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Part 1

Introduction






More than 60 years after its first observation in 1952 by Radushkevich
et al. [1], see Fig. 1, and 24 years after its re-discovery in 1991 [2], carbon
nanotubes (CNTs) are still primarily a subject of fundamental research. With
a few exceptions, e.g., when used as an additive in material compounds
to increase the structural performance, CNTs can not compete with state-
of-the-art materials. In electronic applications this is insofar a pity, as its
superior performance as a field-effect transistor [3] or as electric wiring [4]
is left idle due to the fabrication process that does not meet industrial
standards. However, the predominance of silicon based semi-conductor tech-
nology is starting to wane. Since transistor sizes dropped below 22nm,
it is getting more and more difficult to overcome limitations of the fab-
rication process in further refinements [5]. This is currently leading to a
deviation from Moore’s law, a law predicting a doubling of the density of
transistors in integrated circuits every two years [6]. As a result, inter-
est grows in potential alternatives. Single-wall CNTs, being 2 — 5nm thin
and ballistic conductors with high mobility, are natural candidates to over-
come part of the limitations [7]. Fundamental research on the electronic
properties of CNTs is important to prepare the ground for this applications.

This said, let us share with you another,

our, incentive to study CNTs. We do not sell \
integrated circuits. It is the fascination for a 50nm I ,
unique and versatile electronic material system

that encourages us. In this work we will only 2" 9

study electronic transport properties of CNTs |
at low temperature, in a setup with source j t -y
and drain contacts and a means to control the i
electrochemical potential of the CNT. This is ‘ % Y a
quite a limited scope: We do not discuss nano- . >
mechanical properties [8, 9], properties at inter-

mediate or room temperatures [10], supercon- Figure 1: Multiwall CNTs
ducting properties [11, 12], multi-dot setups [13] in transmission electron
etc. Still, with this ingredients we are able to micrographs recorded by
study a wealth of physical phenomena. Fig. 2 Radushkevich et al. [1].
shows a phase diagram of the transport regimes

in this setup for a typical small bandgap carbon nanotube. The grey line
trace is taken from an actual measurement of a CNT at low temperatures
and low bias voltage. To the right of the band-gap, we find the regime of
sequential tunneling. A quantum dot is formed on the CNT. The Coulomb
force between the electrons on the CNT and the incident electrons allows for
the counting of electronic charges on the CNT. In this regime, we can, e.g.,
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Figure 2: “Phase diagram” of electron transport in a CNT at low temper-
atures. The different regimes can be distinguished by the transparency of
the contacts. In the sequential tunneling regime, the coupling is weak and
increases with higher gate voltage until we reach the Kondo regime. In the
Fabry-Perot regime to the left of the band-gap, the coupling is strongest.
Applying large bias, ~ 50mV, the CNT in the source-drain-gate setup can
be operated as a ballistic field effect transistor. The red filled circle and the
red triangle indicate the regimes that are discussed within this work.
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use a magnetic field to trace the evolution of the sharp transitions between
few-electron charging states [14]. Similarly, the transitions through excited
states of the first and second charging state can be mapped by a magnetic
field. This is insofar interesting, as the states in CN'Ts have both spin and
orbital degrees of freedom that couple differently to the field [14-16]. The
evolution of these transitions can be predicted from microscopical models.
When we increase the gate voltage, we increase the coupling to the CNT and
the current increases. The increased coupling enables correlations between
electrons on the dot and in the contacts and the Kondo effect can be observed.
Due to the entangled spin and orbital degrees of freedom in CNTs, the Kondo
effect in this system is of particular interest [17]. The tool of choice in this
regime is the spectroscopy of tunneling through excited states in the blockade
region [18].

In the regime to the left of the band gap, hole transport takes place. While
the coupling to the CNT in limited by p-n junctions on the electron side in
p-doped CNTs [19], the transparency of the contacts in the hole region is
usually high and allows for ballistic transport with conductances up to the
maximum of a 4-channel conductor, 4e?/h [20]. In carefully fabricated, clean
CNT devices we can observe electron interference effects in this regime, in full
analogy to the optical Fabry-Perot effect [21]. Finally, as already mentioned,
CNTs can be studied in the role of high performance field effect transistors at
high bias voltage [22].

Within this work we will in the first part focus on the intermediate regime
between the sequential tunneling and the Kondo regime (highlighted by a
red triangle in Fig. 2). While we observe no signatures of the Kondo effect,
it turns out that a key aspect to the understanding of the experiment is the
incorporation of charge fluctuations between the CNT and the contacts going
beyond the concept of sequential tunneling. In the second part, we report
on wave interference patterns in the Fabry-Perot regime (red circle). The
interference of modes from the different channels in the CNT reveals details
on the geometrical structure of the specimen. Although covering only a small
part of the phase diagram we hope to provide a glimpse on the rich variety of
electronic transport in CNTs.
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Chapter 1

Introduction to quantum dot
transport in the Coulomb
blockade regime

The term “quantum dot” was first introduced to describe semiconductor
microcrystals which host spatially confined excitons [23]. The absorption
spectra of the cavities are related directly to the quantum mechanical confine-
ment of the exciton states in the quantum dot. Similarly, an electron can be
confined in all spatial dimensions, such that the energy required to overcome
the confining potential is large with respect to the quantum confinement
energy €. When ¢, in turn, is large with respect to the kinetic energy of
the electron, it is considered to be in a quantum dot. The single particle
energy spectrum of the quantum dot is then restricted to discrete levels n with
energies €,(L). Quantum dot behavior can be observed at room temperature
for dots with extensions of a few nanometer [24, 25]. At temperatures of a few
hundred millikelvin, contrarily, the electron is sensitive to barriers separated
by micrometers.

One well established setup to study quantum dot systems is by means of
electronic transport spectroscopy. We couple two separate metallic reservoirs
source and drain with electrochemical potentials ps and pq to the quantum
dot. The coupling strength is described by coupling parameters I';, j € {s,d}.
For a finite current to flow, we apply a potential difference between the
reservoirs, see Fig. 1.1(a). The potential of the electrons on the quantum dot
can be controlled by a capacitively coupled gate reservoir.

By correctly tuning the effective couplings I';, and the reservoir potentials,
electrons can traverse the quantum dot by subsequent tunneling between
the source reservoir, the quantum dot and the drain reservoir. The current
across the system can be calculated by applying the Landauer-Biittiker
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a) I I
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Figure 1.1: Schematic drawing of a quantum dot setup. (a) In a classical
transport measurement, electrons tunnel from the source reservoir on the left
to the confined region in the center at a rate I's. The single particle states
in the confined region are restricted to energies €,(L). The out-tunneling
to the drain reservoir takes place at a rate I'y. (b) The interactions of the
electrons on the dot with the electrons in the leads, in the gate and in the
environment can be modeled by capacitances in a replacement circuit. The
energy F. required to charge the dot with a single electron is determined by
the capacitances. The rates I'; correspond to resistances in the replacement
circuit.
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formalism [26],

1= [AET(B)A(E) - ()], (1)

where 7 is the transmission function which includes the couplings I'; and the
Fermi function f;(F) = (14 exp((E — u;)/ksT))~" describes the continuum
of states in the source and drain reservoirs.

In a measurement, the situation is complicated by the inevitable presence
of other electrons on the quantum dot, the leads and the gate reservoir. Within
a first approximation, a replacement circuit can be used where capacitances
to the leads, Cj, to the gate, C; and to the environment, Ce,, capture the
effects of the electronic Coulomb interaction of the electrons on the dot with
its surroundings, see Fig. 1.1(b). In the same spirit, the couplings I'; to source
and drain can be viewed as resistors I; parallel to the capacitances C;. In
terms of resistivities, a more concise definition of the spatial confinement of
electrons on a coupled quantum dot can be given: The resistance between the
quantum dot and the lead reservoirs has to exceed the resistance quantum
Rx ~ 25.8k(), otherwise quantum fluctuations between the dot and the
reservoirs would dominate transport [27] and no single integer charges can be
distinguished in electron transport experiments.

An in tunneling electron has to overcome an electrostatic charging energy
E. = €?/2C%, where Cy = Cs+Cy +Cg + Ceny. When the transport across the
quantum dot is blocked because the charging energy is to large for incident
electrons, the quantum dot is termed to be in the Coulomb blockade. This
effect has been observed first in metallic islands in thin metallic films [28],
a classical system where the energy quantization due to spatial confinement
does not play a role but the capacitance of the islands is small enough for
the charging energy to dominate. In the quantum Coulomb blockade, on the
other hand, the confinement energy is comparable to the charging energy.
Thus, depending on the charging energy FE., the confinement energy ¢, the
thermal energy kg7 and the couplings I';, we distinguish parameter regimes
where either the classical or the quantum Coulomb blockade dominates, or
neither is present.! We summarize the presented arguments in Tab. 1.1.

1.1 Quantum dot spectroscopy

In the transport experiments described here we can control the potential
drop between source and drain reservoir — the bias voltage —eV}, = s — g

'For this distinction we restrict ourselves to transport at low bias voltage V4, i.e., el4,
is one of the small energy scales in our system.
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la)  kgT > E., ¢, no blockade (large temperature)
Ib) R < Rk no blockade (no confinement)

(
(
(II) E.> kgT > ¢,,min(I';)  classical Coulomb blockade (CB)
(
(

Ila) E. > e, > kT > min(I';) quantum CB, thermal broadening
IIIb) E. > e, > min(l';) > kg7 quantum CB, lifetime broadening

Table 1.1: Different electron transport regimes. From top to bottom, the
temperature decreases. (Ia) At high temperature, the thermal energy of the
electrons in large enough to overcome Coulomb blockade. (Ib) Confinement
is also absent if the contact resistances are small. (II) If the electrostatic
charging energy is larger than the temperature, current is blocked due to
Coulomb repulsion. (III) As an additional scale, the quantum mechanical
confinement energy becomes relevant for sufficiently small structures. In this
regime of quantum Coulomb blockade, the electron transport at low bias
voltages can either be dominated by the thermal energy (Illa) or by the
inverse lifetime energy scale I'; (IIIb).

— and the potential on the dot via a capacitively coupled gate reservoir at
an electrochemical potential V5. In the following we keep the drain contact
grounded and modify the potential of the source reservoir by V;,. The other
parameters of the system, namely the coupling between the dot and the
lead reservoirs that determine the rates I'; or the capacitive coupling to the
gate reservoir are specific to the sample in question and can not be changed
independently in the course of a measurement. In a typical characterization
measurement of a quantum dot in the quantum Coulomb blockade regime
(compare Tab.1.1), we measure the differential conductance as a function
of gate and bias voltages, G = dI /dV}, (Vg, Wb). A typical result of such a
measurement is sketched in Fig. 1.2(a).

The electro-chemical potential of the quantum dot is the minimum energy
for adding the Nth electron to the dot, i.e., pugot(N) = U(N) — U(N — 1),
where U(N) is the total ground state energy for N electrons on the dot at
zero temperature [29]. Under the assumptions given above, namely that
the electron-electron interaction between electrons on the dot and in the
reservoirs can be modeled capacitively and under the additional assumption
that these capacitances are independent of N, the electro-chemical potential
of the quantum dot reads [29]

2

faot (N, V) = ex + g—(N +1/2) — eV, (1.2)
>

where the capacitive influence of the gate reservoir is incorporated in o = o
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Figure 1.2: A short review on transport spectroscopy in the Coulomb
blockade regime. (a) Schematic drawing of a current measurement as a
function of gate and bias voltage. In the white region, the current is blocked
and the number of electrons (given below the x-axis) is constant. (b) Electro-
chemical potentials for three specific value-pairs of bias and gate voltage
highlighted in (a). In 1, transport takes place through the ground state while
in 2, a transition through an excited state contributes to the current. In
3, the current is blocked and the electron number on the dot is fixed to N.
(c) Current plotted as a function of gate voltage at zero bias. When the
potentials of the dot and of the leads are aligned a peak is visible in the
current signal. (d) At finite bias, we observe steps when additional states
contribute to the transport.
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In Eq. (1.2), the first term is the chemical potential, yq, = €x, while the other
terms belong to the electrostatic potential e¢y. The addition energy, i.e., the
energy difference between two charging states with N and N + 1 electrons is
given by

2

€
AMN = ,udot(N> - Mdot(N - 1) =&+ 0727 (13>

where we replaced the difference between the single particle energy states by
a constant, ey —eny_1 = €9. Note that we thereby assume that the single
particle energies increase linearly with V.

At low bias and low temperature, i.e., eV}, kT < E., the condition for
electron transport reads ps = paot(N) = pq. This situation is shown in
Fig. 1.2(b) and marked by a hexagon in the stability diagram in Fig. 1.2(a).
Sweeping the gate voltage we thus expect a series of peaks in the current
signal, separated by regions of the size Apy/a, where the tunneling is blocked
by the Coulomb repulsion, see Fig. 1.2(c).

At finite bias, the situation is slightly different. The electro-chemical
potential of the quantum dot with N electrons is modified by the capacitance
to the reservoirs, i.e.,

62

Haot (N, Vg, V) = en + C—(N +1/2) + e(asVh, — aVy) (1.4)
%

where o = C5/(Cs + Cq) describes the capacitive influence of the source
reservoir on the quantum dot in relation to the drain reservoir [30].

At eVi, > kgT,min(T;), the condition s < paor < pa and pq > E}
defines a range of V, values where tunneling from drain to source is possible.
Sweeping the gate voltage we observe steps in the current signal, Fig. 1.2(d),
and, consequently, peaks in the conductance signal (not shown). Note that
electrons can also tunnel through states of higher energy, e.g., the next state
with 5 (N) = piaot(IV) + €0, if the bias window is large enough. Such a
situation is highlighted by a blue star in Fig. 1.2(a) and depicted in the second
level scheme in (b). If the conditions ps < (V) and pg > p,.(N) is met,
the excited state contributes to the transport and we observe an additional
step in the current Fig. 1.2(d) and a line in G = dI/dV;, (not shown).

In Fig. 1.2(c), the finite width of the peaks is determined by the tempera-
ture of the Fermi liquid in the lead reservoirs, compare Eq. (1.1). From this
consideration the condition E. > kgT arises naturally as a requirement to
observe a Coulomb blockade signature similar to the one sketched in (c).
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1.2 A carbon nanotube quantum dot

To this point, we did not touch the specific nature of the quantum dot. We
assumed that the dot is a region that is confined in all spatial dimensions
and this confinement determines the allowed electronic states by imposing
boundary conditions on the solutions to the Schrodinger equation, an(E, T).
This implies a quantization of the wavevector k and a discretization of the
energy spectrum. The relation between electron energy and wave vector
on the quantum dot is given by the potential landscape that is set by the
molecular arrangement of the quantum dot material.

In our case, the quantum dot under consideration is made up by a section
of a carbon nanotube. The electron wavefunction forms a standing wave
similar to the free particle-in-the-box textbook case, see Fig. 1.3. However,
due to the particular nature of the graphene lattice, the relation between
the wave vector and the quantization energy is linear in carbon nanotubes?
and, hence, such is the relation between the quantization energy and the
tube length. We can understand most of the properties of a nanotube by
considering the properties of a graphene sheet and taking into account the
additional boundary conditions that are imposed by wrapping the sheet. This
approach is termed the “zone-folding approximation” [31].

1.2.1 The graphene dispersion relation

Graphene is an atomically thin layer of graphite. Its peculiar electronic
properties arise from the perfect honeycomb lattice that is formed by the
carbon atoms. The sp?-hypridized orbitals of the carbon atoms form o-bonds
at 120° angles in the plane, see Fig. 1.4(a). The unit cell is spanned by two

vectors
. <\/§a a) . ( 3a a)
a=|—, = and ay = ==,

2 72

and contains two atoms attributed to sublattices A and B. The lattice constant
(common to both lattices) is given by

a = |61| = |52| = acc\/§ = 246A,

where a.. = 1.42 A is the inter atomic distance of the carbon atoms, see
Fig. 1.4(a). Correspondingly, the reciprocal lattice can be constructed with
two symmetry points K and K’ (also called Dirac points) in the first Brouillon

2The CNT dispersion is approximately linear for states with energies ¢ < 1eV.
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bias voltage (V)

Position along tube axis (nm)

Figure 1.3: Conductance from an STM tip to a CNT as a function of the
position along the CNT and the applied bias voltage, adapted from Ref. [32].
The modulation of the conductance is interpreted as a modulation of the
electron wavefunction in the CNT quantum dot where it forms a standing
wave with a wavelength close to \p = 0.74nm, the Fermi wavelength in
carbon nanotubes.

Figure 1.4: (a) A segment of the graphene lattice. The small circles represent
carbon atoms, the lines between them represent o-bonds. Note that the
graphene sheet can be built from two identical sublattices A and B with
common unit lattice vectors @; and dy. The blue shaded region highlights a
unit cell of the graphene lattice. (b) The first Brouillon zone of the graphene
lattice with lattice vectors 51 and 52. Corresponding to the sublattices A and
B we find points K and K’ in the reciprocal space.
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zone,

- 2r 2w - 2T 2T
K=(—,—F+ d K=|—F —r]. 1.5
( 3a 3\/§a> o ( 3 ma) (1)

We denote the length of these vectors by |K| = |K'| = 47/3v/3a = K. The
unit cell in the reciprocal lattice is spanned by unit vectors

- 2 27 - 2m 2T
by = <\/§a’ a) and by = <\/§a’ , ) (1.6)
The overlapping wave functions of the sp?-hybridized electrons in the bonds
form bands o and ¢* away from the Fermi energy which do not contribute to
electronic transport. The remaining p, orbitals are oriented perpendicular
to the honeycomb lattice and constitute bonding m and anti-bonding 7*
bands. Electrons within these bands can move freely across the lattice and
are responsible for the ballistic electron transport observed in graphene [33].
The dispersion relation of the valence (7*) and conduction (7) bands can
be calculated by a tight-binding approach considering states on a graphene
lattice with nearest neighbor overlap [34]. The dispersion relation reads [31]

eP (k) = itJ 1+4cos <\/§2kxa> cos (kw> + 4 cos? (lc;a>7 (1.7)

2

where the plus sign applies to the 7* and the minus sign to the © band, and
the overlap energy is t = 2.6 +0.1eV [31]. The energy surface defined by this
relation is plotted in Fig. 1.5 for t = 2.7eV. In the vicinity of the K and K’
points the dispersion can be linearized. For a wave vector ¢ = k—K , with
7 < kg, we obtain

e’ () ~ Zvrlql + O[(|41/ K)?], (1.8)

a linear function of |g] resembling the energy-momentum relation of a massless
particle as a solution of the Dirac equation (¢ is measured from the Dirac
points). From Eq. (1.7) it follows that vp = v/3at/2 ~ 8-10° m/s for t = 2.5eV.
In Fig. 1.5, a zoom-in shows one of the Dirac cones, i.e., the linear dispersion
relation in the direct vicinity of a Dirac point.

1.2.2 The carbon nanotube dispersion relation

Conventionally, the structure of the rolled graphene sheet that forms a carbon
nanotube is characterized by its vector around the circumference in the basis
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=g P/
kz(1/a) .

