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1. Barrier	 films	 for	 adhesion	 prevention:	 What	 can	 we	 learn	 from	 wound	

dressings	

This	 chapter	 gives	 an	overview	of	 polymers	 that	 can	be	used	 as	wound	dressings	 and	 are	

therefore	 good	 candidates	 for	 the	 preparation	 of	 films	 for	 the	 prevention	 of	 peritoneal	

adhesions.	
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1.1 Introduction	

In	 the	 modern	 wound	 care	 natural	 and	 synthetic	 polymers	 are	 often	 used	 for	 wound	

dressings	 due	 to	 specific	 beneficial	 characteristics,	 like	 the	 ability	 to	 regulate	 a	 moisture	

imbalance	by	removing	wound	exudate	and	maintaining	a	moist	wound	environment	or	the	

ability	 to	 donate	 moisture	 1,2.	 Advanced	 non-adherent	 hydrogel	 dressings	 can	 be	

furthermore	 removed	 pain	 free	 without	 causing	 damage	 to	 the	 injured	 tissue	 2,	 which	

promotes	 the	 desired	wound	 healing	 and	 enhances	 the	 restoration	 of	 the	 skin	 defect.	 To	

prevent	peritoneal	adhesions	after	surgery	similarly	designed	barrier	films	made	of	different	

degradable	and	non-degradable	polymers	already	showed	excellent	clinical	results	due	to	an	

appropriate	 separation	 of	 the	 damaged	 tissues	 during	 the	 wound-healing	 period.	

Accordingly,	a	closer	look	onto	the	characteristics	of	polymers,	which	are	used	for	effective	

wound	dressings,	 should	allow	 the	 identification	of	new	candidates	 for	 the	preparation	of	

alternative	films	for	adhesion	prevention	and	moreover	improve	currently	used	systems	for	

this	application.	

In	 order	 to	 appropriately	 compare	 the	 two	 applications	 and	 learn	 from	 each	 other,	 the	

differences	 in	 the	healing	of	 skin	defects	 and	defects	of	 the	peritoneum	and	 the	 resulting	

polymer	 requirements,	which	 are	used	 for	 the	preparation	of	 the	medical	 devices,	will	 be	

highlighted	in	more	detail.	

Modern	wound	dressings	for	the	treatment	of	acute	and	chronic	external	wounds	are	made	

of	 polymers,	which	 fulfill	many	 different	 clinical	 functions,	 like	 for	 example	 the	 uptake	 of	

wound	exudate	or	the	maintenance	of	a	humid	wound	environment	to	enhance	the	healing	

process.	 The	 established	 polymers	 for	 this	 application,	 like	 for	 example	 alginate	 and	

hyaluronic	acid,	already	showed	many	benefits	in	the	treatment	of	skin	defects.	But	also	for	

the	 prevention	 of	 peritoneal	 adhesions	 hyaluronic	 acid	 is	 already	 used	 in	 the	 application	

form	 of	 a	 gel	 or	 a	 film,	 because	 the	 separation	 of	 the	 traumatized	 tissues	 is	 currently	

considered	to	be	the	most	effective	way	to	prevent	the	formation	of	adhesions.	

For	both	types	of	wounds	biomaterial	characteristics	like	biocompatibility,	biodegradability,	

non-immunogenicity,	 hemostatic	 activity,	 as	 well	 as	 the	 absence	 of	 toxic,	 carcinogenic	 or	

thrombogenic	activities	are	essential	to	fulfill	the	criteria	of	suitable	devices	to	treat	patients	
3,4.	 Accordingly	 many	 polymers	 have	 already	 been	 used	 for	 both	 applications,	 for	 wound	
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dressings,	as	well	as	for	films	for	adhesion	prevention,	with	different	success	and	a	different	

focus	of	their	application.	

The	 research	 of	 George	 D.	Winter	 in	 1962	 firstly	 demonstrated	 the	 beneficial	 effect	 of	 a	

moist	environment	on	the	wound	healing	process,	because	wounds	that	are	exposed	to	air	

form	a	scab	that	 retards	epithelization.	Wounds,	covered	with	a	polyethylene	 film	to	keep	

them	moist	do	not	form	a	scab	and	the	epithelization	is	more	rapid	5.	Since	this	time,	many	

wound	 dressings	 made	 of	 different	 hydrogel	 forming	 polymers,	 which	 create	 a	 moist	

environment	 for	 healing,	 were	 invented	 and	 successfully	 brought	 to	 the	 clinic.	 Besides	 a	

moist	environment	 these	hydrogels	have	many	more	beneficial	advantages.	They	are	non-

adherent	 on	 the	wound	 and	 therefore	 can	 be	 removed	 from	 the	wound	without	 causing	

additional	pain	and	further	damage	to	the	newly	grown	skin	epithelium	6.	On	the	other	hand,	

exuding	wounds	need	a	wound	dressing	that	is	able	to	incorporate	large	amounts	of	wound	

exudate,	 which	 can	 be	 accomplished	 by	 wound	 dressings	 made	 of	 alginate	 7,	 a	 natural	

polymer	that	is	known	to	absorb	large	amounts	of	liquid	resulting	in	the	formation	of	stable	

hydrogels.	Another	quite	similar	polysaccharide,	which	is	used	for	wound	dressings	due	to	its	

ability	to	reduce	scar	formation	and	alternatively	already	applied	for	adhesion	prevention	as	

a	biodegradable	and	biocompatible	hydrogel,	is	hyaluronic	acid,	which	only	differs	slightly	in	

structure	and	functional	groups	(Figure	1).	

a)	

	

b)	

	

Figure	1:	a)	alginic	acid,	b)	hyaluronic	acid	

To	prevent	the	formation	of	peritoneal	adhesions,	a	reduction	respectively	inhibition	of	scar	

formation	 is	also	highly	desirable.	Therefore	hyaluronic	acid	seems	to	be	an	advantageous	

polymer	 for	 the	preparation	of	 films	 for	adhesion	prophylaxis.	 In	 the	peritoneal	 cavity	 the	

effective	 uptake	 of	wound	 exudates	 or	 bacteria	 by	 a	 polymer	 like	 alginate	 should	 not	 be	

expected	 to	 be	 that	 helpful.	 However,	 alginate	 also	 showed	 promising	 results	 in	 the	
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prevention	 of	 peritoneal	 adhesions	 due	 to	 some	 other	 beneficial	 characteristics	 like	 its	

mucoadhesive	properties	8.	

1.2 Differences	of	the	two	application	sites	

To	identify	the	essential	prerequisites	for	the	two	application	sites,	differences	in	structure	

and	 function	 should	 be	 highlighted	 and	 compared	 in	 more	 detail.	 Furthermore,	 it	 is	 also	

necessary	 to	 understand	 the	 differences	 in	 two	 wound	 healing	 processes	 as	 well	 as	 the	

resulting	requirements	for	wound	dressings	and	adhesion	barriers.		

1.3 Structure	and	function	of	skin	and	peritoneum	

The	largest	and	most	important	organ	of	the	human	body	is	the	skin.	It	protects	the	human	

body	 from	 microbes	 and	 chemical	 agents.	 Furthermore	 it	 helps	 to	 regulate	 the	 body	

temperature.	The	skin	consists	of	 three	different	 layers	 the	epidermis,	 the	dermis	and	 the	

hypodermis.	The	epidermis	is	the	outer	layer	of	the	skin.	It	provides	physical	protection	and	

works	as	a	waterproof	barrier.	The	dermis,	as	well	as	the	hypodermis	consists	of	connective	

tissue	 consisting	 of	 collagen	 and	 glycosaminoglycans.	 Furthermore	 the	 dermis	 contains	

sweat	glands	and	hair	follicles	and	the	hypodermis	fat	9.		

The	 peritoneum	 is	 a	 protective	 membrane,	 too.	 Unlike	 the	 skin,	 its	 assignment	 is	 not	 to	

protect	the	human	body	from	environmental	influences,	but	to	cover	the	organs	and	allow	

them	to	move	upon	each	other	without	friction	10.	It	consists	of	a	sheet	of	connective	tissue	

and	a	single	layer	of	mesothelial	cells	that	are	anchored	to	the	basement	membrane	11,12.	

Both	 the	 skin	 as	 well	 as	 the	 peritoneum	 can	 like	 any	 other	 tissue	 or	 organ	 lose	 their	

functionality	by	the	formation	of	scar	tissue	after	trauma.	Furthermore	injured	peritoneum	

can	form	peritoneal	adhesions.	Therefore	it	is	of	utmost	importance	to	enhance	the	wound	

healing	and	reduce	the	scar	formation	to	retain	their	functionality.	

1.4 Differences	in	wound	healing	

The	wound	healing	of	a	skin	defect	differs	from	that	of	a	peritoneal	defect.	The	healing	of	a	

skin	defect	can	be	divided	into	the	following	stages.	In	the	first	stage,	called	the	immediate,	

the	hemostasis	occurs.	The	initiation	of	the	coagulation	cascade	leads	to	the	formation	of	a	

fibrin	clot	and	platelet	aggregation.	In	the	second	stage,	the	inflammation	takes	place	with	
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the	 activation	 of	 the	 complement	 cascade,	 which	 comes	 along	 with	 the	 invasion	 of	

neutrophils	 and	 macrophages.	 In	 the	 third	 stage,	 the	 proliferation,	 the	 formation	 of	

granulation	 tissue	 occurs.	 Fibronectin,	 hyaluronan	 and	 collagen	 are	 produced	by	migrated	

fibroblasts	 and	 the	 wound	 is	 closed	 by	 epithelization.	 In	 case	 of	 skin	 defects,	 the	

epidermalization	takes	place	from	the	borders	of	the	wound	until	the	wound	is	closed.	The	

final	stage	is	the	remodeling	stage	that	leads	to	the	scar	maturation.	In	this	stage	fibronectin	

and	 hyaluronan	 are	 broken	 down	 and	 replaced	 by	 collagen.	 In	 open	 wounds	 the	 wound	

healing	is	finished	with	a	contraction	step	1,13–15.		

In	 contrast	 to	 the	 skin,	 the	 entire	 surface	 of	 a	 peritoneal	 wound	 becomes	 epithelialized	

simultaneously	 and	 not	 gradually	 from	 the	 borders	 like	 in	 skin	 defects.	 When	 new	

mesothelial	 cells	 are	 attracted	 to	 the	 site	 of	 injury	 by	 chemotactic	 messengers	 that	 are	

released	by	blood	clots,	platelets	or	leukocytes,	they	form	multiple	individual	islands	on	the	

peritoneal	defect.	From	these	islands	they	divide	until	the	surface	of	the	injury	is	completely	

covered	by	a	new	 layer	of	mesothelial	 cells	 16.	Therefore,	 the	 time	needed	 for	 the	healing	

process	 is	 more	 or	 less	 the	 same	 for	 smaller	 and	 larger	 peritoneal	 defects,	 since	 no	 cell	

migration	 is	 necessary	 and	 cell	 division	 is	 initiated	 from	multiple	 healing	 sites.	 In	 contrast	

skin	 defects	 typically	 need	 longer	 healing	 times	 depending	 on	 the	 size	 and	 depths	 of	 the	

wound.	

During	the	peritoneal	healing	injured	parts	of	the	peritoneum	can	be	connected	due	to	the	

formation	 of	 stable	 fibrin	 bands,	which	 is	 enhanced	 due	 to	 the	 immediate	 contact	 of	 the	

insured	tissues.	In	normal	peritoneal	healing	these	fibrin	bands	are	subsequently	resolved	by	

fibrinolysis	 and	 the	natural	 tissue	organization	 is	 restored.	 If	 the	bands	are	not	effectively	

resolved	 due	 to	 impaired	 fibrinolytic	 activity,	 these	 weak	 fibrous	 bridges	 can	 be	 later	

infiltrated	 with	 fibroblasts,	 followed	 by	 vascularization	 and	 collagen	 deposition,	 which	

ultimately	results	in	the	formation	of	persisting	adhesions.	As	a	consequence	different	side	

effects	can	occur	like	pain,	small-bowel	obstruction,	secondary	infertility	and	furthermore	16–

18.		
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Figure	2:	Wound	healing	of	skin	and	peritoneum	

Both	healing	processes	of	skin	and	peritoneum	have	much	in	common.	They	can	result	in	the	

formation	of	scared	tissue	that	ultimately	lost	its	functionality	and	causes	discomfort	or	even	

pain	for	the	patient.	For	the	application	of	a	wound	dressing	as	well	as	for	a	film	for	adhesion	

prevention,	the	aim	should	be	to	reduce	the	scar	formation	and	moreover	the	formation	of	

adhesive	bonds	in	case	of	the	peritoneum.	

1.5 Different	Requirements	on	wound	dressings	and	barriers	for	adhesion	prevention	

Wound	dressings	as	well	 as	barrier	 films	 should	obviously	be	non-toxic,	non-immunogenic	

and	 biocompatible.	 The	 also	 essential	 preparation	 of	 sterile	 wound	 dressings	 and	 barrier	

films	 comes	 along	with	 the	 difficulties	 that	most	 natural	 and	 synthetic	 polymers	 partially	

degrade	 or	 chemically	 suffer	 during	 autoclaving	 or	 irradiation	 procedures,	 resulting	 in	

altered	 device	 properties	 as	well	 as	 undesirable	 breakdown	products.	 Therefore,	 it	 is	 also	

essential	to	find	a	way	to	prepare	sterile	products	or	at	least	to	be	able	to	sterilize	them	as	

gentle	as	possible	after	preparation	of	the	device.	
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The	most	 significant	 requirements	 for	 the	wound	 dressings	 depend	 on	 the	 actual	 type	 of	

wound	that	has	to	be	covered.	For	an	appropriate	wound	healing	an	optimal	environment	is	

necessary,	 which	may	 be	 different	 for	 every	 type	 of	 wound.	Most	 wounds	 need	 a	 moist	

environment.	 This	 is	 naturally	 given	 in	 the	 peritoneal	 cavity	 and	 moreover	 should	 be	

effectively	 protected	 from	 bacteria,	which	 could	 cause	 inflammation	 and	 result	 in	 further	

complications	of	the	wound	healing	process.	In	order	to	keep	a	moist	environment,	a	dry	or	

desiccated	 skin	 defect	 should	 be	 wetted	 and	 kept	 in	 this	 state	 by	 the	 wound	 dressing.	

Whereas	 a	 skin	 defect,	 that	 produces	 large	 amounts	 of	wound	 exudate	 should	 be	 ideally	

covered	with	a	wound	dressing	that	is	able	to	take	up	the	exudate	and	provide	a	surrounding	

that	stabilizes	the	healing	skin	and	prevents	the	elimination	of	the	newly	grown	epithelium	
1,19.	

For	 the	 peritoneal	 application	 the	 main	 task	 of	 the	 barrier	 film	 is	 consequently	 not	 the	

protection	of	the	wound	from	environmental	 influences	and	the	maintenance	of	the	moist	

environment,	 but	 to	 effectively	 separate	 the	 damaged	 tissue	 long	 enough	 to	 prevent	 the	

undesired	formation	of	peritoneal	adhesions.	However,	for	both	applications	it	is	beneficial,	

if	the	surgeon	is	able	to	cut	the	device	into	the	desired	size	and	shape	in	order	to	effectively	

cover	different	defects.	 For	 the	 application	with	 the	peritoneum	 it	 is	 also	desirable,	 if	 the	

device	 can	be	 implanted	 via	 laparoscopic	 intervention	 and	 is	 still	 flexible	 enough	 to	 cover	

uneven	surfaces	of	the	small	intestine	or	other	organs	within	the	patient.		

An	 external	wound	dressing	 is	most	 commonly	 fixed	 via	 the	 adhesive	 parts	 of	 the	wound	

dressing	composite	itself	or	via	additionally	applied	external	fixing	materials	like	bandages	or	

adhesive	tape.	An	 intestinal	adhesion	barrier	on	the	other	hand	can	only	be	fixed	with	the	

help	 of	 sutures	 or	 staples,	 which	 in	 consequence	 can	 disadvantageously	 lead	 to	 the	

formation	of	adhesions	and	therefore	should	be	most	effectively	avoided	by	the	preparation	

of	 devices	 or	 materials,	 which	 stick	 to	 the	 treated	 tissue	 on	 their	 own	 without	 causing	

undesired	connections	or	bands,	which	 later	result	 in	the	formation	of	new	connections	of	

the	adjacent	tissue	sites.	Even	more	important	than	the	fixation	is	the	removal	of	both	types	

of	wound	dressings.	This	should	generally	be	possible	without	causing	further	damage	to	the	

wounded	skin	or	peritoneum.	For	a	skin	defect,	the	wound	dressing	can	easily	be	removed	

from	the	wound,	if	it	does	not	stick	to	it.	Therefore	devices	are	beneficial,	which	maintain	a	

thin	layer	of	liquid	between	the	tissue	and	the	device,	ultimately	resulting	in	an	easy	removal	
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from	 the	 skin.	 In	 the	 peritoneal	 cavity	 the	 removal	 of	 the	 anti-adhesive	 barrier	 film	 has	

obviously	to	be	done	by	a	second	surgical	intervention,	this	again	may	cause	new	adhesion	

sites.	 To	 avoid	 this,	 peritoneal	 barrier	 films	 should	be	biodegradable	 and	 consequently	be	

removed	from	the	peritoneal	cavity	by	either	enzymatic	or	hydrolytic	degradation	or	just	by	

simple	dissolution.	

1.5.1 Purity	

Polymers,	which	are	used	for	wound	dressings,	as	well	as	adhesion	barriers,	should	generally	

be	non-toxic	and	non-immunogenic,	since	they	both	get	 in	close	contact	with	the	patient’s	

tissue	and	consequently	with	individual	cells,	as	well	as	the	patient’s	immune	system	20.	As	

adhesion	barriers	 the	polymers	are	applied	parenterally	 and	 therefore	have	 to	be	of	even	

higher	purity	 than	 the	polymers	 that	 are	used	 for	wound	dressings,	where	 the	polymer	 is	

usually	not	resorbed	and	only	remains	on	the	outer	skin	of	the	patient	until	it	is	removed	by	

the	 doctor	 or	 just	 falls	 off.	 Before	 the	 preparation	 of	 any	 barrier	 film	 or	 wound	 cover,	 it	

should	be	additionally	considered,	that	a	subsequent	sterilization	can	have	dramatic	effects	

on	natural	macromolecules,	as	well	as	synthetic	polymers	4.	Therefore	it	is	always	important	

to	know,	if	the	used	polymer	can	be	sterilized	before	film	preparation	or	if	the	final	product	

has	 to	 be	 sterilized,	 obviously	 without	 altering	 its	 properties	 or	 molecular	 structure.	 To	

remove	toxic	chemicals	that	have	been	applied	for	the	synthesis	of	the	polymer	like	solvents,	

cross-linkers	 or	 unreacted	monomers,	 the	 obtained	 polymer	 should	 always	 be	 sufficiently	

purified	 with	 the	 help	 of	 solvent	 washing	 or	 dialysis	 21	 before	 it	 can	 be	 used	 for	 the	

preparation	 of	 wound	 dressings	 or	 barrier	 films.	 The	 efficient	 purification	 is	 even	 more	

important	for	natural	polymers	from	plants	or	bacteria,	like	alginate	22	and	hyaluronic	acid,	

which	have	to	be	 intensively	purified	before	parenteral	application	to	remove	for	example	

residues	that	remain	from	the	leaves	of	the	algae.	

1.5.2 Degradability	

Regarding	 the	 degradation	 of	 polymer	 devices	 at	 the	 application	 site,	 several	 different	

pathways	 are	 discussed,	 which	 all	 ultimately	 have	 to	 lead	 to	 water-soluble	 breakdown	

products	 that	 can	 be	 metabolized	 or	 eliminated	 from	 the	 body.	 Based	 on	 the	 chemical	

structure	of	the	device	two	main	steps	of	the	degradation	have	to	be	distinguished.	The	first	

applies	to	the	erosion	of	a	device	due	to	the	separation	or	dissolution	of	the	whole	polymer	
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chains	 that	 are	 only	 loosely	 fixed	 by	 entanglements	 or	 weak	 ionic	 interactions.	 A	 second	

process	 involves	 the	breakdown	of	 few	chemical	bonds,	 if	 cross-linked	networks	of	water-

soluble	 polymers	 are	 degraded,	 or	 even	 the	 breakage	 of	 the	 whole	 polymer	 chain	 into	

monomers,	if	water	insoluble	polymers	are	applied.	

Accordingly,	 devices	made	 of	water	 insoluble	 polymers,	 like	 polyesters	 or	 polyanhydrides,	

can	undergo	surface	erosion	or	bulk	erosion,	depending	on	the	diffusion	speed	of	water	into	

the	polymer	device,	 this	 ultimately	 determines	 the	 kinetics	 of	 polymer	breakdown	 23.	 The	

degradation	 of	 devices	 made	 of	 biodegradable	 polymers	 can	 furthermore	 involve	 the	

hydrolytic	or	an	enzymatic	cleavage	of	the	polymer	chain,	which	may	also	lead	to	different	

kinetics	 of	 polymer	 erosion	 24.	 Hydrolytically	 degradable	 polymers,	 which	 carry	 functional	

groups,	 like	 esters	 or	 anhydrides,	 only	 degrade	 based	 on	 the	 amount	 of	water	 and	 steric	

effects	of	neighboring	groups	 24.	On	 the	opposite,	enzymatically	degradable	polymers,	 like	

collagen,	albumin,	 fibrin	or	others	are	cleaved	by	specific	enzymes,	which	 further	enhance	

the	polymer’s	elimination	based	on	their	local	amount	and	activity	24.		

The	overall	degradation	of	polymers	can	be	largely	influenced	by	secondary	modifications	of	

the	polymer	chains	or	additional	side	functionalities.	Alginate	itself	is	a	hydrophilic	polymer,	

but	in	a	humid	environment	the	alginate	chains	do	not	degrade	efficiently	and	devices	made	

of	alginate	only	undergo	erosion	based	on	the	speed	of	dissolution	of	the	loose	chains.	With	

the	 help	 of	 partial	 oxidation	 using	 sodium	periodate,	 aldehyde	 groups	 can	 be	 introduced,	

which	render	 the	polymer	more	susceptible	 to	hydrolysis	and	oxidation	 25.	When	a	wound	

dressing	made	of	a	hydrogel	is	removed	from	the	wound	area,	polymer	parts	may	also	still	

stick	to	the	wound,	but	they	can	be	subsequently	washed	away	during	a	necessary	cleaning	

of	 the	wound	area.	Nevertheless	 it	might	 still	 be	possible,	 that	during	 the	healing	process	

small	amounts	of	the	hydrogel	have	been	incorporated	in	the	granulation	tissue	and	will	be	

later	removed	by	biodegradation	or	can	be	incorporated	in	the	newly	formed	tissues,	as	for	

example	in	case	of	hyaluronic	acid	hydrogels.		

If	a	peritoneal	barrier	device	will	not	be	 removed	 from	the	body	by	a	 second	surgery,	 the	

used	 polymers	 have	 to	 be	 fully	 biodegradable	 or	 at	 least	 the	 prepared	 device	 should	

completely	 erode	 into	 fragments	 that	 can	 be	 eliminated	 from	 the	 body.	 Biodegradable	

polymers	that	are	used	for	all	kinds	of	parenteral	applications	can	be	eliminated	unaltered	or	

metabolized	into	endogenous	compounds,	which	can	be	metabolized	or	also	eliminated	20.	
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For	 example	 barrier	 films	 that	 are	 prepared	of	 polylactic	 acid	 like	 Surgiwrap®	degrade	 via	

hydrolytic	degradation	ultimately	into	bioresorbable	monomers	like	lactic	acid	enantiomers	

or	glycolic	acid	that	can	be	inserted	in	biochemical	pathways	4.	

To	 prolong	 the	 persistence	 time	 of	 very	 hydrophilic	 polymers,	 like	 alginate	 or	 hyaluronic	

acid,	which	are	dissolved	very	fast	in	the	humid	environment	of	the	peritoneum	and	washed	

away	 from	 the	 application	 side,	 the	 polymers	 usually	 have	 to	 be	 chemically	 or	 physically	

cross-linked	 in	 order	 to	 provide	 a	 sufficient	 long	 persistence	 time	 at	 the	 application	 site.	

Nevertheless	these	cross-linked	polymer	networks	should	still	degrade	after	the	peritoneal	

healing	is	ended.	For	example	barrier	films	made	of	alginate	that	have	been	physically	cross-

linked	with	 divalent	 cations	 like	 calcium	 degrade	 due	 to	 a	 slow	 exchange	 of	 the	 divalent	

cations	by	monovalent	cations	like	sodium	4.	

If	the	released	polymer	chains	can	be	finally	withdrawn	from	the	body,	also	depends	on	the	

hydrodynamic	radius	of	the	free	polymer	chains.	Molecules	with	a	size	of	about	3-4	nm	like	

for	example	albumin	 (3.6	nm)	and	 larger	would	 stay	 in	 the	blood	 system	 instead	of	being	

withdrawn	by	 renal	 filtration	 26.	Accordingly	 larger	water	 soluble	polymers	always	have	 to	

contain	 certain	 cleavage	 sites,	 where	 the	 molecules	 can	 be	 broken	 down	 in	 order	 to	 be	

eliminated	from	the	patient.	

1.5.3 Adhesion	

Most	 wound	 dressings	 firmly	 adhere	 to	 the	 skin	 because	 they	 are	 surrounded	 by	 sticky	

surfaces	covered	with	glue	or	they	can	be	fixed	with	the	help	of	bandages	or	adhesive	tape.	

Barrier	films	in	the	peritoneum	cannot	be	fixed	at	their	application	site	that	easy.	They	have	

to	 be	 sutured	 to	 the	 tissue	 or	 be	 fixed	 with	 staples	 if	 they	 do	 not	 stick	 to	 the	 tissue	

themselves.		

The	use	of	mucoadhesive	polymers	here	would	allow	an	application	without	further	fixation	

and	the	risk	of	adhesion	formation.		

Mucoadhesion	 can	 be	 defined	 as	 the	 ability	 to	 adhere	 to	 the	 mucus	 gel	 layer	 27.	

Mucoadhesive	 materials	 can	 be	 described	 as	 hydrophilic	 macromolecules	 that	 contain	

numerous	hydrogen	bond	forming	groups.	The	mechanism	of	mucoadhesion	can	be	divided	

into	 two	 stages.	 The	 contact,	 where	 the	 wetting	 takes	 place	 and	 the	 consolidation	 state	

where	the	adhesive	interactions	are	established	28.	Chitosan,	sodium	alginate	and	cellulose	
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derivatives	belong	to	the	so	called	“wet”	adhesives.	They	can	be	activated	by	moistening	due	

to	capillary	forces	and	adhere	to	many	surfaces	in	a	wet	state.	But	these	polymers	can	also	

overhydrate	and	 form	a	 slippery	gel,	which	 in	 consequence	detaches	 from	 the	application	

site	28.	Different	mucoadhesive	interactions	can	be	achieved	by	the	formation	of	differently	

strong	 bonds	 like	 ionic	 bonds,	 covalent	 bonds,	 hydrogen	 bonds,	 van-der-Waals	 bonds	 or	

hydrophobic	bonds	27,29.	To	improve	the	mucoadhesive	properties	of	polymers	like	chitosan	

or	alginate	thiol	groups	can	be	introduced	into	the	polymer	chains,	which	later	stabilize	the	

adhesive	by	forming	covalent	disulfide	bridges	with	components	of	the	mucus.	This	can	be	

achieved	 with	 the	 help	 of	 polymer	 analogue	 modification	 by	 coupling	 small	 bifunctional	

molecules	like	cysteine,	thioglycolic	acid	or	cysteamine	to	the	existing	polymer	chain	27,28,30.	

Due	to	its	non-adhesive	properties	to	skin	defects,	wound	dressings	prepared	from	alginate	

always	have	to	be	fixed	with	secondary	dressings	3.	Regarding	barrier	devices,	alginate	 is	a	

good	 candidate	 due	 to	 its	 mucoadhesive	 properties,	 because	 it	 can	 adhere,	 due	 to	 the	

formation	of	hydrogen	bonds,	to	the	traumatized	tissue	without	further	fixation	8.	Therefore	

this	polymer	can	be	quite	advantageous	for	both	applications.	

1.5.4 Uptake	of	wound	exudates	and	bacteria	

The	 uptake	 of	 wound	 exudates	 and	 bacteria	 is	 mainly	 beneficial	 for	 external	 wound	

dressings,	because	after	incorporation	and	uptake	of	the	bacteria	the	wound	dressing	can	be	

exchanged	with	a	fresh	one	6.	

In	the	peritoneal	cavity,	a	polymer	film	that	is	capable	to	incorporate	wound	exudates	like	a	

wound	 dressing	would	 also	 incorporate	 the	 surrounding	 peritoneal	 fluid	 until	 it	 is	 soaked	

completely.	 Furthermore,	 the	 wound	 exudate	 that	 is	 formed	 by	 a	 peritoneal	 defect	

commonly	is	anyway	diluted	with	peritoneal	fluid	and	washed	away	from	the	wound	site.	An	

efficient	 uptake	 of	 bacteria	 into	 a	 peritoneal	 adhesion	 barrier	 would	 furthermore	 be	

undesired,	 because	 they	 consequently	 cannot	 be	 removed	 from	 the	 peritoneal	 cavity.	 On	

the	contrary,	the	bacteria	would	finally	be	released	from	the	barrier	again	upon	its	ultimate	

degradation	in	the	body.	
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1.6 Wound	dressings	and	barrier	films	prepared	from	polymers	

Many	different	wound	dressings	and	peritoneal	barrier	films	based	on	different	natural	and	

synthetic	polymers	are	already	available	on	the	market	and	in	clinical	use.	

One	external	wound	dressing,	Intracell®,	for	example	is	based	on	maltodextrin	and	is	mainly	

available	as	powder	for	exuding	wounds	or	formulated	as	gel	containing	1	%	ascorbic	acid	for	

drier	 wounds	 lacking	 the	 necessary	 liquid	 to	 bind	 the	 dry	 powder	 31.	 Usually	 when	 the	

powder	 comes	 in	 contact	 with	 the	 wound	 exudate	 it	 immediately	 forms	 a	 permeable,	

hydrophilic	 film	 that	 provides	 a	 moist	 environment	 to	 cover	 the	 wound.	 As	 an	 internal	

barrier	for	the	prevention	of	peritoneal	adhesions	maltodextrin	powder	on	the	other	hand	

would	 dissolve	 much	 too	 fast	 in	 the	 constantly	 produced	 peritoneal	 liquids	 and	 be	

eliminated	from	the	wound	area	before	the	wound	healing	is	finally	completed.	For	an	easy	

accessible	skin	defect	the	application	as	a	dry	powder	that	sticks	to	the	wound	surface	and	

forms	 a	 gel	 with	 the	 uptake	 of	 wound	 exudate,	 is	 very	 promising	 and	 moreover	 allows	

adjusting	 the	 size	 of	 the	 protective	 hydrogel	 to	 the	 size	 of	 the	 defect.	 However	 for	 a	

peritoneal	 application,	 especially	 using	 the	 laparoscopic	 route	 of	 entry,	 a	 powder	 is	

obviously	 not	 applicable	 due	 to	 many	 technical	 reasons.	 Consequently	 a	 homogeneous	

application	 like	 on	 a	 skin	 defect	 is	 not	 possible,	 this	 is	why	 dry	 polymer	 powders	 are	 not	

considered	as	alternative	coatings	for	peritoneal	wounds.	

Further	 available	 and	 already	 marketed	 wound	 dressings	 are	 prepared	 from	 another	

polysaccharide,	 namely	 alginate,	which	 is	 cross-linked	 and	 stabilized	with	 bivalent	 calcium	

ions,	 like	 for	 example	Algicell®,	 Algisite®	 or	 Curasorb®	 1.	 All	 these	 products	 are	 still	 highly	

absorptive	and	soft,	which	 is	beneficial	 for	the	effective	treatment	of	exuding	skin	defects.	

Alginate	dressings	 furthermore	 improve	blood	 clotting	and	 increase	epithelization	and	 the	

formation	of	granulation	tissue,	which	finally	enhances	the	closure	of	the	wounds	19,31.	Other	

described	properties,	 like	alginate’s	erosion	and	hemostatic	activity	 1,31,	 could	also	be	very	

beneficial	 for	 the	 preparation	 of	 peritoneal	 barrier	 films,	 however	 the	 most	 important	

material	property	of	alginate	being	a	good	candidate	for	the	preparation	of	barrier	films	are	

its	mucoadhesive	properties	 8.	 For	 the	preparation	of	degradable	barrier	 films,	which	only	

persist	 for	 several	 weeks	 and	 will	 be	 withdrawn	 from	 the	 wound	 after	 wound	 healing,	

alginate	 would	 also	 be	 ideal	 due	 to	 its	 reversible	 cross-linking	 possibility.	With	 a	 defined	

amount	of	bivalent	cations	the	cross-linking	extent	and	therefore	the	resulting	erosion	time	
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of	 a	 prepared	 film	 can	 be	 easily	 adjusted	 and	 adapted	 to	 the	 speed	 of	 restoration	 of	 the	

peritoneum.	Furthermore	different	techniques	are	already	established	to	draw	very	thin	and	

homogenous	alginate	 films,	which	would	provide	 the	basis	 to	 improve	the	handling	within	

the	patient	as	well	as	the	subsequent	erosion	time	32.		

Other	 hydrocolloid	 dressings,	 like	 Comfeel®,	 Tegasorb®	 or	 Hydrocoll®,	 are	 made	 of	

carboxymethylcellulose,	 gelatin	 or	 pectins	 and	 also	 form	 soft	 gels	 by	 absorbing	 wound	

exudates.	The	fact,	that	hydrocolloid	dressings	adhere	to	moist	as	well	as	dry	sites	19,	make	

them	not	only	promising	as	wound	dressings	but	also	 for	 the	preparation	of	barrier	 films.	

Studies	 moreover	 have	 shown	 that	 dressings	 prepared	 of	 carboxymethylcellulose	 could	

encapsulate	 large	 numbers	 of	 the	 bacteria	 Pseudomonas	 aeruginosa	 and	 Staphylococcus	

aureus	 19,	 which	 both	 are	 bacteria	 known	 from	 infections	 of	 dermal	 wounds.	 After	 the	

uptake	 of	 bacteria,	 the	wound	 dressing	 can	 be	 obviously	 exchanged	 and	 the	 bacteria	 can	

therefore	be	dislodged	from	the	wound	side.	The	uptake	of	bacteria	into	a	peritoneal	barrier	

film	 that	 degrades	 after	 several	weeks	 in	 contrary	 is	 quite	 inadequate,	 since	 the	 bacteria	

would	 be	 released	 from	 the	 film	 again	 during	 the	 occurring	 erosion.	 Nevertheless	

carboxymethylcellulose	 is	 available	 as	 highly	 cross-linked	 Seprafilm®	 or	 Sepragel®	 for	 the	

preparation	 of	 barrier	 films	 in	 combination	 with	 hyaluronic	 acid	 as	 second	 polymer	

component.	 Beneficial	 for	 its	 use	 as	 barrier	 film	 is	 the	 finally	 occurring	 enzymatic	

degradation	of	the	natural	polymers,	that	takes	place	in	the	peritoneal	cavity	in	about	two	to	

four	weeks	18,33.	Hyaluronic	acid	itself	is	used	as	sodium	salt	or	ferric	salt	in	Sepracoat®	and	

Intergel®	as	highly	viscous	liquid	or	partially	cross-linked	hydrogel.	Due	to	the	hydrophilicity	

and	high	water	 solubility	elimination	half-lifes	of	 these	devices	are	about	26	hours	and	51	

hours,	 respectively	 33.	 To	 enhance	 the	 overall	 persistence	 time	 at	 the	 application	 site	

thiolated	 hyaluronic	 acid	 was	 already	 chemically	 cross-linked	 with	 polyethylene	 glycol	

methacrylate	following	a	michael	addition	reaction,	in	order	to	prepare	an	injectable,	in	situ	

forming	hybrid	hydrogel	wound	dressing	with	an	enhanced	dissolution	stability	34.	Here,	the	

ability	of	an	easy	chemical	modification	of	hyaluronic	acid	to	obtain	thiolated	hyaluronic	acid	

derivatives	with	the	help	of	carbodiimide	chemistry	is	very	promising.	Accordingly	thiolated	

hyaluronic	acids	can	be	cross-linked	via	stable	but	cleavable	disulfide	bonds	to	prolong	the	

persistence	 time	 in	 the	 peritoneal	 cavity	 as	 barrier	 film	 without	 creating	 permanent	

implants.	 The	 crosslinking	 extend	 of	 the	 prepared	 films	 can	 be	 adjusted	 via	 the	 chosen	

substitution	 degree	 and	 consequently	 be	 used	 to	 adjust	 degradation	 times	 35.	 For	 the	
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preparation	of	 thin	 films	 (100	µm),	a	solution	of	 thiolated	hyaluronic	acid	was	dissolved	 in	

phosphate-buffered	saline	and	poured	into	a	petri	dish	after	the	adjustment	of	the	pH.	After	

drying	 the	 film	 was	 finally	 oxidized	 by	 immersion	 in	 H2O2	 to	 further	 chemically	 link	 the	

individual	polymer	chains.		

Even	fully	synthetic	polymers	are	used	to	prepare	in	situ	cross-linkable	barrier	devices,	 like	

SprayGel®,	 which	 is	 based	 on	 a	 hydrogel	 composed	 of	 branched	 polyethylene	 glycol	

NHS	esters	and	PEG	amines,	which	contain	degradable	bonds	in	order	to	allow	elimination	of	

the	 individual	 polyethylene	 glycol	 units	within	 a	 degradation	 time	of	 about	 6	 days	 33.	 The	

here	applied	PEG	active	esters	however	cross-link	too	fast	 in	order	to	prepare	evenly	thick	

hydrogel	films,	which	would	be	necessary	for	a	prefabricated	barrier	system	in	form	of	a	thin	

film.	

Polyurethan	 foams	 or	 films	 like	 Lyofoam®	 or	 Tegaderm®	 36,37	 can	 also	 function	 as	

semipermeable	wound	dressing	to	cover	hydrated	alginate	dressings.	They	allow	the	skin	to	

breath	 because	 they	 are	 permeable	 for	 water	 and	 oxygen.	 Opsite™	 a	 thin	 film	 made	 of	

polyurethane	 is	 semi-permeable,	 too	 and	 easily	 conforms	 to	 irregular	 contours	 like	 knees	

and	does	not	need	additional	taping	19,	its	ability	to	adapt	to	uneven	wound	surfaces	would	

also	 be	 quite	 beneficial	 for	 the	 use	 as	 a	 barrier	 film,	 too.	 However	 due	 to	 their	 non-

degradability	 all	 these	 urethane	 based	 devices	 cannot	 be	 applied	 internally	without	 being	

removed	during	a	second	surgical	intervention.	

Besides	its	non-degradability	Gore-Tex	Surgical	Membrane	is	used	as	anti-adhesion	barrier	in	

pericardial	 surgery	 to	 replace	 the	 pericardium	 38–40.	 One	 advantage	 of	 Gore-Tex	 surgical	

membrane	is	that	no	adhesions	are	formed	due	to	its	very	low	porosity	40.	Furthermore	the	

Gore-Tex	Surgical	membrane	 is	antiadhesive	 to	cells	due	 to	 its	hydrophobic	character	 (see	

manufacturer	information).	The	disadvantage	of	this	membrane	is	that	it	has	to	be	removed	

from	 the	 body	 with	 another	 surgery.	 Gore-Tex	 can	 also	 be	 used	 for	 a	 permanent	

gastrostomy	tube	as	support	conduit	in	open	gastrostomy	41.	

In	order	to	combine	the	beneficial	properties	of	different	polymer	compounds	multilayered	

(multifunctional)	 devices	 have	 also	 been	 investigated,	 which	 furthermore	 enhance	 the	

possibilities	to	design	devices	for	more	sophisticated	applications.	
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For	 initial	 clinical	 research	 a	 bilayered	 construct	 was	 prepared	 from	 silk	 and	 gelatin,	 two	

quite	 different	 proteins	 42.	 It	 consists	 of	 a	 non-adhesive	 layer	 prepared	of	wax-coated	 silk	

fibroin	woven	fabric	to	provide	mechanical	stability	and	a	bioactive	layer	to	enhance	wound	

healing,	which	is	a	sponge	made	of	sericin	and	glutaraldehyde-crosslinked	silk	fibroin/gelatin	
42.	For	 this	advanced	wound	dressing	 it	 is	obviously	beneficial	when	the	dressing	does	not	

stick	 to	 the	wound	 and	 can	 be	 removed	without	 causing	 new	 damage	 to	 the	 new	 grown	

tissue.	Fixation	of	the	dressing	on	the	wound	must	consequently	be	performed	externally.		

Another	very	promising	approach	for	multifunctional	devices	are	antimicrobial	dressings	that	

release	an	antiseptic	agent	at	the	wound	surface,	like	Acticoat	absorbent®	made	of	calcium	

alginate	releasing	 ionic	silver	43.	Wound	dressings	made	of	chitosan	have	also	been	 loaded	

with	 the	procoagulant	polyphosphate	and	 the	antimicrobial	 silver	 to	prepare	a	hemostatic	

and	antimicrobial	wound	dressing	 44.	 In	 current	 research	a	barrier	prepared	 from	chitosan	

alginate	has	been	prepared	via	a	new	processing	technique,	electrospinning.	In	a	rat	model	

this	device	was	quite	effective	in	reducing	the	formation	of	tissue	adhesions	45.	Gentamicin	

sulphate	 could	 be	 released	 from	 a	 hydrogel	 wound	 dressing	 prepared	 of	 acacia	 gum	 and	

carbopol,	 a	 cross-linked	 derivative	 of	 polyacrylic	 acid	 46.	 A	 controlled	 release	 of	 ibuprofen	

from	an	alginate	based	bilayer	hydrocolloid	film	was	also	achieved	by	coating	an	upper	layer	

with	ibuprofen	and	combining	it	with	a	drug-free	lower	layer	that	functioned	as	membrane	

that	ultimately	controlled	the	release	rate	47.		

1.7 Summary	and	conclusions	

From	the	above	comparison	of	different	polymers	and	essentially	different	prerequisites	for	

the	 peritoneum	 in	 contrast	 to	 the	 cutaneous	 application,	 the	 most	 universally	 applicable	

polymers	 for	 both	 applications	 are	 certainly	 the	 degradable	 and	 easily	 hydrogel	 forming	

polymers,	alginate	and	hyaluronic	acid,	which	were	consequently	further	investigated	in	this	

thesis.	

Alginate	itself	is	widely	used	as	wound	dressing	due	to	its	ability	to	take	up	large	amounts	of	

wound	 exudate,	 furthermore	 it	 is	 soft,	 hemostatic	 due	 to	 platelet	 activation	 36,48	 and	

biodegradable	1.	When	it	comes	in	contact	with	the	wound	exudate	it	becomes	a	viscous	gel,	

which	 would	 also	 be	 beneficial	 for	 internal	 applications.	 Another	 advantage	 is	 the	

adjustability	to	different	types	of	wounds	and	the	fact,	that	it	can	be	cut	and	perfectly	fitted	
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to	the	wound’s	dimensions	36.	The	released	calcium	ions	from	cross-linked	alginate	films	can	

furthermore	activate	platelets	19	and	macrophages,	which	is	beneficial	for	the	wound	healing	

process	31.	Furthermore	alginate	dressings	are	able	to	bind	bacteria	and	therefore	decrease	

the	infection	of	wounds.	In	research	alginate	is	used	for	the	preparation	of	barrier	films	due	

to	its	mucoadhesive	properties.	For	oral	formulations	alginate	of	a	pharmaceutical	grade	is	

sufficient,	however,	for	parenteral	applications,	 like	the	peritoneal	application,	it	should	be	

of	ultrapure	grade	(NovaMatrix)	with	low	levels	of	residual	endotoxins.	

The	 alternative	 polymer,	 hyaluronic	 acid,	 is	 also	 already	 available	 on	 the	market	 in	many	

different	 internal	 and	 some	 external	 wound	 dressing.	 Like	 alginate	 it	 fulfills	 most	 of	 the	

requirements	 for	 a	 peritoneal	 application.	 Being	 part	 of	 the	 natural	 human	 tissue	 and	 its	

ability	 to	 reduce	 scar	 formation	 makes	 it	 very	 promising	 to	 prepare	 barrier	 devices	 that	

reduce	the	formation	of	adhesions	and	can	be	withdrawn	from	or	even	incorporated	in	the	

human	body.	To	prolong	 its	degradation	 time,	 films	prepared	 from	hyaluronic	acid	 can	be	

cross-linked	for	example	with	disulfide	cross-linking	after	preparation	of	thiolated	hyaluronic	

acid	via	carbodiimide	chemistry	or	other	alternative	cross-linking	schemes.	
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2. Aim	of	this	work	

In	 this	 chapter	 the	 aim	 of	 the	 thesis	 is	 presented.	 Furthermore,	 it	 gives	 an	 overview	 and	

short	summaries	of	the	following	chapters.		
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There	 are	 currently	 many	 different	 strategies	 for	 the	 prevention	 of	 the	 formation	 of	

postsurgical	 adhesions	 after	 peritoneal	 surgery	 in	 clinical	 application,	 but	 also	 under	

development.	The	most	effective	way	 to	prevent	 the	 formation	of	adhesions	 is	 the	spatial	

separation	of	the	affected	tissues	after	surgery.	This	approach	can	be	done	with	liquids,	gels	

or	films	17,	however,	films	are	the	most	promising	way	of	tissue	separation	because	of	their	

longer	retention	time	in	the	peritoneum	and	the	fact,	that	they	stay	in	place,	when	sutured	

to	 the	 tissue.	 For	 the	 surgeon	 the	applicability	of	 the	 separation	device	 is	 very	 important,	

since	he	or	she	decides	based	on	the	ease	of	application	and	the	performance	 in	different	

clinical	situations	which	material	will	be	applied.	If	only	the	route	of	application	is	concerned	

liquids	and	gels	have	the	edge	over	 films,	because	they	can	be	easily	applied	by	rinsing	or	

spraying,	 which	 certainly	 reduces	 handling	 issues	 during	 application.	 To	 date	most	 of	 the	

films	that	are	commercially	available	like	SurgiWrap®	or	Gore	Tex®	have	to	be	sutured	to	the	

tissue	in	order	to	secure	them	at	the	application	site.	Hereby	especially	for	the	smooth	PLA	

films	the	suturing	step	to	the	tissue	could	be	moreover	facilitated,	if	the	films	were	slightly	

sticking	to	the	tissue	like	iron-on	patches	before	they	are	finally	sewed	on.		

The	general	aim	of	this	work	was	to	prepare	new	films	for	adhesion	prevention	with	several	

beneficial	 properties.	 Using	 hydrophilic	 alginate,	 films	 could	 be	 prepared	 that	 are	

mucoadhesive	and	have	adjustable	mechanical	properties	and	erosion	time	due	to	physical	

cross-linking	 with	 divalent	 cations.	 Films	 prepared	 with	 alternative	 chemical	 cross-linking	

could	be	prepared	by	using	hyaluronic	acid	that	has	previously	been	modified	by	introducing	

thiol	groups.	Another	consequent	aim	was	to	improve	the	handling	of	PLA	films	by	covering	

them	with	an	adhesive	layer,	developed	earlier.	This	adhesive	layer	should	then	fulfill	several	

requirements	for	the	application,	which	includes	degradability	and	subsequent	absorption	as	

well	as	obviously	good	mucoadhesive	properties.	

Therefore	this	thesis	deals	with	the	establishment	of	 film	preparation	methods	of	polymer	

films	made	of	alginate	and	hyaluronic	acid	and	the	preparation	of	multilayers	consisting	of	

PLA,	 PLA-PEG-PLA	 and	 alginate.	 To	 obtain	 very	 thin,	 homogenously	 thick	 films	 with	 best	

suited	properties	and	required	degradation	time	the	films	were	drawn	on	glass	plates,	cross-

linked	with	different	techniques	and	further	low	molecular	weight	additives	like	plasticizers	

were	investigated.		
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Chapter	 3	 deals	 with	 the	 establishment	 of	 different	 cross-linking	 methods	 that	 were	

performed	to	 investigate	the	best	method	for	the	preparation	of	 thin	alginate	 films	with	a	

homogenous	 distribution	 of	 cross-linking	 calcium	 32.	 Although	 till	 now	 no	 barrier	 device	

prepared	of	alginate	is	available	on	the	market,	many	research	groups	have	worked	with	it	

due	to	its	promising	properties.		

The	preparation	by	casting	films	into	Teflon	molds	was	replaced	by	the	drawing	of	films	on	a	

glass	 plate,	 because	 this	 led	 to	 evenly	 thick	 and	much	 larger	 films.	 As	 calcium	 source	 the	

hardly	 soluble	 calcium	 salts	 calcium	 citrate	 and	dicalcium	phosphate	 as	well	 as	 a	 calcium-

EDTA-complex	were	tested.	There	dicalcium	phosphate	showed	the	best	properties,	because	

it	could	be	distributed	in	the	alginate	solution	more	homogenously	than	calcium	citrate	and	

the	phosphate	did	not	compete	with	the	guluronic	acid	blocks	for	the	calcium	like	EDTA	did.	

For	the	acidic	release	of	the	calcium,	GDL	showed	the	best	properties.	Only	glycerol	showed	

the	softening	effect	that	was	expected	from	the	different	investigated	plasticizers.	Therefore	

the	best	composition	for	a	cross-linked	alginate	film	is	comprised	of	alginate,	glycerol,	water,	

dicalcium	phosphate	and	GDL.		

Due	to	the	fact,	that	different	types	of	alginate	with	varying	amounts	of	guluronic	acid	and	

mannuronic	 acid	 can	 bind	 more	 or	 less	 calcium	 the	 composition	 should	 be	 perfected	 by	

finding	out	how	much	calcium	can	be	effectively	bound	by	the	different	alginates.	Chapter	4	

deals	with	the	assignment	to	find	out,	how	much	calcium	is	needed	to	cross-link	an	alginate	

film	 properly	 and	 achieve	 good	mechanical	 properties	 and	 erosion	 time,	 but	 also	 to	 have	

binding	 sites	 left	 that	 are	 able	 to	 bind	 more	 calcium	 if	 necessary.	 Furthermore	 the	

differences	 in	 the	 cross-linking	ability	and	 the	 resulting	properties	of	alginates	with	a	high	

guluronic	acid	content	and	a	low	guluronic	acid	content	were	investigated.	With	the	help	of	

pretests	 like	 ITC	 measurements,	 viscosity	 measurements,	 rheological	 tests,	 turbidity	

measurements	and	a	defined	compression	test	 it	was	found	out	how	much	calcium	can	be	

bound	by	the	guluronic	acid	blocks	of	 the	alginates	and	how	much	calcium	is	necessary	to	

cross-link	 the	 film	 properly.	 The	 film	 prepared	 regarding	 these	 results	 were	 tested	

mechanically.	Furthermore	an	erosion	test	and	a	cytotoxicity	test	were	performed.		

Regarding	 peritoneal	 surgery	 not	 only	 the	 formation	 of	 adhesions	 is	 a	 major	 problem.	

Postsurgical	 infections,	which	also	can	enhance	the	formation	of	adhesions,	are	a	problem,	

which	can	only	be	solved	by	sufficient	antibiotic	treatment.	To	minimize	the	side	effects	of	
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antibiotics,	 which	 often	 come	 along	 when	 they	 are	 given	 systemically,	 a	 controlled	 local	

application	 would	 be	 beneficial.	 Therefore	 the	 prepared	 films	 could	 be	 loaded	 with	

antibiotics	to	have	a	local	release	after	implantation.	Chapter	5	deals	with	the	preparation	of	

thin	polymer	films	prepared	from	alginate,	a	block	copolymer	made	of	PLA-PEG-PLA	and	PLA.	

