Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. U. Jepsen, D. G. Cooke, and M. Koch, “ Terahertz spectroscopy and imaging—Modern techniques and applications,” Laser Photonics Rev. 5, 124 (2011).
2. M. Tonouchi, “ Cutting-edge terahertz technology,” Nat. Photonics 1, 97 (2007).
3. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “ Carrier dynamics in semiconductors studied with time resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).
4. Y.-S. Lee, Principles of Terahertz Science and Technology ( Springer, Berlin, 2009).
5. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “ How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286 (2001).
6. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “ Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature 423, 734 (2003).
7. M. Porer, U. Leierseder, J.-M. Ménard, H. Dachraoui, L. Mouchliadis, I. E. Perakis, U. Heinzmann, J. Demsar, K. Rossnagel, and R. Huber, “ Non-thermal separation of electronic and structural orders in a persisting charge density wave,” Nat. Mater. 13, 857 (2014).
8. A. Pashkin, M. Porer, M. Beyer, K. W. Kim, A. Dubroka, C. Bernhard, X. Yao, Y. Dagan, R. Hackl, A. Erb, J. Demsar, R. Huber, and A. Leitenstorfer, “ Femtosecond response of quasiparticles and phonons in superconducting YBCO studied by wideband terahertz spectroscopy,” Phys. Rev. Lett. 105, 067001 (2010).
9. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “ Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31 (2011).
10. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “ Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256 (2013).
11. A. Arora, T. Q. Luong, M. Krüger, Y. J. Kim, C.-H. Nam, A. Manz, and M. Havenith, “ Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution,” Analyst 137, 575 (2012).
12. V. C. Nibali and M. Havenith, “ New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc. 136, 12800 (2014).
13. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “ THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47, 3797 (2002).
14. D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences ( Springer, Berlin, 2003), p. 117.
15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “ Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549 (2003).
16. W. L. Chan, J. Deibel, and D. M. Mittleman, “ Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
17. R. Chakkittakandy, J. Corver, and P. Planken, “ Quasi-near field terahertz generation and detection,” Opt. Express 16, 12794 (2008).
18. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, “ High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field,” Opt. Express 18, 26163 (2010).
19. N. Chen and Q. Zhu, “ Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607 (2002).
20. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “ Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17, 22847 (2009).
21. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “ Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18, 9976 (2010).
22. Y. Kim and D.-S. Yee, “ High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” Opt. Lett. 35, 3715 (2010).
23. R. Dietz, N. Viehweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “ All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39, 6482 (2014).
24. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “ Optical sampling by laser cavity tuning,” Opt. Express 18, 1613 (2010).
25. O. Schubert, M. Eisele, V. Crozatier, N. Forget, D. Kaplan, and R. Huber, “ Rapid-scan acousto-optical delay line with 34 kHz scan rate and 15 as precision,” Opt. Lett. 38, 2907 (2013).
26. P. Tournois, “ Acousto-optical programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245 (1997).
27. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “ Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39, 5471 (2014).
28. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “ Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33 (2010).
29. F. Brunner, O. Kwon, S. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “ A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496 (2008).
30. N. Palka, S. Krimi, F. Ospald, D. Miedzinska, R. Gieleta, M. Malek, and R. Beigang, “ Precise determination of thicknesses of multilayer polyethylene composite materials by terahertz time-domain spectroscopy,” J. Infrared Millimeter Terahertz Waves 36, 578 (2015).

Data & Media loading...


Article metrics loading...



We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105. Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/. The compact, all-optical design ensures alignment-free operation even in harsh environments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd