.42) is minimal over L (see [Tat74, Theorem 5]) and thus, since v # 2,3, the equation
(3.45) is minimal over L as well. We deduce by [Sil92, VII.1.3 (b)] that |a, = 1.

In particular, if v # p, the function ;) is identically zero. If v = p, an easy computation
shows that

/log'f'pﬁ 4 o ® g —1(log |jl,)® — L log(p) log |jl,, if log|jl, < log(p),
0 o) 2 L(log(p))? — log(p) log |1, if log|sil, > log(p).

The invariant j is a rational number with integral p-adic valuation v,(j) < 0. Hence,
log ||,/ log(p) = —vp(j) > 1, and we can omit the first case.

Conclusion: The height hw*ﬁio(l) —O(l)(y) in our specific Example 3.5.5 is given by
degH(E) 1
A 1 . 2log| L 1 . d '
vol(A) Jea max ( oglp- p(2)],2log|zp (Z)|> +log |p - p(2)| dz (3.57)

— 20 (0, VB) — degg (E) - log(p) - b(p),

where
1, if pe M§,

b(p) = 1 . b
2+ 2,0)" if p € Mg,
denoting by v, the usual p-adic valuation.

We see that this height is, at the Archimedean place, an integral of terms including the
Weierstraf§ p-function, and with concrete terms at the non-Archimedean places.

Example 3.5.6. In the previous example it is important that, for each place v € M(B, the
reduction is multiplicative in order to ensure that ||, = 1 for a, = (AB/AB)'/? as in
(3.46). Keeping the notations of Example 3.5.5, we consider a concrete elliptic curve, now
allowing additive reduction at some place: Let F be the elliptic curve over QQ given by

y? =23 — 203352 . £ 4 24335371,
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Then F is described by the invariants
A = 212312577 j _9l85—l7=1 . _ 9103452

Using [Sil92, Proposition VIL.5.1], we see that E has additive reduction at the place v = 5,
multiplicative reduction at v = 7 and good reduction at the other places. We have |az|7 = 1.

Let us compute |as|5 = \/\AB(q5)/A(q5)B|5. On the one hand, we have

|A/B|; = |-2°571717, =5

On the other hand, we consider ‘ (g5)/A(gs ‘ where, as in (3.45),

- 3 2 nigl - 1 7 & ndg?
= 521_5,” and B(q5) @_ﬁ 1_571,'

Using \q5|5 = \3\5 5, an easy computation shows that \A(q5)]5:max(\%]5, 15]5/g5]5) =1
and |B(gs)|s = max(| g |5, |gs|5) = 1. Hence, we obtain

~ - 1/2
josls = (|AB(a5)/A(gs)B|;) = V5.
By (3.56), we get 195(@)(0) =0, 195@)(2) =log (5 - |p|5) and

3logh—u, if0<u< %log5,

V) (1) = {2

%log5+u, if%log5§u§log5.

Thus,
og |4 V5 (2) 5(log5)2, ifp=5,
/0 ’195(@)(1)4_ p(;du:{é(lo 52 ifp—=7
i(log5)s, ifp=T.
Then the height h ﬁmﬁ()}) in this concrete Example 3.5.6 is given by
d
egH / max log Ip - p(2)], 2log| }) +log[p- p(z)|dz
vol(A
- 2hH( 0,VB) — degy (E) - log(p) - b(p),
where
_%7 lfp = 57
bp)={-3, ifp=T1,
1, else.

Note that this result differs from the formula (3.57) if p=5orp="7.
This example was constructed by means of [SAGE] and the table on page 108 in [BK75].

81






Appendix A.
Convex Geometry

In this appendix, we collect the notions and statements of convex geometry that we need
for the study of toric geometry. We follow the notation of [BPS14a, § 2] which is based on
the classical book [Roc70].

Let M be a free Abelian group of rank n and N := M"Y :=Hom(M, Z) its dual group.
The natural pairing between m € M and u € N is denoted by (m,u) :=u(m). If G is an
Abelian group, we set Ng:=N ®z G = Hom(M, G). In particular, Ng = N ®z R is an
n-dimensional real vector space with dual space Mr = Hom(N,R). We denote by T" a
subgroup of R.

A.1. A polyhedron A in Ny is a non-empty set defined as the intersection of finitely many
close half-spaces, i. e.

A= ﬂ {u e Ng | (m;,u) >1;}, wherem; € Mg, l; eR,i=1,...,r. (A.1)
i=1

A polytope is a bounded polyhedron. A face A’ of a polyhedron A, denoted by A’ < A,
is either A itself or of the form A N H where H is the boundary of a closed half-space
containing A. A face of A of codimension 1 is called a facet, a face of dimension 0 is a
vertex. The relative interior of A, denoted by ri A, is the interior of A in its affine hull.