Figure 1.5: The electronic dispersion relation in graphene plotted as a surface
in E—space. Clearly visible are the touching points between conductance and
valence bands, the Dirac points. A zoom to one of these points highlights
the linear evolution of the particle energy with the absolute value of ¢ in the
vicinity of the Dirac points. Adapted from Ref. [35].

of the graphene lattice vectors @; and ds, i.e., C = nd, + miy = (n,m). This
vector forms an angle # with the vector a,

—

C-a 2n +m
IC||@|  2vn?+m? +nm’

(1.9)

where the hexagonal lattice symmetry restricts the chiral angle 6 to 0° < 6 <
30° and the values of m to 0 < m < n. The diameter of a CNT is d = |C| /.
In Fig. 1.6(A), examples are given for possible wrappings of the graphene
sheet that form carbon nanotubes with ¢' = (11,0) and C = (11,7). The
atomic structure of the latter is shown in the STM image in Fig. 1.6(B). The
special cases m = 0 and m = n are named according to the shape of the
graphene “edge” along the vector C. Nanotubes where m = 0 are classified as
zig-zag nanotubes while CN'Ts with m = n belong to the armchair class. The
vast majority of possible geometries that do not fall into these two categories
are called chiral tubes [31]. The smallest lattice vector T' perpendicular to C
determines the translational period t = |f | of the tube. In the basis of the
graphene lattice vectors, T =ta + todsy, the components read

2m+n d ; 2n+m
= an =—
ged(2m + n, 2n + m) 2 ged(2m +n,2n +m’

3]
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o (110) I Zngag II’

Cf

Figure 1.6:  (A) Characterization of the carbon nanotube geometry. A
nanotube is formally constructed by rolling a graphene sheet along the vector
C’ The translational vector T' points along the tube axis. The angle between
C and @, is denoted by the chiral angle . A CNT with 6 = 0° is called a
zigzag CNT, a CNT with 6 = 30° is called an armchair CNT. (B) Atomically
resolved STM images of a armchair-like CNT with a chiral angle of § = 27°
and a diameter of d = 1.3 nm, corresponding to the (11,7) nanotube whose
chiral vector is shown in (A). Adapted from Ref. [36].
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where ged(ng, ng) is the greatest common divisor of n; and n,. Cand T
span the translational unit cell of the CNT. We can also define a CN'T unit
cell using elementary helical chains. From the helical model, the distinction
between different bands due to their crystal angular momentum m arises
naturally. Please refer to Ref. [37] for a presentation of the helical model.

The most prominent effect of the wrapping on the dispersion relation
E% of graphene is the restriction of the wave vector perpendicular to the
nanotube axis to values spaced by Ak, = 27/|C|. The quantum mechanical
confinement energy due to the radial confinement is of the order of eV (e.g.,
1.1eV for the nanotube in Fig. 1.6), so the dispersion relation is effectively
restricted to the lowest subband in the bias and gate voltage ranges of the
experiments presented in this work. Within a first approximation, we can
deduce the carbon nanotube dispersion from the graphene dispersion by
restricting the values of the wave vector to the one-dimensional subbands,
ie.,

K. R
ek p) = e | ky—== + nk |, (1.10)
| 12|
where = 1,2,..., N is an integer counting the subbands up to the number

of carbon atom pairs in the translational unit cell N and

- —tl;—i-tl; - mg—nl;
R, = 21N 102 and Ry = 1N 2

From Eq. (1.10) we can distinguish metallic and semi-conducting nanotubes.

If for some p the vector k\\é; + ,ul?l is equal to K or I?’, the valence
band touches the conduction band and the tube is metallic, otherwise it is
semi-conducting. It is straightforward to derive the condition for a metallic
nanotube using Eq. (1.5),

n —m = 3q,

where ¢ is an integer number [38].

Classification of CNTs in terms of crystal angular momentum

We can further subdivide the large number of different chiral CNT geometries
by the crystal angular momentum quantum number m of the electrons in
the lowest lying one-dimensional subbands, i.e., the bands crossing the Dirac
point in the E—plane. Note that the assignment of m to a band is possible only
in the helical picture [39]. The crystal angular momentum in the armchair-
like class CNTs in these bands is always zero which can be expressed by
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Figure 1.7: Dispersion of the lowest lying band(s) in metallic CNTs. (a) In
armchair-like CN'Ts, all states on the lowest lying conduction band share the
same angular momentum, m = 0. The wave vector component perpendicular
to the CNT axis is proportional to the angular momentum, k; = 0. The
branch to the left of the K or K’ point in each valley is denoted the left-mover
branch, the right branch is denoted the right-mover branch. The distance to
the closest Dirac point is measured by k. (b) zigzag-like CNTs host states
with different angular momenta in the vicinity of the two Dirac points. Here,
k, = £K in the two valleys, respectively.

the relation (n —m)/n|meas = 0, where n = ged(n, m) [37], see Fig. 1.7(a).
Note that metallic armchair tubes with n = m are a special case within
this class. All other metallic tubes have non-zero angular momentum m, =
(2n 4+ m)/3|modn and my = (2m + n)3m04n in the bands crossing the K and
K’ points, respectively [39]. Since the angular momentum is defined modn,
we can always choose m, and m; with m, = —m,; which is required by time-
reversal symmetry. The CNTs with different angular momentum for the
states in the two valleys fall into the zigzag-like class, see Fig. 1.7(b). Again,
zigzag CN'Ts with m = 0 are a special case within this class. In terms of
the indices (n,m) we can distinguish armchair-like (and armchair) CNTs
that satisfy (n —m)/n|meas = 0, and zigzag-like (and zigzag) CNTs where
(n —m)/n|moas # 0.

In the CNT dispersion relation e(k), see Fig. 1.7, we distinguish between
right- and left-moving branches for states with positive and negative wave
vectors measured from the Dirac point, respectively. In zigzag and zigzag-like
CNTs, the distance is measured by k£ with the corresponding sign and in
armchair and armchair-like CNTs the distance is measured by .
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CNT curvature

This straightforward analysis neglects effects due to the curvature of the
nanotube. From tight-binding calculations it can be seen that the nonzero
curvature causes a shift in the /;—plane [34]. More specifically, the allowed
values of k| are shifted such that a finite gap opens in all nominally metallic
CNTs except armchair CNTs. The size of the gap is given by [40)]

Btac, 3
Egop = 6R? cos(30) = 2 cos(360), (1.11)

where R = d/2 is the nanotube radius and £ ~ 1eV/A2 can be used to
estimate the size of the bandgap for a tight-binding hopping parameter
t =2.6eV [40]. According to Eq. (1.11), values for the size of the bandgap
range from zero for armchair CN'Ts to 60 meV for (10, 0) zigzag CNTs.%. Note,
however, that typical single-wall CN'Ts have radii above 10 A [42]. The model
agrees with experimental observations [43]. More recently, larger bandgaps,
up to 200meV for the (10,0) CNT are predicted within a non-orthogonal
tight-binding model [44].

1.2.3 The single electron transport spectrum of a car-
bon nanotube quantum dot

When we want to observe quantum Coulomb blockade in a carbon nanotube
quantum dot, we have to provide a lateral confinement such that the condi-
tions in Tab. 1.1 are satisfied. In the CNT transport setup, a confinement
of the quantum dot is naturally given by the metallic leads which act as
electrochemical potential barriers. However, we still have to take care to
satisfy Al' < kgT. Depending on the material of the contacts and other
fabrication parameters, it turns out that the tunnel coupling between the
CNT and the leads can be too strong to observe Coulomb blockade [21].
These systems are better described in terms of ballistic electron wave-guides;
a subject that we discuss in the second part of this work.

But not only the coupling between the nanotube and the electrode material
is crucial. The coupling of the Fermi liquid reservoirs in the leads to the
quantum dot on the carbon nanotube section between the contacts heavily
depends on the electronic band structure that is modified by the gating
potential. In Fig. 1.8 we plot current as a function of backgate voltage for a
CNT suspended between two Rhenium contacts at a distance of 700 nm at
T = 300mK. We can clearly observe distinct Coulomb blockade peaks for

3R ~4A for a (10,0) CNT, CNTs with R < 4 A are not considered stable [41].
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Figure 1.8: Current plotted as a function of gate voltage (gatetrace) for
sample CB3224 recorded at T' = 300 mK and V}, = 50 V. On the left, for
values V, < 0.5V, we observe high currents and no Coulomb blockade. In
this regime, no p-n-junction separates the quantum dot from the leads, as
displayed by a schematic drawing in the left bottom corner. In the band-gap,
no current can flow because the potential of the leads lies between valence
and conduction band. On the right, for V, > 1.5V, distinct peaks are a clear
signature for Coulomb blockade behavior. The transmittance of the interfaces
is decreased by a p-n-junction induced by the highly deformed bands on both
sides of the quantum dot.

positive values of the gate voltage beyond the band gap. In this region, a
p-n-junction separates the leads from the quantum dot, creating an effective
tunnel barrier with high opacity. For higher values of the gate voltage,
the effective barrier width decreases and the Coulomb blockade peaks are
broadened. For hole conduction through the valence band on the side with
negative gate voltage, we observe high current values without a signature of
Coulomb blockade.

The lateral confinement due to the contacts or the p-n-junctions restricts
the available kj-bands, i.e., the continuous bands introduced in the previous
section, to discrete levels, see Fig. 1.9(a), in the following called shells. In the
fully degenerate case, a single shell can host up to four electrons with equal
energy but different spin or k vector. In CNTs of the zigzag class, the states
in the vicinity of the two Dirac points K and K' are distinguished by the
“valley” quantum number 7 = +1.

Kramers pairs At this point, all states in one shell are degenerate in energy,
occupying the lowest lying states on the two Dirac cones in the vicinity of
the K and K’ points. When the time-reversal symmetry of the system is not
broken, e.g., by a magnetic field, each state can be transformed into one of
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Figure 1.9: The quantum dot spectrum in the constant interaction model.
(a) The dispersion relation of a carbon-nanotube with lifted degeneracy of
the two Kramers pairs, due to, e.g., spin-orbit coupling. The longitudinal
confinement imposes a restriction to discrete values of k). (b) Interaction of
one electron (on the left) with the other electrons on the quantum dot on a
mean-field level in the Oreg model. Thereby, J denotes the spin exchange
interaction which has a different sign for parallel (black arrow) and anti-
parallel spin (red arrows). dU denotes the interaction between electrons
in the same spin-degenerate state (green arrow) and E. is related to the
inter-electronic Coulomb repulsion (grey arrows).

the other states by applying the time-reversal operation. The time-reversal
operation flips the spin and the valley quantum numbers and thereby maps a
state on its Kramers partner. Thus, the Kramers pairs in one CNT shell are
given by |K, 1)|K", 1) and |K, [)|K",1).

Analysis in terms of the constant interaction model

A first analysis of traces obtained at low bias voltage by varying the gate
potential (e.g., the data shown in Fig. 1.8) can be done in terms of a mean
field description of the interaction on the quantum dot [45].

We are interested in the addition energy spectrum, i.e., the spectrum of
energies Auy = p(N) — p(N — 1) at zero bias. In Eq. (1.2) we included the
charging energy to account for the Coulomb repulsion between the electrons.
In principle, a careful analysis of the multi-electron ground states even
at a mean field level yields a multitude of parameters describing different
interactions between the electrons on the CNT quantum dot, see Fig. 1.10(b).
These include, e.g., the excess interaction between two electrons with opposite
spin within one Kramers pair, dU, or the spin exchange interaction J [46, 47].
In the following we neglect the parameters dU and J, which are usually small
compared to gg, see Ref. [48].
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Figure 1.10: Addition energies as a function of gate voltage for the sample
CB3224 extracted from the gatetrace in Fig. 1.8. The numbers close to
the crosses denote the electron number on the dot. The second shell is
highlighted. For this shell, the analysis in terms of the constant interaction
model is performed.

The addition energies of the four electronic states in one shell n can then
be written as [46, 47, 49]

A/L4n+1 = EC + €9 (112)
Apigniz = FE.+96 (1.13)
A,M4(n+2) = Aptanys = I, (114)

where § denotes an energy shift between the two Kramers pairs, see Fig. 1.9(a).
This shift is introduced as a subband mismatch to fit experimental data, e.g.,
in Ref. [49]. More recent works strongly suggest that it can be identified with
the spin-orbit coupling strength in CNTs [16]. From the gatetrace in Fig. 1.8
we can extract the addition energy spectrum and estimate the parameters.?

In Fig. 1.10 we plot the distance between two peaks in gate voltage,
corrected by a gate conversion factor o = 0.46 for sample CB3224. The
first point in the plot corresponds to the energy required to add the second
electron to the quantum dot. The addition energy for the first electron can
not be resolved due to the band gap. Let us now focus on electron numbers
N =5 to N = 8. From the addition energies we extract the parameters of
Eq. (1.12 - 1.14). We obtain E, = 34meV, 6 = 5meV and ¢y = 11.5meV. The
value for g, corresponds to a lateral extension of the CNT quantum dot of
150 nm where we used L = whvg /g [31]. Compared to the distance between
the contacts (700nm), L(gg) is considerably smaller. However, the lateral

4The values of the difference in gate voltage to add one electron have to be multiplied
by the lever arm o = Cy/Cf..
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quantum dot size can be reduced significantly by the p-n-junctions [50]. The
value of the valley splitting ¢ is found to be rather large compared to previous
observations [16]. Please note that this model is heavily simplified and the
parameters of the constant interaction model can not be directly mapped to
microscopic parameters of the CNT. From Fig. 1.10 it is evident that the
addition energies and thus the parameters of the model are not equal for the
five shells that are visible, contrarily to the model predictions.

Single particle state spectroscopy of the one-electron state

We focus on the quantum dot state with one electron on the dot. Thereby
we are confident that the effects of electron-electron interaction are sub-
leading and we can treat the system within a single-particle approach. As a
spectroscopic tool we apply a magnetic field B}, along the nanotube axis. The
field induces a magnetic flux through the tube cross-section which changes
the component of the wavevector which is perpendicular to the CNT axis,
ky [51]. This shifts the energy of the (discrete) states labeled by spin o and
valley 7 by

1
EUJ(B) = §gs,uBBp0- + gorb,uorbeT-

Adjusting the gate voltage to a value close to the first Coulomb peak to
the right of the band gap, we can map the resonances that correspond to
excited states within a finite bias voltage window,® see Fig. 1.11(a). When
we tune the magnetic field, we trace out the evolution of the four possible
single particle states in the first two shells, see Fig. 1.11(b).

We analyze the data® in this low-field (B = 0 — 2T) regime using a
linearized Hamiltonian in the spin and valley basis, i.e., {|K 1), |[K ), |K' 1)

5The measurement was performed together with Daniel Schmid and published in his
thesis, Ref. [52].

6The modeling that is presented in this section was performed by M. Marganska from
the group of M. Grifoni. The results are published in Ref. [52]
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Figure 1.11: (a) Conductance as a function of bias and gate voltages in the
vicinity of the first charging state (“diamond”). We can clearly observe the
four lines corresponding to the two Kramers pairs of the first longitudinal
quantization state (shell) and two Kramers pairs of the second shell. The
lines are pointing towards the first charging state on the right. (b) Evolution
of the Kramers pairs with an increasing magnetic field along the nanotube
axis. Within each shell, the Kramers pairs at zero magnetic field are split
by A (cf. § in the Oreg model). The degeneracy of the constituents of the
pairs is lifted with magnetic field as indicated by the labels on the right. The
excited state energy is denoted by £y. Note that K and K’ states show an
anti-crossing at Vy = £0.2'V with an energy scale Agk/. Colored lines present
a fit to Eq. (1.15).
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We recognize the first and the third term as being the Zeeman and the
Aharonov-Bohm type energy dependence. The magnetic moments associated
with the Aharonov-Bohm interaction are different for the two Kramers pairs.
The moment b, is associated to the pair |[K 1), |K’ |) and the moment
peb to the pair [K' 1), |K |). The second term in Eq. (1.15) contains the
spin-orbit coupling Ago, and Akks, a mixing amplitude between the K and
K’ orbital. The former is a consequence of the nanotube geometry and can
be obtained from a careful derivation of the full dispersion relation [53]. The
latter can be attributed to disorder [54] or arise due to scattering at the ends
of the nanotube in the armchair-like geometry class [37], while it is absent
in the pure armchair CN'Ts where mode mixing is prohibited by the parity
symmetry.” The origin of the last term in Eq. (1.15), which is proportional
to a and to the modulus of the field is not clear. At the time of this writing,
a is a fitting parameter in the ongoing analysis of the one-electron spectrum .

In Tab. 1.2 we show the parameters that correspond to the fit presented
in Fig. 1.11(b) together with the parameters from the constant interaction
model of the previous section. The two Kramers pairs are shifted apart by

an energy A = /A%, + A%, at zero magnetic field, see Fig. 1.11(b). A can
be compared to d from the Oreg model. However, the two values deviate by
one order of magnitude. Note that the shell spacing 5 = 1.4 meV extracted
from the fit to the one electron spectroscopy data corresponds to an effective
dot extension of 1.2 um, almost two times larger than the distance between
the contacts. In the vicinity of the band-gap, however, the finite curvature of
the band reduces the energy spacing between two allowed values of ;.

7This will be discussed in more detail in Ch. 3.
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shell 1 shell 2 CI

poy 0.89meV/T  0.77meV/T -
pby 0.88meV/T  0.69meV/T -

a 0.17meV/T 0.05meV/T -
ASO 0.48 meV 0.41 meV -
AKK’ 0.28 meV 0.21 meV -
AYA) 0.56 meV 0.46 meV 5meV
€9 1.4 meV 11.5 meV

Table 1.2: Parameters of the linearized Hamiltonian, Eq. (1.15), for the
first two shells extracted from the one electron spectroscopy. The values are
compared to the previous analysis in terms of the constant interaction model.






Chapter 2

Modeling a CNT quantum dot
coupled to ferromagnetic leads

The considerations presented in the previous chapter are based on the as-
sumption that the recorded transport data is solely determined by the energy
spectrum of the quantum dot and the interaction of the electrons. The trans-
port problem is treated as a sequence of single electron tunneling events with
rates ' < kgl that are given by an effective, energy independent coupling
between the CN'T and the leads, and the temperature.

In the experimental data discussed in this section,! we observe a broadening
of the Coulomb blockade peaks that can not be attributed to temperature.
Further on, this broadening is sensitive to the magnetic properties of the
contacts. To correctly interpret the data, we have to go beyond the sequential
tunneling description and present a model where the coupling is still smaller,
but of the order of the temperature, i.e., I' < kgT. Approaching this regime
we have to take into account charge fluctuations between the quantum dot
and the leads. To this end, we apply a transport framework based on the
Liouville-von-Neumann equation [55], incorporating the quantum mechanical
nature of the problem and allowing us to go beyond the considerations of
Sec. 1.1.

The Liouville-von-Neumann equation describes the time evolution of the
density matrix of the quantum mechanical problem fully taking into account
the system under consideration and its surroundings. In general, the system
has less degrees of freedom than the environment and its time evolution can
sometimes be calculated exactly when it is decoupled from the environment.
Within the framework of the reduced density matrix theory we can start with

!The data has been recorded by Daniel Steininger and Andreas Priifling from the
University of Regensburg.
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the exact solution for the decoupled system and perturb it by the coupling
to the environment in a controlled way. Thereby we arrive at the quantum
master equation (QME), which, in principle, describes the full dynamics of the
weakly coupled system, see Ref. [56] for a review. The transport properties
of the system are readily calculated from the QME. We follow the lines of
Ref. [57] and present the so-called “dressed second order” (DSO) framework.
Eventually we apply this framework to the problem of a carbon nanotube
quantum dot coupled to ferromagnetic leads and compare the results to the
experimental data. The results presented in this chapter have been published
in Ref. [58].