These	films	were	loaded	with	the	two	antibiotics	vancomycin	hydrochloride	and	gentamicin	

sulfate	using	different	methods.	Release	studies	and	microbiological	testing	were	performed	

with	the	prepared	films	to	test	their	biological	efficacy.		

Beside	alginate,	hyaluronic	acid	was	thought	to	be	a	suitable	polymer	for	the	preparation	of	

mucoadhesive	films.	Like	alginate,	hyaluronic	acid	is	a	hydrophilic	polymer,	which	would	be	

dissolved	in	the	humid	environment	of	the	peritoneum	and	therefore	has	to	be	cross-linked	

to	increase	the	stability.	Chapter	6	deals	with	the	preparation	of	films	made	of	a	hydrophilic	

polymer	that	has	not	been	physically	cross-linked	by	ionic	interactions	like	the	alginate	films,	

but	 chemically	 cross-linked	 via	 disulfide	 bridges	 using	 thiofunctionalization	 of	 hyaluronic	

acid.	 Carbodiimide	 chemistry	 was	 performed	 to	 prepare	 thiolated	 hyaluronic	 acids	 with	

different	 molecular	 weights	 and	 substitution	 degrees	 to	 investigate	 the	 impact	 on	 cross-

linking	of	prepared	films.	With	the	help	of	oxidizing	additives	and	the	adaption	of	the	drying	

process	the	cross-linking	of	the	films	could	be	controlled.		

After	 successful	 preparation	 of	monolayers	 from	 alginate	 and	 hyaluronic	 acid,	multilayers	

were	prepared	to	investigate,	if	a	layer	of	mucoadhesive	alginate	can	improve	the	properties	

of	a	PLA	film	and	also	increase	the	mechanical	stability	of	the	hydrophilic	polymer	films.	Due	

to	the	fact,	that	PLA	is	a	lipophilic	and	alginate	a	hydrophilic	polymer	the	combination	could	

not	be	done	by	just	drawing	one	layer	on	top	of	the	other.	To	make	the	two	layers	stick	to	

each	 other	 additives	 and	 surface	 modifications	 were	 tested	 in	 Chapter	 7.	 The	 prepared	

multilayers	 were	 tested	 mechanically	 and	 a	 mucoadhesion	 test	 was	 performed	 to	

investigate,	 if	 the	 alginate	 layer	 improves	 the	 handling	 of	 the	 PLA	 film.
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3. Alginate	films	cross-linked	with	different	methods	

Different	 cross-linking	 methods	 were	 established	 to	 investigate	 the	 best	 method	 for	 the	

preparation	of	thin	alginate	films	with	a	homogenous	distribution	of	cross-linking	calcium.	
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3.1 Introduction	

Alginate	 is	a	 linear	block-copolymer	produced	 in	 the	stems	or	 the	 leaves	of	marine	brown	

algae	 and	 functions	 as	 structural	 component	 in	 the	 plant	 49.	 Furthermore	 it	 can	 also	 be	

produced	 via	 microbial	 fermentation	 49–53.	 The	 1-4	 linked	 uronic	 acids	 are	 arranged	 in	

homopolymeric	 blocks	 of	 β-D-mannuronic	 acid	 (M)	 or	 α-L-guluronic	 acid	 (G)	 and	 in	 MG-

blocks	containing	both	uronic	acids	49,54.	Due	to	its	biocompatibility	and	biodegradability	as	

well	 as	 its	 non-toxic	 and	 non-immunogenic	 properties	 55–57	 alginate	 is	 widely	 used	 as	 an	

additive	in	the	food	industry	as	well	as	in	the	pharmaceutical	industry	49.	With	the	addition	

of	 divalent	 cations	 like	 calcium,	 alginate	 can	 be	 cross-linked,	 because	 the	 guluronic	 acid	

blocks	can	complex	bivalent	cations	and	form	a	so	called	“egg-box”	58.		

Alginates	 are	 provided	 in	 a	 broad	 range	of	 products,	 therefore	 they	 can	 be	 used	 in	many	

different	 applications.	 Alginic	 acid	 forms	 different	 salts	 with	 counter	 ions	 like	 sodium,	

magnesium	 or	 potassium.	 The	 gelling	 properties	 are	 highly	 influenced	 by	 the	 ratio	 of	

guluronic	 acid	 and	mannuronic	 acid	 in	 the	 alginate	 chains.	 To	 prepare	 alginate	 films	with	

adjustable	mechanical	 properties	 and	erosion	 time	an	adequate	 cross-linking	 is	 necessary.	

For	 this	 study	 three	 different	 sodium	 alginates	 Protanal®	 LF	10/	60,	 its	 follower	 Protanal®	

LF	10/	60	 FT	 and	 Protanal®	 LF	10/	60	 LS	 (FMC	BioPolymer)	 59,60	were	 used	 to	 prepare	 thin	

films	 for	 the	 prevention	 of	 abdominal	 adhesions.	 These	 alginates	 are	 assigned	 for	 the	

preparation	 of	 wound	 healing	 dressings	 61	 and	 therefore	 ought	 to	 be	 suitable	 for	 the	

preparation	of	thin	alginate	films	for	adhesion	prevention.		

Its	 temperature	 independent	 49	 ability	of	 forming	a	 gel	by	a	 reversible	 cross-linking	of	 the	

guluronic	acid	blocks	with	the	help	of	bivalent	cations	like	calcium	62	makes	alginate	a	very	

promising	polymer	for	the	preparation	of	erodible	polymer	films.	When	the	G-blocks	in	the	

alginate	 chains	 get	 in	 contact	with	 calcium	 the	 guluronic	 acids	 can	 complex	 it	 and	 form	a	

junction	zone	with	other	G-blocks	by	forming	the	so	called	“egg-box”	58.	For	the	preparation	

of	different	products	of	any	shape	made	from	cross-linked	alginate	many	procedures	for	the	

internal	gelation	(Table	1)	with	a	calcium	release	from	a	calcium	source	that	has	been	mixed	

with	 the	 alginate	 solution	 and	 the	 external	 gelation	 (Table	 1)	 with	 a	 calcium	 source	 that	

surrounds	the	prepared	alginate	product	61	have	been	established	63.		
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Table	1:	Cross-linking	of	alginate 

External	calcium	source	

è calcium	solution	

Important	characteristics:	

• fast	gelation	

• calcium	gradient	

• undefined	calcium	amount	

Examples:	

• alginate	beads	64	

• alginate	inserts	65	

Internal	calcium	source	

è calcium	salt,	calcium	complex	

Important	characteristics:	

• slow	gelation	

• defined	calcium	amount	

	

Examples:	

• scaffolds	for	tissue	engineering	66	

The	 external	 gelation	 (Table	 1)	 is	 used,	when	 the	 gelation	 has	 to	 be	 very	 quick	 like	 for	 the	

formation	of	alginate	beads,	when	an	alginate	solution	is	dripped	into	a	solution	of	divalent	

cations	64	or	when	films	are	prepared	and	later	immersed	in	a	calcium	solution	65.	However,	

the	 amount	 of	 calcium	 incorporated	 cannot	 be	 controlled	 and	 due	 to	 the	 fact	 that	 the	

calcium	source	is	outside	of	the	alginate	product	a	gradient	from	the	outer	part	to	the	center	

occurs.	The	 internal	gelation	technique	allows	a	slower	gelation	than	the	external	gelation	

technique	 and	 therefore	 can	 be	 used,	 when	 alginate	 products	 with	 a	 defined	 shape	 are	

required,	because	the	alginate	can	be	cast	into	a	mold	before	the	cross-linking	process	starts	
66.	For	the	internal	gelation,	it	is	very	important	to	slow	down	the	cross-linking	process.	This	

is	mostly	achieved	by	releasing	the	calcium	slowly	from	a	hardly	soluble	calcium	salt	(Table	1)	

like	CaCO3	or	CaSO4	63,66,67	or	by	dissolving	the	calcium	from	a	calcium	complex	like	Ca-EDTA	
68	or	Ca-EGTA	69	by	lowering	the	pH	with	a	solution	of	GDL	67	or	light-triggered	dissolution	of	

caged	 calcium	 70.	 Also,	 the	 counter	 ion	 of	 the	 used	 alginate	 has	 an	 impact	 on	 the	 cross-

linking	speed,	since	potassium-alginates	cross-link	faster	than	sodium-alginates	71.	

Different	film	preparation	techniques	were	investigated	to	obtain	cross-linked	alginate	films	

with	a	homogenous	distribution	and	a	constant	concentration	of	all	used	components	 like	

the	alginate	 itself,	 calcium,	 cross-linking	additives	 and	plasticizers.	 External	 gelation	of	 the	

prepared	alginate	film	by	dipping	it	into	a	solution	containing	calcium	63,65,72	or	sprinkling	the	

film	with	a	 calcium	 solution	was	not	 considered	 for	 the	 cross-linking	of	 the	alginate	 films,	

because	these	methods	cannot	guarantee	a	homogeneous	distribution	of	a	defined	calcium	

amount	 in	 the	 film.	Due	 to	 the	 fact	 that	 the	 calcium	 incorporated	 in	 the	 film	 is	 the	main	

factor	that	 influences	the	mechanical	stability	and	degradation	time	of	the	alginate	films	 it	
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was	of	utmost	importance	to	investigate	a	preparation	method	that	ensures	a	homogenous	

distribution	of	a	defined	amount	of	calcium	 in	 the	 film.	For	 this	purpose	the	alginate	 films	

were	prepared	with	the	help	of	the	internal	gelation	technique.	

3.2 Film	preparation	techniques	

In	 general	 two	 film	 preparation	 procedures	were	 investigated	 during	 the	 development	 of	

improved	alginate	films.	In	first	trials	alginate	solutions	were	cast	into	molds	(Figure	3).	During	

further	 investigations	drawing	onto	glass	plates	was	used	 to	provide	 larger	homogenously	

thick	film	samples	(Figure	4-6).	

3.2.1 Cast	films	prepared	with	the	inner	gelation	technique	

	

Figure	3:	Inner	gelation	technique	

For	 the	 inner	 gelation	 of	 cast	 films	 defined	 amounts	 of	 a	 hardly	 soluble	 calcium	 salt	 like	

calcium	citrate	and	a	pH	controlling	acid	like	a	hydrolysable	lactone,	in	this	case	gluconic	acid	

δ-lactone	 (GDL),	 were	 weighed	 in	 solid	 form	 in	 a	 glass	 vial.	 After	 addition	 of	 water,	 the	

suspension	was	vortexed	and	mixed	with	a	prepared	alginate	solution.	The	obtained	mixture	

was	cast	 into	a	Teflon®	mold	or	a	petri	dish	(Figure	3).	Due	to	the	hydrolysis	of	the	 lactone,	

the	pH	decreased	and	the	calcium	was	released	from	its	salt	and	could	cross-link	the	alginate	

chains.	After	several	hours	of	cross-linking	time	the	film	could	be	removed	from	the	mold	for	

further	investigations	32.	
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3.2.2 Films	drawn	with	a	drawing	apparatus	

To	obtain	lager	and	evenly	thick	films,	the	alginate	solution	was	drawn	on	a	glass	plate	with	

the	 help	 of	 a	 commercial	 available	 drawing	 apparatus	 (ERICHSEN	 coatmaster	 509	 MC,	

Hemer,	 Germany).	 For	 the	 preparation	 of	 thin	 polymer	 films	 with	 the	 help	 of	 a	 drawing	

apparatus	alginate	was	a	very	versatile	polymer	due	to	its	non-Newtonian	characteristics	54,	

because	a	shear	thinning	facilitated	the	flow	of	the	alginate	solution	through	the	very	thin	

gap	of	 the	drawing	 frame.	The	challenge	of	drawing	cross-linked	 films	with	a	homogenous	

cross-linking	 is,	 that	 the	 cross-linking	 process	 should	 be	 slow	 enough,	 that	 the	 alginate	

solution	 is	 able	 to	 be	 drawn,	 because	 it	mustn’t	 cross-link,	 before	 the	 drawing	 process	 is	

finished.	After	drawing	the	film,	it	should	cross-link	in	a	short	time.	

3.2.2.1 Drawn	films	with	a	hardly	soluble	calcium	salt	sprayed	with	acid	

	
Figure	4:	Inner	gelation	with	sprayed	acid	

For	this	technique,	hardly	soluble	calcium	citrate	was	evenly	dispersed	in	a	viscous	solution	

of	alginate	with	the	help	of	an	ultra	turrax.	Then	the	alginate	solution	containing	crystals	was	

drawn	on	a	glass	plate	with	a	gap	clearance	of	700	µm	and	a	speed	of	5	mm/	sec.	To	dissolve	

the	 calcium	 from	 its	 barely	 soluble	 calcium	 salt	 and	 initiate	 cross-linking,	 the	 freshly	

prepared,	 thin	 film	 was	 sprayed	 with	 a	 sufficient	 amount	 of	 lactic	 acid	 using	 a	 gas	

microsprayer	(EcoSpray®,	Labo	Chimie	France,	Meyreuil,	France)	to	obtain	a	visibly	clear	film	

(Figure	4).	The	obtained	cross-linked	film	was	subsequently	air	dried	at	23	°C	±2	°C	and	50	%	±	

5	%	relative	humidity.	
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3.2.2.2 Drawn	films	with	a	calcium	complex	and	a	pH	controlling	acid	

	
Figure	5:	Inner	gelation	with	calcium	complex	

To	 further	 improve	 the	 distribution	 of	 calcium,	 the	 barely	 soluble	 calcium	 citrate	 was	

replaced	by	 the	 soluble,	pH	 sensitive	 calcium-EDTA-complex	 (Figure	 5)	 68,73.	Due	 to	 the	 fact	

that	a	completely	homogenous	distribution	of	the	lactic	acid	on	the	film	was	not	possible	by	

spraying,	pH	decreasing	by	hydrolysis	of	 a	 lactone	 that	was	used	 in	 the	 casting	procedure	

was	 tested.	 After	 mixing	 the	 lactone	 powder	 with	 the	 calcium-EDTA-complex	 containing	

alginate	solution,	the	pH	decreased	and	consequently	released	the	calcium	from	its	complex.	

The	release	of	calcium	from	the	complex	was	slowly	enough	to	enable	drawing	of	the	film	

before	the	cross-linking	started.	
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3.2.2.3 Drawn	films	with	a	hardly	soluble	calcium	salt	and	a	pH	controlling	acid	

	
Figure	6:	Inner	gelation	with	calcium	salt	

To	increase	the	cross-linking	of	the	alginate	films	the	calcium-EDTA-complex	was	replaced	by	

dicalcium	 phosphate.	 Dicalcium	 phosphate	 was	 wetted	with	 some	 droplets	 of	 water	 or	 a	

defined	 amount	 of	 glycerol,	 added	 to	 a	 prepared	 alginate	 solution	 and	 homogenized	 by	

stirring	 with	 a	 magnetic	 stirrer.	 Then	 GDL	 powder	 was	 added	 and	 after	 further	

homogenization	 the	 film	 was	 drawn	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec	(Figure	6).	To	be	able	to	decrease	the	pH	and	initiate	cross-linking,	the	GDL	needed	

water.	Therefore,	the	cloudy	film	was	stored	 in	a	closed	chamber	to	slow	down	the	drying	

process	 until	 the	 film	 became	 clear	 and	 could	 be	 air	 dried	 at	 23	 °C	 ±2	°C	 and	 50	%	 ±	 5	%	

relative	humidity.		

3.2.3 Identification	of	the	optimal	film	preparation	technique	

The	 established	 film	 preparation	 techniques	 showed	 many	 differences	 regarding	 the	

homogeneous	distribution	of	calcium	in	the	film,	the	release	kinetics	of	the	calcium	from	the	

calcium	source	and	the	shape	of	the	obtained	film.	

Films,	drawn	on	a	glass	plate	cross-linked	with	the	help	of	CaHPO4	and	GDL	showed	the	most	

promising	results.	
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Figure	7:	Film	preparation	techniques	

To	control	the	absolute	calcium	amount	incorporated	in	the	film,	inner	gelation	techniques	

were	 performed	 instead	 of	 cross-linking	 the	 film	 after	 preparation	 by	 spraying	 it	 with	 or	

dipping	 it	 into	 calcium	 solutions.	When	 alginate	 chains	 come	 in	 contact	with	 free	 calcium	

ions,	they	cross-link	immediately.	To	be	able	to	cast	the	alginate	solution	into	a	mold	or	draw	

a	film	on	a	glass	plate	after	addition	of	a	defined	amount	of	calcium	it	was	necessary	to	slow	

down	 the	 speed	 of	 cross-linking.	 This	 could	 be	 achieved	 by	 incorporating	 hardly	 soluble	

calcium	salts	or	calcium	complexes	in	the	film	which	slowly	release	the	calcium	and	initiate	

cross-linking.		

The	first	procedure	tested	was	to	cast	films	into	molds.	The	obtained	films	were	clear	after	

drying,	which	 indicated	 complete	dissolution	of	 the	hardly	 soluble	 calcium	citrate	 and	 the	

calcium	could	bind	to	the	alginate	chains	and	cross-link	them.	After	drying,	the	films	sticked	

to	the	molds	and	could	not	be	removed	easily.	Furthermore,	they	were	not	evenly	thick.	In	

the	edge	region,	the	films	were	thicker	than	in	the	middle.	To	obtain	evenly	thick	films,	the	

film	preparing	procedure	was	optimized	by	drawing	the	films	with	a	defined	gap	clearance	

onto	 glass	 plates.	 After	 drying	 at	 room	 temperature,	 the	 films	 could	 be	 cut	 and	 removed	

from	 the	glass	 surface	better	 than	 from	 the	mold.	 The	hardly	 soluble	 calcium	salt	 calcium	

citrate	required	homogenization	with	an	ultra	turrax,	because	when	the	salt	got	 in	contact	
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with	 water	 or	 the	 alginate	 solution,	 it	 formed	 clusters	 and	 could	 not	 be	 distributed	

homogenously	with	a	magnetic	stirrer.	This	came	along	with	some	disadvantages	because	air	

was	 incorporated	with	the	ultra	 turrax	and	the	suspended	calcium	salt	did	not	 float	 in	 the	

alginate	 solution	 but	 sank	 to	 the	 ground	 instead.	 After	 drawing,	 the	 still	 wet	 film	 was	

sprinkled	 with	 lactic	 acid	 to	 release	 the	 calcium	 from	 its	 salt	 and	 initiate	 cross-linking.	

However	 it	was	 quite	 difficult	 to	 ensure	 that	 a	 precise	 amount	 of	 lactic	 acid	was	 sprayed	

evenly	over	the	whole	film.	To	overcome	the	problem	of	the	inhomogeneous	distribution	of	

the	calcium	citrate,	a	 soluble	calcium-EDTA-complex	was	mixed	with	 the	alginate	 solution.	

Furthermore,	the	lactic	acid	was	replaced	by	GDL	that	could	be	added	in	a	defined	amount	

to	 the	 alginate	 solution	 and	 be	 distributed	 homogenously	 before	 drawing	 the	 film.	 After	

drawing	 the	 film	 that	 was	 free	 of	 any	 solid	 compounds,	 the	 GDL	 hydrated	 and	 slowly	

decreased	 the	 pH	 of	 the	 alginate	 film	 which	 initiated	 the	 release	 of	 calcium	 from	 the	

complex	that	could	than	cross-link	the	alginate	chains.	But	the	EDTA	was	still	in	the	film	and	

competed	with	the	guluronic	acid	blocks	for	the	calcium	ions.	Therefore,	the	calcium	release	

from	a	hardly	soluble	calcium	salt	was	preferred.	To	avoid	a	cluster	formation	of	the	calcium	

salt,	dicalcium	phosphate	was	used	instead	of	calcium	citrate.	The	distribution	in	the	alginate	

solution	after	wetting	was	easier	and	 led	 to	a	more	homogeneous	distribution	of	 calcium.	

Furthermore	the	smaller	particles	were	less	prone	to	sedimentation.	

3.3 Optimizing	the	mechanical	properties	

3.3.1 Overcoming	the	brittleness	of	the	prepared	alginate	films	

When	an	alginate	solution	is	drawn	to	a	film	and	air	dried,	it	becomes	very	brittle.	To	make	

the	film	more	flexible	and	better	to	handle	for	the	surgeon,	plasticizers	should	be	added.	The	

plasticizer	itself	should	be	nontoxic,	biocompatible,	biodegradable	or	at	least	bio	absorbable.	

A	common	plasticizer	that	fulfills	all	these	requirements	is	glycerol	74–76.	Therefore,	different	

glycerol	 concentrations	 calculated	 on	 the	 polymer	 weight	 were	 tested	 to	 adapt	 the	

mechanical	properties	of	the	prepared	films.	One	disadvantage	of	glycerol	is	that	it	is	a	very	

small,	hydrophilic	molecule,	which	is	washed	out	very	fast	in	a	humid	environment	like	the	

abdomen.	Although	the	emollient	effect	of	the	glycerol	 is	not	needed	anymore	 in	a	humid	

environment	due	to	the	fact,	that	water	itself	has	a	softening	effect,	 larger	molecules,	that	

are	not	washed	out	that	fast	like	PEG	500	and	PEG	2000	were	tested,	too.	Another	approach	

was,	 to	 link	 the	 plasticizer	 to	 the	 alginate	 and	 prevent	 the	 elution	 of	 the	 plasticizer.	
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Therefore,	amino	PEG	2000	synthesized	according	to	the	Mitsunobu	reaction	was	 linked	to	

the	alginate	chains.		

3.3.1.1 Films	with	different	plasticizers	without	cross-linking		

To	be	able	to	measure	only	the	impact	of	plasticizer	on	the	mechanical	properties,	films	with	

glycerol	 and	 PEG	500	 without	 cross-linking	 were	 prepared.	 For	 this	 purpose	 a	 defined	

amount	of	plasticizer	(Table	2)	calculated	on	the	amount	of	alginate	was	added	to	a	solution	

of	alginate	and	dissolved	to	25	g	in	water.	The	films	were	drawn	on	glass	plates	with	a	gap	

clearance	 of	 700	µm	 and	 a	 speed	 of	 5	mm/	sec.	 After	 drying	 at	 room	 temperature	 the	

roughly	25	µm	thick	films	were	cut	into	strips	of	1	to	5	cm.	10	strips	were	tested	as	close	as	

possible	to	the	ASTM	test	standard	for	thin	plastic	sheeting.	

Table	2:	Plasticizer	amount	for	non-cross-linked	alginate	films	

Plasticizer	amount	[%]	calculated	on	alginate	 Plasticizer	amount	[g]	

0	 0	

5	 0.05	

10	 0.1	

20	 0.2	

50	 0.5	

100	 1	
	

3.3.1.2 Films	cross-linked	with	a	hardly	soluble	calcium	salt	acidified	with	lactic	acid	

3	g	 of	 alginate	 and	 a	 defined	 amount	 of	 glycerol	 respectively	 PEG	2000	 (Table	 3)	 were	

dissolved	 to	 50	g	 in	 water	 to	 obtain	 a	 6	%	(m/	V)	 alginate	 solution.	 To	 cross-link	 the	 film	

750	mg	of	hardly	soluble	calcium	citrate	was	suspended	in	25	ml	of	the	alginate	solution	and	

mixed	with	the	help	of	an	ultra	turrax.	After	homogenization	the	suspension	was	sonicated	

to	 remove	 the	 air	 bubbles	 and	 drawn	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec	on	a	glass	plate.	The	 films	containing	1.5	g	or	3	g	of	PEG	2000	did	not	have	the	

required	 consistency	 to	 be	 drawn	 to	 a	 film	 and	 therefore	 were	 rejected.	 To	 dissolve	 the	

calcium	 from	 its	hardly	 soluble	 salt,	 the	 still	wet	 film	was	 sprayed	with	 lactic	 acid.	 The	air	

dried	films	had	a	thickness	of	about	50-60	µm.	20	strips	of	1	to	17.5	cm	were	tested	as	close	

as	possible	to	the	ASTM	test	standard.	
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Table	3:	Components	for	films	sprayed	with	lactic	acid	

Alginate[g]	 Plasticizer	[%]	 Plasticizer	[g]	 Water	[ml]	

3	 0	 0	 47	

3	 1	 0.03	 46.97	

3	 5	 0.15	 46.85	

3	 10	 0.3	 46.7	

3	 20	 0.6	 46.4	

3	 50	 1.5	 45.5	

3	 100	 3	 44	
	

3.3.1.3 Films	cross-linked	via	calcium	release	from	a	calcium-EDTA-complex	

For	 the	 formation	 of	 the	 calcium-EDTA-complex,	 6.09	g	 calcium	 chloride	 and	 20.44	g	 Na-

EDTA	were	dissolved	in	175	ml	water	and	the	pH	was	adjusted	to	7.	For	the	alginate	solution,	

2	g	alginate	and	a	defined	amount	of	the	plasticizers	glycerol	and	PEG	500	were	dissolved	to	

25	g	in	water.	After	dissolution,	25	ml	of	the	calcium-EDTA	solution	was	given	to	the	alginate	

solution	and	homogenized.	Before	drawing	 the	 film	with	a	gap	clearance	of	700	µm	and	a	

speed	of	5	mm/	sec,	500	mg	GDL	was	added	and	homogenized.	After	the	film	was	dried	at	

ambient	conditioning,	 it	was	cut	 into	strips	of	1	to	17.5	cm	with	a	thickness	of	30	to	40	µm	

and	20	strips	were	tested	according	to	ASTM.	The	film	containing	50	%	PEG	500	could	not	be	

tested,	because	it	was	too	brittle	to	be	removed	from	the	glass	plate.	

3.3.2 Water	content	of	air	dried	alginate	films	

One	of	the	main	factors	that	influenced	the	mechanical	properties	of	the	prepared	alginate	

films	was	the	amount	of	plasticizer	incorporated	in	the	film.	In	this	case	not	only	plasticizers	

like	glycerol	or	PEG	should	be	mentioned.	Also	the	softening	effect	of	water	should	not	be	

disregarded.	Therefore	it	was	very	important	to	measure	the	water	amount	incorporated	in	

the	alginate	films.		

For	 a	moisture	measurement	 of	 alginate	 films	 containing	 glycerol	 as	 plasticizer,	 four	 films	

with	0	%,	10	%,	20	%	and	50	%	(w/	w)	glycerol	calculated	on	the	alginate	amount	were	drawn	

with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	 5	mm/	sec.	 After	 drying	 at	 ambient	

conditions,	the	films	were	cut	into	squares	of	25	cm2	and	weighed.	Subsequently	3	pieces	of	
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every	 film	were	 stored	 in	 a	 cabinet	 drier	 for	 15	minutes	 at	 30	°C,	 40	°C	 and	 100	°C.	 After	

15	minutes	 the	 films	were	 taken	out	of	 the	cabinet	drier	and	weighed	again	 to	determine	

how	much	water	the	film	had	lost	during	the	heating	procedure.	

	
Figure	 8:	 Mass	 loss	 of	 alginate	 films	 stored	 in	 a	 cabinet	 dryer	 for	 15	
minutes	at	different	temperatures	

Due	 to	 the	 fact	 that	glycerol	and	PEG	are	not	 thermo	stable	and	hydrolyze	when	they	are	

heated,	the	results	that	were	obtained	by	this	method	could	be	too	high.	Therefore	a	more	

gentle	method	was	performed	to	determine	the	water	content.	

To	further	see	the	impact	of	cross-linking	on	the	water	content	of	air	dried	alginate	films	a	

cross-linked	and	a	not	cross-linked	film	was	tested.	0.75	g	alginate	and	0.75	g	glycerol	were	

dissolved	 to	 25	g	 in	 water	 and	 drawn	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec.	To	cross-link	the	film	with	the	inner	gelation	technique,	0.6	g	CaHPO4	and	1.2	g	

GDL	were	added	to	the	alginate	solution	before	drawing.	After	drying	at	ambient	conditions	

pieces	of	25	cm2	were	cut	out	of	 the	 film	and	given	 into	centrifuge	 tubes.	After	 the	 initial	

weight	was	 determined,	 the	 films	were	 lyophilized	 for	 24	hours.	 The	 not	 cross-linked	 film	

lost	nearly	7	%	of	its	weight	and	the	cross-linked	film	lost	nearly	6	%.	After	further	24	hours	

of	 lyophilization,	the	weight	of	the	films	remained	constant.	But	with	this	method	it	 is	also	

not	 sure,	 if	 only	 the	 water	 evaporates,	 or	 if	 the	 plasticizer	 evaporates	 under	 these	

conditions,	too.	

Therefore,	a	Karl	Fischer	titration	was	performed	to	measure	the	residual	water	content	of	

alginate	films	containing	different	amounts	and	types	of	plasticizer.	The	measurements	were	

performed	using	a	TitroLine®	7500	KF	trace	(SI	Analytics,	Mainz,	Germany).	
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Alginate	films	without	plasticizer	and	with	physically	addition	of	10	%,	50	%	or	100	%	(w/w)	

glycerol,	 PEG	500	 or	 PEG	2000	 as	 plasticizer	 calculated	 on	 sodium	 alginate	 content	 and	

alginate	films	of	the	synthesized	PEGalginates	were	drawn	to	films	with	a	gap	clearance	of	

700	µm	and	a	speed	of	5	mm/	sec	and	dried	under	the	same	conditions	of	temperature	and	

humidity	as	before	for	24	hours.	Then	the	films	were	cut	into	strips	of	1x5	cm.	About	100	mg	

of	the	film	strips	were	accurately	weighed	into	glass	vials	and	covered	with	10.0	ml	of	dried	

methanol.	 The	 strips	 were	 pivoted	 with	 an	 orbital	 shaker	 Rotamax	120	 (Heidolph	

Instruments	GmbH	&	Co	KG,	Schwabach,	Germany)	at	100	rpm	for	24	hours.	After	24	hours,	

1	ml	of	 the	methanol	was	 taken	and	 injected	 into	 the	reaction	medium	of	 the	Karl-Fischer	

titrator	and	titrated.	The	measurement	was	repeated	5	times.	Pure	dried	methanol	was	used	

as	control	to	subtract	the	blank	water	content.		

	
Figure	9:	Moisture	measurements	of	alginate	films	containing	different	amounts	and	types	of	plasticizer	

The	first	attempt	of	measuring	the	water	content	of	air	dried	alginate	films	by	heating	up	the	

alginate	films	in	a	cabinet	drier	showed	a	mass	loss	of	6	%	to	10%	at	30	°C,	11	%	to	17	%	at	

40	°C	 and	 22	%	 to	 27	%	 at	 100	°C.	 This	 mass	 loss	 can	 be	 caused	 by	 the	 loss	 of	 water	

incorporated	in	the	film,	the	loss	of	water	that	came	from	the	hydrolysis	of	glycerol	and	the	

loss	of	other	volatile	substances	that	come	out	of	the	film	by	heating	it	up.	As	expected,	the	

mass	loss	increased	with	higher	temperatures	of	the	cabinet	drier.	The	more	gentle	method	

of	 lyophilization	 showed	 a	mass	 loss	 of	 nearly	 7	%.	 But	 with	 this	method	 it	 could	 not	 be	

precluded	 that	 only	 water	 evaporated	 during	 the	 drying	 process.	 Therefore	 the	 common	

method	of	moisture	determination	via	a	Karl	Fischer	titration	was	performed.	The	moisture	

measurements	 of	 the	 films	 containing	 different	 amounts	 of	 plasticizer	 yielded	 a	 water	

content	of	1	%	to	1.8	%.	With	increasing	amount	of	plasticizer	the	water	amount	in	the	film	
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decreased.	With	glycerol	 as	plasticizer,	 the	water	amount	 in	 the	 film	was	 lower	 than	with	

PEG.	 The	 films	 with	 10	%	 PEG	500	 or	 10	%	 AminoPEG	 seemed	 to	 have	 the	 highest	 water	

content.	Comparing	the	first	and	the	second	method	an	inverse	correlation	between	residual	

water	content	and	amount	of	plasticizer	became	visible.	Therefore	it	is	necessary	to	find	the	

right	balance	of	softening	effect	by	an	added	plasticizer	and	water.		

With	the	help	of	the	Mitsunobu	reaction	AminoPEG	could	be	synthesized	and	subsequently	

linked	to	the	alginate	chains.	PEG	2000	instead	of	PEG	500	was	chosen	for	the	preparation	of	

AminoPEG	to	obtain	a	product	that	is	in	a	solid	state	at	room	temperature.	PEG	was	chosen	

instead	of	glycerol,	because	large	amounts	of	the	very	small	glycerol	should	have	been	linked	

to	the	alginate	chains	to	achieve	a	softening	effect.	But	this	would	come	along	with	a	loss	of	

many	 carboxyl	 groups	 in	 the	 alginate	 chains	which	 are	 essential	 for	 the	 cross-linking	with	

bivalent	cations	like	calcium.	With	both	carboxyl	activating	agents	a	linkage	of	PEGamine	to	

the	 alginate	 chains	was	possible.	 The	wanted	modification	with	 10	%	was	nearly	 achieved	

with	 9.3	%	 and	 8	%.	 With	 EDC	 more	 PEGamine	 could	 be	 linked	 to	 the	 alginate	 as	 with	

DMTMM.		

3.3.3 Overcoming	the	loss	of	plasticizer	

Hydrophilic	plasticizers	 like	glycerol	and	PEG	can	be	easily	washed	out,	when	the	films	are	

implanted	 in	 the	 peritoneum.	 To	 retain	 the	 plasticizer	 in	 the	 alginate	 film	 PEG	2000	 was	

linked	 to	 the	 alginate	 chains.	 PEG	2000	 was	 chosen	 because	 it	 is	 a	 solid	 PEG	 at	 room	

temperature	 and	 therefore	 the	 resulting	 PEGalginate	 should	 be	 in	 a	 solid	 state,	 too.	 This	

would	ease	the	handling	for	following	film	preparations.	When	the	PEG	is	linked	to	the	acids	

of	the	alginate	chains,	particularly	the	guluronic	acids,	these	guluronic	acids	would	no	longer	

be	available	for	the	complexion	of	divalent	ions	and	the	resulting	cross-linking	of	the	alginate	

chains.	 Therefore	 a	 modification	 with	 10	%	 and	 50	%	 PEG	 calculated	 on	 alginate	 was	

required	 to	obtain	and	alginate	containing	 its	plasticizer	covalently	 linked,	 that	can	still	be	

cross-linked	with	bivalent	cations.	

3.3.3.1 Preparation	of	mono	AminoPEG	(Mitsunobu	reaction)	

For	 the	 chemical	 linkage	 of	 PEG	 to	 alginate,	 AminoPEG	was	 synthesized	 according	 to	 the	

Mitsunobu	 reaction.	 At	 first	 mPEG	 (20	g,	 2000	g	mol-1,	 10	mmol,	 1	eq)	 was	 dissolved	 in	

toluene	 (200	ml)	 and	 dried	 by	 azeotropic	 distillation.	 The	 solvent	 was	 removed	 under	
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reduced	 pressure	 and	 the	 residue	 was	 dissolved	 in	 tetrahydrofuran	 (THF,	 100	ml).	

Phthalimide	 (2.208	g,	 147.13	g	mol-1,	 15	mmol,	 1.5	eq)	 and	 triphenlyphosphine	 (3.935	g,	

262.29	g	mol-1,	 15	mmol,	 1.5	eq)	 were	 added.	 Diisopropyl	 azodicarboxylate	 (DIAD,	 3	ml,	

202.21	g	mol-1,	15	mmol,	1.5	eq)	was	dissolved	in	THF	(30	ml)	and	was	added	to	the	reaction.	

Triphenylphosphine	in	combination	with	DIAD	generated	a	phosphonium	intermediate	that	

activated	 the	 alcohol	 group	 of	 the	 PEG.	 The	 reaction	mixture	 was	 stirred	 for	 48	hours	 at	

room	 temperature.	 After	 the	 removal	 of	 the	 solvent,	 the	 raw	 product	 was	 dissolved	 in	

water,	filtered	and	washed	twice	with	diethyl	ether.	Afterwards	the	water	was	removed;	the	

resulting	product	was	dissolved	in	dichloromethane	(DCM)	and	precipitated	in	diethyl	ether	

(400	ml).	 The	 precipitate	 was	 collected	 by	 filtration,	 washed	 with	 cold	 diethyl	 ether	 and	

dried	under	vacuum.	In	the	next	step,	PEG-phthalimide	(20	g,	2129	g	mol-1,	9.4	mmol,	1	eq)	

was	 dissolved	 in	 ethanol.	 To	 remove	 the	 phthalimide,	 hydrazine	 hydrate	 (2875	µl,	

59.05	g	mol-1,	 50	mmol,	 5	eq)	 was	 added	 subsequently	 and	 the	 reaction	 mixture	 was	

refluxed	 for	 5	hours	 at	 85	°C.	After	 cooling	 to	 room	 temperature	 the	 solution	was	 filtered	

and	the	pH	was	adjusted	with	hydrochloric	acid	to	pH	2-3.	After	evaporation	of	the	solvent,	

the	 residue	 was	 solved	 in	 water	 and	 the	 pH	 of	 the	 aqueous	 solution	 was	 adjusted	 with	

sodium	 hydroxide	 to	 pH	9-10.	 The	 raw	 product	 was	 extracted	 four	 times	 with	 DCM.	 The	

combined	organic	phases	were	dried	over	anhydrous	magnesium	sulfate	 (MgSO4),	and	the	

solution	was	 concentrated	 to	 50	ml.	 The	product	was	 precipitated	 into	 cold	 diethyl	 ether,	

collected	by	filtration,	washed	with	cold	diethyl	ether	and	dried	under	vacuum.	
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Figure	10:	Synthesis	of	PEGamine	with	the	help	of	the	Mitsunobu	reaction	
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3.3.3.2 Attachment	of	AminoPEG	to	alginate	chains	

In	 a	 further	 step,	 the	 resulting	 AminoPEG	 was	 linked	 to	 the	 alginate.	 Therefore	 alginate	

LF	10/	60	(15	g)	was	dissolved	in	water	(735	ml),	while	cooling	to	0	°C.	The	carboxylic	groups	

of	 the	 alginate	 were	 activated	 by	 addition	 of	 N-	 (3-Dimethylaminopropyl)-N’-

ethylcarbodiimide	hydrochloride	 (EDC,	191.7	g	mol-1,	2	or	10	eq)	or	4-(4.6-Dimethoxy-1,3,5-

triazin-2-yl)-4-methylmorpholinium	chloride	(DMTMM,	276.72	g	mol-1,	2	eq)	and	the	pH	was	

adjusted	 to	 5	 with	 hydrochloric	 acid.	 The	 cooled	 solution	 was	 stirred	 for	 two	 hours	 until	

AminoPEG	(1.5	g	or	7.5	g)	was	added	and	stirred	at	0	°C	over	night.	The	reaction	solution	was	

dialyzed	(MW	cutoff	14000	Da)	against	water	for	2	days	and	dried	by	lyophilization.	
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Figure	11:	Linkage	of	PEGamine	to	the	alginate	by	taking	the	example	
of	activation	with	EDC	

	

Table	4:	Amounts	of	reaction	components	

AminoPEG	 EDC	 DMTMM	

1.5	g	 1.44	g	(	10	eq)	 0.42	g	(	2	eq)	

7.5	g	 1.44	g	(	2	eq)	 2.08	g	(	2	eq)	
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To	examine	if	the	linkage	of	aminoPEG	to	the	alginate	chains	had	been	successful,	1H-NMR	

measurements	and	GPC	measurements	were	performed.	The	1H-NMR	measurements	were	

performed	 in	 D2O	 with	 a	 Bruker	 Avance	 300	 spectrometer	 (Bruker	 BioSpin	 GmbH,	

Rheinstetten,	Germany).	For	the	GPC	measurements	EDC,	DMTMM,	PEG,	AminoPEG	and	the	

prepared	PEG	alginates	were	dissolved	 in	water	 in	a	concentration	of	10	mg	/ml.	The	GPC	

setup	consisted	of	a	 system	controller,	a	binary	pump,	an	auto	 injector,	a	 column	oven	at	

30	°C,	 a	 UV-Vis	 detector	 (190	nm)	 and	 a	 refractive	 index	 detector	 (Shimadzu	 Corporation,	

Chromatographic	 &	 spectrophotometric	 instruments	 division,	 Kyoto,	 Japan).	 As	 stationary	

phase	a	PolySep-GFC-P	Linear	column	(Phenomenex,	Aschaffenburg,	Germany)	was	chosen.	

For	the	mobile	phase	a	phosphate	buffer	was	prepared	by	dissolving	14.2	g	dibasic	sodium	

phosphate	in	5	L	of	water.	The	pH	of	the	buffer	was	adjusted	to	6.5,	before	filtration	with	a	

sterile	 syringe	 filter	 from	 CORNING®	 (Corning	 Cable	 Systems	 GmbH	 +	 Co	 KG,	 Munich,	

Germany).	 The	measurement	was	 performed	with	 a	 flow	 rate	 of	 1	ml/	min.	 The	 resulting	

chromatograms	 from	 the	 UV-Vis	 detector	measured	 at	 190	nm	were	 processed	 using	 the	

Class-VP	software	(Shimadzu).	
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a) 	

b) 	

Figure	12:	1H-NMR	spectra	of	PEGalginate	synthesized	with	a)	EDC	and	

b)	DMTMM	
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a) 	

	

b) 	

Figure	13:	Chromatograms	of	PEGalginate	and	reaction	components	synthesized	with	a)	EDC	and	b)	DMTMM	
	

With	the	help	of	NMR	measurements,	the	PEG	could	be	determined	which	indicated	that	it	

was	 linked	 successfully	 to	 the	 alginate	 chains,	 because	 during	 dialysis	 it	would	 have	 been	

eluted	otherwise.	The	GPC	measurements	also	revealed	a	successful	linkage	of	PEGamine	to	

the	 alginate	 chains.	 Even	 the	 purification	 with	 the	 help	 of	 the	 dialysis	 was	 successful,	

because	no	residual	PEGamine	was	detectable.	
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3.3.3.3 Determination	of	free	PEG	and	attached	PEG	

To	quantify	how	much	free	PEG	that	was	washed	out	during	dialysis,	a	PEG-iodine-assay	was	

performed.	An	I2/	KI-solution	was	prepared	by	dissolving	1	g	I2	and	2	g	KI	to	100	ml	in	water.	

For	the	calibration,	a	stock	solution	of	10	mg	PEG	in	100	ml	water	was	prepared	and	diluted	

to	 concentrations	 ranging	 from	10	µg/	ml	 to	100	µg/	ml.	 To	 see	 if	 alginate	would	 interfere	

under	 the	 testing	 conditions,	 an	 alginate	 solution	 of	 10	mg	 alginate	 in	 10	ml	 water	 was	

tested,	too.	50	µl	of	the	prepared	solutions	for	the	calibration	curve	or	50	µl	of	the	dialysis	

solutions	were	added	 into	Eppendorf	cups	and	diluted	with	950	µl	water.	After	addition	of	

30	µl	of	the	prepared	I2/	KI	solution	the	mixture	was	vortexed.	Subsequently	200	µl	of	these	

mixtures	were	added	into	a	96	well	plate	and	the	absorption	was	measured	at	500	nm.	

Table	5:	PEG	detection	of	free	PEG	after	linkage	with	the	help	of	EDC:	Results	of	PEG-assay	

Dialysis	
step	

Water	
[l]	 Absorption	 PEG	concentration	

[mg/ml]	
Amount	of	PEG	in	

water[mg]	

1	 9	 0.0130	 1.52	 13.70	

2	 9	 0.0325	 3.81	 34.26	

3	 9	 0.0160	 1.87	 16.87	

4	 8	 0.0205	 2.40	 19.21	

5	 8	 0.0093	 1.08	 8.67	

	 	 	 	 	

	 	 	 	 92.70	

The	 aim	 of	 this	 reaction	 was	 to	 link	 10	%	 PEG	 to	 the	 alginate.	 92.7	mg	 PEGamine	 were	

washed	out	during	the	dialysis	(Table	5).	Therefore	nearly	1.4	g	PEGamine	was	successfully	

linked	 to	 the	 alginate.	 This	 equals	 9.33	%	 PEG.	 1.4	g	 PEGamine	 with	 a	 molar	 mass	 of	

2000	g/	mol	linked	to	15	g	alginate	with	a	molar	mass	of	194	g/	mol	would	correspond	to	a	

modification	of	every	110th	acid	group	in	the	alginate.	
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Table	6:	PEG	detection	of	free	PEG	after	linkage	with	the	help	of	DMTMM:	Results	of	PEG-assay		

Dialysis	
step	 Water	[l]	 absorption	 PEG	concentration	

[mg/ml]	
Amount	of	PEG	in	

water	[mg]	

1	 9	 0.0065	 0.76	 6.85	

2	 9	 0.1478	 17.30	 155.74	

3	 9	 0.0400	 4.68	 42.16	

4	 8	 0.0378	 4.42	 35.37	

5	 8	 0.0170	 1.99	 15.93	

	 	 	 	 	

	 	 	 	 256.06	

With	 DMTMM	 8	%	 PEGamine	 could	 be	 successfully	 linked	 to	 the	 alginate.	 256.1	mg	

PEGamine	were	washed	out	during	the	dialysis.	Therefore	nearly,	1.2	g	PEGamine	was	linked	

to	the	alginate.	This	means	that	every	130th	acid	group	in	the	alginate	was	modified.	

3.3.3.4 Films	made	of	PEG-alginate	

After	lyophilization	1.5	g	of	the	PEG-alginates	containing	10	%	PEG	2000	and	50	%	PEG	2000	

were	dissolved	to	12.5	g	 in	water.	Then	12.5	ml	of	the	calcium-EDTA-complex	solution	was	

given	to	the	alginate.	The	films	were	drawn	with	a	gap	clearance	of	700	µm	and	a	speed	of	

5	mm/	sec	 after	 addition	 of	 500	mg	 GDL.	 The	 films	 could	 not	 be	 tested	 mechanically,	

because	after	air	drying	they	were	too	brittle	to	be	removed	from	the	glass	plate.	Therefore	

the	preparation	was	repeated	without	cross-linking.	1.5	g	of	the	alginates	was	dissolved	to	

25	g	 in	 water.	 The	 films	 were	 drawn	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec.	After	drying	in	air	the	25	µm	thick	films	were	cut	into	strips	of	1	to	5	cm	of	which	

20	were	tested	as	close	as	possible	to	the	ASTM	test	standard.	

3.3.4 Mechanical	evaluation	

The	mechanical	measurements	were	performed	at	 the	 chosen	 test	 conditions	 of	 23	±	2	°C	

and	 50	±	5	%	 relative	 humidity	 and	 were	 carried	 out	 either	 with	 the	 texture	 analyzer	

Instron®	5542	 (Instron®	Deutschland	GmbH,	 Pfungstadt,	Germany)	 or	 the	 texture	 analyzer	

Z010	AllroundLine	Materials	Testing	Machine	(Zwick	GmbH	&	Co.	KG,	Ulm,	Germany).	Both	

texture	analyzers	were	a	constant	rate-of-crosshead-movement	type.	As	load	indicator,	they	

had	a	load	cell	with	a	capacity	of	50	N	or	100	N.	Before	the	films	were	tested,	the	thickness	
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was	 measured	 with	 a	 microprocessor	 coating	 thickness	 gauge	 (MiniTest	 600	 or	 650,	

ElektroPhysik	 Dr.	 Steingroever	 GmbH	 &	 Co.	 KG,	 Köln,	 Germany).	 The	 results	 of	 the	

mechanical	 tests	 were	 recorded	 and	 calculated	 by	 the	 software	 Bluehill®	 2	 version	 2.16.	

(Instron®	 Deutschland	 GmbH,	 Pfungstadt,	 Germany)	 or	 testXpert®	 2	 version	 3.1	 (Zwick	

GmbH	&	Co.	KG,	Ulm,	Germany).	

The	 results	 of	 the	 mechanical	 testing	 were	 illustrated	 in	 box	 plots.	 The	 used	 box	 plots	

summarized	 the	 obtained	 data	 representing	 different	 statistical	 values	 within	 one	 graph.	

Due	to	the	remaining	variability	of	the	thin	polymer	films	with	minor	defects	in	the	films	or	

at	 the	 film	edges,	 this	 kind	of	 illustration	was	preferred.	 In	 the	used	 type	of	box	plot,	 the	

bottom	boundary	of	 the	box	 indicates	 the	25th	percentile	of	 the	obtained	values,	 the	 line	

within	the	box	marks	the	median,	and	the	top	boundary	indicates	the	75th	percentile.	Error	

bars	above	and	below	the	box	 indicate	 the	90th	and	10th	percentiles.	Further	outliers	are	

handled	by	only	showing	the	5th	and	95th	percentile	as	additional	dots	above	and	below	the	

error	bars	(SigmaPlot,	Systat	Software	GmbH,	Erkrath,	Germany).	

In	 addition	 to	 the	 illustration,	 one	 and	 two	 way	 analysis	 of	 variance	 (ANOVA)	 were	

performed	with	SigmaPlot.	 In	order	to	evaluate	the	statistical	significance	of	 the	 individual	

formulations,	a	post-hoc	Tukey	test	was	used	as	a	pairwise	multiple	comparison	procedure.	

The	p-values	are	marked	with	*.	**	indicates	p<0.001,	*	indicates	p<0.05.	
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Tensile	Tests	 Puncture	Test	 Suture	pullout	Test	

	
	

	

	

	
	

Figure	14:	Setup	for	mechanical	evaluation		
	

3.3.4.1 Tensile	test	

For	 the	 tensile	 testing	 the	 air	 dried	 films	were	 cut	with	 a	 scalpel	 into	 strips	 of	 1	 to	 5	cm	

respectively	 1	 to	 17.5	cm.	 These	 strips	 were	 tested	 as	 close	 as	 possible	 to	 an	 American	

national	 standard	 of	 testing	 “Standard	 Test	Method	 for	 Tensile	 Properties	 of	 Thin	 Plastic	

Sheeting	D	882-02”.	The	5	cm	long	strips	were	fixed	with	the	grips	in	such	a	way	that	3	cm	of	

the	 film	 strips	 were	 between	 the	 grips	 and	 consequently	 stretched	 during	 the	 test.	 The	

17.5	cm	long	films	were	fixed	with12.5	cm	between	the	grips.	For	the	fixation	two	different	

kinds	of	grips	were	utilized,	either	two	planar	grips	or	one	planar	grip	and	one	convex	grip	to	

avoid	 the	 formation	of	 a	breaking	edge.	 The	 test	was	 generally	 started	with	a	 slower	 grip	

separation	of	 10	mm/	min	 to	 stretch	 the	 clamped	 film	 samples.	When	a	minimum	 load	of	

0.5	N	was	reached	during	the	testing,	the	separation	time	of	the	grips	increased	to	a	speed	

of	12.5	mm/	min.	Then	the	strips	were	stretched	until	the	film	ruptured.	The	rupture	point	

was	defined	as	the	extension	when	the	applied	load	suddenly	decreased	about	40	%.	 	
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3.3.4.2 Puncture	Test	

The	 setup	 of	 the	 puncture	 test	was	 constituted	 of	 a	 film	 retainer	 consisting	 of	 a	 cylinder	

covered	 with	 a	 fixed	 ring,	 which	 was	 fixed	 at	 the	 bottom	 of	 the	 texture	 analyzer.	 In	 the	

center	of	the	ring	was	a	round	hole	with	a	diameter	of	2.5	cm.	This	hole	could	be	covered	

with	the	film	that	should	be	tested	with	the	dimensions	of	5	to	5	cm.	To	fix	the	film,	a	ring	

made	of	aluminum	with	a	diameter	of	7	cm	and	a	hole	with	a	diameter	of	2.5	cm	was	fixed	

with	screws	on	top	of	the	lower	ring	in	a	way,	that	the	film	was	clamped	between	the	two	

rings.	A	piston	with	a	diameter	of	1	cm	and	a	length	of	5	cm	was	fixed	at	the	upper	arm	of	

the	 texture	analyzer.	This	piston	was	punched	on	 top	of	 the	clamped	 film	with	a	speed	of	

10	mm/	min	 77	 until	 the	 film	 ruptured.	 The	 recording	 started	 after	 a	 minimum	 load	 of	

0.001	N	was	reached	77.	The	maximum	compressive	load	[N]	and	the	elongation	to	puncture	

[%]	77	were	recorded	and	calculated	by	the	INSTRON®	software	Bluehill®	2	version	2.16..	

