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CHAPTER 1

Introduction

Carbon nanotubes are a prominent carbon based nano-material. In 1952 first
multi-walled carbon nanotubes were discovered in TEM images [Radushkevich
and Luk’yanovich, 1952]. Subsequently, single-walled carbon nanotubes were ob-
served in discharge experiments [Iijima and Ichihashi, 1993, Bethune et al., 1993].
Ongoing progress in nano-fabrication techniques lead to first measurements of sin-
gle carbon nanotubes contacted to metallic leads; showing a quantum wire like
transport at low temperatures [Tans et al., 1997] and transistor behavior at room
temperature [Tans et al., 1998]. Further improvements of fabrication techniques
and measurement setups led to a rich field of carbon nanotube physics. Nowadays
carbon nanotubes can be grown defect-free directly on the substrate by chemical
vapor deposition. Carbon nanotubes are intrinsic one-dimensional conductors,
and the formation of a "zero-dimensional" quantum dot system is straightforward
compared, e.g., to electrostatically constricting a two-dimensional electron gas.
The quantum confinement of electrons in carbon nanotubes leads to a rich spec-
trum of transport phenomena; many different parameter regimes have already
been observed. Carbon nanotubes display Luttinger-liquid behavior [Bockrath
et al., 1999, Postma et al., 2001], show ballistic transport [Cao et al., 2005] and
Fabry-Perot like oscillations in an open transport regime [Liang et al., 2001].
Carbon nanotubes can be connected to many different types of metallic leads,
including ferromagnetic [Jensen et al., 2005] and superconducting materials [Mor-
purgo et al., 1999].
In addition, carbon nanotubes also show excelling mechanical properties, having
a low mass, high stiffness and an extremely high Young’s modulus [Lu, 1997].
They can act as mechanical beam resonators on the nano-scale [Sazonova et al.,
2004], achieving high-quality factors in carbon nanotube nano-electromechanical
devices [Hüttel et al., 2009a]. Recently quality factors of the mechanical bending
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mode vibration of a carbon nanotube resonator up to 5 · 106 were demonstrated
[Moser et al., 2014]. Low mass and ultimate quality factor made it possible to
employ carbon nanotubes as ultra-sensitive mass sensors [Lassagne et al., 2008].
Due to their high mechanical resonance frequency of several hundreds of mega-
hertz [Hüttel et al., 2009a, Stiller et al., 2013] carbon nanotubes also provide a
promising system for reaching the quantum limit of mechanical motion. This re-
quires kbT << h̄ω, which can here be in principle directly reached with common
dilution refrigerators.
A rather new development regarding carbon nanotubes is the integration in super-
conducting microwave circuits. Coplanar waveguides (CPW) were first suggested
in [Wen, 1969], here a transmission strip-line is fabricated on a dielectric substrate
material. Later CPWs were used as superconducting resonators [Day et al., 2003];
the small size of CPW resonators allowed the integration in on-chip microwave
circuits. In [Wallraff et al., 2004] the combination of a CPW resonator acting as
an on-chip cavity and a qubit defined in a cooper pair box was presented leading
to a solid state based cavity quantum electrodynamic system, a proposal first was
given by [Blais et al., 2004, Childress et al., 2004]. The Cooper pair box acts as
a charge qubit; its states are coupled to the electric field of the transmission line
resonator. A qubit is a fully manipulable quantum mechanical two-level system;
it is the basic unit for quantum computing and quantum cryptography. The mi-
crowave resonator can be employed for read-out and manipulation of the qubit
quantum states. As an example, a single electron in a double quantum dot or the
polarization of a single photon can act as a qubit. The experiments coupling a
superconducting microwave resonator and a qubit target the fundamental inter-
action of matter and light [Jaynes and Cummings, 1963, Childress et al., 2004].
The Jaynes-Cummings model describes the interaction of a two-level system and
a quantized harmonic mode of an optical cavity; by using a superconducting mi-
crowave resonator and an artificial atom, an analogon to a optical cavity can be
achieved.
Carbon nanotubes are a common material to define single and double quan-
tum dots, allowing also the formation of a charge or spin qubits; the absence of
hyperfine interaction in carbon yields a large spin decoherence time in carbon
nanotubes necessary for a manipulation of spin states [Fischer et al., 2009].
Recently the combination of a carbon nanotube single [Delbecq et al., 2011] and
double quantum dot [Viennot et al., 2014, Viennot et al., 2015] and a half wave-
length CPW resonator was presented. In carbon nanotubes the confinement of
electrons is much stronger than in a two-dimensional electron gas since they are
smaller in size and intrinsically one-dimensional. Furthermore carbon nanotubes
can display large electric dipole moments leading to a much stronger coupling of
both systems.
For the combination of carbon nanotube quantum dots and CPW resonators, a
reliable fabrication for both systems is necessary. In this thesis electronic and
mechanical experiments on clean, suspended carbon nanotubes are presented; in
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addition first measurements of niobium quarter wavelength CPW resonators are
shown.
This thesis starts with a short introduction of the fundamental electronic proper-
ties of carbon nanotubes in chapter 2. In the following chapter 3 the fabrication
process for overgrown carbon nanotube devices is explained. In addition the re-
quired room temperature and low temperature measurement setups are shown.
Chapter 4 presents the basic concept of quantum dot systems in carbon nan-
otubes. Numerical transmission calculations on carbon nanotubes and the influ-
ence of a parallel magnetic field on the carbon nanotube single particle spectrum
are shown in chapter 5 with the objective to identify the chirality of a measured
carbon nanotube. The interaction of phonons and electrons in carbon nanotubes
and the influence of a magnetic field is discussed in chapter 6. Chapter 7 discusses
a specific device where an applied gate voltage enables negative frequency tuning
of the carbon nanotube mechanical resonator. Preparatory measurements on su-
perconducting quarter-wavelength resonators are shown in chapter 8, discussing
also the potential design of the combination of superconducting resonators and
carbon nanotubes. Finally the experimental results of this thesis are concluded,
and a short outlook on possible future experiments is given. Technical details to
the different chapters are additionally presented in the appendix.





CHAPTER 2

Fundamental electronic properties of carbon nanotubes

In this chapter a brief overview of the fundamental properties of carbon nanotubes
is given. First, the lattice quantities defining a carbon nanotube are explained.
Then the band structure in zone-folding approximation is demonstrated.
The carbon atom, foundation of all organic chemistry, has an electronic shell con-
figuration of 2s1 2s2 2p2, i.e. every carbon atoms has six electrons. Particular for
carbon are the well known sp, sp2, and sp3 hybridizations leading to the wide field
of organic chemistry; a linear combination of the 2s2 electron and the 2p2 elec-
trons form energetically degenerate hybridized orbitals. An sp3 hybridized carbon
atom forms four covalent bonds via hybridization of the 2s orbital and the three
2p orbitals; this forms for instance diamond. The four hybridized orbitals are
arranged in a tetrahedron like structure to maximize the distance between them.
Another well known carbon compound, graphite, consists of sp2 hybridized car-
bon atoms. Here the 2s orbital and two 2p orbitals form three hybridized orbitals.
These are arranged in a plane with an angle of 120◦ between each hybridized or-
bital. This builds up a hexagonal lattice, which is sketched in figure 2.1. Graphite
consists of many of these layers adhering via van-der-Waals interaction. One sin-
gle layer is called graphene; a recently isolated two dimensional nano-scale mate-
rial. The fabrication of single layer graphene started a new field in physics due
to the excelling electronic properties of graphene [Novoselov et al., 2004]. The
investigation was honored with the Nobel prize in 2010. Since that time many
different researchers work on graphene. In this case of sp2 hybridization, the
third, non-hybridized p orbital of the carbon atoms in graphene forms delocal-
ized π orbitals. These are responsible for the electronic transport since σ bonds
are far away form the Fermi energy and do not contribute to electronic transport.
Carbon nanotubes can be imaged as rolled up graphene sheets; so it is not surpris-
ing to start with the graphene lattice to derive the properties of carbon nanotubes.
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2.1 Carbon nanotube lattice
Starting from graphene one can define the basic lattice parameters of carbon
nanotubes. The two atom unit cell of graphene is defined by two primitive lattice
vectors ~a1 and ~a2 (see figure 2.1) and a corresponding bond length abond = 1.42Å.
The resulting lattice constant reads

a = |~a1| = |~a2| = abond
√

3 = 2.46Å. (2.1)

An important quantity for carbon nanotubes is the so-called chiral vector

~Ch = n~a1 +m~a2; (2.2)

defining the roll-up direction for carbon nanotubes. In a thought-experiment,
where a graphene sheet is rolled up into a carbon nanotube it subsequently lies
along the circumference of the carbon nanotube. Together with the translation
vector ~T it defines the carbon nanotube unit cell. The translation vector reads

~T = 2m+ n

g
·~a1 −

2n+m

g
·~a2, (2.3)

with g being the greatest common divisor of (2m+ n) and (2n+m). The atom
number Z within one unit cell can be calculated using the vectors ~C and ~T ; the
results is

Z = 2 · |
~C × ~T |
|~a1 × ~a2|

. (2.4)

As one can easily see each carbon nanotube is fully described by its chiral indices
n and m, see figure 2.1. The chiral angle is given by

cos(Θ) =
~C ·~a1

|~C||~a1|
= 2n+m

2
√
n2 + nm+m2

(2.5)

and is defined as the angle between ~a1 and ~Ch. The hexagonal lattice restricts
the chiral angle to values between Θ = 0◦ and Θ = 30◦.
Depending on Θ different carbon nanotube classes arise. For Θ = 0◦ a so-called
zigzag type carbon nanotube is obtained and for Θ = 30◦ the carbon nanotube is
of armchair type. Both types are so-called achiral carbon nanotubes since they
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Figure 2.1: Sketch of a graphene lattice. The carbon atoms are depicted as
black dots. The two lattice vectors ~a1 and ~a2, the chiral vector ~Ch and the
translation vector ~T of an exemplary (4, 2) carbon nanotube are shown. Zig-zag
and armchair directions are depicted in cyan. The names arise from the shape of
the circumference.

have a mirror symmetry, all other types of carbon nanotubes are called chiral.
The roll-up direction for both types is sketched in figure 2.1.
The diameter of a (n,m) carbon nanotube reads

dCNT = |
~C|
π

= a
√
n2 + nm+m2

π
, (2.6)

which is typically in the range of a few nanometers. These values are the basic
quantities defining the carbon nanotube lattice. To derive an approximation for
the band structure and the electronic properties of a carbon nanotube one starts
with the dispersion relation for the π electrons of graphene

E(kx, ky) = ±
{

1 + 4 cos
(√

3kxa
2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)}1/2

, (2.7)

obtained using a tight binding approximation; a more detailed discussing can be
found in [Saito et al., 1998].
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Figure 2.2(a) shows this well-known dispersion relation of graphene. The π and
π∗ bands touch each other at the corners of the reciprocal first Brillouin zone,
these corner points are labeled as K in solid state physics. Only two of the six
corner points are independent in the reciprocal graphene lattice, the other points
are connected by lattice vectors. In graphene and carbon nanotubes the two
independent points are labeled K and K ′. The dispersion relation becomes linear
near the K and K ′ points. Graphene is a so-called zero band gap semiconductor
since the density of states at the Fermi energy goes to zero; but the valence and
conduction band touch each other at the K and K ′ points. Setting E(kx, ky) = 0
one can locate the six coordinate pairs (kxa, kya); they are listed in table 2.1.

(kxa, kya) (kxa, kya) (kxa, kya)

group 1
(
0,−4π

3

) (
2π√

3 ,
π
3

) (
− 2π√

3 ,
π
3

)
group 2

(
0,+4π

3

) (
2π√

3 ,−
π
3

) (
− 2π√

3 ,−
π
3

)
Table 2.1: Solutions E(kx, ky) = 0 of the graphene dispersion relation E(kx, ky),
only two of six points are independent in the graphene lattice, see text. The six
points are marked in figure 2.2(b).

2.2 Carbon nanotube band structure
The carbon nanotube band structure can be approximated using the so-called
zone-folding technique. The wave function along the carbon nanotube circumfer-
ence has to fulfill a 2π periodicity, requiring

~k · ~Ch = kxa

√
3

2 (n+m) + ky
a

2 (n−m) = 2πq (2.8)

for the wave vector ~k with an integer q. The one-dimensional sub-bands are
separated in momentum space by

∆k⊥ = 2π∣∣∣~Ch∣∣∣ . (2.9)

Note that the wave vectors k‖ along the carbon nanotube axis remain continu-
ous. One can see that the two-dimensional band structure of graphene this way
collapses to one dimensional sub-bands.
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Figure 2.2: (a) Band structure of graphene, following equation 2.7. The va-
lence and conduction band touch each other at six points, the so-called K and
K ′ points. The dispersion relation becomes linear near the K and K ′ points.
(b) Plot of the graphene dispersion relation E(kx, ky) in the ~kx − ~ky−plane; K
and K ′ points are marked with black and white dots. Solid lines depict the
one-dimensional dispersion lines for zig-zag (red) and armchair (black) carbon
nanotubes spaced by ∆k, see text.

As mentioned already above in the zone-folding approximation a carbon nan-
otube is metallic if the one-dimensional sub-bands intersect one of the K or K ′
points located at (kxa, kya) =

(
0,±4π

3

)
. Using equation 2.8 a carbon nanotube

intersects the valleys for

0 · (m+ n)± 4π
3 ·

1
2 (m− n) = 2πq. (2.10)

Since q is an integer, this is fulfilled for (n−m) = 3q. Thus, every third carbon
nanotube would be expected to show metallic behavior.

Armchair type

Armchair carbon nanotubes are rolled up in ~x-direction; so ~kx corresponds to ~k⊥
and ~ky corresponds to ~k‖. The quantization of ~k⊥ is given by



2.2. Carbon nanotube band structure 10

√
3nak⊥ = 2πq. (2.11)

Accordingly one obtains a spacing of the sub-bands in ~k⊥-direction as

k⊥ = 2πq√
3na

. (2.12)

This situation is sketched in figure 2.2(b). One can see that the sub-band for
q = 0 will always intersect the points (kxa, kya) =

(
0,±4π

3

)
; so armchair carbon

nanotubes are always metallic.
Using the dispersion relation of graphene the resulting one-dimensional dispersion
relation in ~ky-direction for an armchair carbon nanotube reads

E(kx, ky) = ±
{

1 + 4 cos
(
πq

n

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)}1/2

. (2.13)

In figure 2.3(a) and (b) the band structure of a (2,2) carbon nanotube and of a
(7,7) carbon nanotube are depicted; no band gap exists and the carbon nanotube
has metallic behavior like expected for armchair carbon nanotubes.

Zigzag type
In a zigzag type carbon nanotube the quantization is given by

nak⊥ = 2πq ⇒ k⊥ = 2πq
na

(2.14)

and the band structure reads as

E(kx, ky) = ±
{

1 + 4 cos
(√

3kxa
2

)
cos

(
πq

n

)
+ 4 cos2

(
πq

n

)}1/2

. (2.15)

Figure 2.3(c) shows an exemplary (5,0) zig-zag carbon nanotube; as mentioned
above a (5,0) zigzag carbon nanotube has a band gap since (n−m) = 5 6= 3q
for an integer q. This can also be seen in the calculated band structure using
equation 2.15; a band gap arises. In figure 2.3(d) the band structure of a (6,0)
zig-zag carbon nanotube is depicted also using equation 2.15. Now the condition
(n−m) = 6 = 3q is fulfilled for q = 2, the carbon nanotube is metallic, and no
band gap exists.
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Figure 2.3: Shown are the low-energy band structures of four different carbon
nanotubes, following the zone-folding approximation. The figures (a) and (b)
depict armchair carbon nanotubes (2,2) and (7,7); both have no band gap and
show metallic behavior. (c) depicts a (5,0) zig-zag carbon nanotube; a band gap
arises. A (6,0) zig-zag carbon nanotube (d) shows a metallic behavior within
zone-folding approximation.

Limits of the zone-folding approximation
The zone-folding approximation used so far for the calculation of the band struc-
ture for armchair and zig-zag carbon nanotubes does not account for effects aris-
ing due to the curvature of the carbon nanotube; for instance a nearly absent
spin-orbit coupling in graphene is significantly enhanced in carbon nanotubes.
The curvature is also responsible for the fact that only armchair carbon nanotubes
are truly metallic; in all other types being metallic in zone-folding approximation
a small band gap arises, giving these carbon nanotubes the name small band gap
carbon nanotubes.





CHAPTER 3

Fabrication and measurement techniques for carbon
nanotube devices

Many different methods for growing carbon nanotubes are known in literature.
One common way is chemical vapor deposition (CVD); this method is employed
for the carbon nanotube growth in this thesis. The CVD growth process was
optimized for clean and single-walled carbon nanotubes [Kong et al., 1998]. For
fabrication of the devices discussed here, the carbon nanotube growth is shifted
to the very last step in fabrication processing. This leads to defect-free carbon
nanotubes since no contaminations and defects occur due to further fabrication
steps [Cao et al., 2005].
Fundamental techniques necessary for the sample fabrication are explained in this
chapter. The detailed processing parameters can be found in appendix A.1. For
the measurements shown in chapter 4, 5, 6 and 8 a dilution system is employed
for cooling; in the end of this chapter a brief overview of the cooling mechanism
is presented.
Two slightly different electrode geometries for our device fabrication are used
within this thesis, also using different contact materials. Suitable metals have
to be chosen since the contact material has to survive the growth conditions of
850◦C and hydrogen/methane atmosphere. In the beginning we used rhenium
(Re) as contact material; as a second contact material an alloy of rhenium and
molybdenum (ReMo) was employed.
Figure 3.1 shows the processing sequence for both device types. As substrate
material a highly p-doped silicon wafer is used with a 500 nm thick silicon dioxide
layer on top.
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Figure 3.1: Fabrication sequence for suspended carbon nanotube devices. Op-
tical lithography is done for bond pads structures (a). After metallization (b)
and lift-off (c) a PMMA resist is brought onto the chip and illuminated using
a scanning electron microscope (d). A further metallization and lift-off process
is necessary (e) and reactive ion etching deepens the trenches subsequently (f).
Local deposition of the catalyst is achieved by EBL (g). Finally the catalyst
solution is dropped onto the chip (h) and carbon nanotubes are grown in a CVD
process (i). Adapted from [Stiller, 2011].
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3.1 Fundamental nanofabrication techniques

Optical lithography

Optical lithography is a standard clean room fabrication technique. It is used for
fast processing of rather large structures. A photosensitive resist is spin-coated
onto a substrate chip. Afterwards the chip is baked out on a hot plate. The
structures are defined on a glass mask coated with a fine chromium layer. In a
mask aligner system used for illumination, the position of the chip can be ad-
justed and finally controlled by an optical microscope. The whole chip can be
exposed within one fabrication step.
For the devices discussed here the bond pads and labels are patterned by optical
lithography. The fine inner structures are defined via electron beam lithography
(EBL) since they are too small for optical lithography. Scanning electron micro-
scope (SEM) pictures of the devices are shown in chapter 3.2, see e.g. figures 3.4
and 3.5.

Electron beam lithography

To achieve a higher resolution electron beam lithography (EBL) is employed. A
PMMA (Polymethylmethacrylat) resist is spin-coated onto the chip. The acceler-
ated electron beam cracks the long-chained PMMA molecules; the exposed resist
is dissolved during development.

Electrode material

Since the electrode material should stay conductive and not melt during the car-
bon nanotube growth, special requirements are necessary for the used material.
In this thesis rhenium (Re) and rhenium/molybdenum alloys (ReMo) are em-
ployed; both materials survive the carbon nanotube growth. For ReMo we use
a ratio of 75% rhenium to 25% molybdenum. Re is sputtered in an UHV cham-
ber using an argon plasma; ReMo is co-sputtered by simultaneously driving two
sputter sources. The ratio of both materials is varied by the applied power. Both
layers are adjusted to a thickness of 40 nm.