Note that there are numerous other frameworks to approach this problem,
e.g., the non-equilibrium Green’s function technique [17], the Wigner function
method [59], the Kubo [60] and the Boltzmann equation approach [61] or
the equation-of-motion technique [62]. An approach that reaches beyond
the DSO with a different summation scheme is the “resonant tunneling
approximation”(RTA) [63]. For a spinless single electron transistor the RTA
exactly describes the density matrix and thus the current in the intermediate
regime I' < kgT. A comparison shows that the DSO predicts the same
current as the RTA in this case and thus captures the relevant diagrammatic
contributions [57]. For more complicated systems as is the CNT quantum
dot the RTA is increasingly difficult to handle while the DSO can be applied
to more complex systems straightforwardly.

2.1 Introduction to the reduced density ma-
trix approach

In the following, we give a short introduction to the basic concepts of the
reduced density matrix approach to quantum transport. The reader that
is familiar with the construction of the quantum master equation for the
reduced density matrix might as well skip the following section and continue
with the introduction of the dressed second order approach in Sec. 2.2.

2.1.1 Statistical mixtures

The largest set of mutually commuting independent observables provides the
maximum available information about a quantum mechanical system. A state
U specified solely by the eigenvalues of these observables is a pure state

U = Zan|(/§n>.
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The choice of the set of observables is not unique. When the state of the
system is not known, i.e., one can not provide a pure state, it is convenient
to describe the system in terms of multiple possible states

= Z CLS;L/)|¢m/>,

and define a density matrix

A:ZWH|\PH><\IJ7L|7 (2.1)

n

where W), are real positive numbers and Y, W,, = 1. In the basis {|¢)} the
density operator takes the form

p=3" Waal s | dn) (b,

nmm’

or equivalently, in terms of matrix components:

(611 7165) = 32 Waal ol (2.2)

The significance of this operator can be understood by the observation
that the probability of finding the system in the state |V, > is W, and that of
selecting a certain eigenvector in this state, say |¢,,), is [a{|?. The diagonal
elements,

ﬁmm = Z Wn’aa(g)ﬁﬂ

denote thus the probability to find the system in the eigenstate |¥,,), summed
over all possible basis states of the system. Analogously, the probability to
find the system in the arbitrary state |¥) is given by

= ZWN|<\Dn|\Ij>|2

The expectation value of an observable Q can be calculated by tracing
over the product with the density operator,

(@) = Tr{pQ}. (2.3)

This relation reflects the crucial capability of the density matrix. If we can
predict the evolution of the density matrix, the expectation values of physical
quantities can readily be calculated.
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2.1.2 Time evolution of statistical mixtures

We define the time evolution operator U via its action on the wave function

() = U(t, 1)1 (t0)), (2.4)
and insert this expression in the Schrédinger equation,
ihaat U(t) = H(t) U(1), (2.5)

where we omit ¢, = 0. According to Eq. (2.1) and Eq. (2.4), the time evolution
of the density operator acquires the form

A~ o N ~ T

p(t) = U(t) p(0) U (2). (2.6)
Differentiating this equation with respect to time yields

L0 Arny A

ihe p(t) = (1), (1)) (2.7)

Note that the operators in this equation are written in the Schrédinger picture.
It is often possible to decompose the Hamilton operator in a time independent
part and a time-dependent perturbation,

H = Hy + H,(t). (2.8)

Now let Uy be the time evolution operator that satisfies Eq. (2.5) where H is
replaced by Hy and define

[¥(t)) = Uo(®) 1 (£))1. (2.9)
Furthermore let
U1(t) == Uo(t)T U(2) (2.10)

and

so that we can write

D . o
lha UI(t) = le(t) UI(t) (211)

We can now combine Eq. (2.1), Eq. (2.9) and Eq. (2.10) to arrive at the
Liouville equation in the interaction picture, i.e.,

0

iha pr(t) = [Hyp(t), pr(t)]- (2.12)
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We integrate over time on both sides of this equation,

lt) = pr(0) = [ A (L1 (1), ()] (2.13)

and insert the expression back in Eq. (2.12). Repeating these steps we obtain
a recursive, non-perturbative expansion for py(t).

2.1.3 The reduced density matrix

We consider two interacting quantum mechanical systems. One system, say
S, is of special interest and we label the eigenstates of the system [s;) and the
states of the other system, F, |e;). We will refer to S as the system and to E
as the environment or reservoir in the following. We calculate the expectation
value of an operator Q acting solely on S according to Eq. (2.3),

(@) = Tr{p()Q} = Ej: %:(eksjl pt)lexsi)| (il Qls;)- (2.14)
We introduce the reduced density matriz (RDM),
pred = Trp{p} = ;(ekl p(t)lex), (2.15)
to rewrite Eq. (2.14),
(Q) = Trs{prea Q}. (2.16)

To this point, no approximation has been made; Eq. (2.14) is still exact.
However, the direction is clear: We separate the part of the (whole) system
where the trace in Eq. (2.15) can be calculated more easily. As soon as we
are working with the RDM to describe S, we loose all information on the
correlations in the environment F and we call S an open system. The time
evolution of an open system can not be described by a Liouville equation.
We perform the trace over the states in the environment on the Liouville
equation, Eq. (2.12), and obtain

i e = Te {1, (1))} (2.17)

Suppose the system S was originally separated from the reservoir £ and we
switch on interaction between S and F at time ¢t = 0. We suppose that a
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decomposition according to Eq. (2.8) exists. Then the boundary condition to
Eq. (2.17) can be stated as

p(0) = ps(0) ® pg(0).

If the reservoir E is large compared to the size of the system in terms of

volume and particle number, the interaction with the system will not change

E measurably. Let E be a large reservoir in thermal equilibrium at ¢ = 0.

Then it follows that F can be described by a time-independent density matrix.
We proceed by integrating Eq. (2.17) and reinserting the result,

A

prea(t) = =i Trg {L(t) ps dt Trp {L£(t) L() ()}, (2.18)
where we introduce the Liouville operator,

PO |
L)X = 7 [Hp(t),X].
Eq. (2.18) is a simplified form of the Nakajima-Zwanzig equation exact to all
orders in H, [64].

Second order expansion

With the assumptions from the previous section the density matrix at ¢t # 0
in the interaction picture simplifies to

Pi(t) = Prear(t) © p. (2.19)

We further specify the perturbation ﬂp to be a bilinear form in the operators
acting on S and E, i.e.,

/\

EI:I ZSpEp

where we used the label T to refer to the associated tunneling process between
system and bath. The index p € {+, —} refers to an addition or removal of a
particle to or from the system or bath respectively. We rewrite this operator
in the interaction picture,

Hoa(t) = Ug(t) iy Ug(t) = 3 Us(0)3 Us(t) Upo(1)

S

Us(t)
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and insert this expression together with Eq. (2.19) into Eq. (2.18). We end
up with a second order expansion of Eq. (2.18) in Hr,

;)red,l = - Z 7:;[2 /dt/ {[Sf(t>7 Sf(t/> ﬁred<t,)]< Af(t) Ef(t/>>E

A

— 87(), prea(t) 8" ()] (E() 18 (t)>E}’ (2.20)

where we used the notation (...)4 = Tra{... p4} and omitted the label for the
interaction picture on the right side. We will henceforth do so whenever the
context clearly specifies the picture. Note that the first term in the expansion
vanished under the trace. As a consequence of the thermal equilibrium
property of the reservoir we can write

[Uk(t), ps] =0, (2.21)
from which we obtain
~ P ~p P
<Ei (t) Ej(t)>E = <Ei (t—t)E; >E.

The correlations in a reservoir at thermal equilibrium thus decay independently
of the history of the reservoir.

Remark: The integro-differential Eq. (2.18) can be rewritten in terms of a
superoperator X(?®) including terms of order 2n in Hy. For example at lowest
order it reduces to

t
2 1 .
preaa(t) = [ at K1) prean(t). (2.22)
0
where by comparison with Eq. (2.20) we obtain

K2y, =Y {[SZI(t), St - (Bt —¢) B )
1j,p

—[81(0), . S B — ) B, >E}. (2.23)

In Eq. (2.22) and Eq. (2.23) we put the label for the interaction picture as an
explicit reminder.
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Diagrammatics In perturbative expansions such as Eq. (2.20) it is often
convenient to introduce a diagrammatic representation of the expressions in
the series. From the diagrammatic representation the analytical expression for
the elements of the density matrix can be readily compiled. To demonstrate
this technique, we present Eq. (2.20) in a matrix element form, i.e.,

(Bl rea |V) = Z D

z],p aa’
t

x/dt'{<b\éf<> 8 (1)) (] prea(?) ) (Y Lt — ) B

0

m>
\/
=

— OS] (®)la)al preat) ') o | ST B
~ i’(>\a><a|pred<'>|a'><a'|S§<t'>|b'><E )
- 00) o e IS0 O (B~ () E7) |

The rules for the construction of the diagrams out of the perturbative expan-

sion are enumerated below.

1. Each diagram consists of an upper and lower contour representing the
evolution of states a — b and b' — o’ (compare Eq. (2.24)), respectively.

b a

v a’

2. Throughout all diagrams, time evolves from right to left. a and o’ are
initial states, b and ' are final states.

b a
t1 >ty > i3
v a

3. Every operator acting on the system standing to the left of the RDM
creates a vertex at a given time on the upper contour. Every operator
on the right creates a vertex on the lower contour. At each vertex the
particle number on the dot changes by +1.
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/
D S — PR S
b \ a y t./ s a

S ( ) Sf(t/> ﬁred(t/) Si)@) ﬁred(t/> S?( )

4. The vertices of two dot operators which are related via two reservoir
operators, E;, have to be connected by a fermion line.

t t/ t
b —< N a b—< a

b/ \ a/ b/ t/ > a/
5. The fermion line points toward the vertex representing the operator

creating an electron on the dot, §" (specified by the index p = %+, in
the example below p = —).

Note that the hermitian conjugation of a diagram is equivalent to flipping
the diagram with respect to the horizontal axis plus inverting the arrows
on the contours and the fermion line. Before we specify p or consider the
hermitian conjugate of a diagram, i.e., in Num. 4, the diagram can be used
as a placeholder for all diagrams that can be constructed out of it. All
second order diagrams can be constructed from the two “generic” diagrams
in Num. 4.

For the next steps, we require a time-convolutive form of the right-hand
side in Eq. (2.22). This form is obtained by a transformation to the Schrodinger
picture, shown in the supplement, Sec. 2.A. We obtain

P
— iy, preas(oo )—hm/dt Ks(t) preas(t —t').  (2.25)

tlLrg) Pred,S (t) = A

Eigenbasis of the system: Let us express Eq. (2.25) in the eigenbasis of
the system. We know from the definition of the interaction picture how the
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operators in the bath evolve in time, namely

0 ~p
@Ei(t)

i

h[ﬁo,Ei (t)]. (2.26)

D

E;
W

When the particle number is conserved by the reservoir, i.e., only pairs Ef y

or their hermitian conjugates appear in ﬁE, and no dissipation occurs, we
arrive at 9 )

5 B0 = 2pa BV,
where ¢; is defined with respect to Eq. (2.26). Next we have to evaluate the
elements of the integrand in Eq. (2.25) (cf. Eq. (2.63) in the appendix) in the
basis of the energy eigenstates of the system. The time evolution operator U,
in the energy basis is given by

(m| Uo(t)|n) = Gyne #E1/0.

where F,, denotes the energy eigenvalue of |n). The matrix elements of the
time derivative of the reduced density matrix are thus

I _ _i P B i
(pred,S(5)>mn = h[Hs, preds(?ﬁ)]mn 2 s
/ p n .

/ dt { ( Sis )mk ( Sis )kl ( Preas(t — t/))ln(Ef ! o (Prn—peilt'y

0
+ (gis ) . ( Prea,s(t ))kl ( QIZS )ln<]§)f ]3]? e—%(Eml—ﬁEi)t’>
+ (éf,s ) k ( Preas(t = t,))kl ( Sjs )zn@? Ef e_%(Ek”_pei)t/>
(st =), () (8 ) B EL oy

(2.27)

This representation will be useful when we calculate the Laplace transform.

The stationary limit

We are interested only in the stationary limit of the time evolution to derive
the transport features of our system. In order to proceed, we assume that
the stationary limit exists in the first place, i.e.,

N a . R
tli>rono pred(t) - pred(oo) - )}L%h Aﬁ{pred@)}a (228)
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where L£{f(t)} denotes the Laplace transform of f(¢) and should not be
confused with the Liouville operator L. The validity of the stationary limit,
(I), is ensured by the coupling to the thermal equilibrium bath. We can be
confident that the correlations in the bath vanish in the long time limit [65],
AP

~D
i i

lim (E,

t—o0

(t)E)) = lim

t—00

E %( ml— ﬁel)t> — O7

in the Kernel, Eq. (2.23). Technically this can be ensured by adding an
infinitesimal imaginary part to the energy difference. This part reflects
the finite lifetime of the electronic states due to all relevant interaction
mechanisms [66]. (I) is the prerequisite to equality (II) in Eq. (2.28) which is
known as the final value theorem.

We are now in the position to perform the Laplace transform of the integral
on the right in Eq. (2.25),

lim / At Ks(t) preas(t = 1) = lim AEAKsHA)L freass )
= lim L{Ks}(A) preas(00). (2.29)

Here, we used the final value theorem twice. Note that the Laplace transform
can also be performed as a first step, the limits ¢ — oo and A — 0T are
formally equivalent.

Eventually, after we performed the steady state limit and substituted it
by the limit A — 0 in front of the Laplace transform of the Kernel we obtain

[e.o]

bred(oo) - _%[ﬂSH ﬁred( )] + lim dt’ 7)\t/’C(t ) pred(oo)' (230)

A—0t

This is a stationary form of the Redfield equation [67]. After we switched on
the interaction between the system and the bath, the time evolution of the
system eventually does not depend on its previous state anymore. This is a
consequence of the bath being unaffected by the coupling to the system (pg
satisfying Eq. (2.21)) and the requirement that the steady state limit exists.
Note that, under theses assumptions, Eq. (2.30) is exact. Contrarily, the
derivation of the time-local Redfield equation from the full Nakajima-Zwanzig
equation, Eq. (2.18), requires the Born-Markov approximation [68].

2.1.4 The Laplace transform of the Kernel

With all previous ingredients we can readily perform the integral over t’
which can be identified as the Laplace transform of the superoperator . The
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integral of, e.g., the second term in Eq. (2.27) thus evaluates to

lim T / P B o h (B —peii’ Jim T
/\g& rE{O dt' E; ;e h =ih 1m rg o

It is convenient to label the elements of the kernel IC by the transition the
element is related to. Suppose there is a transition from states a,a’ — b,b'.
We then select the matrix element (a| preq |a’) and use the superoperator K
to project the element on the states b, b':

Jim (ra®)), =~ X s () (B = Bo) + S K (),

aa’

=0, (2.32)

where
K = (BIK|a) (e[| V).

Eq. (2.32) is referred to as the Lindblad form of the quantum master equation.
The first term on the right in Eq. (2.32) is non-zero for off-diagonal elements
of the RDM that are non-degenerate. We clearly see from Eq. (2.32) that
these so-called secular components have to vanish in the steady-state limit.
In other words, if a model includes secular components, a description in terms
of a steady-state RDM is not suitable.

The single elements of the kernel that relate the entries of the density
matrix are called the rates,

bb - Zrl ba>

where p = £ depends on whether |a) — |b) denotes an in- or an out-tunneling
process, respectively. We recall that the diagonal elements of the density
matrix preq are subject to normalization,

Z (ﬁred)aa =1,
from which it follows that the kernel I obeys

Z/Cbb = (2.33)

We will refer to this statement later as the current conserving property of the
kernel.
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The role of coherences Coherences are off-diagonal elements of the density
matrix. They describe quantum mechanical oscillations between states that
differ by quantum numbers that are not conserved within the full Hamiltonian.
Here, i.e., in the derivation of Eq. (2.32), we assume that the particle number
is conserved in the whole system. As a consequence, coherences that relate
states with different occupation numbers N are 0. The density matrix thus
acquires a block-diagonal form and within each block, N is the same [69].
On the other hand, if we are interested in spin transport through a quantum
dot attached to magnetized leads while allowing for spin-flip processes on the
quantum dot, coherences can occur between states with the same N but with
different spin [70].

We distinguish between coherences that relate states which are degen-
erate in energy, called non-secular components, and coherences that relate
states with different energies — the secular components mentioned above.
In Eq. (2.32), we dropped the secular components in the steady state limit.
Non-secular components, on the other hand, have to be treated with care
as they can affect transport properties considerably also in the steady state
limit [70]. In the problem discussed in this thesis, all quantum numbers are
assumed to be conserved within the whole system and no coherences are
needed.

A Pauli-like master equation If we can neglect coherences, the QME is
reduced to a fully diagonal operator in the occupation number basis,

0= K5 (frea) (2.34)
resembling the Pauli master equation [68], but with rates that are, in general,
defined to all orders in the coupling to the reservoirs. This equation is the
starting point for the calculations in the main part, Sec. 2.2.

2.1.5 Electronic transport

We are interested in the transport properties of the system. The most
prominent characteristic is the current through the system. We define the
current as the time derivative of the electron number in one of the leads in
the interaction picture,

L€
—1—

I = .

[ I:\IT,lv Nl] )

and calculate the average of this operator by tracing over the product with
the reduced density matrix as shown in Eq. (2.14). We end up with the
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following expression for the current,

L(t) = Trs{ /t At K (t — t') ﬁred(t’)}, (2.35)

where Kj, is the current kernel for lead I. In general, the order of this
expression in the coupling to the leads is determined by the order of pieq, i.e.,
an expression obtained from the exact representation in Eq. (2.18) by limiting
the number of recursions. The current to second order in the tunneling
Hamiltonian can be expressed as

L(t) = —eiTrg { / dr Trg {T1(t) L1(7) prea(r) ﬁE}} . (2.36)

We employ the diagrammatic language from the previous section to write
down the Laplace transform of the current kernel, i.e.,

hm G Z Z (ICC)Z: Pred)a (2.37)

aa’

The kernel K} contains a subset of diagrams from K. When we can neglect
coherences, the current can be written in terms of rates I'j, |,

LV V) =30 3 [PV VT iV, Vi) = PelVh, V) Doy (V, Vo)
NacEC’+

(2.38)

where the sum over a includes all states with N particles, C;\ is the set of
states that can be reached by in-tunneling from state a and P, = (pred)aa are
the diagonal elements of the density matrix. Note that the current kernel
contains only operators from one specific lead [. Without coherences, the
kernel is constructed from rates I',,, used also in the density matrix kernel,
and from the diagonal elements of the density matrix, the populations. We
can therefore calculate the current directly from the solution of the Pauli-like
master equation.