A.2. Let A be a polyhedron in Ng. We call A strongly convex if it does not contain any
affine line. We say that A is I'-rational if there is a representation as (A.1) with m; € M
and [; e I'. If I' = Q, we just say A is rational. We say that a polytope in My is lattice if
its vertices lie in M.

A.3. A polyhedral cone in N is a polyhedron ¢ such that Ao = ¢ for all A\ > 0. Its dual is
defined as
oV:={mé€ Mg | (m,u) >0Vueco}.

We denote by o the set of m € Mg with (m,u) = 0 for all u € 0. The recession cone of a
polyhedron A is defined as

rec(A):={u e Ng |u+A C A}

If A has a representation as (A.1), the recession cone can be written as

rec(A) = ri]{u € Ng | (m;,u) > 0}.
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A.4. A polyhedral complex 11 in Ng is a non-empty finite set of strongly convex polyhedra
such that

(i) every face of A € II lies also in II;
(ii) if A, A’ € II, then AN A’ is empty or a face of A and A’.

Note that, in contrast to the notion in [BPS14a, Definition 2.1.4], a polyhedral complex
only contains strongly convex polyhedra.

A polyhedral complex II is called I'-rational (resp. rational) if each A € II is T'-rational
(resp. rational). The support of II is defined as the set |[II| :={Jpcp A. We say that II is
complete if |II| = Ng. We will denote by II* the subset of k-dimensional polyhedra of II.

A fan in Ng is a polyhedral complex in Ny consisting of (strongly convex) rational
polyhedral cones.

A.5. Let IT be a polyhedral complex in Ng. The recession rec(II) of II is defined as
rec(II) = {rec(A) | A € IT}.

If IT is a complete I'-rational polyhedral complex, then rec(Il) is a complete fan in Ng.
This follows from [BS11, Theorem 3.4].

A.6. Let C be a convex set in a real vector space. A function f: C — R is concave if
f(tur + (1 —t)ug) > tf(ur) + (1 —1t)f(uz) (A.2)

for all uy,ue € C' and 0 <t < 1.
Note that we use the same terminology as in convex analysis. In the classical books on
toric varieties [KKMS73], [Ful93], [CLS11], our concave functions are called “convex”.

A.7. Let f be a function on Ng. We define the stability set of f as
Ag:={m € Mg | (m,-) — f is bounded below}.

This is a convex set in Mi. The definition is only useful in case of a concave function as
otherwise Ay = (). The (Legendre-Fenchel) dual of f is the function

YAy — R, m+—— uien]\{;R«m,u) — f(u)).

It is a continuous concave function.

A.8. Let f: Ng — R be a concave function. The recession function rec(f) of f is defined

as
A

rec(f): Ng — R, wu+— lim J () .
A=oo A

By [Roc70, Theorem 13.1], rec(f) is the support function of the stability set Ay, i.e. it is
given by

rec(f)(u) = inf {m,u)

for u € Ng.
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Proposition A.9. Let X be a complete fan in Ng and let ¥: Nr — R be a virtual support
function on X, i.e. it is a function given by ¥|, = (mg,-) where my, € M, 0 € X
(Definition 2.1.9). Then the assignment v — 1" gives a bijection between the sets of

(i) concave functions 1 on Nr such that |1 — V| is bounded,
(7i) continuous concave functions on Ag.

Proof. 1If ¥ is concave, this follows from the propositions 2.5.20 (2) and 2.5.23 in [BPS14a].
If ¥ is not concave, both sets are empty O

A.10. A continuous function f: Ng — R is piecewise affine if there is a finite cover {A; }ier
of Ng by closed subsets such that f|,, is an affine function.

Let II be a complete polyhedral complex in Ng. We say that f is a piecewise affine
function on II if f is affine on each polyhedron of II.

A.11. Let f: Ng — R be a piecewise affine function on Ng. Then there is a complete
polyhedral complex IT in Ng such that, for each A € II,

fla(u) = (mp,u) + 15 with (mp,ly) € Mr xR . (A.3)

The set {(myp,lr)}aen is called a set of defining vectors of f. We call f a I'-lattice function
if it has a representation as (A.3) with (mp,ly) € M x T for each A € II. We say that f is
a ['-rational piecewise affine function if there is an integer e > 0 such that ef is a I'-lattice
function.

A.12. Let f be a concave piecewise affine function f on Ng. Then there are m; € Mg,
l; R, i=1,...,r, such that f is given by
flu) = 'nilin (mj,uy +1; for u € Np.
i=1,...,7
The stability set Ay is a polytope in Mg which is the convex hull of my,...,m;. The
function f is piecewise affine concave if and only if fV is a piecewise affine concave function
on Ay. The recession function of f is given by
rec(f): Np — R, u+— 'Ililin (mg,u).
i=1,...,r

The function rec(f) has integral slopes if and only if the stability set Af is a lattice
polytope.