Reactive ion etching

To ensure freely suspended carbon nanotubes the trenches between the metallic
electrodes are deepened to about 220 nm by reactive ion etching. The metal
electrodes serve as etch mask. For selective etching of the silicon dioxide trifluor-
methane (CHF3) is used. Argon is employed for a general cleaning step.
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Chemical vapor deposition
In preparation for the carbon nanotube grown by chemical vapor deposition
(CVD), a catalyst suspension is drop-cast onto the substrate with an EBL pat-
terned resist followed by a lift-off procedure. Afterwards the chip is placed into
a glass tube and centered in the CVD oven; after heating it up to about 850◦C
the gas flow through the quartz tube is adjusted by mass flow controller. Figure
3.2 shows a sketch of the used CVD system. Methane gas is used for the growth;
it is cracked by the catalyst particles and provides the carbon feedstock for the
carbon nanotubes. A crucial point for the CVD growth is the leakproofness of
the gas handling system; small amounts of oxygen can already burn the carbon
nanotubes. Different improvements were done during this thesis. Following [Jin
et al., 2007] electronic gas flow controllers were installed. Only the latter samples
consisting of ReMo contact electrodes were grown using a low, regulated gas flow;
details about the growth recipe are listed in appendix A.1. In figure 3.3 SEM
pictures of different test devices for overgrown carbon nanotubes are depicted.

MFCs
furnace

quartz tubemethane

MFC

MFC

MFCargon

hydrogen

MFC

MFC

to exhaust

Figure 3.2: Sketch of the CVD growth setup used in Regensburg. For high
and low gas flow different mass flow controller are installed. The gas lines are
connected to a quartz tube. MFCs (Yellow) are used for high gas flow and green
ones for low gas flow.
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3.2 Electrode geometry for the carbon nanotube
overgrowth

As mentioned earlier two different sets of device geometries and electrode mate-
rials are used within this thesis. The device names are derived from the electrode
material.

Re sample

The first type of devices uses Re metallized electrodes. The electrode structure
is arranged circular around the catalyst material to improve the chance for an
overgrowth, see figure 3.4. The trenches between the metallic electrodes for a
possible overgrowth of a carbon nanotube are deepened by reactive ion etch-
ing, ensuring freely suspended carbon nanotubes. The trench width ranges from
300 nm to 800 nm. Each contact ring has its own bond pad fabricated by optical
lithography. To ease lift-off of the innermost circular structures, the right side of
the three circular structures was opened; this region is marked in figure 3.4.

ReMo sample

For later integration of carbon nanotubes into coplanar waveguide devices we
intend to use a gate finger, since substrates with a conductive back gate are not
suitable for high frequency applications due to the high signal damping; for the
details see chapter 8. The electrode geometry is changed to a triangular structure
making the gate finger implementation easier compared to the circular structure
of the Re sample. Figure 3.5 shows SEM pictures of the device geometry. Three
sets of electrodes and gate fingers are arranged around the catalyst material. The
trenches have a width of 500 nm and are deepened to about 220 nm. Bond pads
are again deposited using optical lithography; inner structures in a first EBL
step. After reactive ion etching deepening of the trenches the gate fingers and
their corresponding bond pads are prepared in a second EBL step.

3.3 Room temperature characterization
To avoid contamination suitable devices are only tested by electronic room tem-
perature measurements. For this purpose we employ a probe station with fine
needles for contacting the bond pads of the samples, see figure 3.6. A voltage
is applied to the source contact and the resulting current is recorded. The gate
is used to vary the electro-chemical potential within the carbon nanotube. If a
devices is showing a gate dependence of the current it is marked for low temper-
ature measurements (see also chapter 7.4). The chip is then glued into a chip
carrier and contacted by aluminum bond wires.
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Figure 3.3: SEM pictures of CVD grown carbon nanotube test samples; note
that suitable low temperature devices are not imaged using an SEM to avoid
contaminations by carbon deposition. (a) and (b) depict carbon nanotubes grown
over pre-defined Re contacts. (c) shows a carbon nanotube grown over three gate
electrodes isolated by an additional oxide layer.
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Figure 3.4: Tilted SEM pictures of the circular electrode geometry. Re is used
as contact metal; trenches are deepened by RIE. The width of the structures
ranges from 300 nm to 800 nm. Catalyst material is deposited in the center of
the circular structures (blue area). (b) Detailed view of the circular contacts.
The contaminations on the innermost electrode are caused by the CVD growth
process.
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Figure 3.5: (a) Tilted SEM image of the second electrode design using now ReMo
contacts. The design is changed to a triangular structure with a gate finger. (b)
Enlargement of one gate finger and the corresponding electrodes. Small particles
are visible at the ReMo contacts looking like metal pieces lying on-top of the
contacts. Unclear is their origin, they might be caused by melting during CVD
growth process.
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Figure 3.6: Sketch of the device pre-characterization using the room temperature
probe station. Fine needles contact the bond pads of the electrode material. The
gate is contacted at the edge of the substrate chip. Adapted from [Stiller, 2011].

3.4 The dilution refrigerator
The measurements presented in chapter 4, 5, 6 and 8 require a dilution refrigera-
tor. Two different cooling setups were used. For the measurements of chapter 4,
5 and 6 a top-loading system is employed, reaching a nominal base temperature
of 25mK (the sample is surrounded by liquid helium of the mixing chamber). For
the measurements presented in chapter 8 a dilution refrigerator system is opti-
mized for microwave experiments, reaching a base temperature of 7mK without
cabling. In the following the general working principles are summarized. Below
880mK two liquid phases arise in a mixture of liquid 3He and 4He. A 3He poor
phase (diluted phase) is found at the bottom of the mixing chamber, containing
6.6% of 3He solved in superfluid 4He. The second phase on top of is a more or
less pure 3He phase (concentrated phase). Removing 3He from the diluted phase
leads to a diffusion of 3He from the concentrated phase into the diluted phase,
such that the amount of 3He in the diluted phase is constant. This diffusion in
analogy to 3He "evaporating" into the superfluid 4He "vacuum", requires entropy
which is taken from the environment, leading to cooling. Refilling 3He into the
concentrated phase yields a continuous cooling cycle. Figure 3.7 shows a de-
tailed sketch of the 3He/4He circulation in a dilution system; for more details it
is referred to [Enss and Hunklinger, 2005, Pobell, 2007].
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CHAPTER 4

Electronic transport through carbon nanotube quantum dots

The fundamental electronic properties of carbon nanotubes were already pre-
sented in chapter 2. The typically ballistic nature of electronic transport through
a carbon nanotube is due to a mean free path of the traveling electrons which
is longer than the size of the carbon nanotube [White and Todorov, 1998, Javey
et al., 2003]; it can reach several micrometers [Purewal et al., 2007]. In the
Landauer-Büttiker formalism it turns out that each available spin degenerate
transport sub-band contributes an universal conductance value [Datta, 1995]

G = 2 · e
2

h
. (4.1)

In a defect-free carbon nanotube, the valleys K and K ′ in combination with
spin-up and spin-down lead to four transport channels and thereby a maximal
conductance of GCNT = 2 ·G, i.e., a minimal resistance of RCNT ≈ 6.5 kΩ. Note
that this is the case of ideally transmitting one-dimensional channels. In the case
of, e.g., tunnel barriers between leads and carbon nanotube higher device resis-
tance are to be expected. Confining the electronic system further one obtains a
zero-dimensional quantum dot system. This chapter gives a theoretical descrip-
tion of quantum transport through carbon nanotube quantum dots; in addition,
an overview of the electronic characterization of one employed device is given.
The device consists of a small band gap carbon nanotube lying over a 700 nm
wide trench of a Re type sample structure (compare chapter 3). The carbon
nanotube has a room temperature resistance of approximately 10 kΩ. The mea-
surements on this device presented here and in chapter 5 and 6 were performed
in cooperation with Daniel Schmid; additional data have already been published
in [Stiller, 2011, Schmid, 2014, Schmid et al., 2015a].

23



4.1. Quantum dots 24

4.1 Quantum dots

In general, a quantum dot is a small conducting island, placed in an otherwise
isolating material. It is confined in all three spatial dimensions and is coupled
by tunnel barriers to reservoirs typically named source and drain. In figure 4.1 a
schematic drawing of such a system is depicted. A gate electrode is capacitively
coupled to the quantum dot to tune its electro-chemical potential. More complex
gate electrode structures are possible to define double [Pothier et al., 1992, van der
Wiel et al., 2002] or even triple quantum dots [Gaudreau et al., 2012] in various
systems. Also carbon nanotube single [Tans et al., 1997, Jarillo-Herrero et al.,
2004] and double quantum dots [Biercuk et al., 2005, Sapmaz et al., 2006b, Jung
et al., 2013] were already presented.
The transport through a quantum dot depends on the relevant energy scales. The
charging energy EC is the necessary energy to add an additional charge carrier
to the quantum dot. If the thermal energy of the electrons kBT is much higher
than the charging energy (EC << kBT ) the transport through the quantum dot
behaves classically, i.e. no quantization effects will be seen. At low temperature
classical and quantum Coulomb blockade can be observed. Here only a brief
overview is given, for details it is referred to [van Houten et al., 1992, Kouwen-
hoven et al., 1997].

source drain
quantum

dot

gate

Γs Γd

Cg

CdCs

Figure 4.1: A quantum dot can be seen as a small conducting island. It is coupled
to two reservoirs. Charge carriers can be exchanged via tunnel barriers Γs and
Γd. A gate electrode is coupled capacitively to the quantum dot to tune the
electro-chemical potential of the quantum dot.
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Classical Coulomb blockade

Classical Coulomb blockade is observed if the thermal energy of the electrons kBT
is much smaller than the charging energy EC ; the charging energy depends on
the size of the quantum dot and is typically in the range of meV. At liquid helium
temperatures (4K), the thermal energy of the electrons is kBT ≈ 0.34meV. This
is the first requirement to observe classical Coulomb blockade. Additionally the
tunnel resistance has to be high enough that the charge carrier number on the
quantum dot is well defined. Using the Heisenberg uncertainty relation it turns
out that the tunnel resistance must exceed the resistance quantum h/e2. When
these two requirements are fulfilled, the current through the quantum dot can
be electrostatically suppressed by Coulomb blockade and the number of charge
carriers on the quantum dot is fixed.
Current flow through the quantum dot means: The charge carrier number on the
quantum dot is fluctuating at least by one. The electro-chemical potential of the
quantum dot

µ(N) = EN − EN−1, (4.2)

is defined as the difference of the ground state energies Ei for N and N−1 charge
carriers on the quantum dot. Electronic transport through the quantum dot is
allowed, if the electro-chemical potential of the quantum dot µ(N) is aligned to
the electro-chemical potentials of source µs and drain leads µd (until now we
assume Vbias = 0 and thus µs = µd):

µ(N) = µs = µd. (4.3)

In figure 4.2(a) the electro-chemical potentials µ(N) and µs, µd are not aligned
and the transport through the quantum dot via first-order tunneling processes
is blocked; the charge carrier number on the quantum dot is fixed. The electro-
chemical potential of the quantum dot can be tuned by a gate electrode, so the
ladder of energy states is shifted. In figure 4.2(b) the condition µ(N) = µs = µd
is fulfilled by a shift of the electro-chemical potential µ(N) due to the applied
gate voltage; the charge carrier number can now fluctuate by one.

Quantum Coulomb blockade

Until now, the confinement of charge carriers within the quantum dot was ne-
glected. A metallic quantum dot has a large, continuous density of states ns and
so a small Fermi wavelength
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Figure 4.2: Quantization of electric charge in a zero-dimensional quantum dot
system leads to a discrete ladder of quantum dot charging states. In (a) the
current through the quantum dot is suppressed; no energy level µ(N) is aligned
with the reservoirs. The energy ladder can be tuned by a capacitively coupled
gate electrode (b). Now electronic transport is allowed and the charge carrier
number is fluctuating by one.

λF =
√

2π
ns
, (4.4)

which is typically much smaller than the size of the quantum dot. In semiconduct-
ing quantum dots, however, the Fermi wavelength is in the order of the quantum
dot size due to the reduced, discrete density of states. This leads to the fact
that the energy spacing ∆ε between the quantum states induced by the quantum
confinement of charge carriers is on the order of the charging energy EC and has
to be taken into account.
The energy splitting ∆ε is typically in the range of 0.1meV to 5meV for semi-
conducting quantum dots. Common dilution refrigerators reach electron temper-
atures around 100mK, this leads to a thermal energy kBT ≈ 8.6µeV. In this
temperature range the thermal energy is much smaller than the energy splitting
∆ε (kBT << ∆ε << EC). Within the constant interaction model [Kouwenhoven
et al., 1997] the energy difference ∆E reads:

∆E = Ec + ∆ε, (4.5)

it depends on the one hand the classical charging energy Ec and on the other
hand the level spacing ∆ε induced by the charge carrier quantum confinement.



27 4. Electronic transport through CNT quantum dots

The charging energy reads [Kouwenhoven et al., 1991]

EC = e2

2CΣ
, (4.6)

where

CΣ = Csource + Cdrain + Cgate, (4.7)

is the total capacitance of the quantum dot. The capacitance CΣ is assumed
to be independent of the occupation of the quantum dot. Coulomb interaction
of the quantum dot electrons and the interaction of the quantum dot electrons
with those of the leads and gates are parametrized in capacitances. Within the
constant interaction model, the classical charging energy EC is approximated as
constant.

4.2 Carbon nanotube quantum dots
Quantum dots can easily be formed in semiconducting carbon nanotubes. In our
carbon nanotube devices the quantum dot is defined on the suspended part of the
carbon nanotube. The low temperature measurements of the employed carbon
nanotube devices used in this thesis show both a highly transparent transport
regime for negative gate voltages and Coulomb blockade transport regime for
positive gate voltages, separated by a small band gap. The measurements will
be shown later in this chapter and in chapter 7. This indicates that both carbon
nanotubes are "p-doped" semiconductors. The electronic properties of a carbon
nanotube device depend dramatically on the arising band deformation at the
interface [Tans et al., 1998, Svensson and Campbell, 2011]. Figure 4.3 sketches
the band deformation and the influence of an applied gate voltage. For a negative
gate voltage the valence and conductance bands are shifted upwards. Between the
semiconducting carbon nanotube and the metallic leads a weak Schottky barrier
arise at the interfaces (not shown in figure 4.3). The resulting tunnel barriers are
rather narrow and high conductance values are expected, which can approach the
theoretical limit of 4e2/h. In figure 4.3 the Fermi energy lies below the valence
band since transport is observed in our devices for zero gate voltage.
In the case of a positive gate voltage the bands are shifted downwards yielding
broader tunnel barriers and single electron transport can typically be observed
in such devices due to arising pn-junctions within the carbon nanotube.
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Figure 4.3: Drawn is a sketch of a metal - "p-doped" carbon nanotube - metal
transition. The Fermi energy EF of the carbon nanotube lies below the valence
band in our devices. In (a) a negative gate voltage is applied to the carbon
nanotube resulting in an upwards shift of valence and conduction band. For a
positive gate voltage the bands are bent downwards, pn-junctions arises on both
interfaces (b).

4.3 Quantum dot transport spectroscopy
In the previous section, the bias voltage Vbias was set to zero. Sharp peaks of
the differential conductance as a function of the gate voltage Vgate are expected,
whenever an energy "level" µ(N) is in resonance with source and drain reservoirs,
as sketched in figure 4.4(a).
For a metallic quantum dot the spacing between the peaks would be equidistant
since EC is constant. Semiconducting quantum dots give rise to a more complex
structure since the level spacing ∆ε induced by the quantum confinement must
be taken into account; as discussed before the energy splitting ∆E is not constant
anymore and thus the conductance peaks observed by varying the gate voltage
are not equidistant but depend on EC and ∆ε.
Applying now a finite bias voltage

Vbias = µd − µs
|e|

, (4.8)

the width of the transport region increases due to the misalignment between
source and drain reservoirs, see figure 4.4(b). Electronic transport through the
quantum dot is now allowed for (assuming µs > µd)
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µs ≥ µ(N) ≥ µd. (4.9)

The transport range increases for further increasing bias voltage Vbias; at a certain
bias voltage Vbias two charging states lie within the opened transport window
(figure 4.4(c)). Now the charge carrier number is fluctuating by two.
Varying both the gate voltage Vgate and the bias voltage Vbias a two-dimensional
plot of the conductance arises as sketched in figure 4.4(e). A diamond shaped
region with fixed charge carrier number is visible, also called Coulomb blockade
diamond. If enough energy is provided (see equation 4.2) for excited charging
states µ∗(N) additional transport channels within the bias window are opened.
The charge carrier number is still fluctuating by one but the charge carrier can
enter the charging states µ∗(N) instead of µ(N). Excited charging states µ∗(N)
are visible as additional lines in the conductance as a function of both gate voltage
and bias voltage, they start at the Coulomb blockade diamond with N confined
charge carriers and run parallel to edge of the Coulomb diamond with N − 1
charge carriers, see the red lines in figure 4.4(e).
In figure 4.5(a) a measurement of the current through the carbon nanotube as
function of the gate voltage Vgate is depicted. A small bias voltage Vbias = 50µV
is applied to the source contact, the gate voltage Vgate is varied from 0V to 5V.
On the electron conduction side (Vgate > 0.6V) pronounced Coulomb blockade
features arise. For increasing gate voltage the tunnel barriers arising due to the
pn-junctions are reduced and thus the current through the device increase. Visible
are also higher order processes like the Kondo effect, where the zero-bias conduc-
tance is enhanced in every second Coulomb blockade valley [Goldhaber-Gordon
et al., 1998]. A single unpaired electron spin on the quantum dot interacts with
the electrons of the reservoirs.
The numerical derivative |dI/dV | is plotted in figure 4.5(b) and (c) as a func-
tion of both gate voltage Vgate and bias voltage Vbias. In 4.5(b) the transition
N = 0 to N = 1 electrons is depicted. The electron number is counted starting
from the band gap using the conductance measurement of figure 4.5(a). One can
clearly see the diamond like structure in the conductance measurement and also
three additional lines corresponding to excited charging states are visible. The
excitation energies are 0.71meV, 1.50meV and 1.96meV; they can be extracted
from the intersection of the excited charging state and the edge of the Coulomb
diamond. The extracted difference in bias voltage ∆Vbias can be converted in
energy: ∆E = e∆Vbias. The excited charging state correspond to a one-electron
excitation since the excitation lines end in the Coulomb diamond with one elec-
tron fixed on the quantum dot. If we go from N = 1 to N = 2 electrons (figure
4.5(c)) again the diamond like structure arises. Clearly visible is a rich spectrum
of transport through excited charging states within the bias window.
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Figure 4.4: Measuring the conductance as a function of the gate voltage one
obtains sharp peaks of the conductance whenever a charging state µ(N) of the
quantum dot is aligned to the source and drain reservoirs (a). An applied bias
voltage opens a transport gap, the charge carrier number can fluctuate by one (b)
or two (c). (d) An excited charging state µ∗(N) provides an additional transport
channel, however, the charge carrier number is still fluctuating by one. In (e)
the conductance is plotted as a function of both gate voltage and bias voltage,
the arising diamond like shape is called Coulomb blockade diamond. Red lines
within the bias window represent excited charging state; the red arrows mark
the excited charging state corresponding to an N charge carrier excitation. The
orange line corresponds to the line cut for zero bias voltage in (a). The green,
yellow, and violet dots mark the situations of (b), (c), and (d).
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CHAPTER 5

Carbon nanotubes in a parallel magnetic field

The combination of spin and orbital degrees of freedom in carbon nanotubes leads
to a four-fold degeneracy of the carbon nanotube single particle spectrum. A finite
parallel magnetic field lifts the four-fold degeneracy, which will be described first
in this chapter together with the carbon nanotube single particle spectrum.
In [Ajiki and Ando, 1993] it was predicted that the orbital degeneracy is lifted by
a finite parallel magnetic field B‖. Two main effects are responsible for the carbon
nanotube single particle spectrum evolving in a parallel magnetic field. Due to
the Aharonov-Bohm effect the quantization condition in a carbon nanotube for
k⊥ is replaced by

k⊥ → k⊥ + Φ
rΦ0

, (5.1)

where Φ/Φ0 represents the magnetic flux through the carbon nanotube and
Φ0 = h/2e is the flux quantum. Additionally the Zeeman effect introduces a
linear shift in energy depending on the magnetic field; the sign of the slopes is
different for spin-up and spin-down.
To obtain a more detailed understanding of the influence on the single particle
spectrum of radius, chiral angle, and length of a carbon nanotube in a parallel
magnetic field, numerical transmission calculations for carbon nanotubes are per-
formed, working towards the objective of identifying the chirality from electronic
measurements. Fundamental techniques for numerical calculations are provided
in the text book of [Datta, 1995]. These can be used to obtained the trans-
mission through carbon nanotubes [Nemec, 2007]; in this chapter only a short
guideline for the numerical calculations is given. The work of this chapter is done
in cooperation with Magdalena Marganska, University of Regensburg.
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5.1 Carbon nanotube single particle spectrum
Low magnetic field

In the previous chapter 4 fundamentals of the quantum transport through a
carbon nanotube was explained; at low temperature a quantum dot is formed
within the carbon nanotube. The measurement in figure 4.5(b) shows a con-
ductance measurement for the transition from N = 0 to N = 1 electrons. The
ground state and three excited states are visible, all two-fold degenerate. We
observe the first two shells since each state is double-degenerate as explained
below and each shell has four energy states. In absence of electron-electron in-
teraction and with weak tunneling rates to the leads, i.e. low state decay rate,
the single particle spectrum can be observed. Low temperatures are necessary
since the conductance peak broadening is temperature dependent. The single
particle spectroscopy for low parallel magnetic fields was already discussed in
[Schmid, 2014]. The spin-orbit coupling ∆SO and the KK ′ mixing ∆KK’ have
to be taken into account for analytic modeling of the carbon nanotube single
particle spectrum. Both lead to a formation of two Kramers doublets, but the
nature of the Kramers states is quite different in the two cases [Kuemmeth et al.,
2008]. KK ′ mixing leads to double-degenerate spin states; in contrast spin-orbit
coupling breaks the symmetry by coupling orbital and spin degrees of freedom.
Recent theoretical calculations showed that the KK ′ mixing can not only be
induced by disorder but splitting also occurs in clean, armchair-like carbon nan-
otubes due to their finite size and fact that they have the same crystal angular
momentum at both valleys [Marganska et al., 2015]. For a finite spin-orbit cou-
pling ∆SO and a finite KK ′ mixing ∆KK’ the energy splitting of the two Kramers
doublets reads

∆ =
√

∆2
SO + ∆2

KK’, (5.2)

for zero parallel magnetic field.