2.1.6 Remarks on the reduced density matrix approach

We started with the Hamiltonian operator of a system coupled to one or
multiple baths. We then calculated the time-evolution of the reduced density
matrix of the system perturbatively to the second (and first non-trivial)
order in the coupling to the bath. At this stage, the perturbative series is
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comfortably represented in a diagrammatic language. Eventually we perform
a Laplace transform on the expression for the time derivative of the density
matrix. For the sake of clarity, this is done manually. In the next section we
will show how the expression for the rates can be obtained directly from the
diagrammatic expansion.

In the derivation of the quantum master equation, we require that all
parts of the Hamiltonian conserve the particle number. This is a choice
that allows us to discriminate states by their occupation, the populations.
Furthermore, we are only interested in the stationary regime. This implies
that the reservoir is in a stationary thermal equilibrium. We replaced the
limit ¢ — oo by the limit A — 07 for the Laplace transformed version of the
Kernel. To be consistent, the limit n — 0, performed as a last step in the
calculations, must not change the results. When we apply the framework to
a model, we have to check if secular components drop in the construction of
the RDM, since this is required in the steady-state limit. Finally, the current
can be derived directly from the solution of the quantum master equation.

2.2 The dressed second order approach ap-
plied to a CNT quantum dot

We apply the density matrix transport framework to a CN'T quantum dot
attached to ferromagnetic leads. In particular, we study the conductance in
the Coulomb blockade regime through a quantum dot attached to leads that
can be switched from a state with parallel magnetization (G) to a state with
anti-parallel magnetization (Gyp). G and G,p define the so-called tunneling
magneto-resistance (TMR) [71, 72]:

TMR = G,/Gap — 1.

As elucidated in Sec. 1.1, the conductance in the Coulomb blockade regime
has a pronounced resonant structure. This leads to large TMR values if
the positions and widths of the resonances depend on the magnetization
configurations p and ap.

In Fig. 2.1(a) we show TMR data recorded across four conductance
resonances at V; = 8.13V, 815V, 8.17V and 8.19V (not shown). In the
strong variations in the TMR we observe two distinct patterns. In the first
two signatures, at Vy ~ 8.13V and V,; ~ 8.15V, a dip is followed by a peak
while for V; ~ 817V and V; ~ 819V, a dip-peak-dip structure can be
observed. How can we capture this behavior in our model? First of all, the
commonly used perturbative description of the Coulomb resonances, which is
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similar to the second order approach of the last section, predicts temperature
broadened peaks and maxima whose positions are solely determined by the
isolated quantum dot spectrum implying a constant, positive TMR [70].

Our goal is to extend the second order result in such a way that it
reproduces the observed signatures but the complexity of the model remains
manageable. To this end we need to clarify the necessary ingredients to
produce TMR signatures as those shown in Fig. 2.1(a).

On a qualitative level, the occurrence of the signatures can be understood
from properties of the conductance peaks in the parallel and anti-parallel
configurations of the contacts. In Fig. 2.1(b), the peak in the conductance G,
in presence of leads with parallel spin polarization is shifted with respect to
the one in Gy, the conductance in the anti-parallel case. This shift yields a
dip-peak feature in the TMR signal as shown in (d). This signature has also
been observed in Ref. [73]. In Fig. 2.1(c), a change of the resonance line-width
between the two configurations yields a dip-peak-dip sequence in the TMR,
shown in (e). This signature, too, has been observed previously [74].

The extension of the second-order transport framework thus has to account
for a shift and for a broadening of the conductance peak in the Coulomb
blockade regime depending on the magnetization of the contacts. In Ref. [75], a
transport theory has been developed which accounts for a shift of the quantum
dot energy levels in a multi-level quantum dot depending on the magnetization
configuration of the leads. The model includes charge fluctuations between
the dot and the contacts non-perturbatively. Within an extension of this
theory, the “dressed second order” (DSO) framework, J. Kern et al. [57]
showed that the charge fluctuations can also be responsible for a broadening
of the conductance peak in the single impurity Anderson model with normal
metal leads. It correctly captures the crossover from thermally broadened
conductance peaks to peaks that are broadened by tunneling processes. Here,
we combine the two works and apply the DSO to the CNT quantum dot with
ferromagnetic leads.

In the following we will present the Hamiltonian of the CNT quantum
dot, review briefly the second order result for this model and extend it to
account for broadening and renormalization effects. Following the lines of
Ref. [57] we use a specific selection of terms from Eq. (2.18), i.e., terms that
describe charge fluctuations in the Kernel and solve the QME.
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Figure 2.1: (a) TMR measured across four conductance resonances. The first
two resonances show clear dip-peak signatures, in the last two resonances a
second dip follows after the first dip. (b,c) Schematic drawing of the lead
induced, polarization dependent, modification of position (b) and width (c)
of a peak in the conductance across a quantum dot as a function of the gate
voltage. (d,e) As a consequence of the level shift (b) and level broadening
(c) in the conductance resonances, the corresponding TMR signal exhibits a
characteristic dip-peak (d), or dip-peak-dip (e) feature as they can both be
observed in (a).
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2.2.1 The Hamiltonian of the system

We treat the system as an isolated quantum dot coupled to metallic leads.
The Hamiltonian of such a system reads H = Hg + Hp + Ht. Here,

Hgp =) ClokliicClok
lok
is the Hamiltonian of an ensemble of non-interacting electrons in the leads
I = s/d with wave vector k and spin o. The operator ¢y (&, ) annihilates
(creates) an electron with energy €,,. The second part,

1

N N A N
Hp = - F. N2+Z [e(n) + 710 Sz(n)] Npro —eaVy N+H b/A

ext

5 (2.39)

nro

describes the electrons on the CNT quantum dot in terms of ‘the quantum
numbers n (shell), spin o and Valley 7. Here we used N, ., = dnmdmg, with
the fermionic dot operator dma and N = Y onro N nro, the total dot occupation.
For our purposes, it is sufficient to account for Coulomb interaction effects in
terms of a capacitive charging energy F.. Short range exchange contributions
are neglected here. The symbols 7 and ¢ represent the eigenvalues +1 of the
states with quantum numbers K, K’ and 1,], respectively. In the CNT, a non-
zero spin-orbit coupling Agp can lead to the formation of two non-degenerate
Kramers pairs [17]. Notice that, for simplicity, a valley mixing contribution
is not included in Eq. (2.39). Hence, the valley degree of freedom is a good
quantum number to classify the CNT’s states [37]. The next to last part

of the Hamiltonian Hp models the effect of an electrostatic gate voltage V,

scaled by the conversion factor a, see Sec. 1.1. Finally, I:IZ{? accounts for
external influences on the dot potential, e.g., stray fields from the contacts
and the external magnetic field used to switch the contact polarization.

The ground states of shell n have 4n+ a (0 < a < 3) electrons and will in
the following be characterized by the quantum numbers of the excess electrons
with respect to the highest filled shell n — 1. For instance, the quantum dot
state labeled by |K1;n) contains 4n electrons plus one additional electron
in the (K1) state. Including states with 4n — 1 and 4n + 5 electrons we
end up with 6 ground states with different degeneracies (see Tab. 2.1, left
column). In total we consider a Fock space of dimension 24 if the four-fold
degeneracy is not lifted by a sufficiently large spin-orbit coupling Ago. The
extra states with occupation 4n — 1 and 4n+5 are included to allow for charge
fluctuations in and out of the shell n under consideration. Conversely, for
large enough spin-orbit coupling the dimension of the Fock space is reduced
to 10, see Tab. 2.1, right column. For a compact notation, the shell number
will in the following be neglected from the state ket if not necessary.
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Nt Aso < max{kgT, v} Agso > max{kgT, 0}

1K KL Kn—1) K1, KL K5 n—1)
K, KL K L — 1) K1, KL K n—1)
K, K K1)
K|, K't, K'},n—1)

0 |n) n)
1 |[K15n) [K;n) |[KT5n) [K;n)
|[K't5n) |[K'L;n)

2 KN Kdin) (KT K'in) K1 KLn)
KT, K" Jin) [K L, K"t n)
|KL K'yn) [K', K Lin)

3 |[K, K, K'yn) |KT, KL K'in)
|[K1, K, K'yn) |KT, KL K'in)
|Kt, K1, K'Lin)
|KL K, K L)
4 In+ 1) In+ 1)
5  |Ktin+1) |Klin+1) |Ktin+ 1) [Kin+ 1)

[K'Tsn+1) [K');nt1)

Table 2.1: The set of allowed electronic ground states C' of the CNT with
N electrons for large (right) and small (left) spin-orbit coupling Ago. The
degeneracy of the configuration depends on the magnitude of Agg as compared
to kgT or the coupling strength vy. In the first column, the excess electron

number N, = N — 4n is reported with respect to the number 4n of electrons
in the filled (n — 1)-th shell.
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Quantum dot and metallic leads are coupled perturbatively by a tunneling
Hamiltonian

Ay = Y Tiewor Aoy o + huc, (2.40)
lknoT
with a tunnel coupling Tix,,, generally dependent on the quantum numbers
of both leads and quantum dot. In the following, for simplicity, we assume
that Eknar = T’l
We identify the operators introduced in Sec. 2.1.3,

A— A A

at & AT + R
S,E, =T;d,, éno and S, B =T dpyr el -

()

In the thermodynamic limit, the trace over the eigenstates of the reservoirs
can be replaced by an integral over energies,

Tr{efka éﬁm ﬁl} _ /de 21Dy (€) f7 (€)

where f is the Fermi function and Dy, (¢) is the spin-dependent density of
states. A Lorentzian provides a cut-off for the density of states at a bandwidth
W. It is convenient to introduce a spin dependent linewidth for the transition
a) = 1) b 2
7 (€) = Vio(ba) (€) = |Ti|"Dig (€).

The notation o(a, b) indicates that the spin ¢ of the electron tunneling out
of /onto lead [ depends on the spin configuration of the initial state a and the
final state b of the quantum dot. Furthermore we introduce the spin-resolved
density of states of lead [ at the Fermi energy

D1y = Diy(er) = Do(1 + 0 P,)/2, (2.41)

where P, = (Dyy — Dyy) /(D + Dy ) is the polarization of lead . The couplings
|T}|> we define in the same spirit as

Tyal = ITo(1 £ a) /2, (2.42)

using the parameter a to tune the asymmetry in the coupling to the leads.
We will in the following use the factorization

Vio(b,a) (€F) = Yoo, (2.43)

where we collect the lead and spin independent prefactors in an overall
coupling strength vy = Dy|Ty|* and include the dependence on spin and lead
index in the dimensionless parameter x;,, where Y, ., ki, = 1. Note that vy
is related to the level broadening I'y by 'y = 27.
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TO 0
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Figure 2.2: Diagrammatic representations of the contributions to the rate
I}, ,0 in second order (a), and an example of diagrams included in the DSO
(b). In the latter case, the second order diagrams in (a) are “dressed” by
charge fluctuation processes. The labels below the fermion lines denote energy
and spin of the particle tunneling from/onto the lead. Note that the diagram
is read from right to left, i.e., the initial state |0) can be found on the right
and the final state |70) on the left.

2.2.2 Lowest (second) order in the coupling

Evaluating the kernel to the lowest order in the coupling Hamiltonian and
expressing the result using the diagrammatic rules in Sec. 2.1.3 we end up
with the two diagrams shown in Fig. 2.2(a). From this representations we can
directly derive the Laplace transforms of the kernel elements. For a diagram
of order 2n this can be done according to the following rules [69]:

1. To each of the n fermion lines assign an energy € as well as the lead and
spin indices [, o, respectively.

2. To each section on the contours assign the energy of the corresponding
state.

3. Between two consecutive times t and t/, draw a vertical line that inter-
sects both the fermion lines inside the diagram and the contours:

t Byt
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Each crossing of the dotted line with the fermion line and the contours
corresponds to a summand in the denominator D of the Laplace trans-
form. Whenever the fermion line or the contour intersects from left to
right we choose a positive sign, otherwise the contribution is negative:

D=E—-FL,—¢

4. Determine a sign p for the fermion line which tells whether it belongs
to an in-tunneling (p = +) or an out-tunneling (p = —) event:

vertices lie line points p

on the same contour forward -
on the same contour backward
on different contours upwards

on different contours downwards -

_|_
+

5. Determine ¢ which accounts for the sign of the contribution: ¢ is equal
to the number of the vertices on the lower contour.

6. The integral part of the kernel thus reads

[® = _(~1)7> lim /de fi +)1>\ (2.44)

h A—0t
7. Assign to each vertex the coupling

P)/lo(b,a) (6)

where a is the state on the contour before the vertex, b is the state after
the vertex and ¢ is the energy corresponding to the Fermion line. p is
positive /negative for a fermion line pointing towards/away from the
vertex.

Integrals like the one in Eq. (2.44) can be calculated by introducing a
Lorentzian function to suppress values on the semi-circle over the imagi-
nary half-plane. We write

P _ i : fr(=) w?
Yi(a) = =g Jim, Jim e N T inu £ 12

and convince ourselves that part of the path on the semi-circle vanishes. We
are left with the residuals and obtain, after some manipulation [69],

YP(A) = fpd(m) ipd (Re ¢ (2 + 152?) - c) . (2.45)
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Figure 2.3: Conductance as a function of gate and bias voltage calculated in
the sequential tunneling approximation using the Hamiltonian in Eq. (2.39).

GO = 62/h.

This yields for the second order rates

2T
T e = T Yowa 1 (Ea)- (2.46)

h

Note that the hermitian conjugate can be extracted by inverting the signs p
and d for Y in Eq. (2.45). The energy difference E® = E, — E, = E,— F, —
eaVy(Ny — N,) depends on the gate voltage V, while the Fermi function f7
depends on the electrochemical potential of the leads and thus on the bias
voltage V4. Due to the apparent simplicity of Eq. (2.46), the second order
model can be easily evaluated for larger ranges in V; and V4. In Fig. 2.3 the
conductance through the QD as described by the Hamiltonian in Eq. (2.39)
is shown. Note that at second order in the coupling the width of the peak in
the conductance as a function of gate voltage only depends on temperature
and the positions of the peaks depend on the energy levels of the quantum
dot [75]. From this it follows that the ration G,/G,p is constant as a function
of the gate voltage and so is the TMR.

2.2.3 The dressed-second order series

In the DSO, we include all diagrams of the structure shown in Fig. 2.2(b) in
addition to the lowest (second) order contributions. The selected diagrams
contain arbitrary numbers of uncorrelated charge fluctuation processes (“bub-
bles” in Fig. 2.2(b)). Let us have a look at the example in Fig. 2.2(a) and
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(b) for the transition from |0) to |7o). During the charge fluctuation, the dot
state on the upper contour has one charge less or more compared to that of
the final state |70). Hence, the virtual state is either the state |0) or one
of the many (see Tab. 2.1) doubly occupied states. On the lower contour,
the fluctuations take place with respect to the initial state |0). Examples
of charge fluctuations in the case of initial state |0) and final state |K1)
are shown in Fig. 2.4. In Ref. [57], J. Kern et al. show that the sum of all
diagrams of this type recovers a closed analytic form. We demonstrate this
procedure by an example calculation for the transition |0) — |70).

Example calculation We recall the second order diagram in Fig. 2.2(a),

TO 0

(2)
0

TO

Y

which we can translate to an analytic expression via the diagrammatic rules
of Sec. 2.2.2. We obtain

+,(2) 1 Vie (€ 6)
Fipiirn) = 7 /\lg(%/ Ej7 —¢ + e

Let us now add a charge fluctuation. In the diagrammatic language, this is
represented by a bubble. At fourth order in the coupling we thus obtain

To, 7o’
Z

TO

F+7(4)

1|0Y[ro) = +(ii) + (iii) + (iv) + h.c..

TO

The labels (i-iv) distinguish four related diagrams: We can invert the blue
arrow of the bubble and obtain an out-tunneling contribution or place the
bubble on the lower contour where we again have two choices for the direction
of the arrow. Note that we have to choose additional quantum numbers w,
7" and o’ for the charge fluctuation state. The possibilities in choosing the
quantum numbers for the charge fluctuation state are only restricted by the
occupation of the quantum dot, since no two electrons can share the same set
of quantum numbers. Following the diagrammatic rules we end up with the
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Figure 2.4: Example of possible charge fluctuations for a final state (| K1), left,
shaded gray) with one extra electron and an initial state with zero electrons
in the shell n (|0), right, shaded gray). This set corresponds to one specific
diagram of the type shown in Fig. 2.2(b). States that can be reached by
in-tunneling of an electron are shown on top, states that can be reached
by out-tunneling of an electron are shown on the bottom. Dashed frames
highlight resonant (Egl/clf = 0) charge fluctuations. Above and below the
level schemes, the energy difference between the virtual state and the state
on the other contour is given: the energies of the states accessible from the
initial (final) state are compared to the energy of the final (initial) state on
resonance (Ej | = eaVy). Note that the electron number of the states that
can be reached by in-tunneling on the left and the number of electrons in the
initial state on the right differ by two. The same situation occurs for the final
state and the out-tunneling states on the right. The energy differences for
this class of fluctuations is of the order of E.. A comparison of the electron
number of the final state with the in-tunneling states on the left and the
initial state with the out-tunneling states on the right yields a difference of
zero. These fluctuations have comparably low energy cost.
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Table 2.2: Fourth order contributions considered in the dressed second order
summation. The integral representation is given on the right side.

Laplace transform

i

(i) = ﬁx

+ +
lim [ de Yo (€) f; (€) Z/d Yo (W) fif (W)
A—0+ Ei7 —e+iA E;g 6—{—1)\ EgUTU € — w + 1A

omitting the hermitian conjugate. To shorten the notation a bit, we will in
the following use the labels a = |0), b = |70) and ¢ for the state that can be
reached by a charge fluctuation. Using this notation, the other diagram types
that are considered within the DSO and the associated innermost integral are
given in Tab.2.2. Stringing together additional bubbles on the two contours
produces additional terms (i-iv). Let us add n charge fluctuations of types
(i-iv), i.e.,

Fler( n) _ _

a

Re{ /d %" )(/H_l(_el_Eb))nl(i)+(ii)+(iii)+(iv)r}.
(2.47)

For n — oo, the series converges [57] and Eq. (2.47) is transformed into

1
The = 57 [ devi (@ (o) (2.48)
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Similarly, the out-tunneling rate reads

1
Do = 57 [ dedf(f; () (2.49)

for an out-tunneling process b — a. We introduced a tunneling-like density

of states (TDOS)

e — (e (5 ()
T (S @) + e — B+ Re(S( P

(2.50)

The contributions from Tab.2.2 are collected in the self energy 3% (¢) in the
denominator. Explicitly,

S (e) = (i) + (if) + (ifi) + (iv) = > agl(e), (2.51)
ce{b,a}
decE
with the sets C’;;a given by
Cyla ={¢ : No = Nyja £ 1A 40 — 1 < No < dn + 5} (2.52)

The sets are shown in Fig. 2.4 for the states |a) = |0) and |b) = |K 1). The
rate equations Eq. (2.48) and Eq. (2.49) describe the transition between
arbitrary states a and b in the state space given in Tab. 2.1. The summand

c(b/a)
b/a Z/d (W) f(w)

ipw +€— E;/cb +in

accounts for a transition from b or a to a state ¢, with ¢ € C¥ /q- Performing
the integral, we arrive at an analytic expression for the contributions to the
self energy, i.e.,

d(b/a d(b/a : c'/b
aba( / )(6) =3 ®/ )(e){mflp(ip(Ea/C/ —€))

l

+ [WOW) = Re [0 (i (1 = p(Efy — €)))]] } (2.53)

where W(O)(z) = W(0(0.5 + 2/27ksT) and ¥ is the digamma function. Note
that the dependence on the bandwidth drops out due to the alternating sign
of the contributions from the upper and lower contour in the summation in
Eq. (2.51). Having calculated the self energy, we are now able to collect all
rates according to the transitions in our state space, and solve the stationary
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Eq. (2.28) to obtain the occupation probabilities p,, = P,. Within the steady
state limit we can neglect off-diagonal entries py, if they are among non-
degenerate states [75]. According to Tab. 2.1, the CNT spectrum can be spin
and valley degenerate. However, the tunneling Hamiltonian (2.40) conserves
the spin during tunneling, and thus spin coherences are not present in the
dynamics. Here, for simplicity, orbital coherences are neglected as well.?