A.13. Let f be a piecewise affine function on Ng. Then we can write f = g — h, where ¢
and h are concave piecewise affine functions on Ng. The recesssion function of f is defined
as rec(f) = rec(g) — rec(h).

In Theorem 2.5.8 we need the following assertion.

Proposition A.14. Let ' be a non-trivial subgroup of R. Let W be a support function on a
complete fan in Ng (Definition 2.1.9) and 1) a concave function on Ng such that |t — V| is
bounded. Then there is a sequence of T'-rational piecewise affine concave functions (Vg )ken,
with rec(vy) = W, that uniformly converges to 1.
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Proof. Since V¥ is a support function with |¢) — ¥| bounded, the stability set Ay is a lattice
polytope in Mg with Ay = Ay. Thus, by Proposition [BPS14a, Proposition 2.5.23 (2)],
there is a sequence of piecewise affine concave functions (¢ )reny with Ay, = Ay, that
converges uniformly to . Because the divisible hull of I" lies dense in R, we may assume
that the v’s are I'-rational. Finally, Proposition 2.3.10 in [BPS14a| says that Ay, = Ay
implies rec(¢y) = V. O

A.15. Let f be a concave function on Ng. The sup-differential of f at u € Ng is defined
as
Of (u) :=={m € Mg | (m,v—u) > f(v) — f(u) for all v € Ng}.

For each u € N, the sup-differential df(u) is a non-empty compact convex set. For a
subset E of Ny, we set

Of(E):= | of(u).

uelr

A.16. Let L be a lattice. We denote by voly the unique Haar measure on Lg such that
L has covolume one. If A is an affine space with associated vector space Ly, then voly,
induces a measure on A which we also denote by voly,.

A.17. Let f be a concave function on Ng. The Monge-Ampére measure of f with respect
to M is defined, for any Borel subset F of Ng, as

My (F)(E) = voly (0f(E)) ,
where volys is the measure from A.16. Then the total mass is My;(f)(Nr) = volpr(Ay).

Proposition A.18. Let (fx)ren be a sequence of concave functions on N that converges
uniformly to a function f. Then the Monge-Ampére measures Mpr(fr) converge weakly to

M (f).

Proof. This follows from [BPS14a, Proposition 2.7.2]. O

Proposition A.19. Let f be a piecewise affine concave function on a complete polyhedral
complex II in Ng. Then

Mur(f) =Y volu (9] (v)) bu,

vell0

where 0, is the Dirac measure supported on v. In particular, if ¥ is a support function on
a complete fan in Ng, then

MM(\I/) = VOIM(A\y)(so.
Proof. This is Proposition 2.7.4 and Example 2.7.5 in [BPS14a]. O

A.20. Let A be an n-dimensional lattice polytope in Mg and let F' be a face of A. Then
we set
op:={u€ Ng|(m—m'ju)>0forallmeA m'eF}.

This is a strongly convex rational polyhedral cone which is normal to F. By setting
YA :={or | F < A}, we obtain a complete fan in Ng. We call ¥ A the normal fan of A.
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The assignment F' — op defines a bijective order reversing correspondence between faces
of A and cones of ¥ 5. The inverse map sends a cone o to the face

Fo={meA|{m' —m,u)>0forallm € A, ueo}. (A4)

For details, we refer to [CLS11, §2.3].

We also use the notation F, in the following situation. Let ¥ be a fan in Ng and ¥ a
support function on ¥ with associated lattice polytope Ay. For o € ¥, we denote by F
the face of Ay given as in (A.4).

A.21. Let F be a lattice polytope in Myr. We denote by aff(F') the affine hull of F' and
by L the linear subspace of My associated to aff(F'). Then M (F):=M NLg defines a
lattice in Ly. By A.16, we have a measure voly () on Ly = M(F)g as well as an induced
measure on aff(F") which we also denote by voly/ ().

If A is a full dimensional lattice polytope in Mg and F' is a facet of A, we denote by
vp € N the unique minimal generator of the ray op € XA (see A.20). We call vp the
minimal inner facet normal of F.

Proposition A.22. Let f be a concave function on Nr such that the stability set Ay is a
lattice polytope of dimension n. With the notations in A.21 we have

= [ rdMa(s) = D) [ 1 dvoly + 3 (Fooe) [ dvolas,
f F

Nr

where the sum is over the facets F' of Ay.