High magnetic fields

For a high parallel magnetic field the full dispersion relation of a carbon nanotube
has to be taken into account [Izumida et al., 2009]:

E (τ, σ, B) = h̄vF

√
(k⊥)2 +

(
k‖
)2

+ τσεSO + σµBB, (5.3)

where σ = ±1 represents the spin and τ = ±1 the valley quantum number.



35 5. Carbon nanotubes in a parallel magnetic field

The momentum k⊥ and the momentum k‖ read:

k⊥ = k′⊥ + τ∆kc⊥ + σ∆kSO⊥ + πrB

Φ0
(5.4)

k‖ = k′‖ + τkc‖, (5.5)

the magnetic field shifts the momentum k⊥; the momentum k‖ is assumed to be
constant for the analytic model.
The shift ∆kc⊥ is curvature induced and depends on whether the carbon nanotube
is metallic ∆k⊥ = ∆kc⊥ or not ∆k⊥ = ∆kc⊥ + ν

3r , where ν = (n−m)|mod 3 and

∆kc⊥ = a

r2

(
1 + 3

8
V σ
pp − V π

pp

V π
pp

)
cos (3Θ) , (5.6)

V σ
pp and V π

pp are defined in appendix C. The curvature induced shift of the mo-
mentum k⊥ leads to a small band gap in nominally metallic carbon nanotubes.
The spin-orbit induced shift of the momentum k⊥ reads:

∆kSO⊥ = 2δ
r

(
1 + 3

8
V σ
pp − V π

pp

V π
pp

)
, (5.7)

where δ is the spin-orbit coupling parameter. A second spin-orbit coupling term
τσεSO is introduced depending on the spin and valley quantum number [Steele
et al., 2013]. The full Hamiltonian for a parallel magnetic field including KK ′
mixing, using E (τ, σ, B), from equation 5.3, reads:

Hfull =


E (K, ↑, B) 0 0 0

0 E (K, ↓, B) 0 0
0 0 E (K ′, ↑, B) 0
0 0 0 E (K ′, ↓, B)

 (5.8)

+ 1
2


0 0 ∆KK’ 0
0 0 0 ∆KK’

∆KK’ 0 0 0
0 ∆KK’ 0 0

+ aBB


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The second term includes the KK ′ mixing and the third term includes a phe-
nomenological asymmetry term (details will follow later in this chapter). The
energies of non-interacting electrons in a carbon nanotube are obtained by diag-
onalization of this Hamiltonian.
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Influence of a magnetic field

The graphene dispersion relation is linear near the K,K ′ points, see chapter 2.
Carbon nanotube spectra are quantized in k⊥; in direction along the carbon nan-
otube axis (k‖) a hyperbolic dispersion relation arises. The parallel magnetic field
changes the quantization conditions (see equation 5.1), this shifts the dispersion
relation in k⊥-direction. This is sketched in figure 5.1; for the K ′ point this leads
to an linear increase of the energy as a function of the parallel magnetic field. In
the case of the K point first a decrease of the energy is observed, and after going
through the K point the energy increases again. This results in a minimum in
energy for a high enough magnetic field. The magnetic field value Bmin corre-
sponds to the crossing point. Due to the doublet formation at zero magnetic field
a slightly different values of Bmin for the two spins (up and down) are observed.

K‘

B||

K

ky

kx

B||

Egap K‘

K

B||

a b

Bmin

Figure 5.1: Sketched is the dispersion relation near the K and K ′ point in the
~kx−~ky−plane (a). The dotted lines represent the hyperbolic dispersion relation of
a carbon nanotube. A parallel magnetic field shifts the momentum, if the dotted
lines intersect the K(K ′) point the energy gap is closed. The corresponding
magnetic field is labeled Bmin (b). Redrawn following [Steele et al., 2013].

Measurement of the carbon nanotube single particle spectrum

Figure 5.2(a) shows the numerically derived conductance plotted as a function
of both bias voltage and parallel magnetic field. The bias voltage is varied from
0mV ≤ Vbias ≤ 15mV and the parallel magnetic field from 0T ≤ B‖ ≤ 17T.
The gate voltage is set to Vgate = 0.675V, in order to observe the transition
N = 0 to N = 1 electrons (compare figure 4.5(b)). For a magnetic field around
B‖ ≈ 6T a minimum in bias voltage arises. This corresponds to a minimum in
energy. Observed is also a decrease of the numerically derived conductance at
high magnetic fields above B‖ ≈ 10T.
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The peaks of the conductance are extracted and plotted in figure 5.2(b) as a
function of the parallel magnetic field. Shown are the four "levels", all belonging
to theK valley, exhibiting a minimum in bias voltage. The straight lines represent
an analytic fit using the Hamiltonian of equation 5.3. In table 5.1 the used fitting
parameters are listed. For a qualitative fit a different momentum k‖ for both shells
is assumed.
In equation 5.8 an asymmetry term was introduced depending on the valley
quantum number and on the magnetic field. The physical origin, however, of this
term is still unclear but it improves the analytic fit significantly. Two different
asymmetry parameter aB are assumed for shell 1 and shell 2.
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Figure 5.2: (a) Numerically derived conductance is plotted as a function of both
bias voltage (0mV ≤ Vbias ≤ 15mV) and parallel magnetic field (0T ≤ B‖ ≤
17T). The conductance peaks are extracted and plotted as function of the parallel
magnetic field (b). The straight lines represented the analytic fit using equation
5.3 with the asymmetry term added. The cyan cross marks the employed gate
voltage.
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shell r [nm] ∆kc⊥ [1/nm] ∆kSO⊥ [1/nm] εSO [meV] k‖ [1/nm] aB [meV]

1 2.2 -0.00845 0.0001 -0.3 0.0095 -0.15
2 2.2 -0.00845 0.0001 -0.3 0.0120 -0.10

Table 5.1: Shown are values used for fitting of the experimental data of figure
5.2(a). For both shells a different momentum k‖ and asymmetry aB is assumed.

5.2 Quantum mechanical transmission
A carbon nanotube electronic device can be seen as a two-terminal device with
a Hamiltonian of the form:

H =

 HL HLC HLR

HCL HC HCR

HRL HRC HR

 =

HL 0 0
0 0 0
0 0 HR

+ V = Ho + V, (5.9)

where a Hamiltonian Hij links i and j, for example conductor C and right lead
R. The operator "V" contains the conductor and its coupling to the environment.
Since there is no direct interaction between left and right lead:

HLR = HRL = 0. (5.10)

The retarded and advanced Greens function are defined as:

Gr = (E −H + iε)−1 (5.11)
Ga = (E −H − iε)−1 (5.12)

where ε is a small offset energy. With these Green’s functions one can define the
spectral function of the left and right lead:

AL/R = i
(
Gr

0L/0R −Ga
0L/0R

)
, (5.13)

where G0R/0L are the Green’s functions for the disconnected right/left lead. Since
effects occurring due to the direct interaction between the leads are neglected,
the transmission can be written as:

T (E) = Tr [ARHRCG
r
CHCLALHLCG

a
CHCR] , (5.14)
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where Gr,a
C are the Green’s functions projected to the conductor:

Gr,a
C = (E −HC − Σr,a

L − Σr,a
R )−1 , (5.15)

which can be obtained using a decimation technique [Nemec, 2007]. The self
energy of the leads read:

Σr,a
L/R = HCL/CR(E ± iε−HL/R)−1HLC/RC . (5.16)

Using the definition

ΓL = HCLALHLC = i(Σr
L − Σa

L), (5.17)

one finally obtains the transmission T(E):

T (E) = Tr [ΓRGr
CΓLGa

C ] . (5.18)

The form of these Γ, G objects depends on the employed system.

Carbon nanotube Hamiltonian

The position of each carbon atom within a carbon nanotube is defined by the
chiral indices (n,m), which also determine the chiral angle Θ and the radius r of
the carbon nanotube. The length of the carbon nanotube is set by the number of
unit cells. Using the position of each carbon nanotube atom one can set up a first-
nearest neighbor tight-binding Hamiltonian. To obtain the transmission through
the carbon nanotube from this Hamiltonian, one has to calculate the Greens
function as defined in the previous section. The transition from one carbon atom
to the other is described by the hopping integrals, the complete expressions are
given in appendix C.

Carbon nanotubes connected to leads

In addition one has to define the coupling of the carbon nanotube to the leads.
The transmission though a carbon nanotube depends crucially on its contacts
and the size of the contact area. For the calculation done in this chapter the
end atoms of the carbon nanotube are connected to the leads. In principle each
carbon atom in a carbon nanotube has three neighboring carbon atoms (due to
sp2 hybridization). At both ends of a finite carbon nanotube the last atoms have
only two carbon atoms as neighbors, and these are the atoms which are coupled
to the contact electrodes.



5.3. Transmission calculations for different kinds of CNTs 40

The coupling between the leads and the carbon nanotube is assumed to be con-
stant; so the self energies read:

Σr
L/R = −i

(
d

2

)
11, (5.19)

this also includes a symmetric coupling from left and right lead to the carbon
nanotube. These "wide-band" leads include the assumption that the coupling of
the leads and the system does not depend on the energy, due to the "wide bands"
of the metals compared to the spectrum of the system.
For a carbon nanotube connected to "wide-band" leads one obtains a Breit-Wigner
form of the transmission [Breit and Wigner, 1936, del Valle et al., 2011]

T (E) =
∑
n

d2

(E − En)2 + d2
. (5.20)

Whenever the energy hits the levels En a peak in the transmission is observable, if
the coupling parameter d is smaller than the spacing of the energy levels En. For
a too large coupling factor d, the single peaks are smeared out and are not visible
anymore in the transmission. For the case of a carbon nanotube the coupling is
typically in the range of some meV. The Breit-Wigner form is obtained in general
for "wide-band" leads; not only for carbon nanotubes or molecules.

5.3 Transport calculations for different kinds of
carbon nanotubes

The chiral indices (n,m) and the number N of the unit cells define the radius
r, the length L, and the chiral angle Θ of a carbon nanotube. In figure 5.3 the
transmission is depicted as a function of both energy and parallel magnetic field
for a (5, 2) carbon nanotube with a radius r = 0.2445 nm, a length L = 88.68 nm
(N = 100) and a chiral angle Θ = 16.01◦.
In order to observe individual "levels" of the carbon nanotube, the lead coupling
parameter is set to d = 5meV.
In absence of spin-orbit coupling (figure 5.3(a)) a splitting into two doublets, with
a energy spacing ∆KK′ = 0.08meV, for zero magnetic field is visible. For a finite
spin-orbit coupling δ = 0.0008, the splitting ∆ = 1.27meV is enhanced. The
spin-orbit coupling ∆SO and the spin-orbit coupling parameter δ are connected
via [Jhang et al., 2010]:

∆SO = 2h̄vF
∣∣∣∆kSO⊥ ∣∣∣ = 2h̄vF

∣∣∣∣∣2δr
(

1 + 3
8
V σ
pp − V π

pp

V π
pp

)∣∣∣∣∣ . (5.21)
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For a value δ = 0.0008 we obtain ∆SO ≈ 0.93meV and ∆ ≈ 0.94meV. This is in
good agreement to the obtained value from the numerical transmission calcula-
tion; note that the relation given by equation 5.21 is in principle only correct for
infinite long carbon nanotubes.
In figure 5.3(b)-(d) the transmission as a function of both energy and parallel
magnetic field for three different values of δ is depicted. As discussed before, a
finite parallel magnetic field lifts the degeneracy and four levels are observed. For
finite spin-orbit coupling an anti-crossing of the energy levels is visible, marked
in figure 5.3. Increasing values of δ shift the anti-crossing to higher values of the
magnetic fields due to an increased splitting at zero magnetic field.
For several carbon nanotubes the transmission is calculated as a function of both
energy and parallel magnetic field to examine the dependence of Bmin trying to
reproduce our measured carbon nanotube and thus identify its chiral indices.
The corresponding transmission calculations are shown in appendix C and the
extracted values for Bmin are listed in table 5.2. The minimum in energy as func-
tion of a parallel magnetic field depends on different physical quantities of the
carbon nanotube, which will be discussed below.

(n,m) unit cells radius r [nm] length L [nm] chiral angle Θ Bmin [T]

(14,8) 60 0.7549 82.10 21.05 37.39
(14,11) 35 0.8495 107.86 26.04 26.86
(21,12) 75 1.1325 102.70 21.05 21.61
(24,15) 55 1.3338 88.71 22.41 28.2
(25,19) 20 1.4962 108.55 25.50 11.85
(28,22) 35 1.6991 107.86 26.04 9.67
(29,20) 20 1.6704 121.19 23.95 9.71

Table 5.2: Listed are different carbon nanotube segments, defined by the chiral
indices (n,m) and the number of unit cells. The values for Bmin are extracted from
the numerical calculated transmission as a function of both energy and parallel
magnetic field. The spin-orbit coupling parameter δ and the lead coupling d vary
slightly, the values for each carbon nanotube can be found in the corresponding
plot. The calculation for the (29, 20) carbon nanotube is depicted in figure 5.4
and the additional ones in appendix C.



5.3. Transmission calculations for different kinds of CNTs 42

ba

81.5 82.0 82.5

0.2

0.4

0.6

0.8

T [a.u.]

energy [meV]

Δ  = 0.08 meVKK‘  

: 0δ

1.0 2.0 B [T] 4.03.0

δ: 0
0.1

0.2

0.3

0.4

0.5

T [a.u.]

0.1

0.2

0.3

0.4

0.5

T [a.u.]

1.0 2.0 4.03.0 B [T]

81.0

81.5

82.0

80.5

E
[meV]

dc
1.0 2.0 B [T] 4.03.0 1.0 2.0 4.03.0 B [T]B [T] 4.03.0

: 0.0008δ

2 2 0.5Δ=(Δ +Δ )  = 1.27 meVKK‘ SO

B  = 0||

0.1

0.2

0.3

0.4

T [a.u.]

0.1

0.2

0.3

0.4

0.5

T [a.u.]

81.0

81.5

82.0

80.5

E
[meV]

-4δ: 1x10

81.0

81.5

82.0

80.5

E
[meV]

-5
δ: 5x10

-4δ: 8x10

81.0

81.5

82.0

80.5

E
[meV]

e

Figure 5.3: Calculated transmission as a function of both energy and parallel
magnetic field for a (5, 2) carbon nanotube with a length of 88.68 nm (N = 100).
The lead coupling is set to d = 5meV. The spin-orbit coupling is varied from
δ = 0 (a) to δ = 0.0008 (d). (e) shows two line traces at zero magnetic field for
δ = 0 (orange) and δ = 0.0008 (cyan). For δ = 0 the KK ′ splitting is directly
observable; for finite δ the energy splitting ∆ is visible.
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spin-orbit parameter δ
In figure 5.4 the transmission is calculated as a function of both energy and
parallel magnetic field for a (29, 20) carbon nanotube with a length L = 121.19 nm
(N = 20). The spin-orbit parameter δ is varied from δ = 0 (a) to δ = 0.0005 (d).
The coupling parameter d = 6meV for the leads is kept constant. The value for
Bmin decreases with increasing δ. The spin-orbit coupling induces a shift of the
momentum k⊥ (compare equation 5.7):

∆kSO⊥ ∝
δ

r
, (5.22)

and for a constant radius r and an increasing value of δ leads to a decrease of the
band gap near the K point. This results in a lower magnetic field value Bmin for
crossing the Dirac point.

radius r and chiral angle Θ
In order to see the effect which a change of the radius has on the spectrum of
a carbon nanotube, we compare a (14, 11) and (28, 22) carbon nanotube, each
with 35 unit cells. Their chiral angle and length are the same, the radii are
r(14,11) = 0.8495 nm and r(28,11) = 1.6991 nm. The value Bmin decreases from
26.86T to 9.67T. Both carbon nanotubes are nominally metallic and a band
gap is introduced due to the curvature. The induced shift of the momentum k⊥
(compare equation 5.6)

∆kc⊥ ∝ −
cos (3Θ)

r2 , (5.23)

depends on the chiral angle and the radius. For a constant chiral angle the
increased radius decreases the negative shift of the momentum k⊥ and thus the
Dirac point crossing is observed for lower magnetic field values.
In figure 5.5 the magnetic field value Bmin for the Dirac point crossing is plotted
as a function of cos (3Θ) /r2; all shown carbon nanotubes are nominally metallic,
increasing values

cos (3Θ) /r2

lead to an increasing value for the Dirac point crossing. Not accounted for is here
the slight variation in the length of the employed carbon nanotubes.
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Figure 5.4: Calculated transmission as a function of both energy and parallel
magnetic field for a (29, 20) carbon nanotube with different spin-orbit coupling
parameters δ. Lead coupling d = 6meV and length L = 121.19 nm are kept
constant. The Dirac point crossing shifts to lower values in magnetic field for
increasing δ. The two additional lines visible in (c) are explained in section 5.5.

length L

In figure 5.6 the transmission is calculated as a function of both energy and
magnetic field, for different lengths of a (29, 20) carbon nanotube. The contact
coupling parameter d = 6meV and the spin-orbit coupling parameter δ = 1 · 10−5

are kept constant. For an increasing length, the crossing through the Dirac point
is shifted to lower magnetic field values Bmin. Figure 5.7 shows the values Bmin
as function of the length of the carbon nanotube. A fast decrease of Bmin is
observed up to a length of 100 nm; above a length of 200 nm the value for the
crossing through the Dirac point decreases a lot more slowly.
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Figure 5.5: Value of the magnetic field Bmin for the Dirac point crossing as a
function of cos (3Θ) /r2.

The length dependence of the Dirac point crossing reads:

Bmin ∝
1√
L
, (5.24)

see cyan dashed line in figure 5.7.
The length dependence of the Dirac point crossing for a (14, 11) carbon nanotube
is also depicted in figure 5.7, again the magnetic field value for the Dirac point
crossing is proportional to L−0.5 (orange dashed line in figure 5.7). The calculated
transmissions for the (14, 11) carbon nanotube are shown in appendix C.

5.4 Magnetic field dependence of k‖
For high magnetic field we observe a decrease of the transmission through the
carbon nanotube, e.g. a (29, 20) carbon nanotube with a length of 500 nm were
the transmission decrease above 5T (compare figure 5.6(f)). This decrease was
also observed in the measured, numerical derived conductance, see figure 5.2.
The decrease of the magnetic field value for the Dirac point crossing and the
decrease of the transmission/conductance can be explained with a magnetic field
dependent value for the momentum shift k‖; in equation 5.3 the momentum shift
k‖ was assumed to be constant. First the variation of k‖ in a magnetic field
is introduced, and then both observations due to its dependence on the carbon
nanotube length are explained.
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Figure 5.6: Calculated transmission as a function of both energy and parallel
magnetic field for a (29, 20) carbon nanotube with different lengths. The lead
coupling d = 6meV and the spin-orbit coupling parameter δ = 1 · 10−5 are kept
constant. The crossing through the Dirac point shifts to lower values in magnetic
field for increasing length.
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Figure 5.7: Value of the magnetic field for the crossing through the K point, as
function of the length for a (14, 11) and (29, 20) carbon nanotube. The value
Bmin decreases for increasing length. The dashed lines represent a fitting curve
proportional to L−0.5, see text.