Current within the DSO

The current through the terminal [ can be written in terms of the difference
of in- and out-tunneling contributions at the junction, see Eq. (2.38):

W06) = 55 3 [ de [PORAT O = POR O] v (e 0), - (259

CECJr

where V}, is the bias voltage applied between the two contacts, and C'is the set
of all possible configurations (see Tab. 2.1). In general, the populations can
be expressed in terms of rates via Eq. (2.32) and a closed form for the current
and, consequently, for the conductance can be found. This is straightforward
if two states are connected by pairwise gain-loss relations [76]. For the case
of the single impurity Anderson model, for example, a compact notation
of the conductance can be given [57]. In this work, the conductance data
from the model is calculated numerically. The source code for the numerical
calculation can be found on https://github.com/Loisel/tmr3.

The width of a resonance in conductance with respect to the gate potential
is determined by the populations, the TDOS which has a form similar to
a Lorentzian, and by the derivative of the Fermi functions. Note that the
populations are themselves a function of the rates and therefore are also
governed by the resonance conditions of the rates. The DSO theory has been
proven to be quantitatively valid down to temperatures 4kgT" ~ 7y in the
single electron transistor [57]. Upon decreasing of the temperature below
Y0/4, a quantitative description of the transition rate I'* would require to
calculate ¥ beyond the lowest order in vy. In the regime where temperature
and coupling are of comparable magnitude, the width and position of the
Coulomb blockade peaks in a gate trace are strongly influenced by the TDOS
and, more precisely, by the self energy ¥. The role of Re(X) is to influence

2For CNTs of the zigzag type, coherences are not expected to contribute to the dynamics
for tunneling processes which conserve the crystal angular momentum, i.e., for which the
perpendicular component k£ of the momentum k is conserved during tunneling. This is
because in zigzag type CNTs the two valleys correspond to different values of the crystal
angular momentum.
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the positions of the Coulomb blockade peaks: In the rate for the transition a
to b, the real part appears next to the energy difference EP of the transition
in the denominator. Hence, due to this contribution the resonant level is
shifted depending on the configuration of the leads.

Renormalization of excited states

Let us analyze the effect of the DSO on the position of excited state lines in
the stability diagram. The condition for a resonant transition between states
a and b is given by

e+ 4 /2 4+ eV — EX 4 Re(2") = 0, (2.55)

where € is the energy of the tunneling electron with respect to the chemical
potential of the contact it originates from, i.e., of the source contact (+eV},)
or of the drain contact (—eV}). We assume here a symmetric voltage drop
across the two contacts, oy = 1/2, compare Eq. (eq:intro-left-energy). Note
that the condition in Eq. (2.55) can be fulfilled for different transitions at
the same time, a situation that occurs at any point where two lines in a
stability diagram intersect. In order to interpret a shift of the excited state
line in the differential conductance it is illuminating to study the contribution
from Re(X) at points (Vi1, V1) and (Vge, Vi) marked by a dot and a circle,
respectively, in Fig. 2.5. We consider an exemplary set of states 0 = |0;n),
1= |Ktm), 1 = |[Kt];n), 15 = [KT, K4, (K*);n) and 2 = [KT, K4;n). A
similar analysis can be carried out for other states with 4n + 1 and 4n + 2
electrons. The quantum numbers in round brackets denote a missing electron
of shell n — 1 whereas the square brackets indicate a state of shell n + 1.
For each of the highlighted points in Fig. 2.5, two conditions in the form of
Eq. (2.55) can be given. Subtracting them pairwise we are left with

i1 — EY + [Re(2Y0) — Re(210)]
Wy — B + [Re(Z?1) — Re(2?Y)]

(2.56)

=0,
=0, (2.57)
where the self energy contributions depend on bias and gate voltage. To
lowest order in 7y we analyze the differences in Re(X) using éli/0 = E%/

and aeVl/? = Eé//f + d/4 at € = 0. In order to calculate Re(X) we have to
analyze the contributions from all accessible states in Eq. (2.51). In principle
there are arbitrarily many states that can be reached by a charge fluctuation.
However, we assert that the available energy interval for charge fluctuation
processes is given by max(él},, [y, 3 — 4kgT’) and contributions beyond this
scale are suppressed. Numerical results using a larger bandwidth can be found

in Sec. 2.C of the appendix.
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va
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Figure 2.5: Schematic drawing of the conductance lines in the vicinity of the
charging state with 4n + 1 electrons. The transition corresponding to the
first excitation is shifted upwards in energy on the left and downwards on the
right side of one charging diamond by e(Vi; — Vi) = —d;. For our analysis
we choose bias and gate voltages close to the filled dot for the first transition
0 — 1’ and to the empty circle for the second transition 2 — 1’.

For our considerations we assume that the spin orbit coupling of our
CNT quantum dot is small, i.e., Ago < max(kgT,T"). The other important
scales - charging energy, shell spacing and linewidth - are related in the way
E. > €9 > max(kgT,~). Within this choice of parameters the difference
of the self energy corrections for the resonant transition can be calculated
by (2.56)—(2.57)= 10, i.e.,

01 = [Re(3'?) — Re(£1)] — [Re(£') — Re(x?")]
~ o {14 2ks—Fq + Fr—ky} U (c0/2) (2.58)

where we used the abbreviation U9 (¢) = Re[¥°(1/2 + ie/27kpT)] and a bar
denotes a summation over indices, e.g., k; = >, Ki,. A detailed derivation of
these quantities is given in the appendix, Sec. 2.D. Similar calculations are
performed for the excited states in the n + 2 and n + 3 diamonds, yielding

(52 ~ 7% {RS—IZJd + lisi—lidT} @%(80/2),

83 = 7o {1 + Ks—2FRq + iy —Fr ) U (20/2),

where the states with three electrons are chosen to be electron-hole symmetric
with respect to the state with one electron. Note that for the case of symmetric
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couplings the shifts reflect the electron-hole symmetry of the system while a
choice of a # 0 (Eq. (2.42)) breaks this symmetry. For highly asymmetric
couplings |a| ~ 1 the shifts are comparable to those in Ref. [77].

2.2.4 Effects of magnetization on resonance width

Corrections to the conductance peak width are given by Im(X). Because
Re(X) and Im(X) both depend on the different magnetic properties of the
source and drain leads as well as on the dot’s configuration, the resulting
impact on the TMR is quite intricate. Thus we analyze the contributions to
the self energy in the light of different configuration of the lead’s polarizations.
We focus on the transitions |0,n+1) = {|(c7),n+1)}. The back-gate voltage
is tuned such that

€+eaVy — E’?TU) + Re(Z*9)) = 0,

and the quantum numbers in round brackets (7o) denote a missing electron
of shell n + 1. At lowest order in the tunnel coupling vy we approximate
eaVy = E?m) when we calculate Re(X%(7)). From Eq. (2.53) we list the
imaginary part of the self energy for this transition, i.e.,

Im(zo’(ﬂj)) =T Z { Z K’ZU(C)fl—i_(E(CTU) - E) + Z '%IU(C/)]CZ_ (6 - E(C;U))

l CEC(T C/ECE

+ D hofi (€= E) + X Rinenfi (Ey = 6)}'

+ / -
cEC(TU) c EC(M)

The magnitude of the energy difference of the virtual state with respect to the
state on the other contour determines whether a possible charge fluctuation
contributes to the renormalization of the self energy or not: a contribution
i (E. —¢), e.g., is exponentially suppressed in the vicinity of the resonance.

Therefore, knowing the arguments in the step functions f*, we can simplify
the result significantly. Close to the resonance where |e| < max(kgT, 7o), the
fluctuations with an energy cost of the charging energy E. or of the shell
spacing &g, e.g., the states that can be reached by out-tunneling from the
state |(70)) can be neglected. Focusing on the resonant contributions, we are
left with

I EO,(TU) o
m(W%) ~ Z {/flaf;r(e) + Z K'lU’fl_(E - E((o')))} . (2-59)
l T'o!

It is clear from this result that the broadening of the TDOS peak does depend
on the lead configuration {x;, }. Let the majority spins be polarized such that
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o = +1 in the layout with parallel lead polarization. The sum over the leads
is then given by >, k), = (1 4+ 0P)/4 and Y, kj} = (1 + o Pa)/4 for parallel
and anti-parallel polarizations, respectively. Let us first consider the case of
zero effective Zeeman splitting, i.e., EZ = E((g)) = 0. The difference of Im(X%)
for the two configurations then reads

TO TO m ,yo
Im [5977) — 5079 | = g = - oP(L—a)f*(e). (2.60)

Note that the validity of this result depends on the ratio of linewidth and
level spacing, namely that vy < g such that only the selected small set of
charge fluctuations contribute. The sign of the difference in Eq. (2.60) is
determined by o, a result which is intuitively clear since the sum over the
couplings will be greater for the spin-up transition (¢ = 1) in the parallel
case and for the spin-down transition in the anti-parallel one (o = —1), as
shown schematically in Fig. 2.6(a). The sum over the couplings determines
the charge-fluctuation induced broadening of the peak that is associated with
the given transition. Thus, for zero energy splitting E((g) we would expect a
broadening of the peak associated with the transition 0 = (1) for the parallel
configuration and a broadening of the peak in G® for the transition 0 = ({).
Note, however, that the second effect will not be visible since the effective
peak width and thus also the TMR ratio will be dominated by the spin up
transition, i.e., by the prefactor of the rate in Eq. (2.48), irrespective of the
broadening due to the charge fluctuations. Hence, we will observe a TMR
signal as depicted in Fig. 2.6(b).

Now let us assume a non-zero effective Zeeman splitting EI =F —FE =
Gshp/ap of states with quantum numbers o =1 / |. This splitting also
depends on the magnetization state p (parallel) or ap (anti-parallel) of the
contact electrodes. The energy difference is expressed in terms of the effective
magnetic fields gugh, and guphap,. We assume that this field is non-zero for
both polarizations. Im(X) as well as the TMR are very sensitive to the choice
of the shifts, the couplings and the polarization.

We try to shed light on the double dip-like feature in the TMR graph,
see Fig. 2.6(c). It can be observed for different parameter regimes, but for
the sake of the argument it is sufficient to present one possible set. In our
model the drain lead switches polarization upon interaction with external
magnetic field while the density of states in the weakly coupled source contact
remains unaltered. Given that the spin transport is more sensitive to the
bottleneck (source) contact, it is plausible to assume that the shifts are
such that the majority spins tunnel first on the quantum dot, namely spin
up electrons in both configurations. These considerations favor a choice
of negative shifts guphap, gush, < —kgT. The second pair of resonances
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Figure 2.6: The influence of Im(X) on the TMR. a) Large gray arrows
symbolize the majority spin in the left or right contact. The contributions
to the self energy for one spin species are summed for each configuration of
magnetized leads (parallel on the left, anti-parallel on the right) as indicated
by the dashed frames. Weak (strong) coupling to the dot (blue ellipse) is
given by thin (thick) arrows. Note that for the spin down species the sum over
the leads yields a greater contribution in the configuration with anti-parallel
polarization (as indicated by the signs between the dashed frames). b) On the
left, we depict schematically the conductance peaks for one resonance in both
parallel and anti-parallel configurations and the resulting TMR (right). The
broadening of G, is typically larger than for G, in the absence of stray fields.
c¢) Due to a magnetic stray field, the contribution to Im(X) in the parallel
case can be reduced, giving rise to a double dip structure in the TMR.
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is then dominated by spin down electrons and the respective contributions
[ (e+gushy/ap) in Eq. (2.59) are suppressed. Conversely, for spin up electrons
(e — gushp/ap) = 1. In the resonant case, |¢| < kg7, the imaginary part of
the self-energy for the |0) < |(0)) then reads

gim _w%a —a)P(1 — o f(e)). (2.61)
The magnitude of the relative broadening of the peak related to the transition
of a spin down electron in G, is thus increased for higher polarization and
a — —1. Although this estimate is only valid in the direct vicinity of the
resonance, it describes the situation qualitatively as can be seen in Fig. 2.7. We
show conductance and TMR nearby the resonance [0,n+1) = {|(o7),n+1)}
for fields gugh, = —40 peV and gugha, = —80 peV. In the panels on the left
side, the polarization is varied keeping a = —0.8 fixed. We see that the right
shoulder in the TMR curve (c) is lifted upwards with increasing polarization.
On the right panels in Fig. 2.7 we increase the coupling to the source contact
which is proportional to a. While the conductance is decreased for asymmetric
choices of a in both configurations (see (d) and (e)), the magnitude of the
peak in G,p is not symmetric with respect to the coupling to source and
drain. This can be understood from the following argument: The effective
Zeeman splittings prefer one spin species for a selected transition. When the
spin-down species is favored, the tunneling in the ap configuration is enhanced
with respect to the p configuration. We can further increase this difference
when we increase the coupling to the contact with a flipped magnetization
in the ap configuration. This is the effect of the asymmetry parameter a
in Eq. (2.61). This effect is also reflected in Fig. 2.7(c): the shoulders for
a = 0.8 turn into dips approaching a = —0.8. Please keep in mind that this
discussion is simplified since we do not account for the fact that the relative
position of the peaks changes, too, as we vary the parameters a and P.

2.3 Application to experimental data: TMR
of a CNT quantum dot

Let us use the presented transport framework to model TMR data measured
in 2012 by A. Priifling and D. Steininger in the group of C. Strunk. The
TMR is sensitive to modifications of the Coulomb peak position and linewidth
depending on the magnetization of the leads. As we have shown in the
previous two sections, the DSO can describe both effects as a result of
charge fluctuation processes. It is therefore a suitable candidate to model the
experimental data.
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Figure 2.7: Conductance and TMR calculations in the vicinity of the resonance
|0,n + 1) = {|(o7),n + 1)} for different polarizations P (panels (a)-(c),
a = —0.8) and coupling asymmetry a (panels (d)-(f), P = 0.4) applied in
the parallel configuration for effective Zeeman splitting gugh, = —40 peV
and gupha, = —80 peV. (a),(b): Increasing the polarization reduces the peak
width and height of both G, and Gyp,. (¢): In the TMR curve, the shoulder
on the left at P = 0.2 is shifted to the right for P = 0.6. (d),(e): The coupling
asymmetry a # 0 (Eq. (2.42)) diminishes the peak heights of the conductance
for both configurations of the leads. Note that in the anti-parallel case shown
in (e) the symmetry between the contacts is broken and the peak height is
sensitive to the variation of the dominating coupling. (f): The TMR curve
exhibits a double dip feature for values —1 < a < 0. It is transformed to
a double peak for 0 < a < 1. All plots are calculated at a temperature
corresponding to 40 ueV and a coupling vy = 160 pueV.
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Figure 2.8: SEM picture of a chip structure similar to that of the measured
device. A carbon nanotube on a positively doped silicon substrate capped
with 500 nm SiOs is contacted by two permalloy (NiFe) stripes, one of which
is exchange-biased by a FeMn layer. On top, the stripes are protected by
palladium. Gold is used for the bond pads and the connections to the nanotube
contacts.

2.3.1 Experiment
Sample preparation

For the purpose of measuring TMR in CNTs, one needs to interface the
nanotube to two ferromagnetic contacts with a different switching field. The
conductance, being sensitive to the magnetization in the leads, changes when
the polarization of one of the contacts is reversed by an external magnetic field.
It has been shown that NiFe is well suited as a material for the electrodes
of CNT spin-valves [78]: the alloy shows a distinct switching behavior as a
function of the applied magnetic field and the interface transparency between
NiFe and the CNT is comparable to that of Pd. The structure of one of the
devices we realized for this purpose is shown in Fig. 2.8. On an oxidized
silicon substrate (500 nm SiO3) a carbon nanotube is grown by chemical vapor
deposition. The nanotube is located by atomic force microscopy and two
NiFe (80:20) leads, 20 nm in thickness, are deposited at a distance of 1 ym
on top of the nanotube by sputtering. On one of the two contacts, 40 nm of
anti-ferromagnetic FeMn (50:50) is sputtered to bias the magnetization of the
underlying NiFe contact. The hysteresis loop of this contact is expected to
be shifted with respect to the pure NiFe contact by virtue of the exchange
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Figure 2.9: Differential conductance versus bias and gate voltage of a selected
region measured at 300 mK and B = 0. The numbers in the Coulomb blockade
regions denote the number of electrons in shell n on the quantum dot. Arrows
indicate the first excited state crossing the source (left) and drain (right) lines
in the vicinity of the state with one extra electron (N = 4n + 1). As guides
to the eye, lines emphasize the lines in the stability diagram that correspond
to the lines in Fig. 2.5.

bias effect [79]. A 20 nm protective layer (Pd) covers the leads from the top.
The switching of the exchange biased contacts was confirmed independently
prior to the measurement using SQUID and vibrating sample magnetometer
techniques.

2.3.2 Measurement

An electronic characterization of the quantum dot at 300 mK and at zero
magnetic field shows a regular Coulomb blockade behavior, see Fig. 2.9.
From this data we extract the gate conversion factor a = 0.29 and the
charging energy E. = 6.1meV (see Eq. (2.39)). The sample does not exhibit
a clear four-fold symmetry in the peak height or peak spacing as expected
for a carbon nanotube quantum dot from its non-interacting single-particle
spectrum. Consequently, we are not able to label the Coulomb blockade
regions with a value of the electronic shell filling n in a definite way. The
assignment of the number of electrons to the experimental data in Fig. 2.9 is
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done in agreement with the theoretical predictions.

Having a closer look at Fig. 2.9, we can identify an excited state transition
at eV} ~ 1.8 meV parallel to the drain line (left arrow) and at eViy ~ 1.4 meV
(cf. Fig. 2.5) parallel to the source line (right arrow). The value for the
un-renormalized excitation energy is given by the mean value, €y >~ 1.6 meV.
The energy scale of this excitation stays approximately constant over a range
of at least six resonances, as can be seen from measurements over a broader
gate range. From the mean level spacing ¢ of the quantized levels (n) we
estimate the size of the quantum dot L, g = ¢(n + 1) — e(n) o whvg/L.
It is thus reasonable to identify the first excitation with the confinement
energy €p equivalent to a lateral confinement of 1 ym for a Fermi velocity of
800 km/s [38], a value that agrees with the contact spacing of ~ 1 um. The
asymmetry of the line spacing with respect to source and drain suggests a
gate-dependent renormalization [77] of the CNT many-body addition energies
in the presence of ferromagnetic contacts. We show in Sec. 2.2.3 that this
can be a direct consequence of charge fluctuations in the presence of contact
magnetization.