3.3.4.3 Suture	pullout	test	

For	 the	 suture	 pullout	 test	 specimens	with	 the	 dimensions	 of	 20	mm	by	 40	mm	were	 cut	

from	the	film	with	a	scalpel.	The	film	was	fixed	in	the	upper	clamp	of	the	texture	analyzer.	A	

single	 strand	 of	 Vicryl®	 suture	 size	 3-0	 (Johnson	 &	 Johnson	 MEDICAL	 GmbH,	 Ethicon	

Deutschland,	Norderstedt,	Germany)	was	 placed	 through	 the	 film	 sample	 at	 a	 distance	 of	

15	mm	from	the	end	of	the	specimen	and	10	mm	of	the	side	of	the	specimen.	The	two	ends	

of	the	suture	were	fixed	with	the	lower	clamps.	The	two	grips	were	separated	with	a	speed	

of	55	mm/	min.	

3.3.5 Results	of	mechanical	testing		

For	 the	 tensile	 testing	 of	 films	 containing	 different	 types	 and	 amounts	 of	 plasticizer	 10	

respectively	20	strips	with	a	length	of	5	or	17.5	cm	and	a	width	of	1	cm	were	tested	as	close	

as	possible	to	the	ASTM	test	standard,	to	see	if	plasticizers	like	glycerol	or	PEG	have	an	effect	

on	the	mechanical	properties	of	alginate	films.	

	 	



Alginate	films	cross-linked	with	different	methods	 Chapter	3	

	
45	

	

3.3.5.1 Effect	of	plasticizers	on	non-cross-linked	alginate	films	
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Figure	 15:	Mechanical	 testing	 of	 films	 containing	 different	 types	 and	 amounts	 of	 plasticizers	 without	 cross-
linking.	(a)	Maximum	load	[N]	of	films	containing	glycerol	as	plasticizer.	(b)	Strain	at	maximum	load	[%]	of	films	
containing	glycerol	as	plasticizer.	(c)	Maximum	load	[N]	of	films	containing	PEG	500	as	plasticizer.	(d)	Strain	at	
maximum	 load	 [%]	 of	 films	 containing	 PEG	 500	 as	 plasticizer.	 Statistical	 differences	 are	 only	 depicted	 in	
comparison	 to	 the	0	%	plasticizer	group,	but	were	 tested	 for	all	groups.	Statistical	differences	 (p<	0.001)	are	
indicated	with	two	asterisks	**,	(p<0.05)	with	one	asterisks	*.	

The	 first	mechanical	 trials	were	performed	with	 films	 containing	different	 amounts	 of	 the	

low	molecular	weight	 and	 liquid	 at	 room	 temperature	plasticizers	 glycerol	 and	PEG	500	 in	

amounts	 of	 0	%	 to	 100	%	 relative	 to	 the	 dry	 alginate	 content.	 Both	 plasticizers	 showed	 a	

significant	effect	with	the	addition	of	50	%	or	100	%	relative	to	the	dry	alginate	content.	As	

can	 be	 seen	 the	 two	 plasticizers	 did	 not	 show	 the	 same	 effect.	 Glycerol	 made	 the	 films	

softer.	 The	 maximum	 load	 decreased	 and	 the	 strain	 at	 maximum	 load	 increased.	 To	 the	
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contrary	the	films	with	PEG	500	became	very	brittle.	The	maximum	load	also	decreased,	but	

due	to	the	fact,	that	the	films	were	too	brittle	and	did	not	withstand	higher	forces.	With	low	

amounts	of	5	%or	10	%	PEG	the	strain	increased.	But	with	higher	amounts	the	films	became	

very	brittle	and	ruptured	early.	

3.3.5.2 Effect	of	plasticizers	on	films	cross-linked	via	spraying	with	lactic	acid		
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Figure	16:	Mechanical	 testing	of	 films	 containing	different	 types	 and	amounts	of	 plasticizers	 cross-linked	 via	
calcium	release	from	a	hardly	soluble	calcium	salt	by	spraying	with	 lactic	acid.	 (a)	Maximum	load	[N]	of	films	
containing	glycerol	as	plasticizer.	(b)	Strain	at	maximum	load	[%]	of	films	containing	glycerol	as	plasticizer.	(c)	
Maximum	 load	 [N]	 of	 films	 containing	 PEG	 2000	 as	 plasticizer.	 (d)	 Strain	 at	 maximum	 load	 [%]	 of	 films	
containing	PEG	2000	as	plasticizer.	Statistical	differences	are	only	depicted	in	comparison	to	the	0	%	plasticizer	
group,	 but	were	 tested	 for	 all	 groups.	 Statistical	 differences	 (p<	 0.001)	 are	 indicated	with	 two	 asterisks	 **,	
(p<0.05)	with	one	asterisks	*.	
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To	improve	the	mechanical	properties	and	erosion	time	of	the	films	they	were	cross-linked	

with	calcium.	Two	different	cross-linking	methods	were	tested.	The	films	containing	glycerol	

cross-linked	with	addition	of	calcium	citrate	and	sprayed	with	lactic	acid	showed	an	increase	

of	maximum	load	in	comparison	to	the	non-cross-linked	films.	Like	the	non-cross-linked	films	

the	maximum	load	decreased	with	higher	amounts	of	glycerol	and	the	films	became	more	

elastic.	However	with	glycerol	amounts	higher	than	10	%	a	plateau	was	reached	and	further	

addition	 of	 glycerol	 didn’t	 show	 an	 increase	 of	 elasticity.	 Furthermore	 the	 films	 without	

glycerol	 showed	 a	 higher	 strain	 than	 the	 films	 without	 cross-linking.	 Besides	 the	 films	

sprayed	with	 lactic	 acid	were	 very	 sticky.	 Therefore	 the	 assumption	 occurs	 that	 the	 lactic	

acid	has	a	softening	effect	on	the	alginate	films,	too.	The	addition	of	the	solid	PEG	2000	did	

not	show	a	softening	effect	on	the	films.	Mixtures	with	more	50	%	or	100	%	PEG	2000	could	

not	be	drawn	at	all	to	films	and	the	films	with	less	amounts	of	PEG	2000	became	very	stiff	

and	 brittle,	 too.	 The	 strain	 at	maximum	 load	 decreased	 significantly	 after	 the	 addition	 of	

only	5	%	PEG	2000.	Whereas	the	maximum	load	was	not	affected	until	the	addition	of	20	%	

PEG	2000.	The	elasticity	of	the	films	containing	PEG	2000	was	even	worse	than	the	elasticity	

of	the	films	containing	PEG	500.	
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3.3.5.3 Effect	of	plasticizers	on	films	cross-linked	by	EDTA-complexed	calcium	
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Figure	17:	Mechanical	 testing	of	 films	 containing	different	 types	 and	amounts	of	 plasticizers	 cross-linked	 via	

calcium	release	from	a	calcium-EDTA-complex.	(a)	Maximum	load	[N]	of	films	containing	glycerol	as	plasticizer.	

(b)	 Strain	 at	 maximum	 load	 [%]	 of	 films	 containing	 glycerol	 as	 plasticizer.	 (c)	 Maximum	 load	 [N]	 of	 films	

containing	PEG	500	as	plasticizer.	 (d)	 Strain	 at	maximum	 load	 [%]	of	 films	 containing	PEG	500	as	plasticizer.	

Statistical	 differences	 are	 only	 depicted	 in	 comparison	 to	 the	 0	 %	 plasticizer	 group,	 but	 were	 tested	 for	 all	

groups.	Statistical	differences	(p<	0.001)	are	indicated	with	two	asterisks	**,	(p<0.05)	with	one	asterisks	*.	
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Figure	18:	Film	strips	with	increasing	PEG	500	content	cross-linked	
via	the	Ca-EDTA	method.	

To	avoid	 the	additional	 softening	effect	of	 the	 lactic	 acid,	 further	 films	 containing	glycerol	

and	PEG	500	as	plasticizer	were	cross-linked	by	addition	of	a	defined	amount	of	a	calcium-

EDTA-complex	and	GDL.	The	strain	at	maximum	load	was	strongly	affected	by	the	addition	of	

glycerol.	Increasing	glycerol	amounts	led	to	a	higher	strain	and	consequently	to	a	higher	film	

elasticity.	 Up	 to	 the	 addition	 of	 10	%	 glycerol	 the	 strain	 at	 maximum	 load	 stayed	 almost	

constant.	 Glycerol	 amounts	 larger	 than	 20	%	 exhibited	 a	 significant	 drop	 in	 the	maximum	

load	and	the	films	could	only	withstand	very	low	tensile	forces.	Furthermore	the	cross-linked	

films	 could	 be	 stretched	 further	 than	 the	 films	without	 cross-linking.	 The	 films	 containing	

100	%	glycerol	 for	example	could	be	stretched	up	to	45	%	whereas	 the	 film	without	cross-

linking	containing	100	%	glycerol	 could	only	be	stretched	up	 to	15	%.	An	 increase	 in	 strain	

was	 also	 seen	 in	 comparison	 to	 the	 films	 sprayed	with	 lactic	 acid.	Additionally	 no	plateau	

was	 visible	which	 supports	 the	 theory	 of	 the	 softening	 effect	 of	 the	 lactic	 acid.	With	 the	

addition	 of	 PEG	500	 the	 films	 became	 very	 stiff	 and	 brittle.	 The	 appearance	 of	 the	 films	

changed	too,	because	with	increasing	PEG	500	content	the	films	became	more	opaque.	With	

the	addition	of	only	1	%	PEG	500	a	significant	effect	on	the	maximum	load	as	well	as	on	the	

strain	at	maximum	load	could	be	examined,	both	indicated	very	stiff	and	brittle	films.	With	

the	 addition	 of	 100	%	 PEG	500	 the	 maximum	 load	 immediately	 dropped	 down	 due	 to	

brittleness.	Therefore	physical	addition	of	PEG	to	the	alginate	solution	had	not	the	wished	

softening	effect	on	the	alginate	films.		
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3.3.5.4 Effect	of	linked	AminoPEG	2000	as	plasticizer	
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Figure	 19:	 Mechanical	 testing	 of	 films	 containing	 PEG	 2000	 as	 plasticizer	 chemically	 linked	 to	 the	 alginate	
chains,	without	cross-linking.	(a)	Maximum	load	[N]	(b)	Strain	at	maximum	load	[%]	Statistical	differences	are	
only	depicted	in	comparison	to	the	0	%	plasticizer	group,	but	were	tested	for	all	groups.	Statistical	differences	
(p<	0.001)	are	indicated	with	two	asterisks	**,	(p<0.05)	with	one	asterisks	*.	

To	 avoid	 the	 washing	 out	 of	 the	 plasticizer	 from	 the	 alginate	 films	 PEG	2000	 was	 linked	

chemically	to	the	alginate	chains.	But	this	led	to	stiff	and	brittle	films,	too.	The	strain	of	the	

films	 containing	 10	%	 PEG	2000	 had	 a	 higher	maximum	 load	 and	 a	 higher	 strain	 than	 the	

films	with	 physically	 addition	 of	 PEG	2000.	 But	 this	 could	 be	 ascribed	 to	 the	 effect	 of	 the	

lactic	 acid.	 Tensile	 testing	 of	 these	 films	 cross-linked	 with	 the	 help	 of	 the	 calcium-EDTA-

complex	was	not	possible,	because	the	films	were	too	brittle	to	be	removed	from	the	glass	

plate.	
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3.4 Erosion	and	swelling	of	the	alginate	films	

3.4.1 Erosion	of	alginate	discs	in	buffer	without	buffer	exchange	(non-sink	conditions)	

To	 see	 the	 impact	 of	 calcium	 within	 the	 film	 as	 well	 as	 within	 the	 erosion	 medium,	 an	

erosion	study	with	alginate	 film	discs	containing	0.6	mg	respectively	1.2	mg	calcium	 in	Tris	

buffer	without	calcium	and	HEPES	buffer	with	2.5	mmol/	l	calcium	was	performed.	The	films	

were	 prepared	 according	 to	 the	 inner	 gelation	 technique	 and	 cast	 into	 Teflon	 molds.	

Particularly	 one	 component	 containing	 72	mg	 or	 144	mg	 calcium	 citrate	 and	 288	mg	

gluconolactone	was	suspended	in	5.8	ml	water	by	vortexing	for	15	seconds	and	added	to	a	

second	 component	 containing	 144	mg	 alginate	 and	 144	mg	 glycerol	 dissolved	 in	 14.4	ml	

water.	After	vortexing	again	for	15	seconds	the	mixture	was	poured	into	a	rectangular	Teflon	

dish	 of	 72	cm2	 within	 two	 minutes.	 The	 films	 were	 allowed	 to	 dry	 at	 room	 temperature	

before	cutting	them	into	discs	with	a	diameter	of	2	cm	with	the	help	of	a	cork	bore.	The	film	

discs	were	weighed	and	given	 into	glass	 vials.	After	10	ml	of	buffer	have	been	added,	 the	

vials	were	closed	and	stored	in	a	cabinet	dryer	at	37	°C.	Every	week	4	discs	of	each	sample	

were	taken	out	of	the	cabinet	dryer.	The	dry	weight	was	determined	after	lyophilization.	

a)	 b)	

	 	
Figure	 20:	 Erosion	 of	 cast	 alginate	 films	 with	 different	 calcium	 amounts	 stored	 in	 buffer	 with	 and	 without	

calcium.	(a)	Observed	dry	weights	of	alginate	discs	initially	containing	0.6	mg	calcium	stored	in	Tris	buffer	and	

HEPES	buffer.	(b)	Observed	dry	weights	of	alginate	discs	initially	containing	1.2	mg	calcium	stored	in	Tris	buffer	

and	HEPES	buffer.	
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	 Figure	21:	Visual	appearance	of	freeze	dried	alginate	discs	after	storage	in	HEPES	buffer	
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	 Figure	22:	Visual	appearance	of	freeze	dried	alginate	discs	after	storage	in	Tris	buffer	

	

3.4.2 Erosion	of	alginate	in	buffer	with	buffer	exchange	(sink-conditions)	

To	perform	the	erosion	study	at	sink	conditions	 for	alginate	as	well	as	calcium,	an	erosion	

study	 with	 a	 weekly	 buffer	 exchange	 was	 performed.	 Therefore	 alginate	 discs	 containing	

different	 amounts	of	 calcium	and	erosion	buffers	with	different	 calcium	concentrations	 at	

physiological	levels	were	prepared.	The	films	were	produced	according	to	the	inner	gelation	

technique	and	cast	into	Teflon	molds,	as	described	before.	The	alginate	films	without	cross-

linking	were	prepared	without	the	second	component	and	the	alginate	and	glycerol	amounts	
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were	dissolved	 in	20.2	ml	water.	After	10	hours	gelation	time	the	films	were	cut	 into	discs	

containing	no	calcium,	0.6	mg	or	1.2	mg	calcium	with	a	diameter	of	2	cm	with	the	help	of	a	

cork	bore.	 The	discs	were	 given	 into	 tared	 glass	 vials	 and	 the	dry	weight	was	determined	

after	drying	to	constant	water	content.	After	addition	of	10	ml	of	the	respective	buffers	the	

closed	 vials	 were	 stored	 in	 a	 cabinet	 dryer	 at	 37	°C.	 To	 investigate	 the	 film	 erosion	 and	

degradation	four	vials	containing	discs	of	each	calcium	amount	incorporated	and	buffers	of	

each	calcium	concentration	were	taken	out	of	the	cabinet	dryer	for	further	investigation.	For	

GPC	investigations	one	milliliter	of	the	buffers	was	given	into	glass	vials	and	stored	at	-20	°C.	

The	 rest	 of	 the	 buffer	 was	 decanted	 carefully	 and	 rejected.	 The	 remaining	 alginate	 discs	

were	carefully	washed	with	water	by	pouring	the	water	into	the	vials,	pivoting	the	vial	and	

then	 pouring	 the	 water	 out	 of	 the	 vial	 again.	 Before	 determining	 the	 wet	 weight	 of	 the	

eroded	alginate	discs	the	glass	vials	were	wiped	with	cotton	swaps	to	remove	the	residual	

water.	The	remaining	alginate	discs	were	lyophilized	and	weighed	again	to	determine	the	dry	

weight.	To	maintain	sink	conditions	for	the	soluble	alginate	and	calcium,	a	buffer	exchange	

was	 performed	 for	 the	 remaining	 alginate	 discs	 by	 replacing	 the	 buffer	with	 fresh	 buffer.	

After	8	weeks	the	erosion	study	was	terminated	because	this	was	considered	the	maximum	

application	 time	 for	 the	 intended	 adhesion	 barrier.	 The	 resulting	 dry	 weights	 were	

normalized	to	the	weight	determined	at	0	weeks	which	corresponds	to	the	dry	weight	after	

24	hours.	The	dry	weight	after	24	hours	was	chosen,	to	be	able	to	neglect	the	mass	loss	of	

glycerol	that	was	washed	out	of	the	films	very	quickly.		

After	8	weeks,	a	GPC	measurement	of	the	collected	erosion	media	was	performed.	The	GPC	

setup	consisted	of	a	 system	controller,	a	binary	pump,	an	auto	 injector,	a	 column	oven	at	

30	°C,	 a	 UV-Vis	 detector	 (190	nm)	 and	 a	 refractive	 index	 detector	 (Shimadzu	 Corporation,	

Chromatographic	 &	 spectrophotometric	 instruments	 division,	 Kyoto,	 Japan).	 As	 stationary	

phase	a	PolySep-GFC-P	Linear	column	(Phenomenex,	Aschaffenburg,	Germany)	was	chosen.	

For	the	mobile	phase	a	phosphate	buffer	was	prepared	by	dissolving	14.2	g	dibasic	sodium	

phosphate	in	5	L	of	water.	The	pH	of	the	buffer	was	adjusted	to	6.5,	before	filtration	with	a	

sterile	 syringe	 filter	 from	 CORNING®	 (Corning	 Cable	 Systems	 GmbH	 +	 Co	 KG,	 Munich,	

Germany).	 The	measurement	was	 performed	with	 a	 flow	 rate	 of	 1	ml/	min.	 The	 resulting	

chromatograms	 from	 the	 UV-Vis	 detector	measured	 at	 190	nm	were	 processed	 using	 the	

Class-VP	 software	 (Shimadzu).	 The	 results	 from	 the	 RID	 calculated	 in	 relation	 to	 dextran	
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standards	 were	 given	 as	 Mw	 (weight	 average)	 and	 Mn	 (number	 average)	 and	 Mw/	Mn	

(polydispersity	index).	

a)

	

b)

	
c)

	

	

Figure	 23:	 Swelling	 of	 alginate	 discs	 containing	 different	 amounts	 of	 calcium,	 stored	 buffer	 with	 different	

calcium	concentrations.	(a)	Swelling	ratio	of	alginate	discs	initially	containing	0	mg	calcium.	(b)	Swelling	ratio	of	

alginate	discs	 initially	containing	0.6	mg	calcium.	(c)	Swelling	ratio	of	alginate	discs	 initially	containing	1.2	mg	

calcium.	
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a)

	

b)

	
c)	

	
Figure	24:	Erosion	of	cast	alginate	films	with	different	amounts	of	calcium	incorporated	stored	in	buffers	with	
different	 calcium	 concentrations.	 **	 =	 P<	 0.001,	 *	 =	 P<	 0.05.	 The	 numbers	 behind	 the	 stars	 represent	 the	
different	 values	obtained	 in	 the	different	buffers.	1:	HEPES	buffer	with	2.5	mmol/	l	 calcium,	2:	HEPES	buffer	
with	 1.2	 mmol/	l	 calcium,	 3:	 Tris	 buffer	 without	 calcium.	 The	 stars	 combined	 with	 the	 numbers	 indicate	
significant	or	not	significant	differences	between	the	measurements	at	similar	time	points.	 (a)	dry	weights	of	
alginate	discs	initially	containing	no	calcium,	(b)	dry	weights	of	alginate	discs	initially	containing	0.6	mg	calcium,	
(c)	 dry	 weights	 of	 alginate	 discs	 initially	 containing	 1.2	 mg	 calcium.	 Dry	 weights	 are	 normalized	 to	 the	 dry	
weight	obtained	after	24	h.		
	

a)	

	

b)	

	
Figure	25:	Investigation	of	the	released	alginate	in	the	Tris	buffer	without	calcium.	(a)	Cumulative	released	alginate	
amount	 determined	 with	 UV	 detection	 (190	 nm).	 (Statistical	 differences	 were	 observed	 between	 all	 groups.)	 (b)	
Molecular	weight	 of	 the	 released	 alginate	 chains	 compared	 to	 dextran	 standards.	 (No	 statistical	 differences	were	
observed.)	
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	 Figure	26:	Visual	appearance	of	freeze	dried	alginate	discs	after	storage	in	buffer	

	

3.4.3 Influence	of	calcium	on	the	erosion	and	swelling	of	alginate	films	

The	erosion	of	alginate	discs	containing	0.6	mg	respectively	1.2	mg	calcium	 in	buffers	with	

different	calcium	concentrations	under	sink	and	non-sink	conditions	showed	the	important	

impact	of	calcium	in	the	films	as	well	as	in	the	buffers	on	the	erosion	and	swelling	behavior	

of	alginate	films.	The	films	tested	without	buffer	exchange	showed	an	enormous	mass	loss	

after	the	first	week.	This	is	due	to	the	loss	of	the	plasticizer	glycerol.	Glycerol	is	a	very	small	
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hydrophilic	molecule	 and	 therefore	 could	 be	 easily	 washed	 out	 of	 the	 film.	 To	 avoid	 this	

effect	for	the	erosion	study	with	buffer	exchange,	samples	were	taken	after	24	hours	when	

the	glycerol	ought	to	be	washed	out	and	the	other	samples	were	normalized	on	the	24	hour	

samples.	 A	 film	 preparation	 without	 the	 plasticizer	 glycerol	 was	 not	 possible,	 because	

without	 plasticizer	 the	 thin	 alginate	 films	 were	 too	 brittle	 and	 splintered	 when	 the	 discs	

were	punched	out	from	the	air	dried	films	like	it	was	done	for	the	first	erosion	study.	In	the	

second	erosion	study	the	discs	were	punched	out	of	the	film	after	10	hours	of	cross-linking,	

when	they	were	still	wet,	because	it	facilitated	the	handling.		

Without	buffer	exchange	the	films	did	not	erode	completely	after	8	weeks.	In	the	Tris	buffer	

the	discs	containing	0.6	mg	calcium	showed	a	steadily	mass	loss	over	8	weeks.	In	the	HEPES	

buffer	with	 calcium,	 they	 seemed	 to	 incorporate	 calcium	 from	 the	 buffer	 because	 after	 a	

slightly	mass	loss	till	week	5	they	became	heavier	till	week	seven,	until	the	mass	decreased	

again.	The	discs	containing	1.2	mg	calcium	had	altogether	a	higher	mass	loss	than	the	discs	

with	less	calcium.	During	the	eight	weeks	the	mass	of	the	discs	stored	in	HEPES	buffer	stayed	

more	 or	 less	 constant,	 whereas	 the	 films	 stored	 in	 the	 Tris	 buffer	 showed	more	 ups	 and	

downs.	The	fact	that	the	alginate	discs,	with	the	higher	content	of	calcium,	stored	in	HEPES-

buffer	had	a	higher	mass	loss	than	the	disc	with	the	lower	content	can	be	explained	with	the	

weight	of	 the	discs	 in	the	beginning.	The	discs	with	the	 lower	content	had	a	dry	weight	of	

about	20-30	mg.	The	discs	with	the	higher	content	are	thicker	with	a	dry	weight	of	about	35-

50	mg.	 This	 is	 because	 of	 the	 stronger	 cross-linking	 with	 calcium	 ions	 and	 thus	 a	 higher	

concentration	of	 polymer	 and	 additives	 in	 the	discs.	When	 the	discs	 are	 thicker,	 they	 can	

lose	more	glycerol	and	water	and	therefore	had	a	bigger	loss	of	weight.	

During	the	erosion	study	with	buffer	exchange	the	swelling	of	the	films	was	monitored,	too.	

The	 discs	 without	 calcium	were	 only	 stable	 in	 HEPES	 buffer	 containing	 2.5	mmol	 calcium	

because	 they	were	 cross-linked	with	 the	 uptake	 of	 calcium	 from	 the	 buffer.	 In	 the	HEPES	

buffer	with	1.2	mmol	calcium	and	the	Tris	buffer	without	calcium	the	discs	were	completely	

dissolved	within	the	first	week	of	investigation.	But	in	the	HEPES	buffer	containing	2.5	mmol	

calcium	 the	discs	 showed	a	 swelling	 ratio	of	 about	70	after	24	hours	 incubation	 time.	The	

film	discs	containing	0.6	mg	calcium	were	stable	in	both	HEPES	buffers	containing	calcium.	In	

the	Tris	buffer	without	calcium	the	films	were	completely	eroded	after	three	weeks.	It	could	

be	seen,	that	the	incorporation	of	calcium	in	the	film	had	a	significant	effect	on	the	swelling	
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behavior,	because	the	swelling	ratio	of	the	films	containing	0.6	mg	calcium	was	nearly	5	to	8	

and	the	films	containing	1.2	mg	calcium	had	an	increase	of	wet	weight	to	about	three	or	six	

times	their	starting	weight.	The	impact	of	the	calcium	in	the	buffer	could	be	observed	in	the	

trend	that	the	discs	stored	in	the	calcium	free	Tris	buffer	had	a	higher	swelling	ratio	than	the	

discs	stored	in	HEPES	buffer	with	1.2	mmol	calcium	and	they	had	a	higher	swelling	ratio	than	

the	discs	stored	in	HEPES	buffer	with	2.5	mmol	calcium.	The	alginate	discs	with	the	highest	

calcium	amount	of	1.2	mg	calcium	were	also	not	stable	 in	 the	calcium	free	Tris	buffer	and	

were	completely	eroded	after	five	weeks.		

The	assumption	that	the	discs	without	calcium	stored	in	HEPES	buffer	with	2.5	mmol	calcium	

incorporated	calcium	and	therefore	got	cross-linked	could	be	confirmed	with	the	results	of	

the	erosion	study,	because	instead	of	losing	weight	they	even	increased	their	weight	during	

the	first	two	weeks.	In	the	beginning	the	discs	became	heavier	up	to	140	%	until	a	rapid	mass	

loss	 at	 week	 three	 to	 80	%	 where	 they	 stayed	 nearly	 constant	 till	 week	 eight.	 The	 discs	

containing	 0.6	mg	 calcium	 seemed	 to	 be	 stabilized	 in	 the	 HEPES	 buffer	 with	 2.5	mmol	

calcium.	They	became	slightly	heavier	 in	 the	 first	 three	weeks	until	 they	 reached	a	 steady	

state	 at	 week	 four	 after	 which	 no	 remarkable	weight	 loss	 was	 observed	within	 the	 eight	

weeks	 observation	 time.	 In	 the	HEPES	 buffer	with	 1.2	mmol	 calcium	 they	 showed	 a	 small	

mass	loss	in	the	first	week,	followed	by	a	steady	state	phase	of	three	weeks	until	they	lost	

half	of	their	weight	till	week	eight.	In	the	Tris	buffer	without	calcium	they	showed	an	almost	

linear	 mass	 loss	 until	 they	 were	 completely	 eroded	 after	 four	 weeks.	 The	 discs	 with	 the	

highest	initial	calcium	content	of	1.2	mg	eroded	in	every	buffer.	During	the	first	two	weeks	

the	weight	loss	was	slightly	greater	than	during	the	following	week.	The	trend	that	the	discs	

in	 the	 buffer	 with	 the	 higher	 calcium	 concentration	 eroded	 slower	 than	 the	 discs	 in	 the	

buffer	with	less	or	no	calcium	was	also	visible.	Until	week	eight	the	weight	of	the	film	discs	

stored	 in	 the	 HEPES	 buffer	 containing	 2.5	mmol	 calcium	 eroded	 to	 about	 60	%	 of	 their	

weight	 after	 24	hours.	 In	 the	 HEPES	 buffer	 containing	 1.2	mmol	 calcium	 they	 eroded	 to	

about	 40	%.	 The	 films	 were	 completely	 eroded	 after	 seven	 weeks	 in	 the	 Tris	 buffer	

containing	no	calcium.	

The	 GPC	 investigation	 could	 only	 be	 made	 with	 the	 completely	 eroded	 film	 discs	 in	 Tris	

buffer,	because	in	the	other	buffers	the	alginate	concentration	was	under	the	quantification	

limit.	The	erosion	of	the	alginate	discs	was	more	or	less	a	release	of	alginate	chains.	Alginate	
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is	a	biopolymer	produced	by	brown	algae	containing	polymer	chains	with	different	 length.	

When	 the	 calcium	 was	 washed	 out	 from	 the	 alginate	 discs,	 the	 positive	 charges	 of	 the	

calcium	 ions	were	missing	to	cross-link	the	negatively	charged	alginate	chains.	The	shorter	

chains	had	less	binding	sites	than	the	longer	chains.	Therefore	they	were	washed	out	faster	

than	the	longer	chains.	When	the	whole	discs	eroded	the	longer	chains	were	also	detectable.	

3.5 Biological	evaluations	of	alginate	films	

3.5.1 Pretests	

When	 the	alginate	 films	were	 cross-linked	with	 the	 favored	 inner	 gelation	 technique,	GDL	

was	 added	 to	 the	 alginate	 solution	 to	 decrease	 the	 pH.	 The	 decrease	 of	 the	 pH	 was	

necessary	 to	 dissolve	 the	 calcium	 from	 its	 hardly	 soluble	 calcium	 salt	 and	 initiate	 cross-

linking.	But	unfortunately	this	decrease	of	pH	might	be	a	problem	for	the	tissue	that	gets	in	

contact	with	the	alginate	film.	

Therefore	a	cytotoxicity	test	of	the	prepared	alginate	films	was	performed	to	see,	if	the	GDL	

has	to	be	removed	from	the	film	before	application	or	if	it	would	cause	no	cauterization	on	

the	application	site.		

To	 test,	 if	 the	 incorporated	 partial	 hydrolyzed	 GDL	 has	 an	 impact	 on	 the	 pH	 of	 the	

surrounding	 medium	 some	 pretests	 were	 performed.	 For	 these	 pretests	 films	 prepared	

according	 the	 inner	gelation	 technique	drawn	on	glass	plates	and	 films	poured	 in	a	Teflon	

dish	like	described	before	were	tested.		

Table	7:	Components	of	films	prepared	for	pretests	

components	 amounts	in	drawn	film	[g]	 amounts	in	poured	film	[g]	

Alginate	 0.75	 0.144	

glycerol	 0.75	 0.144	

dicalcium	
phosphate	

0.15	 	

calcium	citrate	 	 0.144	

GDL	 0.6	 0.288	

After	air	drying	the	films	were	cut	into	discs	with	a	diameter	of	2	cm.	The	discs	were	given	

into	a	well	plate	and	covered	with	3.14	ml	(1	ml/	cm2)	DMEM	(Dulbecco’s	modified	eagle’s	

medium).	 The	phenol	 red	which	was	 added	 to	 the	medium	as	 pH	 indicator	 and	 is	 pink	 at	

neutral	pH	became	yellow	after	addition	to	the	film	discs	which	indicated	a	pH	decrease	of	
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the	medium.	This	result	showed	that	the	GDL	incorporated	in	the	film	might	be	harmful	to	

the	tissue	and	therefore	has	to	be	washed	out	before	application.	

For	 a	 washing	 procedure	 three	 solutions	with	 nearly	 neutral	 pH	were	 chosen,	 PBS,	 0.9	%	

sodium	chloride	solution	and	Ringer	solution.	Again	the	film	discs	were	covered	with	3	ml	of	

these	solutions	for	5,	10,	15,	30	and	60	minutes	to	see	how	long	the	film	has	to	be	in	contact	

with	the	solution	to	remove	the	incorporated	GDL.	After	a	defined	incubation	time	the	pH	of	

the	solution	was	measured.	

	

Table	8:	pH	measurements	of	washed	films	discs	

time	[min]	
0.9	%	NaCl	solution	

pH	7.1	
Ringer	solution	

pH	6.8	
PBS	buffer	
pH	7.4	

	
poured	film	 drawn	film	 poured	film	 drawn	film	 poured	film	 drawn	film	

5	 4.1	 4.2	 4.1	 4.1	 5.4	 6.5	

10	 4.2	 4.2	 4.1	 4.1	 5.3	 6.4	

15	 4.2	 4.1	 4.1	 4.1	 4.8	 6.4	

30	 4.2	 4.1	 4.1	 4.0	 5.1	 6.4	

60	 4.2	 4.0	 4.1	 4.0	 4.9	 6.5	

After	the	washing	procedure,	3	ml	of	DMEM	was	added	to	the	washed	and	the	non-washed	

discs.	With	the	non-washed	discs	the	DMEM	became	yellow.	With	the	washed	discs	it	stayed	

pink.	
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3.5.2 MTT	Assay	

To	further	investigate	the	cytotoxicity	of	the	alginate	films	a	MTT	assay	was	performed.	The	

alginate	films	were	prepared	via	the	inner	gelation	technique	and	directly	poured	into	sterile	

petri	dishes	with	a	size	of	55	cm2.		

Table	9	:	Components	of	alginate	film	for	MTT	assay	

poured	film	

alginate	 0.110	g	

glycerol	 0.110	g	

calcium	citrate	 0.110	g	

GDL	 0.220	g	

During	the	drying	process	under	laminar	air	flow	to	avoid	a	contamination	with	bacteria	the	

film	 cross-linked	 and	 contracted	 to	 a	 size	 of	 about	 40	cm2.	 Therefore	 it	was	washed	with	

40	ml	 (1ml/	cm2)	0.9	%	sodium	chloride	solution	 for	about	10	minutes	 to	 remove	the	GDL.	

After	10	minutes	 the	sodium	chloride	solution	was	removed.	Then	40	ml	EMEM	with	10	%	

FCS	was	added	to	the	film	to	extract	feasible	cytotoxic	components	and	the	petri	dish	was	

given	into	an	incubator	for	24	hours	at	37	°C	and	5	%	CO2.	For	comparison	a	piece	of	25	cm2	

SurgiWrap®	 was	 chosen	 and	 incubated	 with	 25	ml	 EMEM	 with	 10	%	 FCS	 as	 well.	 After	

incubation	 the	 medium	 was	 taken	 up	 with	 a	 syringe	 and	 sterile	 filtrated	 with	 a	 28	mm	

syringe	filter	with	a	pore	size	of	0.2	µm	(Corning	Incorporated,	Kaiserslautern,	Germany)	and	

later	used	for	the	culture	of	L929	mouse	fibroblasts	for	toxicity	testing.	The	MTT	assay	was	

performed	according	 to	 ISO	10993-5	Part	5:	Tests	 for	 in	vitro	cytotoxicity	using	commonly	

applied	measurement	 conditions.	 The	purple	 color	 of	 the	 formazan	produced	by	 reducing	

the	 tetrazolium	 dye	 MTT	 was	 quantified	 with	 a	 plate	 reader	 (Shimadzu	 CS	 1903	 PC)	 at	

570	nm	and	690	nm.	
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Figure	 27:	 MTT	 assay	 of	 an	 alginate	 film	 prepared	 via	 the	 inner	 gelation	
technique	and	SurgiWrap®	as	comparison.	

Both	films,	the	alginate	film	as	well	as	SurgiWrap®	showed	an	activity	larger	than	95	%.	

3.5.3 Cell	adhesion		

To	 test	 if	 cells	 would	 adhere	 on	 the	 antiadhesive	 alginate	 films	 a	 cell	 adhesion	 test	 was	

performed.	 Therefore	 films	 poured	 into	 Teflon	 dishes	 prepared	 according	 to	 the	 inner	

gelation	 technique	 were	 cut	 into	 discs	 with	 a	 diameter	 of	 2	cm	 using	 a	 cork	 bore	 and	

subsequently	cut	in	half	to	obtain	semicircles.	As	control	commercial	available	antiadhesive	

PLA	 foils	 (SurgiWrap®,	Mast	 Biosurgery	AG,	 Zürich,	 Switzerland)	were	 cut	 into	 semicircles,	

too.	These	semicircles	were	given	 into	12	well	plates	made	of	polystyrene.	Due	to	the	fact	

that	the	film	discs	would	float	into	the	medium,	they	were	fixed	to	the	bottom	with	the	help	

of	a	 sterile	glass	annulus.	Then	about	100000	L929	mouse	 fibroblasts	 in	EMEM	containing	

10	%	FCS	were	given	to	the	film	semicircles	and	were	incubated	for	24	hours	in	an	incubator	

at	 37	°C	 and	 5	%	CO2.	 After	 incubation	 the	 cells	 on	 and	 next	 to	 the	 film	 were	 carefully	

visualized	 using	 a	 phase	 contrast	 microscope	 (Leica	 DM	 IRB,	 Leica	 Microsystems	 Inc.,	

Deerfield/	Illinois,	 USA)	 and	 then	 subsequently	 stained	 using	 SYTO-13®	 and	 fluorescent	

pictures	were	taken	with	a	Zeiss	Axiovert	200	microscope	combined	with	a	LSM	510	 laser-

scanning	device	(Zeiss,	Oberkochen,	Germany).	The	dye	was	excited	using	the	488	nm	laser	

and	detected	using	the	long-pass	filter	(LP505)	with	a	pinhole	of	72	µm.	Only	the	cells	that	

were	lying	in	the	focal	plane	could	be	focused.	The	other	cells	appear	out	of	focus.	To	test	if	

the	 cells	 adhere	 to	 the	 films	 the	 wells	 were	 rinsed	 twice	 with	 PBS	 buffer	 to	 remove	 not	

adhering	cells.	
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alginate	and	polystyrene	 alginate	and	polystyrene	

	 	
PLA	and	polystyrene	 PLA	and	polystyrene	

	 	
Figure	28:	Images	of	adhesion	behavior	of	L	929	mouse	fibroblasts	on	polymer	films	made	

of	 alginate	 or	 PLA:	 (a)	 phase	 contrast	 image	 of	 cellular	 aggregates	 on	 the	 surface	 of	 an	

alginate	 film;	 (b)	 fluorescent	 image	of	L	929	mouse	 fibroblasts	stained	with	SYTO-13®	on	

polystyrene	next	to	an	alginate	film;	 (c)	phase	contrast	 image	of	L	929	mouse	fibroblasts	

on	a	PLA	film;	(d)	fluorescent	image	of	L	929	mouse	fibroblasts	stained	with	SYTO-13@	on	

a	PLA	film.	Scale	bar	represents	200	µm	in	all	images.	

	

3.5.4 Compatibility	of	the	prepared	alginate	films	

The	 pretests	 of	 the	 alginate	 films	 prepared	 via	 the	 inner	 gelation	 test	 show,	 that	 the	

incorporated	GDL	has	a	great	 impact	on	 the	cytotoxicity	of	 the	 films.	Therefore	a	washing	

step	has	to	be	done	before	the	surgeon	can	apply	the	film	to	the	application	site.	This	can	be	

done	after	the	surgeon	has	cut	the	film	into	the	wished	shape	by	giving	the	film	into	a	sterile	

solution	 like	 0.9	%	 sodium	 chloride,	 Ringer	 solution	 or	 PBS.	 The	 elution	 test	 showed	 that	

5	minutes	in	one	of	these	solutions	would	be	sufficient,	because	further	incubation	did	not	

further	decrease	the	pH	of	the	solution.	To	be	on	the	safe	side	the	film	can	also	be	incubated	

for	ten	minutes,	 like	 it	was	done	before	the	MTT	assay	that	showed	with	a	cell	viability	of	
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95	%,	 that	 after	 10	 minutes	 incubation	 time	 the	 GDL	 was	 sufficiently	 removed	 from	 the	

alginate	 film	 and	 therefore	 the	 film	 did	 not	 show	 any	 cytotoxic	 effects	 in	 comparison	 to	

untreated	medium	as	positive	and	0.1	%	SDS	solution	as	negative	control.	

As	 expected	 the	 cell	 adhesion	 test	 showed,	 that	 cells	 do	 not	 adhere	 to	 the	 antiadhesive	

alginate	films	compared	to	the	good	adhesion	of	the	slightly	spread	L929	mouse	fibroblasts	

on	the	polystyrene	surface	of	the	well	plate	bottom.	The	cells	on	the	films	had	a	spherical	

shape	and	were	forming	cellular	aggregates	instead	of	spreading	on	the	film	therefore	they	

were	easily	washed	away	during	the	staining	process	and	washing	procedure	with	PBS.	The	

alginate	film	even	showed	better	antiadhesive	properties	than	the	antiadhesive	PLA	foil	on	

which	 the	 cells	 showed	 a	 minimal	 spreading	 and	 were	 still	 present	 after	 staining	 and	

washing,	indeed	less	of	them	and	in	a	rounded	shape.	

3.6 Summary	and	Conclusion	

As	expected	the	used	alginates	that	are	provided	for	the	preparation	of	wound	care	products	

showed	 a	 good	 capability	 for	 the	 preparation	 of	 thin	 films.	 With	 the	 help	 of	 the	 inner	

gelation	technique	it	was	possible	to	draw	evenly	thick	films	with	a	homogenous	distribution	

of	a	defined	amount	of	calcium	and	other	components	used	for	the	film	preparation.	All	film	

preparation	 techniques	 resulted	 in	 films	 with	 a	 homogenous	 distribution	 of	 calcium.	 The	

release	 of	 calcium	 was	 slowly	 enough	 to	 be	 able	 to	 cast	 the	 film	 into	 Teflon	 molds	

respectively	draw	the	films	on	glass	plates.	Some	disadvantages	could	be	seen	by	the	use	of	

calcium	 citrate	 or	 calcium	 EDTA	 as	 calcium	 sources,	 because	 for	 the	 sufficient	

homogenization	 of	 calcium	 citrate	 an	 ultra	 turrax	 was	 necessary	 which	 resulted	 in	 the	

formation	of	air	bubbles,	and	EDTA	competed	with	the	guluronic	acid	blocks	for	the	calcium	

ions	 which	 resulted	 in	 a	 weaker	 cross-linking	 of	 the	 alginate	 chains.	 Furthermore	 the	

unevenly	 sprinkling	 with	 lactic	 acid	 revealed	 a	 softening	 effect	 of	 the	 lactic	 acid	 itself.	

Therefore	the	use	of	GDL	was	preferable.	Regarding	the	tested	plasticizers	glycerol	showed	

the	best	softening	properties,	because	both	PEGs	given	to	the	film	physically	or	linked	to	the	

alginate	 chains	 chemically	 did	 not	 show	 the	wanted	 softening	 effect.	 Under	 physiological	

conditions	 with	 a	 free	 calcium	 concentration	 of	 1.2	mmol/	l	 the	 films	 containing	 calcium	

were	stable	over	the	investigated	time	of	8	weeks.	Using	GDL	as	pH	decreasing	agent	for	the	

dissolution	of	calcium	from	its	salt	respectively	complex	came	along	with	the	preparation	of	
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acidic	films.	Before	application	of	the	film	to	the	traumatized	tissue	the	film	should	be	rinsed	

with	PBS	to	remove	the	acidic	GDL.	
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4. Optimization	 of	 alginate	 film	 preparation	 with	 predefined	 calcium	

amounts	

To	cross-link	an	alginate	film	properly	and	achieve	good	mechanical	properties	and	erosion	

time,	but	also	to	have	binding	sites	left	that	are	able	to	bind	more	calcium	if	necessary,	it	is	

necessary	to	find	out	how	much	calcium	can	be	bound	by	the	used	alginate.	In	this	chapter	

different	methods	are	presented	for	this	purpose.	
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The	 main	 factor	 that	 influences	 the	 mechanical	 and	 mucoadhesive	 properties,	 swelling	

behavior	and	especially	the	degradation	time	of	the	alginate	films	in	the	peritoneum	is	the	

cross-linking	 extent	 and	 strength	 of	 the	 prepared	 films	 8.	 Therefore,	 it	 is	 of	 utmost	

importance	to	link	and	investigate	the	effect	of	the	complexing	capacity	of	the	used	alginate,	

which	 is	 correlated	 to	 the	content	of	guluronic	acid	blocks,	with	 the	used	calcium	amount	

that	is	incorporated	into	the	final	films.	

Many	 researches	 have	 been	done	 to	 investigate	 the	 cross-linking	 process	 of	 alginate	with	

bivalent	cations.	The	complex	resulting	from	the	alginate	chain,	which	binds	calcium	ions	is	

often	described	with	the	so	called	“egg	box	model”	58	because	the	calcium	ions	are	arranged	

between	 the	 guluronic	 acid	 blocks	 like	 eggs	 in	 an	 egg	 carton.	 Molecular	 modeling	

investigations	 have	 confirmed	 this	 thesis	 that	 is	 valid	 in	 the	 case	 of	 pure	 polyguluronates	
78,79.	 The	 influence	 of	 the	 guluronic	 acid	 content	 and	 the	 sequence	 of	 the	 uronic	 acids	 in	

alginates	on	 the	gelation	behavior	and	 the	properties	of	 the	 resulting	gels	was	an	 issue	 in	

many	publications	68,71,80,81.	Also	the	kind	of	bivalent	cation	is	very	important	for	the	speed	of	

the	complex	formation	as	well	as	the	strength	of	the	resulting	complex	62,64,82,83.	

Due	to	the	fact	that	the	mechanism	of	cross-linking	is	very	well	known	it	is	possible	to	figure	

out	how	much	calcium	can	be	bound	by	 the	used	alginate.	 For	 this	 attempt	 two	different	

alginates	with	a	high	amount	of	guluronic	acid	(high	G)	and	a	low	amount	of	guluronic	acid	

(low	G)	were	taken	to	see	the	 impact	of	guluronic	acid	content	on	the	cross-linking	of	 the	

prepared	 alginate	 films	 and	 therefore	 the	 resulting	 properties	 like	mechanical	 properties,	

erosion	 time	and	 swelling	behavior.	The	used	high	G	alginate	Protanal®	 LF	60/60	FT	has	a	

G/M	(%)	ratio	of	60-70/30-40	and	is	an	alginate	extracted	from	the	stem	of	the	marina	algae	

Laminaria	hyperborean.	The	stem	of	the	plant	has	to	be	more	rigid	than	the	leaf	of	the	plant	

and	therefore	contains	more	guluronic	acid	(according	to	manufacture	information).	For	the	

low	G	alginate	Protanal®	LF	10/60	LS	was	chosen	which	is	extracted	from	Lessonia	nigrescens	

and	has	a	G/M	(%)	ratio	of	35-45/55-65	61.	

The	aim	was	to	 load	the	films	with	a	defined	amount	of	calcium.	The	film	should	be	cross-

linked	properly,	but	not	all	binding	sites	should	be	occupied	by	calcium	to	obtain	a	film	that	

is	also	able	to	bind	more	calcium	from	the	surrounding	medium	after	implantation	if	needed.	
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4.1 Pretests	before	film	preparation	with	“optimized”	calcium	amount	

4.1.1 ITC	 measurements	 for	 the	 evaluation	 of	 the	 calcium	 binding	 capacity	 of	 the	 used	

alginate	

In	highly	diluted	solutions	of	alginate	mixed	step	by	step	with	very	small	amounts	of	calcium	

it	 is	possible	to	measure	the	interactions	between	the	guluronic	acid	blocks	of	the	alginate	

chains	with	 the	 bivalent	 calcium	 during	 the	 cross-linking	 process.	 The	 interactions	 can	 be	

measured	with	an	 isothermal	 titration	calorimeter	 84	 that	measures	 the	heat	of	binding	of	

the	interactions	between	the	calcium	ions	and	the	guluronic	acid	blocks.	With	the	resulting	

thermo	grams	the	amount	of	calcium	that	can	be	bound	by	the	guluronic	acid	blocks	can	be	

calculated.	

In	this	experiment	the	interactions	of	the	bivalent	calcium	ions	and	the	guluronic	acid	blocks	

of	alginate	in	solution	were	measured.	The	enthalpies	of	binding	were	measured	with	a	VP-

ITC	 MicroCalorimeter	 (MicroCal,	 Northampton,	 Massachusetts,	 USA).	 More	 precisely	 a	

1.5	mM	 alginate	 solution	 of	 an	 alginate	with	 a	 high	 guluronic	 acid	 content	 and	 a	 7.5	mM	

calcium	chloride	solution	were	prepared	in	water	and	degassed	under	gentle	stirring	before	

the	measurement.	The	sample	cell	of	the	calorimeter	was	filled	with	1.436	ml	of	the	alginate	

solution,	tempered	at	25	°C	and	stirred	at	300	rpm	during	the	experiment.	The	syringe	of	the	

calorimeter	 was	 filled	 with	 300	µl	 of	 the	 prepared	 calcium	 chloride	 solution.	 During	 the	

experiment	30	injections	of	10	µl	calcium	chloride	solution	over	10	seconds	with	2	minutes	

time	interval	between	the	injections	were	performed.		

	
Figure	29:	ITC	thermogram	of	1.5	mM	high	G	alginate	solution	
titrated	with	a	7.5	mM	CaCl2	solution	
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The	 resulting	 heat	 flow	 versus	 time	profile	was	 fitted	with	Microsoft	 Excel.	 It	 showed	 the	

expected	multiple	step	binding	behavior	that	is	described	in	literature	84.	In	the	beginning	of	

the	 measurement	 the	 formation	 of	 mono-complexes	 between	 calcium	 ions	 and	 the	

guluronic	 acids	 in	 the	 alginate	 chains	 occurs.	 Therefore	 the	 heat	 flow	 showed	 a	 slight	

increase	than	dropped	within	a	few	titration	steps	until	a	steadily	 increase	that	ended	in	a	

plateau	when	all	binding	partners	have	reacted.	The	turning	point	of	the	titration	appeared	

in	the	second	step	of	the	titration	curve	at	a	molar	ratio	of	0.3.	In	the	second	step	the	mono-

complexes	pair	and	form	the	so	called	egg-box	dimers,	which	came	along	with	a	very	strong	

exothermicity.	

For	 the	 cross-linking	 of	 the	 alginate	 films	 it	 was	 postulated,	 that	 the	 amount	 of	 calcium	

incorporated	in	the	film	should	be	enough	to	cross-link	the	film	properly	for	a	resisting	time	

of	8	weeks	 in	the	peritoneum	after	 implantation,	but	 it	should	not	be	too	high	resulting	 in	

heterogeneous	 gels	 with	 lower	mechanical	 properties	 82.	 Additionally	 a	 further	 uptake	 of	

calcium	from	the	surrounding	should	be	possible.	Therefore	it	was	decided	that	half	of	the	

guluronic	acid	blocks	should	be	involved	in	the	cross-linking.		

For	 this	 purpose	 the	 turning	 point	 was	 taken	 to	 calculate	 the	 calcium	 amount	 that	 was	

necessary	 to	 cross-link	 the	 alginate	 film	 properly.	 For	 the	 preparation	 of	 25	ml	 of	 a	 3	%	

alginate	solution	0.75	g	alginate	powder	were	needed.	Divided	through	the	molecular	mass	

of	 alginic	 acid	 with	 194.14	 g/	mol	 the	 resulted	 0.00386	mol	 could	 be	 multiplied	 with	 the	

molar	ratio	of	0.3	resulted	from	the	ITC	measurement.	The	resulting	0.00116	mol	multiplied	

with	 the	molecular	weight	 of	 CaHPO4	 of	 136.06	 g/mol	 led	 to	 a	weighed	 portion	 of	 0.16	g	

CaHPO4	that	should	be	given	to	25	ml	of	the	alginate	solution.	Therefore	0.6	%	CaHPO4	was	

needed	to	cross-link	half	of	the	guluronic	acid	blocks	from	a	3	%	high	G	alginate	solution.	The	

resulted	0.6	%	of	CaHPO4	was	used	to	cross-link	the	high	G	alginate	and	the	low	G	alginate,	

too,	 to	 be	 able	 to	 compare	 the	 behavior	 of	 both	 alginates	 with	 the	 same	 cross-linking	

conditions.	

4.1.2 Solution	viscosity	for	appropriate	film	drawing	

For	the	drawing	of	very	thin	films	with	the	help	of	a	drawing	apparatus,	the	gap	clearance	of	

the	 frame,	 the	drawing	 speed	and	 the	 viscosity	 respectively	 concentration	of	 the	polymer	

solution	are	the	factors	that	have	to	be	regarded.	
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Previous	film	preparations	(see	Chapter	3)	with	the	drawing	apparatus	revealed	that	a	3	%	

solution	 of	 the	 high	G	 alginate	 drawn	with	 a	 gap	 clearance	 of	 700	µm	 led	 to	 the	 favored	

20	µm	thick	films.	

Therefore,	 the	 viscosities	 of	 6	 concentrations	 of	 the	 low	 G	 alginate,	 which	 had	 a	 lower	

viscosity	 than	 the	 solution	 prepared	 from	 high	 G	 alginate,	 were	 tested	 to	 find	 the	 right	

amount	of	low	G	alginate	that	should	be	used	to	obtain	the	same	viscosity	as	a	3	%	solution	

of	high	G	alginate.	Rheological	tests	were	performed	with	1.26	ml	of	a	3	%,	3.5	%,	4	%,	4.5	%	

and	5	%	alginate	 solution,	 at	20	°C,	with	a	40	mm	steel	plate	and	a	gap	of	1000	µm.	After	

equilibration	for	2	minutes,	the	continuous	ramp	step	started	with	a	shear	rate	of	1/s	from	

0.1	 to	 500.	 The	 duration	 of	 the	 measurement	 was	 5	 minutes.	 After	 a	 delay	 time	 of	 10	

seconds,	the	peak	hold	step	started	with	a	hold	shear	rate	of	1/s	at	500	for	1	minute.	The	

continuous	ramp	step	started	after	a	delay	time	of	10	seconds	with	a	shear	rate	of	1/s	from	

500	to	0.1.	This	took	5	minutes.		

	
Figure	30:	Viscosity	measurements	of	high	G	and	low	G	alginates	

Viscosity	measurements	showed	that	a	3.5	%	solution	of	the	 low	G	alginate	nearly	showed	

the	same	viscosity	as	the	3	%	high	G	alginate	solution.	Therefore	a	3.5	%	solution	was	chosen	

for	the	preparation	of	low	G	alginate	films.	
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4.1.3 Gelation	time	of	alginate	after	addition	of	calcium	salt	and	acidic	agent	

As	 mentioned	 before	 the	 inner	 gelation	 technique	 was	 preferred	 to	 prepare	 thin,	 cross-

linked	 alginate	 films.	 This	 technique	 enabled	 a	 homogenous	 distribution	 of	 calcium	 in	 the	

film,	which	is	of	utmost	importance.	When	the	GDL	powder	comes	in	contact	with	the	water	

of	the	alginate	solution	it	hydrolyses	to	gluconic	acid	and	therefore	decreases	the	pH	of	the	

alginate	solution	which	leads	to	a	release	of	the	calcium	ions	from	the	hardly	soluble	calcium	

salt.	

The	homogenous	mixture	of	the	GDL	with	the	calcium	salt	containing	alginate	solution	and	

the	 drawing	 process	 itself	 takes	 some	 time.	 Therefore	 it	 is	 important	 to	 know	how	much	

time	 passes	 until	 the	 alginate	 solution	 is	 cross-linked	 and	 cannot	 be	 drawn	 to	 a	 film	

anymore.	Therefore	rheological	tests	were	performed	to	observe	the	cross-linking	speed.		

According	to	the	results	from	the	ITC	measurements,	0.6	%	CaHPO4	and	four	times	GDL	that	

ought	 to	 be	 enough	 to	 obtain	 a	 clear	 film	were	 added	 to	 a	 3	%	 (m/V)	 solution	 of	 high	G	

alginate	1.26	ml	of	 the	 freshly	prepared	mixture	was	 inserted	 into	the	rheometer	with	the	

help	of	a	syringe	and	was	measured	with	a	40	mm	steel	plate	and	a	1000	µm	gap	at	20	°C.	

The	measurement	was	performed	with	a	 time	sweep	method.	The	controlled	variable	was	

the	torque	(micro	N	m)	of	10	with	a	frequency	(Hz)	of	1.	

	
Figure	 31:	 Rheogram	 of	 high	 G	 alginate	 cross-linked	with	 0.6%	 CaHPO4	
and	2.4%	GDL	

The	dynamic	mechanical	analyses	of	three	mixtures	prepared	as	described	were	performed	

to	 determine	 the	 elastic	 (G`)	 and	 viscous	 (G``)	modulus.	 Figure	 31	 shows	 the	 time	 sweep	
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curve	of	a	3	%	high	G	alginate	solution	after	addition	of	0.6	%	CaHPO4	and	2.4	%	GDL.	The	

time	dependent	changes	in	the	storage	modulus	(G`)	during	the	cross-linking	process	could	

be	observed.	After	a	period	of	9.3	minutes	the	G`	value	started	to	increase	rapidly	with	time.	

After	40	minutes	the	curve	of	G`	becomes	parallel	to	that	of	G``	over	a	wide	frequency	range.	

The	gel	point	was	determined	at	13.6	minutes	were	 the	 two	curves	 cross.	With	 the	other	

two	mixtures	 this	 point	was	 visible	 at	 24.3	minutes	 and	9.5	minutes.	A	maximum	 storage	

modulus	 of	 40	kPa	 was	 reached	 at	 140	 minutes.	 This	 measurement	 showed,	 that	 after	

mixing	the	components	the	film	should	be	drawn	within	more	or	less	ten	minutes,	which	is	

far	enough	time	for	the	drawing	process.	

4.1.4 Time	needed	for	the	complete	dissolution	of	the	calcium	salt	

A	solution	of	the	used	high	G	and	 low	G	alginate	of	pharmaceutical	grade	 in	water	 is	clear	

and	 has	 a	 brownish	 color.	When	 the	 hardly	 soluble	 CaHPO4	 is	 suspended	 in	 the	 alginate	

solution	a	cloudy	suspension	is	obtained.	After	the	addition	of	GDL	the	subsequent	decrease	

of	the	pH	leads	to	the	dissolution	of	the	calcium	from	its	hardly	soluble	salt	and	step	by	step	

the	cloudy	suspension	becomes	a	clear	gel.	To	measure	the	time	 it	 takes	 to	obtain	a	clear	

gel,	a	3	%	high	G	alginate	solution	with	3	%	glycerol	and	a	3.5	%	low	G	alginate	solution	with	

3.5	%	glycerol	were	prepared.	After	addition	of	0.6	%	CaHPO4	and	2.4	%	GDL	 the	mixtures	

were	 given	 into	 precision	 cells	 made	 of	 Quartz	 (SUPRASIL®,	 Hellma	 Analytics,	 Müllheim,	

Germany)	 and	 measured	 at	 500	nm	 with	 a	 spectrophotometer	 (Uvicon	 941,	 Kontron	

Instruments,	 Basel,	 Switzerland).	 Clear,	 pure	 alginate	 solutions	 were	 measured	 as	

references,	too.	
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Figure	32:	Turbidity	measurements	of	high	G	and	low	G	alginates	after	addition	of	
CaHPO4	and	GDL	

The	 pure	 alginate	 solutions	 measured	 at	 500	nm	 showed	 no	 absorption	 at	 all.	 The	

suspensions	with	CaHPO4	and	GDL	showed	an	absorption	that	decreased	very	quickly	after	

the	 starting	 of	 the	 measurement.	 Than	 after	 approximately	 50	 minutes	 a	 plateau	 was	

reached	 until	 the	 absorption	 further	 decreased	 after	 180	minutes.	 The	mixtures	 were	 as	

clear	 as	 the	pure	 alginate	 solutions	 after	 310	minutes.	 The	 fast	 decrease	 in	 the	beginning	

that	 slowed	 down	 time	 by	 time	 can	 be	 explained	 with	 the	 immediately	 occurring	 gel	

formation.	Time	by	time	the	alginate	solution	became	a	gel	 that	worked	 like	a	barrier	and	

slowed	down	the	diffusion	of	 the	dissolved	GDL	through	the	viscous	gel	and	therefore	the	

dissolution	of	the	calcium	from	its	salt	slowed	down.	

4.1.5 Differences	in	gel	strength	of	high	G	and	low	G	alginate	

To	 further	 characterize	 the	 difference	 in	 cross-linking	 between	 the	 high	 G	 and	 the	 low	G	

alginate	a	compression	test	was	performed	to	test	the	strength	of	the	gel	during	the	cross-

linking	process	and	the	resulting	gel	strength	that	could	be	reached.		

0.75	g	high	G	alginate	and	0.75	g	glycerol	were	dissolved	 in	water.	For	 the	 low	G	alginate,	

0.88	g	alginate	and	0.88	g	glycerol	were	dissolved.	After	addition	of	0.15	g	respectively	0.6	%	

CaHPO4	and	0.6	g	GDL,	200	µl	of	the	mixture	were	given	in	each	well	of	a	96	well	plate.	Every	

30	 minutes	 a	 piston	 with	 a	 diameter	 of	 4	mm	 was	 pushed	 into	 the	 gel	 with	 a	 speed	 of	
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0.5	mm/sec.	After	a	preload	of	0.01	N	was	reached,	the	piston	was	pushed	for	2	mm	into	the	

gel.	The	stress	[Pa]	was	calculated	from	the	maximum	force	[N]	that	was	reached.	

	
Figure	33:	Compression	of	high	G	and	low	G	alginate	during	the	cross-linking	process	

The	compression	 test	 showed	 that	 the	cross-linking	of	high	G	alginate	 led	 to	stronger	gels	

with	a	stress	of	about	550	Pa	than	that	of	the	low	G	alginate	with	a	stress	of	about	200	Pa.	

Furthermore,	the	plateau	of	the	low	G	alginate	was	reached	after	2	hours	because	no	more	

G	blocks	were	 left	 to	be	 cross-linked.	 The	high	G	alginate	 reached	 the	plateau	nearly	one	

hour	later.	

4.2 Film	preparation	

After	the	general	procedure	of	film	preparation	with	the	help	of	the	inner	gelation	technique	

was	 established,	 the	 amount	 of	 the	 two	main	 components	 that	 influence	 the	mechanical	

properties	 of	 the	 alginate	 films,	 more	 precisely	 the	 amounts	 of	 calcium	 in	 the	 form	 of	

CaHPO4	and	the	plasticizer	glycerol	were	varied	to	investigate	the	impact	of	this	components	

on	the	mechanical	properties	of	the	film.	

4.2.1 Films	prepared	for	the	erosion	study	

For	the	erosion	study	3	g	of	high	G	alginate	or	3.5	g	of	low	G	alginate	were	dissolved	to	100	g	

in	water.	0.6	g	CaHPO4	was	suspended	in	3	g	or	3.5	g	glycerol	to	obtain	identical	amounts	of	

glycerol	compared	to	alginate	in	the	solutions.	After	the	hardly	soluble	salt	was	completely	

wetted	 with	 the	 glycerol	 the	 alginate	 solution	 was	 added.	 The	 suspension	 was	 stirred	
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manually	with	a	spatula	to	avoid	formation	of	air	bubbles.	After	homogenization	2.4	g	of	GDL	

in	solid	form	was	added	and	carefully	folded	in	the	suspension.	The	cloudy	suspension	was	

drawn	within	3	minutes,	using	a	drawing	apparatus	(ERICHSEN	coatmaster	509	MC,	Hemer,	

Germany)	with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 drawing	 speed	 of	 5	mm/sec,	 in	 order	 to	

avoid	 premature	 cross-linking.	 The	 obtained	 film	 was	 given	 into	 a	 closed	 box	 for	 several	

hours	to	slow	down	the	drying	speed.	The	clear	film	was	taken	out	of	the	box	to	dry	at	room	

temperature	until	further	investigation.	

4.2.2 Films	prepared	for	the	tensile	tests	

For	 the	 tensile	 tests	 the	 impact	 of	 calcium	or	 plasticizer	was	 investigated.	 Therefore	 films	

with	different	amounts	of	these	components	were	prepared.	The	preparation	procedure	was	

the	 same	 as	 for	 the	 films	 prepared	 for	 the	 erosion	 study.	 For	 the	 films	 prepared	 with	

different	 amounts	 of	 calcium	 0	g,	 0.3	g,	 0.6	g,	 and	 1.2	g	 CaHPO4	 were	 wetted	 with	 3	g	

respectively	3.5	g	glycerol.	For	 the	 films	prepared	with	different	amounts	of	glycerol	10	%,	

20	%,	 50	%	 and	 100	%	 of	 the	 3	g	 respectively	 3.5	g	 alginate	 was	 given	 to	 0.6	g	 CaHPO4.	

Afterwards	 the	 alginate	 solution	 and	 the	 GDL	were	 added	 and	 the	 films	were	 drawn	 like	

described	before.	

4.2.3 Films	prepared	for	the	puncture	test	and	the	suture	pullout	test	

The	 films	 were	made	 in	 another	 order.	 3	g	 of	 the	 high	 G	 respectively	 3.5	g	 of	 the	 low	 G	

alginate	and	a	defined	amount	of	glycerol	(50	%	and	100	%	calculated	on	the	alginate)	were	

dissolved	in	water	to	obtain	100	ml	of	the	alginate	solution.	A	further	improvement	has	been	

done	 by	 suspending	 0.6	g	 CaHPO4	 in	 several	 droplets	 of	water	 to	wet	 the	 salt	 and	 inhibit	

cluster	 formation,	 because	 suspending	 in	 water	 led	 to	 a	 faster	 homogenization	 than	

suspending	in	a	defined	amount	of	glycerol.	Subsequently	this	suspension	was	added	to	the	

alginate	solution	and	stirred	at	maximum	speed	with	a	magnetic	stirrer.	Then	2.4	g	of	GDL	

were	added	to	this	suspension	and	stirred	at	maximum	speed	again.	The	film	was	drawn	as	

described	before.	

4.2.4 Films	with	different	thicknesses	

To	test	the	impact	of	the	film	thickness	on	the	tensile	properties	of	the	films,	the	films	made	

of	high	G	alginate	prepared	according	 to	 the	 films	 for	 the	puncture	 test	were	drawn	with	

frames	with	different	gap	clearances	of	500	µm,	700	µm,	1000	µm	and	1500	µm.	
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4.2.5 Films	for	the	evaluation	of	the	adhesiveness	

Films	 for	 the	evaluation	of	 the	adhesiveness	were	prepared	according	 to	 the	 films	 for	 the	

puncture	test	with	10	%,	20	%,	50	%	and	100	%	glycerol	calculated	on	the	alginate	amount.	

4.2.6 Films	for	the	evaluation	in	a	wet	state	

The	films	that	should	also	be	tested	after	storage	in	water	were	prepared	like	the	films	for	

the	erosion	study.	To	be	able	to	see	the	impact	of	calcium	on	the	mechanical	stability	of	the	

films	in	a	wet	state,	films	were	prepared	with	0.6	%	CaHPO4.	Additionally	half	of	the	amount	

and	 a	 doubled	 amount	 of	 0.3	%	 and	 1.2	%	 CaHPO4	 were	 incorporated	 in	 the	 film	 to	

investigate	whether	there	is	a	difference	in	the	stability	of	the	film.	

4.3 Preparation	with	optimized	film	preparation	technique		

With	the	performed	pretests	it	was	possible	to	find	a	good	composition	of	alginate,	CaHPO4	

and	GDL	to	prepare	alginate	films	with	desired	properties.	The	ITC	measurements	were	the	

first	 step	 of	 the	 pretests	 to	 see	 how	 much	 calcium	 the	 alginate	 can	 bind	 without	 being	

overloaded	or	having	less	junction	zones	to	be	cross-linked	properly.	After	a	suitable	amount	

of	calcium	has	been	calculated	from	the	ITC	data	it	was	necessary	to	see	how	much	GDL	is	

needed	 to	 dissolve	 the	 incorporated	 calcium.	 For	 sure	 a	 large	 excess	 of	 GDL	would	 have	

resulted	in	clear	films.	However	a	very	high	content	of	GDL	would	lead	to	a	gel	formation	by	

lowering	the	pH	of	the	alginate	under	the	pKs	of	the	uronic	acids	even	without	addition	of	

cross-linking	cations	 like	calcium.	Before	 implantation	 it	would	take	 long	time	to	get	 rid	of	

the	residual	GDL	and	obtain	films	that	can	be	transplanted.	Furthermore	the	gelation	time	

would	decrease	by	increasing	amounts	of	GDL	and	a	film	preparation	with	the	help	of	a	film	

drawing	apparatus	would	be	impossible	due	to	a	too	fast	cross-linking.	Therefore	rheological	

tests	 and	 turbidity	 measurements	 were	 performed	 to	 find	 the	 right	 amount	 of	 GDL	 that	

would	lead	to	clear	films	with	completely	dissolved	calcium	in	a	timeframe	where	mixing	of	

the	components	and	drawing	of	the	whole	mixture	onto	a	glass	plate	to	a	homogenous	film	

would	 be	 possible.	 A	 prospect	 on	 the	mechanical	 properties	 of	 alginate	 films	 prepared	 of	

alginates	with	a	different	content	of	guluronic	acid	could	successfully	be	conducted	with	the	

compression	test,	because	it	revealed	the	impact	of	the	guluronic	acid	content	on	the	cross-

linked	gel	in	resulting	in	gels	with	a	higher	compressive	load	of	the	alginate	with	the	larger	

amount	of	guluronic	acid	residues.		
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With	the	optimized	amounts	of	alginate,	CaHPO4	and	GDL,	homogenously	thick	films	could	

be	 prepared.	 The	 properties	 of	 the	 prepared	 films	 could	 be	 varied	 with	 the	 addition	 of	

different	amounts	of	the	plasticizer	glycerol,	by	using	frames	with	different	gap	clearances	or	

by	addition	of	different	amounts	of	calcium.	After	drawing	all	prepared	films	were	stored	in	

a	closed	box	to	obtain	a	humid	environment	in	order	to	slow	down	the	drying	speed	of	the	

film	that	was	necessary	to	dissolve	the	calcium	from	its	hardly	soluble	salt.		

4.4 Mechanical	evaluation	

The	different	 testing	methods	were	 conducted	 like	 described	 earlier.	Due	 to	 the	 fact	 that	

10	%	 and	20	%	 glycerol	 showed	no	positive	 effect	 during	 the	 tensile	 testing,	 the	puncture	

test	and	the	suture	pullout	test	were	just	performed	with	films	containing	50	%	and	100	%	

glycerol.		
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4.4.1 Tensile	tests	

4.4.1.1 Films	 prepared	 of	 low	 G	 and	 high	 G	 alginate	 containing	 different	 amounts	 of	

plasticizer	

For	the	tensile	test	20	strips	were	tested	as	described	before.	
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Figure	34:	Tensile	test	of	films	made	of	high	G	and	low	G	alginate	containing	different	amounts	of	plasticizer.	**	
equates	p	<	0.001,	*	equates	p	<	0.05.	a),	b)	maximum	load	[N];	c),	d)	strain	at	maximum	load	[%];	e),	 f)	elastic	
modulus	of	high	G	and	low	G	alginate	films.	

The	maximum	load	was	estimated	to	decrease	from	10	%	glycerol	to	100	%	glycerol,	because	

the	 film	becomes	 softer.	 This	effect	was	only	 visible	 from	50	%	glycerol	 to	100	%	glycerol.	

The	 films	with	10	%	and	20	%	glycerol	 could	only	withstand	very	 low	 forces,	because	 they	

were	 very	 brittle	 and	 therefore	 ruptured	 early.	 The	maximum	 load	 of	 the	 low	G	 alginate	

films	behaved	in	a	similar	fashion	to	that	of	high	G	alginate.		

The	 strain	 at	maximum	 load	was	 also	 affected	 by	 the	 glycerol	 concentrations	 used.	With	

increasing	amounts	of	glycerol	the	films	became	more	elastic.	From	20	%	to	50	%	and	up	to	

100	%	a	 significant	 effect	on	 the	 strain	was	measurable.	 The	 strain	 for	both	alginates	was	

also	 very	 similar.	 Only	 the	 films	 containing	 100	%	 glycerol	 had	 a	 significant	 difference	

(p=0.011).	The	high	G	alginate	had	a	strain	of	round	about	37	%	whereas	the	low	G	alginate	

had	a	strain	of	more	or	less	41	%.		

Due	to	the	fact	that	the	films	containing	10	%	and	20	%	glycerol	were	brittle	and	very	stiff,	

the	 elastic	 modulus	 was	 very	 high.	 With	 higher	 glycerol	 amounts	 the	 elasticity	 became	

higher	and	therefore	the	elastic	modulus	decreased	significantly.	

The	low	G	alginate	films	containing	10	%	and	20	%	glycerol	had	a	significantly	higher	elastic	

modulus	 (p<0.001)	 than	 the	 high	G	 alginate	 films.	 With	 little	 amounts	 of	 plasticizer,	 the	

cross-linking	was	the	main	factor	that	 influenced	the	mechanical	properties	of	the	alginate	

films.	 	



Optimization	of	alginate	film	preparation	with	predefined	calcium	amounts	 Chapter	4	

	
81	

	

4.4.1.2 Films	prepared	of	low	G	and	high	G	alginate	containing	different	amounts	of	calcium	

20	strips	were	tested	as	described	before.	
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Figure	35:	Tensile	test	of	films	made	of	high	G	and	low	G	alginate	containing	different	amounts	of	CaHPO4.	**	
equates	p	<	0.001.	a),	b)	maximum	load	[N]	of	high	G	and	low	G	alginate	films.	c),	d)	strain	at	maximum	load	[%]	
of	high	G	and	low	G	alginate	films.		

Based	on	the	ITC	data	an	amount	of	0.6	g	CaHPO4	per	100	ml	alginate	solution	should	cross-

link	half	of	the	guluronic	acid	blocks	in	a	film	made	of	high	G	alginate.	To	see	the	impact	of	

cross-linking	 on	 the	 mechanical	 properties	 of	 the	 film	 also	 half	 of	 the	 amount	 and	 the	

doubled	 amount	 were	 given	 to	 the	 alginate	 films.	 Even	 the	 smaller	 amount	 led	 to	 a	

significant	 increase	 of	 the	 maximum	 load	[N]	 and	 a	 significant	 decrease	 in	 the	 strain	 at	

maximum	 load	[%]	 for	 the	 high	G	 alginate	 films	 as	 well	 as	 for	 the	 low	G	 alginate	 films.	 A	

further	addition	of	CaHPO4	to	0.6	g	per	100	ml	did	not	show	an	effect.	In	case	of	the	high	G	
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alginate	a	significant	difference	in	terms	of	the	maximum	load	[N]	between	the	addition	of	

0.6	g	 and	 1.2	g	 CaHPO4	 could	 be	measured.	 The	 addition	 of	 0.6	g	 or	 1.2	g	 CaHPO4	 to	 the	

low	G	alginate	did	not	show	a	significant	difference	(P=0.208).	It	might	be	possible,	that	the	

G	blocks	were	already	saturated	with	calcium	so	 further	uptake	and	respectively	a	 further	

cross-linking	 was	 not	 possible.	 In	 case	 of	 the	 strain	 at	 maximum	 load	[N]	 no	 significant	

differences	could	be	seen	between	the	addition	of	0.3	g	or	0.6	g	CaHPO4	(P=0.08s)	and	0.6	g	

or	1.2	g	(P=0.440)	to	the	high	G	alginate	film.	For	the	low	G	alginate	film	the	addition	of	0.6	g	

CaHPO4	 or	 the	 addition	 of	 1.2	g	 CaHPO4	 showed	 a	 significant	 difference	 (P=0.002)	 in	 the	

strain	at	maximum	load	[%].	When	oversaturated	with	calcium	the	film	was	more	brittle	and	

broke	earlier	which	led	to	a	decrease	of	the	strain.		

4.4.1.3 Tensile	properties	of	cross-linked	high	G	films	after	wetting	

When	the	alginate	 films	get	 implanted	 in	the	peritoneum,	they	will	 swell	and	 lose	stability	

due	to	the	uptake	of	water.	To	see	the	impact	of	water	uptake	on	the	mechanical	stability,	

10	strips	of	high	G	alginate	films	containing	0.3	g,	0.6	g	or	1.2	g	CaHPO4	were	tested	in	a	dry	

state	and	after	30	minutes	incubation	in	water.		
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Figure	36:	Tensile	test	of	films	made	of	high	G	alginate	containing	different	amounts	of	calcium	dry	and	wet.	**	
equates	p	<	0.001,	*	equates	p	<	0.05.	a)	Maximum	load	[N]	of	high	G	alginate	films	dry	and	wet.	b)	Strain	at	
maximum	load	[%]	of	high	G	alginate	films	dry	and	wet.		

The	 films	 containing	 0.3	g	 CaHPO4	 could	 not	 be	 tested	 in	 a	 wet	 state	 because	 they	were	

swollen	 too	 much.	 As	 expected	 the	 films	 containing	 0.6	g	 and	 1.2	g	 CaHPO4	 showed	 a	

significant	 decrease	 in	 the	 maximum	 load	 [N]	 after	 incubation	 in	 water.	 Due	 to	 the	

plasticizing	effect	of	water	the	strain	at	maximum	load	[%]	should	increase	with	the	uptake	
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of	water,	 but	 in	 the	 swollen	 state	 the	 films	 could	not	withstand	high	 forces	 and	 ruptured	

very	early.	

4.4.1.4 Tensile	test	of	films	with	different	thicknesses	

The	 high	G	 films	 cross	 linked	 with	 0.6	g	 CaHPO4	 per	 100	ml	 alginate	 solution	 drawn	 with	

different	gap	clearances	had	a	thickness	of	20,	25,	50	and	90	µm.	20	strips	were	tested.	
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Figure	 37:	 Tensile	 test	 of	 films	made	 of	 high	 G	 alginate	 containing	 0.6	 g	 CaHPO4	 cast	with	 different	 gap	
clearances,	*	equates	p	<	0.05.	a)	Maximum	load	[N]	of	high	G	alginate	films.	b)	Strain	at	maximum	load	[%]	
of	high	G	alginate	films.		

Concerning	the	maximum	load	[N]	only	the	films	with	the	thicknesses	of	20	µm	and	25	µm	

showed	no	significant	differences.	All	other	films	showed	a	significant	difference	(P<0.001).	

The	thicker	 the	 film	was	the	higher	was	the	maximum	load	 [N].	The	 film	thickness	did	not	

affect	the	strain	of	the	films	in	the	same	way	it	affected	the	maximum	load.	Only	the	films	

with	a	thickness	of	20	µm	and	50	µm	had	a	significant	difference	in	strain	(P<0.05).		
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4.4.2 Puncture	Test	

To	investigate,	if	the	polymer	film	can	resist	forces	when	it	is	for	example	wrapped	around	

the	 intestinal	 and	 chymus	 gets	 through	 it,	 or	 if	 the	 patient	 coughs,	 a	 puncture	 test	 was	

performed.	The	technical	setup	of	the	test	used	is	described	in	chapter	3.	
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Figure	 38:	 Puncture	 test	 of	 high	 G	 and	 low	 G	 alginate	 films	 containing	 different	 amounts	 of	 glycerol	 as	
plasticizer	

In	 terms	 of	 the	maximum	 compressive	 load,	 the	 results	were	 as	 expected.	With	 a	 higher	

glycerol	amount	the	load	decreased.	There	were	no	significant	differences	in	the	maximum	

load	 between	 the	 two	 alginate	 types,	 whereas	 the	 elongation	 to	 puncture	 showed	 a	

significant	effect	of	the	chosen	alginate	type.	

The	more	glycerol	was	 in	 the	 film,	 the	more	 the	 film	could	be	elongated	until	 it	 ruptured.	

The	elongation	of	the	films	made	of	low	G	alginate	was	much	higher	than	the	elongation	of	

the	high	G	alginate.	This	effect	could	be	explained	with	the	stronger	cross-linking	of	the	high	

G	alginate	films	and	the	resulting	decrease	in	elasticity.	
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4.4.3 Suture	pullout	test	

A	film	made	from	cross-linked	alginate	that	incorporates	water	after	implantation	and	time	

by	 time	becomes	a	 viscous	gel	will	 never	be	 sutured	 to	a	 tissue	alone.	 The	mucoadhesive	

properties	of	the	alginate	can	be	helpful	to	suture	a	bilayer	made	of	alginate	as	an	adhesive	

layer	 and	 another	 polymer.	 Therefore	 suture	 pullout	 tests	 were	 performed	 to	 see	 if	 the	

alginate	can	also	stabilize	a	bilayer	when	it	is	sutured	to	tissue.	
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Figure	39:	Maximum	load	measured	during	suture	pullout	test	

For	the	high	G	alginate	no	significant	effect	could	be	measured	with	the	addition	of	50	%	or	

100	%	glycerol	calculated	on	the	alginate	amount.	Regarding	the	results	from	the	tensile	test	

a	higher	 load	 for	 the	high	G	alginate	was	expected.	But	 the	 results	 showed	that	 the	 low	G	

alginate	 had	 a	 higher	 maximum	 load	 and	 furthermore	 an	 effect	 of	 different	 amounts	 of	

plasticizer	 could	 be	 measured.	 The	 more	 glycerol	 was	 in	 the	 film	 the	 less	 strength	 was	

needed	to	pull	the	suture	through	it.	It	might	be	possible,	that	the	alginate	containing	less	G	

blocks	could	form	a	denser	network	due	to	slower	cross-linking	than	the	high	G	alginate	that	

could	 lead	 to	 a	 higher	 maximum	 load.	 But	 both	 films	 could	 not	 resist	 loads	 higher	 than	

0.15	N.	A	further	characterization	of	multilayers	will	be	done	in	chapter	7.	

4.4.4 Mucoadhesion	tests	

The	 mucoadhesive	 properties	 of	 alginate	 and	 modified	 alginate	 for	 example	 alginate-	

cysteine	 conjugates	 85	 can	 be	 beneficial	 for	 several	 applications	 like	 for	 example	

mucoadhesive	tablets	that	adhere	to	the	intestine	or	mucoadhesive	buccal	films	86.	Several	

approaches	 have	 been	 done	 to	 test	 the	 mucoadhesive	 properties	 of	 alginate	 and	 other	
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polymers,	 like	 tensile	 strength	measurements	with	 tablets	 prepared	 from	 these	 polymers	

and	tensile	testing	after	attachment	to	a	porcine	mucosa	85,87	or	to	a	mucin	gel	prepared	of	

mucin	from	porcine	stomach	type	II	(Sigma-	Aldrich)	88.	Ellypsometry	to	test	the	adsorption	

to	silica	surfaces	86,87	or	rheological	measurement	that	measure	the	increase	of	viscosity	of	

dispersions	prepared	of	the	respective	polymer	and	mucin	86,89	were	also	performed.	To	date	

no	 test	 standard	 for	 the	 testing	 of	 the	 adhesive	 properties	 of	 polymer	 films	 to	 peritoneal	

tissue	exist.	

Chicken	cube	 Coated	glass	slide	 Pig	intestine	

	
	 	

Figure	40:	Setup	for	adhesion	tests	

To	test	the	adhesion	of	the	alginate	films	to	tissue	several	approaches	have	been	done.	One	

trial	was	 to	 test	 the	adhesive	 force	by	attaching	alginate	 film	 strips	on	 chicken	breast.	On	

that	account	cubes	of	chicken	breast	with	an	edge	length	of	3	cm	were	fixed	with	a	special	

holder	at	the	lower	part	of	the	texture	analyzer.	A	1	to	5	cm	alginate	film	strip	was	fixed	in	

the	upper	 grip	 of	 the	 texture	 analyzer	 and	2	cm	of	 the	 film	were	 attached	 to	 the	 chicken	

breast.	The	upper	grip	was	lifted	with	a	tension	rate	of	10	mm/min.	The	strips	adhered	very	

well	to	the	chicken	breast.	Due	to	the	fact,	that	the	adherence	depended	on	the	surface	and	

moistness	 of	 the	 chicken	 breast,	 the	 test	 was	 not	 reproducible.	 Therefore	 other	 surfaces	

were	necessary.		

To	 obtain	 reproducible	 and	 homogenous	 surfaces	 object	 slides	 were	 chosen.	 For	 the	

investigation	of	the	adherence	to	different	surfaces	with	different	features	the	object	slides	

were	 coated	 with	 Sigmacote®	 to	 obtain	 a	 more	 lipophilic	 surface	 and	 with	 (3-

Aminopropyl)trimethoxysilane	to	obtain	a	surface	with	positive	charges.	The	treated	surface	

of	the	object	slides	was	2.5	to	5.5	cm.	At	first	the	object	slides	were	cleaned	in	an	ultrasound	
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bath.	Afterwards	the	slides	were	soaked	for	5	minutes	in	acetone	followed	by	5	minutes	in	

deionized	water	and	at	last	5	minutes	in	isopropanol.	After	air	drying	three	slides	were	left	

as	they	were.	Three	samples	were	coated	with	Sigmacote®	by	rinsing	them	with	Sigmacote®	

followed	by	a	washing	step	with	deionized	water.	For	the	aminosilanization	three	slides	were	

etched	with	 piranha	 solution	 (H2O2:	H2SO4,	 2:1)	 for	 30	minutes	 and	 rinsed	with	 deionized	

water	until	the	pH	neutralized.	After	drying	with	compressed	air	they	were	placed	over	night	

in	 a	 desiccator	with	 100	µl	 of	 (3-Aminoproply)trimethoxysilane	 in	 a	watch	 glass	 at	 around	

100	mbar.	

To	test	the	hydrophilicity	of	the	surfaces	contact	angle	measurements	with	a	Contact	Angle	

System	(OCA	20,	Data	Physics,	Filderstadt,	Germany)	were	performed.	5	droplets	of	100	µl	

were	 given	 on	 different	 locations	 of	 the	 glass	 slides	 with	 a	 rate	 of	 1	 µl/sec.	 The	 contact	

angles	were	obtained	with	an	ellipse	fitting.	

	

Figure	41:	Contact	angles	of	100µl	drops	on	different	surfaces	of	object	slides	

For	 the	 adhesion	measurement	 the	 glass	 slide	was	 fixed	 in	 the	 upper	 grip	 of	 the	 texture	

analyzer	 in	 a	way	 that	 the	 treated	 part	was	 hanging	 under	 the	 grip.	 A	 film	 strip	with	 the	

dimensions	of	2	to	15	cm	was	attached	from	the	bottom	up	on	the	glass	slide	forming	a	loop.	

The	loose	part	of	the	film	strip	was	fixed	in	the	lower	grip	that	had	a	distance	of	8	cm	to	the	

upper	 grip.	 The	 test	was	 started	with	 a	 preload	 rate	 of	 10	mm/min	 until	 a	 preload	 value	

of	0.0001	N	was	reached.	Then	the	test	was	performed	with	a	test	speed	of	152.4	mm/min	

according	 to	 the	 Standard	 Test	Method	 for	 Peel	 or	 Stripping	 Strength	 of	 Adhesive	 Bonds	

ASTM	D903-98.	
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The	peel	test	with	monolayers	of	alginate	was	not	possible,	because	the	film	stuck	to	itself	

and	made	a	peeling	from	the	glass	slide	impossible.	

Therefore	the	film	strips	were	cut	into	half	and	the	7.5	cm	long	strips	were	stuck	to	the	glass	

slide	in	a	way	that	2	cm	were	hanging	loose	from	the	glass	slide	and	could	be	fixed	with	the	

lower	clamp.	Then	the	test	was	started	with	the	same	preload	value	and	speed	as	before.	
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Figure	42:	Films	containing	different	amounts	of	glycerol	from	10	%	to	100%	(w/w)	calculated	to	the	alginate	
amount	 stuck	 to	 glass	 slide	 and	 tested.	 (a)	Untreated	 glass	 slide;	 (b)	 glass	 slide	 covered	with	 aminosilan,	 (c)	
glass	slide	covered	with	Sigmacote®	

This	 test	 setup	 did	 not	 show	 representable	 results	 for	 adhesion	 because	 the	 film	 strips	

ruptured	instead	of	detaching	from	the	glass	slides.	Therefore	the	recorded	loads	where	the	

maximum	loads	recorded	until	the	film	ruptured.	These	loads	showed	the	same	trend	from	a	

higher	 load	with	 low	glycerol	 amounts	 till	 a	 lower	 load	with	higher	 glycerol	 amounts.	 The	

film	strips	attached	to	the	untreated	glass	slides	and	the	aminosilanized	glass	slides	nearly	

ruptured	 at	 the	 same	 load.	 The	 strips	 attached	 to	 the	 glass	 slide	 coated	with	 sigmacote®	

showed	 a	 lower	 load.	 Although	 the	 film	 ruptured	 and	did	 not	 glide	 from	 the	 glass	 slide	 a	

partial	slip	from	the	glass	slide	would	explain	these	results.	

To	test	the	adhesion	of	the	prepared	alginate	films	on	pig	intestine	a	piece	of	small	intestine	

stored	in	PBS	containing	5	ml/100ml	Pen	Strep	from	a	8	week	old,	18	kg,	male	domestic	pig	

was	opened	by	cutting	one	side	lengthwise	and	fixed	with	the	inner	side	down	on	a	platform	

with	 the	help	of	double	 faced	adhesive	 tape.	A	 strip	of	 cross-linked	alginate	 film	with	 the	

dimensions	of	5	to	1	cm	was	fixed	to	the	bottom	of	a	piston	with	the	help	of	two	clamps.	The	

resulting	locating	surface	had	the	dimension	of	one	square	centimeter.	
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Before	 each	measurement	 the	 piece	 of	 small	 intestine	was	wetted	with	 some	droplets	 of	

PBS	with	Pen	Strep	to	obtain	the	same	humid	test	conditions	for	every	specimen.	In	a	first	

step	the	piston	was	 lowered	to	the	 intestine	with	a	speed	of	10	mm/min	and	pushed	onto	

the	 intestine	 layer	 until	 a	 load	 of	 0.1	N	 was	 measured.	 The	 load	 of	 0.1	N	 was	 held	 for	

30	seconds.	 Subsequently	 the	 piston	 was	 raised	 from	 the	 intestine	 with	 a	 speed	 of	

0.5	mm/sec	until	the	film	was	separated	from	the	intestine	and	the	load	was	recorded.	

5	film	strips	were	tested	this	way,	as	comparison	5	strips	were	tested	without	intestine	and	

pressed	on	the	metal	surface	of	the	setup.	
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Figure	43:	Adhesion	test	of	alginate	films	on	metal	and	pig	intestine	

The	alginate	film	strips	adhered	to	the	pig	intestine	and	did	not	rupture	during	the	testing.	

The	load	recorded	was	about	0.8	N.	

4.5 Erosion	in	different	buffers	

For	 the	erosion	study,	buffers	were	used,	which	had	different	pH	values.	pH	7.4	of	normal	

body	 fluid	 and	 pH	5.5	 to	 simulate	 the	 lower	 pH	 in	 inflamed	 tissue.	 These	 pH	 values	were	

chosen	to	investigate	if	there	is	a	difference	of	erosion	in	normal	or	inflamed	tissue.	Due	to	

the	 fact,	 that	 calcium	 also	 plays	 a	 very	 important	 role	 in	 the	 erosion	 time	 of	 cross-linked	

alginate	 films,	 the	buffers	 contained	3	different	 concentrations	of	 calcium,	 0	mM,	1.2	mM	

and	 2.5	mM.	 The	 1.2	mM	 simulates	 the	 concentration	 of	 unbound	 calcium	 in	 body	 fluids.	

2.5	mM	simulates	the	calcium	concentration	of	unbound	and	bound	calcium	in	the	body	that	

is	very	constant	because	of	the	calcium	homeostasis.		

The	amount	of	cross-linker	was	expected	to	be	the	main	factor	for	the	film	stability.	
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For	the	subsequent	erosion	study,	the	alginate	films	were	cut	into	discs	with	2	cm	diameter	

and	 stored	 in	 the	 buffers,	 to	 see	 the	 impact	 of	 pH	 and	 the	 calcium	 within	 the	 erosion	

medium.	

After	the	film	discs	were	cut	from	the	films	with	the	help	of	a	cork	bore,	they	were	weighed	

to	determine	 the	 starting	weight.	Then	10	ml	of	 the	 respective	buffers	were	added	 to	 the	

alginate	 discs	 and	 the	 closed	 vials	were	 put	 on	 an	 orbital	 shaker	 (Unimax	 2010,	Heidolph	

Instruments	GmbH	&	Co.	KG	,	Schwabach,	Germany),	shaked	with	100	rpm	while	stored	in	a	

cabinet	dryer	at	37	°C	to	investigate	the	film	erosion	and	degradation.	

The	first	sample	was	taken	after	24	hours,	than	the	sampling	took	place	every	week,	4	discs	

of	each	buffer	were	removed	from	the	cabinet	dryer	and	the	buffer	was	decanted	carefully.	

The	 remaining	alginate	discs	were	carefully	washed	several	 times	with	deionized	water	by	

pouring	the	water	into	the	glass	vials,	pivoting	the	vial	and	then	pouring	the	water	out	of	the	

vial	again.	The	residual	water	was	carefully	removed	using	cotton	swabs,	and	then	the	vials	

were	immediately	weighed	to	determine	the	wet	weight	of	the	swollen	discs.	The	remaining	

discs	were	 then	 lyophilized	 overnight	 and	weighed	 again	 to	 determine	 the	 remaining	 dry	

weight	 of	 the	 residual	 films.	 For	 the	 remaining	 disc	 samples,	 a	 buffer	 exchange	 was	

performed	every	week	by	 replacing	 the	 buffer	with	 fresh	 buffer	 in	 order	 to	maintain	 sink	

conditions	 for	 soluble	 alginate	 and	 calcium.	 The	 last	 sample	 of	 the	 erosion	 study	 was	

obtained	 after	 8	weeks,	 which	 was	 considered	 the	 maximum	 application	 time	 for	 the	

intended	anti-adhesion	barrier.	
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a)	

	

b)	

	
c)	

	

d)	

	
Figure	 44:	 Erosion	 of	 alginate	 films	 stored	 in	 buffers	with	 different	 calcium	 concentrations	 and	 different	 pH	
values.	**	=	P<	0.001,	*	=	P<	0.05.	The	numbers	behind	the	stars	represent	the	different	values	obtained	in	the	
different	buffers.	1:	Buffer	without	calcium,	2:	Buffer	with	1.2	mM	calcium,	3:	Buffer	with	2.5	mM	calcium.	The	
stars	combined	with	the	numbers	indicate	significant	or	not	significant	differences	between	the	measurements	
at	similar	time	points.	(a)	dry	weights	of	high	G	alginate	discs	at	pH	7.4,	(b)	dry	weights	of	low	G	alginate	discs	
at	pH	7.4	(c)	dry	weights	of	high	G	alginate	discs	at	pH	5.5	d)	dry	weights	of	low	G	alginate	discs	at	pH	5.5.	Dry	
weights	are	normalized	to	the	dry	weight	obtained	after	24	h.		

In	 HEPES	 buffer	 without	 calcium,	 the	 high	G	 as	 well	 as	 the	 low	G	 alginate	 discs	 eroded	

completely.	The	high	G	alginate	discs	were	degraded	after	3	weeks,	while	the	low	G	alginate	

discs	had	a	mass	increase	in	the	first	week	due	to	the	swelling	and	accompanied	uptake	of	

salts	from	the	buffer.	Then	the	discs	eroded	completely	until	week	3.	 In	the	HEPES	buffers	

containing	calcium,	both	alginates	did	not	erode	completely	during	the	time	of	investigation.	

In	 the	buffer	 containing	1.2	mM	Ca2+,	 the	high	G	alginate	discs	had	a	mass	 increase	up	 to	

155	%	after	two	weeks	and	stayed	constant	with	a	variation	of	10	%	until	week	5.	Then	the	

discs	eroded	to	60	%	at	week	8.	A	higher	and	continuous	mass	increase	to	about	160	%	was	

visible	 in	the	buffer	containing	2.5	mM	calcium	until	week	4.	After	a	mass	 loss	to	140	%	at	

week	5,	the	dry	weight	stayed	nearly	constant	until	week	8.	
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After	one	week	there	was	just	a	slight	mass	increase	of	the	low	G	alginate	discs	in	the	HEPES	

buffer	 containing	2.5	mM	calcium	 to	120	%	visible	and	 stayed	constant	until	week	5.	 Then	

the	weight	decreased	to	95	%	at	week	8.	In	the	HEPES	buffer	containing	1.2	mM	calcium,	the	

mass	 increased	after	one	week	was	nearly	 the	same	as	 in	 the	buffer	without	calcium.	The	

mass	stayed	nearly	constant	till	week	6	with	an	intermediate	decrease	to	90	%	at	week	5	and	

eroded	to	70	%	by	week	8.	

In	 the	 buffer	 without	 calcium	 the	 high	G	 as	 well	 as	 the	 low	G	 alginate	 discs	 eroded	

completely.	Whereas	the	 low	G	alginate	discs	were	eroded	to	10	%	by	week	two	and	were	

completely	eroded	after	three	weeks,	the	discs	were	completely	eroded	after	two	weeks	in	

MES	buffer.	The	mass	 increase	of	 the	high	G	alginate	discs	 in	both	calcium	concentrations	

was	about	140	%,	10	%	 lower	 than	 in	HEPES	buffer	and	 the	discs	eroded	 to	110	%	 in	MES	

buffer	containing	2.5	mM	calcium	and	to	70	%	in	the	buffer	with	1.2	mM	calcium.	The	mass	

increase	 of	 the	 low	G	 alginate	 discs	 was	 5	%	 lower	 than	 the	 increase	 in	 HEPES	 buffer	 to	

115	%.	They	eroded	to	85	%	in	the	MES	buffer	with	the	higher	calcium	concentration	and	to	

25	%	in	the	MES	buffer	with	the	lower	calcium	concentration.	This	indicates	a	difference	of	

10	%	and	40	%	to	the	erosion	in	HEPES	buffer.		
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4.5.1 Swelling	

a)

	

b)

	
c)

	

d)

	
Figure	45:	 Swelling	of	 alginate	 films	 stored	 in	buffers	with	different	 calcium	concentrations	and	different	pH	
values.	**	=	P<	0.001,	*	=	P<	0.05.	The	numbers	behind	the	stars	represent	the	different	values	obtained	in	the	
different	 buffers.	 1:	 Buffer	 without	 calcium,	 2:	 Buffer	 with	 1.2	 mmol/l	 calcium,	 3:	 Buffer	 with	 2.5	 mmol/l	
calcium.	The	stars	combined	with	the	numbers	 indicate	significant	or	not	significant	differences	between	the	
measurements	at	similar	time	points.	(a)	swelling	ratio	of	high	G	alginate	discs	at	pH	7.4,	(b)	swelling	ratio	of	
low	G	alginate	discs	 at	 pH	7.4	 (c)	 swelling	 ratio	of	 high	G	 alginate	discs	 at	 pH	5.5	d)	 swelling	 ratio	of	 low	G	
alginate	discs	at	pH	5.5.	Dry	weights	are	normalized	to	the	dry	weight	obtained	after	24	h.		

In	the	HEPES	buffer	without	calcium	the	high	G	alginate	discs	had	a	swelling	ratio	of	18	and	

the	low	G	alginate	discs	a	swelling	ratio	of	16	after	incubation	for	24	hours.	In	the	MES	buffer	

the	swelling	ratio	was	 lower	with	13	and	15.	 In	 the	buffers	with	calcium	the	swelling	ratio	

after	24	hours	 varied	 from	11	 to	14.	After	24	hours	 the	 swelling	of	 the	alginate	discs	was	

nearly	completed.		
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4.5.2 Homogeneity	of	calcium	distribution	and	swelling	

To	 test	 the	 homogenous	 distribution	 of	 calcium	 in	 an	 alginate	 film	 that	 is	 drawn	 over	 a	

distance	 of	 40	cm	 a	 swelling	 study	 was	 performed.	 When	 the	 calcium	 is	 distributed	

homogenously	all	over	the	film,	the	cross-linking	should	be	the	same	and	therefore	the	film	

should	swell	equally.		

Three	discs	of	a	high	G	alginate	film	with	a	diameter	of	2	cm	were	cut	from	the	beginning,	

the	middle	and	the	end	of	the	film.	These	discs	were	weighed	and	incubated	in	HEPES	buffer	

containing	 1.2	mmol	 calcium.	 Every	 hour	 the	 wet	 weight	 of	 the	 alginate	 discs	 was	

determined.	

	
Figure	 46:	Dry	weight	 of	 alginate	 discs	 cut	 from	 the	 beginning,	 the	middle	

and	the	end	of	a	drawn	alginate	film	

	

	
Figure	47:	Swelling	of	alginate	discs	from	the	beginning,	the	middle	and	the	
end	of	a	drawn	alginate	film	
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The	swelling	study	revealed	that	the	alginate	discs	taken	from	the	beginning	of	the	film	were	

heavier	and	had	a	lower	swelling	ratio	than	the	alginate	discs	taken	from	the	end	of	the	film.		

4.5.3 Erosion	behavior	regarding	guluronic	acid	content,	pH	and	calcium	concentration	

The	erosion	study	reveals	the	high	impact	of	calcium	in	the	erosion	medium	on	the	erosion	

of	alginate	discs.	The	higher	the	calcium	concentration	in	the	buffer	was	the	lower	was	the	

erosion	of	the	alginate	discs.	The	content	of	guluronic	acid	in	the	alginate	and	therefore	the	

degree	of	 cross-linking	 respectively	 the	property	of	binding	more	calcium	had	also	a	great	

effect	on	the	erosion	behavior.	For	 the	high	G	alginate	discs	 the	pH	of	7.4	respectively	5.5	

showed	a	negligible	impact	on	the	erosion	time.	The	low	G	alginate	discs	eroded	faster	in	the	

buffer	with	the	lower	pH.	

Due	to	the	fact,	that	some	G	blocks	in	the	high	G	alginate	had	the	capacity	to	complex	more	

calcium,	the	alginate	discs	became	heavier	in	the	beginning	because	of	the	uptake	of	calcium	

and	buffer	salts	in	the	film.	The	low	G	alginate	discs	did	not	have	this	capacity.	

The	lower	pH	of	5.5	made	no	great	difference	in	the	erosion	behavior	of	the	high	G	alginate	

discs.	

The	swelling	of	the	discs	in	the	different	buffers	confirms	the	results	from	the	erosion	study.	

The	 lower	 the	 calcium	concentration	 in	 the	buffer	was	 the	higher	was	 the	 swelling	of	 the	

alginate	 discs	 due	 to	 lower	 cross-linking.	 During	 the	 observation	 over	 eight	weeks	 no	 big	

changes	in	the	swelling	ratio	could	be	measured.	It	nearly	stayed	constant	or	decreased	due	

to	the	contemporaneous	erosion	of	the	alginate	discs.	