It was shown that the momentum shift k‖ depends on the momentum shift k⊥
[Marganska et al., 2011]:

τk⊥ + ik‖
τk⊥ − ik‖

= e2ik‖L, (5.25)

and thus the moment shift k‖ depends also on an applied parallel magnetic field.
The value for τk⊥ predicts whether the value for k‖ is real or imaginary; a trivial
solution of equation 5.25 would be k‖ = 0. If the momentum shift k‖ is a real
value, equation 5.25 can be written as:

τk⊥ = k‖cot
(
k‖L

)
. (5.26)

this corresponds to an extended state. In figure 5.8 the solutions for the real
values of k‖ are plotted as a function of the value k⊥, the imaginary and trivial
solutions are omitted. For k⊥ = 0 the momentum shift k‖ reads:

k‖ =
(1

2 + n
)
π

L
, (5.27)

see red dotted line in figure 5.8. For increasing values of k⊥, the momentum shift
k‖ reaches asymptotically the value:

k‖
increasing B−−−−−−−→ nπ

L
, (5.28)
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compare green dotted line in figure 5.8. The consequence of this behavior is the
following: For k⊥ the factor 1/2 is responsible for the fact that the wave function
of each sub-lattice A and B (see chapter 2) of a carbon nanotube has a node only
at one end. If the magnetic field increases one obtains a shift of the momentum
k⊥ and this also induces a shift of the momentum k‖L following equation 5.25.
The asymptotically reached value k‖ = nπ

L
is like the quantum box and then the

wave functions on both sub-lattices have nodes at both ends [del Valle et al.,
2011, Marganska et al., 2011].

k L┴

k L||
3π

2π

-3π

-2π
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2π-2π ππ
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Figure 5.8: Plotted are the real solutions of equation 5.25, the trivial and imag-
inary solutions are omitted. Cyan lines correspond to the K valley and orange
ones to the K ′ valley. The violet, blue and green dots mark the shifts of the
momentum k‖, see text. The black arrow indicates the shift of k⊥ induced by
a parallel magnetic field. The red dot marks the point, where only imaginary
values for k‖ are possible.

5.5 Comparison of numerical and analytical re-
sults

The change in the momentum k‖ can explain the observed decrease of the trans-
mission for high magnetic field and the decrease of the magnetic field value for
the crossing through the K point with increased length.
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Decrease of the transmission

Electronic transport through a carbon nanotube is possible if the wave functions
for the two sub-lattices have a finite overlap and if at least a part of the electronic
density is located near the contacts. This is the case for zero (and low) magnetic
fields. As argued in the previous section for high magnetic fields the electronic
density is more and more located at the center of the carbon nanotube. This
implies that the electrons are far away from the ends and thus can not hop into
the leads.
This was observed in the numerical transport calculations of the last section in a
decrease of the transmission through a carbon nanotube, e.g. in figure 5.6(f) the
transmission decreases for high magnetic fields.
This effect induced by the magnetic field depends on the length of the carbon
nanotube. For shorter segments in figure 5.6 or the (5, 2) carbon nanotube in
figure 5.3, only a weak decrease of the transmission is visible in the calculated
range of the magnetic field.

Length dependence of the magnetic field value corresponding to the
crossing through the K point

We have observed in the numerical results that an increasing length of a carbon
nanotube decreases the value Bmin for the crossing point through the K point.
Looking at figure 5.8 we start for the K point on the left side of the k⊥ = 0 axis
for zero magnetic field (violet dot). The magnetic field decreases the momentum
k⊥ (shift towards the blue dot indicated by the black arrow); this leads also to
a decrease of the momentum k‖ and thus the energy depending on

√
k2
‖ + k2

⊥
decreases. At a certain value of the magnetic field one reaches k⊥ = 0 (blue
dot). Further increased magnetic field will now increase k⊥ again (shift towards
green dot), but k‖ will still decrease. The energy depends on

√
k2
‖ + k2

⊥ and so
the variation of the energy depends now on the interplay of an increasing k⊥ and
decreasing k‖. At a certain magnetic field the increase of k⊥ can compensate the
decrease of k‖ and thus the energy is raising again. This is magnetic field value
we named Bmin.
Note that we start on the second line for the valley K. If we start on the first
one at a certain point (red dot) only imaginary values for k‖ are possible. These
correspond to evanescent waves localized at the carbon nanotube ends. The two
levels corresponding to the first line of the valley K ′ increase linearly and are
visible in several numerical transmission calculations, e.g. figure 5.4(c) or figure
5.6(f).
Increasing the length of the carbon nanotube compresses the lines in figure 5.8.
For short carbon nanotubes k‖ decreases faster than for long carbon nanotubes.
Accordingly the influence of k‖ is weaker for long carbon nanotubes and the value
Bmin is mostly governed by the decrease of k⊥.



5.6. Numerical calculations and the measured spectrum 50

Influence of a magnetic field depended k‖ on the analytic model

In section 5.1 a comparison of the recorded measurement data and an analytic
model was shown. For this model, the momentum shift k‖ was kept constant
with respect to the magnetic field. From the numerical transmission calculations
it turns out that a magnetic field induced shift of the momentum k‖ has to be
included. In figure 5.9 the numerical calculations for a (28, 22) carbon nanotube
are compared to the analytic model. If the k‖ is kept constant, both models
do not fit together, see figure 5.9(a). Including a shift of the momentum k‖
induced by a shift of the momentum k⊥ depending on equation 5.25 leads to good
agreement of numerical transmission calculations and analytic model, see 5.9(b).
In figure 5.9(c,d) the analytic model with non-constant k‖ is compared with the
numerical transmission calculations for a (29, 20) with a length of L = 121.19 nm
(c) and L = 502.46 nm (d); again a good agreement is observed. In figure 5.9(b)
the agreement for high magnetic fields is much better than in 5.9(c,d). This
fact might be due to the to small magnetic field range shown in 5.9(c,d) up to
only 22(12)T. In the analytic model used in figure 5.2 an additional asymmetry
term (∝ aBB‖) depending on the magnetic field was introduced to obtain a
qualitative agreement with the experiment. This term was neglected in figure
5.9. The magnetic field induced shift of the momentum k‖ might be related to
the asymmetry term aB(B‖) employed for the analytic fit of our measurement.

5.6 Comparing numerical transmission calcula-
tions and measured single particle spectrum

In figure 5.2 the measured conductance is plotted as a function of both bias volt-
age and parallel magnetic field. The single particle spectrum of the first electron
is observed in the experiment. The Dirac point crossing is observed at a parallel
magnetic field around 6T.
In this chapter we presented numerical transmission calculations as a function
of both energy and parallel magnetic field. We could show that the Dirac point
crossing crucially depend on length, radius and chiral angle of a carbon nanotube;
in addition a slight influence of the spin-orbit coupling is observed. If one can fit
the numerical calculations to the measured device, in principle the indices (n,m)
of the carbon nanotube can be identified.
Since one has four different parameters, it is hard to obtain a quantitative agree-
ment of the measured carbon nanotube and numerical calculations. The results
of this chapter show that we can tune the values n,m,N, δ to achieve a crossing
around the value obtained in the experiment. The best way would be to fix same
of the values by means of other experiments, e.g. fix the radius of the carbon
nanotube via atomic force microscopy measurements.
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Figure 5.9: Depicted are numerical transmission calculations as a function of
both energy and parallel magnetic field for a (28, 22) (a,b) with a length of L =
184.91 nm and a (29, 20) carbon nanotube with a length of L = 121.19 nm (c)
and a length of L = 502.46 nm (d). In addition an analytic model for each carbon
nanotube is shown. In (a) the momentum shift k‖ was kept constant; numerical
calculation and analytic model does not coincide. For (b-d) a shift of k‖ according
to equation 5.25 was employed for the analytic fit, yielding a good agreement with
the numerical transmission calculations for the shown carbon nanotubes.





CHAPTER 6

Magnetic field induced electron-vibron coupling in a carbon
nanotube quantum dot

The interplay of electronic transport and mechanical motion in single electron
tunneling was first observed in a C60-oscillator; equidistant excited lines in the dif-
ferential conductance were observed [Park et al., 2000]. The effect of vibrational
sidebands on the transport properties was studied theoretically using molecular
junctions [Braig and Flensberg, 2003]. Vibrational sidebands visible in the elec-
tronic transport are explained by a model based on the Franck-Condon principle;
a short overview will follow later in this chapter. The Franck-Condon principle
is known from molecular physics: the electronic transitions are so fast that the
nuclear positions do not change [Franck and Dymond, 1926, Condon, 1926]. The
transition rate is proportional to the overlap integral of the two involved, spa-
tially displaced quantum states. A first experimental observation of a coupling of
electrons and the longitudinal stretching mode in a suspended carbon nanotube
was reported by [Sapmaz et al., 2006a]; transport spectroscopy measurements
as function of both gate voltage and bias voltage were presented exhibiting a
Coulomb diamond stability diagram, see chapter 4. The vibrational sidebands
lead to additional steps in the recorded d.c. current as a function of the bias volt-
age. The important quantity is the electron-vibron coupling parameter g. For a
coupling factor g << 1 additional steps would not be observed. A coupling factor
much larger than one leads to phonon blockade in low bias transport [Leturcq
et al., 2009]. The relevant measurements of the numerically derived conductance
for few electrons in the carbon nanotube quantum dot were already presented in
chapter 4; the single particle spectrum evolving in a parallel magnetic field was
briefly discussed in chapter 5. In this chapter we will focus on the transition from
N = 1 to N = 2 electrons.
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6.1 Vibrational modes in carbon nanotubes
Different vibrational modes arise in suspended carbon nanotubes, here we will
focus on the typically low energetic ones:

Radial breathing mode

The radial breathing mode (RBM) describes a motion of the carbon nanotube
lattice perpendicular to the carbon nanotube axis, see figure 6.1(a). Due to the
elongation and constriction perpendicular to the axis, the energy depends on
the diameter d and is independent of the length L of the carbon nanotube. For
the fundamental, radially symmetric carbon nanotube RBM the energies reads
[LeRoy et al., 2004, Dresselhaus and Eklund, 2010]:

ERBM = 27.8d−1[nm]meV. (6.1)

Bending mode

The bending mode of a carbon nanotube is typically observed in driven beam
experiments, compare chapter 7. The carbon nanotube oscillates perpendicular
to its axis (see figure 6.1(c)), the quantization energies depend on the tension T ,
the radius r and the length L. For the temperature range accessible with common
dilution systems the quantization of the bending mode cannot be observed. In
[Mariani and von Oppen, 2009] it is claimed that even for h̄ω ≈ kBT the coupling
factor g is much smaller than one and no signs of an electron-vibron coupling are
to be expected.
In [Island et al., 2012] an experimental observation of an electron-vibron coupling
in the bending mode induced by a positive feedback of electron tunneling and the
mechanical vibrating bending mode of the carbon nanotube was claimed. Indeed
the coupling factor is on the order of 10−3; the observations are explained by an
enhanced effective coupling due to a positive feedback by a oscillating electrostatic
force induced by the bending vibration of the carbon nanotube. This positive
feedback effect is also observed in other experiments [Schmid et al., 2012, Stiller
et al., 2013].

Stretching mode

Another mode occurring in carbon nanotube is the stretching mode; the carbon
nanotube moves along its longitudinal axis. The vibrational energy quantum for
the stretching mode reads [Landau and Lifschitz, 1989, Sapmaz et al., 2006a]:

hfSM = ESM = nvibh

L

√
E

ρ
≈ 0.11meV

L[µm] , (6.2)
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including the Young’s modulus E, the carbon nanotube mass density ρ and the
vibrational mode number nvib. In figure 6.1(d) the energies for the different
modes are plotted as a function of the carbon nanotube length. For comparison
the expected length dependents of electronic excitations are marked. Different
experiments on suspended carbon nanotubes and their corresponding energies are
marked. The dotted orange line corresponds to the length of 700 nm; the length
of the suspended part of the carbon nanotube in our device.

length [µm]1.00.5

1.0

0.1

10

0.01

e
n

e
rg

y
 [

m
e

V
]

b

c

a

d

Hüttel, PRL

Hüttel,
PRL

Leturcq, Nature Phys.
Hüttel, NJoP

Sapmaz, PRL

Sapmaz, PRL
Sapmaz,
PRL

Sapmaz, PRB

Sapmaz, PRB

Sapmaz, PRB

radial breathing mode

bending mode

stretching mode

Island, NL

bending

stretching

radial breathing

electronic

Figure 6.1: (a) RBM of a carbon nanotube; the motion is perpendicular to the
carbon nanotube axis. The stretching mode deforms the carbon nanotube lattice
along the carbon nanotube axis (b). The transverse bending mode is sketched
in (c). (d) Vibrational energy quantum hf as a function of the length of the
carbon nanotube. The orange line corresponds to the energy dependence of
electronic excitation; orange dots represent the experiments [Sapmaz et al., 2005,
Hüttel et al., 2009b]. The green line corresponds to the energy dependence of
excitations due to the stretching mode; green dots represent the experiments
[Sapmaz et al., 2006a, Hüttel et al., 2008, Hüttel et al., 2009b, Leturcq et al.,
2009, Island et al., 2012]. The red straight line sketches the energy dependence
of the bending mode; the blue line represents the RBM. The red dotted line
corresponds to the trench width of our device and thus the estimated suspended
part of the carbon nanotube. Redrawn following [Hüttel et al., 2008].
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6.2 Franck-Condon model
The Franck-Condon model in molecular physics assumes that the electronic tran-
sition is so fast that the nuclear position does not change during the transition.
For the case of a carbon nanotube this means: The atomic carbon nanotube lat-
tice does not move during the electronic tunneling. To obtain tunnel rates one
has to take into account the vibrational part of the macro-molecule wave func-
tion. Only the initial and final state of the vibration influence the tunnel rate.
So the overall tunnel rate Γ reads:

Γ = Γelectron| < Ψinitial|Ψfinal > |2, (6.3)

where Γelectron is the electronic tunnel rate. | < Ψinitial|Ψfinal > | represents the
overlap of the two vibrational wave functions; in absence of vibrational effects
| < Ψinitial|Ψfinal > | = 1 since Ψinitial = Ψfinal, and thus Γ = Γelectron. A detailed
expression for the current through a molecular junction including the vibrational
effects is presented in [Braig and Flensberg, 2003].
A step-like behavior of the current is predicted as a function of the bias voltage.
For finite temperature the system can absorb and emit vibrons; if the temperature
is going to zero only emission is possible and the function Pn is describing the
current step heights by a Poisson distribution [Braig and Flensberg, 2003]:

Pn = e−ggn

n! , (6.4)

with

Qn =
∑
n

Pn = 1, (6.5)

the parameter g describes the coupling between electrons and vibrons. The ap-
proximation using the step-function Qn is valid for strong relaxation; the initial
state involved in the vibrational transition is then always its ground state.
The coupling parameter g is defined as the ratio:

g = l2

2l20
. (6.6)

The classical displacement l of the carbon nanotube lattice describes the shift
of the ground state position induced by an additional charge carrier; the length
l0 of the quantum harmonic oscillator can be seen as a zero-point motion of the
mechanical oscillator [Hüttel et al., 2008]:
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l0 =
√

h̄

mω
. (6.7)

The length l0 is on the order of a few picometer for ω ≈ 1THz and m ≈ 10−21 kg.
The step-function Pn is sketched in figure 6.2 for different values of g. For g = 0
no steps arise; for g << 1 the steps are very small and it is expected that a
coupling effect of vibrons and electrons is not observable; for g ≈ 1 additional
steps in the current characteristics can be observed and for high values of g the
current for low bias is blocked. This is called phonon blockade and was already
observed experimentally in carbon nanotubes [Leturcq et al., 2009]; a coupling
factor of 3.3 was observed there.
In [Sapmaz et al., 2006a] it is already discussed that an inhomogeneous electron
density (e.g. charge located in the center of the suspended carbon nanotube) can
lead to coupling factors g ≈ 1. The electron density can be modified by substrate
impurities and the back gate.
The coupling of the carbon nanotube lattice motion and the transverse and par-
allel electric fields is discussed in the early theoretical work of [Flensberg, 2006].
The electric fields are caused by the traveling electrons and the electrostatic in-
teraction with a gate electrode. It is predicted that the longitudinal electric field
is too weak to observe a coupling to the carbon nanotube lattice motion. Indeed
a coupling to transverse electric fields can provide a coupling of electrons and
vibrons with a coupling factor g ≈ 1. Furthermore the location and the size
of the vibron compared to the electronic state have significant influence on the
coupling factors. If the vibron is located inside the quantum dot defined within
the carbon nanotube, the Franck-Condon coupling factor is position-dependent.
Also a asymmetric location of the vibron with respect to the electronic quantum
dot leads to asymmetric coupling factors at the tunnel barriers [Cavaliere et al.,
2010].
In [Mariani and von Oppen, 2009] the electron-vibron coupling originating from
intrinsic electron-phonon coupling in carbon nanotubes is discussed in detail; the
coupling strengths for RBM, bending, and stretching mode are discussed.
A recent theoretical work by [Donarini et al., 2012] predicts that the size and
position relation between electronic quantum dot and vibron strongly influence
the coupling regime. A detailed analysis of the electron-vibron coupling including
also multiple vibronic modes is provided; details will be discussed later.
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Figure 6.2: Function Pn for different values of the coupling parameter g. For
g = 0 no steps are visible; for increasing values of g steps arise. For g > 1 the
first steps are suppressed exponentially.