Electron transport measurements at 300 mK show a significant switching
behavior. In Fig. 2.10(a) the conductance across the CNT quantum dot is
plotted as a function of the gate voltage and the magnetic field directed
parallel to the stripes, i.e., along their easy axis, as indicated in the inset to
the figure. Note that the colorbar on the right only covers a small range of
low conductance values to make the switching event visible as a step in the
conductance (marked by the dotted grey line).

We focus on a single B-field trace, Fig. 2.10(b), marked by a red dashed
line in (a). The step in the signal can be interpreted as the magnetization
reversal of the contacts: Sweeping the magnetic field from negative (—100 mT)
to positive values, one of the contacts switches at B = B, resulting in a
configuration with anti-parallel polarization of the majority spins of the two
contacts. This results in a drop of the conductance signal. Upon increasing
the field further, the second contact is supposed to switch and the conductance
should recover. The second switching event was not observed in the present
sample. Sweeping back from positive to negative field, the conductance
recovers at Bg 4. The two values B; 4/, characterize a hysteresis loop with a
coercive field B, = B, — Bsq and an exchange bias Bex = (Bsy + Bsa)/2.
At B = 0 the two contacts are always in a parallel configuration, because the
coercive field of the switching contact is smaller than the exchange bias.

Fast and slow measurements Measurements of the conductance per-
formed at constant magnetic field require At®* ~ 100 ms per data point
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Figure 2.10: (a) Differential conductance as a function of gate voltage and
magnetic field at V;, = 0 and T = 300 mK. A dotted horizontal line highlights
the switching of the conductance due to the reversal of the magnetization
in the contacts. Note that the data is recorded for increasing magnetic field
sweeps (up-sweeps). To extract the TMR, the conductance is averaged over
parts of the magnetic field range indicated by the shaded areas below and
above By ,. Inset: Orientation of the external field B with respect to the CNT
and the leads. (b) Differential conductance plotted versus magnetic field at
Ve = 8.1737V (marked by a dashed green line in (a)). The solid red curve
was recorded with increasing field, the dashed blue curve with decreasing
field. Small pictograms indicate possible orientations of the majority spins in
the contacts. The switching of one of the two contacts at B, /q is highlighted
with arrows at the bottom for both sweep directions. The coercive field is
indicated by B. and the exchange bias by Be.
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Figure 2.11: Differential conductance and TMR as a function of gate voltage
measured over four resonances (slow measurement, see text). The conductance
is measured at parallel polarization of the contacts. The TMR graph shows a
dip-peak sequence over the first two resonances and a qualitatively different
double-dip feature at the last two.

and will be called the fast measurements in the following. Contrarily, in
slow measurements, each conductance data point is obtained from magnetic
field sweeps with a duration of At*'°" ~ 20 minutes at constant gate voltage
(compare Fig. 2.10(b)). We then identify By from a step in the conductance
signal and take the average over 100 points on either side of the step to
extract the conductance in the parallel and anti-parallel configuration, re-
spectively. This is repeated for 250 values of the backgate potential in the
range between 8.126 V and 8.201 V, see the shaded grey area in Fig. 2.10(a).
In Fig. 2.11, the TMR as a function of gate voltage is shown together with
the conductance at parallel contact polarization. In this slow measurement,
we obtain conductance peaks with a height of 0.15¢%/h and a full width at
half maximum (FWHM) of I" ~ 0.7 meV. Comparing these values to a height
of 0.3¢*/h and a width of 0.4 meV obtained from the fast measurement at
B = 0 we conclude that the peak conductance in the data from the slow
measurement is substantially suppressed. We will discuss this deviation in
Sec. 2.3.3. Tt is remarkable that besides huge positive (180%) TMR values,
negative regions occur prior to the peak in the TMR curve in the first two
resonances while for the last two the value drops again, forming two dips in
sequence. Again this will be discussed in more detail in Sec. 2.3.3.
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2.3.3 Comparison between experiment and model out-
put

Conductance in the experiment and in the model

In Fig. 2.12(a) (blue crosses) we show the conductance G obtained at
B = 0 performing a fast measurement, i.e., sweeping the gate voltage V,
at zero bias voltage, see Sec. 2.3.2. Note that it provides only conductance
data for the parallel configuration (compare Fig. 2.10). The data from this
measurement yields conductance peaks that fit to Lorentzian curves with an
average FWHM of 0.3 meV. Adapting our model parameters to the data of
G;aSt, we obtain the continuous lines in Fig. 2.12. The conductance data from
the slow measurement (compare Sec. 2.3.2) for the two configurations, Gf)low
and G, are also shown in Fig. 2.12 (green circles).

The shape of the conductance peaks turns out to be non-Lorentzian, with
the peak height in the conductance data limited to ~ 0.1e?/h. While the
flanks of the peaks match for the first three resonances in the data from
the slow and from the fast measurement?®, the maximum conductance values
deviate by a factor of three. So far no full explanation for the suppression of
the peak conductance was found.

Model parameters

A bare coupling of 7y = 80 eV is found to optimize the fit to Glf)aSt. The
thermal energy is chosen as kT = 40 peV (460 mK), close to the base
temperature (300 mK). For the quantum dot parameters we set E. = 6.1 meV
and a shell spacing g = 1.4 meV as inferred from Sec. 2.3.2. The shell number
n ~ 40 is estimated from the distance to the band-gap. We assume asymmetric
contacts with @ = —0.7 and polarization P = 0.4. For the calculation of the
charge fluctuations we include all states within an energy interval of 3¢y (see
Sec. 2.C in the appendix). The effective Zeeman shifts for the model output
in Fig. 2.12 are gugh, = —0.12meV and gugh,, = —0.16 meV.

Discussion

The effective Zeeman splitting The conductance data in Fig. 2.11 does
not reflect particle-hole symmetry. If only features of the leads density
of states at the Fermi energy are included, compare Eq. (2.41), the DSO
preserves particle-hole symmetry at zero bias by construction [57]. To break

3There is a deviation between ij‘st and Gf;“t in Fig. 2.12(a) at the right flank of the
second resonance at V; = 8.15'V due to jump in the gate voltage during the measurement.
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Figure 2.12: Conductance at zero bias as a function of gate voltage V, plotted
for (a) parallel and (b) anti-parallel polarization of the leads. In (a), a gate
trace (GE'(V;), blue circles) is shown together with conductance obtained
during TMR measurements G?OW(B, Vg) (green crosses, see also Fig. 2.11),
and the calculated conductance for parallel lead polarization (continuous
line, black) at kgT = 40 ueV, ¢g = 1.4meV, E. = 6.1meV, a = —0.7 ,
P =0.4, gugha, = —0.16 meV and gugh, = —0.12meV. In the vicinity of the
rightmost resonance, G5 shows a high noise level (compare also Fig. 2.9). (b)
The conductance data measured for anti-parallel polarization of the contacts
Gjlgw(B . Vg) (green crosses) is compared to the model output (continuous line,
black) for the same parameters as in (a).
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this symmetry effective Zeeman fields, I:II(:X/tA = ogpshy/ap/2 (cf. Eq. (2.39))
have to be included [75]. The labels p and ap refer to the parallel and
anti-parallel configuration of the contact magnetization. Furthermore, the
Zeeman splittings increase the magnitude of the TMR effect. The large TMR
values observed in our experiment, Fig. 2.11, can not be reproduced without
applying unrealistically high values for the polarization or extreme values for
the contact asymmetry.

While it is evident that the splittings are a necessary ingredient in addition
to the incorporation of the charge fluctuations to fit the experimental data,
the origin of the splittings is not clear. A corresponding stray field would
have to provide ~ 1 T. In Ref. [73], the effective Zeeman fields are used to
model the effects of coherent reflections at the magnetic interfaces (SDIPS) in
a double barrier systems [73]. This concept appears also In Ref. [80], where
the effective Zeeman splittings are used in conjunction with the equation of
motion technique to explain the experimental TMR data of Ref. [73]. The
splittings used in Ref. [80], guphp, = 0.25 meV and guph,, = 0.05meV, are of
similar magnitude when compared to our values.

The renormalization of the excited states The shift of the excited state
line in the first diamond due to charge fluctuations described in Sec. 2.2.3
is of the order 27y ~ 0.2meV using the same parameters as for the fit in
Fig. 2.12. This is a reasonable value when compared to the value extracted
from the experiment, eV},; — eVis >~ 0.4meV (cf. Sec. 2.3.2).

TMR From the conductance traces calculated within our model, Fig. 2.12
(continuous lines), the TMR, Fig. 2.13, is obtained. The data and the model
calculation agree in the decay of the TMR amplitude within a sequence of four
charging states including the “double dip” feature in the last two resonances
at V, =8.17V and V, = 8.19 V. This indicates that the sequence in Fig. 2.12
represents one shell, i.e., charging states 4n + 1 to 4(n 4+ 1). We note that in
the model output the last resonance is dominated by a peak while the dips
are more prominent in the experimental data.

In the vicinity of all conductance peaks (at Vz = 8.13V, V; = 8.15V,
Ve =8.17V and V, = 8.19 V) an additional small shoulder around TMR = 0
occurs in the data of Fig. 2.12(c). These shoulders are likely related to the
aforementioned suppression of the peak conductance in the slow measurement
(see Fig. 2.12(a,b)). We recall that the TMR is calculated from the ratio
Gp/Gap (compare also Fig. 2.6): in the regions where the peaks are cut off,
the ratio G5°/G5o™ is smaller than it is in the same region in the model

ap
output, where steep peak flanks lead to a larger ratio G,/Gap.
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Figure 2.13: Experimental TMR data (green dots) calculated from GISJIOW,
Fig. 2.12(a)(green circles), and G5o¥, Fig. 2.12(b) (green circles), (also shown

in Fig. 2.11) plotted together with TMR obtained from the model conductance
(blue dashed line), i.e., from the data shown in Fig. 2.12.

Spin-orbit coupling In case of non-zero spin-orbit coupling [14, 16], we
would expect a splitting of the excited state lines in the stability diagram in
Fig. 2.9. This is not resolved in our experimental data. For simplicity we
therefore here assume Ago = 0. Model calculations with non-zero spin orbit
coupling can be found in the appendix, Sec. 2.E.

2.4 Summary & Outlook

In this first part of the work we study a carbon-nanotube based quantum
dot with ferromagnetic leads. To model the data we introduce and apply
the dressed second-order (DSO) framework based on the reduced density
matrix formalism. The selected infinite set of contributions to the self energy
accounts for charge fluctuations between the quantum dot and the ferromag-
netic contacts. Thereby, we establish a theory for transport through carbon
nanotube quantum dots in the weak and intermediate coupling regime that
goes beyond the sequential tunneling approximation which can only account
for a positive and gate-independent TMR. We demonstrate that the charge
fluctuation processes, summed to all orders in the coupling to the leads, yield
tunneling rates where the Lamb shift and the broadening of the resonances
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are given by the real and imaginary parts of the self energy, respectively. We
explicitly compare the DSO self energy for different contact magnetizations
and show that the DSO modeling can account both for the renormalization
of excited states and the specific structures observed in the TMR gate depen-
dence. Eventually we use our model to interpret experimental TMR data and
state a qualitative agreement.

Future efforts should be put in obtaining clean TMR data from CNTs on
the experimental side. Ferromagnetic materials that withstand the conditions
of the chemical-vapor-deposition process would enable TMR measurements
on ultra-clean carbon nanotubes. Alternatively, a stamping approach (as
presented in Ref. [81]) would allow to freely choose the contact material.
On the theoretical side, the understanding of the addition energy spectrum
and, consequently, the design of the single particle Hamiltonian can still be
improved to ultimately fit TMR data recorded over greater ranges of charging
states.






Appendix

2.A Transformation of Eq. (2.22) to the Schrodinger
picture

Recall that
~ At ~ A
Pred (t> = Uo (t> pred,S (t) UO (t),

which immediately yields the relation between the time derivative in both
pictures:

Preas(t) = Uo(t) prea(t) O(T)(t)

i
- ﬁ[HSU pred7S(t)]- (262)
We insert Eq. (2.20) into the first term of this expression and end up with

i

Prea(t) = h[ﬂs, Prea(t)] (2.63)

t
1 n &P 1y s &P 4 N AP,
_Zﬁ/dt {[SfaUO(t )Sfpred(t_t )U0<t )]<E:)(t )E? >E
&P "\ 5 n &P T AD D,
=[50 0olt") pealt = 1) 85 Oo(¢O( B Ef<t/>>E}7
(2.64)

where all operators are in the Schrodinger picture (except the ones in the
bath) and we performed the variable transformation

on Eq. (2.22). The time convolutive form is clearly visible.
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2.B Fabrication parameters of CB3224

The sample was fabricated by P. Stiller and D. R. Schmid from the group
of A. K. Hiittel at the University of Regensburg. The fabrication process is
similar to the process described in Sec. 4.D. Further details can be found in

the thesis of D. R. Schmid, Ref. [17].

e optical lithography

— positive photo-resist Shipley 1805, spin-coated at 4500 rpm for 30,
baked for 2min at 90° C

— UV exposure for 33s
— developement in NaOH/H,0 (1 : 3) for 40s

e clectron beam lithography

— PMMA 200k3.5%, spin-coated 3000 rpm (5s) / 8000 rpm (305s),
baked for 6 min at 150° C.

— EBL accl. volt. 25kV, aperture 30 um, area dose 195 uC/cm?
— development in MIBK / iso-propanol (1:3) for 2 min

e metallization with 40 nm of Re (1.6 A/s)
e reactive ion etching

— CHF;3 at 17nm/min for 360s (50 sccm gas flow, 55 mTorr pressure,
150 W RF power)

— Ar at 8nm/min for 30s (40sccm gas flow, 30 mTorr pressure,
150 W RF power)

e catalyst deposition

— EBL process with PMMA 200k3.5% and 300 uC/cm? exposure
dose at 25 kV

— catalyst depostition
— PMMA baked for 6 min at 150° C
— lift-off in 60° C acetone

e CNT growth

— rinse quartz tube with methane, hydrogen and argon
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— heat to 900° C under argon atmosphere (1500 sccm)

— growth of CNT with 700 sccm hydrogen and 800 sccm methane for
10 min

— cooldown under argon (1500 sccm) and hydrogen (700 sccm) atmo-
sphere

2.C Contribution of other excited states to
the renormalization

When we discuss the effect of the charge fluctuations in Sec. 2.2.3 and Sec. 2.2.4
of the main text, we always focus on the most resonant transitions (see Fig. 2.4)
that are energetically favorable, i.e., on transitions in Eq. (2.53) with an energy
difference E;,/le of the order of the effective line-width or below. At zero bias
this is the largest available energy scale in the system. Nevertheless it is
interesting to see how the outcome is affected by increasing the bandwidth and
allowing excited states of the neighboring shells to contribute to the charge
fluctuation channels. In terms of an effective energy shift in a multi-level
quantum dot the renormalization due to excited states was also discussed
in Ref. [75]. To illustrate the effect of such a modification we plot the real
and imaginary parts of the self energy 3 in the vicinity of the transition
(K |),n) & |-,n+ 1) for different sets of charge fluctuations within energy
ranges of g, €¢, 269 and 3¢ in Fig. 2.C.1. We clearly see that the fluctuations
from higher shells manifest themselves in additional features in the curves for
Re(X), Fig. 2.C.1 (a,b), and Im(X), (c,d). Note, however, that the zero-bias
conductance in our system is only sensitive to a small vicinity of a few kgT
around the resonance. Within this range the high energy contributions do
not change the picture substantially. The analysis of the imaginary part in
Sec. 2.2.4 is thus exact at the level of the self energy since the Fermi functions
in the imaginary part suppress contributions from other shells.

2.D Calculation of Re(Y)

In this section we perform the calculation of Re(X'?) — Re(X!°) as part of
the quantity ¢; introduced in Sec. 2.2.3 of the main text. To this extent
we analyze the renormalization of the energy difference El" due to charge
fluctuations to and from states 0 = |0;n), 1 = |[K1;n) and 1’ = [[K1];n) in
more detail. We recall that the real part of the self energy related to a charge
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Figure 2.C.1: (Color online) Re(X) (a,b) and Im(X) (c,d) for both lead
configurations as a function of energy e in units of the shell spacing .
Different lines are plotted for bandwidth Wy, = 7o (green, dotted) to 3e
(red, continuous) in steps of gy. In the vicinity of a few kg7 around the
resonance (e = 0, gray region) the difference between the graphs for the real
part (a,b) is small and for the imaginary part (c,d), it is vanishing.
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fluctuation to state ¢’ has the form (see. Eq. (2.53))
c(b/a T c' /b
=20 TR (£ DB — ).
I

where we have to replace b =1, a =0 or b =1 and a = 0, respectively. Note
that the contribution oc W) in Eq. (2.53) does not appear explicitly since
it cancels in the difference of the shifts. Next, we have to find all states ¢’ that
contribute within our resonant approximation. We can immediately discard
states that can be reached by in-tunneling from b and by out-tunneling from a,
since their energy differences Ejl/clf are of the order of the charging energy and
thus beyond our charge fluctuation bandwidth of W, = max(eV, kgT', 7o) =
£0/2. We are left with states that can be reached by in-tunneling into state a
and by out-tunneling from state b. Let us discuss one example for the state 1’.
There is one electron in the shell n + 1 (denoted by the brackets [...] in the
state ket) which can tunnel out and we are left with a state |-,n). Actually
this state is identical to the state 0 on the other contour, thus E§ =" = 0. We
can now evaluate the argument of the digamma function, i.e., y; — E{ + ¢, for
e = 0. Since p15/9 = +e¢/2 and thus || < We, we have to sum over both leads.
The total contribution from fluctuations to ¢’ = 0 is thus —7o 3, k13 U% (€0/2).
The other states that can be reached by out-tunneling, e.g., |(K7),[K1],n),
yield energy differences of at least 3/2¢q > W,. Using similar arguments we
can collect all relevant contributions to the difference Re(£'?) — Re(X'°). In
a graphical representation, this can be visualized as

Re(X10) — Re(X10) =

_ o9z a0
= 2Rs VR (0/2) where one set of four boxes

symbolizes one shell and we use Eac//cl,’ as a label. Fluctuations that cancel
are crossed out. Note that for excited states with an energy difference
ES /clf = +eo we add only the contribution from the source(drain) contact
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Figure 2.E.1: TMR as a function of gate voltage for orbital polarization
P, = 0.6, orbital shifts gorb,uorbhgéb = —80 eV and gorbuorbh‘;fb = —40 peV,
and Ago = 0.1meV at kgT = 40 ueV. The other parameters are identical to
the ones used in Fig. 2.12.

where |p; — EZI/CIH < W,. Similarly we find
Re(S2) — Re(S2) = (1-+ g — s + ) W4 (0/2),
which leaves us with §; from Eq. (1.12).