The	film	discs	cut	from	the	beginning	of	the	alginate	film	were	heavier	and	swelled	less	than	

discs	 from	 the	 other	 parts	 of	 the	 film.	 This	 could	 be	 explained	 by	 the	 sinking	 of	 the	

suspended	CaHPO4	particles	during	 the	drawing	process.	When	the	calcium	was	sinking	 to	

the	ground	in	the	beginning	of	the	drawing	process,	less	calcium	remains	for	the	rest	of	the	

film.	 Although	 the	 difference	 is	 statistically	 significant	 P<0.05	 the	 consequence	 for	 the	

resulting	mechanical	properties	as	well	as	erosion	time	is	negligible.	
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4.6 Cytotoxicity	tests	of	the	prepared	alginate	films	

The	alginate	films	were	tested	with	the	elution	method	according	to	DIN	EN	ISO	10993-5,	-12	

in	an	accredited	laboratory.	After	the	film	was	humidified	in	PBS	buffer	to	avoid	an	uptake	of	

DMEM	 during	 the	 extraction,	 the	 film	 was	 extracted	 with	 1	ml	 DMEM	 per	 0.1	g	 film	 for	

48	hours	 at	 37	°C	 and	 5	%	CO2.	 For	 the	 positive	 control,	 discs	 made	 of	 Vekoplan	 KT	 PVC	

plates	(König	GmbH,	Wendelstein,	Germany)	which	contained	cytotoxic	zinc	were	extracted	

with	DMEM,	 too.	The	negative	control	DMEM	was	also	stored	under	 the	same	conditions.	

After	48	hours	the	extract	and	two	serial	dilutions	to	50	%	and	25	%	were	used	to	cultivate	

L929	 CC1	 mice	 fibroblasts	 (American	 type	 culture	 collection,	 Rockeville,	 Maryland,	 USA).	

After	further	48	hours,	a	WST	test	was	performed	and	the	cells	were	counted	with	the	help	

of	a	cell	counter	type	CASY	1	(Roche	GmbH,	Mannheim,	Germany).	

a)

	

b)

	
Figure	48:	Viability	and	number	of	cells	of	mice	fibroblasts	

The	 results	 of	 the	 WST	 test	 show	 a	 metabolic	 activity	 of	 more	 than	 80	%.	 The	 cell	

proliferation	even	shows	a	result	of	more	than	100	%	compared	with	the	negative	control.	

Therefore	 it	 can	 be	 concluded,	 that	 the	 alginate	 film	 is	 not	 toxic	 to	 cells.	 The	 slightly	

decrease	of	the	metabolic	activity	might	be	explained	with	the	pH	degrease	of	the	medium	

during	the	extraction	of	the	GDL	containing	alginate	film.	
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4.7 Discussion	

After	the	amounts	of	the	components	which	resulted	from	the	pretests	were	drawn	to	films	

to	 obtain	 films	 with	 suitable	 properties	 it	 was	 obvious	 that	 the	 results	 of	 these	

measurements	 could	not	 be	 transferred	one	 to	one	 to	 the	procedure	of	 film	preparation.	

Although	the	gel	discs	obtained	after	 the	rheological	measurements	and	the	gels	obtained	

after	 the	 turbidity	 measurements	 and	 the	 compression	 test	 where	 clear	 and	 revealed	 a	

complete	dissolution	of	the	hardly	soluble	calcium	salt,	the	suspension	drawn	to	a	thin	film	

led	to	brittle	turbid	films	with	visible	crystals	of	the	calcium	salt	that	has	not	been	dissolved	

completely.	This	could	be	explained	with	the	faster	drying	speed	that	came	from	the	bigger	

surface	 of	 the	mixture	 drawn	 to	 a	 thin	 film.	 The	 suspension	 in	 the	measuring	 gap	 of	 the	

rheometer	kept	 its	humidity	during	the	measurement	and	therefore	 led	to	clear	films.	The	

gels	 in	the	precision	cell	as	well	as	 in	the	wells	of	the	well	plate	also	dried	very	slowly	and	

therefore	allowed	the	complete	dissolution	of	the	hardly	soluble	calcium	salt.	Nevertheless	

the	amounts	of	the	components	obtained	from	the	pretests	were	used	to	prepare	very	thin	

alginate	films	with	the	help	of	the	film	drawing	apparatus.	To	overcome	the	problem	of	an	

incomplete	dissolution	of	the	hardly	soluble	calcium	salt,	the	drying	speed	of	the	drawn	film	

was	prolonged	by	 giving	 the	glass	plate	with	 the	 thin	 film	 into	a	 closed	box.	After	 several	

hours	 the	 still	 wet	 but	 clear	 film	 could	 be	 taken	 out	 of	 the	 box	 and	 dried	 at	 room	

temperature	to	a	clear	film.	The	pretest	only	revealed	the	amounts	of	calcium	salt	and	GDL	

that	should	be	given	to	the	alginate	solution	to	achieve	a	suitable	cross-linking.	To	prepare	

films	 with	 good	 mechanical	 properties	 besides	 the	 cross-linking	 also	 the	 addition	 of	

plasticizer	is	important,	because	without	plasticizer	a	very	thin	air	dried	alginate	film	is	very	

brittle.	The	mechanical	evaluation	revealed	that	the	addition	of	50	%	glycerol	calculated	on	

the	 alginate	 amount	 would	 lead	 to	 films	 with	 good	mechanical	 properties.	 Different	 test	

setups	were	investigated	to	find	an	appropriate	method	to	test	the	mucoadhesive	properties	

of	 the	 prepared	 alginate	 films	 on	 peritoneal	 tissue.	 The	 established	 method	 of	 the	

detachment	 from	 alginate	 films	 strips	 from	 a	 wetted	 pig	 intestine	 showed	 reproducible	

results.	The	erosion	study	revealed	that	both	films	prepared	from	high	G	and	low	G	alginate	

would	be	stable	for	8	weeks	if	calcium	is	available	in	the	environment.	It	could	be	seen,	that	

the	film	prepared	from	high	G	alginate	was	still	able	to	incorporate	more	calcium	from	the	

buffer.	The	pH	of	the	erosion	buffer	had	no	influence	on	the	erosion	time.	The	cytotoxicity	
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test	 implies	 that	 a	 wetting	 with	 PBS	 before	 implantation	 would	 remove	 the	 acidic	 and	

harmful	GDL.	

4.8 Summary	and	Conclusion	

In	previous	investigations	alginate	films	cast	into	Teflon	molds	or	drawn	on	glass	plates	were	

cross-linked	with	 the	 help	 of	 different	 calcium	 salts	 and	 different	 cross-linking	 techniques	

(Chapter	 3).	 These	 films	 contained	 about	 0.11	 g	 to	 0.21	 g	 calcium	 ions	 per	 gram	 alginate	

powder	 (Table	 10).	 The	 films	 cast	 into	 Teflon	molds	 containing	 two	 different	 amounts	 of	

calcium	 to	 investigate	 the	 impact	 of	 incorporated	 calcium	 on	 the	 erosion	 time	 contained	

0.5	g	 or	 1	 g	 calcium	 citrate	 tetrahydrate	 (Table	 10).	 The	 erosion	 study	 with	 these	 films	

revealed,	that	even	with	less	calcium	the	films	were	cross-linked	properly	and	eroded	time	

by	time	instead	of	being	dissolved	rapidly.	

Table	10:	Calcium	amounts	used	for	cross-linking	before	optimization	

Calcium	source	 Calcium	salt	[g]	/		

g	alginate	powder	

àEqual	amount	of	Ca2+	[g]	

/		

g	alginate	powder	

Calcium	citrate	tetrahydrate	

C12H10Ca3O14	4	H2O	

(Mr	570.51	g	mol-1)	

0.5	

1	

0.11	

0.21	

Calcium-EDTA	 àcalcium	 chloride	

CaCl2	(Mr	110.98	g	mol-1)	

0.435	 0.16	

The	 pretests	 performed	 (Chapter	4)	 for	 the	 investigation	 of	 an	 appropriate	 amount	 of	

calcium	for	cross-linking	showed,	that	the	drawn	films	prepared	with	different	cross-linking	

techniques	(Chapter	3)	were	saturated	with	calcium.		

Table	11:	Calcium	amounts	used	for	cross-linking	after	optimization	
Calcium	source	 Calcium	salt	[g]	/		

	g	alginate	powder	

àEqual	amount	of	Ca2+	[g]	/		

g	alginate	powder	

Calcium	phosphate	

CaHPO4	(Mr	136.06	g	mol-1)	

0.2	 0.06	
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The	pretests	showed	that	an	amount	of	0.06	g	Ca2+	per	gram	alginate	powder	(Table	11)	is	

able	to	cross-link	half	of	the	guluronic	acid	blocks	in	an	alginate	film	and	lead	to	films	with	

appropriate	mechanical	properties	and	erosion	time.	

Regarding	the	guluronic	acid	content	in	the	alginate	film	the	compression	test	revealed	that	

alginate	gels	prepared	of	alginate	with	high	guluronic	acid	content	resulted	in	stronger	gels	

than	alginate	gels	prepared	from	alginate	with	less	guluronic	acid.	

The	 tensile	 tests	 showed	 no	 significant	 differences	 regarding	 the	maximum	 load	 and	 the	

tensile	strain.	The	elastic	modulus	of	the	film	prepared	of	low	G	alginate	was	higher	than	the	

elastic	modulus	of	the	films	prepared	of	the	high	G	alginate	film	which	might	come	from	a	

higher	amount	of	calcium	that	could	not	be	bound	due	to	the	lack	of	free	guluronic	acid.		

The	elongation	of	the	films	also	revealed	a	difference	between	the	two	alginates.	The	films	

made	of	low	G	alginate	had	a	much	higher	elongation	than	the	films	prepared	of	the	high	G	

alginate.	This	effect	could	be	explained	with	the	stronger	cross-linking	of	the	high	G	alginate	

films	and	the	resulting	decrease	in	elasticity.	

It	can	be	concluded,	that	the	cross-linking	of	alginate	films	and	as	a	consequence	thereof	the	

mechanical	 properties	 and	 erosion	 time	 can	 be	 influenced	 by	 different	 things.	 More	

precisely	 the	 choice	 of	 the	 alginate	 regarding	 the	 content	 of	 guluronic	 acid,	 the	 calcium	

source	 and	 the	 release	 of	 calcium	 from	 its	 calcium	 source,	 the	 calcium	 amount	 used	 for	

cross-linking	and	the	addition	of	plasticizer.	

It	 is	 important	 to	 have	 a	 suitable	 balance	 between	 all	 the	 components	 used	 for	 the	 film	

preparation	 to	 obtain	 films	 that	 are	 cross-linked	 good	 enough	 to	withstand	 forces	 during	

surgery,	 but	 be	 flexible	 enough	 to	 enable	 movement	 of	 the	 organs	 and	 tissue.	With	 the	

addition	 of	 plasticizer	 the	 film	 can	 be	 softened	 but	with	 higher	 amounts	 glycerol	 the	 film	

becomes	very	sticky	and	is	harder	to	handle.	
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5. Drug	release	from	thin	polymer	films	

This	Chapter	deals	with	the	preparation	of	thin	polymer	films	prepared	from	alginate,	a	block	
copolymer	made	of	PLA	PEG	PLA	and	PLA.	These	films	were	loaded	with	the	two	antibiotics	
vancomycin	hydrochloride	and	gentamicin	sulfate	using	different	methods.	Release	studies	
and	microbiological	testing	were	performed	with	the	prepared	films	to	test	their	biological	
efficacy.	 	
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5.1 Introduction	

Inflammations	due	 to	bacterial	 infections	 are	a	quite	 common	 side	effect	 after	 abdominal	

surgery	 or	 trauma	 90,91	 and	 can	 in	 consequence	 strongly	 promote	 the	 formation	 of	

abdominal	adhesions.	The	trauma	associated	infections	of	the	abdomen	are	mainly	treated	

systemically	 with	 high	 doses	 of	 antibiotics	 92,93	 and	 accordingly	 come	 along	 with	 many	

undesired	side	effects	at	other	organs	and	tissues	94.		

A	delivery	device	for	a	directed	local	application	providing	controlled	release	of	antibiotics	in	

much	lower	doses	would	minimize	these	side	effects	and	lead	to	a	higher	concentration	of	

the	antibiotic	directly	at	the	infected	wound	site	94,95.	For	this	purpose	soft	and	flexible	drug	

delivery	 systems	 made	 of	 hydrogels	 like	 poly	 (ethylene	 glycol),	 poly	 (ethylene	 oxide),	

cellulose	 and	 collagen	 are	 already	 successfully	 used	 for	 the	 delivery	 of	 for	 example	

gentamicin	 sulphate,	 cefotaxim	 or	 vancomycin	 96–99.	 However,	 for	 the	 preparation	 of	 a	

delivery	device	made	of	a	degradable	natural	hydrogel	like	alginate	or	hyaluronic	acid	98,100	

many	 key	 points	 have	 to	 be	 addressed	 and	 carefully	 investigated,	 like	 the	 gel	

biocompatibility,	mechanical	 properties,	 degradation	 behavior,	 sterilization	 procedures,	 as	

well	as	the	resulting	material	solubility	due	to	occurring	erosion	or	hydrolysis	101.		

Cross-linked	alginate	 layers	 loaded	with	vancomycin	have	already	been	used	as	coating	for	

porous	scaffolds	to	achieve	a	slower	sustained	drug	release	rate	of	vancomycin	at	a	local	site	

to	 inhibit	 infection	after	surgery	102,	as	alginate	beads	 in	an	 injectable	anti-infection	tissue-

engineered	 construct	 for	 the	 treatment	 of	 chronic	 osteomyelitis	 due	 to	 the	 difficulty	 of	

antibiotics	to	penetrate	into	the	local	sites	when	given	systemically	103.	Vancomycin	itself	is	

also	commonly	used	for	the	coating	of	polypropylene	meshes	used	for	the	repair	of	hernias	

to	inhibit	infections	caused	by	bacteria	104.	The	aminoglycoside	gentamicin	on	the	other	side	

is	also	a	very	commonly	used	antibiotic	for	the	local	treatment	after	trauma	or	surgery	like	in	

collagen	sponges	 96,	 collagen	sheets	or	PMMA	beads	 to	prevent	 implant-related	 infections	
105,	 electrospun	 polylactide	 based	 fibers	 for	 wound	 dressings	 with	 modified	 release	

characteristics	106,	PLA	films	that	can	be	attached	to	the	surface	of	an	implant	107,	cylindrical	

larger	 PLA	 implants	 to	 provide	 local	 bactericidal	 drug	 concentrations	 108	 as	 well	 as	 non	

resorbable	polyvinylidenfluoride	meshes	for	hernia	repair	with	local	drug	release	109.		
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Vancomycin	 hydrochloride	 is	 a	 glycopeptide	 antibiotic	 for	 hard	 to	 treat	 cases	 of	 multiple	

drug	 resistant	 bacteria	 and	 is	 highly	 effective	 against	 gram	 positive	 bacteria	 like	

staphylococci	and	enterococci.	Due	to	the	fact	that	it	is	not	absorbed	when	taken	orally	it	is	

normally	given	parenterally,	which	explains	the	restricted	application	as	a	drug	of	last	resort.	

Moreover,	 when	 given	 at	 high	 therapeutic	 doses	 it	 is	 ototoxic,	 which	 is	 why	 plasma	

concentrations	have	to	be	carefully	monitored.	Gentamicin	sulphate	on	the	other	side	 is	a	

wide-spectrum	 aminoglycoside	 antibiotic,	 which	 is	 highly	 effective	 against	 enterobacteria	

and	staphylococci.	Orally	it	is	only	given	for	local	treatment	of	the	intestine	because	it	is	also	

not	resorbed	due	to	its	highly	charged	character.	For	other	indications	outside	the	intestine	

it	 also	 has	 to	 be	 applied	 parenterally	 in	 order	 to	 reach	 the	 side	 of	 action.	 Similar	 to	

vancomycin	it	is	also	ototoxic	and	nephrotoxic	when	it	is	given	in	high	doses	without	careful	

management	 of	 the	 blood	 plasma	 levels	 110.	 A	 strictly	 local	 application	 of	 lower	 drug	

amounts	 instead	 of	 the	 systemic	 application	 of	 high	 doses	 consequently	 would	 strongly	

minimize	the	risk	of	toxic	side	effects	and	lead	to	improved	therapy	of	the	patient	94.		

The	 aim	 of	 this	 study	 was	 to	 investigate	 the	 impact	 on	 the	 observable	 controlled	 drug	

release	 from	 differently	 composed	 thin	 polymer	 films	 by	 the	 choice	 of	 suitable	 drug	

substances,	 different	 hydrophilic	 or	 lipophilic	 polymer	 carriers	 as	well	 as	 by	 different	 film	

preparation	 techniques.	 Two	 high	 molecular	 weight,	 hydrophilic	 and	 positively	 charged	

antibiotics,	vancomycin	hydrochloride	and	gentamicin	sulphate	were	chosen	as	active	drug	

components.	Two	positively	charged	drugs	were	used	because	of	the	consideration	that	an	

ionic	 interaction	with	 the	negatively	 charged	 alginate	might	 be	possible	 and	 consequently	

lead	to	a	more	prolonged	drug	release	111.	To	furthermore	vary	the	release	of	the	hydrophilic	

drugs	 from	the	hydrophilic	alginate,	a	more	 lipophilic	PLA	PEG	PLA	and	a	 lipophilic	PLA	 107	

were	investigated	in	comparison,	in	order	to	see	the	potential	impact	of	the	hydrophilicity	of	

the	used	polymer	on	the	drug	release.	Due	to	the	fact,	that	the	hydrophilic	drugs	could	not	

be	dissolved	in	the	organic	solvents,	which	is	necessary	for	the	film	preparation	of	the	PLA	

PEG	PLA	films	and	PLA	films,	two	different	methods	for	the	homogenous	distribution	of	the	

drug	 in	the	film	were	 investigated.	When	applying	the	suspension	method,	the	accordingly	

micronized	hydrophilic	drugs	were	merely	suspended	in	the	polymer	solution	before	the	film	

preparation.	For	 the	cosolvens	method,	 in	contrast,	 the	drugs	were	dissolved	 in	a	 suitable	

cosolvens,	 namely	methanol,	 before	 addition	 of	 a	 drug	 solution	 to	 the	 prepared	 polymer	

solution.	 	
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5.2 Drug	loading	of	thin	polymer	films	

5.2.1 Alginate	films	

To	ensure	that	ionic	interactions	between	the	negatively	charged	alginate	and	the	positively	

charged	 drugs	 are	 possible,	 the	 alginate	 films	 were	 prepared	 according	 to	 the	 previously	

described	inner	gelation	technique	(Chapter	4).	By	cross-linking	the	alginate	film	with	a	half	

maximum	 amount	 of	 calcium	 that	 can	 be	 bound	 by	 the	 guluronic	 and	 mannuronic	 acid	

blocks,	 enough	 acid	 blocks	 remain	 for	 the	 binding	 of	 the	 positively	 charged	 drug.	 More	

precisely,	 0.75	g	 of	 high	G	 alginate	 and	 0.75	g	 glycerol	 were	 dissolved	 to	 25	g	 in	 water.	

100	mg	 vancomycin	 hydrochloride	 (Vancomycin	 CP	 500	 mg,	 Hikma	 Pharma	 GmbH,	

Gräfelfing,	 Germany)	 was	 added	 and	 dissolved	 in	 the	 aqueous	 polymer	 solution.	 To	

subsequently	cross-link	the	film	with	the	help	of	the	inner	gelation	technique,	0.15	g	CaHPO4	

suspended	 in	 some	 droplets	 of	 water	 and	 0.6	g	 GDL	 powder	 were	 added.	 After	

homogenization	the	film	was	drawn	on	a	glass	plate	with	a	gap	clearance	of	700	µm	and	a	

speed	of	5	mm/	sec.	To	slow	down	the	drying	speed	the	film	was	stored	in	a	closed	box	until	

it	was	completely	clear.	Subsequently	it	was	taken	out	of	the	box	and	was	allowed	to	dry	at	

room	temperature.		

When	gentamicin	was	given	to	the	alginate	solution,	it	did	not	dissolve	but	formed	clusters	

instead.	 To	 load	 the	 films	 with	 gentamicin	 (Caesar	 &	 Loretz	 GmbH,	 Hilden,	 Germany)	 a	

gentamicin-complex	with	 alginate	was	 prepared	 before	 the	 drug	 loaded	 film	 preparation.	

More	precisely,	to	a	solution	of	1.44	g	gentamicin	sulphate	and	1.5	g	glycerol	in	47	g	water,	

step	 by	 step	 1.5	g	 high	G	 alginate	 were	 added	 and	 stirred	 with	 a	 magnetic	 stirrer	 at	

maximum	 speed	 to	 obtain	 a	 homogeneous	 distribution.	 With	 the	 addition	 of	 alginate	 a	

coprecipitation	of	the	two	components	but	not	an	increase	of	the	solution	viscosity	due	to	

the	 addition	 of	 alginate	 could	 be	 observed.	 For	 a	 more	 homogenous	 distribution	 of	 the	

formed	 complex,	 the	 suspension	 was	 homogenized	 with	 the	 help	 of	 an	 ultra	 turrax	 and	

subsequently	isolated	from	solution	by	filtration	with	the	help	of	a	Büchner	funnel	followed	

by	washing	steps	with	water.	After	subsequent	lyophilisation	the	precipitate	was	milled	with	

a	CryoMill	(Retsch	GmbH,	Haan,	Germany)	while	cooled	with	liquid	nitrogen	to	increase	the	

brittleness	 of	 the	 drug-polymer	 precipitate.	 The	 obtained	 powder	 could	 subsequently	 be	

used	 for	 the	drug	 loading	of	 the	alginate	 films	without	 further	precipitation	or	 interaction	

with	the	added	alginate.	Therefore,	0.75	g	glycerol	was	dissolved	in	22.75	ml	water.	250	mg	
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of	 the	 gentamicin-alginate-precipitate	 was	 added,	 while	 the	 solution	 was	 stirred	 at	

maximum	speed	with	a	magnetic	stirrer.	The	final	suspension	was	further	homogenized	with	

the	help	of	an	ultra	turrax.	Then	0.75	g	high	G	alginate	was	added	step	by	step	under	stirring	

at	 maximum	 speed	 to	 obtain	 a	 homogeneous	 distribution	 of	 the	 gentamicin-alginate-

precipitate	in	the	alginate	solution.	Subsequently	this	mixture	was	again	homogenized	with	

an	ultra	turrax	again.	For	the	cross-linking	of	the	alginate	chains,	0.15	g	CaHPO4	suspended	in	

some	droplets	 of	water	 and	 0.6	g	GDL	powder	were	 added.	After	 further	 homogenization	

the	 film	 was	 drawn	 on	 a	 glass	 plate	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec.	The	film	was	stored	in	a	closed	box	to	provide	sufficient	time	for	the	dissolution	

of	the	calcium	salt.	

5.2.2 PLA	PEG	PLA	and	PLA	films	

For	the	drug	loading	of	the	films,	prepared	of	the	organic	soluble	polymers	PLA	PEG	PLA,	a	

lipophilic	 triblock	 copolymer	 of	 poly(lactic	 acid)	 and	 poly(ethylene	 glycol)	 [HWL73,	

PLA35kDa-PEG10kDa-PLA35kDa	 (poly(lactide)-b-poly(ethylene	glycol)-b-poly(lactide))),	Poly-

materials,	 Kaufbeuren,	Germany]	as	well	 as	PLA	 [PLA	 (Resomer®	 LR708,	Poly	 (L-lactide-co-

D,L-lactide;	 70:30),	 Boehringer	 Ingelheim,	 Ingelheim	 am	 Rhein,	 Germany)]	 ,	 with	 the	

hydrophilic	antibiotics	two	different	manufacturing	methods	were	performed	to	obtain	films	

with	a	differently	homogenous	distribution	of	the	drug.	

Applying	 the	 “suspension	 method”	 the	 hydrophilic	 drugs	 were	 just	 suspended	 in	 the	

lipophilic	polymer	solution.	For	the	PLA	PEG	PLA	films,	1.5	g	polymer	was	dissolved	 in	3	ml	

DCM.	 100	mg	 vancomycin	 hydrochloride,	 respectively	 100	mg	 gentamicin	 sulphate,	 was	

directly	added	after	the	addition	of	DCM.	After	the	PLA	PEG	PLA	was	completely	dissolved,	

the	suspension	was	drawn	on	a	glass	plate	coated	with	Sigmacote®	with	a	gap	clearance	of	

120	µm	and	a	speed	of	5	mm/	sec.	

To	 further	 improve	the	even	distribution	of	 the	drug,	 the	 films	were	additionally	prepared	

with	 the	 “cosolvens	method”.	More	 precisely	 the	 antibiotics	 were	 dissolved	 in	 a	 suitable	

cosolvens,	namely	methanol	before	addition	to	the	also	prepared	polymer	solution	in	DCM.		

The	 films	 of	 the	 higher	 molecular	 weight	 PLA	 were	 also	 loaded	 with	 the	 “suspension	

method”	 as	well	 as	 the	 “cosolvens	method”.	 For	 this	 purpose	1.2	g	 PLA	were	dissolved	 in	

21.5	ml	 respectively	 20.5	ml	 DCM	 when	 additional	 cosolvens	 was	 added.	 100	mg	 of	 the	
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antibiotic	 were	 directly	 given	 to	 the	mixture	 and	 suspended	 in	 DCM	 or	 dissolved	 in	 1	ml	

methanol	 before	 addition	 to	 the	 polymer	 solution.	 After	 homogenization	 the	 films	 were	

drawn	on	a	glass	plate	coated	with	Sigmacote®	with	a	gap	clearance	of	700	µm	and	a	speed	

of	5	mm/	sec.		

5.2.3 Observations	during	the	film	preparation	

After	 addition	 of	 vancomycin	 hydrochloride	 to	 the	 alginate	 solution,	 the	 solution	 became	

cloudy	which	might	indicate	a	slight	interaction	between	the	positively	charged	drug	and	the	

negatively	charged	polymer.	Upon	further	stirring	the	solution	became	clear	again.	

The	 drug	 loading	 with	 the	 up	 to	 triply	 charged	 gentamicin	 sulphate	 was	 much	 more	

complicated	due	to	an	immediate	complex	formation	with	the	alginate.	A	drug	loading	just	

by	adding	the	powder	would	have	resulted	in	an	inhomogeneous	distribution	of	gentamicin	

in	 the	 film,	 because	 after	 the	 simple	 addition	 of	 gentamicin	 to	 the	 alginate	 solution	

precipitates	 were	 formed	 and	 the	 remaining	 alginate	 solution	 became	 visibly	 runnier,	

disallowing	 the	 correct	 drawing	 of	 the	 polymer	 films.	 Since	 longer	 stirring	 could	 also	 not	

dissolve	the	obtained	drug-polymer	precipitates,	a	complex	of	gentamicin	and	alginate	was	

prepared	 separately	 and	 the	 final	 alginate	 solution	 was	 subsequently	 loaded	 with	 this	

complex.	

Using	 the	suspension	method	 the	drug	was	added	 to	 the	mixture	before	 the	polymer	was	

dissolved,	because	the	even	distribution	in	the	low	viscous	DCM	with	the	help	of	a	magnetic	

stirrer	 was	 easier	 to	 obtain	 than	 later	 in	 a	 viscous	 polymer	 solution.	 While	 continuously	

stirring	 for	several	hours	 the	polymer	dissolved	and	the	resulting	drug	suspension	became	

more	viscous.	

The	dry	films	prepared	with	the	“suspension	method”	had	a	visibly	rougher	surface	than	the	

films	 prepared	 with	 the	 “cosolvens	 method”.	 The	 “cosolvens	 method”	 led	 to	 generally	

smaller	 drug	 crystals,	 with	 65	°C	 methanol	 having	 a	 higher	 boiling	 point	 than	 DCM	 with	

40	°C.	 After	 drawing	 the	 film	 on	 the	 glass	 plate,	 the	 DCM	with	 a	 boiling	 point	 of	 39.6	 °C	

evaporated	faster	than	the	methanol	with	a	boiling	point	of	64.7	°C.	Therefore	the	polymer	

solution	 became	 more	 viscous	 and	 prevented	 a	 coagulation	 of	 the	 drug	 crystals	 that	

crystalized	in	the	film	with	the	subsequent	evaporation	of	the	methanol.	
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5.2.4 Investigation	of	the	prepared	polymer	films	

After	drying	at	 room	temperature	the	thickness	of	all	obtained	films	was	measured	with	a	

microprocessor	coating	thickness	gauge	(MiniTest	650,	ElektroPhysik	Dr.	Steingroever	GmbH	

&	Co.	KG,	Köln,	Germany).	

Table	12:	Thickness	of	polymer	films	with	vancomycin	hydrochloride	

polymer	 placebo	 drug	loading	method	

	 	 dissolution	 cosolvens	
method	

suspension	
method	

alginate	 31-32	 28-36	 	 	

PLA	PEG	PLA	 22-23	 	 17-24	 19-24	

PLA	 18-22	 	 18-20	 21-25	
	

Table	13:	Thickness	of	polymer	films	with	gentamicin	sulfate	

polymer	 placebo	 drug	loading	method	

	 	 dissolution	 cosolvens	
method	

suspension	
method	

alginate	 31-32	 34-37	 	 	

PLA	PEG	PLA	 22-23	 	 19-24	 24-27	

PLA	 18-22	 	 19-23	 19-25	
	

To	visualize	the	size	and	distribution	of	the	drug	crystals	or	the	precipitates	of	the	drugs	in	

the	 polymer	 films,	 light	 microscopic	 images	 with	 phase	 contrast	 were	 taken	 (Axio	

Imager.M1,	Carl	Zeiss	Microscopy	GmbH,	Oberkochen,	Germany).	Furthermore	SEM	images	

were	obtained	using	a	Digital	Scanning	Microscope	DSM	940	(Carl	Zeiss	Microscopy	GmbH,	

Oberkochen,	 Germany)	 at	 an	 accelerating	 voltage	 of	 5	kV	 after	 gold	 sputtering	 with	 an	

EMITECH	 K550	 sputter	 coater	 (Quorum	 Technologies,	 West	 Sussex,	 United	 Kingdom)	 to	

investigate,	if	the	formed	crystals	were	generally	covered	by	a	thin	polymer	layer.	
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Figure	49:	Light	microscopic	images	of	the	vancomycin	hydrochloride	loaded	polymer	films	
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Figure	50:	Light	microscopic	images	of	the	gentamicin	sulfate	loaded	polymer	films	
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Figure	51:	SEM	images	of	vancomycin	hydrochloride	loaded	polymer	films	
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Figure	52:	SEM	images	of	gentamicin	sulphate	loaded	polymer	films	
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5.3 Release	studies	

The	release	studies	were	performed	with	round	film	discs	with	a	diameter	of	2	cm.	The	discs	

were	 incubated	 in	 glass	 vials	 with	 10	ml	 HEPES	 buffer	 containing	 1.2	mmol/l	 calcium	 and	

stored	 at	 37	°C	 with	 100	rpm	 shaking.	 At	 predetermined	 time	 intervals	 1	ml	 buffer	 was	

removed	 for	 investigation	 and	 replaced	 with	 fresh	 buffer.	 The	 absorption	 of	 vancomycin	

could	 be	 measured	 with	 a	 UV-VIS	 plate	 reader	 (Tecan	 infinite®	 200,	 Tecan	 Group	 Ldt.,	

Männedorf,	 Switzerland)	 at	 an	 absorption	 wavelength	 of	 280	nm.	 Due	 to	 the	 fact,	 that	

gentamicin	 is	 not	 detectable	 with	 an	 UV-VIS	 detector	 because	 of	 its	 low	 absorption	

maximum;	 further	 derivatisation	 with	 phthaldialdehyde	 was	 performed.	 For	 this	 purpose	

0.2	g	o-phthaldialdehyde	were	dissolved	in	1	ml	methanol.	19	ml	of	a	0.4	M	boric	buffer	with	

pH	10.4	 and	 0.4	ml	 2-mercaptoethanol	 were	 added.	 The	 pH	 of	 the	 solution	 was	 adjusted	

with	potassium	hydroxide	solution	to	pH	10.4.	This	solution	was	diluted	with	buffer	1	to	9	for	

further	 use.	 Before	 the	measurement,	 80	µl	 of	 the	 release	 sample	were	mixed	with	 48	µl	

methanol	 and	 72	µl	 of	 the	 prepared	 derivatization	 solution.	 The	 resulting	 absorption	was	

measured	after	15	minutes	incubation	using	the	same	UV-VIS	plate	reader	at	a	wavelength	

of	332	nm.	

At	 the	 end	 of	 the	 release	 study	 the	 whole	 buffer	 was	 removed	 from	 the	 vials	 and	 the	

remaining	polymer	discs	were	 lyophilized	 for	 further	analysis.	After	 lyophilization	the	discs	

respectively	 disc	 fragments	 of	 the	 organic	 soluble	 polymer	 (PLA	 PEG	 PLA	 or	 PLA)	 were	

dissolved	 in	 2	ml	 1	N	 NaOH	 over	 night	 at	 37	°C.	 Before	 measuring	 the	 absorption	 of	 the	

residual	drug	amount	the	solutions	were	neutralized	with	1.85	ml	HCl	and	diluted	with	6.15	

ml	HEPES	buffer.		

	 	
Figure	53:	Release	profiles	of	vancomycin	hydrochloride	(short	and	long	term	release)	
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Figure	54:	Release	rates	and	overall	released	amount	of	vancomycin	hydrochloride	after	24	hours	and	140	days	
	

	 	
Figure	55:	Release	profiles	of	gentamicin	sulfate	(short	and	long	term	release)	
	

	 	
Figure	56:	Release	rates	and	overall	released	amount	of	gentamicin	sulfate	after	24	hours	and	90	days.	
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5.4 Water	uptake	of	the	different	polymer	films	

The	main	 factor	 that	 influences	 the	 drug	 release	 from	 a	 polymer	matrix	 is	 the	 uptake	 of	

water	 and	 the	 resulting	 possibility	 to	 dissolve	 and	 liberate	 the	 drug	 from	 the	 matrix.	

Therefore	the	swelling	of	the	different	polymer	films	was	investigated	for	several	days.	Three	

discs	with	a	diameter	of	2	cm	made	from	polymer	films	without	drug	were	stored	in	HEPES	

buffer	 containing	 1.2	mmol/l	 calcium.	 Every	 day	 the	 wet	 weight	 (wt)	 of	 the	 polymer	 film	

discs	was	determined	to	calculate	the	swelling	ratio	(wt/w0)	of	the	polymer	film	by	dividing	

the	wet	weight	through	the	initial	weight	(w0).	

	
Figure	57:	Swelling	ratio	of	the	different	polymer	films	stored	in	buffer.	

	

5.5 Biological	activity	of	released	drug	tested	via	microbiological	testing	

To	 test	 the	 biological	 activity	 of	 the	 drug	 loaded	 polymer	 films	microbiological	 tests	were	

performed	using	different	bacteria	inoculated	petri	dishes.	For	these	testing	typical	bacteria	

that	may	 lead	 to	 an	 infection	 after	 peritoneal	 surgery	were	 chosen,	 including	 escherichia	

coli,	staphylococcus	aureus	and	staphylococcus	epidermidis.	

The	 microbiological	 studies	 of	 the	 drug	 loaded	 polymer	 films	 were	 performed	 using	 a	

modified	agar	diffusion	test.	Three	drug	loaded	film	discs	with	a	diameter	of	1	cm	were	put	

on	top	of	a	filter	paper	on	an	agar	plate	inoculated	with	the	respective	bacteria,	as	control	a	

film	disc	without	the	investigated	drugs	was	also	placed	onto	the	plate.	After	incubation	for	

24	hours	at	37	°C	the	zones	of	inhibition	around	the	polymer	discs	were	measured.	With	the	

help	of	the	additional	filter	paper	for	stabilizing	the	polymer	films,	particularly	the	alginate	

films,	 the	discs	were	 replaced	onto	a	 freshly	 inoculated	agar	plate	with	 the	 same	 stem	of	
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bacteria.	 This	 procedure	 was	 repeated	 daily	 until	 no	 inhibition	 zone	 was	 detectable	 any	

more.	

	 Vancomycin	hydrochloride	 Gentamicin	sulfate	

Alginate	

	 	

PLA	PEG	PLA		

Cosolvens	

	 	

PLA	PEG	PLA		

Suspension	

	 	

PLA		

Cosolvens	

	 	

PLA		

Suspension	

	 	
Figure	 58:	 Zones	 of	 inhibition	 after	 24	 hours	 of	 incubation	 on	 agar	 plates	 inoculated	with	

staphylococcus	aureus	
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Figure	 59:	 Zones	 of	 inhibition	 gentamicin-sulfate	 loaded	 polymer	 film	 discs	 on	 agar	 plates	 inoculated	with	

escherichia	coli	

	

	

	
Figure	 60:	 Zones	 of	 inhibition	 gentamicin-sulfate	 loaded	 polymer	 film	 discs	 on	 agar	 plates	 inoculated	 with	

staphylococcus	epidermidis	
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Figure	 61:	 Zones	 of	 inhibition	 gentamicin-sulfate	 loaded	 polymer	 film	 discs	 on	 agar	 plates	 inoculated	 with	

staphylococcus	aureus	

	

	

	
Figure	62:	Zones	of	 inhibition	vancomycin-hydrochloride	 loaded	polymer	 film	discs	on	agar	plates	 inoculated	

with	staphylococcus	aureus	
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5.6 Results	and	Discussion	

Gentamicin	

	

Vancomicin	

	
Figure	63:	Molecular	structures	of	the	used	drug	components	

In	 the	 hydrophilic	 alginate	 film	 the	 hydrophilic	 antibiotic	 vancomycin	 hydrochloride	 was	

completely	dissolved	during	 the	 film	preparation	 (figures	49	+	51).	 The	microscopic	 image	

showed	no	crystals	of	the	drug	in	the	alginate	film.	However	the	SEM	images	showed	some	

particles	on	top	of	the	alginate	film	which	might	be	complexes	of	vancomycin	and	alginate.		

The	 alginate	 films	 loaded	 with	 gentamicin	 showed	 the	 precipitates	 of	 gentamicin	 and	

alginate	 in	 the	microscopic	 image	as	well	as	 in	 the	SEM	 image,	because	 these	bigger	 solid	

pieces	were	also	reaching	out	of	the	films.		

Regarding	the	lipophilic	films,	the	hydrophilic	drugs	were	not	dissolved	in	the	polymer.	The	

cosolvens	 method	 (c)	 led	 to	 a	 more	 homogenous	 distribution	 of	 the	 drug	 with	 smaller	

crystals	than	the	suspension	method	(s)	(figures	51	+	52).	The	microscopic	images	revealed	
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the	distribution	of	the	drug	 in	the	different	polymer	films	after	drug	 loading	with	different	

methods	 (figures	49	+	50).	 In	 the	 films	made	of	PLA	PEG	PLA	and	PLA	crystals	of	 the	drug	

were	 visible	 in	 the	microscopic	 images	 as	 well	 as	 in	 the	 SEM	 images.	 In	 the	microscopic	

images	 a	 difference	 between	 the	 drug	 loading	 with	 the	 suspension	 method	 and	 the	

cosolvens	method	could	be	observed	(figures	49	+	50).	With	the	cosolvens	method	the	drug	

was	initially	dissolved	in	methanol	before	addition	to	the	polymer	solution	and	again	slowly	

crystalized	 during	 the	 drying	 process	 after	 the	 film	 was	 drawn	 on	 a	 glass	 plate.	 This	

consequently	 led	 to	 the	 formation	of	much	smaller	 crystals.	The	SEM	 images	 showed	 that	

the	vancomycin	crystals	in	the	lipophilic	films	were	more	edgy	than	the	gentamicin	crystals	

and	 seem	 to	 stick	out	of	 the	 film,	while	 the	 surface	of	 the	 lipophilic	polymer	 films	 loaded	

with	gentamicin	seem	to	be	smoother	with	rounder	crystals	(figures	51	+	52).		

The	release	of	vancomycin	hydrochloride	exhibited	a	large	burst	release	from	the	hydrophilic	

alginate	 film,	 releasing	 100	 %	 of	 the	 drug	 load	 within	 the	 first	 24	 hours	 (figure	 53).	 The	

lipophilic	polymers	however	 showed	a	much	 smaller	 initial	 drug	 release,	because	only	 the	

drug	 crystals	 that	 reached	 out	 of	 the	 polymer	 films	 got	 dissolved	 in	 the	 release	medium	

(figure	53).	Due	to	the	 limited	amounts	of	water,	which	could	permeate	 into	the	 lipophilic	

films,	only	a	partial	release	of	vancomycin	hydrochloride	could	be	achieved	during	the	time	

of	 investigation	 (figure	 54).	 The	 films	made	 of	 the	 slightly	more	 hydrophilic	 PLA	 PEG	 PLA	

showed	a	release	of	50	%	after	140	days	for	the	film	loaded	with	the	suspension	method	and	

45	%	 for	 the	 film	 loaded	with	 the	cosolvens	method.	This	 trend	was	observed	 in	all	 cases,	

since	 the	 cosolvens	 method	 led	 to	 slightly	 smaller	 crystals	 that	 did	 not	 reach	 out	 of	 the	

polymer	film	and	therefore	were	not	dissolved	(figure	54).	

For	the	additionally	investigated	long	term	release,	the	PLA	PEG	PLA	films	partially	started	to	

fragment	 after	 about	 40	days,	 which	 was	 observed	 visually	 and	 additionally	 accompanied	

with	a	slight	increase	of	the	released	drug	amount	(figure	53).	This	observation	can	explain	

the	creation	of	new	surfaces	and	accordingly	the	exposing	of	new	drug	crystals,	which	now	

get	 in	 contact	 with	 the	 release	 medium	 and	 subsequently	 get	 dissolved.	 Till	 the	 end	 of	

investigation	 these	 obtained	 fragments	 almost	 stayed	 in	 place	 and	 since	 the	 film	 did	 not	

further	 dissolve	 a	 complete	 drug	 release	 was	 also	 not	 obtained	 for	 this	 polymer.	 As	

expected,	the	most	 lipophilic	PLA	film	showed	the	lowest	overall	drug	release.	For	the	film	

prepared	 via	 the	 suspension	 method	 only	 26	%	 of	 the	 vancomycin	 hydrochloride	 were	
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released	and	from	the	films	prepared	via	the	cosolvens	method	only	about	10	%	(figure	54)	

during	 the	 time	 of	 investigation.	 For	 the	 PLA	 film	 the	 same	 trend	was	 observed,	 that	 the	

films	prepared	with	the	suspension	method	led	to	bigger	crystals	showing	a	higher	absolute	

released	 amount	 than	 the	 film	 prepared	 via	 the	 cosolvens	 method.	 However,	 since	 the	

higher	molecular	weight	PLA	films	did	not	fragment	during	the	investigation	time,	no	further	

drug	release	could	be	observed	after	the	initially	released	drug	most	likely	being	in	contact	

with	the	release	medium.	

With	the	gentamicin-alginate	complex	a	slightly	slower	release	from	the	hydrophilic	alginate	

film	was	measured	especially	on	the	first	time	point	due	to	the	ionic	interactions	that	slowed	

down	 the	 release	 (figures	 55+56).	 Despite	 the	 possible	 ionic	 interactions	 and	 the	 initial	

complex	formation,	100	%	of	the	gentamicin	was	released	from	the	hydrophilic	alginate	film	

(figures	55+56).	The	PLA	PEG	PLA	film	showed	also	a	very	high	drug	release	of	92	%	and	95	%	

(figures	55	+	56).	But	from	all	these	films	the	drug	release	can	be	considered	as	immediate	

burst	release.	The	PLA	PEG	PLA	suspension	film	had	released	92	%	of	the	gentamicin	after	4	

hours	and	the	PLA	PEG	PLA	cosolvens	film	even	had	a	much	a	faster	release	of	about	2	hours	

(figure	56).	Different	from	the	films	 loaded	with	vancomycin	hydrochloride	 in	this	case	the	

drug	release	from	the	films	prepared	with	the	cosolvens	method	had	a	slightly	higher	release	

than	 the	 film	 prepared	 with	 the	 suspension	 method	 (figure	 55).	 This	 tendency	 could	 be	

observed	with	the	PLA	films,	too.	The	PLA	suspension	film	had	with	a	release	of	65	%	also	a	

slightly	 lower	 release	 than	 the	PLA	 cosolvens	 film	with	a	 release	of	 68	%	 (figure	55).	Both	

films	also	showed	a	burst	release	and	reached	60	%	after	2	hours.		

Furthermore	 the	 lipophilic	 character,	 the	molecular	weight	and	 size	of	 the	drug	 itself	may	

play	an	 important	 role	 in	 the	drug	 release.	Vancomycin	 is	much	 larger	and	more	 lipophilic	

than	 gentamicin	 (figure	 63).	On	 one	 hand,	 this	 can	 explain	 the	 stronger	 ionic	 interactions	

between	 the	 smaller	 but	 higher	 protonated	 gentamicin,	 which	 can	 consequently	 interact	

stronger	with	the	guluronic	acid	blocks.	On	the	other	hand,	it	also	explains	the	much	better	

solubility	 of	 vancomycin	 in	 the	 lipophilic	 PLA	and	 the	high	 residual	 drug	 amount	 after	 the	

investigated	dissolution	time.	

The	 release	 rate	 of	 vancomycin	 hydrochloride	 which	 was	 higher	 than	 the	 release	 rate	 of	

gentamicin	sulfate	could	be	explained	with	the	existence	of	some	sharp	crystals	that	reached	

out	of	 the	 film	and	were	dissolved	 in	 the	beginning	of	 the	 release	study	 (figures	54	+	56).	
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Furthermore	 the	 ionic	 interaction	 between	 the	 negatively	 charged	 alginate	 and	 the	

positively	 charged	 gentamicin	 (figure	 55),	 that	 could	 not	 be	 seen	 for	 vancomycin	 could	

explain	these	results.	

As	expected,	the	swelling	ratio	or	the	water	uptake	of	the	hydrophilic	alginate	film	was	much	

higher	than	for	the	PLA	PEG	PLA	and	PLA	films,	which	are	not	soluble	in	hydrophilic	solvents	

(figure	57).	Due	 to	 the	 copolymerized	water	 soluble	PEG,	 the	 swelling	 ratio	of	 the	 slightly	

more	hydrophilic	PLA	PEG	PLA	was	higher	than	for	PLA.	Nevertheless	while	the	alginate	films	

increase	their	wet	weight	more	than	4.2	times	after	4	days,	the	water	uptake	of	the	PLA	PEG	

PLA	film	was	only	about	30	%	of	its	initial	weight	and	for	the	pure	PLA	film	nearly	no	swelling	

could	be	observed	with	in	the	4	days	investigation	period.	This	will	most	likely	only	start	to	

occur	 once	 hydrophilic	 acid	 functions	 are	 created	 upon	 degradation	 the	 material.	 These	

values	 correlate	well	 with	 the	 released	 amounts	 of	 vancomycin	 hydrochloride,	where	 the	

lower	 water	 uptake	 of	 the	 films	 also	 resulted	 in	 the	 lower	 absolute	 release	 of	 the	 drug	

component.		

The	stepwise	investigated	microbiological	evaluation	of	the	antibiotics	loaded	polymer	films	

showed	 that	 the	 gentamicin	 sulfate	 loaded	 alginate	 films	 were	 only	 biologically	 active	

against	the	tested	bacteria	for	the	first	2	days	of	the	study.	The	lipophilic	films	however	were	

active	 for	7	days	and	 in	 the	 case	of	 staphylococcus	aureus	even	 for	8	or	9	days.	Here	 the	

observed	 zones	 of	 inhibition	 of	 the	 PLA	 PEG	 PLA	 films	were	 generally	 larger	 than	 for	 the	

PLA	film,	which	also	indicates	a	slightly	enhanced	release	from	the	slightly	more	hydrophilic	

polymer.	 The	 smaller	 inhibition	 zones	 of	 the	 alginate	 films	 on	 the	 other	 hand	 can	 be	

attributed	to	the	significantly	stronger	retention	of	the	charged	alginate	 in	the	much	dryer	

agar	 than	 the	 buffer	 during	 the	 release	 studies.	 Regarding	 the	 zones	 of	 inhibition	 of	 the	

PLA	PEG	PLA	films	it	can	be	observed,	that	the	films	prepared	via	the	suspension	method	had	

lager	zones	of	inhibition	than	the	films	prepared	via	the	cosolvens	method.	The	vancomycin	

hydrochloride	 showed	 due	 to	 its	 spectrum	 of	 efficacy	 only	 zones	 of	 inhibition	 for	

staphylococcus	aureus.	Due	to	the	fact,	that	on	the	agar	plates	only	small	amounts	of	water	

were	 available	 for	 the	 drug	 release	 from	 the	 polymer	 films,	 the	 drug	 release	 and	

consequently	the	biological	activity	was	much	lower	than	during	the	release	study	in	buffer.	

For	 a	 long	 term	 study	of	 biological	 activity	 it	 furthermore	has	 to	be	 kept	 in	mind	 that	 for	
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vancomycin	larger	amounts	of	the	drug	will	stay	in	the	lipophilic	films,	which	will	be	released	

at	a	later	time	point	once	the	films	break	apart.	

5.7 Summary	and	Conclusion	

In	current	clinical	practice	the	initial	dose	of	gentamicin	is	1.5	–	2	mg/kg/day	is	given	without	

regarding	 the	renal	 function.	Then	the	single	dose	and	the	 interval	have	 to	be	adjusted	to	

the	renal	function	110.	Vancomicin	is	generally	given	with	a	dose	of	2	g	per	day,	also	using	a	

systemic	 application.	 This	 finally	 also	 has	 to	 be	 adjusted	 to	 the	 function	 of	 the	 patient’s	

kidneys	110.	The	ototoxic	and	nephrotoxic	side	effects	of	 these	antibiotics	can	obviously	be	

weakened	 by	 applying	 drug	 loaded	 films	 directly	 to	 the	 wound	 site	 instead	 of	 giving	 the	

antibiotic	systemically.	This	 is	why	release	kinetics	were	evaluated	for	differently	prepared	

film	based	release	systems.	

Using	different	polymers	with	different	hydrophobicity	 the	drug	 release	of	 the	hydrophilic	

antibiotics	 vancomycin	 hydrochloride	 and	 gentamicin	 sulfate	 could	 be	 influenced	 and	

controlled	to	a	certain	extend	also	from	very	thin	polymer	carriers	of	about	20	µm	thickness.	

In	the	case	of	gentamicin	sulfate	the	positive	charge	of	the	drug	and	the	negative	charge	of	

the	alginate	led	to	only	a	slightly	slower	drug	release	due	to	ionic	interactions,	but	still	100	%	

was	released	from	the	polymer	films.	The	hydrophilic	properties	of	the	chosen	polymer	also	

played	a	very	important	role	for	the	release	of	a	hydrophilic	drug	into	a	hydrophilic	release	

medium.	This	effect	was	very	distinctive	for	the	release	of	vancomycin	hydrochloride.	With	

the	 hydrophilic	 alginate	 a	 burst	 release	 of	 almost	 100	%	 was	 observed.	 With	 the	 more	

lipophilic	 PLA	 PEG	 PLA	 the	 drug	 release	 decreased	 to	 more	 or	 less	 50	%	 and	 from	 the	

lipophilic	 PLA	 film	 only	 30	%	 respectively	 7	%	 could	 be	 released	 from	 the	 polymer	 film	

depending	on	the	preparation	technique.	Furthermore	it	could	be	seen	that	a	fragmentation	

of	 the	 polymer	 films	 accompanied	 with	 the	 exposure	 of	 new	 drug	 crystals	 can	 lead	 to	 a	

further	progressing	drug	release,	which	would	also	be	an	issue	during	an	in-vivo	application	

in	a	moving	animal	or	patient.	