6.3 Magnetic field induced coupling

Regarding the electronic properties, the measurements of the single particle spec-
trum in a high parallel magnetic field were already discussed in chapter 5. Fig-
ure 6.3(a) shows the current through the carbon nanotube as function of both
bias voltage Vbias and parallel magnetic field B‖. The gate voltage is set to
Vgate = 0.7599V in order to observe the transition from N = 1 to N = 2
electrons, compare chapter 4. The cyan crosses in figure 6.3 sketch the posi-
tion of the applied gate voltage relative to the regions of single electron tun-
neling and Coulomb blockade in the stability diagram. The bias voltage is
varied as 0mV ≤ Vbias ≤ 3.75mV and the parallel magnetic field is varied as
−0.1T ≤ B‖ ≤ 3.15T. Figure 6.3(b) shows the conductance |dI/dV | derived
numerically from the current recorded in figure 6.3(a).
For increasing parallel magnetic field additional side peaks of the electronic
ground state energy arise. Below 1T only a main peak is observed, up to 2T
one additional side peak. For higher magnetic field values (B‖ ≈ 3T) a spectrum
of equidistant side peaks is observed, see figure 6.4(a): the main peak and three
additional side peaks are visible, the energy spacing between the peaks is about
74µeV. This would correspond to a carbon nanotube length of 1.5µm; compared
to other experiments (see figure 6.1) this is the correct order of magnitude.
In figure 6.4(b) the current through the carbon nanotube is plotted as a function
of the bias voltage for a constant parallel magnetic field. Steps in the I (Vbias)
arise (though broadened) as predicted by the Franck-Condon model. We take
the current I0 of the first plateau in the I (Vbias) curves. After normalizing the
current I0 by setting the maximal current Imax = 1 (see figure 6.4(b)), we can
calculate the coupling constant g from the function P0 = I0 = e−g. The addi-
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tional current steps (I1 in figure 6.4(b)) can be calculated using the extracted g.
In figure 6.4(b) we obtain a value of g = 0.302 for B‖ = 2.90T. The coupling
factor g is extracted for several magnetic fields; in figure 6.5 the coupling factor
g is plotted as a function of B‖. Below the value of B‖ ≈ 1.5T only one peak
in the numerically derived conductance is visible, and no steps in the I (Vbias)
curves and thus the coupling parameter g could not be extracted. At a parallel
magnetic field B‖ ≈ 1.5T the coupling factor g increases linearly.
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Figure 6.3: (a) Current as function of both bias voltage Vbias and parallel magnetic
field B‖. The gate voltage is fixed to Vgate = 0.7599V, the cyan crosses sketch
the position of the applied gate voltage. The bias voltage is varied from 0mV ≤
Vbias ≤ 3.75mV and the parallel magnetic field from −0.1T ≤ B‖ ≤ 3.15T.
Above 1T the current after the ground state spectral line increases. In (b) the
numerically derived conductance |dI/dV | obtained from (a) is plotted.
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Figure 6.4: A trace of the numerically derived conductance |dI/dV | as a function
of the bias voltage Vbias for B‖ = 2.90T is shown (a). A main peak and three
additional side peaks arise (marked with cyan arrows). (b) Current as function
of the bias voltage. The maximal current Imax is set to one and the step-function
Pn is employed to extract the coupling factor g = 0.302. Both traces are obtained
from figure 6.3.
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Figure 6.5: Plotted is the coupling factor g as a function of the parallel magnetic
field. Above 1.5T the coupling factor increases linearly. For each data point a
trace of the current as a function of the bias voltage (I (Vbias)) is taken at fixed
parallel magnetic field, and g is extracted employing the Imax = 1 and the step
function Pn, see text for details. In figure 6.4(b) an example is depicted.
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In figure 6.6 the numerically derived conductance is plotted as a function of both
bias voltage and parallel magnetic field. The gate is again set to Vgate = 0.7599V,
and the bias voltage is varied from 0mV ≤ Vbias ≤ 10mV, however the parallel
magnetic field is now varied over a much larger range 0T ≤ B‖ ≤ 15T. A lot
of excited states are visible; we concentrate on the ground state corresponding
to the lowest bias voltage. For increasing magnetic fields again additional side
peaks arise. Note what we again focus on the same ground state spectral line as
depicted in the measurement of figure 6.3. At a magnetic field Bparallel ≈ 1.5T
an anti-crossing (marked green in figure 6.6) and thus a ground state transition
is visible, details will follow later.
Though we observe additional side peaks in the numerically derived conductance,
in this data set no clear steps in the I (Vbias) traces are visible and thus we can
not extract the coupling factor g that way.
Instead we use the area under the differential conductance peaks, this is mathe-
matically equivalent since:

∫ dI
dVbias

dVbias = I (6.8)

The ratio of the calculated areas are then employed to calculate the coupling
factor g:

A1

A0
= P1

P0
= e−gg

e−g
= g, (6.9)

where A0 is the area under the main peak and A1 the area under the side peak
1. Note that we assume constant spacing between the conductance peaks. In
addition we use the area ratio of side peak 2 (A2) and side peak 1:

A2

A1
= P2

P1
= 0.5e−gg2

e−gg
= 0.5g, (6.10)

In figure 6.7(a) the extracted coupling factors g are plotted as a function of the
parallel magnetic field B‖; red squares correspond to a coupling factor extracted
from the ratio side peak 1/main peak, and the green stars represent the coupling
factor extracted from the ratio side peak 2/side peak 1. Within the error bars
a agreement of both coupling values is visible. Starting of a value B‖ ≈ 2T the
coupling factor increases linearly with a maximum value g ≈ 0.45 at B‖ ≈ 3.3T.
For further increased values of the parallel magnetic field, we observe a slight
decrease of the coupling factor. In figure 6.7(b) the extracted coupling factors
of the two measurements shown in figure 6.3 and figure 6.6 are compared. Both
methods are in good agreement in the low magnetic field range (1.5T < B‖ <
3.5T).
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Figure 6.6: Depicted is the numerically derived conductance |dI/dV | as function
of both bias voltage and parallel magnetic field. The gate voltage is fixed to
Vgate = 0.7599V, the cyan cross sketches the applied gate voltage. The bias
voltage is varied from 0mV ≤ Vbias ≤ 10mV and the parallel magnetic field from
0T ≤ B‖ ≤ 10T. The green cycle marks an anti-crossing and a ground state
transition, see text.

6.4 Physical origin of the magnetic field induced
coupling

The coupling of electrons to the stretching mode of a carbon nanotube depends
on the position of the electronic quantum dot defined in the carbon nanotube,
and the position of the vibron. This was briefly discussed in section 6.2 and
theoretically predicted by [Mariani and von Oppen, 2009, Donarini et al., 2012].
In [Sapmaz et al., 2006a] it was already discussed, that the localization of electrons
plays a role for the strength of the electron-vibron coupling. It seems plausible
that the position of the vibron is fixed to the suspended part of the carbon
nanotube. Since the length of the suspended part of the carbon nanotube and
thus the size of the vibron is fixed, changes of the electronic confinement are
expected.
In chapter 5 we could show that a parallel magnetic field affects the electronic
wave function. Specifically, for high magnetic fields the electronic density is more
and more located in the center of the quantum dot and thus transport through
the carbon nanotube decreases. This is also visible in the high magnetic B‖
measurement of figure 6.6.
The maximal current Imax (already introduced in the previous section) of the
ground state observed in figure 6.6 is proportional to the electronic tunneling
rate Γelectron. In figure 6.8 the current Imax is plotted as a function of the parallel
magnetic field. Starting from low magnetic field, the maximum current Imax
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Figure 6.7: (a) Coupling parameter g extracted using the area under the differ-
ential conductance peaks obtained from the measurement depicted in figure 6.6.
Red square correspond to ratio side peak 1 / main peak, and green stars to the
ratio side peak 2/side peak 1, see text. In addition the coupling factor g (see
figure 6.5) extracted from the I (Vbias) curves (orange dots) is depicted (b). Both
methods are in good agreement for the shown magnetic field range.
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increases and has its maximum around B‖ ≈ 3.5T. For higher parallel magnetic
fields the current Imax decreases again. The extracted coupling factors g exhibit
also a maximum in the same range of the parallel magnetic field and a slow
decrease is visible for higher magnetic field values. In figure 6.8 the ground state
transition is marked green (see also figure 6.6), here the form of the electronic
wave function changes. Interestingly the value B‖ ≈ 1.5T nearly coincides with
the starting point of the increasing electron-vibron coupling factor, see figure 6.7.
This magnetic field induced shift of the electronic wave function may affect the
coupling of electrons and vibrons resulting in the observed dependence of the
coupling factor as a function of a parallel magnetic field.
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Figure 6.8: Maximal current Imax as a function of the parallel magnetic field.
A maximum around B‖ ≈ 3.5T is observed. For high magnetic field values the
current Imax decreases slightly, see text. The green dotted line corresponds to the
ground state transition observed in the measurement shown in figure 6.6.



CHAPTER 7

Negative frequency tuning of a carbon nanotube mechanical
oscillator

In this chapter we present measurements on a suspended carbon nanotube device,
observing mechanical resonance in transport measurements and also multiple
higher harmonic mechanical resonance frequencies. First the basic theory of the
flexural bending mode of a carbon nanotube is presented, resulting in a gate
depended resonance frequency.
A positive frequency tuning of the bending mode was observed several times in
carbon nanotube devices [Sazonova et al., 2004, Schmid et al., 2012, Moser et al.,
2013, Poot et al., 2007]; an increasing gate voltage increases also the tension
of the carbon nanotube due to higher electrostatic attraction of the global gate
electrode and the carbon nanotube. This stiffens the carbon nanotube and leads
to a higher resonance frequency of the bending mode.
Indeed a negative frequency tuning was observed in this device. We were able to
decrease the mechanical resonance frequency to 75% of its maximum value by
an applied back gate voltage.
For the measurements of this chapter we employ a device of the ReMo type, see
chapter 3.2. Unfortunately the gate finger was nonfunctional due to fabrication
issues; the back gate was used to vary the electro-chemical potential within the
carbon nanotube. The sample was cooled down in a 3He evaporation cryostat.
The measurement of this chapter were performed in cooperation with Sabine
Kugler; the main results are published in [Kugler, 2013, Stiller et al., 2013].
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7.1 Mechanical properties of suspended, doubly
clamped carbon nanotubes

Carbon nanotubes yield excelling mechanical properties, in particular low mass
(≈ 10−21 kg) and extreme high Young’s modulus (≈ 1TPa) [Lu, 1997]. In addi-
tion carbon nanotube nano-electromechanical systems make it possible to probe
both mechanical and electronic quantities on the nano-scale. Here a basic descrip-
tion of carbon nanotube mechanics is given to understand the measurements of
this thesis; for a more detailed discussion see e.g. [Witkamp, 2009].
As discussed in literature [Postma et al., 2005, Witkamp et al., 2006, Poot et al.,
2007, Poot and van der Zant, 2012] suspended, doubly clamped carbon nanotubes
can be modeled using classical Euler-Bernoulli theory for a cylindric beam [Cle-
land, 2010]. For the deflection U , the following differential equation results:

ρA
∂2U

∂t2
+ η

∂U

∂t
+ EI

∂4U

∂z4 − Tmech
∂2U

∂z2 = Fext. (7.1)

Here, Fext is an external force driving the mechanical motion of the carbon nan-
otube. The carbon nanotube cross section reads A = πr2, and I = πr4

4 is the
momentum of inertia [Lefèvre et al., 2005]. The tension Tmech of a carbon nan-
otube can be written as

Tmech = T0 + EA

2L

L∫
0

(
∂U

∂t

)2

dz, (7.2)

where L is the width of the trench. Fabrication procedures lead to an intrinsic
tension T0; the second term results from the beam deflection.
The differential equation 7.1 can be solved by separating the deflection U (z, t)
in a time-independent part Udc(z) and a time-dependent part Uac(z, t);

U (z, t) = Udc (z) + Uac (z, t) . (7.3)

Using equation 7.1 and equation 7.3 one obtains the two equations:

EI
∂4Udc

∂z4 − Tdc
∂2Udc

∂z2 = Fdc (7.4)

and

ρA
∂2Uac

∂t2
+ η

∂Uac

∂t
+ EI

∂4Uac

∂z4 − Tdc
∂2Uac

∂z2 − Tac
∂2Udc

∂z2 = Face
iwt, (7.5)
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with the separated tension terms

Tdc = T0 + EA

2L

L∫
0

(
∂Udc

∂t

)2

dz, (7.6)

and

Tac = EA

L

L∫
0

(
∂Udc

∂t

)(
∂Uac

∂t

)
dz. (7.7)

Solving these equations self-consistently results in expressions for the resonance
frequency dependence of a carbon nanotube mechanical resonator. Different
regimes arise depending on the dominance of the tension energy compared to
the bending energy (terms 3 and 4 in equation 7.1); for low Tmech the carbon
nanotube can be seen as a hanging chain, and for high Tmech as a string under
tension. A detailed analysis is presented in [Poot and van der Zant, 2012].
The carbon nanotube can be actuated contact-free using a nearby radio frequency
(RF) antenna. On the one hand the carbon nanotube interacts directly with the
electromagnetic field of the antenna, on the other hand the electromagnetic field
of the antenna couples into the substrate generating an a.c. gate voltage.

7.2 Gate tuning of mechanical resonance
The distance of the carbon nanotube from the back gate is defined by

h = h0 − Udc (z) , (7.8)

with the equilibrium height h0 and the time-independent deflection Udc (z) of the
carbon nanotube perpendicular to the carbon nanotube axis. As approximation,
the carbon nanotube is taken as an infinite long cylinder; the resulting capacitance
between ground plane and carbon nanotube is given by

Cgate = 2πε0
ln
(

2h
r

) ≈ 2πε0
arccosh

(
h
r

)
≈ 2πε0

arccosh
(
h0
r

) + 2πε0√
h2

0 − r2arccosh2
(
h0
r

)Udc (z) . (7.9)
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This leads to a electrostatic force on the carbon nanotube [Witkamp et al., 2006]:

Fdc = 1
2
dCgate(z)

dU V 2
gate = πε0√

h2
0 − r2arccosh2

(
h0
r

)V 2
gate. (7.10)

As one can see this external force depends on the applied back gate voltage.

7.3 Measurement setup and detection technique
For the measurements of this chapter a 3He evaporation cryostat was used to
cool the device down to a base temperature of 280mK. The basic elements of a
3He evaporation cryostat are shown in figure 7.1(a). A charcoal sorb pumps the
gas phase of the 3He-pot, lowering the pressure of the gas above the liquid 3He.
Resulting evaporation cooling leads to a decrease of the temperature of liquid 3He
from 3.2K to 280mK. For recondensing of the 3He the charcoal sorb is heated
up and the 1K-pot condenses the gaseous 3He.
In figure 7.1(b) the low temperature measurement and actuation setup is de-
picted. The bias voltage is applied using a voltage divider; the resulting current
through the carbon nanotube device is amplified at room temperature and re-
corded by a multimeter. A second voltage source and a low pass filter are em-
ployed to vary the back gate voltage and thereby the electro-chemical potential
within the carbon nanotube. The low pass filter at the back gate should reduce
ac fluctuations of the gate voltage. The suspended carbon nanotube is actuated
contact-free by the radio frequency (RF) radiation of an antenna installed near
the sample holder, see figure 7.2.
The mechanical response of the oscillating carbon nanotube is detected in the
d.c. current through the devices; for the details of the detection mechanism see
[Hüttel et al., 2009a].

7.4 Electronic device characterization
First we give a short overview of the electronic device properties. Figure 7.3
shows a room temperature measurement of the carbon nanotube device; the gate
voltage is varied from 0V ≤ Vgate ≤ 4V while a bias voltage of Vbias = 10mV is
applied to the source electrode. At the drain electrode the d.c. current through
the carbon nanotube is amplified and recorded. The resulting room temperature
resistance RCNT is in the range

RCNT ≈
10mV
780 pA ≈ 12.85MΩ. (7.11)
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Figure 7.1: (a) Basic principle of a 3He evaporation cryostat. 3He is pumped
by a charcoal and afterwards recondensed using a 1K-pot. (b) Low temperature
measurement setup; a bias voltage is applied to the sample and the resulting
current amplified and recorded by a multimeter. The carbon nanotube is driven
contact-free by the RF fields emitted from an antenna. An applied gate voltage
varies the electro-chemical potential of the carbon nanotube. (a) is adapted from
[Enss and Hunklinger, 2005].

A low temperature measurements of the gate voltage dependence of the d.c. current
is shown in figure 7.4. The gate voltage is varied from 0V ≤ Vgate ≤ 4V at fixed
bias voltage Vbias = 2mV. The resulting minimal low temperature resistance (near
Vgate = 4V) reads

RCNT ≈
2mV
30 nA ≈ 167 kΩ. (7.12)

The carbon nanotube device exhibits the typical different transport regimes of
a small band gap carbon nanotube which are here not discussed in detail. On
the hole conduction side a Fabry-Perot like oscillation of the current is visible
for Vgate ≤ 2.2V [Liang et al., 2001], and the electron conduction side shows
sharp peaks in the current trough the devices indicating Coulomb oscillations.
For higher electron numbers Kondo effect is observed [Goldhaber-Gordon et al.,
1998]; the low bias conductance in Coulomb blockade is enhanced for odd charg-
ing states of the carbon nanotube quantum dot due to the interaction of an
unpaired spin on the quantum dot and the spins in the lead reservoirs.
By varying both the gate voltage Vgate and the bias voltage Vbias the well known
Coulomb diamonds of differential conductance arise, as already discussed in chap-
ter 4. Figure 7.5 shows such a measurement for the electron conduction side,
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Figure 7.2: Sample stage of our 3He evaporation cryostat. Visible is the sample
holder, the cabling for d.c.measurements and the additional installed RF antenna
for mechanical actuation of the transverse bending modes of a suspended carbon
nanotube.
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Figure 7.3: Room temperature measurement of the d.c. current through the de-
vice as function of the gate voltage, used for pre-characterization. The bias
voltage is set to Vbias = 10mV. The gate voltage is varied from 0V ≤ Vgate ≤ 4V.
The slight drop of the d.c. current around Vgate = 2.4V indicates a small band
gap behavior of the carbon nanotube.
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Figure 7.4: Low temperature measurement of the gate voltage dependence of the
d.c. current while a constant bias voltage Vbias = 2mV is applied between source
and drain contact. The gate voltage is varied from 0V ≤ Vgate ≤ 5V. The
resulting d.c. current through the carbon nanotube exhibits different transport
regimes, see text.

in the gate region 2.815V ≤ Vgate ≤ 3.91V. The bias voltage is varied as
−10mV ≤ Vbias ≤ 10mV. Clearly visible are the Coulomb diamonds, i.e. regions
of Coulomb blockade. For higher bias voltages they are smeared out and many
additional in-elastic co-tunneling lines arise [De Franceschi et al., 2001], marked
"a" in figure 7.5. Also gate dependent in-elastic co-tunneling lines arise (marked
"b" in figure 7.5); a more complex potential structure with more than a single
minimum along the carbon nanotube may cause this gate dependence [Goß et al.,
2011].
A more interesting feature in terms of mechanical observations in carbon nan-
otubes are the sharp spikes at the Coulomb diamond edges marked "c" in fig-
ure 7.5. For high mechanical quality factors and low temperatures the carbon
nanotube mechanical motion can be driven solely due to single electron tun-
neling through the embedded carbon nanotube quantum dot [Usmani et al.,
2007, Schmid et al., 2012]. Note that up to now no external alternating force
is applied to the carbon nanotube.

7.5 Driven mechanical resonator
Now the carbon nanotube is driven by applying an RF signal to the antenna.
In resonance this leads to an oscillation of the transverse bending mode of the
carbon nanotube. Figure 7.6(a) shows such a measurement; the bias voltage is
set to Vbias = 2mV, the gate voltage to Vgate = 3.234V and the nominal output
power of the RF generator to P = 2dBm. The frequency of the radio signal
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Figure 7.5: Plotted is the numerically derived conductance |dI/dV | as a func-
tion of both gate voltage and bias voltage; 2.815V ≤ Vgate ≤ 3.91V and
−10mV ≤ Vbias ≤ 10mV. Clear Coulomb diamonds and additional co-tunneling
lines arise (red arrows, a) and also gate depended transport lines within the
Coulomb diamonds (yellow arrows, b). The orange arrows (c) mark vibrational
self-oscillation effects seen in the electronic transport measurements, see text.

is varied from 100MHz to 600MHz. Recorded is the d.c. current through the
carbon nanotube. Many resonance features arise, as indicated by cyan arrows in
figure 7.6(a). In figure 7.6(b) the resonance frequencies are extracted and labeled
with mode numbers. A linear fit of the harmonics results in

fn = n · (71.4± 0.4) MHz, (7.13)

yielding a quite good agreement with our data points. The additional features
in figure 7.6(a) are labeled with their resonance frequency. Although the peaks
show a response of the same type as a mechanical mode a clear explanation can
not be given so far.

7.6 Negative frequency tuning
Figure 7.7 shows a measurement of the numerical derived current as a function
of both gate voltage Vgate and applied RF signal. The range of the RF signal
is adjusted to observe the first harmonic frequency of figure 7.6(a). The gate
voltages is varied from −12V ≤ Vgate ≤ 10V, the applied bias voltage is set
to Vbias = 2mV and a driving power of P = 2dBm is applied. As explained
before the mechanical resonance frequency is expected to increase due to the
applied gate voltage. Nevertheless we observe in this device a completely different
gate dependence: the resonance frequency is lowered from its maximum value
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Figure 7.6: (a) Typical characterization measurement for a carbon nanotube
mechanical oscillator. Bias voltage Vbias = 2mV and gate voltage Vgate = 3.234V
are kept constant. The frequency of the applied RF signal is varied from 100MHz
to 600MHz; plotted is the resulting d.c. current through the device. Resonance
features listed in (b) are marked with cyan arrows. Additional features similar
to mechanical resonances are labeled with their resonance frequency. (b) linear
fit (red curve) of the extracted frequencies from (a) versus mode number (orange
points), yielding fn = n · (71.4± 0.4) MHz.
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of about 146MHz to about 110MHz at a gate voltage of Vgate = −12V. The
maximum frequency can be found at a gate voltage Vgate ≈ 1.4V. Similar effects
have already been observed in carbon nanotubes using a dual gate setup for a
weakly tensioned carbon nanotube. The gate dependence can be explained by
electrostatic softening, an effective electrodynamic contribution to the carbon
nanotube spring constant [Wu and Zhong, 2011].

 110

 120

 130

 140

 150

-10 -5  0  5  10

|dI/df|
[a.u.]

V  [V]gate

f 
[MHz]

Figure 7.7: Plotted is the numerical derivative |dI/df | of the measured
d.c. current with respect to the frequency of the driving signal. The bias voltage
is set to Vbias = 2mV and the RF output power to P = 2dBm. Yellow crosses
mark the extracted resonance frequencies. The black curve represents a parabolic
fit using equation 7.16. Taken from [Stiller et al., 2013] and modified.