2.E Spin-orbit coupling and valley polariza-
tion

In Sec. 2.2.1 we discussed the possibility to include spin-orbit interaction
effects, as they have been reported to play a prominent role in carbon nan-
otubes [14, 82]. However, we did not add it in the comparison to the ex-
perimental data since they could not be resolved in the transport spectrum
(Fig. 2.9). Nevertheless, values of the order of Ago ~ 100 ueV would still
be consistent with the experimental data. Introducing a finite Ago a priori
does not affect the TMR as the Kramers pairs are spin degenerate pairs with
anti-parallel and parallel alignment of spin and valley magnetic moments. Yet
it has been argued that the two valleys of a CNT can couple differently to the
leads [83]. If the valley quantum number is conserved upon tunneling, the
mechanism can be understood in terms of a valley polarization. A possible
tunneling Hamiltonian that describes this situation can be written as

IiIT = Z EanTdLO-TClka' + h. C., (265)

lknot
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with a valley dependent coupling Tix,,~ and an operator cj,, that describes
the electrons in the leads (that are also part of the CNT). Including a
valley polarization in turn also renders the TMR sensitive to magnetic stray
fields gorb,uorbhgrb and gorb,uorbhg;b along the tube axis. The orbital magnetic
moments uP /it are considered to be larger then up by one order of
magnitude [84]. In Fig. 2.E.1 we present a TMR calculation for Ago = 100 peV,
orbital polarization P,; = 0.6 and stray fields gorbuorbhg;b = —80 pueV and
gorb,uorbhffb = —40 eV again combined with the experimental data. The
spin-dependent shifts are assumed to be negligible in this setup. We see that
the agreement with the experimental data improved slightly in Fig. 2.E.1
at the expense of additional free parameters. It is, however, outside the
scope of this thesis to discuss the effect of spin-orbit coupling and the valley
polarization in more detail.
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A carbon nanotube as a
ballistic electron waveguide






Chapter 3

An electronic Fabry-Perot
interferometer

The wave-like nature of the electron has been demonstrated in a multitude
of solid state physics experiments, e.g., on quantum corrals [85, 86] and on
quantum point contacts [87] in 2DEGs, or, more recently, in graphene [88].
In the 90s, coherent electron transport has been observed also in CNTs [89],
leading the way towards electron interference experiments in this material
system. In the beginning of this century, Liang et. al observed conductance
fluctuations as a function of gate and bias voltage in a source-drain geometry,
that were identified as an electron wave interference effect [21]. Scattering at
the nanotube-metal interface leads to interference of right- and left-moving
electron waves, in analogy to an optical Fabry-Perot (FP) interferometer [90].
By changing the gate voltage V;, or the bias voltage V4, the energy of the
electrons trapped in the CNT ‘cavity’ and thereby the electron wave vector k
can be tuned; in measurements of the differential conductance G, characteristic
oscillatory patterns occur corresponding to constructive and destructive
addition of the electronic wavefunctions. The fundamental frequency of the
oscillations directly relates to the length of the contacted nanotube segment,
i.e., the length of the interferometer cavity [21].

In carbon nanotube waveguides, additional features with respect to the
optical FP transmission patterns can be observed in the transmission spec-
tra [91, 92]. In Fig. 3.1, G(V4, W) of a device in the Fabry-Perot regime is
plotted. The fast oscillations along the gate voltage axis (period ~ 10mV)
can be related to the oscillations at the fundamental frequency f;, quite
similar to the optical FP interferometer. On top of this primary interference,
a modulation in V, with a period of a few volts is visible. To distinguish this
pattern from the fast, fundamental oscillations that are directly related to
the length of the cavity we refer to it as secondary interference pattern or
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Figure 3.1: G(Vg,V;) in the Fabry-Perot regime. The fast oscillations (~
10mV) along the gate voltage axis directly correspond to the optical Fabry-
Perot interference with a period proportional to the distance between the
contacts. On top of this primary interference effect, a modulation of the
conductance can be observed on the scale of a few volts — the secondary
interference.
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slow oscillation in the following.

The authors of Ref. [91] suggest impurities in the CNT as a possible
source of the secondary interference patterns. The impurities act as scattering
centers that subdivide the CNT into a series of coupled FP interferometers.
A different interpretation is provided by Jiang et al. in Ref. [93] and related
works [94, 95]: The secondary interference pattern is interpreted as a beating
of electron waves that acquire different phases in different transport channels.
According to the authors, this effect can be observed in all but zigzag class
carbon nanotubes. The analysis by Jiang et al. covers all basic concepts of
the electron wave interference in CN'Ts. However, compared to the approach
presented here, less value is set on the symmetry properties of the different
CNT classes. The results of Ref. [93] are set side by side to ours in Sec. 3.1.5.

The symmetry considerations allow us to clarify the role of the different
secondary interference patterns. We distinguish between the beating that
can be observed solely in armchair CNTs and a slow modulation of the
average conductance which is present in armchair-like CN'Ts and, under some
circumstances, also in zigzag-like CN'Ts. On the basis of the FP analog and
taking into account the trigonal warping of the dispersion relation we develop
a qualitative and quantitative understanding of the secondary interference
effect in Sec. 3.1.3. We present experimental data of a carbon nanotube as
an electron waveguide in Sec. 3.2 and evaluate the secondary interference
pattern in the data in Sec. 3.2.2. The results presented here are, by the time
of this writing, about to be published and a preprint is available [96].
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3.1 CNT Fabry-Perot interference

The electronic transport through a CNT in the strong coupling regime can
be understood from the wave nature of the electron in analogy to the op-
tical Fabry-Perot cavity. We introduce the basic concepts which lead to
secondary interference in CN'Ts at the hand of analytic arguments supported
by exemplary transmission data. The examples are obtained from ab-initio
tight-binding calculations provided by M. del Valle from the group of M.
Grifoni. For details on the parameters of this calculations please refer to the
supplement, Sec. 4.A. For simplicity, the analytic arguments are based on the
transmission function 7 of the Landauer-Biittiker formalism that is in general
not directly proportional to the zero-bias conductance, i.e., the derivative of
the current in Eq. (1.1). At millikelvin temperatures, however, we can to a
good approximation assume f'(E, ) < §(E — ).

3.1.1 Primary Fabry-Perot interference

To a first approximation we can describe the propagating electrons in the
channel j by plane electron waves. It is important to note that the basic
Fabry-Perot interference observed in CN'Ts only requires one single channel.
It is the interference of a directly transmitted wave with waves that circulate
one or multiple times in the cavity which produces the fast oscillations in
G in Fig. 3.1. In terms of the phase ¢; acquired upon one roundtrip j, the
resonance condition is given by

0 (Ve, Vi) = 057 (Ve ) — 0272 (Vy, 15)|

J

= |kja(Ve, Vi) — K (Ve, V) |L
= 2, (3.1)

where k;, and k;; describe the wave vector component parallel to the nanotube
axis of the right and left moving electrons in channel j, respectively, and n is
an integer. When we insert the approximately linear dispersion relation of
graphene in the vicinity of the Dirac point, Eq. (1.8), in Eq. (3.1), we obtain
the relation between the cavity length and the energy difference AE(AV,, AV})
corresponding to one period which is related to a change in bias voltage AV},
a change in gate voltage AV, or a change in both,

NG AV, AVR) = [Akst — Ak |1~ ZAEAVR AL o g )

hUF

In this linear regime, we can directly obtain the length of the cavity from the
primary FP interference estimating the Fermi velocity, vp & 8 - 10° m/s [31].
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For the armchair (and also the armchair-like) class it is convenient to
use r;; instead of k;; to measure the wave vector from the Dirac point.
We recall from Sec. 1.2.2 that the Dirac points in these two classes are
at K = (kj = K,k = 0) and K' = —K. We define kot = —K + Kay,
kv, = =K + Ky py koy = K + Ko and ky; = K + Ky, so that the resonance
condition, Eq. (3.2), reads

Ad;(AVy, AW = | Ak (AVy, AV) — Ak, (AVy, AW)|L =27, (3.3)

Note that in the following we omit the A in front of ¢;. We measure the
phase change in channel 7 always with respect to the Dirac point and assume
Ve = Vi, = 0V at the Dirac point, i.e., ¢;(V; =W =0V) =0 for all CNT
classes.

3.1.2 Multi-channel Fabry-Perot interference without
mixing
Due to the valley and spin degrees of freedom we have to consider four
conduction channels in a CNT waveguide [20]. Since the spin-degeneracy
is not lifted in our experiment, we effectively deal with two pairs of spin-
degenerate channels. Depending on the symmetries of the CNT, these pairs
are called Kramers pairs or wvalley pairs. We clarify this distinction below.
Within the cavity, the electron experiences multiple reflections at the contacts
that can potentially mix the channels. Assuming that these channels are

independent, i.e., not mixed upon reflection, the transmission amplitude can
be described in terms of a two-channel Fabry-Perot interferometer [26],

|t1[?[t2]?

TUR =2 2 T nPIraP — 2l cosld; (Ve DI

ce{a,b}

(3.4)

where we put V}, = 0V for simplicity and the transmission and reflection
coefficients for the two barriers are given by ¢, to and rq, 79, respectively.

If the two channels are described by identical relations ¢, (Vy) = ¢s(Vy),
we expect to obtain single-mode Fabry-Perot interference as shown, e.g., in
Fig. 3.1(c). In this case, only primary interference is observed. In general,
when electrons in the channels do not accumulate the same phase, ¢, (Vy) #
op(Vy), we expect the formation of a beat, a transmission pattern resulting
from the superposition of two FP channels with different wavevectors, see
Fig. 3.2(c). Notably, the transmission pattern in Fig. 3.2(f) reflects a third
case that can not be described by Eq. (3.4). We can understand its special
role when we relate the three cases to the different CNT types.
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3.1.3 CNT symmetry classification and the relation to
interference patterns

For the classification of the CN'Ts we exploit the fact that the CNT eigenstates
in infinitely long CN'Ts are invariant under the action of C4, the rotation of
the CNT around its longitudinal axis by 27 /d. d is an integer specific to the
geometry of the CNT. When this symmetry is preserved also in the finite
CNT including the coupling to the contacts, the crystal angular momentum m
is conserved and can be used to discriminate between zigzag-like CNTs with
angular momenta m, and m,; in the two valleys, respectively, and armchair-like
CNTs with m = 0, as introduced in Sec. 1.2.2. Since the CNTs are supposed
to be free of defects, it is only the interface to the contacts that potentially
breaks the C; symmetry. In the following, we discuss first the case that
the contact interface does not break the C; symmetry, i.e., the case of ideal
contacts.

zigzag and zigzag-like with ideal contacts

In the contour plots in Fig. 3.1(a,d), the equi-energy lines in the vicinity of
one Dirac point in the graphene E—space are shown. A line indicates the 6-
dependent cut that is used to obtain one half of the the 1D dispersion relations
(b,e) from (a,d). Note that for all CNTs except zigzag ones, the trigonal
warping of the equi-energy lines in the dispersion relation of graphene leads to
a difference in the wave vectors of electrons on the right- and left-mover branch
at € # 0. The possible scattering processes in zigzag and zigzag-like CN'Ts
are given in Fig. 3.1(b) and (e). The two lowest spin-degenerate subbands
have different quantum numbers m, and m,, thus, due to the C; symmetry of
the Hamiltonian, there is no mizxing of the channels. The different angular
momentum in the two channels is also reflected by the different perpendicular
components of the wave vector in the two valleys, k; = £K. Time reversal
symmetry requires €,(k) = €,(—k), therefore at a given energy k,; = —kp,
and k,, = —kp;, which implies ¢, = ¢, in Eq. 3.4. Hence, the channels
acquire the same phase difference due to a change in V; or V4. The problem
can thus be mapped onto a single mode FP interferometer. Tight-binding
calculations confirm the single-mode-like character of the interference pattern
for all numerically evaluated zigzag-like CNTs. Fig. 3.1(f) shows the results
for a (6,3) CNT with a length of 1240 nm.

In zigzag CNTs, €,(k) is symmetric with respect to the Dirac point within
each valley, i.e., ko; = ko, and ky, = ks, see Fig. 3.1(b). Consequently, the
arguments used for zigzag-like CNTs apply also to the zigzag CNTs. For
the transmission we again obtain a single-mode interference pattern, see
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Figure 3.1: (a) Zigzag. Graphene dispersion relation 5(/;) in the vicinity of
one Dirac point. The red line marks the direction of k = kj;. (b) The lowest
1D subbands in the vicinity of both K and K’ points, 4(k) and &,(k) at
ki = K (green) and k; = —K (red) are identical and symmetric with respect
to the K and K’ point, respectively. (¢) Exemplary transmission pattern
obtained by tight-binding (TB) calculations provided by M. del Valle, see
appendix, Sec. 4.A. The transmission of a (6,0) CNT in the tight-binding
calculation shows no slow modulation. (d,e) Zigzag-like. Right and left
moving branches within each valley exhibit different wave vectors &, due
to the trigonal warping. The states in the two valleys have different crystal
angular momentum. Therefore, no inter-valley scattering is possible in zigzag
and zigzag-like CN'Ts with ideal contacts, see text. (f) A single-channel-like
transmission pattern can be observed for the (6,3) CNT.
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Fig. 3.1(c).

armchair and armchair-like with ideal contacts

In armchair and armchair-like CN'TSs, states in both valleys K and K’ share
the property m = 0, therefore the C; symmetry does not prevent scattering
between the valleys, see Fig. 3.2(b.e). Ideally, armchair CNTs are parity
symmetric, i.e., mirror symmetric with respect to a plane perpendicular to
the nanotube axis. In Fig. 3.2(b), the eigenstates a with even parity are
described by the green line and the eigenstates b with odd parity by the red
line.

As a consequence of the parity symmetry, the transmission is given by
the superposition of independent channels labeled by the parity states with
different wave vectors k., = —Kq1 # kpr = —kp). Here, the equalities are
a consequence of time-reversal symmetry. Thus, when we increase the gate
voltage by V; (starting from the Dirac point), the phases in the two channels
are affected differently, ¢, (Vy) = 264, (V)L # &5(Vy) = 2k, (Vy)L. In the
transmission spectra we consequently observe a characteristic beat, as, e.g.,
in the transmission spectrum of a (7,7) CNT in Fig. 3.2(c).

In armchair-like CN'Ts, the wave vectors of the electrons are also subject
to trigonal warping since # > 0. At the same time, the parity symmetry
is absent and both intervalley and intravalley scattering processes can take
place, see Fig. 3.2(e). This makes it difficult to label transport channels in a
manner similar to the three other cases discussed so far. Here, we treat the
transmission in the armchair geometry as a limiting case of the armchair-like
geometry. This implies that the labels a and b refer to the same pairs of
branches as in the armchair geometry, see Fig. 3.2(e), but due to the absence
of the parity symmetry the two channels are mixed. In a simple model
presented in the appendix, Sec. 4.C, we start from independent channels
a and b and allow for a finite inter-channel mixing upon reflection at the
interfaces. The sliding average of the transmission in this simple models shows
a slow modulation, similar to what is observed in tight-binding calculations
for armchair-like CN'Ts, compare Fig. 3.2(f). The slow modulation is governed
by the phase difference A¢?(E) = |¢f(E) — ¢4(E)| = 2|x% ,(E) — s ,(E)|L
between the modes, which is the same for ¢ = [ and ¢ = r. In particular, a
peak at energy F, in the average conductance occurs when

A (E,) = 2mn, (3.5)

i.e., when the two channels interfere constructively. We test this relation by
evaluating the peak positions F,, of the average conductance in the tight-
binding model for the armchair-like (10,4) CNT in Fig. 3.3(a). The wave
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Figure 3.2: Dispersion relation and model transmission for armchair (a-c)
and armchair-like CNTs (d-f). The figure is organized similar to Fig. 3.1.
Armchair: (a) The maximal chiral angle # = 30° induces a maximal difference
between the wavevectors in the right and left-moving branches in each valley
in (b). Due to the parity symmetry, scattering only takes place between the
two inner branches a (red lines) and the two outer branches b (green lines).
Since the two channels accumulate different phases, a beat in the interference
pattern is observed in the TB calculation for the (7,7) CNT. Armchair-like:
(d,e) Trigonal warping leads to a wavevector difference between the right-
and left-moving branches in both valleys, similar to the armchair case. In
the armchair-like CNTs the parity symmetry is broken and inter-channel
scattering is enabled (see text). (f) A slow modulation of the sliding average
can be observed in the transmission of a (10,4) CNT. The peaks in the average
are marked by filled circles and are labeled by the position £, of point n,
each.
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vector components k;; on the different branches that occur in the phase
difference A¢?(E) are given by e?(K + k,,) = E, (K + ky;) = E and
similarly for the two branches k,; and £y, in the vicinity of K, see Fig. 3.2(b).
For simplicity, we us the zone-folding approximation, Eq. (1.10), to calculate
the dispersion relation €’(k).! The phase difference A¢?(E) is shown for
different chiral angles 6 in Fig. 3.3(b). We can already see from Fig. 3.2(a)
that the wave vector difference r,;—fy,, in the vicinity of the K' point depends
on the chiral angle and reaches its maximum for § = 30°. The evolution
of the phase difference A¢?(E) is thus directly governed by the trigonal
warping of the equi-energy lines in the graphene dispersion. Consequently,
the slope of A¢?(E) is monotonically increasing with 6 and is zero for the
zigzag case and maximal for the armchair case. For energies £ < 1eV and
neglecting curvature effects, the trigonal warping can be accounted for by
a factor sin(36) [93]. Within this approximation we obtain for the phase
difference

AP’ (E) = A¢> (E) sin(30), (3.6)

where A¢®” is the phase difference between the channels for energy F in the
armchair CNT.

We use the positions E,, extracted from the averaged conductance G(Vj)
in Fig. 3.3(a) to insert points at coordinates (E,,27n) in (b) according to
Eq. (3.5). The points lie on the line for § = 16.1° which corresponds to the
chiral angle of a (10,4) CNT. The conductance calculated in the tight-binding
model thus agrees nicely with the analysis in Sec. 4.C, i.e., with Eq. (3.5). We
will use this important result in the next section to evaluate transport data.

3.1.4 Secondary interference in CNTs with broken sym-
metry

The secondary interference which is accompanied by the slow modulation
of the average conductance is a consequence of the mixing of the transport
channels. This mixing is prohibited in zigzag-like CN'Ts as long as the coupling
between the leads and the CNT is symmetric under the application of Cg.
When this symmetry is broken we recover the secondary interference effects
observed for armchair-like CN'Ts also in zigzag-like CN'Ts. In Fig. 3.4(a) we
plot the conductance calculated for a zigzag-like (6,3) CNT with random
on-site energies in the range 0.07eV < €, < 8¢V (average €, = 3¢V) in
the ring that couples the CNT to the lead (cf. Sec. 4.A). On top we show

!Calculations that include curvature and spin-orbit effects can be found in the appendix,
Sec. 4.A. These refinements do not affect the analysis of the secondary interference pattern.
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Figure 3.3: (a) Conductance G (light gray) and average conductance (green
line) for a (10,4) CNT of length 1240nm (Go = €?/h). Peak positions FE,, in
the average conductance are marked by red filled circles. (b) Phase differences
A¢? between modes as a function of energy measured from the Dirac point for
different chiral angles # indicated on the right. The filled circles are obtained

using the peak positions FE, of the slow modulation in (a) and requiring
A¢/2m = n.

the sliding average conductance G (green line). The peak positions E,, are
extracted from G and compared to the the evolution of A¢? for a (6,3) CNT
with chiral angle § = 19.1° in (b). The clear correspondence indicates that our
interpretation of the secondary interference in zigzag-like CN'Ts with broken
symmetry is consistent with the tight-binding model.