Consequently	a	combination	of	the	differently	composed	materials	or	 layers	could	help	for	

the	preparation	of	films	resulting	in	different	release	kinetics.	Even	the	preparation	method	

regarding	the	suspension	method	and	the	cosolvens	method	strongly	influenced	the	size	and	

distribution	 of	 the	 drug	 crystals	 and	 therefore	 the	 later	 observed	 drug	 release.	 Using	 the	
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suspension	method	a	faster	release	can	be	obtained	with	bigger	drug	crystals,	which	reach	

out	of	the	film	more	effectively	and	therefore	can	be	dissolved	significantly	faster.	The	ionic	

interactions	between	the	positively	charged	drug	and	the	negatively	charged	alginate	were	

more	 distinct	 for	 gentamicin	 than	 for	 vancomycin,	 which	 is	 most	 likely	 attributed	 to	 the	

higher	charging	possibility	and	the	multivalent	ionic	binding	to	the	polymer.	

Regarding	 the	 release	 studies	 and	 the	 microbiological	 testing	 an	 effective	 way	 for	 the	

prevention	of	bacterial	growth	after	surgery	would	be	a	more	sophisticated	combination	of	

differently	composed	polymer	 films.	However	a	more	 in-vivo	 like	evaluation	also	seems	to	

be	necessary	 in	order	 to	better	predict	 the	 resulting	 release	profiles.	 For	 the	 time	directly	

after	 surgery	 a	 burst	 release	 from	 an	 alginate	 film	 and	 subsequently	 a	 more	 continuous	

release	 for	 several	 days	 from	 another	 polymer	 layer	 like	 PLA	 PEG	 PLA	would	 probably	 be	

most	 likely	 best	 effective	 to	 provide	 sufficient	 levels	 of	 antibiotic	 drugs.	 Furthermore	 a	

combination	 with	 a	 lipophilic	 film	 loaded	 with	 an	 antibiotic	 drug	 like	 triclosan,	 which	 is	

known	to	be	soluble	in	lipophilic	polymers	112,	could	serve	as	a	promising	alternative	for	long	

term	applications.	
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6. Thiolated	hyaluronic	acid	

This	 chapter	 deals	 with	 the	 preparation	 of	 films	 made	 of	 hyaluronic	 acid	 cross-linked	
chemically	via	disulfide	bridges	using	thiofunctionalization.		 	
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6.1 Introduction	

Hyaluronic	acid	is	a	very	well	established	biopolymer	used	for	the	prevention	of	post-surgical	

adhesions.	It	is	a	linear	polysaccharide	consisting	of	the	uronic	acid	D-glucuronic	acid	and	the	

amino	sugar	N-acetyl-D-glucosamine,	arranged	 in	alternating	units	 linked	by	β1-3	and	β1-4	

linkages	 113.	 There	 are	 several	 products	 available	on	 the	marked	which	 contain	hyaluronic	

acid	 as	 a	 fluid	 114	 such	as	 Sepracoat®	made	of	 sodium	hyaluronate,	 a	 gel	 like	 Intergel®	 115	

made	of	 ferric	hyaluronate	where	 the	carboxylate	groups	of	 the	hyaluronic	acid	are	cross-

linked	due	to	the	chelation	with	ferric	ions	(Fe3+),	INCERT®-S	33,116	made	of	chemically	cross-

linked	hyaluronic	acid,	respectively	Hyalobarrier	an	auto-cross-linked	viscous	gel	117,118.	Also	

films	 prepared	 of	 hyaluronic	 acid	 alone	 or	 in	 combination	 with	 other	 polymers	 like	

carboxymethylcellulose	 119	 in	 Seprafilm®	 120,121	 where	 the	 two	 polymers	 have	 been	 cross-

linked	 with	 the	 help	 of	 the	 activating	 agent	 N-(3-Dimethyl-aminopropyl)-N`-

ethylcarbodiimide	 hydrochloride	 (EDC)	 (see	 package	 insert)	 or	 Sepragel®	 33,122,123	 are	 very	

promising.		

To	 prevent	 the	 formation	 of	 peritoneal	 adhesions	 effectively	 it	 is	 necessary	 to	 have	 an	

appropriate	 separation	 of	 the	 injured	 tissue	 during	 the	 time	 of	 healing.	 Hyaluronic	 acid	

without	chemical	modification	is	a	very	hydrophilic	polymer	that,	given	on	top	of	a	wound	in	

the	peritoneum	would	be	dissolved	and	washed	away	faster	than	the	wound	would	take	to	

heal.	To	prolong	the	persistence	time	of	the	hyaluronic	acid	an	appropriate	modification	via	

cross-linking	 by	 chemical	means	 for	 example	with	 glutaraldehyde	 124	 or	 newly	 introduced	

disulfide	bonds	using	carbodiimide	chemistry	35	has	to	be	performed.		

The	aim	of	this	work	was	to	prepare	thin	films	made	of	cross-linked	hyaluronic	acid	that	can	

be	 applied	 to	 the	 wounded	 tissue	 as	 a	 cross-linked	 film	 that	 is	 evenly	 thick	 and	 has	 a	

homogenous	distribution	of	cross-linking	over	the	whole	film.	The	formation	of	a	hemiacetal	

using	 glutaraldehyde	 was	 not	 considered	 for	 the	 cross-linking	 because	 glutaraldehyde	 is	

toxic	 124	 and	 further	purification	 steps	would	be	necessary	before	 the	modified	hyaluronic	

acid	 could	 be	 implanted.	 Therefore	 the	 non-toxic	 cross-linking	 with	 disulfide	 bonds	 was	

chosen.	In	literature	the	preparation	of	thiolated	hyaluronic	acid	is	described	as	a	very	well	

established,	 controllable	 procedure	 125.	 Using	 carbodiimide	 chemistry,	 disulfide	 containing	

dihydrazides	 can	 be	 linked	 to	 the	 hyaluronic	 acid	 chain	 35.	 By	 controlling	 the	 substitution	

degree,	the	cross-linking	extent	of	the	films	prepared	from	the	thiolated	hyaluronic	acid	can	
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be	controlled.	After	 film	preparation	 the	 free	 thiol	 groups	of	 the	cleaved	dihydrazides	 can	

cross-link	by	air	oxidation	to	disulfides.	The	cross-linking	extent	of	the	prepared	film	can	be	

influenced	by	addition	of	oxidizing	agents	like	H2O2	or	alloxan	126.	In	previous	investigations	

films	have	been	prepared	by	dissolving	the	thiolated	hyaluronic	acid	in	buffer	and	pouring	it	

into	a	petri	dish.	After	drying	the	films	were	further	oxidized	with	H2O2	35.	To	obtain	very	thin	

and	 homogenously	 thick	 films	 the	 films	 of	 this	 study	were	 accurately	 drawn	 onto	 a	 glass	

plate	with	the	help	of	a	drawing	apparatus	using	a	frame	with	a	defined	gap	clearance.	To	

adapt	the	viscosity	of	the	solution	made	for	the	film	preparation,	mechanical	properties,	the	

swelling	 behaviors	 as	well	 as	 the	 erosion	 time	of	 the	 films	 hyaluronic	 acids	with	 different	

chain	 length	were	utilized.	 Furthermore	 the	hyaluronic	 acids	were	modified	with	different	

degrees	of	substitution	to	influence	the	degree	of	cross-linking	in	the	prepared	films.		

6.2 Synthesis	of	thiolated	hyaluronic	acid	

Thiol-modified	 hyaluronic	 acids	 with	 a	 high	 substitution	 degree	 (high	SD)	 and	 a	 low	

substitution	 degree	 (low	SD)	 were	 prepared	 using	 standard	 carbodiimide-chemistry	 35.	 To	

obtain	thiolated	hyaluronic	acids	with	different	molecular	masses	a	hyaluronic	acid	sodium	

salt	 with	 a	molecular	mass	 of	 1.36	MDa	 (HA,	 BaccaraRose,	 Alpen,	 Germany)	 was	 used	 as	

received	or	the	polysaccharide	was	partially	hydrolyzed	prior	to	thiol	modification.	

For	 the	 hydrolysis	 40	g	 of	 the	 1.36	MDa	 hyaluronic	 acid	 (native	 hyaluronic	 acid)	 were	

dissolved	in	4	liters	deionized	water	acidified	with	hydrochloric	acid	to	pH	0.5	and	stirred	for	

24	hours	 at	 37	°C	with	 a	magnetic	 stirrer	 at	 250-300	rpm.	After	 24	hours	 the	 solution	was	

neutralized	 to	 pH	7	 with	 1	N	 NaOH,	 purified	 from	 hydrolyzed	 breakdown	 products	 via	

dialysis	 using	 a	 Mw	 cutoff	 of	 3.5	kDa	 and	 subsequently	 lyophilized.	 To	 determine	 the	

molecular	 weight	 of	 the	 resulting	 hydrolyzed	 hyaluronic	 acid	 a	 GPC	 setup	 consisting	 of	 a	

Viscotek	 TDAmax	 SEC/GPC-System	 and	 SEC-MALS	 20	 Detector	 (Malvern	 Instruments,	

Herrenberg,	 Germany)	 was	 used.	 As	 stationary	 phase	 two	 ViscoGEL	 A6000M	 columns	

(Malvern	 Instruments)	were	chosen.	The	mobile	phase	was	water	with	0.01	mol/	l	NaNO3.	

The	 measurement	 was	 performed	 with	 a	 flow	 rate	 of	 0.7	ml/	min	 at	 35	 °C.	 GPC	

measurements	 revealed	 a	weight	 average	molecular	mass	 of	 approximately	 143	kDa	 after	

hydrolysis	(hydrolyzed	hyaluronic	acid).	
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Table	14:	hydrolyzed	hyaluronic	acid:	Weighted	amounts	[g]	auf	substances	in	the	reaction	
mixture	and	calculated	amounts	[%]	based	on	molecular	weights	of	monomers	
	

	

g	 mmol	 EQ	 g	 mmol	 EQ	

HA	 5	 12.46	 1	 5	 12.46	 1	

DTP	 5.95	 49.93	 4.01	 1.04	 8.73	 0.70	

EDC	 4.8	 25.04	 2.01	 0.84	 4.38	 0.35	

DTT	 25	 162.07	 13.01	 5	 32.41	 2.60	
	

Table	15:	Native	hyaluronic	acid:	Weighted	amounts	[g]	auf	substances	in	the	reaction	
mixture	and	calculated	amounts	[%]	based	on	molecular	weights	of	monomers	

	

g	 mmol	 EQ	 g	 mmol	 EQ	

HA	 10	 24.92	 1	 10	 24.92	 1	

DTP	 4.89	 41.04	 1.65	 2.45	 20.56	 0.83	

EDC	 6.56	 34.22	 1.37	 3.28	 17.11	 0.69	

DTT	 9.5	 61.59	 2.47	 4.75	 30.79	 1.24	

For	 the	 first	 synthesis	 the	amounts	used	by	Shu	et	al	 35	were	 taken	to	obtain	a	hyaluronic	

acid	with	a	hydrolyzed	and	a	degree	of	substitution	of	100	%.	In	this	trial	the	hyaluronic	acid	

was	activated	with	a	double	molar	excess	of	EDC.	DTP	although	having	two	binding	sites	also	

was	 added	 in	 twice	 the	 necessary	 amounts.	 To	 see,	 if	 a	 large	 excess	 is	 necessary	 for	 this	

reaction	 a	 second	 approach	 with	 reduced	 amounts	 was	 performed	 in	 order	 to	 obtain	 a	

degree	of	substitution	of	more	or	less	25	%.	For	the	native	hyaluronic	acid	the	amounts	were	

adapted	to	obtain	extrapolated	degrees	of	substitution	of	100	%	and	50	%.		
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Figure	64:	Thiolation	of	HA	

Hyaluronic	 acid	 was	 activated	 with	 water	 soluble	 N-(3-Dimethyl-aminopropyl)-N`-

ethylcarbodiimide	 hydrochloride	 (EDC,	 Merck	 Schuchard	 OHG,	 Hohenbrunn,	 Germany)	 at	

pH	4	 to	 be	 able	 to	 react	 with	 the	 added	 Dithiopropionic	 acid	 dihydrazide	 (DTP,	

Arkè	Organics,	 Fornacette	Pl,	 Italy).	 After	 stirring	 for	 four	hours	 at	 room	 temperature,	 the	

reaction	was	stopped	by	neutralization.	At	pH	8	 the	disulfide	bonds	of	 the	hydrazide	were	

cleaved	with	the	help	of	1,4-Dithiothreitol	(DTT,	BioChemica,	AppliChem	GmbH	Darmstadt,	

Germany).	 After	 24	hours	 the	 pH	 was	 again	 lowered	 to	 3	 to	 prevent	 the	 reformation	 of	

disulfide	 bonds	 during	 dialysis.	 The	 reaction	 mixture	 was	 subsequently	 dialyzed	 against	

water	of	pH	3-4	using	a	membrane	with	a	Mw	cutoff	of	3.5	kDa.	After	dialysis	the	thiolated	

hyaluronic	 acid	 was	 centrifuged	 and	 the	 supernatant	 was	 subsequently	 lyophilized	 and	

finally	stored	in	an	oxygen	free	atmosphere	to	prevent	the	oxidation	and	cross-linking	of	the	

thiolated	hyaluronic	acid	before	further	use.	
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6.3 Characterization	of	thiolated	hyaluronic	acid	

6.3.1 NMR	measurements	

1H	NMR	spectroscopy	(300	MHz)	of	the	synthesized	polymers	was	performed	in	D2O	with	a	

Fourier	300	NMR	(Bruker	Corporation,	Billerica,	MA,	USA).	

6.3.2 Ellmans	assay	

To	 quantify	 the	 thiol	 groups	 in	 the	 thiolated	 hyaluronic	 acid	 an	 Ellmans	 assay	 was	

performed.	For	this	purpose	an	Ellmans	reagent	solution	was	freshly	prepared	by	dissolving	

4	mg	 Ellmans	 reagent	 ((5,5`-	 dithiobis-(2-nitrobenzoic	 acid))	 in	 1	ml	 of	 40	mM	PBS.	 To	

generate	 a	 standard	 curve	 a	 0.2	mM	 cysteine	 stock	 solution	 in	 water	 was	 prepared	 and	

serially	 diluted	 from	 0.2-	 0.04	mM.	 Defined	 amounts	 of	 thiolated	 hyaluronic	 acid	 were	

weighted	 in	oxygen	 free	atmosphere.	Directly	after	exposure	 to	air	 they	were	dissolved	 in	

water.	For	the	measurement	1250	µl	40	mM	PBS	were	given	into	an	Eppendorf	cup.	125	µl	

of	 the	 sample	 solution	were	 added	 and	mixed	with	 25	µl	 of	 the	 freshly	 prepared	 Ellmans	

reagent	 solution.	 After	 15	minutes	 incubation	 time	 at	 room	 temperature	 the	 absorbance	

was	 measured	 at	 412	nm.	 The	 absorbance	 versus	 cysteine	 concentration	 was	 plotted	 for	

each	of	the	standards	and	the	thiol	content	was	determined	by	comparison	to	the	standard	

curve.	

6.3.3 Elementary	analysis	

Elementary	 analysis	 was	 performed	 with	 a	 vario	 MICRO	 cube	 system	 (Elementar	

Analysensysteme	GmbH,	Hanau,	Germany).	

6.3.4 Oscillation	Rheology	-	Time	Sweep	

The	formation	of	disulfide	bonds	of	the	thiolated	hyaluronic	acid	needs	oxidizing	agents	and	

therefore	can	take	place	in	air	due	to	the	available	oxygen.	During	the	measurement	with	a	

rheometer	 no	 air	 and	 therefore	 no	 oxygen	 from	 the	 air	 is	 available	 for	 this	 purpose.	

Nevertheless	 the	 speed	 of	 cross-linking	 of	 the	 as	 prepared	 polymer	 solutions	 was	

determined	 using	 oscillation	 rheology	 to	 get	 an	 idea	 of	 the	 cross-linking	 speed	 of	 the	

material,	which	is	of	utmost	importance	for	the	later	film	drawing	procedure	on	glass	plates.	

The	 thiolated	 hyaluronic	 acid,	 weighed	 in	 the	 oxygen	 free	 atmosphere	 of	 storage,	 was	

subsequently	 dissolved	 in	 regular	 phosphate	buffer	 containing	oxygen.	After	 adjusting	 the	
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pH	to	7.4,	the	HA-SH	solutions	were	tested	with	a	50	mm	plate	geometry	and	a	1000	µm	gap	

at	20	°C	 (MCR	301	Rheometer,	Anton	Paar	GmbH,	Graz,	Austria).	Oscillation	frequency	was	

set	 to	1	Hz	with	an	applied	strain	of	10	%.	The	evolution	of	 storage	and	 loss	modulus	was	

followed	 with	 time	 their	 crossing	 was	 considered	 as	 gel	 point	 of	 this	 setup	 and	 was	

calculated	with	the	help	of	the	RHEOPLUS	software.		

6.3.5 Confined	compression	test	

To	 be	 able	 to	 monitor	 the	 cross-linking	 in	 direct	 contact	 with	 air	 or	 other	 oxidizing	

conditions,	a	modified	gel	compression	test	was	established.	5	%	solutions	of	the	hydrolyzed	

thiolated	 hyaluronic	 acids	 were	 prepared	 in	 PBS.	 The	 pH	 was	 adjusted	 to	 7.4	 before	

200	µl/	well	 were	 poured	 into	 each	 well	 of	 a	 96	well	plate.	 Every	 hour	 a	 piston	 with	 a	

diameter	of	4	mm	was	pushed	2	mm	into	the	gel	with	a	speed	of	0.5	mm/	sec	(according	to	

Bloom	test	Ph.	Eur.	6.0)	after	a	preload	of	0.01	N	was	reached.	If	the	gel	was	not	cross-linked	

and	the	preload	did	not	reach	0.01	N,	the	test	was	stopped	by	reaching	the	soft	end.		

To	 test,	 if	 oxidizing	 agents	 like	 alloxan	or	 hydrogen	peroxide	 (HOOH)	would	 speed	up	 the	

cross-linking	the	test	was	repeated	with	3	%	solutions	of	the	native	hyaluronic	acids	in	PBS.	

After	 the	pH	was	adjusted	to	7.4,	150	µl/	well	of	 the	HA-SH	solution	were	poured	 into	the	

wells	of	a	96	well	plate.	To	enhance	the	cross-linking	20	µl	of	3	%	H2O2	solution	respectively	

20	µl	 of	 a	 freshly	 prepared	 1	M	 alloxan	 solution	 was	 given	 on	 top	 of	 the	 hyaluronic	 acid	

solution.	The	compression	 test	was	 started,	without	 further	mixing	of	 the	oxidizing	agents	

with	the	hyaluronic	acid	solution.	Every	day	a	Piston	with	a	diameter	of	4	mm	was	pushed	

into	the	gels	with	a	speed	of	0.5	mm/	sec	after	a	preload	of	0.01	N	was	reached.	

6.3.6 State	of	knowledge	after	characterization	

During	the	reaction	steps	of	the	synthesis	of	thiolated	hyaluronic	acid	characteristic	changes	

of	 the	 reaction	 mixture	 could	 be	 observed.	 After	 addition	 of	 the	 dihydrazide	 (DTP)	 the	

reaction	mixture	 became	 very	 viscous,	which	 indicated	 that	 the	 reaction	was	 progressing.	

Due	to	the	fact	that	the	dihydrazide	can	attach	to	the	hyaluronic	acid	with	both	hydrazide	

ends,	an	immediate	gel	formation	can	also	occur.	Stirring	with	a	magnetic	stirrer	to	obtain	a	

homogenously	mixed	polymer	solution	was	consequently	no	longer	possible.	Therefore	the	

mixture	was	 stirred	 by	 hand	 from	 time	 to	 time.	 But	 this	 could	 not	 guarantee	 a	 complete	

reaction	 of	 both	 sides	 of	 the	 dihydrazide,	 because	 steric	 interactions	 might	 lead	 to	 the	
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reaction	of	only	one	side	of	 the	dihydrazide	and	 the	other	side	will	get	 lost	after	cleavage	

and	 dialysis	 steps.	 After	 the	 addition	 of	 DTT	 the	mixture	 became	 liquid	 again	 due	 to	 the	

cleavage	of	the	disulfide	bonds	in	the	dihydrazide.	Only	the	bound	part	of	the	dihydrazide,	

which	was	linked	to	the	hyaluronic	acid	will	be	able	to	form	disulfide	bonds	with	the	other	

remaining	thiols	after	film	preparation.	For	the	native	hyaluronic	acid	a	formation	of	much	

stronger	gels	was	expected.	Therefore	 the	 reaction	mixture	was	 stirred	with	 the	help	of	a	

sealed	precision	glass	stirrer	directly	from	the	beginning.	In	this	case	the	steric	interactions	

were	 higher	 than	 with	 the	 hydrolyzed	 hyaluronic	 acid,	 which	 led	 to	 a	 higher	 loss	 of	

dihydrazide	residues	during	dialysis.	

a)	

	

b)	

	

c)	

	

d)	

	

Figure	65:	a)	hydrolyzed	HA	high	SD,	b)	hydrolyzed	HA		low	SD,	c)	native	HA		high	SD,	d)	native	HA		low	SD	

The	degree	of	substitution	was	calculated	by	dividing	the	average	of	the	peak	areas	of	the	

methylene	 bridge	 from	 the	 hydrazide	 (δ	 1-1.6	 ppm)	 through	 the	 methyl	 resonance	

(δ	2.6-2.8	ppm)	of	 the	acetamino	moiety	of	 the	N-acetyl-D-glucosamine	residue	which	was	

used	as	an	internal	reference.	

	 	

HA_143kDa_high sd.esp

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
or

m
al

iz
ed

 In
te

ns
ity

3.002.202.2511.30

3.
96 3.
35

2.
81

2.
66

1.
96

HA_143kDa_low sd.esp

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

N
or

m
al

iz
ed

 In
te

ns
ity

3.000.780.8810.71

3.
92

3.
31

2.
80

2.
65

1.
94

HA_1360kDa_low sd.esp

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

0

0.05

0.10

0.15

N
or

m
al

iz
ed

 In
te

ns
ity

3.001.071.3411.22

3.
95 3.

33 2.
81

2.
66

1.
96

HA_1360kDa_high sd.esp

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 In
te

ns
ity

3.000.971.3811.28

3.
89 3.

25 2.
75

2.
60

1.
90



Films	prepared	of	thiolated	hyaluronic	acid	 	 Chapter	6	

	
133	

	

Table	16:	Degree	of	substitution	of	thiolated	hyaluronic	acids	

Thiolated	hyaluronic	acid	 Degree	of	substitution	[%]	

hydrolyzedHA	high	SD	 74	

hydrolyzed	HA	low	SD	 27.5	

native	HA	high	SD	 40	

native	HA	low	SD	 39	
	

	
Figure	66:	Achieved	substitution	degree	in	relation	to	reaction	components	

Regarding	 the	 NMR	 spectra	 for	 the	 hydrolyzed	 hyaluronic	 acid	 even	 with	 the	 two	 folded	

excess	 of	 water	 soluble	 carbodiimide	 only	 74	 %	 the	 substitution	 degree	 of	 the	 expected	

100	%	was	not	obtained	for	the	high	degree	of	substitution	(figure	66).	For	the	planned	low	

SD	HA	with	0.35	equivalents	of	water	soluble	carbodiimide	a	substitution	degree	as	expected	

was	 almost	 obtained	 (27.5%)	 (figure	 66).	 The	 NMR	 spectra	 of	 the	 native	 hyaluronic	 acid	

showed	 nearly	 the	 same	 degree	 of	 substitution	 for	 the	 high	 and	 the	 low	 degree	 of	

substitution	(39%	and	40%)	regardless	of	the	chosen	equivalents	of	the	activating	reagent.	

The	 first	 peak	of	 the	methylene	bridge	 showed	a	higher	peak	area	 than	 the	 second	peak,	

which	 can	 be	 explained	 with	 an	 overlay	 of	 the	 peak	 area	 of	 DTT	 that	 was	 not	 extracted	

completely	by	dialysis.	 The	 reaction	of	 the	hyaluronic	 acid	with	DTP	 led	as	expected	 in	all	

experiments	to	the	formation	of	very	strong	gels,	but	the	expected	degrees	of	substitution	

were	not	achieved.	The	high	viscosity	most	likely	slowed	down	the	reaction	kinetics;	this	 is	

why	 the	 mixtures	 should	 have	 been	 stirred	 longer	 to	 ensure	 a	 complete	 reaction	 of	 the	

components.	
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The	observed	thiol	amounts	with	the	Ellmans	assay	(data	not	shown)	were	also	significantly	

higher	 than	 the	 theoretically	 calculated	 thiol	 amounts.	DTT	 that	has	not	been	 successfully	

washed	out	during	the	dialysis	step	might	be	the	cause	of	these	results.	

Table	17:	Results	of	elementary	analysis	of	the	prepared	thiolated	hyaluronic	acids	

	 C	%	 H	%	 N	%	 S	%	

HA	 37.85	 5.56	 3.17	 	

HA	hydrolyzed	 34.63	 6.09	 2.78	 	

Thiolated	HA	(theoretical	
amount	

100%	modification)	
42.41	 5.65	 8.73	 6.66	

Hydrolyzed	HA		high	SD	 37.24	 5.88	 7.16	 5.21	

Hydrolyzed	HA		low	SD	 40.22	 6.08	 4.99	 2.58	

Native	HA		high	SD	 27.74	 4.2	 3.92	 1.94	

Native	HA		low	SD	 28.24	 4.28	 4.08	 2.03	
	

The	 elementary	 analysis	 verified	 the	 successful	 incorporation	 of	 the	 thiol	 compound.	 The	

two	thiolated	native	hyaluronic	acids	had	nearly	the	same	sulfur	content.	For	the	hydrolyzed	

hyaluronic	acids	 the	elementary	analysis	 revealed	a	nearly	 twice	as	high	sulfur	content	 for	

the	high	substitution	degree	compared	to	the	low	substitution	degree.	The	results	of	carbon	

and	 hydrogen	 showed	 that	 the	 hygroscopic	 hyaluronic	 acid	 contained	 small	 amounts	 of	

water.	

	 	



Films	prepared	of	thiolated	hyaluronic	acid	 	 Chapter	6	

	
135	

	

a) 	

b) 	

c) 	

	

Figure	67:	 a)	 Time	 sweep	measurements	of	native	HA	with	 low	and	high	degree	of	
substitution	 b)	 crossover	 time	 [min],	 c)	 storage	 modulus	 [Pa]	 after	 8	 hours	
measurement	time	
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Table	18:	Cross-linking	time	of	HASH	

	 Cross	over	time	[h]	

Hydrolyzed	HA		high	SD	 0.18	

Hydrolyzed	HA		low	SD	 4.45	

Native	HA		high	SD	 0.92	

Native	HA		low	SD	 0.41	

The	rheological	measurements	 revealed	contrary	 results	 for	 the	native	and	the	hydrolyzed	

hyaluronic	 acids.	 The	hydrolyzed	hyaluronic	 acids	 showed	 the	 expected	 results	 of	 a	 faster	

cross-linking	 of	 the	 thiolated	 hyaluronic	 acid	 with	 the	 high	 SD	 than	 of	 the	 thiolated	

hyaluronic	acid	with	the	low	SD.	Surprisingly	the	results	of	the	native	hyaluronic	acid	showed	

a	 difference,	 even	 when	 the	 NMR	 measurements	 and	 the	 elementary	 analysis	 implied	 a	

similar	 degree	 of	 substitution.	 Furthermore	 they	 showed	 the	 opposite	 results	 to	 the	

hydrolyzed	hyaluronic	acid.	The	 thiolated	hyaluronic	acid	 that	 should	be	 lower	substituted	

regarding	the	reaction	mixture	showed	a	faster	cross-linking	and	led	to	stronger	gels,	which	

was	 attributed	 to	 the	 lower	 probability	 to	 cross-link	 with	 itself.	 Therefore	 these	 results	

showed	a	difference	between	the	native	hyaluronic	acids	which	 the	NMR	analysis	and	 the	

elementary	analysis	did	not	show.		
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a)

	

b)

	
c)

	

	

Figure	68:	Confined	compression	test	thiolated	hyaluronic	acid	a)	hydrolyzed	HA		high	SD	and	low	SD	in	PBS	b)	
native	HA	low	SD	in	PBS	with	oxidizing	agents	c)	native	HA	high	SD	in	PBS	with	oxidizing	agents	

With	 the	 help	 of	 the	 compression	 test	 the	 cross-linking	 in	 air	 could	 be	 monitored.	 The	

measurement	 of	 the	 hydrolyzed	 hyaluronic	 acid	 showed	 that	 hyaluronic	 acid	 with	 a	 high	

degree	of	 substitution	 cross-linked	 faster	 than	 the	hyaluronic	 acid	with	 the	 low	degree	of	

substitution.	 This	 could	 be	 seen,	 because	 the	 compressive	 load	 of	 the	 high	 substituted	

hyaluronic	acid	started	to	rise	after	4	hours	exposure	to	oxygen,	the	compressive	load	of	the	

low	substituted	hyaluronic	acid	3	hours	later.	In	the	end,	both	hyaluronic	acid	gels	reached	

the	 same	 stress	 of	 nearly	 54	kPa.	 The	 addition	 of	 H2O2	 or	 alloxan	 demonstrated	 that	

oxidizing	 agents	 can	 further	 increase	 the	 gel	 strength	 compared	 to	 air	 oxidation	 alone	

indicating	a	diffusion	limited	oxidation	reaction.	With	the	native	hyaluronic	acid	and	the	low	

SD	only	with	alloxan	a	stress	of	60	kPa	could	be	measured.	With	H2O2	 it	was	about	36	kPa	

and	 in	 air	 about	 15	kPa.	 This	 can	 conclude	 that	 a	 longer	 polymer	 chain	 does	 not	

automatically	 lead	to	higher	compressive	 forces.	With	 the	addition	of	alloxan	the	stress	of	

the	native	hyaluronic	acid	with	high	degree	of	substitution	became	three	times	higher	than	

with	air.	With	H2O2	47	kPa	and	in	air	41	kPa	were	reached.	
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6.4 Film	preparation	

The	pretests	that	have	been	conducted	with	the	different	hyaluronic	acids	have	shown	that	

there	 are	many	 things	 that	 can	 influence	 the	 cross-linking	of	 thiolated	hyaluronic	 acid.	 To	

investigate	these	influences	on	the	film	preparation	itself	and	the	mechanical	properties	of	

the	prepared	films,	different	films	prepared	from	different	hyaluronic	acids	and	cross-linked	

via	different	methods	have	been	prepared.	

More	precisely	the	influence	of	molecular	weight,	substitution	degree,	pH	of	the	hyaluronic	

acid	solution,	addition	of	cross-linking	agents	and	drying	speed	have	been	investigated.	

For	the	film	drawing	with	a	drawing	apparatus	on	glass	plates	the	viscosity	of	the	polymer	

solution	plays	an	important	role.	The	solution	should	flow	through	the	gap	of	the	frame	and	

form	a	 film	 that	 keeps	 its	 shape	until	 drying.	 To	 find	 a	 suitable	 concentration	 for	 the	 film	

preparation,	films	without	cross-linking	have	been	prepared.	Furthermore	these	films	were	

used	to	evaluate	 the	mechanical	properties	of	 films	prepared	 from	unmodified	hydrolyzed	

hyaluronic	acid.	More	precisely	4	solutions	in	water	with	the	concentrations	of	3	%,	4	%,	5	%	

and	 6	%	 were	 drawn	 on	 a	 glass	 plate	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec.		

To	investigate	the	influence	of	the	polymer	analogue	modification	of	the	hyaluronic	acid	on	

the	film	preparation	and	the	mechanical	properties	of	the	resulting	films,	films	of	thiolated	

hyaluronic	 acid	have	been	prepared.	 In	 this	 case	 the	 influence	of	molecular	weight	of	 the	

hyaluronic	acid	and	the	substitution	degree	have	been	investigated.	

6.4.1 Hydrolyzed	hyaluronic	acid	with	high	substitution	degree	in	PBS	

0.5	g	of	the	thiolated	hyaluronic	acid	was	dissolved	in	10	ml	PBS.	After	the	pH	was	adjusted	

to	7.5	the	solution	was	still	too	runny	to	be	drawn	to	a	film	and	was	therefore	stirred	several	

hours	exposed	to	air	before	 it	was	drawn	on	a	glass	plate	with	a	gap	clearance	of	250	µm	

and	a	speed	of	5	mm/	sec.		

6.4.2 Hydrolyzed	hyaluronic	acid	with	low	and	high	substitution	degree	in	PBS	

For	 the	 hyaluronic	 acid	 with	 the	 low	 substitution	 degree	 a	 10	%	 solution	 was	 prepared,	

because	 a	 5	%	 solution	was	 too	 runny	 to	 be	 drawn	 on	 the	 glass	 plate	 because	 it	 directly	

contracted	after	drawing.	500	mg	of	the	thiolated	hyaluronic	acid	were	dissolved	in	PBS	and	
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the	pH	was	adjusted	to	7.53	with	1	N	NaOH.	After	several	hours	stirring	the	film	was	drawn	

with	a	gap	clearance	of	250	µm	and	a	speed	of	5	mm/	sec.		

To	be	able	to	compare	the	films	prepared	from	thiolated	hydrolyzed	hyaluronic	acid	another	

film	 from	 the	 hyaluronic	 acid	 with	 the	 high	 substitution	 degree	 was	 prepared.	 Therefore	

500	mg	of	the	polymer	were	dissolved	in	PBS	and	the	pH	of	the	solution	was	adjusted	to	7.39	

with	 1	N	 NaOH.	 The	 film	 was	 drawn	 with	 a	 gap	 clearance	 of	 250	µm	 and	 a	 speed	 of	

5	mm/	sec	and	dried	at	room	temperature.	

A	10	%	solution	of	unmodified	hyaluronic	acid	 in	PBS	was	drawn	after	adjusting	 the	pH	 to	

7.49,	too,	to	be	able	to	compare	films	of	unmodified	and	thiolated	hyaluronic	acid.	

To	 enhance	 the	 cross-linking	 of	 the	 films	made	 from	 the	 thiolated	hyaluronic	 acid	 further	

films	 were	 prepared.	 500	mg	 of	 the	 hyaluronic	 acid	 with	 the	 high	 substitution	 degree	

respectively	the	low	substitution	degree	were	dissolved	in	PBS.	The	pH	was	adjusted	to	7.4	

with	 1	N	 NaOH.	 Both	 films	 were	 drawn	 with	 a	 gap	 clearance	 of	 250	µm	 and	 a	 speed	 of	

5	mm/	sec.	 Then	 the	 films	 were	 stored	 in	 a	 closed	 box	 for	 72	hours	 to	 keep	 them	 wet,	

because	 this	ought	 to	 increase	 the	 cross-linking	 time.	After	 72	hours	 the	 films	were	 taken	

out	 of	 the	 box	 and	 dried	 at	 room	 temperature	 before	 subsequently	 mechanical	

investigation.		

6.4.3 Native	hyaluronic	acid	with	low	and	high	substitution	degree	in	PBS	

For	 the	 films	 prepared	 from	 the	 high	 Mw	 HA	 2	%	 solutions	 were	 drawn.	 More	 precisely	

200	mg	of	the	high	SD	and	the	low	SD	HA	were	dissolved	in	10	ml	PBS.	The	pH	was	adjusted	

to	7.4	by	addition	of	1	N	NaOH.	Both	films	were	drawn	on	a	glass	plate	with	a	gap	clearance	

of	1000	µm	and	a	speed	of	5	mm/	sec.	These	films	were	produced	three	times.	One	film	was	

directly	dried	at	room	temperature,	and	the	others	were	stored	in	a	closed	box	for	72	hours	

respectively	7	days	before	they	were	allowed	to	dry	at	room	temperature,	too.		

	

The	films	drawn	on	glass	plates	became	opaque	after	drying,	which	was	accredited	to	buffer	

salts	 that	 precipitate	 in	 the	 film.	 With	 the	 objective	 of	 obtaining	 clear	 films	 thiolated	

hyaluronic	 acid	 was	 dissolved	 in	 water	 instead	 of	 PBS.	 For	 this	 purpose	 200	mg	 of	 the	

hyaluronic	acids	were	dissolved	in	10	ml	water	and	drawn	with	a	gap	clearance	of	1000	µm	
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and	a	speed	of	5	mm/	sec.	The	films	directly	dried	at	room	temperature	or	were	stored	in	a	

plastic	box	for	72	hours	respectively	7	days	before	drying	at	room	temperature.	

To	increase	the	cross-linking	of	the	prepared	films	they	were	sprinkled	with	a	3	%	solution	of	

H2O2	before	storing	in	a	closed	box.	

6.4.4 Observations	during	and	after	film	preparation	

The	 first	 film	 drawing	 tests	 performed	 with	 the	 unmodified	 hyaluronic	 acid	 could	 not	 be	

transferred	 to	 the	 preparation	 of	 films	 from	 substituted	 hyaluronic	 acid,	 because	 they	

behaved	 in	a	different	manner.	With	 the	modified	hyaluronic	acid	 it	was	possible	 to	draw	

films	 with	 a	 lower	 gap	 clearance	 than	 with	 the	 unsubstituted	 hyaluronic	 acid.	 The	 films	

without	cross-linking	had	a	 thickness	of	14-15	µm,	15-16	µm,	19-21	µm	and	24-27	µm.	For	

the	film	drawing	on	glass	plates	a	higher	concentration	of	the	hyaluronic	acid	with	the	low	

substitution	 degree	was	 needed	 than	 from	 the	 hyaluronic	 acid	with	 the	 high	 substitution	

degree.	The	films	prepared	from	the	substituted	hydrolyzed	hyaluronic	had	a	thickness	off	9-

16	µm.	 The	 subsequent	 bursting	 of	 the	 film	 made	 of	 the	 hyaluronic	 acid	 with	 the	 high	

substitution	degree	after	storage	in	a	closed	box	for	72	hours	showed	that	a	tension	in	the	

film	occurred	during	the	drying	process	that	could	be	explained	with	a	stronger	cross-linking	

compared	to	the	films	that	dried	directly	after	drawing.	The	films	prepared	from	the	native	

hyaluronic	acid	had	a	thickness	of	16-20	µm	prepared	in	PBS	and	7-11	µm	prepared	in	water.	

All	 cross-linked	 films	 prepared	 in	 PBS	 buffer	 became	 opaque	 after	 drying.	 To	 obtain	 clear	

films	 the	 thiolated	 hyaluronic	 acid	 was	 also	 dissolved	 in	 water	 because	 the	 opaque	

appearance	of	 the	 film	was	 thought	 to	come	from	the	buffer	salts.	But	 the	 films	prepared	

with	water	became	opaque,	too.	A	further	cross-linking	with	H2O2	was	not	possible,	because	

the	film	ruptured	during	the	drying	process	due	to	the	increased	cross-linking.		
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6.5 Mechanical	evaluation	

6.5.1 Hydrolyzed	hyaluronic	acid	without	modification	

To	 test	 the	mechanical	 properties	 of	 the	 hyaluronic	 acid	 films	 a	 tensile	 test	 as	 described	

before	(Chapter	3)	was	performed.	From	each	film	15	strips	were	tested.	

a)	

	

b)	

	
c)	

	

	

Figure	 69:	 Tensile	 test	 of	 films	 made	 of	 hydrolyzed	 hyaluronic	 acid	 in	 different	 polymer	 concentrations.	 a)	
maximum	load	[N].b)	strain	at	maximum	load	[%]	c)	elastic	modulus		

The	higher	the	polymer	concentration	was	the	thicker	was	the	resulting	polymer	film.	This	

affected	 the	maximum	 load	and	 the	elastic	modulus	of	 the	 films.	With	 increasing	polymer	

concentration	 the	 maximum	 load	[N]	 increased.	 Except	 the	 films	 made	 of	 4	%	 and	 5	%	

hyaluronic	acid	the	films	showed	a	significant	difference	(P<0.001).	The	strain	at	maximum	

load	[%]	 was	 not	 influenced	 by	 the	 polymer	 concentration.	 The	 films	 did	 not	 show	 a	

significant	difference.	With	increasing	polymer	concentration	the	elastic	modulus	increased	

too.	The	film	prepared	from	the	4	%	solution	showed	a	higher	elastic	modulus	than	expected	

and	therefore	was	not	significantly	different	from	the	film	prepared	from	the	6	%	solution.	

The	other	films	showed	a	significant	difference	(P<0.001)	among	themselves.	
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6.5.2 Hydrolyzed	hyaluronic	acids	with	different	substitution	degrees	in	PBS	

To	see	the	impact	of	the	substitution	degree	on	the	mechanical	properties	of	the	films	made	

of	thiolated	hyaluronic	acid	15	strips	of	the	films	made	from	the	hydrolyzed	hyaluronic	acid	

without	substitution	and	with	high	and	low	substitution	degree	were	tested.	

a)	

	

b)	

	

c)	

	

	

Figure	70:	 Tensile	 test	 of	 films	made	of	hydrolyzed	hyaluronic	 acid	with	different	degrees	of	 substitution	**	
equates	p	<	0.001,	*	equates	p<0.05	a)	maximum	 load	 [N]	b)	 strain	at	maximum	 load	 [%]	c)	elastic	modulus	
[MPa]	

As	expected	the	maximum	load	[N]	increased	and	the	strain	at	maximum	load	[%]	decreased	

with	 increasing	 substitution	 degree	 and	 showed	 a	 significant	 difference	 between	 the	

polymer	 films.	 The	 elastic	 modulus	[MPa]	 increased,	 too.	 But	 in	 this	 case	 no	 significant	

difference	between	the	thiolated	hyaluronic	acids	was	measurable.		
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6.5.3 Hydrolyzed	hyaluronic	acid	with	longer	cross-linking	time	in	PBS	

a)	

	

b)	

	
c)	

	

	

Figure	71:	 Tensile	 test	 of	 films	made	of	hydrolyzed	hyaluronic	 acid	with	different	degrees	of	 substitution	**	
equates	p	<	0.001,	*	equates	p<0.05	a)	maximum	 load	 [N]	b)	 strain	at	maximum	 load	 [%]	 c)	elastic	modulus	
[MPa]	

The	tensile	tests	showed	a	significant	difference	between	the	tested	hyaluronic	acids.	With	

higher	 substitution	 degree,	 the	 strain	 at	maximum	 load	[%]	 decreased	 and	 the	maximum	

load	[N]	as	well	as	the	elastic	modulus	[MPa]	increased	as	expected.	A	slower	drying	further	

enhanced	these	effects.	However	long	cross-linking	of	the	film	prepared	from	the	hyaluronic	

acid	 with	 the	 high	 substitution	 degree	 didn’t	 show	 the	 expected	 positive	 effect	 on	 the	

mechanical	 properties.	 The	 film	 ruptured	 during	 the	 drying	 process	 and	became	 very	 stiff	

and	 brittle	 due	 to	 the	 strong	 cross-linking	 and	 therefore	 showed	 very	 inhomogeneous	

results.	The	maximum	 load	[N]	and	 the	elastic	modulus	[MPa]	were	expected	 to	be	higher	

than	for	the	film	that	died	directly	after	drawing.	But	during	the	tensile	test	the	film	strips	

ruptured	 very	 early	 and	 therefore	 led	 to	 a	 lower	 maximum	 load	[N]	 and	 a	 lower	 elastic	

modulus	[MPa].	These	results	show	that	an	improved	cross-linking	of	the	films	did	not	lead	

to	improved	mechanical	properties.	 	
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6.5.4 Native	hyaluronic	acid	with	longer	cross-linking	time	in	PBS	

a)	

	

b)	

	
c)	

	

	

Figure	 72:	 Tensile	 test	 of	 films	 made	 of	 native	 hyaluronic	 acid	 with	 different	 degrees	 of	 substitution	 **	
equates	p	<	0.001,	*	equates	p<0.05	a)	maximum	load	[N]	b)	strain	at	maximum	load	[%]	c)	elastic	modulus	
[MPa]	

The	 films	stored	 in	 the	box	became	very	 stiff	and	brittle	due	 to	 the	stronger	cross-linking.	

Therefore,	from	the	film	with	the	low	substitution	degree	only	4	strips	could	be	tested	and	

from	the	film	with	the	high	substitution	degree	9	strips	could	be	tested.	From	the	other	films	

ten	 strips	 were	 tested.	 For	 the	 native	 hyaluronic	 acid	 the	 cross-linking	 affected	 the	

mechanical	properties	in	a	negative	way.	In	comparison	to	the	films	without	cross-linking	the	

maximum	load	decreased	about	2	to	6	N.	The	strain	decreased	too	from	about	2	%	for	not	

cross-linked	hyaluronic	acid	 to	about	1.7	%	 for	high	 substituted	 fast	drying	hyaluronic	acid	

and	 even	 to	 0.6	%	 for	 the	 high	 substituted	 hyaluronic	 acid	 stored	 in	 the	 plastic	 box.	

Regarding	 the	 elastic	 modulus	 the	 measurement	 showed	 an	 increase	 with	 higher	

substitution	and	 longer	cross-linking	time.	But	 the	not	cross-linked	hyaluronic	acid	with	an	

elastic	modulus	of	840	MPa	was	only	a	little	bit	lower	than	the	highest	elastic	modulus	of	the	

hyaluronic	acid	with	 the	high	substitution	degree	and	 the	 longer	cross-linking	 time	and	an	

elastic	modulus	of	890	MPa.	
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The	tensile	tests	showed	no	significant	differences	between	the	low	substituted	and	the	high	

substituted	 native	 hyaluronic	 acid	 concerning	 the	maximum	 load,	 the	 strain	 at	maximum	

load	[%]	 and	 the	 elastic	modulus	[MPa].	 But	 the	 film	 that	 should	 have	 a	 lower	 degree	 of	

substitution	 became	 more	 brittle	 than	 the	 film	 that	 should	 have	 a	 higher	 degree	 of	

substitution.	This	could	be	due	to	less	cross-linking	with	itself.		

	

6.5.5 Native	hyaluronic	acid	with	longer	cross-linking	time	in	water	

a)	

	

b)	

	

c)	

	

	

Figure	73:	Tensile	test	of	films	made	of	native	hyaluronic	acid	with	different	degrees	of	substitution	prepared	in	
water	**	equates	p	<	0.001,	*	equates	p<0.05	a)	maximum	load	[N]	b)	strain	at	maximum	load	[%]	c)	elastic	
modulus	[MPa]	

The	tensile	tests	of	the	films	prepared	of	thiolated	native	hyaluronic	acid	in	water	showed	no	

significant	 differences	 between	 the	 degree	 of	 substitution	 and	 the	 drying	 speed.	 Due	 to	

brittleness	only	seven	strips	of	the	low	substituted	hyaluronic	acid	stored	for	72	hours	in	the	

plastic	box	could	be	tested.	For	the	other	films	10	strips	were	tested.		 	
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6.6 Film	swelling	

The	films	prepared	of	the	different	thiolated	hyaluronic	acids	and	cross-linked	for	different	

time	intervals	in	air	were	die-cut	to	discs	with	a	diameter	of	1	cm.	These	discs	were	stored	in	

1	ml	 of	 PBS	 respectively	 phosphate	 buffer	 without	 sodium	 chloride.	 Every	 hour	 the	 discs	

were	removed	from	the	buffer,	dry	plotted	and	weighted	to	investigate	the	water	uptake	of	

the	films.	

a)	

	
b)	

	
Figure	 74:	 Swelling	 of	 films	 prepared	 from	 thiolated	 hyaluronic	 acid	 a)	 swelling	 of	 films	
from	 thiolated	hydrolyzed	HA	 stored	 in	PBS	b)	 swelling	of	 films	prepared	 from	 thiolated	
native	HA	stored	in	phosphate	buffer.	
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The	 films	 prepared	 from	 the	 thiolated	 hydrolyzed	 hyaluronic	 acid	 that	 dried	 directly	 after	

drawing	were	not	stable	in	PBS	and	swelled	very	fast	until	they	were	completely	dissolved.	

The	high	 SD	 slowly	dried	 film	was	 the	most	 stable.	 The	 films	prepared	 from	 the	 thiolated	

native	 hyaluronic	 acid	 in	 general	 showed	 less	 swelling	 than	 the	 films	 prepared	 from	 the	

hydrolyzed	hyaluronic	acid.	This	can	be	attributed	to	the	length	of	the	polymer	chains.	The	

longer	the	polymer	chain	was	the	denser	was	the	cross-linking	and	the	less	was	the	swelling.	

For	the	low	SD	films	it	could	be	observed,	that	the	swelling	decreased	with	increasing	cross-

linking	time.	For	the	high	SD	films	this	could	not	be	observed	due	to	a	higher	swelling	of	the	

films	cross-linked	for	7	days.	All	films	became	very	brittle	during	the	swelling	study,	even	at	

low	substitution	degrees.	

All	 the	 films	 that	 did	 not	 dissolve	 during	 the	 swelling	 determination	 became	 very	 brittle.	

Therefore,	 the	 swelling	 study	 was	 stopped	 after	 3	 respectively	 4	 days,	 because	 the	

fragments	could	not	be	weighted	anymore.	

The	 films	 prepared	 in	 water	 without	 adjustment	 of	 the	 pH	 were	 not	 stable	 during	 the	

swelling	study	and	were	completely	dissolved	after	1	hour.	This	shows	that	the	adjustment	

of	the	pH	is	necessary	to	enable	the	thiolated	hyaluronic	acid	to	form	disulfide	bridges	and	

form	films	that	are	stable	in	buffer.		

For	the	film	preparation	with	PBS	the	pH	of	the	solution	was	adjusted	to	a	neutral	pH.	With	a	

pH	higher	than	8	the	cross-linking	was	too	fast	to	be	able	to	cast	a	film.	
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6.7 Summary	and	Conclusion	

Carbodiimide	chemistry	was	successfully	applied	to	prepare	thiolated	hyaluronic	acid,	which	

could	 be	 subsequently	 cross-linked	 using	 different	 oxidizing	 agents.	 NMR	 studies	 and	

elementary	analysis	 revealed	different	degrees	of	 substitution.	Only	with	a	 large	excess	of	

educts	the	expected	100	%	substitution	was	achieved.	For	the	native	hyaluronic	acid	longer	

reaction	times	would	be	necessary	for	a	complete	reaction,	because	during	the	reaction	the	

components	 formed	 a	 viscous	 gel	 and	 inhibited	 a	 good	 mixing.	 Longer	 stirring	 time	 and	

therefore	a	longer	reaction	time	might	have	led	to	further	thiol	modification.	Additionally	it	

must	be	concluded	that	a	mere	extrapolation	of	the	degree	of	functionalization	based	on	the	

applied	reagents	is	not	easily	possible	due	to	the	increased	viscosity	of	the	native	hyaluronic	

acid	and	therefore	even	bigger	effects	on	the	viscosity	and	reaction	effectivity.	

Regarding	 the	 analysis	 after	 synthesis	 the	 Ellmans	 assay	 detected	 more	 thiol	 groups	 as	

possible	due	 to	 the	degree	of	 substitution	 (results	not	 shown).	DTT	 linked	 to	 the	polymer	

chain	or	not	properly	washed	out	during	the	hydrolysis	could	lead	to	these	too	high	results.		

With	oscillation	rheology	the	gel	point	of	the	differently	thiolated	hyaluronic	acids	could	be	

determined	despite	the	limited	amount	of	oxygen	present	in	the	buffer	that	was	used	for	the	

gel	 preparation.	 Surprisingly	 the	 lower	 substituted	 native	 hyaluronic	 acid	 showed	 a	 faster	

cross-linking	and	led	to	stronger	gels,	which	was	attributed	to	the	lower	probability	to	cross-

link	with	 itself.	 In	order	 to	measure	 cross-linking	 in	 air	 and	with	other	oxidizing	agents	 an	

alternative	compression	method	was	established,	which	demonstrated	that	oxidizing	agents	

line	 H2O2	 or	 alloxan	 can	 further	 increase	 the	 extent	 of	 cross-linking	 as	 well	 as	 the	 gel	

strength	compared	to	air	oxidation	alone	indicating	a	diffusion	limited	oxidation	reaction.		