For an oscillating carbon nanotube the distance h between gate and carbon nan-
otube is varying. By changing the distance h also the derivative of the capaci-
tance between carbon nanotube and gate changes during one oscillation period.
As mentioned in section 7.1, the electrostatic force on the carbon nanotube is
given by

Fext ∝
dC
dU (z) . (7.14)

Considering a small deflection δh the electrostatic force modulation δFext due to
changes in the gate capacitance can be described via an effective spring constant
contribution as
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δFext ∝ δh
dC2

d2U
(z) . (7.15)

We assume the mechanical tension of the carbon nanotube to be constant for
low gate voltages. This is the tension of the carbon nanotube caused by the
fabrication process. The resonance frequency of the carbon nanotube resonator
reads now

f (Vgate) = fmax − β (Vgate − Vgate,0)2 , (7.16)

with

fmax = 0.5
√
T0

mL
(7.17)

and

β = dC2

d2U

Lfmax

4π2T0
, (7.18)

The black line in figure 7.7 shows the fitting of our data with equation 7.16;
we can extracted fmax = 146.9MHz, Vgate,0 = 1.4V and β = 0.192MHzV−2.
Using the length L = 500 nm and assuming a mass of the carbon nanotube
m = 0.17 · 10−21 kg we obtain for the tension T0 = 7.3 pN and for the second
derivative of the capacitance a value of C ′′ = 7.5 · 10−7 Fm−2.
For a rather simple model equation 7.16 gives a qualitative fit of our measurement.
Not accounted are charge neutrality within the carbon nanotube band gap and
a tension Tmech varying with the gate voltage.
For a cross check we model the carbon nanotube as a fine beam over a conducting
plate, see section 7.2. From the geometrical values of the carbon nanotube device:
mass m, gate distance h, estimated carbon nanotube radius r, and the width of
the trenches L we can calculate a theoretical value of β. Using the value for the
tension T0 = 7.3 pN we obtain

βtheo = 0.521MHzV−2. (7.19)

Due to the simple model and all assumptions made, this is in good agreement
with the experimental value of βexp = 0.192MHzV−2. A detailed calculation of
βtheo can be found in appendix B.





CHAPTER 8

Coplanar waveguide resonators for carbon nanotube
integrated circuits

As already mentioned in the introduction, carbon nanotubes are potential can-
didates for defining charge or spin qubits. The previous chapters presented mea-
surements on clean, suspended carbon nanotubes. As a further step towards
combining carbon nanotubes and coplanar waveguide (CPW) resonators, a reli-
able fabrication process and measurement setup for CPW resonators is necessary.
We achieved niobium (Nb) quarter wavelength resonators with internal quality
factors up to 2.4 · 105 with a silicon substrate and a post-grown Al2O3 layer. This
additional isolation layer is necessary for future experiments with carbon nan-
otubes since we have to avoid contact between the ground plane of the CPW and
the carbon nanotube electrode geometry. First of all a short description of our
sample fabrication is given, details see appendix A.2. Afterwards the cryogenic
setup is explained.
The behavior of the resonance frequency and the internal quality factor of a CPW
resonator as function of temperature can be described by Matthis-Bardeen the-
ory [Mattis and Bardeen, 1958]. Here, the resonance frequency is influenced by
changes in the kinetic induction fraction. In the low-temperature limit, the loss
due to two-level systems in the substrate material dominates the internal qual-
ity factor and the resonance frequency of the CPW resonator. Both models are
briefly described. At the end of this chapter the potential combination of carbon
nanotubes and CPWs in one device is discussed.

77



8.1. Device fabrication 78

8.1 Device fabrication

Compared to carbon nanotube device fabrication, the challenges are different.
Essentially one optical lithography step is required; after wafer cleaning metallic
layers are deposited onto the substrate by sputtering in an UHV system. The
CPW structure is defined by optical lithography, and the redundant metal is re-
moved by reactive ion etching. Finally the resist is removed upside down in an
acetone bath using sonication.
An SEM picture of a CPW resonator device can be seen in figure 8.1. The pic-
ture has been taken after measurement, as recognizable from the remaining bond
wires at the edges and on both bond pads of the feedline, and from contamina-
tions by water condensation. Many bond wires are used to achieve grounding of
both sides of the ground plane. Three quarter wavelength resonators are coupled
capacitively to the feedline differing only in the total length.
Potential devices are checked with an optical microscope for lithography errors,
and the feedline is tested in a probe station whether it has unwanted electric
contact to the ground planes. Further characterization is done employing a 4K
dip stick.
For first CPW structures we employed Nb, a common material for superconduct-
ing transmission lines due to its high critical temperature. Figure 8.2 shows the
measurement of the critical temperature for a 135 nm thick Nb layer; a critical
temperature of Tc = 8.925K was achieved.
The width of the feedline is w = 20µm, it is separated from the ground planes
on both sides by s = 12µm. The metallic layer for the CPW resonator is 135 nm
thick. The values are chosen to achieve a 50Ω matching of the feedline. The
resonance frequency of a quarter wavelength resonator is defined by its length
lcpw and the properties of the substrate using

fdesign = c

4lcpw
√
εeff

; (8.1)

where c is the speed of light and εeff the effective dielectric constant of the used
substrate material. The three meandering resonators of figure 8.1 yield three
different resonance frequencies due to their different lengths. For the Nb resonator
we can calculate εeff = 4.88 [Chen and Chou, 1997]; it also turns out that the
10 nm thick Al2O3 layer can be neglected for calculating εeff. The details for this
calculation are given in appendix D. Table 8.1 lists the lengths of the different
resonators and the resulting resonance frequencies using equation 8.1. The design
frequencies are chosen to fit to the experimental setup.
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Figure 8.1: (a) SEM picture of an 8×8mm substrate with a feedline connected
to two bond pads and three superconducting CPW resonators. (b) shows a bond
pad of the feedline. Three bond wires are used to achieve a good contact. In (c)
a zoom of one meandering resonator is depicted. The region marked with red is
responsible for the capacitive coupling of feedline and resonator(s).
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resonator length lcpw design frequency fdesign

resonator 1 lcpw = 6.604mm 5.139GHz

resonator 2 lcpw = 7.473mm 4.541GHz

resonator 3 lcpw = 8.062mm 4.209GHz

Table 8.1: Lengths lcpw of the meandering resonators and the resulting design
frequencies fdesign using equation 8.1 and a calculated value εeff = 4.88.

8.7 9.08.9 9.1 T [K]

50

100

150

200

R [Ω]

Niobium
T  = 8.925 Kc

8.8

Figure 8.2: Four terminal measurement of Nb hall bar test structures. Recorded
is the resistance as function of the temperature. The Nb test structure was etched
in the ground plane of a 135 nm thick Nb resonator structure, after the resonator
measurements. Nb shows a critical temperature Tc = 8.925K. The measurement
was done in cooperation with Thomas Huber.
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8.2 Microwave frequency measurement setup
For the low temperature measurements the samples are mounted in a special
sample holder, see figure 8.3. On the bottom of the mixing chamber of a dilution
refrigerator a silver cold finger is attached. At the end of this finger the sample
holder is placed.
In figure 8.4(a) a photo of our dilution system is depicted; the fundamental
cooling process was already presented in chapter 3. For high frequency (HF)
measurements an ingoing and an outgoing HF coaxial cable is installed within
the cryostat. The high frequency setup is sketched in figure 8.4(b). For cooling of
the ingoing cable several attenuators are installed and thermally coupled to the
different temperature stages, adding up to an input attenuation of 53 dB. In the
output signal cable instead a high electron mobility transistor (HEMT) amplifier
of type Caltech CITCRYO1-12A is installed working at the 1K stage, see figure
8.5. For a proper thermal contact a copper strip links the HEMT amplifier to the
1K-plate. The amplifier is battery driven and has a gain of 29 dB. Also shown
in figure 8.5 is a circulator mounted at the mixing chamber plate. It is used to
prevent heating from the direction of the HEMT amplifier and reduces noise.
Measurements were done using on the one hand a vector network analyzer and
on the other hand a combination of a signal generator and a spectrum analyzer.
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Figure 8.3: (a) shows the single parts of the sample holder, (b) the assembled
and mounted sample holder at the end of the cold finger.
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Figure 8.4: (a) Photo of our dilution system; marked are the parts responsible
for the cooling process. The sample is mounted at the end of a cold finger as-
sembly. (b) Microwave cabling installed in the cryostat for RF transmission mea-
surements. On the input side the coaxial cable is thermalized using impedance
matched attenuators; the total attenuation is 53 dB. On the output side a circu-
lator is mounted at the mixing chamber plate and the HEMT pre-amplifier near
the 1K-pot with a gain of 29 dB.
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Figure 8.5: (a) shows the attached and thermally coupled HEMT amplifier. It
is located at the 1K-plate; the small insert shows the power supply cables of the
HEMT amplifier. The circulator at the mixing chamber is shown in (b).

8.3 Quality factor evaluation
For CPW devices it is convenient to use the scattering matrix formalism to de-
scribe the transmission through the feedline of a quarter wavelength resonator
[Pozar, 2012]; amplitude and phase angle of the outgoing wave are measured with
respect to the incident microwave. For a two-port device we have the scattering
matrix

(
V out

1
V out

2

)
=
(
S11 S21
S21 S22

)
·
(
V in

1
V in

2

)
, (8.2)

where the parameter S21 is of main interest. V out
i /V in

i describe the voltage output
and input at port i; Sij is the scattering matrix element from port j to port i.
Sweeping the frequency we expect a dip at a certain frequency since in resonance
case an amount of power is coupled out to the resonant quarter wavelength struc-
ture. The combination of meandering resonators and the feedline can be treated
as parallel lumped element RLC circuits [Pozar, 2012]. Following [Khalil et al.,
2012, Bruno et al., 2015] the frequency dependence of S21 near resonance can be
described by
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S21 = 1− eiθQl

|Qe| (1 + 2iδfQl)
, (8.3)

with

δf = f − f0

f0
, (8.4)

where Ql is the loaded quality factor, Qe the external quality factor and the angle
θ is introduced to model an asymmetric line shape of the resonance feature; for
details see [Khalil, 2013].
Using equation 8.3 for fitting our measurement data it turns out that we have
to add an additional linear equation to compensate the asymmetric line shape
of S21. Note that the angle θ accounts for an asymmetric line shape only near
resonance; the linear equation results in an overall tilt of the whole measured
frequency range.
Figure 8.6 shows an example measurement of the transmission |S21|2 as a function
of the applied microwave frequency at base temperature of the dilution system.
A clear dip around fres = 4.2159GHz arises due to the resonant coupling of the
meandering resonator structure and the feedline. The orange dots represent the
measured data, and the blue curve represents the fit, yielding a loaded quality
factor Ql = 9424.55 and an external quality factor |Qe| = 9798.16. Using the
definition for the coupling quality factor

Q−1
c = Re

(
Q−1
e

)
, (8.5)

we obtain Qc = 9796.68 and so one can derive the internal quality factor of the
quarter wavelength resonator, which describes the intrinsic loss of the resonator:

Qi = 1
1
Ql
− 1

Qc

. (8.6)

For this device we found an internal quality factor Qi = 2.42 · 105; compared to
literature this internal quality factor is in the same order of magnitude: in [Basel-
mans et al., 2005] a 100 nm thick Nb quarter wavelength resonator is employed
achieving internal quality factors ranging from Qi = 3.4 · 104 to Qi = 2.7 · 105.
In a more recent experiment by [Macha et al., 2010] internal quality factors of
Qi = 5.7 · 105 for a Nb half wavelength resonator were presented. In the following
we present additional measurements and evaluation of the resonance frequency
and internal quality factor of our Nb CPW resonator.
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Figure 8.6: |S21|2 transmission matrix element as a function of the applied mi-
crowave frequency. A dip around fres = 4.2159GHz arises, using equation 8.6
(solid curve) we obtain an internal quality factor of Qi = 2.42 · 105. This mea-
surement was done at base temperature of the dilution system.

8.4 Characterization of niobium quarter wave-
length resonators

For a first characterization we measured the device at 4K in a 4He transport
vessel; it is surrounded by liquid helium. In figure 8.7 the transmission |S21|2
is plotted as a function of the applied microwave frequency, at an input power
Pgenerator = −20 dBm. Three minima of different magnitude arise; slow, periodic
oscillations in the transmission can be attributed to intrinsic resonances due to
the cables.
Table 8.2 lists the measured resonance frequencies and the design frequencies
for this CPW. A systematic deviation of about 7.5 % arises. In equation 8.1
the resonance frequency is assumed to be temperature independent; tentatively
assuming that this deviation is due to a kinetic inductance of the superconducting
metal. The details of the temperature dependence will be discussed later.
Subsequently the device was cooled down using our dilution system, see section
8.2. For further examination, the resonance feature at 4.21GHz was chosen. A
first measurement at base temperature was already shown in figure 8.6. This has
been repeated at several temperatures; the internal quality factors Qi and reso-
nance frequencies fres were extracted using equation 8.3 and equation 8.6. The
generator power was set to Pgenerator = 0dB, leading to a effective power arriving
at the sample of Pin = Pgenerator − 53 dB.
In figure 8.8 several measurements of the transmission |S21|2 are compared for
temperatures ranging from 18mK to 3.63K. The resonance frequency decreases
for increasing temperatures. One also sees that the resonance peaks broaden and
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design frequency fdesign resonance frequency fres deviation

resonator 1 5.139GHz 4.748GHz 7.61%

resonator 2 4.541GHz 4.203GHz 7.44%

resonator 3 4.209GHz 3.905GHz 7.22%

Table 8.2: Listed are the different resonance frequencies fres extracted from fig-
ure 8.7 and design frequencies fdesign. A systematic deviation of about 7.5% is
observed, see text.
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Figure 8.7: Transmission matrix element |S21|2 as a function of the frequency
varied from 3.85GHz to 4.8GHz. The input power was set to Pgenerator = −20 dB.
The resonance features are clearly visible. Three dips at 3.905GHz, 4.203GHz
and 4.748GHz arise. The measurement was done in cooperation with Thomas
Huber at liquid helium temperature employing a 4K dipstick.
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the depth of the peaks decreases from about 28 dB for 18mK to about 8 dB for
3.63K.
Figures 8.9 and 8.10 display the evaluation results of the temperature dependence
of Qi and fres, respectively. As can be seen in figure 8.9, the internal quality fac-
tor of our Nb resonator slightly increases up to 300mK. Above T = 300mK the
internal quality factor decreases to a value of Qi=7868.88 at 4.4K.
In figure 8.10(a) we observe a slight increase of the resonance frequency fres up to
1.5K. For further increasing temperatures the resonance frequency drops, com-
pare figure 8.10(b).
In literature, the low temperature behavior of Qi and fres is attributed to the loss
due to two-level systems (TLS) in the substrate. Tunnel systems in the substrate
interact with the electro-magnetic field of the CPW resonator. The effect for low
temperatures is small compared to the decrease at higher temperatures. There,
the cooper-pair density of the superconducting material decreases and the kinetic
inductance rises, leading to the strong drop of the resonance frequency for tem-
peratures above T = 2.5K. The corresponding models will be discussed in detail
in the following sections.
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Figure 8.8: Plotted are the |S21|2 transmission measurements for different tem-
peratures of a Nb resonator. The resonance features shift to lower frequencies;
the magnitude decreases for higher temperatures.
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Figure 8.9: Internal quality factor Qi as a function of the temperature for our Nb
resonator. For each data point a |S21|2 measurement is performed and equation
8.6 is used to provide the fit parameters.

8.5 Two-level system loss in coplanar waveguides
Model

The low temperature behavior of superconducting CPWs shown in the last section
can be modeled using a two-level system (TLS) model. A first discussion of TLS
in amorphous solids is given in [Anderson et al., 1972, Phillips, 1972] trying to
explain the experimental distinctions between crystalline and amorphous solids
at low temperatures. The basic idea is atoms being present in the amorphous
solid having multiple potential minima.
TLS in solids give rise to an extremely wide field of low temperature physics;
e.g. the specific heat or the thermal conductivity are strongly influenced by TLS
in amorphous dielectrica and even crystalline materials. A detailed discussion can
be found in [Phillips, 1987] and [Enss and Hunklinger, 2005]. Tunneling states
of atoms in disordered solids cause dipole moments which, in our case couple
to the electro-magnetic field of the CPW resonator. For a detailed formalism
transformed from the original amorphous solids to CPW resonators it is referred
to [Gao, 2008]; here only a short overview is given.
The two-level system is modeled as a double potential well using the Hamiltonian

H0 = 1
2 ·

(
−∆TLS ∆0

∆0 ∆TLS

)
, (8.7)

with the TLS asymmetry ∆TLS and the tunnel splitting ∆0.
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Figure 8.10: Extracted resonance frequencies as a function of the temperature of
the Nb quarter wavelength resonator. For each data point a |S21|2 measurement
is done and equation 8.3 is used to extracted the resonance frequency. (a) Details
of the low temperature region (T < 2K); an increasing resonance frequency for
increasing temperature is visible below T = 1.3K.



8.5. Two-level system loss in CPWs 90

The eigenenergies of this Hamiltonian read

ε = ±

√
∆2 + ∆2

0

2 . (8.8)

The interaction of the TLS with the electromagnetic field of the superconducting
microwave resonator is included by an additional term Hi in the Hamiltonian:

H = Ho +Hi = 1
2εσz +

[
∆TLS

ε
σz + ∆0

ε
σx

]
~d0 · ~E, (8.9)

where σi are the Pauli matrices and ~d0 is the maximum transition dipole moment
for a corresponding energy ε. The first term of the interaction Hamiltonian
including the TLS asymmetry ∆TLS is responsible for a relaxation response in the
electro-magnetic field of the CPW resonator. The tunnel splitting ∆0 gives rise
for a resonant response; second term in equation 8.9. One can define a resonant
and relaxation tensor for the susceptibility connecting the dipole moment of the
TLS and the electro-magnetic field of the CPW resonator:

~d = ξres,rel · ~E, (8.10)

for the complete expressions see appendix D. For microwave frequencies it turns
out that the relaxation contribution has not to be taken into account. So one
obtains for the dielectric function

εTLS (ω) =
∫ ∫ ∫ [

(~e · ξres ·~e)
PTLS

∆0

]
d∆TLSd∆0dd̂ = ε′TLS (ω)− i · ε′′TLS (ω) ,

(8.11)

where PTLS is the density of states of the TLS. The integration is done over the
tunnel asymmetry ∆TLS, the tunnel splitting ∆0, and the dipole orientation d̂.
Within the tunneling model it is assumed that ∆TLS and ∆0 are independent
of each other and their distribution is uniform [Enss and Hunklinger, 2005]. A
detailed analysis of εTLS is given in [Gao, 2008]. Following [Pozar, 2012] one
can calculate the shift of the resonance frequency and the internal quality factor
caused by TLS; the results are

f(T )− f0

f0
= −

∫
Vh
ε′TLS| ~E|2d~r

2
∫
V εeff| ~E|2d~r

= FδTLS
π

[
ReΨ

(
1
2 −

hf0

2iπkBT

)
− Log

(
hf0

2πkBT

)]
(8.12)
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and

1
Qi

= −
∫
Vh
ε′′TLS| ~E|2d~r

2
∫
V εeff| ~E|2d~r

= FδTLStanh
(
hf(T )
2kBT

)
. (8.13)

The only free parameters are FδTLS and f0; Ψ is the complex digamma function,
see appendix D. The integration in the numerator is done over the volume Vh
of the TLS host material; the integration in the denominator is done over the
volume of the electro-magnetic field V . δTLS represents the loss tangent caused
by the TLS and f0 is the resonance frequency for a temperature T = 0K. F
is given by the ratio of the stored energy in TLS host material and the total
stored energy of the microwave resonator. The total internal quality factor for
low temperatures and a strongly driven signal reads:

1
Qi

= Fδ∗TLStanh
(
hf(T )
2kBT

)
+ 1
Qother

. (8.14)

with an effective, reduced loss tangent Fδ∗TLS due to partial saturation of TLS
[Singh et al., 2014, Götz et al., 2015]. The first term of equation 8.14 is referred
to a TLS-dominated internal quality factor; an additional term Qother is added
to account for dissipation that is not connected to TLS [Bruno et al., 2015].