Proof. This is [BPS14a, Corollary 2.7.10]. O
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algebra of a concave function, 84
K-affinoid, 8 of a polyhedral cone, 83
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analytic function, 7

analytic space, 8

equivariant morphism, 28

of a complex scheme, 23 face, 83
. facet, 83
of a scheme over a non-Archimedean
field, 7, 8 fan, 84
. L I-admissible, 32
analytification
normal, 86

of a complex scheme, 23, 54
of a scheme over a non-Archimedean
field, 7, 8, 54
angle, 34
approximation theorem, 17

first Chern form, 23
formal scheme
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generic fiber

of a formal scheme, 9
generic points, 58
canonical measure global field, 53

over an elliptic curve, 75

Berkovich spectrum, 8

canonical metric, 43 height
compact torus, 40 global, 55
local

compatible linear map, 29

concave function. 84 of metrized line bundles, 14

of metrized pseudo-divisors, 12, 14,

cone
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local, 34 toric local, 48

of a polyhedral complex, 33

lvhedral. 83 induction formula, 19, 25
polyhedral,

current, 24 Kajiwara-Payne tropicalization, 42
Green, 24
cycle Legendre-Fenchel dual, 84
integrable, 55 line bundle, 6
prime, 6 local cone, 34
integrable, 54
M-field, 53
defining vectors (M-)metric, 54
of a piecewise affine function, 85 canonical
differential form, 23 of a toric line bundle, 71
dual over an elliptic curve, 74
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quasi-algebraic, 55 I'-lattice, 85
semipositive, 54 [-rational, 85
toric, 71 on a polyhedral complex, 85
(M-)metrized line bundle, 54 polyhedral complex, 84
DSP, 54 complete, 84
nef, 56 [-rational, 84
quasi-algebraic, 55 rational, 84
semipositive, 54 recession of, 84
meromorphic section support of, 84
invertible, 11 polyhedral cone, 83
metric, 10, 23 polyhedron, 83
Q-formal, 10 I'-rational, 83
algebraic, 11 rational, 83
canonical, 43 recession cone of, 83
DSP, 14, 23 strongly convex, 83
formal, 10 polytope, 83
(M-), see also (M-)metric lattice, 83
semipositive, 14, 23 product formula, 53
semipositive Q-formal, 10 proper intersection, 12

semipositive algebraic, 11

. .. recession cone, 83
semipositive smooth, 23 ’

recession function

sm?oth, 23 of a concave function, 84

toric, 40 fa i e affine functi 85
metrized line bundle, 10, 23 d ot.a pleCGWISG atine function,

DSP, 14 reduction map,

relative interior, 83

Dositive. 14
semipositive, roof function, 48

metrized pseudo-divisor, 11, 23

minimal inner facet normal, 87 v-adic, 71
model skeleton, 75
algebraic special fiber
of a line bundle, 11 of a formal scheme, 9
of a variety, 11 stability set, 84
formal subdomain
of a line bundle, 10 affinoid, 8
of a variety, 10 rational, 8
Monge-Ampere measure, 86 sup-differential, 86
morphism support function, 29
equivariant, 28 strictly concave, 29
of toric models, 31 virtual, 29
toric, 28
multiplicity T-Cartier divisor

on a toric variety, 29

of a polyhedron, 34
Tg-Cartier divisor

non-Archimedean field, 7 on a toric scheme, 35
Tate algebra, 8
piecewise affine function, 85 toric line bundle
defining vectors of, 85 on a toric scheme, 37
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toric metric, 40
toric model
of a T-Cartier divisor, 38
of a toric line bundle, 38
of a toric variety, 31
toric morphism, 28
toric scheme, 31
toric section
over a toric scheme, 37
over a toric variety, 29
toric variety, 27
torification, 40
tropicalization, 42
tropicalization map, 41, 42

variety, 6
vertex, 83
virtual support function, 29

95



	Introduction
	Height Theory
	Toric Geometry
	Acknowledgements
	Conventions and Notations

	Metrics, Local Heights and Measures over Non-Archimedean Fields
	Analytic and Formal Geometry
	Metrics, Local Heights and Measures
	Semipositive Metrics, Local Heights and Measures
	Induction Formula for Local Heights
	Metrics, Local heights and Measures over Archimedean fields

	Metrics and Local Heights of Toric Varieties
	Toric Varieties
	Toric Schemes over Valuation Rings of Rank One
	T-Cartier Divisors on Toric Schemes
	Toric Metrics
	Semipositive Toric Metrics and Measures over Non-Archimedean Fields
	Toric Local Heights over Non-Archimedean Fields

	Global Heights of Varieties over Finitely Generated Fields
	Global Heights of Varieties over an M-Field
	M-Fields from Varieties over a Global Field
	Relative Varieties over a Global Field
	Global Heights of Toric Varieties over Finitely Generated Fields
	Heights of Translates of Subtori over the Function Field of an Elliptic Curve

	Convex Geometry
	Bibliography
	Index