Using	 a	 film	drawing	 apparatus	 very	 thin	 homogenously	 thick	 films	 could	 be	 obtained.	 To	

increase	 the	 cross-linking	of	 the	 films	 they	were	 stored	 in	 a	 closed	box	 to	 slow	down	 the	

drying	of	the	films	and	increase	the	time	of	cross-linking	that	was	only	possible	in	a	humid	

environment.	 Furthermore	 the	 films	were	 sprinkled	with	 H2O2.	 But	 the	 increase	 of	 cross-

linking	with	H2O2	led	to	the	rupture	of	the	film.	The	films	prepared	with	buffer	as	well	as	the	

films	prepared	with	water	became	opaque	therefore	this	phenomenon	could	not	be	ascribed	

to	salts	from	the	buffer	that	crystallized	in	the	dried	film.	
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In	 order	 to	 obtain	 films	 that	 have	 the	 required	mechanical	 properties	 it	was	 necessary	 to	

adjust	the	substitution	degree	of	the	hyaluronic	acid	as	well	as	the	drying	speed	of	the	thin	

polymer	 films.	 Further	addition	of	oxidizing	agents	helped	 to	 increase	 the	extent	of	 cross-

linking,	 but	 the	 degree	 of	 cross-linking	 should	 be	 not	 to	 strong,	 because	 the	 film	 might	

rupture	 very	 easy.	 Appropriate	 countermeasures	 have	 to	 be	 undertaken	 to	 decrease	

brittleness,	like	addition	of	plasticizers	to	improve	the	surgical	handling	of	the	films.	

The	swelling	determination	showed	that	it	was	possible	to	achieve	an	adequate	cross-linking	

of	thin	films	prepared	of	thiolated	hyaluronic	acid.	It	was	necessary	to	slow	down	the	drying	

speed	and	to	adjust	the	pH,	because	only	the	films	prepared	with	PBS	at	pH	7.4	were	cross-

linked	 and	 therefore	 stable	 in	 buffer.	With	 increasing	 cross-linking	 time	 the	 films	 became	

more	 stable.	 It	 can	 be	 concluded	 that	 a	 stable	 film	 can	 be	 prepared	 by	 dissolving	 the	

thiolated	hyaluronic	acid	in	buffer,	adjusting	the	pH	to	a	pH	optimum	and	cross-linking	the	

film	by	keeping	it	wet	in	presence	of	oxygen	from	air.		
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7. Multilayer	

After	 successful	 preparation	 of	monolayers	 from	 alginate	 and	 hyaluronic	 acid,	multilayers	

were	prepared	to	investigate,	if	a	layer	of	mucoadhesive	alginate	can	improve	the	properties	

of	a	PLA	film	and	if	the	formation	of	a	multilayer	can	also	increase	the	mechanical	stability	of	

the	hydrophilic	polymer	films.	
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7.1 Introduction	

For	wound	 dressings	 as	well	 as	 for	 adhesion	 barrier	 films	 it	 can	 be	 beneficial	 to	 combine	

polymers	 by	 the	 preparation	 of	 multilayers	 to	 obtain	 a	 product	 that	 comprises	 the	 good	

advantages	 of	 the	 used	 polymers.	Wound	 dressings	 can	 be	 easily	 fixed	 onto	 a	 wound	 by	

sticky	parts	of	the	wound	dressing	itself	or	they	can	be	additionally	bandaged,	because	after	

wound	 healing	 the	wound	 dressings	 are	 removed	 from	 the	wound.	 For	 peritoneal	 barrier	

films	this	opportunity	of	a	simple	fixation	and	removal	does	not	exist.	They	have	to	be	fixed	

in	 the	 peritoneum	with	 the	 help	 of	 sutures	 127	 or	 staples	 128	 if	 they	 do	 not	 adhere	 to	 the	

wound	 site	 themselves	and	 for	a	 removal	 another	 surgery	 is	necessary	 if	 the	 film	and	 the	

fixation	material	are	not	biodegradable	38.	For	wound	dressings	 it	 is	favorable	that	they	do	

not	adhere	directly	on	the	damaged	tissue.	This	aim	can	be	accomplished	when	the	dressing	

contains	a	lipophilic	non-adhesive	layer	for	example	a	wax-coated	silk	fibroin	woven	fabric	42	

that	 prevents	 the	 wound	 of	 dehydration	 and	 can	 be	 removed	 from	 the	 wound	 without	

causing	 further	 trauma.	 Barrier	 films	 however	 are	 normally	 not	 removed	 but	 withdrawn	

from	the	body	by	degradation.	For	several	barrier	devices	polymers	have	been	mixed	before	

the	 preparation	 of	 the	 barrier	 device	 like	 hyaluronic	 acid	 or	 polyvinyl	 alcohol	 with	

carboxymethylcellulose	 121,129.	 Other	 barrier	 devices	 combine	 polymers	 in	 a	 multi	 layered	

structure	119	or	in	form	of	a	polymer	mesh	coated	with	another	polymer	130.	A	sticky	barrier	

film	that	stays	in	place	by	itself	till	the	peritoneal	healing	is	finished	and	that	degrades	would	

be	 the	 ideal	 device.	 For	 this	 purpose	 an	 adhesive	 layer	 of	 mucoadhesive	 respectively	

bioadhesive	polymers	like	alginate	or	carboxymethylcellulose	would	be	beneficial	8,127.	Other	

bi-layers	 combine	anti	 adhesive	 films	with	a	 layer	 that	 should	promote	wound	healing	 for	

example	a	 film	made	of	PLA	PEG	PLA	combined	with	a	 layer	of	collagen	or	hyaluronic	acid	

which	 are	 known	 for	 their	 effectiveness	 in	 wound	 healing	 128.	 With	 the	 preparation	 of	

antimicrobial	 dressings	made	 of	 polymers	 like	 alginate	 loaded	with	 silver,	 polyhexamethyl	

biguanide,	 gentamycin,	 minocycline	 or	 chlorhexidine	 gluconate	 6,19,43	 it	 was	 possible	 to	

combine	the	antimicrobial	action	of	the	drug	component	with	the	beneficial	property	of	the	

polymer	 like	 providing	 a	moist	 environment	which	 are	 both	 beneficial	 for	wound	 healing.	

Furthermore	bilayers	can	also	be	prepared	to	control	the	drug	release	from	different	layers.	

For	this	aim	one	layer	can	be	loaded	or	impregnated	with	a	drug	and	another	layer	can	act	as	

a	 rate-controlling	 membrane	 47.	 The	 aim	 of	 this	 work	 was	 to	 combine	 the	 appropriate	

mechanical	 properties	 and	 erosion	 time	 of	 a	 film	made	 from	 PLA	with	 the	mucoadhesive	
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properties	of	alginate.	The	alginate	layer	should	fix	the	PLA	film	on	the	wound	area	without	

slipping	away	until	the	surgeon	has	sutured	it	onto	the	right	place.		

7.2 Materials	and	methods	

PLA	(Resomer®	LR708,	Poly	(L-lactide-co-D,L-lactide;	70:30)	was	purchased	from	Boehringer	

Ingelheim	 (Ingelheim	 am	 Rhein,	 Germany)	 and	 linear	 PLA	 PEG	 PLA	 (HWL73	 PLA35kDa-

PEG10kDa-PLA35kDa	 (poly(lactide)-b-poly(ethylene	 glycol)-b-poly(lactide)))	 was	 purchased	

from	 Polymaterials	 (Kaufbeuren,	 Germany).	 Alginate	 PROTANAL®	 LF	10/60	FT	 with	 a	

guluronic	 acid	 content	 of	 60-70	%	 was	 a	 generous	 gift	 from	 FMCBioPolymer	 (Sandvika,	

Norway).	 Glycerin	 87	%	was	 obtained	 from	AppliChem	 (Darmstadt,	 Germany).	Water	 Blue	

from	Fluka,	Sigmacote®,	D-(+)-Gluconic	acid	δ-lactone	and	dibasic	calcium	phosphate	were	

obtained	 from	 Sigma-Aldrich	 (Steinheim,	Germany).	 Pen	 Strep	 gibco®	with	 10000	units/ml	

Penicillin	and	10000	µg/ml	Streptomycin	was	purchased	from	Life	Technologies	Corporation	

(Grand	 Island,	 NY,	 USA).	 Poly(ethyleneimine)	 (PEI)	 and	 Dichloromethane	 were	 analytical	

grade.	

7.3 	Preparation	of	Multilayers	using	different	cohesion	promoters	

When	a	solution	of	hydrophilic	alginate	is	drawn	on	a	lipophilic	PLA	film	it	contracts	on	the	

film	instead	of	spreading	on	it,	because	of	the	chemically	different	lipophilic,	smooth	surface	

of	 the	 PLA	 film.	 After	 drying,	 the	 two	 layers	 can	 be	 easily	 separated.	 To	 overcome	 this	

problem	 and	make	 the	 two	 layers	 stick	 to	 each	 different	 additives	were	 given	 to	 the	 PLA	

layer	respectively	alginate	layer	that	functioned	as	cohesion	promotors.	With	the	addition	of	

positively	 charged	 PEI	 to	 the	 PLA	 layer,	 it	 becomes	 more	 hydrophilic	 and	 the	 negatively	

charged	alginate	can	bind	to	the	positively	charged	PLA	layer.	Alternatively,	glycerol	can	be	

added	to	alginate	films	respectively	alginate	layer	as	plasticizer	to	make	the	film	less	brittle	

and	therefore	easier	to	handle	for	the	surgeon	(see	chapter	3	and	4).	For	the	preparation	of	

bilayers	 the	 cohesion	 between	 the	 two	 layers	 is	 important.	 With	 the	 addition	 of	 more	

glycerol,	 the	 film	 can	 be	 made	 stickier	 131.	 Therefore	 glycerol	 was	 added	 in	 a	 higher	

concentration	than	when	it	was	used	as	plasticizer.	
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7.3.1 Preparation	of	films	using	PEI	as	cohesion	promoter	

To	see,	if	it	makes	a	difference,	the	two	layers	were	drawn	in	different	orders.	Either	the	PLA	

layer	was	drawn	first	and	the	alginate	layer	was	drawn	over	the	PLA	layer	(PLAPEI_A)	or	the	

alginate	layer	was	drawn	first	(A_PLAPEI).	For	the	PLAPEI_A	film	the	PLA	layer	was	prepared	

of	1.8	g	PLA	and	0.036	g	PEI	were	dissolved	in	43	ml	DCM	and	drawn	on	a	glass	plate	with	a	

film	drawing	apparatus	(ERICHSEN	coatmaster	509	MC)	using	a	gap	clearance	of	250	µm	and	

a	speed	of	5	mm/	sec.	The	alginate	layer	consisted	of	4	g	alginate	and	0.4	g	glycerol	dissolved	

in	 95.6	ml	 water.	 This	 layer	 was	 drawn	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	

5	mm/	sec.	The	PLA	layer	was	drawn	on	a	glass	slide	coated	with	Sigmacote®	to	facilitate	the	

detachment	of	the	film	after	drying.	The	alginate	layer	was	drawn	on	an	uncoated	glass	slide.	

The	 A_PLAPEI	 film	 was	 prepared	 by	 drawing	 the	 PLA	 layer	 on	 top	 of	 the	 alginate	 layer.	

Before	the	second	 layer	was	drawn	on	the	first	 layer	the	first	 layer	was	allowed	to	dry	 for	

24	hours	at	room	temperature.	For	the	mechanical	evaluation	both	films	were	also	drawn	as	

single	layers	for	comparison.	After	drying	the	films	were	cut	in	the	wished	shape	and	peeled	

from	the	glass	slides.	The	PLA	film	had	a	thickness	of	5	µm	and	the	alginate	film	a	thickness	

of	15	µm.	The	bilayers	had	a	thickness	of	20	µm.	

7.3.2 Application	of	glycerol	to	enhance	film	cohesion	

7.3.2.1 Bilayers	using	non-crosslinked	alginate	layers	

To	increase	the	stickiness	of	the	alginate	layer,	an	increased	amount	of	glycerol	was	added	

to	 the	 alginate	 solution.	 Films	 were	 prepared	 by	 dissolving	 1.8	g	 PLA	 in	 43	ml	 DCM	 and	

drawing	them	on	a	glass	slide	coated	with	Sigmacote®	with	a	gap	clearance	of	250	µm	and	a	

speed	of	5	mm/	sec.	After	drying	for	24	hours,	a	second	layer	consisting	of	4	g	alginate	and	

4	g	glycerol	dissolved	in	92	ml	water	was	drawn	on	the	PLA	layer	with	a	speed	of	5	mm/	sec.	

To	evaluate	the	impact	of	the	thickness	of	the	alginate	layer	on	the	mechanical	properties	of	

the	bilayer	the	alginate	layers	were	drawn	with	different	gap	clearances	of	120	µm,	250	µm,	

500	µm,	700	µm,	1000	µm	and	1500	µm.	After	drying,	the	bilayers	had	a	thickness	of	10	µm,	

15	µm,	25	µm,	40	µm,	45	µm	and	55	µm.		

For	a	puncture	test	and	a	suture	pullout	test	bilayers	were	prepared	as	described	before	but	

without	the	gap	clearance	of	1000	µm	resulting	in	bilayers	with	a	thickness	of	5	µm,	12	µm,	

50	µm	and	62	µm.	
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7.3.2.2 Bilayers	using	cross-linked	alginate	layers	

3.6	g	 PLA	 were	 dissolved	 in	 86	ml	 DCM	 and	 drawn	 on	 a	 coated	 glass	 slide	 with	 a	 gap	

clearance	of	250	µm	and	a	speed	of	5	mm/	sec.	After	drying	for	24	hours,	the	alginate	layer	

containing	2	g	alginate	and	2	g	glycerol	dissolved	in	46	ml	water	was	drawn	on	top	of	the	PLA	

layer	 with	 a	 gap	 clearance	 of	 700	µm	 and	 a	 speed	 of	 5	mm/	sec.	 Just	 before	 casting	 the	

alginate	layer,	0.4	g	CaHPO4	suspended	in	some	droplets	of	water	and	1.6	g	GDL	were	added	

to	the	alginate	solution	to	cross-link	the	alginate	layer	after	the	drawing	process.	

7.3.3 Observations	during	multilayer	preparation	

The	 preparation	 of	 bilayers	 made	 from	 one	 layer	 of	 lipophilic	 PLA	 and	 one	 layer	 of	

hydrophilic	alginate	could	not	be	done	by	simply	drawing	the	two	layers	above	each	other.	

To	make	the	PLA	layer	more	attractive	for	the	hydrophilic	and	negatively	charged	alginate,	

PEI	was	 added	which	 integrated	 positive	 charges	 in	 the	 PLA	 layer	 and	 also	made	 it	more	

hydrophilic.	To	avoid	the	shrinkage	of	the	alginate	layer	after	drawing	it	onto	the	PLA	film,	a	

higher	concentrated	solution	was	prepared.	But	with	a	higher	concentration	the	drawing	of	

the	film	became	more	difficult.	Therefore	the	solution	with	the	lower	alginate	amount	was	

made	stickier	by	addition	of	 the	plasticizer	glycerol.	Further	 film	preparations	showed	that	

the	 addition	 of	 glycerol	 was	 sufficient	 to	 enhance	 the	 cohesion	 of	 the	 two	 layers.	 The	

addition	of	PEI	therefore	is	not	necessary.	Previous	investigations	showed	that	cross-linking	

would	enhance	the	stability	of	the	alginate	layer	and	decrease	the	erosion	time.	Therefore	a	

bilayer	of	a	PLA	layer	and	a	cross-linked	alginate	layer	was	successfully	prepared.	

7.3.4 Mechanical	evaluation	of	bilayers	

For	 the	 surgeon,	 who	 wants	 to	 apply	 the	 adhesive	 film	 to	 the	 wounded	 tissue	 the	

mechanical	properties	of	the	film	are	very	important.	When	the	surgeon	takes	the	film	out	of	

the	packaging,	cuts	 it	 into	the	wished	shape	and	sutures	 it	to	the	tissue,	the	film	must	not	

rupture.	 To	 investigate,	 which	 forces	 the	 bilayers	 can	 withstand	 mechanical	 tests	 like	 a	

tensile	test	and	a	suture	pullout	test	were	performed.	
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7.3.4.1 Tensile	test	of	bilayers	made	of	PLA	and	PEI	with	alginate	

To	 test	 the	mechanical	 properties	 of	 the	 single	 layers	 and	 the	 bilayers,	 a	 tensile	 test	 like	

described	before	was	performed	with	20	strips.	

a)	

	

b)	

	
Figure	 75:	 Tensile	 test	 of	 monolayers	 and	 bilayers	 (a)	 Maximum	 load	 [N]	 (b)	 Strain	 at	 maximum	 load	 [%]	

Statistical	differences	(p<	0.001)	are	indicated	with	two	asterisks	**	or	(p<0.05)	with	one	asterisks	*.	

The	film	made	of	a	single	layer	of	PLA	with	PEI	showed	the	lowest	maximum	load	[N]	and	the	

lowest	 strain	 at	 maximum	 load	[%].	 The	 alginate	 films	 showed	 a	 twice	 as	 high	maximum	

load	[N]	and	the	strain	at	maximum	load	was	even	higher.	The	film	strips	of	the	bilayer	did	

not	separate	while	cutting	them	into	strips,	which	indicated,	that	the	addition	of	PEI	to	the	

PLA	layer	and	glycerol	to	the	alginate	layer	enhanced	the	coherence	of	the	two	layers.	The	

maximum	load	[N]	as	well	as	the	strain	at	maximum	load	[%]	of	the	bilayers	was	significantly	

(P<0.001)	higher	than	that	of	the	PLA	film.	The	maximum	load	[N]	showed	only	a	significant	

difference	for	the	alginate	film	in	comparison	to	the	alginate	film	covered	with	a	PLA	layer.	

The	 other	 results	 showed	 no	 significant	 differences	 of	 the	 alginate	 film	 and	 the	 bilayers.	

During	 the	 tensile	 testing	 of	 the	 bilayers	 the	 PLA	 layer	 ruptured	 earlier	 than	 the	 alginate	

layer,	which	could	explain	the	similarity	in	the	mechanical	properties	of	the	bilayers	and	the	

alginate	film,	because	in	the	end	only	the	mechanical	properties	of	the	alginate	layer	were	

tested,	until	it	ruptured,	too.	
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7.3.4.2 Tensile	tests	of	bilayers	made	of	PLA	and	alginate	with	glycerol	

10	strips	of	the	prepared	bilayers	where	tested	as	described	before	(Chapter	3).	

PLA	

	

Alginate	

	

Bilayer	

	
Figure	76:	Load	strain	curves	of	monolayers	and	bilayers		

The	first	graph	shows	a	typical	example	of	a	load	strain	curve	from	a	PLA	film	with	the	elastic	

part	in	the	beginning	until	the	maximum	load	was	reached	and	the	plastic	deformation	that	

started	when	the	maximum	load	was	reached	and	ended	when	the	film	ruptured	where	the	

strain	 at	maximum	 load	 could	be	 recorded.	 The	 load	 strain	 curve	of	 the	 alginate	 film	had	

only	a	very	small	elastic	part	in	the	beginning	and	the	plastic	deformation	started	very	early	

while	the	load	[N]	rose	constantly	until	the	film	ruptured.	The	load	at	strain	curves	showed	
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that	the	curves	of	the	bilayers	were	more	alike	the	curves	of	the	alginate	film	the	thicker	the	

alginate	layer	was.		

a)	 	 b)	 	

Figure	77:	Tensile	test	of	bilayers	containing	an	alginate	layer	with	different	thicknesses	(a)	Maximum	load	[N]	

(b)	Strain	at	maximum	load	[%]	Statistical	differences	(p<	0.001)	are	indicated	with	two	asterisks	**	or	(p<0.05)	

with	one	asterisks	*.	

The	thicker	the	alginate	 layer	was	the	higher	was	the	maximum	load	[N]	that	was	reached	

until	the	film	ruptured.	While	the	strain	at	maximum	load	[%]	for	the	films	with	a	thickness	

of	10	µm	or	15	µm	was	very	low,	at	the	thickness	of	25	µm	a	remarkable	increase	in	strain	

was	observed.		The	film	with	a	thickness	of	40	µm	even	showed	the	highest	strain	together	

with	the	highest	maximum	load.	Moreover	it	was	observed,	that	at	this	thickness	the	shapes	

of	the	load/strain	curves	changed	and	became	more	similar	to	curves	of	a	pure	alginate	film,	

indicating	the	dominating	properties	of	alginate	films.		

7.3.4.3 Puncture	test	of	bilayers	made	of	a	PLA	film	covered	with	a	layer	of	alginate	

The	 puncture	 test	 was	 performed	 with	 5	 pieces	 of	 the	 bilayers	 like	 described	 before.	 As	

comparison	 a	 PLA	 film	 with	 a	 thickness	 of	 5	µm	 and	 the	 commercially	 available	 PLA	 film	

Surgiwrap®	with	a	thickness	of	50	µm	were	tested,	too.	
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Figure	78:	Puncture	test	of	monolayers	and	of	bilayers	containing	an	

alginate	 layer	with	 different	 thicknesses.	 Statistical	 differences	 (p<	

0.001)	are	indicated	with	two	asterisks	**	

Surgiwrap®	had	a	higher	maximum	compressive	load	[N]	than	the	PLA	film	and	the	very	thin	

bilayers	 with	 a	 thickness	 of	 5	µm	 and	 12	µm.	 The	 bilayers	 with	 a	 thickness	 of	 50	µm	

respectively	 62	µm	 had	 the	 same	 maximum	 compressive	 load	[N]	 like	 Surgiwrap®.	 The	

thicker	the	alginate	layer	was,	the	higher	was	the	maximum	compressive	load	[N]	that	was	

needed	to	push	through	the	film.	

7.3.4.4 Suture	pullout	test	of	bilayers	made	of	a	PLA	film	covered	with	a	layer	of	alginate	

For	 the	suture	pullout	 test	5	specimens	were	tested	as	described	before.	As	comparison	a	

PLA	film	with	a	thickness	of	5	µm	and	the	commercially	available	PLA	film	Surgiwrap®	with	a	

thickness	of	50	µm	were	tested,	too.	

	
Figure	 79:	 Suture	 pullout	 test	 of	 monolayers	 and	 of	 bilayers	

containing	an	alginate	layer	with	different	thicknesses.		
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With	the	suture	pullout	test	only	the	maximum	loads	reached	with	Surgiwrap®	that	was	used	

as	comparison	significant	different	results	from	the	other	films	could	be	measured.	The	load	

of	 Surgiwrap®	 was	 much	 higher	 than	 the	 load	 of	 the	 other	 films	 which	 indicated	 that	 it	

would	withstand	higher	forces	when	sutured	to	the	tissue.		

7.3.4.5 Mechanical	evaluation	of	bilayers	made	of	PLA	film	covered	with	cross-linked	alginate	

For	 the	mechanical	 evaluation	 15	 specimens	were	 tested	 for	 every	 setup.	 The	 tests	were	

performed	like	described	before.	

Tensile	Test	

a)	

	

b)	

	
c)	

	

	

Figure	80:	 Tensile	 test	of	monolayers	 and	bilayers	 (a)	Maximum	 load	 [N]	 (b)	 Strain	at	maximum	 load	 [%]	 (c)	

Elastic	modulus	[MPa].	Statistical	differences	(p<	0.001)	are	indicated	with	two	asterisks	**		

The	tensile	 tests	 revealed	a	significant	difference	 in	 the	maximum	load	between	the	three	

films.	The	very	 thin	PLA	film	only	resisted	very	 low	forces	and	ruptured	at	a	 load	of	about	

3	N.	The	alginate	layer	could	withstand	higher	forces	of	about	5	N	and	the	bilayer	was	even	

higher	with	about	8.5	N.	Due	to	the	fact	that	the	PLA	layer	ruptured	earlier	than	the	alginate	

layer	during	 the	 tensile	 testing,	 the	strain	of	 the	alginate	 film	and	 the	bilayer	were	similar	
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with	 about	 55	%.	 The	 PLA	 film	 only	 had	 a	 strain	 of	 about	 5	%.	 As	 expected	 the	 elastic	

modulus	of	 the	PLA	 film	with	2000	MPa	was	much	higher	 than	 the	elastic	modulus	of	 the	

alginate	film	and	the	bilayer	of	about	20	MPa.	

Puncture	test	

a)	

	

b)	

	
Figure	 81:	 Puncture	 test	 of	monolayers	 and	bilayer.	 Statistical	 differences	 (p<	 0.001)	 are	 indicated	with	 two	

asterisks	**	

The	puncture	test	showed	the	advantage	of	a	bilayer,	too.	The	bilayer	showed	a	significant	

higher	 maximum	 compressive	 load	[N]	 than	 the	 monolayers.	 The	 elongation	 showed	 no	

significant	differences.	

Suture	pullout	test	

	
Figure	 82:	 Suture	 pullout	 test	 of	monolayers	 and	 the	 bilayer.	

Statistical	 differences	 (p<	 0.001)	 are	 indicated	 with	 two	

asterisks	**	

The	suture	pullout	test	showed	the	beneficial	effect	of	the	formation	of	a	bilayer.	The	bilayer	

could	 withstand	 significantly	 higher	 forces	 than	 the	 monolayers.	 This	 should	 ease	 the	

fixation	with	sutures.	 	
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7.3.5 Stability	test	of	bilayers	

Even	 if	 PLA	 is	 known	 to	 degrade	 very	 slowly,	 it	 degrades	 when	 stored	 in	 a	 humid	

environment.	 The	 alginate	 layer	 containing	 plasticizer	 always	 contained	 residual	moisture	

and	 never	 dried	 completely	 under	 the	 conditions	 the	 bilayers	 were	 prepared.	 To	 see	 the	

impact	of	moisture	on	the	PLA	layer,	a	stability	test	was	performed.		

0.9	g	PLA	were	dissolved	in	21.5	ml	DCM	and	drawn	with	a	gap	clearance	of	250	µm	and	a	

speed	of	5	mm/	sec.	After	24	h	the	PLA	layer	was	covered	with	a	second	layer	consisting	of	

2	g	alginate	and	2	g	glycerol	dissolved	in	46	ml	water	drawn	with	a	gap	clearance	of	700	µm	

and	speed	of	5	mm/	sec.	After	drying	at	 room	temperature	the	 film	was	cut	 into	pieces	of	

5x5	cm,	 sealed	 in	 foil	 and	 stored	 at	 room	 temperature.	 Every	 second	week	 one	 film	was	

taken	 out	 of	 the	 foil,	 cut	 into	 5	strips	 of	 1	x	5	cm	 and	 a	 tensile	 test	 was	 performed.	

Subsequently	 the	 PLA	 layers	 was	 peeled	 from	 the	 alginate	 layer	 and	 stored	 at	 -20	°C	 for	

further	GPC	investigation.		

After	 18	weeks,	 the	 ruptured	 PLA	 strips	 were	 dissolved	 in	 2	ml	 chloroform	 and	 filtrated	

before	GPC	investigation.	The	GPC	setup	consisted	of	a	system	controller,	a	binary	pump,	an	

auto	injector,	a	column	oven	at	40	°C	and	a	refractive	index	detector	(Shimadzu	Corporation,	

Chromatographic	 &	 spectrophotometric	 instruments	 division,	 Kyoto,	 Japan).	 As	 stationary	

phase	 a	 Phenogel	5	u	Linear,	 300	x	7.8	mm	 (Phenomenex,	 Aschaffenburg,	 Germany)	 was	

chosen.	The	mobile	phase	was	helium	purged	chloroform.	The	measurement	was	performed	

with	a	flow	rate	of	1	ml/	min.	The	results	from	the	RID	calculated	in	relation	to	polystyrene	

standards	 were	 given	 as	 Mw	(weight	 average)	 and	 Mn	(number	 average)	 and	

Mw/Mn	(polydispersity	index).	
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a)	

	

b)	

	
Figure	83:	Tensile	test	of	bilayer	strips	after	storage	for	several	weeks	

	

	
Figure	84:	GPC	data	of	PLA	layer	after	storage	for	several	weeks	

The	tensile	test	showed	that	the	maximum	load	[N]	decreased	over	time	whereas	the	strain	

at	 maximum	 load	[%]	 increased.	 This	 indicated	 a	 softening	 effect	 of	 water	 respectively	

glycerol	on	the	PLA	layer.	The	measurements	showed	results	with	high	standard	deviations.	

On	the	contrary	the	GPC	data	revealed	that	the	moisture	in	the	alginate	film	did	not	affect	

the	PLA	over	the	eight	weeks.	

7.3.6 Discussion	

The	 mechanical	 tests	 revealed	 that	 an	 alginate	 layer	 is	 able	 to	 further	 stabilize	 the	

investigated	thin	PLA	layer.	Regarding	the	films	prepared	with	PEI	as	cohesion	promoter,	the	

individual	PLA	layer	could	only	withstand	forces	of	5	N	and	had	a	strain	of	5	%	whereas	the	

individual	alginate	layer	could	withstand	forces	of	10	N	with	a	strain	of	15	%.	The	combined	

bilayer	as	expected	could	withstand	higher	forces	of	15	N	and	the	observed	strain	was	only	

little	higher	with	15	%	to	20%.	
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Regarding	the	optimal	thickness	of	the	supporting	alginate	layer,	it	could	be	seen,	that	there	

is	a	high	 increase	 in	the	carried	maximum	load	from	25	µm	to	40	µm,	but	the	 investigated	

films	with	a	thickness	of	40	µm	and	more	had	more	or	less	the	same	strain	at	maximum	load	

of	70	%.	Therefore	it	was	concluded,	that	a	thickness	of	about	40	µm	and	more	is	sufficient	

to	provide	stable	films	with	good	mechanical	properties	for	an	application	without	rupturing.		

During	the	tensile	tests	it	was	furthermore	observed,	that	the	PLA	layer	ruptured	earlier	than	

the	alginate	layer,	indicating	that	the	added	alginate	layer	can	stabilize	the	PLA	layer,	but	this	

stabilization	 is	also	only	 limited.	The	surgeon	should	still	handle	 the	 fragile	 films	with	care	

and	 be	 cautious,	 that	 the	 PLA	 layer	 does	 not	 rupture	 while	 suturing	 the	 bilayer	 to	 the	

application	site.	The	additionally	 investigated	cross-linking	of	 the	alginate	 layer	showed	no	

edge	over	the	non-cross-linked	alginate,	only	the	maximum	strain	of	the	bilayer	with	cross-

linking	was	slightly	decreased	due	an	increased	stiffness.	Instead	the	cross-linked	layer	could	

even	 be	 separated	 from	 the	 PLA	 layer	 much	 easier	 than	 the	 layer	 without	 cross-linking,	

indicating	limited	benefit	of	the	cross-linking	for	the	cohesion.	

Furthermore	 it	 could	 be	 observed,	 that	 after	 incubation	 in	 water	 respectively	 buffer,	 the	

soaked	 alginate	 films	 always	 could	 be	 easily	 separated	 from	 the	 PLA	 layer,	 which	 can	 be	

attributed	to	an	occurring	hydration	of	the	gel	 layer	and	accordingly	the	breakdown	of	the	

linking	capillary	forces.		

With	the	also	investigated	chemical	stability	test	it	could	be	seen,	that	the	storage	of	the	PLA	

layer	in	a	humid	environment	due	to	the	residual	water	content	in	the	alginate	layer	did	not	

significantly	affect	 the	molecular	weight	of	 the	 lipophilic	polymer	PLA.	However	with	 time	

the	mechanical	 properties	 of	 the	bilayer	 became	more	 inconsistent,	with	 lower	maximum	

forces	 and	 the	 tendency	 to	 higher	 strains	 at	maximum	 load.	 Furthermore	 the	 performed	

measurements	 indicate	 that	 the	 mechanical	 properties	 of	 the	 investigated	 films	 became	

more	and	more	 inhomogeneous,	 indicating	the	need	for	effective	sealing	and	packaging	of	

the	polymers	to	provide	constant	humidity	and	only	limited	mechanical	stress	to	the	stored	

film	samples.	 	
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7.4 Preparation	of	Multilayers	using	increased	surface	roughness132	

Although	 the	 addition	 of	 PEI	 to	 the	 PLA	 layer	 respectively	 the	 addition	 of	 glycerol	 to	 the	

alginate	layer	significantly	improved	the	cohesion	of	the	two	layers,	peeling	one	layer	from	

the	other	still	could	easily	separate	them.	To	enhance	the	adhesion	of	the	alginate	solution	

respectively	alginate	 film	on	the	PLA	 layer,	 the	surface	of	 the	PLA	 layer	was	modified.	The	

PLA	layer	itself	has	a	very	smooth	surface	and	therefore	the	alginate	film	contracted	after	it	

has	 been	 drawn	 on	 the	 PLA	 film.	On	 a	 rough	 surface	 the	 alginate	 solution	would	 be	 able	

penetrate	 into	 the	 rough	 structure	 and	 increase	 the	 adhesion.	 To	 obtain	 a	 rough,	 porous	

surface,	a	mesh	was	spun	on	top	of	the	PLA	film.	The	mesh	did	not	only	make	the	surface	

rough	but	also	gave	the	alginate	a	structure	it	could	penetrate	into.	The	mesh	that	was	spun	

onto	the	polymer	film	was	prepared	of	two	polymers.	PLA	and	PLA	PEG	PLA.	PLA	was	chosen	

to	ease	 the	cohesion	of	 the	mesh	 to	 the	 film,	because	 they	were	both	prepared	 from	the	

same	polymer.	But	a	PLA	mesh	is	to	lipophilic	to	absorb	the	hydrophilic	alginate	solution.	To	

make	the	alginate	solution	sink	into	the	mesh,	it	was	also	prepared	from	PLA	PEG	PLA.	

7.4.1 Preparation	of	the	multilayer	

7.4.1.1 First	layer	à	PLA	film	

To	 obtain	 a	 film	 with	 a	 thickness	 of	 20	µm	 1.1	g	 PLA	 were	 dissolved	 in	 20	ml	 DCM.	 The	

solution	was	drawn	on	a	glass	plate	coated	with	Sigmacote®	with	a	gap	clearance	of	700	µm	

and	a	speed	of	5	mm/	sec.		

7.4.1.2 Second	layer	à	electro	spun	mesh	

Solution	 electrospinning	was	 carried	 out	with	 the	 respective	 polymer	 solutions	 containing	

PLA	 respectively	 PLA	 PEG	 PLA	 prepared	 in	 a	 solvent	 mixture	 of	 acetone	 and	

DMSO	(90:10	V/	V).	 The	 solution,	 placed	 in	 a	 syringe,	was	 fed	 through	 a	 needle	 having	 an	

inner	diameter	of	0.4	mm	with	a	syringe	pump	at	a	feeding	rate	of	0.5	ml/	h.	A	high	voltage	

power	supply	was	attached	to	the	needle	and	fibers	were	fabricated	at	an	applied	voltage	of	

12	kV.	The	electrospun	fibers	were	collected	on	a	rotating	drum	that	was	covered	with	the	

film	made	of	PLA,	which	was	wrapped	around	it.	The	drum	was	positioned	at	a	distance	of	

15	cm	from	the	needle	tip.	
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7.4.1.3 Third	layer	à	alginate	

For	the	third	layer,	consisting	of	alginate,	3	%	and	5	%	solutions	were	prepared.	For	the	3	%	

solution	 450	mg	 alginate	 and	 450	mg	 glycerol	 were	 dissolved	 in	 14.1	ml	 water.	 The	 5	%	

solution	 consisted	of	750	mg	alginate	and	750	mg	glycerol	 in	13.5	ml	water.	 To	be	able	 to	

visualize	 and	 distinguish	 between	 the	 different	 layers,	 the	 alginate	 solutions	were	 stained	

with	Water	Blue	before	 they	were	drawn.	After	 the	alginate	was	completely	dissolved	 the	

solutions	were	drawn	on	 top	of	 the	mesh	with	a	gap	clearance	of	700	µm	and	a	 speed	of	

5	mm/	sec.	 Then	 the	 films	 were	 allowed	 to	 dry	 over	 night	 at	 room	 temperature	 before	

further	investigation.	

Table	19	:	Thicknesses	of	monolayers	

monolayer	 thickness	[µm]	

PLA	 14-16	

alginate	3%	 14-16	

alginate	5%	 20-22	
	

Table	20:	Thicknesses	of	bilayers	

alginate	
[%]	 thickness	[µm]	

3	 45-48	

5	 41-44	
	

Table	21:	Thicknesses	of	trilayers	

mesh	component	 alginate	[%]	 thickness	[µm]	

PLA	PEG	PLA	 3	 53-57	

PLA	 3	 56-61	

PLA	PEG	PLA	 5	 53-57	

PLA	 5	 58-69	
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7.4.2 Contact	angle	measurements	

To	get	an	 idea	of	 the	hydrophilicity	 respectively	 the	probability	of	 the	hydrophilic	alginate	

solution	to	spread	on	the	lipophilic	film	respectively	mesh	contact	angle	measurements	were	

performed.	The	measurements	were	performed	at	room	temperature	with	a	contact	angle	

system	(OCA	20,	Data	Physics,	Filderstadt,	Germany).	The	measurements	were	performed	in	

triplicate.	 A	 3	µl	 water	 droplet	 was	 set	 on	 different	 locations	 of	 the	 surface	 of	 the	mesh	

respectively	 film	with	 a	 dosing	 rate	 of	 1.0	 µl/	s.	 The	 contact	 angle	was	measured	 directly	

after	the	droplet	got	in	contact	with	the	sample	and	was	assessed	via	an	ellipse	fitting.		

	
Figure	85:	Contact	angle	measurements	of	films	and	meshes	

The	contact	angle	measurements	revealed	that	the	meshes	hat	a	higher	contact	angle	than	

the	films	and	therefore	are	more	hydrophobic.	

7.4.3 Visual	characterization	of	the	prepared	Trilayers	

7.4.3.1 SEM	images	

SEM	 images	 were	 taken	 with	 a	 Digital	 Scanning	 Microscope	 (DSM940,	 Carl	 Zeiss,	

Oberkochen,	Germany)	at	an	accelerating	voltage	of	5	kV.	The	samples	were	pretreated	by	

gold	sputtering	(EMITECH	K550	sputter	coater,	Quorum	Technologies,	West	Sussex,	UK).	

7.4.3.2 Light	microscopic	images	

Light	 microscopic	 images	 were	 taken	 with	 a	 stereomicroscope	 (Zeiss	 Discovery	 V20,	 Carl	

Zeiss,	Oberkochen,	Germany).	
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7.4.4 Mechanical	evaluation	

7.4.4.1 Tensile	test	

For	the	tensile	testing	the	trilayers	were	cut	with	a	scalpel	 into	

strips	 of	 1	 to	 5	cm.	 5	 of	 these	 strips	 were	 tested	 as	 close	 as	

possible	 to	an	American	national	 standard	of	 testing	“Standard	

Test	 Method	 for	 Tensile	 Properties	 of	 Thin	 Plastic	 Sheeting	

D	882-02”	like	described	before.		

	

	

7.4.4.2 T-peel	test	

To	measure	 the	 cohesion	 of	 the	 layers	 a	 t-peel	 test	 (basic	 principle	

from	 ASTM	 D	 1876-08)	 was	 performed.	 5	 film	 strips	 with	 the	

dimensions	of	1	cm	to	5	cm	were	separated	at	one	end	for	a	length	of	

1	 cm.	 The	 PLA	 layer	 respectively	 the	 PLA	 layer	 with	 the	mesh	 was	

fixed	in	the	upper	grip	of	the	texture	analyzer	and	the	alginate	layer	

respectively	alginate	layer	with	mesh	was	fixed	in	the	lower	grip	that	

had	 a	 distance	 of	 5	mm	 to	 the	 upper	 grip.	 The	 two	 layers	 were	

subsequently	separated	with	a	speed	of	10	mm/	min	until	a	preload	

of	 0.01	N	 was	 reached.	 Then	 the	 testing	 speed	 was	 increased	 to	

250	mm/	min.	During	the	test	the	load	[N]	was	recorded.	The	average	load	was	taken	from	5	

mm	to	60	mm	movement	of	the	upper	grip.	The	test	ended	when	the	layers	were	completely	

separated.	

	 	

	
Figure	86:	Tensile	test	

	
Figure	87:	T-peel	test	
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7.4.4.3 Mucoadhesion	test	

To	 test	 the	 mucoadhesive	 properties	 of	 the	 alginate	 layer	 a	

mucoadhesion	test	was	performed	with	a	texture	analyzer	(Zwick	Z010,	

Zwick	GmbH	&	Co.	KG,	Ulm,	Germany).	For	this	purpose	a	piece	of	small	

intestine	stored	in	PBS	containing	5	ml/100	ml	Pen	Strep	from	a	8	week	

old,	 18	kg,	 male	 domestic	 pig	 was	 opened	 by	 cutting	 one	 side	

lengthwise	and	fixed	with	the	 inner	side	down	on	a	platform	with	the	

help	 of	 double	 faced	 adhesive	 tape.	 A	 strip	 of	 the	 trilayer	 with	 the	

dimensions	of	5	cm	to	1	cm	was	fixed	to	the	bottom	of	a	piston	with	the	

help	of	two	clamps.	The	resulting	locating	surface	had	the	dimension	of	

one	square	centimeter.	

Before	 each	measurement	 the	 piece	 of	 small	 intestine	was	wetted	with	 some	droplets	 of	

PBS	with	Pen	Strep	to	obtain	the	same	test	conditions	for	every	specimen.	In	a	first	step	the	

piston	 was	 lowered	 to	 the	 intestine	 with	 a	 speed	 of	 10	mm/	min	 and	 pushed	 into	 the	

intestine	 until	 a	 load	 of	 0.1	N	was	measured.	 The	 load	 of	 0.1	N	was	 held	 for	 30	 seconds.	

Subsequently	the	piston	was	raised	from	the	intestine	with	a	speed	of	0.5	mm/	sec	until	the	

film	was	 separated	 from	 the	 intestine	 and	 the	 load	was	 recorded.	 The	 adhesive	 strength	

based	on	the	area	of	1	cm³	could	be	calculated.	

7.5 Results	

7.5.1 Images	

	
Figure	89:	Cross	section	of	bilayers	made	 from	LR708	covered	with	3%	respectively	

5%	alginate	

	

	
Figure	88:	

Mucoadhesion	test	
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mesh	 3	%	alginate	 5	%	alginate	

PLA	PEG	PLA	

	 	

PLA	

	 	
Figure	90:	Images	of	strips	made	from	the	bilayer	from	the	top	and	the	bottom	

The	 images	 of	 strips	 from	 the	 top	 and	 from	 the	 bottom	 of	 the	 trilayers	 reveal	 the	

penetration	 of	 the	 stained	 alginate	 solution	 into	 the	 mesh.	 The	 film	 made	 of	 PLA	 is	

transparent	and	colorless.	The	mesh	spun	on	top	of	the	film	has	a	whitish	appearance.	The	

more	lipophilic	the	polymer	of	the	mesh,	the	less	did	the	stained	alginate	solution	sink	into	

the	mesh.	Therefore	with	the	mesh	prepared	from	PLA	no	alginate	solution	could	be	seen	at	

all,	because	 it	was	 just	on	top	of	the	mesh	without	penetrating	 it.	With	the	mesh	made	of	

PLA	PEG	PLA	the	bottom	was	blue,	too,	because	the	alginate	solution	did	sink	into	the	mesh.	

7.5.1.1 SEM	images		

PLA	PEG	PLA	mesh	 PLA	mesh	

	 	
Figure	91:	SEM	images	of	meshes	

The	 SEM	 images	 revealed	 the	 obtained	 fiber	 morphology	 of	 the	 electrospun	 meshes.	

Electrospinning	 of	 PLA	 PEG	 PLA	 resulted	 in	 cylindrical	 shaped	 thin	 fibers,	 while	

electrospinning	of	the	PLA	solution	led	to	ribbon	like	slightly	thicker	fibers.	 	
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7.5.1.2 Light	microscopic	images	

	 3%	alginate	 5%	alginate	

PLA	film	

	 	
PLA	film		
PLA	 PEG	 PLA	
mesh	

	 	
PLA	film		
PLA	mesh	

	 	
Figure	92:	Light	microscopic	images	of	multilayers	

In	the	light	microscopic	images	show	the	different	layers	of	the	prepared	films.	The	images	

of	the	bilayer	show	the	PLA	layer	and	the	alginate	layer	that	are	bound	to	each	other.	Images	

of	the	trilayers	show	the	difference	between	the	PLA	PEG	PLA	mesh	and	the	PLA	mesh.	The	

alginate	 layer	 sank	 into	 the	more	hydrophilic	PLA	PEG	PLA	mesh	and	did	not	 sink	 into	 the	

PLA	mesh	but	was	covering	it	completely.	
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7.5.1.3 Tensile	test	

a)	

	
I	 PLA	film	

II	 3%	alginate	film	

III	 5	%	alginate	film	

IV	 PLA	film	covered	with	3	%	alginate	

V	 PLA	film	covered	with	5	%	alginate	
	

b)	

	
I	 PLA	films	with	PLA	PEG	PLA	mesh	covered	with	3	%	alginate	

II	 PLA	film	with	PLA	mesh	covered	with	3	%	alginate	

III	 PLA	film	with	PLA	PEG	PLA	mesh	covered	with	5	%	alginate	

IV	 PLA	film	with	PLA	mesh	covered	with	5	%	alginate	
	

c)	

	 	
I	 PLA	film	

II	 3%	alginate	film	

III	 5	%	alginate	film	

IV	 PLA	film	covered	with	3	%	alginate	

V	 PLA	film	covered	with	5	%	alginate	
	

d)	

	
I	 PLA	films	with	PLA	PEG	PLA	mesh	covered	with	3	%	alginate	

II	 PLA	film	with	PLA	mesh	covered	with	3	%	alginate	

III	 PLA	film	with	PLA	PEG	PLA	mesh	covered	with	5	%	alginate	

IV	 PLA	film	with	PLA	mesh	covered	with	5	%	alginate	
	

	 	

Figure	93:	Tensile	test	of	trilayers.	First	layer	is	always	made	of	LR708.	Polymers	for	the	mesh	and	alginate	solution	

are	as	indicated.	*	equates	p	<	0.05.	a)	maximum	load	[N]	of	mono	and	bilayers	b)	maximum	load	[N]	of	trilayers	c)	

strain	at	maximum	load	[%]of	mono	and	bilayers	d)	strain	at	maximum	load	[%]of	trilayers	
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The	PLA	film	with	about	11	N	had	a	higher	maximum	load	than	the	alginate	films	with	about	

3	N	and	5	N.	The	bilayers	as	well	as	the	trilayers	had	a	maximum	load	of	about	14	N	whereas	

the	maximum	load	of	the	trilayers	was	only	a	little	bit	higher	than	the	maximum	load	of	the	

bilayers.	The	individual	PLA	film	had	the	highest	strain	with	a	quite	high	variability,	followed	

by	the	two	elastic	alginate	films	of	about	50	%.	The	combined	bilayers	and	trilayers	then	had	

the	 lowest	 strain	of	20	%	and	 less.	Generally,	 this	 showed	 that	 the	 trilayers	 can	withstand	

higher	 forces,	but	 the	monolayers	 can	be	 stretched	more	 than	 the	 combined	bilayers	 and	

the	monolayers.		

7.5.1.4 T-peel	test	

	
I	 PLA	film	covered	with	3	%	alginate	

II	 PLA	film	with	PLA	PEG	PLA	mesh	covered	with	3	%	alginate	

III	 PLA	film	with	PLA	mesh	covered	with	3	%	alginate	

IV	 PLA	film	covered	with	5	%	alginate	

V	 PLA	film	with	PLA	PEG	PLA	mesh	covered	with	5	%	alginate	

VI	 PLA	film	with	PLA	mesh	covered	with	5	%	alginate	
	

Figure	94:	T-peel	test	of	bilayers	and	trilayers	**	equates	p<0.001,	*	equates	p	<	0.05	

The	 subsequently	 performed	 T-peel	 test	 showed	 that	 the	 mesh	 increased	 the	 adhesive	

forces	of	the	PLA	film	and	the	alginate	film.	The	bilayers	could	be	separated	with	a	maximum	

force	 of	 about	 0.04	N.	 The	 films	 prepared	 from	 the	 5	%	 alginate	 solution	 thereby	 sticked	

slightly	 better	 to	 the	 PLA	 film	 than	 the	 film	 from	 the	 3	%	 alginate	 solution.	 With	 the	

structured	meshes	the	load	increased	significantly	to	about	0.9	N.	During	the	measurements	

in	could	be	observed,	that	the	alginate	layer	was	separated	from	the	PLA	film	with	the	PLA	

mesh	still	adhering	to	the	PLA	film.	In	case	of	the	trilayers	with	the	PLA	PEG	PLA	meshes	the	

mesh	together	with	the	alginate	layer	was	removed	from	the	PLA	film.	The	trilayers	with	the	

I II III IV V VI

lo
ad

 [N
]

0.02

0.04

0.06

0.08

0.10

0.12

0.14 **

**
*

** **

**
**

** **

**= P<0.001
* = P<0.05



Chapter	7	 	 	 Multilayer	

	
174	

	

3	%	 alginate	 solution	 showed	 a	 higher	 adhesive	 force	with	 the	 PLA	 PEG	 PLA	meshes	 than	

with	the	PLA	meshes,	whereas	the	trilayers	with	the	5	%	alginate	solution	had	a	higher	force	

with	the	PLA	mesh.		

7.5.1.5 Mucoadhesion	test	
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I	 piston	

II	 PLA	film	

III	 PLA	films	with	PLA	PEG	PLA	mesh	covered	with	3	%	alginate	

IV	 PLA	film	with	PLA	mesh	covered	with	3	%	alginate	

V	 PLA	film	with	PLA	PEG	PLA	mesh	covered	with	5	%	alginate	

VI	 PLA	film	with	PLA	mesh	covered	with	5	%	alginate	
	

Figure	 95:	 Mucoadhesion	 test	 of	 the	 alginate	 layer	 from	 trilayers.	 **	 equates	

p<0.001,	*	equates	p	<	0.05.		

The	piston	without	a	 film	and	the	 individual	PLA	 layer	showed	significantly	 lower	adhesive	

forces	 to	 the	 pig	 intestine	 than	 all	 alginate	 layers	 of	 the	 different	 trilayers.	 The	 trilayers	

prepared	 with	 a	 PLA	 PEG	 PLA	 mesh	 and	 the	 3	%	 solution	 of	 alginate	 generally	 had	 the	

highest	average	adhesive	force	of	about	0.1	[N].	
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7.6 Discussion	

In	 contrast	 to	 the	 earlier	 investigated	 bilayers,	 for	 trilayers	 it	was	 necessary	 to	 use	 a	 PLA	

layer	with	a	higher	thickness,	because	it	had	to	be	cut	and	peeled	from	the	class-plate	alone	

before	 the	 second	 layer,	 the	 mesh	 was	 added	 on	 top	 of	 the	 PLA	 film	 using	 the	 electro	

spinning	 process.	 Therefore,	 the	 absolute	 values	 of	 the	 mechanical	 strengths	 are	 not	

comparable.	

Similar	 to	 the	bilayers	 prepared	with	 cohesion	promoters	 an	 additive	 effect	 regarding	 the	

mechanical	properties,	maximum	load	and	strain	at	maximum	load,	could	be	observed	with	

trilayers	prepared	with	different	meshes	as	cohesion	promoter	(Figure	93	a	+	b).	As	expected	

the	PLA	layer	alone	and	the	alginate	layers	alone	could	only	withstand	lower	forces	than	the	

combined	trilayers.	However,	the	mesh	used	as	cohesion	promoter	did	not	massively	affect	

the	 tensile	 properties	 of	 the	 trilayer,	 indicating	 only	 a	 limited	 mechanical	 stability	 to	

withstand	stretching	of	the	mesh	layer.	The	maximum	load	as	well	as	the	strain	at	maximum	

load	was	nearly	in	the	same	range	as	the	respective	values	of	the	bilayers.	But	with	the	help	

of	 the	 meshes	 the	 cohesion	 between	 the	 alginate	 and	 the	 PLA	 layer	 could	 be	 improved	

significantly.	 The	 T-peel	 test	 showed,	 that	 higher	 forces	 were	 necessary	 to	 separate	 the	

layers	connected	via	a	mesh	than	the	two	layers	without	a	mesh	connected	via	the	cohesion	

promoter	 glycerol	 investigated	 in	 the	 bi-layered	 constructs.	 Finally	 this	 established	

interdigitation	 between	 the	 two	 different	 polymer	 layers	 firstly	 allowed	 applying	 a	

mucoadhesion	test	without	the	physical	separation	of	the	layers	during	the	test	procedure.	