Temperature dependence

The cyan curve in figure 8.11(a) represents the fit using equation 8.12; for temper-
atures above 1K the increase of the resonance frequency is weaker than predicted
by the TLS model. For temperatures above 1.5K the model fails since the reso-
nance frequency now decreases for increasing temperature; this is an effect of the
lower cooper-pair density, see section 8.6. For temperatures below 100mK the
model curve also exhibits an again increasing resonance frequency. The curve of
equation 8.12 fits well to our data points. We can extract FδTLS = 4.189 · 10−5

and a value f0 = 4.216GHz.
Placing this into perspective, in [Sage et al., 2011] measurements on half wave-
length CPW resonators are presented; different metallic layers and substrate
systems are used to study the loss mechanism in CPWs. They also tested an
200 nm Nb/SiO2/Si resonator obtaining a value FδTLS = 2.4 · 10−5, this is nearly
the same value we could extract from our Nb quarter wavelength resonator. In
a more recent publication, a value FδTLS = 1.15 · 10−5 for a 160 nm Nb quarter
wavelength resonator on a high resistive silicon substrate was presented [Wang
et al., 2013]. In table 8.3 our results are compared to the literature.
The fit curve for the internal quality factor is marked cyan in figure 8.11(b), we
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Figure 8.11: Data points: extracted resonance frequency (a) and internal quality
factor (b) as a function of temperature for the Nb resonator, same as in figure
8.9 and figure 8.10. The cyan curves represent fits using equation 8.12 for (a)
and equation 8.14 for (b). Both equations achieve a quite good agreement with
our data, although we have only few data points for low temperature.

can extract k∗ = Fδ∗TLS = 1.806 · 10−7, which is about 100 times smaller than
k = FδTLS and Qother = 245293.

Power dependence

We have measured the power dependence of the TLS loss FδTLS in a second Nb
CPW device, fabricated identically to the first one. In figure 8.12 the resonance
frequency is measured as a function of the temperature for four different nominal
input powers Pin = Pgenerator − 53 dB. FδTLS is obtained using equation 8.12 for
each input power Pin. For low input powers (Pin = −63 dB and Pin = −53 dB)
the TLS loss is nearly constant; FδTLS = 4.46 · 10−5 and FδTLS = 4.45 · 10−5.
Increasing the input power decreases the TLS loss; FδTLS = 4.19 · 10−5 for
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Pin = −43 dB and FδTLS = 3.42 · 10−5 for Pin = −33 dB. The TLS get saturated
at higher electro-magnetic fields in the CPW resonators; thus the absorption
becomes less and the TLS loss decreases. The temperature dependence of the
resonance frequency (below T = 200mK) changes with increased input power
Pin. For Pin = −63 dB the resonance frequency increases below 100mK (marked
green in figure 8.12), this increase is weaker for a input power Pin = −53 dB. For
Pin > −43 dB the increase of the resonance frequency below 100mK can not be
observed.
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Figure 8.12: Temperature dependence of resonance frequency for a second Nb
CPW resonator. Plotted is the shift of the frequency f − f0 as a function of
the temperature. The measurements are taken for four different nominal input
powers Pin ranging from -63 dB to -33 dB. The extracted values for the TLS loss
FδTLS are labeled for each nominal input power. The frequency behavior for
temperatures below 100mK changes due to the increasing nominal input power
(green cycles), see text.
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8.6 Matthis Bardeen theory for coplanar wave-
guides

The temperature dependence of the resonance frequency below T = 1K is well
described by the TLS model of the previous section. For higher temperature T
the decrease of the resonance frequency can be attributed to a decrease in the
superfluid density of the superconducting metal [Singh et al., 2014, Götz et al.,
2015]. The resonance frequency then reads:

f(T )− f0

f0
= αδσ2

2σ2
, (8.15)

where σ2 is the imaginary part of the complex conductivity σ and α is the kinetic
inductance fraction. The BCS energy gap ∆BCS can be calculated [Hinken, 1988]:

∆BCS = ∆T=0

√√√√cos
(
πT 2

2T 2
c

)
; (8.16)

with an expression for ∆T=0 [Tinkham, 2004]:

∆T=0 = 1.764kBTc. (8.17)

For hf << ∆T=0 and kBT << ∆T=0 one obtains for σ2 [Gao et al., 2008]:

σ2

σn
= π∆BCS

hf0

[
1− 2e−

∆BCS
kBT e

− hf0
2kBT I0

(
hf0

2kBT

)]
; (8.18)

I0 is the modified Bessel function of the first kind and σn is the normal state
conductivity. For the internal quality factor we obtain:

δ

(
1
Qi

)
= αδσ1

σ2
, (8.19)

where σ1 is the real part of the complex conductivity σ [Gao et al., 2008]:

σ1

σn
= 4∆BCS

hf0
e
−∆BCS

kBT sinh
(
hf0

2kBT

)
K0

(
hf0

2kBT

)
; (8.20)
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with K0 as a modified Bessel function of the second kind. In figure 8.13 the cyan
curves represent the fits using equations 8.15 and 8.19. Here α is used as a free
fit parameter. Fitting the temperature dependence of the resonance frequency
yields a value of αexp = 0.0291. Our data points are in good agreement with the
fit obtained form equation 8.15. The value αexp = 0.0291 is now used to plot the
temperature dependence of the internal quality factor Qi. Figure 8.13(b) shows
Qi(T ), using equation 8.19 and Q0 = 2.35 · 105, the value obtained for Qi at base
temperature of the dilution system. Above T = 2.5K and below T = 0.5K the
fitting curve can reproduce the experimentally obtained temperature dependence
of the internal quality factor. At 0.8K the internal quality factor Qi decreases
with increasing temperature, although an exponential drop of the internal quality
factor Qi is predicted only at about 1.6K by the theoretical curve.

b

a

α  = 0.0291exp

α  = 0.0212theo
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Figure 8.13: (a) Fit of the temperature dependence of the resonance frequency
using equation 8.15 obtaining a value αexp = 0.0291 (cyan curve). The red curve
represents the theoretical curve using αtheo = 0.0212, see text. The curve of the
temperature dependence of the internal quality factor Qi is plotted for both αexp
(cyan curve) and αtheo (red curve) (b).
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8.7 Calculating the kinetic inductance fraction
In the previous section, the kinetic induction fraction αexp was obtained by fitting
our experimental data. A theoretical value of the kinetic inductance can be
calculated employing the properties of the geometry of the CPW resonator and
the superconducting metal film. The kinetic inductance fraction can be written
as [Watanabe et al., 1994]:

α = Lk
Lk + Lm

, (8.21)

where Lk is the kinetic inductance per unit length and Lm the magnetic induc-
tance per unit length of the superconducting CPW resonator film. The magnetic
inductance is defined as [Collin, 1992]

Lm = µ0K(k′)
4K(k) , (8.22)

where K(x) is complete elliptic integral of the first kind. The kinetic inductance
reads

Lk = Ls (gg + gf) , (8.23)

where Ls is the surface inductance and gg and gf are geometrical factors for ground
plane and feedline. These depend on the size of feedline w, gap between feedline
and ground plane s, and on the thickness z of the superconducting film:

gg = k

4w (1− k2)K(k)2

[
π + ln

(
4π (w + 2s)

z

)
− 1
k
ln
(

1 + k

1− k

)]
, (8.24)

gf = 1
4w (1− k2)K(k)2

[
π + ln

(4πw
z

)
− kln

(
1 + k

1− k

)]
. (8.25)

A complete derivation of the geometrical factors using a conformal mapping tech-
nique is given in [Collin, 1992]. The surface inductance Ls reads [Gao, 2008]

Ls = 1
σ2ωz

; (8.26)

using equation 8.18 and assuming T = 0 the surface inductance can be written
as
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Ls = h

σn2π2∆T=0z
. (8.27)

The critical temperature Tc = 8.925K and the normal state conductivity σn =
1.535 · 107 Ω−1m−1 lead to a kinetic inductance fraction αtheo = 0.0212. Com-
pared to the value obtained by fitting our experimental data αexp = 0.0291, this
is in good agreement. Deviations arise due to the uncertainty in the geometrical
values of the CPW resonator and the measured values of the critical temperature,
and normal state conductivity.
In figure 8.13 the red curve represents the obtained theoretical curve using α. For
high temperatures the predicted decrease of the resonance frequency is smaller
than observed in the experiment. The temperature dependence of the internal
quality factor Qi using both values of α coincides for up to T = 1.4K; the expo-
nential decrease of the internal quality factor Qi is than weaker for αtheo.
In literature the deviations are assumed to be due to disorder in the superconduct-
ing resonator material [Driessen et al., 2012, Coumou et al., 2013]; a generalized
Mattis-Bardeen theory employing a broadened quasi-particle density of states
with an effective pair-breaking is used. In [de Visser et al., 2014] the effects on
internal quality factor and resonance frequency is explained with a non-thermal
quasi-particle distribution. In a recent publication a two-channel model based on
the Mattis-Bardeen theory was employed to fit the experimental data obtaining
quantitative agreement between experiment and theory [Žemlička et al., 2015].
The deviations in our device for the temperature range 0.5K < T < 3K are still
unclear.

8.8 Combining carbon nanotubes and coplanar
waveguide resonators

In literature the dipole coupling of carbon nanotube double quantum dots and
CPW resonators was already reported [Viennot et al., 2014]. Regarding the de-
vice geometry, the coupling was there achieved by a hammer-like coupler; this
hammer is capacitively coupled to a half wavelength CPW resonator and ex-
tended to one of the two quantum dots defined within the carbon nanotube. A
charge-photon coupling factor of a few MHz was observed. This is compara-
ble to existing experiments based on two-dimensional electron gases [Frey et al.,
2012, Toida et al., 2013] and on indium arsenide nanowires [Peterson et al., 2012].
Important quantities are the decoherence rate of the qubit and the decay rate of
the resonator; in table 8.4 both rates and the coupling factors are listed for differ-
ent experiments. The cavity decay rate describes the time the CPW resonators
needs to return to its equilibrium. For qubit devices the coherence time has to be
long enough to enable manipulation and read-out of the qubit. Strong coupling is
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achieved if the qubit-photon coupling exceeds the decoherence and cavity decay
rate; comparing the experiments listed in table 8.4 signs of strong coupling was
observed in different material systems. Achieving a strong coupling regime is still
challenging and for future qubit devices still improvements are necessary.
For carbon nanotube devices two different ways to combine carbon nanotubes
and CPW resonators are conceivable:

Coplanar waveguide resonator processed onto carbon nanotubes

The carbon nanotube is grown by CVD and contacted by metallic electrodes.
Afterwards the carbon nanotube and its contacts are isolated by an additional
oxide layer. In the end the CPW resonator is fabricated; here Nb is used as
superconducting material. In figure 8.14 a room temperature characterization
measurement of such a carbon nanotube device attached to a CPW resonator is
shown; the minimal room temperature resistance is about 66MΩ. Figure 8.15
shows such a device. The coupling between the resonator and the quantum dot
is achieved by the gate finger of the carbon nanotube, which is coupled capaci-
tively to the meandering resonator structure. As first attempt the coupling of a
single quantum dot defined in a carbon nanotube and a CPW resonator should
be achieved. The design was adapted from recent publications [Viennot et al.,
2014].
An advantage of this fabrication procedure would be that we can use Nb quarter
wavelength CPW resonators for the fabrication. A big problem is the number
of fabrication steps; achieving regular, clean carbon nanotubes is more compli-
cated. Unfortunately the CPW resonator of this device did not display resonance
features at liquid helium temperature; the substrate treatment might affect the
properties of the CPW resonator.

Overgrown carbon nanotube and coplanar waveguide resonator

A second possible design combines a pre-defined CPW resonator and a subsequent
overgrowth of the carbon nanotube over a pre-defined electrode and coupling ge-
ometry, as it was done for our measurements on suspended carbon nanotube
nano-electromechanical oscillators. For this, rhenium-molybdenum CPW res-
onators were developed and tested under CVD growth conditions. First working
quarter wavelength ReMo resonators show internal quality factors up to 2.3 · 104

before CVD and up to 4200 after the CVD growth [Götz et al., 2015].



8.8. Combining CNT and CPW 100

-2 -1 0 1 V  [V]gate-3

5

10

15

30

I [pA]

25

20

Figure 8.14: Current through a carbon nanotube at room temperature as a func-
tion of applied gate voltage. The bias voltage was set to Vbias = −2mV. A band
gap of the carbon nanotube becomes visible. The measurement was done at room
temperature and after the growth of a 150 nm thick Al2O3 layer on top of the
device.

coupling cavity decay rate decoherence rate

[Wallraff et al., 2004] gc = 2π · 6MHz κ = 2π · 0.8MHz γ = 2π · 0.7MHz
cooper pair box
GaAs 2DEG

[Toida et al., 2013] gc ≈ 25MHz κ = 8MHz γ = 300MHz
[Wallraff et al., 2013] charge qubit

GaAs 2DEG

[Viennot et al., 2015] gs = 2π · 1.3MHz κ = 2π · 0.8MHz γ ≈ 2π · 2.5MHz
spin qubit
carbon nanotube

[Frey et al., 2012] gc = 2π · 50MHz κ = 2π · 2.6MHz γ ≈ 2π · 3.1GHz
charge qubit
GaAs 2DEG

[Viennot et al., 2014] gc = 2π · 3.3MHz γ = 550MHz
charge qubit
carbon nanotube

Table 8.4: Listed are different experiments observing a qubit-photon coupling in
carbon nanotube devices and two-dimensional electron gases, see text.
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Figure 8.15: (a) CPW resonator coupled to a carbon nanotube single quantum dot
structure. The carbon nanotube is placed near one of the meandering resonators
(b). The coupling is achieved capacitively by a hammer like structure, which is
also used as a gate finger to tune the electro-chemical potential within the carbon
nanotube (c). Note that between the carbon nanotube (and its contacts) and the
metal layer defining the resonator an oxide layer is deposited for isolation.





CHAPTER 9

Conclusions and outlook

The investigation of nano-electromechanical properties of carbon nanotubes, the
preparation of a reliable fabrication process and measurement setup for coplanar
waveguides, and work towards a combination of both systems was the scope of
this thesis. First two different suspended carbon nanotube quantum dot devices
were measured; both with a slightly different electrode geometry. Numerical
transmission calculations were performed for various kinds of (n,m) carbon nan-
otubes in a parallel magnetic field to obtain a more detailed understanding of the
experiment. For future HF measurements a dilution system was built up; first
quarter wavelength CPW resonators could be tested at millikelvin temperature.
Next step would be the combination of carbon nanotube quantum dots and su-
perconducting CPW resonators.

We shifted the growth of the carbon nanotubes to the very last fabrication step to
avoid contaminations due to further processing; in principle clean, and defect-free
carbon nanotubes can be grown this way. Electronic transport measurements in
a parallel magnetic field for one device showed the single particle spectrum of
the carbon nanotube and a four-fold shell filling. A Dirac point crossing around
B‖ ≈ 6T is observed, numerical transmission calculations are employed trying to
identify the chiral indices (n,m) of the measured carbon nanotube. The Dirac
point crossing of the single particle spectrum crucially depends on a parallel
magnetic field, and the physical properties of the carbon nanotube, i.e. the chiral
indices (n,m) and the length of the carbon nanotube. In addition we could show
together with the theory group of Prof. Milena Grifoni, that a magnetic field
dependent k‖ improves analytic modeling of carbon nanotubes significantly.
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The interplay of electronic and mechanical degrees of freedom in suspended car-
bon nanotubes is scope of many different research groups. The interaction of
single electron tunneling through a carbon nanotube quantum dot and the me-
chanical oscillation of suspended carbon nanotubes can be observed in the carbon
nanotube bending mode. Coupling the longitudinal stretching mode of a carbon
nanotube and electronic transport leads to Franck-Condon physics in suspended
carbon nanotubes.

We observe a coupling of electrons and vibrons of the longitudinal stretching mode
in a suspended carbon nanotube device. A magnetic field dependent Franck-
Condon coupling factor was observed. In the theory group of Prof. Milena
Grifoni it was theoretically shown that the electron-vibron coupling crucially de-
pends on the size and the relative position of the embedded carbon nanotube
quantum dot and the vibron [Donarini et al., 2012]. It seems plausible that the
size of the vibron is fixed to the length of the suspended part of the carbon nan-
otube; the parallel magnetic field changes than size and position of the embedded
carbon nanotube quantum dot. A decrease of the measured, numerically derived
conductance for increasing magnetic field was observed in the experiment. This
is connected to a more and more located electronic density at the center of the
carbon nanotube for high magnetic fields.

In a second suspended carbon nanotube device we observed a negative frequency
tuning of the mechanical bending mode of a clean, suspended carbon nanotube.
We were able to decrease the mechanical resonance frequency about 75% from
its maximum value by applying a back gate voltage [Stiller et al., 2013]. An
electrostatic softening leads to an additional effective contribution to the spring
constant of the carbon nanotube. In addition single-electron tunneling in the few
charge carrier limit was observed, and self-oscillation effects of the mechanical
motion driven by single-electron tunneling through the embedded carbon nan-
otube quantum dot [Usmani et al., 2007, Schmid et al., 2012]. Furthermore,
it could be shown in our research group that this self-oscillation effects can be
damped by placing the carbon nanotube in a viscous mixture of 3He/4He in a
top-loading dilution refrigerator [Schmid et al., 2015b].

First measurements of niobium superconducting quarter wavelength resonators
were presented; we achieved internal quality factors up to 2.4 · 105 employing a
dilution refrigerator designed for high frequency measurements. The system is
ready to measure both d.c. and HF samples at the same time; further improve-
ments of cabling and filters will be installed in the near future. The low temper-
ature behavior of the resonance frequency and the internal quality factor were
both well described by changes in the kinetic inductance fraction and the loss due
to two-level systems present in the substrate material. Different geometries for
half/quarter wavelength resonators are to be tested; also different materials for



105 9. Conclusions and outlook

the superconducting resonator are under investigation [Singh et al., 2014, Götz
et al., 2015].

Future experiments will target the combination of superconducting resonators
and carbon nanotubes. Two different kinds of experiments are imaginable: The
dispersive coupling of carbon nanotube quantum dots and quarter/half wave-
length resonators as discussed in section 8.8, and the dissipative coupling of an
impedance-matching stub tuner circuit and a carbon nanotube [Ranjan et al.,
2015]. Both methods will be addressed in Regensburg.
A new fabrication technique employing carbon nanotube stamping [Pei et al.,
2012, Gramich et al., 2015] is under investigation in Regensburg to combine car-
bon nanotubes and pre-defined metallic contacts. Stamping will improve the
combination with superconducting resonators due to the fact that the carbon
nanotube can be transferred to superconducting structures consisting of materi-
als, e.g. niobium, which would otherwise not survive the carbon nanotube growth
process. Carbon nanotubes are grown by CVD on SiO2 stamps and transferred
to a device with pre-defined metallic contacts; first attempts of stamped carbon
nanotube device were already measured. The stamped carbon nanotubes are as-
sumed to be more regular and defect-free compared to on-chip grown and further
processed carbon nanotubes since after the stamping less fabrication steps take
place; also contaminations of the substrate due to the CVD growth are avoided.





APPENDIX A

Fabrication details and recipes

A.1 Carbon nanotube quantum dot devices
Here the complete and detailed sample fabrication for Re and ReMo samples of
chapter 3 is listed. Processing of both samples is quite similar for many fabrica-
tion steps. If necessary deviations are explained, else the given parameters are
accurate for both devices.

Wafer material
A highly positive doped silicon 〈100〉 wafer (resistance: 0.01-0.02Ωcm) is used
as substrate material. The thermally grown (dry grown) silicon dioxide layer on
top is 500 nm thick. To ensure a faster processing the wafer was only broken in
pieces of 16×16mm size. During the sample fabrication the wafer piece is further
cut; final devices have a size of 4×4mm.