Accordingly,	 the	PLA	film	covered	with	all	 types	of	mucoadhesive	alginate	 layers	showed	a	

significantly	higher	adhesion	to	tissue	than	the	PLA	layer	alone,	indicating	a	quite	promising	

connection	of	the	different	polymer	layers.		

7.7 Conclusion	

With	the	help	of	small	molecular	weight	additives	like	PEI	or	glycerol	it	was	possible	to	make	

the	two	polymer	layers	of	lipophilic	PLA	and	hydrophilic	alginate	adhere	to	each	other.	The	

combined	 bilayers	 could	 already	withstand	 higher	 forces	 than	 the	monolayers,	 due	 to	 an	

additive	 effect	 of	 the	mechanical	 properties	 of	 the	 individual	monolayers.	 Testing	 several	

thicknesses	of	 the	alginate	 layer	 it	 could	be	seen	 that	with	a	 thickness	of	about	40	µm	an	
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optimum	 is	 reached	 and	 that	 thicker	 layers	 show	 no	 further	 improvements	 regarding	 the	

maximum	load	and	the	tensile	strain.		

Due	 to	 the	 still	 observed	 separation	 of	 the	 layers	 upon	 incorporation	 in	 buffers,	 further	

stabilization	was	achieved	with	the	help	of	mediating	polymer	meshes	and	the	formation	of	

trilayered	 constructs.	 This	 combination	 allowed	 the	 successful	 attachment	 to	 wet	 tissue	

surfaces	without	an	observed	separation	of	the	individual	film	layers.	Accordingly,	a	surgeon	

would	be	able	to	stick	the	multilayer	to	the	tissue	after	cutting	it	into	the	desired	shape	and	

subsequently	suture	it	to	the	tissue	without	disturbing	slipping	at	the	site	of	application.	Due	

to	 the	 temporary	 mucoadhesion	 of	 the	 non-cross-linked	 alginate	 this	 additional	 fixation	

would	still	be	necessary.	
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8. Summary	and	Outlook	

Chapter	8	and	9	give	a	summary	of	the	whole	thesis	in	English	as	well	as	in	German.	
Furthermore	an	outlook	is	given.	 	
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8.1 Summary	

Current	clinically	used	lipophilic	anti-adhesive	films,	like	SurgiWrap®,	have	to	be	fixed	to	the	

affected	tissue	using	sutures	due	to	their	limited	adhesiveness	and	only	degrade	very	slowly	

within	months	and	years	due	 to	 the	hydrophobicity	 and	 the	high	molecular	weight	of	 the	

used	PLA,	which	effectively	inhibits	the	uptake	of	water.	The	aim	of	this	work	was	to	prepare	

films	 that	 have	 a	much	 faster	 degradation	 pathway	 due	 to	 a	 hydrogel	 nature	 and	 ideally	

adhere	to	the	tissue	by	themselves.	Therefore,	films	of	different	hydrophilic	polymers	were	

prepared,	which	were	thought	to	provide	faster	degradation	and	subsequent	elimination	as	

well	 as	 good	adhesive	properties.	One	 investigated	polymer	was	 the	very	well	 established	

alginate,	 which	 has	 shown	 its	 good	 characteristics	 to	 support	 skin	 healing	 already	 in	

commercial	wound	dressings.	However,	due	to	its	hydrophilicity	and	good	water	solubility,	a	

film	consisting	of	alginate	alone	would	swell	and	dissolve	very	fast	in	the	moist	environment	

of	 the	 peritoneal	 cavity.	 Therefore	 several	 cross-linking	 techniques	 were	 established	 and	

investigated	to	obtain	thin	films	with	suitable	mechanical	properties	as	well	as	erosion	time.	

As	alternative	polymer	with	beneficial	properties	for	wound	healing	applications	hyaluronic	

acid	was	chosen,	since	it	is	an	essential	component	of	the	physiological	extracellular	matrix	

of	many	tissues.	Whereas	a	labile	physical	cross-linking	was	preferred	for	the	alginate	films,	

films	 prepared	 of	 hyaluronic	 acid	 were	 cross-linked	 chemically	 using	 an	 easy	 degradable	

disulfide	 linkage	 to	 provide	 sufficient	 dissolution	 stability.	 Due	 to	 the	 obtained	 limited	

mechanical	 stability	 of	 the	 hydrophilic	 alginate	 film,	 it	 was	 also	 investigated	 in	 different	

combinations	with	anti-adhesive	PLA	layers	to	prepare	a	bifacial	film	for	adhesion	prevention	

after	 peritoneal	 surgery.	 The	 resulting	 layered	 constructs	 accordingly	 would	 be	

mucoadhesive	 on	 one	 side	 and	 anti-adhesive	 on	 the	 PLA	 side	 allowing	 to	 keep	 affected	

tissues	 glidingly	 separated	 and	 eventually	 allow	 a	 more	 convenient	 application	 by	 the	

surgeon.	

To	obtain	a	homogeneous	distribution	of	the	alginate	cross-linking	calcium	within	the	film,	

calcium	was	 added	 to	 the	 polymer	 solution	 in	 form	 of	 hardly	 soluble	 calcium	 salts	 or	 as	

stable	calcium	complex	to	avoid	an	uncontrolled	and	rapid	gelation.	After	casting	thin	films	

into	a	perti	dish	or	with	the	help	of	a	drawing	apparatus	onto	a	glass	plate	(Chapter	3)	the	

calcium	 could	 be	 released	 well-controlled	 by	 lowering	 the	 pH	 with	 addition	 of	 acids,	 like	



Summary	and	Outlook	 	 Chapter	8	

	
179	

	

lactic	 acid	 or	 a	 slowly	 hydrolyzing	 lactone,	 like	 GDL.	 This	 process	 subsequently	 led	 to	 the	

formation	of	visibly	clear	films	of	accurate	thickness	and	defined	cross-linking	density.		

Initially	 the	process	was	established	using	 lactic	acid	solutions,	which	were	sprayed	on	the	

turbid	 films	 to	 dissolve	 the	 calcium	 salts.	 Despite	 the	 observed	 clearing	 of	 the	 films,	 the	

added	 lactic	 acid	 also	 acted	 as	 softener,	 which	 was	 revealed	 during	 the	 subsequent	

mechanical	 testing	 of	 the	 dry	 films.	 The	 technically	 different	 spraying	 onto	 films	 was	

therefore	 replaced	 with	 a	 slowly	 hydrolyzing	 lactone	 added	 to	 the	 drawing	 solution.	 As	

further	alternative	calcium	source,	the	pH-dependent	calcium	complex	with	EDTA	was	also	

investigated,	but	here	the	remaining	EDTA	acid	in	the	films	impeded	the	cross-linking	leading	

to	 a	 fast	 dissolution	 in	 neutral	 buffer	 solutions.	 Accordingly,	 the	 better	 dispersible	 dibasic	

calcium	phosphate	was	 chosen	as	 calcium	source	 together	with	gluconic	acid	δ-lactone	as	

acid	component,	which	lead	to	homogenous	films	with	adjustable	mechanical	properties	as	

well	as	erosion	time.	

As	 the	 preparation	 of	 thin	 films	 using	 the	 drawing	 apparatus	 led	 to	 very	 brittle	 air-dried	

films,	 this	 problem	 had	 to	 be	 overcome	 by	 the	 addition	 of	 suitable	 plasticizers,	 like	

hydrophilic	glycerol	or	polyethylene	glycol.	Since	the	small	glycerol	is	most	likely	withdrawn	

from	the	film	in	the	peritoneal	cavity	very	rapidly,	the	immobilization	of	the	larger	PEG	was	

also	 investigated	 via	 chemical	 linkage	 to	 the	 alginate	 chains.	 The	 physical	 as	 well	 as	 the	

chemical	addition	of	PEG	did	not	lead	to	the	desired	softening	effect,	because	in	both	cases	

PEG	tended	to	crystalize	in	the	dry	films.	Instead	only	glycerol	with	an	optimal	concentration	

of	10	%	was	applied	as	plasticizer	for	further	film	preparation,	which	was	even	independent	

of	the	minimal	residual	amounts	of	water	retained	by	different	amounts	of	glycerol.	

The	 obtained	 films	 were	 investigated	 regarding	 their	 mechanical	 properties	 (tensile,	

puncture	 and	 suture	 pullout	 tests)	 and	 regarding	 their	 degradation	 time	 in	 calcium	

containing	 buffer	 solutions	 over	 eight	 weeks.	 All	 these	 investigations	 of	 differently	

composed	films	and	preparation	techniques	proved	that	thin	alginate	films	with	adjustable	

mechanical	properties	and	erosion	times	could	be	prepared,	mainly	controlled	by	the	chosen	

calcium	amount	and	the	appropriate	content	of	plasticizer.	

Based	 on	 these	 results	 it	 was	 concluded	 that	 the	 actually	 incorporated	 calcium	 amounts	

mainly	determined	the	properties	of	the	obtained	films.	For	this	reason	two	alginates	with	
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different	guluronic	acid	contents	were	chosen	to	 investigate	the	 impact	of	 the	polymer	on	

the	 cross-linking	 process	 and	 the	 resulting	 film	 properties	 (Chapter	 4).	 In	 order	 to	 use	

accurate	 calcium	amounts	 the	 calcium	binding	 capacity	of	 the	used	polymers	was	 verified	

using	isothermal	titration	calorimetry	and	accordingly	defined	amounts	of	calcium	were	used	

for	 the	 film	 preparation.	 Additional	 rheological	 tests,	 turbidity	 measurements	 and	 a	

mechanical	 test	 of	 the	 freshly	 formed	 gels	 further	 verified	 the	 dependence	 of	 the	 cross-

linking	efficiency	on	the	present	calcium	amounts	as	well	as	the	presence	of	guluronic	acid	

blocks.	 Finally	 also	 the	 obtained	 films	 prepared	 from	 the	 different	 alginates	 were	 tested	

mechanically	 and	 a	 degradation	 study	 in	 buffers	 with	 different	 calcium	 amounts	 was	

performed.	These	results	showed	that	the	mechanical	properties	as	well	as	degradation	time	

can	also	be	significantly	influenced	by	the	choice	of	alginate	with	respect	to	its	guluronic	acid	

content	and	the	used	calcium	amounts	incorporated	in	the	films.	The	higher	the	cross-linking	

extent	 the	 longer	 was	 the	 observed	 degradation	 time.	 The	mechanical	 tests	 furthermore	

showed,	 that	 the	 properties	 of	 the	 films	 could	 not	 steadily	 be	 improved	 with	 increasing	

cross-linking	extent,	but	instead	reached	a	maximum	and	became	even	worse,	because	the	

resulting	 films	 became	 too	 stiff	 and	 brittle,	 e.g.	 for	 surgical	 handling.	 This	 furthermore	

highlights	 the	 important	 necessity	 to	 determine	 the	 actual	 binding	 capacity	 of	 each	 used	

alginate.	

To	additionally	investigate	the	drug	release	from	thin	polymer	films	two	different	positively	

charged	drugs,	gentamicin	sulfate	and	vancomycin	hydrochloride,	were	incorporated	in	films	

prepared	from	hydrophilic	alginate,	lipophilic	PLA	and	PLA	PEG	PLA	consisting	of	hydrophilic	

and	 lipophilic	 polymer	 blocks	 (Chapter	 5).	 To	 be	 able	 to	 prepare	 films	 from	 the	 lipophilic	

polymers	with	a	homogenous	distribution	of	 the	hydrophilic	drugs	two	 loading	procedures	

were	established.	With	the	suspension	method,	the	hydrophilic	drug	was	merely	suspended	

in	 the	 polymer	 solution	 in	 form	 of	 a	 dry	 powder	 leading	 to	 quite	 big	 as	 received	 drug	

crystals.	 With	 the	 cosolvens	 method,	 the	 hydrophilic	 drug	 was	 initially	 dissolved	 in	 the	

cosolvens	methanol	before	it	was	added	to	the	lipophilic	polymer	solution,	which	generally	

led	to	the	formation	of	much	smaller	drug	crystals	in	the	dry	polymer	films.	

During	the	drug	loading	of	the	hydrophilic	alginate	films	with	the	charged	drugs,	especially	

gentamicin	showed	strong	ionic	interactions	with	alginate	leading	to	the	formation	of	stable	

complexes.	 Therefore	 a	 drug-polymer-complex	 was	 prepared	 via	 precipitation	 and	
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subsequently	added	to	the	drawn	films.	The	studied	drug	release	for	all	films	was	performed	

with	discs	 in	HEPES	buffer	 containing	 a	defined	amount	of	 calcium	 in	order	 to	 sufficiently	

stabilize	the	otherwise	dissolving	alginate	film	during	the	investigation	time	of	the	release.		

The	observed	release	profiles	demonstrated	that	the	release	of	a	hydrophilic	drug	could	be	

strongly	 influenced	 by	 the	 polymer	 used	 for	 film	 preparation	 and	 the	 method	 of	 drug	

loading.	 The	more	 hydrophilic	 polymer	 films	 also	 led	 to	 a	 higher	 released	 amount	 of	 the	

hydrophilic	 drug.	 Even	 the	 different	methods	 of	 drug	 loading	 showed	 a	 detectable	 effect,	

indicating	that	bigger	crystals	prepared	with	the	suspension	method	led	to	a	higher	absolute	

drug	release	 in	 the	 investigated	time,	because	the	bigger	drug	crystals	 reaching	out	of	 the	

thin	polymer	film	could	be	dissolved	faster	and	more	effective	than	small	crystals	buried	in	

the	lipophilic	polymers.	

However	 it	 was	 also	 shown	 that	 the	 expected	 ionic	 interactions	 between	 the	 negatively	

charged	polymer	alginate	and	the	positively	charged	gentamicin	did	not	significantly	affect	

the	 release	 kinetics,	 leading	 only	 to	 a	minimally	 delayed	 drug	 release,	 but	 instead	 100	%	

released	amounts	from	the	hydrophilic	alginate	films,	which	was	generally	not	achieved	for	

the	lipophilic	PLA	based	polymers.	

With	the	help	of	additional	microbiological	tests	the	efficacy	of	the	films	against	the	bacteria	

escherichia	 coli,	 staphylococcus	 aureus	 and	 staphylococcus	 epidermidis	 could	 be	

demonstrated.	 Accordingly	 films	 were	 prepared,	 which	 release	 biologically	 effective	 drug	

compounds	 and	 provide	 antibiotic	 activity	 that	 correlates	 well	 with	 the	 drug	 amounts	

detected	during	the	release	study.	

For	 the	 finally	 investigated	 cross-linking	 of	 hyaluronic	 acid,	 a	 chemical	 cross-linking	 was	

chosen	 due	 to	 the	 less	 effective	 interaction	 with	 divalent	 ions.	 To	 cross-link	 the	 films	

properly,	 hyaluronic	 acid	 was	 thiolated	 using	 carbodiimide	 chemistry	 with	 a	 thiol	 bearing	

hydrazide	(Chapter	6).	The	cross-linking	extent	of	the	prepared	films	was	investigated	using	

hyaluronic	acids	of	two	different	molecular	weights	and	different	degrees	of	substitution.	As	

expected,	 the	 substitution	 degree	 could	 be	 strongly	 influenced	 by	 the	 used	 amounts	 of	

activating	carbodiimide.	However	 it	could	also	be	demonstrated,	 that	steric	 interactions	of	

the	high	molecular	weight	polymer	strongly	influenced	the	resulting	substitution	with	thiol.	

Especially	for	the	high	molecular	weight	polymer	the	observed	strong	gel	formation	during	
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synthesis	 lead	 to	 less	 effective	 conjugation	 and	 therefor	 unpredictable	 and	 less	 effective	

substitution,	probably	even	with	different	local	distribution	along	the	polymer	chain.	

During	the	subsequent	film	preparation,	the	influence	of	the	drying	speed	and	the	pH	of	the	

polymer	solutions	on	the	cross-linking	extend	were	 investigated.	 In	order	to	 form	disulfide	

bridges,	 the	 thiolated	 hyaluronic	 acid	 had	 to	 be	 dissolved	 in	 appropriate	 buffers	 or	 be	

neutralized	before	drawing	on	the	glass	plate.	Furthermore	the	still	hydrated	films	needed	

oxidizing	 agents	 like	 oxygen	 and	 retention	 of	 the	 humidity	 in	 order	 to	 allow	 effective	

oxidation	and	initiation	of	cross-linking	throughout	the	films.	Fast	drying	of	the	films	led	to	

insufficient	cross-linking	and	rapid	dissolution	of	the	obtained	dried	polymer	films.	

In	order	to	enhance	the	cross-linking	process,	 thiolated	hyaluronic	acids	were	 furthermore	

oxidized	 with	 alloxan	 and	 H2O2	 and	 investigated	 using	 rheological	 measurements	 and	 a	

confined	 compression	 test.	 The	 mechanical	 evaluation	 of	 the	 obtained	 films	 finally	

demonstrated	 that	 similar	 to	 alginate	 the	 higher	 cross-linking	 extend	 led	 to	 more	 brittle	

films,	 indicating	 the	 need	 for	 additional	 plasticizers.	 Also	 the	 swelling	 of	 the	 films	

demonstrated	 a	 clear	 dependence	 on	 the	 achieved	 cross-linking	 of	 the	 hyaluronic	 acid.	

Accordingly	further	improvements	are	necessary	before	these	pure	hyaluronic	acid	films	can	

be	used	in	a	clinical	setting.	

The	 preparation	 of	 bifacial	 films	 of	 hydrophilic	 and	 lipophilic	 polymers	 comes	 along	 with	

several	aspects	that	have	to	be	regarded.	Besides	the	different	solubilities	of	the	polymers	

the	wettability	and	spreading	of	the	layers	had	to	be	optimized	(Chapter7).	Furthermore	due	

to	the	significantly	different	properties	of	the	used	polymers,	the	two	layers	did	not	stick	to	

each	other	after	drying	and	an	easy	procedure	to	enhance	cohesion	had	to	be	identified.	To	

overcome	 these	 problems	 different	 additives	 like	 PEI	 and	 glycerol	 were	 investigated	 as	

cohesion	promoters.	PEI	was	added	to	the	lipophilic	PLA	layer,	to	introduce	positive	charges	

and	enhance	spreading	of	 the	subsequently	drawn	hydrophilic	alginate	 layer.	Furthermore	

the	negatively	charged	alginate	could	interact	with	the	positive	charges	of	the	PEI	in	the	PLA	

layer,	 which	 might	 additionally	 enhance	 the	 cohesion.	 Glycerol	 in	 significantly	 higher	

amounts	than	as	plasticizer	(Chapter	3	and	4)	was	also	supplied	to	the	alginate	layer	in	order	

to	make	 it	 stickier	 and	 increase	 the	 cohesion	 to	 the	 PLA	 layer.	 That	 already	 allowed	 the	

preparation	of	bilayers	and	made	the	two	layers	stick	to	each	other	 initially.	Unfortunately	

the	two	layers	of	all	bilayers	could	be	easily	separated	after	drying,	further	incubation	of	the	
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films	in	buffer	even	showed,	that	the	cohesion	promoters	are	only	effective	in	the	air	dried	

films,	resulting	in	immediate	delamination	in	buffer.	Accordingly	these	bifacial	films	are	only	

beneficial	 for	 the	 immediate	 handling	 of	 the	 films	 during	 surgical	 application,	 since	 the	

mucoadhesive	film	will	only	stay	temporarily	on	the	PLA	layer.	

Another	 investigated	 possibility	 to	 enhance	 cohesion	 of	 the	 two	 film	 layers	 was	 the	

modification	 with	 the	 help	 of	 porous	 polymer	 meshes.	 The	 PLA	 layer	 was	 accordingly	

covered	with	an	electrospun	mesh	consisting	of	 lipophilic	PLA	or	the	more	hydrophilic	PLA	

PEG	 PLA.	 Although	 contact	 angle	 measurements	 revealed,	 that	 the	 meshes	 had	 a	 higher	

contact	angle	than	the	pure	PLA	film,	the	alginate	solution	drawn	onto	the	PLA	film	covered	

with	the	PLA	PEG	PLA	mesh	penetrated	into	the	mesh	and	made	the	two	layers	stick	to	each	

other	much	stronger	than	for	the	investigated	bilayers.	In	contrast	the	alginate	solution	did	

not	 penetrate	 into	 the	 more	 lipophilic	 PLA	 mesh,	 indicating	 also	 an	 effect	 of	 the	 used	

polymer	 for	 electrospinning.	 Subsequently	 performed	 T-peel	 tests	 revealed	 that	 the	

separation	 of	 the	 two	 layers	 connected	 with	 the	 mesh	 needed	 higher	 forces	 than	 the	

separation	 of	 the	 two	 layers	 without	 the	 mesh.	 Accordingly,	 the	 finally	 performed	

mucoadhesion	 test	 demonstrated	 that	 the	 created	 layered	 device	 was	 stable	 enough	 to	

show	adhesion	to	tissue	without	separation	of	the	alginate	layer	from	the	PLA	layer.	Layered	

constructs	 of	 different	 polymers	 may	 therefore	 be	 ideal	 new	 devices	 to	 provide	

mucoadhesion	and	anti-adhesive	properties	in	one	system.	
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8.2 Conclusion	and	Outlook	

With	the	help	of	different	chemical	and	physical	cross-linking	techniques	 it	was	possible	to	

prepare	 polymer	 films	 of	 the	 hydrophilic	 polymers	 alginate	 and	 hyaluronic	 acid	 with	

adjustable	 mechanical	 properties	 and	 erosion	 time.	 The	 achieved	 variability	 is	 highly	

valuable	 to	 adjust	 the	 prepared	 films	 for	 the	 treatment	 of	 different	 wound	 sites	 and	

applications.	

By	successfully	combining	two	different	polymer	layers,	a	bifacial	film	with	a	mucoadhesive	

hydrophilic	layer	and	a	smooth	lipophilic	layer	could	be	prepared,	which	might	be	useful	as	

new	 anti-adhesive	 device	with	 potentially	 easier	 fixation	 at	 the	 application	 site.	 However,	

this	 needs	 to	 be	 verified	 and	 later	 probably	 improved	 using	 hydrophilic	 polymers,	 which	

form	permanent	covalent	linkages	to	the	damaged	peritoneum.	

The	established	at	least	bilayered	films	might	furthermore	be	promising	to	combine	different	

polymers	and	drug	loading	techniques	to	achieve	devices	with	multiple	release	steps.	This	is	

highly	intriguing	to	provide	for	example	an	initial	burst	release	followed	by	a	slower	release	

over	the	time	in	order	to	initially	fight	infections	and	later	support	wound	healing	using	the	

appropriate	drug	substances.	Accordingly	designed	sophisticated	systems	would	need	to	be	

investigated	 in-vitro	 and	 subsequently	 tested	 in	 appropriate	 animal	 models.
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9. Zusammenfassung	und	Ausblick	

9.1 Zusammenfassung	

Zurzeit	 müssen	 lipophile	 antiadhäsive	 Filme,	 wie	 SurgiWrap®,	 an	 betroffenes	 Gewebe	

angenäht	werden,	da	sie	nicht	unmittelbar	am	Gewebe	anhaften.	Des	Weiteren	bauen	sich	

diese	Filme	aus	PLA	aufgrund	 ihres	hydrophoben	Charakters	und	der	dadurch	gehinderten	

Wasseraufnahme	im	Körper	sehr	langsam	ab,	was	Monate	bis	Jahre	dauern	kann.	Ziel	dieser	

Arbeit	war	die	Herstellung	 von	 Filmen,	welche	 sich	 aufgrund	 ihres	hydrophilen	Charakters	

schneller	 abbauen	 und	 sich	 idealerweise	 am	 Gewebe	 anheften.	 Um	 dies	 zu	 erreichen	

wurden	 Filme	 aus	 unterschiedlichen	 hydrophilen	 Polymeren	 hergestellt,	 welche	 einen	

schnelleren	 Abbau	 und	 daher	 eine	 schnellere	 Elimination,	 sowie	 auch	 die	 Fähigkeit	 zur	

Gewebeanhaftung	 aufwiesen.	 Ein	 dafür	 eingesetztes	 Polymer	 war	 das	 schon	 klinisch	

etablierte	 Alginat,	 welches	 seine	 guten	 Eigenschaften	 bei	 der	 Unterstützung	 der	

Wundheilung	in	kommerziell	erwerblichen	Wundauflagen	gezeigt	hat.	Allerdings	würde	sich	

ein	 Film,	 welcher	 nur	 aus	 Alginat	 besteht	 aufgrund	 seiner	 Hydrophilie	 und	 guten	

Wasserlöslichkeit	in	der	feuchten	Umgebung	des	Peritoneums	relativ	schnell	auflösen.	Daher	

wurden	mehrere	Quervernetzungsmethoden	etabliert	und	untersucht,	um	dünne	Filme	mit	

geeigneten	mechanischen	Eigenschaften	und	Abbauzeiten	zu	erhalten.	Als	weiteres	Polymer	

mit	 guten	 Eigenschaften	 für	 die	 Wundheilung	 wurde	 Hyaluronsäure	 gewählt,	 da	 sie	 ein	

essentieller	 Bestandteil	 der	 physiologischen	 Extrazellulärmatrix	 vieler	 Gewebe	 ist.	

Wohingegen	 eine	 leichte	 physikalische	 Quervernetzung	 für	 die	 Alginatfilme	 bevorzugt	

wurde,	 wurden	 die	 Filme	 aus	 Hyaluronsäure	 chemisch	 mit	 reduktiv	 spaltbaren	

Disulfidbrücken	 quervernetzt,	 um	 eine	 ausreichende	 Stabilität	 gegenüber	 einer	 schnellen	

Auflösung	 zu	 gewährleisten.	 Aufgrund	 der	 nur	 limitierten	 mechanischen	 Stabilität	 der	

hydrophilen	 Alginatfilme	 wurden	 diese	 außerdem	 mit	 einer	 antiadhäsiven	 PLA	 Schicht	

kombiniert,	 um	 einen	 zweiseitigen	 Film	 für	 die	 Vermeidung	 von	 Adhäsionen	 nach	

peritonealen	Operationen	herzustellen.	Die	 resultierenden	mehrlagigen	Konstrukte	weisen	

eine	mukoadhäsive	 Schicht	 auf	 der	 einen	 Seite	 und	 eine	 antiadhäsive	 Schicht	 auf	 der	 PLA	

Seite	auf,	welche	das	Gleiten	des	beeinträchtigten	Gewebes	gewährleisten	und	ebenso	die	

Handhabung	durch	den	Chirurgen	erleichtern	soll.	

Um	 eine	 homogene	 Verteilung	 des	 Alginat-vernetzenden	 Calciums	 im	 Film	 zu	 erhalten,	

wurde	 das	 Calcium	 in	 Form	 eines	 schwer	 löslichen	 Calciumsalzes	 oder	 eines	 stabilen	
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Calciumkomplexes	 zu	 der	 Polymerlösung	 hinzugegeben,	 um	 eine	 unkontrollierte	 schnelle	

Quervernetzung	 zu	 vermeiden.	 Nachdem	 dünne	 Filme	 in	 Petrischalen	 gegossen	 oder	 mit	

Hilfe	eines	Filmziehgerätes	auf	Glasplatten	gezogen	wurden	(Kapitel	3)	konnte	das	Calcium	

kontrolliert	 freigesetzt	 werden,	 indem	 der	 pH-Wert	 durch	 Zugabe	 von	 Säuren,	 wie	

Milchsäure	 oder	 des	 langsam	 hydrolysierenden	 Laktons	 GDL,	 herabgesetzt	 wurde.	 Mit	

diesem	 Prozess	 konnten	 transparente,	 klare	 Filme	 mit	 einer	 definierten	 Schichtdicke	 und	

Quervernetzungsdichte	hergestellt	werden.	

Zunächst	wurde	der	Prozess	mit	Milchsäure	etabliert,	welche	auf	die	trüben	Filme	gesprüht	

wurde,	 um	 das	 Calciumsalz	 aufzulösen.	 Neben	 der	 zu	 beobachtenden	 Klärung	 der	 Filme	

wirkte	 die	 Milchsäure	 aber	 zusätzlich	 auch	 als	 Weichmacher,	 was	 anschließende	

mechanische	 Testungen	 der	 getrockneten	 Filme	 zeigten.	 Das	 undefinierte	 Besprühen	 der	

Filme	 wurde	 daher	 durch	 ein	 langsam	 hydrolysierendes	 Lakton	 ersetzt,	 welches	 zu	 der	

auszuziehenden	 Lösung	 gegeben	 wurde.	 Eine	 weitere	 alternative	 Calciumquelle,	 der	 pH	

sensitive	Calcium-EDTA-Komplex	wurde	auch	untersucht,	in	dem	Fall	verhinderte	das	im	Film	

verbleibende	 EDTA	 die	 effiziente	 Quervernetzung,	 was	 zu	 einer	 zügigen	 Auflösung	 in	

neutralem	 Puffer	 führte.	 Demzufolge	 wurde	 das	 besser	 dispergierbare	 Calcium-

hydrogenphosphat	 als	 bevorzugte	 Calciumquelle	 in	 Kombination	 mit	 GDL	 als	 saure	

Komponente	 verwendet,	 was	 zu	 homogenen	 Filmen	 mit	 einstellbaren	 mechanischen	

Eigenschaften	sowie	variablen	Abbauzeiten	führte.	

Da	 die	 Herstellung	 von	 dünnen	 Filmen	 mit	 Hilfe	 eines	 Filmziehgeräts	 zu	 sehr	 brüchigen	

luftgetrockneten	Filmen	führte,	mussten	Weichmacher,	wie	Glycerin	oder	Polyethylenglykol,	

hinzugegeben	 werden,	 um	 dieses	 Problem	 zu	 beheben.	 Weil	 das	 kleine	 Glycerin	 in	 der	

Peritonealhöhle	wahrscheinlich	 recht	 schnell	 aus	 dem	 Film	 herausgelöst	wird,	wurde	 eine	

Fixierung	des	größeren	PEGs	über	eine	chemische	Bindung	an	die	Alginatkette	untersucht.	

Die	 physikalische	 aber	 auch	 die	 chemische	 Zugabe	 von	 PEG	 führte	 jedoch	 nicht	 zu	 dem	

erwünschten	 weichmachenden	 Effekt,	 da	 in	 beiden	 Fällen	 das	 PEG	 dazu	 neigte	 in	 den	

getrockneten	 Filmen	 auszukristallisieren.	 Stattdessen	 wurde	 nur	 Glycerin	 mit	 einer	

optimalen	 Konzentration	 von	 10	%	 als	 Weichmacher	 für	 weitere	 Filmherstellungen	

verwendet,	 was	 unabhängig	 von	 dem	 zurückgehaltenem	 Wasser	 war,	 welches	 von	

unterschiedlichen	Mengen	Glycerin	im	Film	zusätzlich	gebunden	wurde.	
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Die	erhaltenen	Filme	wurden	bezüglich	ihrer	mechanischen	Eigenschaften	(Zug-,	Durchstoß-	

und	 Fadenausreißtest)	 und	 ihrer	 Abbaubarkeit	 in	 Calcium	 haltigen	 Pufferlösungen	 über	

einen	 Zeitraum	 von	 acht	 Wochen	 untersucht.	 All	 diese	 Untersuchungen	 von	 Filmen	 mit	

unterschiedlicher	 Zusammensetzung	und	unterschiedlichen	Herstellungsmethoden	 zeigten,	

dass	 Filme	 mit	 einstellbaren	 mechanischen	 Eigenschaften	 und	 Abbauzeiten	 hergestellt	

werden	 konnten.	 Dies	 wurde	 hauptsächlich	 von	 der	 gewählten	 Calciummenge	 und	 dem	

entsprechenden	Gehalt	an	Glycerin	kontrolliert.	

Basierend	 auf	 diesen	 Ergebnissen	 konnte	 man	 schlussfolgern,	 dass	 die	 tatsächlich	

vorhandene	 Menge	 Calcium	 hauptsächlich	 verantwortlich	 ist	 für	 die	 Eigenschaften	 der	

resultierenden	Filme.	Aus	diesem	Grund	wurden	zwei	Alginate	mit	unterschiedlichem	Gehalt	

an	 Guluronsäure	 gewählt,	 um	 auch	 den	 Einfluss	 des	 Polymers	 auf	 den	

Quervernetzungsprozess	und	die	erhaltenen	Filmeigenschaften	zu	untersuchen	 (Kapitel	4).	

Um	 eine	 möglichst	 exakte	 Menge	 an	 Calcium	 zu	 benutzen,	 wurde	 die	

Calciumbindungskapazität	 der	 benutzen	 Polymere	 mit	 Hilfe	 der	 isothermen	

Titrationskalorimetrie	überprüft	und	entsprechende	Calciummengen	für	die	Filmherstellung	

benutzt.	Zusätzlich	durchgeführte	rheologische	Tests,	Trübungsmessungen	und	mechanische	

Tests	der	frisch	hergestellten	Gele	zeigten	die	Abhängigkeit	der	Quervernetzungseffektivität	

sowohl	 von	 der	 vorhandenen	 Calciummenge	 als	 auch	 der	 Häufigkeit	 der	

Guluronsäureblöcke.	 Schlussendlich	wurden	 auch	 die	 aus	 den	 unterschiedlichen	 Alginaten	

hergestellten	 Filme	 mechanisch	 getestet	 und	 eine	 Abbaustudie	 in	 Puffern	 mit	

unterschiedlichen	 Calciummengen	 durchgeführt.	 Diese	 Untersuchungen	 zeigten,	 dass	

sowohl	 die	 mechanischen	 Eigenschaften	 als	 auch	 die	 Abbauzeit	 stark	 von	 der	 Wahl	 des	

Alginates	 mit	 seinem	 Guluronsäuregehalt	 und	 der	 eingearbeiteten	 Calciummenge	

beeinflusst	 werden	 können.	 Je	 höher	 der	 Quervernetzungsgrad,	 desto	 länger	 war	 die	

beobachtete	Abbauzeit.	Die	mechanischen	Tests	zeigten	außerdem,	dass	die	Eigenschaften	

der	 Filme	 nicht	 stetig	 mit	 einer	 Erhöhung	 des	 Quervernetzungsgrads	 verbessert	 werden	

konnten.	 Es	 wurde	 im	 Gegenteil	 ein	 Maximum	 beobachtet,	 nach	 welchem	 die	 Filme	

schlechter	 wurden,	 da	 die	 Filme	 dann	 steif	 und	 brüchig	 wurden,	 was	 für	 die	 chirurgische	

Handhabung	nicht	geeignet	wäre.	Dies	unterstreicht	die	Wichtigkeit	der	Untersuchung	der	

Bindungskapazität	jedes	verwendeten	Alginats	für	weitere	Filmherstellungen.		
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Um	zusätzlich	die	Arzneistofffreisetzung	aus	dünnen	Polymerfilmen	zu	untersuchen,	wurden	

zwei	positiv	geladene	Arzneistoffe,	Gentamicinsulfat	und	Vancomycin-hydrochlorid	in	Filme	

eingearbeitet,	welche	aus	hydrophilem	Alginat,	lipophilem	PLA	und	PLA	PEG	PLA	bestehend	

aus	hydrophilen	und	lipophilen	Polymerblöcken	hergestellt	wurden	(Kapitel	5).	Um	Filme	aus	

den	 lipophilen	 Polymeren	 mit	 einer	 homogenen	 Verteilung	 der	 hydrophilen	 Arzneistoffe	

herstellen	 zu	 können,	 wurden	 zudem	 zwei	 Beladungsmethoden	 etabliert.	 Mit	 der	

Suspensionsmethode	wurde	der	Arzneistoff	in	Form	eines	trockenen	Pulvers	lediglich	in	der	

Polymerlösung	suspendiert	was	zu	recht	großen	Arzneistoffkristallen	im	Film	führte.	Mit	der	

Kosolvensmethode	 wurde	 der	 hydrophile	 Arzneistoff	 zunächst	 im	 Kosolvens	 Methanol	

gelöst,	 bevor	 er	 zur	 Polymerlösung	 gegeben	 wurde,	 was	 generell	 zur	 Bildung	 von	 viel	

kleineren	Kristallen	im	trockenen	Polymerfilm	führte.	

Während	 der	 Arzneistoffbeladung	 der	 hydrophilen	 Alginatfilme	 mit	 den	 geladenen	

Arzneistoffen,	 zeigte	 insbesondere	 Gentamicin	 eine	 starke	 ionische	 Wechselwirkung	 mit	

dem	 Alginat,	 was	 zur	 Bildung	 eines	 stabilen	 Komplexes	 führte.	 Daher	 wurde	 mit	 einer	

Präzipitation	 ein	 Arzneistoff-Polymer-Komplex	 hergestellt,	 mit	 welchem	 anschließend	 die	

Filme	 beladen	 und	 gezogen	werden	 konnten.	 Die	 resultierende	 Arzneistofffreisetzung	 aus	

allen	Filmen	wurde	mit	Scheiben	in	HEPES	Puffer	untersucht,	welcher	eine	definierte	Menge	

an	 Calcium	 enthielt,	 um	 den	 Alginatfilm	 über	 die	 Zeit	 der	 Untersuchung	 der	

Arzneistofffreisetzung	zu	stabilisieren,	da	dieser	sind	sonst	aufgelöst	hätte.	

Die	 beobachteten	 Freisetzungsprofile	 zeigten,	 dass	 die	 Freisetzung	 eines	 hydrophilen	

Arzneistoffs	sowohl	stark	vom	für	die	Filmherstellung	verwendeten	Polymer	als	auch	von	der	

Methode	der	Arzneistoffbeladung	beeinflusst	werden	kann.	Die	hydrophileren	Polymerfilme	

führten	 so	 zu	 einer	 deutlich	 höheren	 Freisetzung	 des	 hydrophilen	 Arzneistoffs.	 Auch	 die	

unterschiedlichen	Methoden	der	Arzneistoffbeladungen	zeigten	einen	nachweisbaren	Effekt.	

Größere	 Kristalle,	 hergestellt	 mit	 der	 Suspensionsmethode	 führten	 zu	 einer	 höheren	

Freisetzung	 im	 untersuchten	 Zeitraum,	 da	 die	 größeren	 Kristalle	 aus	 dem	 dünnen	 Film	

herausschauten	 und	 schneller	 aufgelöst	 werden	 konnten	 als	 kleine	 Kristalle,	 welche	 im	

lipophilen	Polymer	eingebettet	waren.	

Jedoch	konnte	auch	gezeigt	werden,	dass	die	erwarteten	 ionischen	Interaktionen	zwischen	

dem	 negativ	 geladenen	 Alginat	 und	 dem	 positiv	 geladenen	 Gentamicin	 die	

Freisetzungskinetik	 nicht	 signifikant	 beeinflussten.	 Es	 kam	 lediglich	 zu	 einer	 minimalen	
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initialen	 Verzögerung	 der	 Arzneistofffreisetzung,	 dann	 aber	 zu	 einer	 vollständigen	

Freisetzung	aus	den	hydrophilen	Alginatfilmen,	was	jedoch	generell	nicht	mit	den	lipophilen	

Polymeren	beobachtet	wurde.	

Mit	Hilfe	zusätzlich	durchgeführter	mikrobiologischer	Tests	konnte	die	Effektivität	der	Filme	

gegen	Bakterien	wie	Escherichia	Coli,	Staphylococcus	Aureus	und	Stapylococcus	Epidermidis	

gezeigt	 werden.	 Entsprechend	 wurden	 Filme	 hergestellt,	 welche	 biologisch	 aktive	

Arzneistoffkomponenten	freisetzten	und	eine	antibiotische	Aktivität	boten,	welche	mit	den	

Arzneistoffmengen,	 welche	 während	 der	 Freisetzungsversuche	 gefunden	 wurden	

korrelierten.	

Für	 die	 weiterhin	 untersuchte	 Quervernetzung	 der	 Hyaluronsäure	 wurde	 eine	 chemische	

Quervernetzung	 gewählt,	 was	 aufgrund	 der	 weniger	 effektiven	 Interaktion	mit	 bivalenten	

Ionen	 notwendig	war.	 Um	die	 Filme	 ausreichend	 zu	 vernetzten,	wurde	 die	 Hyaluronsäure	

mit	 einem	 Thiol	 haltigen	 Hydrazid	 mit	 Hilfe	 der	 Carbodiimid-Chemie	 thiofunktionalisiert	

(Kapitel	6).	Um	den	Quervernetzungsgrad	der	hergestellten	Filme	zu	untersuchen,	wurden	

zwei	 Hyaluronsäuren	 mit	 unterschiedlichen	 Molekulargewichten	 und	 unterschiedlichen	

Substitutionsgraden	 benutzt.	 Wie	 erwartet	 konnte	 der	 Substitutionsgrad	 stark	 von	 den	

eingesetzten	 Mengen	 an	 aktivierendem	 Carbodiimid	 beeinflusst	 werden.	 Jedoch	 konnte	

auch	 gezeigt	 werden,	 dass	 sterische	 Interaktionen	 der	 hochmolekularen	 Polymere	 die	

resultierende	Substitution	mit	Thiolen	stark	beeinflussten.	Speziell	für	das	Polymer	mit	dem	

hohen	 Molekulargewicht	 konnte	 während	 der	 Synthese	 so	 eine	 starke	 Gelbildung	

beobachtet	 werden,	 was	 zu	 einer	 wenig	 effektiven	 Konjugation	 und	 somit	 weniger	

effektiven	Substitutionen	führte.	Wahrscheinlich	führte	das	sogar	zu	einer	unterschiedlichen	

lokalen	Verteilung	der	Thiolfunktionen	entlang	der	Polymerkette.	

Während	 der	 anschließenden	 Filmherstellung	 wurde	 der	 Einfluss	 der	 Trocknungs-

geschwindigkeit	 und	 des	 pH-Wertes	 der	 Polymerlösung	 auf	 den	 Quervernetzungsgrad	

untersucht.	Um	Disulfidbrücken	auszubilden,	musste	die	thiofunktionalisierte	Hyaluronsäure	

in	 einem	 angemessenen	 Puffer	 gelöst	 und	 neutralisiert	 werden,	 bevor	 sie	 auf	 einer	

Glasplatte	 ausgezogen	 werden	 konnte.	 Außerdem	 benötigten	 die	 hydratisierten	 Filme	

oxidierende	Substanzen	wie	Sauerstoff	und	eine	gewisse	Restfeuchtigkeit,	um	eine	effektive	

Oxidation	 und	 Initiation	 der	 Quervernetzung	 im	 Film	 zu	 gewährleisten.	 Eine	 zu	 schnelle	
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Trocknung	der	Filme	führte	zu	einer	nicht	ausreichenden	Quervernetzung	und	somit	zu	einer	

vorzeitigen	Auflösung	der	erhaltenen	trockenen	Polymerfilme.	

Um	 den	 Quervernetzungsprozess	 zu	 verbessern	 wurde	 die	 thiofunktionalisierte	

Hyaluronsäure	mit	Alloxan	oder	H2O2	oxidiert	und	mit	Hilfe	 von	 rheologischen	Messungen	

und	 eines	 Kompressionstests	 untersucht.	 Die	 mechanischen	 Tests	 der	 erhaltenen	 Filme	

zeigten,	 dass	 ähnlich	 zu	 den	 Alginatfilmen	 eine	 höhere	 Quervernetzung	 zu	 brüchigeren	

Filmen	 führte,	 was	 zeigt,	 dass	 ein	 zusätzlicher	 Weichmacher	 benötigt	 wird.	 Auch	 die	

Quellung	der	 Filme	 zeigte	 eine	deutliche	Abhängigkeit	 von	der	 erreichten	Quervernetzung	

der	 Hyaluronsäure.	 Daher	 sind	 weitere	 Verbesserungen	 notwendig	 damit	 die	 puren	

Hyaluronsäurefilme	eingesetzt	werden	können.	

Die	 Herstellung	 von	 zweiseitigen	 Filmen	 aus	 einem	 hydrophilen	 und	 einem	 lipophilen	

Polymer	geht	einher	mit	mehreren	Aspekten,	welche	 in	Betracht	gezogen	werden	müssen.	

Neben	 der	 unterschiedlichen	 Löslichkeit	 der	 Polymere,	 muss	 die	 Benetzbarkeit	 und	 die	

Spreitung	 der	 Schichten	 optimiert	 werden	 (Kapitel	 7).	 Aufgrund	 der	 signifikant	

unterschiedlichen	Eigenschaften	der	Polymere,	haften	die	zwei	Lagen	nach	Trocknung	nicht	

aneinander.	Daher	musste	eine	einfache	Prozedur	entwickelt	werden	um	die	Anhaftung	der	

Lagen	zu	verbessern.	Um	dieses	Problem	zu	beheben	wurden	unterschiedliche	Zusätze	wie	

Polyethylenimin	(PEI)	und	Glycerin	eingesetzt	um	die	Haftung	zu	verbessern.	PEI	wurde	zur	

lipophilen	PLA	Schicht	hinzugegeben,	um	positive	Ladungen	in	den	Film	einzubringen	und	die	

Spreitung	 der	 anschließend	 ausgezogenen	 hydrophilen	 Alginatschicht	 zu	 verbessern.	 Des	

Weiteren	 konnte	 das	 negativ	 geladene	Alginat	mit	 den	 positiven	 Ladungen	 des	 PEI	 in	 der	

PLA-Schicht	 interagieren,	 was	 die	 Anhaftung	 zusätzlich	 verbesserte.	 Glycerin	 in	 signifikant	

höheren	 Konzentrationen	 als	 eingesetzt	 als	Weichmacher	 (Kapitel	 3	 und	 4)	 wurde	 zu	 der	

Alginatschicht	gegeben,	um	diese	klebriger	zu	machen	und	die	Anhaftung	an	die	PLA	Schicht	

zu	erhöhen.	Dies	erlaubte	erstmals	die	Herstellung	von	zweischichtigen	Filmen,	in	denen	die	

beiden	 Lagen	 aneinander	 hafteten.	 Unglücklicherweise	 konnten	 die	 zwei	 Schichten	 aller	

zweischichtigen	Filme	nach	der	Trocknung	leicht	wieder	voneinander	getrennt	werden.	Eine	

zusätzliche	Inkubation	in	Puffer	zeigte,	dass	die	Zusätze,	welche	die	Kohäsion	ermöglichten	

nur	in	den	getrockneten	Filmen	effektiv	waren	und	sich	im	Puffer	sofort	trennten.	Daher	sind	

die	 zweiseitigen	 Filme	 nur	 für	 die	 direkte	 Anwendung	 während	 einer	 Applikation	 von	



Kapitel	9		 	 Zusammenfassung	und	Ausblick	

	
191	

	

Nutzen,	da	der	mukoadhäsive	Film	nur	 für	einen	 sehr	kurzen	Zeitraum	an	der	PLA	Schicht	

haftet.	

Eine	weitere	Möglichkeit	die	Haftung	der	Schichten	zu	verbessern	war	die	Modifikation	mit	

Hilfe	 von	 porösen	 Polymernetzen.	 Die	 PLA	 Schicht	 wurde	mit	 einem	 elektrogesponnenen	

Netz	 aus	 lipophilem	 PLA	 oder	 hydrophilerem	 PLA	 PEG	 PLA	 beschichtet.	 Obwohl	

Kontaktwinkelmessungen	zeigten,	dass	die	Netze	einen	höheren	Kontaktwinkel	als	der	Film	

aufwiesen,	 konnte	 die	 Alginatlösung,	 welche	 auf	 dem	 mit	 einem	 PLA	 PEG	 PLA	 Netz	

beschichteten	PLA	Film	ausgezogen	wurde,	in	das	Netz	eindringen	und	sorgte	dafür,	dass	die	

beiden	Schichten	stärker	aneinander	hafteten	als	bei	den	einfachen	zweischichtigen	Filmen.	

Im	 Gegensatz	 dazu	 konnte	 die	 Alginatlösung	 jedoch	 nicht	 in	 das	 lipophile	 PLA	 Netz	

eindringen,	 was	 auch	 einen	 Einfluss	 des	 für	 das	 Elektrospinnen	 verwendeten	 Polymers	

zeigte.	 Anschließend	 durchgeführte	 Abschältests	 zeigten,	 dass	 die	 Trennung	 der	 zwei	

Schichten,	welche	über	ein	Netz	miteinander	verbunden	waren	höhere	Kräfte	benötigte	als	

die	Trennung	von	zwei	Schichten	ohne	Netz.	Demzufolge	zeigten	Mukoadhäsionstest,	dass	

die	hergestellten	mehrschichtigen	Filme	stabil	genug	sind,	um	an	Gewebe	zu	haften,	ohne	

dass	sich	die	Alginatschicht	von	der	PLA	Schicht	trennt.	Daher	können	mehrschichtige	Filme	

aus	 unterschiedlichen	 Polymeren	 ein	 ideales	 neues	 Produkt	 darstellen,	 welches	

mukoadhäsive	und	antiadhäsive	Eigenschaften	in	einem	System	aufweist.	
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9.2 Schlussfolgerung	und	Ausblick	

Mit	Hilfe	unterschiedlicher	chemischer	und	physikalischer	Quervernetzungsmethoden	war	es	

möglich	Polymerfilme	aus	den	beiden	hydrophilen	Polymeren	Alginat	und	Hyaluronsäure	mit	

einstellbaren	 mechanischen	 Eigenschaften	 und	 Abbauzeiten	 herzustellen.	 Die	 erreichte	

Variabilität	ist	sehr	nützlich,	um	die	hergestellten	Filme	für	die	Behandlung	unterschiedlicher	

Wunden	und	Verwendungszwecke	anzupassen.	

Mit	 der	 erfolgreichen	 Kombination	 zweier	 unterschiedlicher	 Polymerschichten	 konnten	 so	

zweiseitige	 Filme	 mit	 einer	 mukoadhäsiven	 und	 einer	 glatten	 Schicht	 hergestellt	 werden,	

was	 sehr	 nützlich	 ist	 für	 neuartige	 antiadhäsive	 Film	 mit	 leichterer	 Fixierbarkeit	 an	 der	

Applikationsstelle.	Trotzdem	müsste	dies	weiter	untersucht	und	verbessert	werden,	 indem	

man	 hydrophile	 Polymere	 benutzt,	 welche	 eine	 permanente	 kovalente	 Bindung	 mit	 dem	

verletzten	Peritoneum	bilden.	

Die	 hergestellten	 zweischichtigen	 Filme	 könnten	 außerdem	 vielversprechend	 sein,	 um	

Polymere	 und	 Arzneistoffbeladungstechniken	 zu	 kombinieren	 und	 so	 Filme	mit	 mehreren	

Freisetzungsstufen	herzustellen.	Dies	 ist	 interessant,	um	zum	Beispiel	eine	 initiale	 schnelle	

Freisetzung	 gefolgt	 von	 einer	 langsameren	 Freisetzung	 zu	 erreichen.	 So	 könnten	 initial	

Infektionen	bekämpft	werden,	um	anschließend	die	Wundheilung	mit	anderen	Arzneistoffen	

zu	 unterstützen.	 Dementsprechend	 hergestellte	 ausgeklügelte	 Systeme	 müssten	 jedoch	

zunächst	in-vitro	und	anschließend	in	einem	angemessenen	Tiermodell	getestet	werden.		
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