Fabrication equipment
• ultra sonic bath: Elma Transsonic 310

• oxygen plasma oven: Plasmatic Systems, Inc. Plasma-Preen I

• mask aligner system: Karl Suss MJB3

• electron beam lithography system: Zeiss LeoSupra35 SEM

• reactive ion etching: Oxford Instruments PlasmaLab80 Plus system
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• CVD growth oven: Lindberg/Blue M Tube Furnace oven

Substrate cleaning
1. acetone ultra-sonic bath for 3min

2. rinse with iso-propanol and blow dry with nitrogen

3. oxygen plasma for 5min at 1.8mbar oxygen pressure and an electric power
of 50%

4. acetone ultra-sonic bath for 5min

5. rinse with iso-propanol and blow dry with nitrogen

Optical lithography
1. spin coat Shipley 1805 photo resist onto sample

30 sec (4500 rpm)

2. bake out resist for 2min on a 90 ◦C hot plate

3. expose with mask aligner for 33 sec

4. development 40 sec in a mixture of three volume parts H2O and one volume
part NaOH

5. rinse 30 sec with water to stop development

Electron beam lithography (electrodes and gate
finger)

1. spin coat 200K 3.5% PMMA resist onto sample
5 sec (3000 rpm) and 30 sec (8000 rpm)

2. bake out resist for 6min on a 150 ◦C hot plate

3. expose with acceleration voltage 25 kV, area dose 195µC/cm2; current 330 pA

4. development 2min in a mixture of three volume parts iso-propanol and one
volume part MIBK

5. rinse 30 sec with iso-propanol
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Electron beam lithography (catalyst point)
1. spin coat 200K 7% PMMA resist onto sample

5 sec (3000 rpm) and 30 sec (8000 rpm)

2. bake out resist for 6min on a 150 ◦C hot plate

3. spin coat 950K 2% PMMA resist onto sample
5 sec (3000 rpm) and 30 sec (8000 rpm)

4. bake out resist for 6min on a 150 ◦C hot plate

5. expose with acceleration voltage 25 kV, area dose 300µC/cm2; current 330 pA

6. development 2min in a mixture of three volume parts iso-propanol and one
volume part MIBK

7. rinse 30 sec with iso-propanol

Reactive ion etching
1. 50 sccm CHF3 with a pressure of 55mTorr at 150W

Time: 11min; rate: 22 nm/min

2. 40 sccm Ar with a pressure of 40mTorr at 150W
Time: 30 sec; rate: 8 nm/min

Metallic contacts
For Re a dc-sputter source is used. The pressure in the UHV chamber is adjusted
to about 5×10−3 mbar and power of the dc source is regulated to 100W; resulting
deposition rate is about 1.68Å/s. Sputter gas is argon 6.0.
For ReMo a ac-sputter source is additionally used for the Mo target. Mo is
sputtered at a power of 75W, this results in a deposition rate of 0.5Å/s and
Re is sputtered at a power of 95W, with a resulting rate of 1.5Å/s. Again the
pressure is adjusted to 5×10−3 mbar.

Carbon nanotube catalyst suspension
• 40.0mg Fe(NO3)3 · 9H2O (Fluka Chemie AG)

• 30.0mg Al2O3 nanoparticles (Degussa GMBH)

• 10.0mg [CH3COCH=C(O-)CH3]2MoO3 (Sigma-Aldrich Chemie GMBH)

• 30ml methanol
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Deposition of catalyst suspension
1. sonicate catalyst solution for 30min

2. clean pipette with iso-propanol and methanol

3. fill acetone in a tall beaker glass and put it on a 60◦C hot plate

4. drop catalyst solution onto sample

5. blow dry with nitrogen softly and at a small angle (between sample and gas
flow)

6. bake out on a 150 ◦C hot plate for 6min

7. check amount of deposited catalyst using an optical microscope

8. scratch sample as preparation for breaking into 4×4mm pieces (without
breaking)

9. shake sample upside down for 4min in the tall beaker glass

10. rinse sample with acetone

11. rinse sample 30 sec with iso-propanol and blow dry with nitrogen

12. check in an optical microscope, if necessary repeat lift-off process

13. break the sample in 4×4mm pieces

Carbon nanotube growth process
1. place sample in 1” quartz tube beside the thermometer

2. close quartz tube clamps firmly

3. open gas bottles of methane, argon and hydrogen

4. flush quartz tube; open all gas flow meters to their maximum for 2min

5. stop methane and hydrogen gas flow

6. set argon gas flow to 1500 sccm

7. heat furnace up to 900◦C

8. adjust hydrogen flow to 700 sccm

9. stop argon gas flow
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10. carbon nanotube growth: adjust methane flow to 760 sccm for 15min

11. stop methane gas flow

12. set argon gas flow to 1500 sccm

13. open furnace to switch it off; wait for cool down to 600◦C

14. stop hydrogen gas flow

15. further cool down to 150◦C

16. stop argon gas flow

17. open quartz tube and take out sample
This was the original growth recipe for the Re sample. For ReMo slight changes
were made; newly installed mass flow controller were used; the temperature is
reduced and the gas flow much lower. Changes in the growth process are under-
lined.

1. place sample in quartz tube beside the thermometer

2. close quartz tube clamps firmly

3. open gas bottles of methane, argon and hydrogen

4. flush quartz tube; open all gas flow meters to their maximum for 2min

5. stop methane and hydrogen gas flow

6. set argon gas flow to 1500 sccm

7. heat furnace up to 850◦C

8. adjust hydrogen flow to 20 sccm

9. stop argon gas flow

10. wait 10min

11. carbon nanotube growth: adjust methane flow to 10 sccm for 60min

12. stop methane gas flow

13. stop hydrogen gas flow

14. set argon gas flow to 1500 sccm

15. stop furnace; cool down to 120◦C

16. stop argon gas flow

17. open quartz tube and take out sample
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A.2 Coplanar waveguide fabrication
Now the complete and detailed sample fabrication for the Nb CPW resonators
of chapter 8 is listed.

Wafer material
A compensation doped silicon 〈100〉 wafer (resistance: >10 kΩcm) is used as
substrate material. The silicon dioxide layer on top is 500 nm thick. The wafers
are pre-cut in pieces of 8×8mm size. Used devices for fabrication are already
listed in appendix A.1.

Cleaning
1. remove cover foil

2. acetone ultra-sonic bath for 5min

3. rinse with iso-propanol and blow dry with nitrogen

4. oxygen plasma for 5min at 1.8mbar oxygen pressure and an electric power
of 50%

5. acetone ultra-sonic bath for 5min

6. rinse with iso-propanol and blow dry with nitrogen

Optical lithography
1. spin coat AZ5214e photo resist onto sample

60 sec by 4500 rpm

2. bake out resist for 50 sec on a 105 ◦C hot plate

3. expose with mask aligner for 25 sec

4. development 2min in a mixture of four volume parts H2O and one volume
part AZ351B

5. rinse 30 sec with water to stop development
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Reactive ion etching
• 20 sccm SF6 and 15 sccm Ar with a pressure of 15mTorr at 100W

Time: 2min 30 sec

Niobium
For niobium a dc-sputter source is used. The pressure in the UHV chamber is
adjusted to about 2-5×10−3 mbar. Sputter gas is argon 6.0. Power of the dc
source is regulated to 100W. Thickness of the metal layer is about 135 nm using
a deposition time of 30min.



APPENDIX B

Calculating a theoretical value β

In section 7.2 the capacitance between carbon nanotube and ground plane was
given by:

Cgate = 2πε0
ln
(

2h0
r

) . (B.1)

We take the second derivative:

C ′′gate =
2Lπε0

[
2 + ln

(
2h0
r

)]
h2ln

(
2h0
r

)3 . (B.2)

The length of the suspended carbon nanotube segment is L = 500 nm; we estimate
a radius of the carbon nanotube r = 1nm. The distance between the global gate
electrode and the carbon nanotube is h0 = 590 nm; 550 nm thickness of the oxide
layer and 40 nm thickness of the metallic electrodes. Here the distance between
global gate and carbon nanotube is assumed to be constant (h = h0). This way
we obtain for C ′′gate:

C ′′gate = 2.04875× 10−6 F
m2 . (B.3)

Using the value of T0 = 7.3 pN obtained from the experimental fit and equation
7.17, and an estimated mass of the carbon nanotube m = 0.17 · 10−21 kg, we can
calculate a theoretical value for β:
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βtheo =
C ′′gate
8π2

√
L

mT0
= 0.521MHzV−2. (B.4)

In figure B.1 the second derivative C ′′gate is plotted as a function of the equilibrium
height h0.
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Figure B.1: Second derivative C ′′gate as a function of the equilibrium height h0.
For a distance of 590 nm we obtain a value C ′′gate = 2.04875 · 10−6 F

m2 .
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Numerical transmission calculations of carbon nanotubes

C.1 Hopping integrals
Here the hopping integrals necessary for the numerical transmission calculations
are listed; they were calculated by M. Marganska following [Ando, 2000, del
Valle et al., 2011]. In figure C.1 the relevant coordinates of the carbon atoms are
sketched. The spin conserving hopping integrals read:

〈zi ↑ |V |zj ↑〉 = V π
ppcos (Θi −Θj)−

(
V σ
pp − V π

pp

) r2

a2 [1− cos (Θi −Θj)]2

+2iδ
[
V π
ppsin (Θi −Θj) +

(
V σ
pp − V π

pp

) r2

a2 sin (Θi −Θj) [1− cos (Θi −Θj)]
]

〈zi ↓ |V |zj ↓〉 = V π
ppcos (Θi −Θj)−

(
V σ
pp − V π

pp

) r2

a2 [1− cos (Θi −Θj)]2

−2iδ
[
V π
ppsin (Θi −Θj) +

(
V σ
pp − V π

pp

) r2

a2 sin (Θi −Θj) [1− cos (Θi −Θj)]
]
,

where r is the carbon nanotube radius and a the lattice constant. The spin
flipping hopping integrals read:

〈zi ↑ |V |zj ↓〉 = −δ
(
V σ
pp − V π

pp

) r (Yi − Yj)
a2 [1− cos (Θi −Θj)]

(
e−iΘi − e−iΘj

)
〈zi ↓ |V |zj ↑〉 = δ

(
V σ
pp − V π

pp

) r (Yi − Yj)
a2 [1− cos (Θi −Θj)]

(
eiΘi − eiΘj

)
.

The interatomic potential V can be split into V π
pp and V σ

pp since the hopping
between two orbitals occurs through a π-bond or through a σ-bond, the label
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pp arises due to the hopping between neighboring pz orbitals. The values V π
pp

and V σ
pp are obtained by ab-initio calculations [Tománek and Louie, 1988, Bulaev

et al., 2008]; we use V π
pp = −2.66 eV and V σ

pp = 6.38 eV. The Hamiltonian for the
spin-orbit coupling reads [Sakurai and Napolitano, 2011]:

HSO = 1
2m2

ec
2

(
dV
rdr

)
= ∆~L ·~s, (C.1)

the coupling constant ∆ can be estimated as ∆ = 0.9 · 1029 1
eVs2 . The coupling

constant δ introduced for this calculation reads [Ando, 2000]:

δ = h̄2∆
2επσ

. (C.2)

θi

atomi

atomj

Y

X

Z

Yi

Yj

Figure C.1: Coordinate system for the hopping integrals; shown are the angle Θi

and position Yi,j for the initial and final carbon atoms.

C.2 Additional transmission calculations
The calculated transmission as a function of both energy and parallel magnetic
field is shown in figure C.2 for different lengths of a (14, 11) carbon nanotube,
this was used in section 5.3 for the length dependence of the Dirac point crossing.
In table 5.2 the magnetic field value Bmin corresponding to the Dirac point cross-
ing for several carbon nanotubes is shown. The calculated transmissions as func-
tion of both energy and parallel magnetic field are depicted in figure C.3.
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Figure C.2: Calculated transmission as a function both energy and parallel mag-
netic field for a (14, 11) carbon nanotube with different length. The lead coupling
d = 3meV and the spin-orbit coupling parameter δ = 0.0001 are kept constant.
The Dirac point crossing shifts to lower values in magnetic field for increasing
lengths. The evaluation is done in section 5.3, see figure 5.7.
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Figure C.3: Depicted is the calculated transmission as a function of both en-
ergy and parallel magnetic field for six different (n,m) carbon nanotubes. The
extracted values and the evaluation of Bmin are shown in section 5.3, see table
5.2.
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Coplanar waveguide parameters

D.1 Calculation of the effective permittivity
We calculate the effective permittivity for our substrate and waveguide design
following [Chen and Chou, 1997]. It turns out that the effect of the 10 nm thick
layer of Al2O3 on the effective dielectric constant can be neglected since it is
so thin compared to the silicon and silicon dioxide layer. Figure D.1 shows the
necessary values used in the following calculation. With the same formalism
also the phase velocity and the characteristic impedance can be calculated. The
effective permittivity is given by

εeff = 1 + εr,Si − 1
2 · K(k0)K(k′1)

K(k′0)K(k1) + εr,SiO2 − 1
2 · K(k0)K(k′2)

K(k′0)K(k2) , (D.1)

where

ki =
sinh

(
πc3
2hi

)
sinh

(
πc2
2hi

)
√√√√√sinh2

(
πc2
2hi

)
− sinh2

(
πc1
2hi

)
sinh2

(
πc3
2hi

)
− sinh2

(
πc1
2hi

) , (D.2)

and

k′i =
√

1− k2
i . (D.3)
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Si
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Figure D.1: Sketch of the layer structure for the used CPWs. Quantities for
calculating the effective permittivity are marked.

For k0 and k′0 one obtains:

k0 = c3

c2

√√√√c2
2 − c2

1
c2

3 − c2
1
, (D.4)

and

k′0 =
√

1− k2
0. (D.5)

K(x) is the complete elliptical integral of the first kind:

K(k) =
∫ π

2

0

dx√
(1− x2) (1− k2x2)

. (D.6)

For our devices we have c1 = 10 · 10−6 m, c2 = 22 · 10−6 m and c3 = 3.8 · 10−3 m.
Note that c3 is given by the width of one ground plane. The permittivities
εSi = 11.6 and εSiO2 = 3.78 are taken from literature. Using these values and
equation D.2 we obtain:

εeff = 4.87732, (D.7)

for the effective permittivity.
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From this value we can calculate the phase velocity

νphase = c

εeff
= 1.3575 · 108 m

s . (D.8)

Using

Z0 = 30π
εeff
· K(k)
K(k′) (D.9)

we can calculate the characteristic impedance Z0 = 47.29 Ω.

D.2 Resonant and relaxation susceptibility ten-
sors

The tensors ξrel and ξres are introduced in section 8.5 and connect the dipole
moment of the TLS and the electro-magnetic field of the CPW resonator. They
read [Gao, 2008]:

ξrel = −dσ1
z

dε ·
1− iωT1

1 + ω2T 2
1
· ~drel (D.10)

and

ξres = −σ
0
z

h̄

[
1

ε
h̄
− ω + iT−1

2
− 1

ε
h̄

+ ω − iT−1
2

]
· ~dres, (D.11)

with

σ1
z =

1 +
(
ε
h̄
− ω

)2
T 2

2

1 + Ω2T1T2 +
(
ε
h̄
− ω

)2
T 2

2

·σ0
z (D.12)

and

σ0
z = −tanh

(
ε

2kBT

)
, (D.13)

where Ω is the Rabi frequency. T1 describes the interaction of the TLS and
the phonon bath and gives the relaxation rate into the equilibrium from non-
equilibrium population. T2 is called the dephasing time; details see [Phillips,



123 Appendix

1987].
For completeness, the complex digamma function used in section 8.5 is defined
as

Ψ (x) = d
dx · ln [Γ(x)] = Γ′(x)

Γ(x) , (D.14)

with

Γ(x) =
∫ ∞

0
tx−1e−tdt. (D.15)
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HF measurement technology

Here a complete list of measurement devices and high frequency components is
given.

Measurement devices
• Signal generator: Rhode und Schwarz SMB 100 A; 9 kHz - 6GHz

• Signal Analyzer: Rhode und Schwarz FSV; 10Hz - 7GHz

• Vector Network Analyzer: Rhode und Schwarz ZNB20; 100 kHz - 20GHz

High frequency components
• 3 dB attenuator: Rosenberger 32AS102-K03S3

• 10 dB attenuator: Rosenberger 32AS102-K10S3

• 20 dB attenuator: Rosenberger 32AS102-K03S3

• circulator: Quinstar QXE89

• High electron mobility transistor: Caltech CITCRYO1-12A
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Pre-amplifier
The HEMT pre-amplifier is mounted at the 1K-plate of the dilution system.
Bias voltage is set to Vsd = 1.34V and the gate voltages to Vg1 = 1.85V and
Vg2 = 1.20V. The resulting current reads I = 14.2mA.

Dilution system
• Oxford Kelvinox 400HA

• Cooling Power: 400µW at 100mK

• Base temperature (nominal): 7.5mK

• Mixture: 85 liter

• 3He: 15 liter

• Dewar: 102.5 liter
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Nachträgliche Änderungen

• Seite 6: Der Satz "An important quantity for graphene and also carbon nan-
otubes is the so-called chiral vector" wurde nachträglich zu "An important
quantity for carbon nanotubes is the so-called chiral vector " geändert.

• Seite 6: "Together with the translation vector ~T they built up the carbon
nanotube unit cell, each unit cell contains two carbon atoms. Two sub-
lattices called A and B arise." wurde nachträglich zu "Together with the
translation vector ~T it defines the carbon nanotube unit cell." geändert.

• Seite 7, Abbildung 2.1: Die Grafik wurde inhaltlich nicht verändert, nur
komplett neu gezeichnet, um sie an den Text anzupassen.

• Seite 8: Der Satz "Only two of the six corner points are independent in the
graphene lattice," wurde nachträglich zu "Only two of the six corner points
are independent in the reciprocal graphene lattice," geändert.

• Seite 9, Formel 2.10: Die Formel "0 · (m+ n)± 4π
3 ·

a
2 (m− n) = 2πq." wurde

nachträglich zu "0 · (m+ n)± 4π
3 ·

1
2 (m− n) = 2πq." geändert.

• Seite 9: Der Satz "Armchair carbon nanotubes are rolled up in ~kx-direction;"
wurde nachträglich zu "Armchair carbon nanotubes are rolled up in ~x-
direction;" geändert.

• Seite 10: Der Satz "In a zigzag type carbon nanotube, rolled up in ~ky
direction, the quantization is given by" wurde nachträglich zu "In a zigzag
type carbon nanotube the quantization is given by" geändert.

• Seite 28, Abbildung 4.3: Abbildung wurde nachträglich geändert, da die
Fermie-Energie falsch eingezeichnet war.
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• Seite 29: "excited charging state µ∗(N)" wurde nachträglich zu "excited
state µ∗(N)" geändert.

• Seite 42, Abbildung 5.3(e): Linienschnitt für δ = 0.0008 wurde nachträglich
korrigiert. Ebenso: ∆ =

√
∆2

SO + ∆2
KK’

• Seite 46, Abbildung 5.6(d): Die falsche y-Achsenbeschriftung wurde nach-
träglich korrgiert. Die richtige y-Achsenwerten gehen von 10meV bis 13meV.

• Seite 53: Der Satz "The interplay of electronic transport and mechanical
motion was first observed in a C60-oscillator." wurde nachträglich zu "The
interplay of electronic transport and mechanical motion in single electron
tunneling was first observed in a C60-oscillator." geändert.

• Seite 54: Die Formel "ERBM = 27.8
d

meV." wurde nachträglich zu "ERBM =
27.8
d[nm] meV." geändert.

• Seite 55, Abbildung 6.1: Die Einheit "eV" wurde durch "meV" ersetzt und
"Leturcq, Nature" wurde durch "Leturcq, Nature Phys." ersetzt.

• Seite 56, Formel 6.5: Die Formel "Pn = ∑
n Pn = 1" wurde zu "Qn =∑

n Pn = 1" geändert.

• Seite 56: Der Satz "the initial state involved in the vibrational transition
is then always in its ground state." wurde nachträglich zu "the initial state
involved in the vibrational transition is then always its ground state." geän-
dert.

• Seite 58, Abbildung 6.2: Pn wurde durch Qn ersetzt.

• Seite 75, Formel 7.16: Die Formel "f (Vgate) = fmax − β (Vgate − Vgate,0)"
wurde nachträglich zu "f (Vgate) = fmax − β (Vgate − Vgate,0)2" geändert.

• Seite 91: Der Satz "F is given by the ration of the stored energy in TLS and
the total stored energy of the microwave resonator." wurde nachträglich zu
"F is given by the ration of the stored energy in the TLS host material and
the total stored energy of the microwave resonator." geändert.

• Seite 98: Der Satz "In literature the deviations are assumed to be due to
disorder in the superconducting resonator material [Driessen et al., 2012,
Coumou et al., 2013]; a generalized Mattis-Bardeen theory employing a
broadened quasi-particle density of states with an effective pair-breaking."
wurde nachträglich zu "In literature the deviations are assumed to be due to
disorder in the superconducting resonator material [Driessen et al., 2012,
Coumou et al., 2013]; a generalized Mattis-Bardeen theory employing a
broadened quasi-particle density of states with an effective pair-breaking is
used." geändert.
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• Seite 105: Der Satz "Carbon nanotubes are grown by CVD on silicon
stamps and transferred to a device with pre-defined metallic contacts;"
wurde nachträglich zu "Carbon nanotubes are grown by CVD on SiO2
stamps and transferred to a device with pre-defined metallic contacts;"
geändert.

• Seite 141: "Co-sputtered MoRe thin films for carbon nanotube growth-
compatible superconducting coplanar resonators" wurde mittlerweile veröf-
fentlicht; die endgültigen bibliographischen Daten wurden eingefügt.
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