Similar results are obtained when the symmetry in the zigzag-like CN'T
is broken by using two different values for the on-site energies on the upper,
€9, = HeV, and lower half, €5, = 1€V, of the contact ring in a zigzag-like (9, 6),
see Fig. 3.5.

The parity symmetry in armchair CN'Ts seems to be surprisingly robust
against symmetry braking in the contact ring. Tests with random on-site
energies in the same range as applied to the zigzag-like CNTs show little
effect on the secondary interference pattern or the sliding average of the
conductance.

3.1.5 Comparison to results by Jiang et al.

The relation between the secondary interference pattern in the FP interference
and the CNT dispersion has been reported by Jiang et al. in 2003 [93]. The
authors observe secondary interference patterns in all CNT classes except the
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Figure 3.4: (a) Conductance G for a zigzag-like (6,3) CNT (L = 220 nm,
¢ = 19.1°) with random on-site energies in the range 0.07eV < ey, < 8¢V on
the coupling ring (light gray line) and the sliding average of the conductance
G (green line). We clearly observe a secondary interference pattern and a
modulation of the average. The peaks in the average are marked by red filled
circles. Over the full gate voltage range, a slight increase of the conductance
level is observed in the average and is subtracted prior to peak detection.
This results in an offset of the first marker with respect to the apparent peak
in the sliding average. (b) The phase difference between the channels from
the zone-folding dispersion relation (blue line) compared to the peak positions
from (a) assuming that Eq. (3.5) holds.
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Figure 3.5:  Conductance G (black line) and the sliding average of the
conductance (yellow line) for a zigzag-like (9,6) CNT with L = 660 nm,
0 = 23.4°. The rotational symmetry of the coupling region is broken by
choosing different on-site energies at the top, €2, = 5€V, and at the bottom
half coupling ring, €3, = 1eV. We clearly observe a secondary interference
pattern and a modulation of the average.
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zigzag class in tight-binding calculations. For armchair, armchair-like and
zigzag-like CN'Ts, Jiang et al. provide an equation, Eq. (8) in Ref. [93], for
the period of the secondary interference pattern in gate voltage as a function
of the number n of the period counted from the Dirac point, i.e., Vo = 0V.
This result agrees with our findings.

The authors further claim that for any CNT class “[...] both the rapid and
slow oscillation periods are independent of the choice of the [on-site energy
values on the coupling ring for the two sublattices], which can also be seen
clearly from the later discussions.”. From our analysis, we see that this is
not the case for zigzag-like CN'Ts, where a rotational symmetric coupling
suppresses the “slow oscillations”.?

This deviation with respect to our findings roots in the different approaches
with respect to the CN'T symmetries, and, more specifically, the rotational
symmetry. The consideration of CNTs with ideal contacts as a starting
point for a basic analysis of the interference patterns that we can expect in
the different CNT classes allows us to discriminate carefully between the
beating observed in armchair CNTs with a constant sliding average and the
slow modulation of the sliding average in armchair-like CNTs (and zigzag-like
CNTs with broken rotational symmetry). This distinction is the main advance
with respect to the work by Jiang et al. on the theoretical side.

Realizing the difference between these two forms of secondary interference
allows for a more reliable analysis. This becomes clear when we try to
apply Eq. (8) in Ref. [93] to experimental data. While this equation correctly
describes the evolution of the period of the secondary interference in general, it
is a priori not clear how to measure one period in the conductance data. From
our analysis we know that the secondary interference observed in armchair
CNTs is a beating with two maxima (of the hull curve) within one period
(cf. Sec. 4.C) while the secondary interference that appears due to channel
mixing in armchair-like and zigzag-like CNTs, i.e., the slow modulation of
the sliding average, exhibits one peak per period. Thus, when one observes
such a periodical slow modulation of the average, he measures one period as
the distance between subsequent peaks in the average. When the average is
constant, one period is given by the distance between every second peak.

3.2 Experiment & Evaluation

The data shown in this part of the thesis is recorded from KG_R3BB, a
sample fabricated by K. Gétz and F. Schupp from the group of A. K. Hiittel.
The electrode material, a 10/40nm Ti/Pt bilayer, is patterned on top of

2The term “slow oscillation” is used in Ref. [93] synonymous to “beating”.
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Figure 3.1: Electron micrograph of a sample similar to the measured device.
The Pt/Ti structures on top of the Si/SiO, are clearly visible. In the center
of the triangular structure traces of the catalyst can be identified. Schematic
drawings indicate the measurement circuit.

a degenerately doped Si substrate with a 500 nm thick insulating capping
layer, see Fig. 3.1. In order to avoid contamination of the CNT, we grow
the carbon nanotube as a last fabrication step across the contact electrodes
separated by a 1.2 ym trench [8]. The details of the fabrication are identical
to the recipe for the sample AD_CB14 presented in Sec. 4.D apart from an
additional etching step prior to the CNT growth which is applied to deepen
the trench between the contacts. The identification of a promising device
is done solely via room temperature transport measurements using a probe
station. This is necessary to avoid contamination of the nanotube. The
transport measurements presented here, e.g., in Fig. 1, were recorded at a
base temperature of 15mK in a 3He/*He dilution cryostat.

3.2.1 Transport Measurement

The presented measurements were conducted using a DC measurement setup
with the bias voltage applied to the source contact while the drain contact
is grounded. A current-voltage amplifier is used to sensitively measure DC
current at the drain contact. The amplification is set to 10 V/A throughout
the experiment. The conductance is obtained by numerical derivation of the
current data.
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Conductance data

G(Vg, W) for the sample KG R3BB is shown in Fig. 3.2(a). Panel (e) shows
a linetrace of (a) at zero bias. On average, the conductance is ~ 1e?/h, with
peak values of 2e?/h. The most prominent feature observed in Fig. 3.2(a,e)
is a repeated modulation of the conductance on a scale of a 1 —2V. It
is accompanied by a slow modulation of the sliding average conductance G
shown in (f). The period of this slow modulation decreases with more negative
gate voltage values. This pattern is identified with the slow modulation of
the average conductance observed in the armchair-like CN'Ts in the previous
section. For a later analysis we extract the positions of the peaks in the
average conductance, Fig. 3.2(f), and label the positions in gate voltage by
Ven, = 1...7. From these values we obtain the peak positions E, =
aVgn + AEg,,, where o is the gate voltage lever arm and ALy, is an energy
offset that accounts for the doping of the CNT. The lever arm « is given
by the ratio AV} /2AV, where the distances are measured between two pairs
of peaks in the conductance, respectively, that form rhombic structures in
G(Vg, W). These structures can be identified in three regions of constructive
interference shown in Fig. 3.2(b-d). We discuss the extraction of the lever arm
in the ballistic FP regime in Sec. 4.B of the appendix. Across a wide range of
gate voltages, —15V <V, < =2V, the gate conversion factor stays almost
constant, ap, = 0.0210 £ 0.0007, with slight variations as can be seen from
the (similarly sized) rhombi in the panels (b-d). Contrarily, in the vicinity of
the bandgap the lever arm increases and reaches its peak value, 0.68 4 0.03,
in the band gap, see Fig. 3.3(b).

To compare the conductance data to model calculations we have to measure
the energy difference from a unique common point of reference. We choose the
Dirac point in the model which is identified with the center of the bandgap
at Vo = 0.28 V in the experiment. We thus have to assess the difference
ABup = [ agap(Vy)dV, between V, = 0V and the center of the bandgap.
To this end, we extract the gate voltage lever arm in the vicinity of the
bandgap on the hole side whenever it is possible (dots in Fig. 3.3(b)) and
interpolate between the values (lines in (b)). We obtain AE,,, = 60 £ 5meV.
The size of the bandgap, Fig. 3.3(a), is naturally obtained with a similar
precision, E; = 66 & 6 meV. We summarize the values into Tab. 3.1.

3.2.2 Analysis of the secondary interference

The slow modulation of the sliding average conductance indicates that our
specimen is of the armchair-like class or the zigzag-like class. When the latter
applies, the rotational symmetry of the contact region is broken, e.g., by the



Experiment & Evaluation 107

| Wi dd ll)m'v N

'4 il I
\ I Hln 0
_ - -6 gate voltage

15 1.5

0 DQ N O
SE' A A 15
0594 93 73 72 45 44
e) 2 . : : . .
U,
o)

G/G =

T4 12 0 8 V({/) Ver 2 0

Figure 3.2: (a) G(Vg, V3,)/Go of sample KGR3BB. We clearly observe a dense
rhombic pattern superimposed with a slowly varying average conductance
level (darker and brighter regions) with gate voltage. (b-d) Zoom of (a)
with a slightly larger range in the bias voltage. Filled blue circles mark
the peak positions of the conductance. (e) G(Vg)/Go at zero bias. In the
transmitted signal, an oscillation with the fundamental frequency f; dominates
the transmission spectrum. The oscillations at the fundamental frequency
are periodically interrupted regularly by regions with a frequency doubling.
(f) Moving average of the zero bias conductance G. A slow oscillation is
observed. The peaks are highlighted by filled green circles and their positions
are labeled by V, ,, n=1...7.

0a[107] @[107) By, AEu, AlY] Ll
6.84+0.3 21.0£+£07 6646 60x5 610+10 0.99=+0.03

Table 3.1: Gate conversion factors, energy gap, offset of the energy gap,
fundamental frequency and length extracted for sample KG R3BB. All
energies are given in units of meV. The error estimates are discussed in
Sec. 3.2.2.
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Figure 3.3: (a) log(G(V4,V;)/Go) showing the bandgap and the first few

electron states. The left upper edge (source line) of the bandgap is clearly
visible, while the right upper edge (drain line) is not clearly resolved and
induces an error in the determination of the height of the bandgap and,
similarly, the lever arm in the bandgap. (b) o, in the vicinity of the
bandgap. The upper (green) and the lower (blue) graph indicate the range of
possible values of gy, estimated from (a).
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asymmetric coupling of the CN'T to the surface of the metallic leads. In both
cases, the dispersion relation determines the peak positions F,, via Eq. (3.5)
as has been shown for the numerical transmission data in the last paragraph
in Sec. 3.1.3. By extracting the peak positions F,, from the experimental
data, we can estimate the chiral angle 6 of the specimen. Prerequisite to
this analysis is a set of experimental data that covers a range in gate voltage
where we are able to identify multiple peaks of the slow modulation of the
average conductance. The larger the visible number of slow oscillations, the
higher is the accuracy in identifying the chiral angle. The experimental data
obtained from KG_R3BB is suitable for this analysis showing 7 peaks of the
average conductance, see Fig. 3.2(f).

In order to fit the experimental data, we first assess the error in estimating
the positions F,, of the maxima in the averaged conductance signal. The
sources of this error are twofold: First, as already noted in Sec. 3.2.1, AFg,,
can only be assessed with limited precision, AE,, = 60 £ 5meV. Second, for
the gate voltage lever arm in the region we are interested in, V; < —2, we
obtain a = 0.0210 £ 0.0007. This induces non-negligible errors in E,, for the
larger values of n. Finally, an additional uncertainty arises from the fact that
the overlap energy t that is used in the model of the dispersion relation, see
Sec. 1.2.2, is known with a precision ¢t = 2.6 + 0.1V [36, 43].

To determine the region of acceptable parameters for 8, we apply a 2
test on the hypothesis, that the model describes the measured data points FE,,.
The model dispersion is determined by the chiral angle 6, the offset AFg,,
and the overlap energy t. For each set of parameters we calculate the x?
value,

1
X2<9> AFEgp,t) = Z o2 [E(n,0,t) — (B, + AEgap))]2 )

n

where the values F(n,0,t) are obtained from the condition A¢?(E,t) = 27
and o, is the error in the estimation of the peak positions FE,,, which is mainly
determined by the error of a for V; < —2V. From the x? value we calculate
P =1- F,(x?), where F, is the cumulative distribution function for the y?
distribution, v = N — N, is the number of degrees of freedom, N = 7 is the
number of points for the fit and N, = 2 is the number of free parameters [97].
Thereby, apart from the chiral angle 6, the bandgap offset AL, is used as a
free parameter which is allowed to vary within the bounds estimated above.
In Fig. 3.4 we show P(0, AE,,,) for different values of the overlap integral
in the tight-binding dispersion relation, ¢. By setting a threshold value for
rejecting the fit, P < 0.1, we obtain two results. First, a value of t = 2.7eV
is not consistent with our data within the range 55 meV < AE,,, < 65meV,
see the left panel in Fig. 3.4. Smaller values for ¢, i.e., 2.5eV <t < 2.6eV
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Figure 3.4: P(0, AE,,,) for different values of t. Note that the range of the
colorbar in the first panel is smaller by two orders of magnitude compared to
the other two. A value of t = 2.7¢eV is not consistent with our data, while
values 2.5eV <t < 2.6eV are consistent.

yield acceptable fits. Second, the acceptable values for the chiral angle lie in
the range 22° < 6 < 30°.

In Fig. 3.5, we plot the phase difference A¢?(E) for different chiral angles
0 obtained using ¢t = 2.5eV. Note that the CNT with chiral angle § = 30°
(armchair) exhibits the steepest progression with energy. The phase difference
A@’(E) at a given energy is monotonically increasing with @ between the
zigzag (Fig. 3.5, left inset) and the armchair case (right inset). The gray
shaded area in Fig. 3.5 indicates the range 22° < 6 < 30° of acceptable fits to
the experimental data.

3.2.3 The average length of the electron path

In this and in the next section we discuss properties of the conductance data
which are not directly linked to the analysis of the secondary interference
pattern. The starting point of this analysis is Eq. (3.4), which describes
the transmission originating from two independent channels. Corresponding
to the discussion in Sec. 3.1.3, this strictly holds in zigzag CNTs and in
zigzag-like and armchair CN'Ts when the C; and the parity symmetry are
present, respectively. Eq. (3.4) is also valid for certain values of the gate
voltage where the electrons in the two channels are in phase, i.e., regions
where we observe essentially single-channel interference. In the following, we
apply an analysis that is derived from Eq. (3.4), i.e., for a cavity without
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Figure 3.5: Phase differences A¢ between the two modes as a function
of energy measured from the Dirac point. Lines indicate the numerically
obtained A¢?(E) for different values of @ (indicated on the right). The phase
difference is a monotonically increasing function of 8 starting from the zigzag
CNT with € = 0 (inset, left) to the armchair CNT with 6§ = 30° (inset, right).
The experimental values (filled circles) are fitted varying the angle § and the
band-gap offset AE,,,. Acceptable fits are obtained by chiral angles in the
range 22° < 6 < 30°, as indicated by the gray shaded area.
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Tavg Tp T1 T2 lavg [L] lFT [L]

avg

024 047 097 033 1.3 1.8

Table 3.2: Table with extracted parameters for sample KG_R3BB. The
reflection coefficients r; and ro are evaluated directly from the peak and
average values of the conductance data. The two values in the last column
for nyr are extracted from the ranges —5V < V, < —0.5V (green) and
—14V <V, < =5V (blue), respectively.

mode mixing, also to data that shows clear evidence of mode mixing. We
thereby assume that the effect of the mode mixing on the derived quantities
is small.

From Eq. (3.4) we can infer the average transmission,

T, (1- |T1‘2)(1 - |7"2’2)

Tiea(T1,79) = = 3.7
511 72) 1 — Ry Ry 1— [r12]ra]? (3.7)

and the peak transmission,

(1= [r ) = |raf*)
(L= Irllra)®

Extracting Ty, and 7}, from the conductance data (where we again neglect
the effects of finite temperature) we obtain r; and ro. In Tab. 3.2 we list the
average, the peak transmission, r; and rs.

The average length of the electron path in the interferometer can be
calculated by considering the probability to perform n labs, P, = (|ry|*|r2|*)™,
multiplied by the path length 2nL, i.e.,

Tp(rla TQ) =

(3.8)

lavg = L+ |1 Plra2L 4 4 (Jri Plraf) 2L + -
2|ry|?|ra|?
(1 — [re[?|re]?)?

=1+ L. (3.9)
In Tab. 3.2, the average path length [, is evaluated using the estimation
of the reflection parameters r; and ry from Eq. (3.7) and Eq. (3.8). lu,
necessarily imposes a lower limit on the phase relaxation length in the CNT,
L¢ > lavg-

3.2.4 Properties of the Fourier transform

In optics, a Fourier analysis of the transmission spectrum can be used to
quantify the quality of an interferometer [98]. The summands 7} of the
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transmission function in Eq. (3.4),

T(Ve) = 2_T;(Ve),

J

are even functions with periodicity w/L. Thus they can be expanded in a
Fourier series,

T(Vy) = - an cos(nk; (Vi) L), (3.10)
with coefficients
I w/2L
ap = — / dk T;(k) cos(nkL).
7T—7r/2L

While the calculation of the coefficients in general is cumbersome, it can be
shown that the ratio of two coefficients yields the product of the two reflection
coefficients [98],

Qn+1,L

= . 3.11
S i 3.11)

The coefficients can thus be written as
an = ag(|r1]|ra2])", (3.12)

where m = n + 1 is the harmonic order, i.e., mf; = f,,. For the experimental
data we perform the Fourier transform using a sliding window of width 0.4 V.
In Fig. 3.6(b) we show the absolute value of the coefficients as a function of
frequency obtained from the zero-bias conductance G(V4) in (a). We identify
the fundamental frequency component and up to six higher harmonics. Note
that the amplitudes of the harmonics in the FT are oscillating when we change
the gate voltage. Since this is not accounted for in Eq. (3.12), we have to
average the F'T amplitude over a gate voltage range that includes multiple
periods of the slow modulation to compare the FT data to Eq. (3.12). To
this end, we divide the full gate voltage range into two ranges, [—15V, =5 V]
and [-5V,—0V]. Fig. 3.7(a,b) shows fits of Eq. (3.12) to the amplitudes of
the Fourier transform.

We extract the product |r||r2| from the slope in Fig. 3.7 and infer another
estimate of the average length of the electronic path, lg};, from Eq. (3.9), see
Tab. 3.2. We note that the path length deduced from the Fourier transform
is considerably larger than the path length estimated from peak and average
conductance.
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gate voltage (V)

Figure 3.6: (a) G(V;)/Gy repeated from Fig. 3.2(e) for reference. (b) Absolute
values of the Fourier transform amplitudes obtained for a sliding window of

width 0.4V from (a).

-1.0[=

10g10(|0tn|)

f.. )5V <V, < -5V

T
e | 1 1 1 1 1 1 I
.

Ji-q DBV < V. < OV

123456 78
n

123456 78
n

Figure 3.7: FT amplitude obtained from Fig. 3.6 by averaging over regions
in the gate voltage (grey line) on a logarithmic scale. Peaks in the graph
(highlighted by stars) indicate the positions of the harmonics f,,. The peak
positions are used for the fit to Eq. (3.12) (dashed line). (a) Amplitudes
averaged over a gate voltage range of —15V <V, < =5V. (b) Amplitudes
averaged over a gate voltage range of —5V <V, <0V.



Experiment & Evaluation 115

Gate dependent oscillations of the frequency components Another
striking feature of the Fourier transform in Fig. 3.6(b) is the modulation of
the F'T amplitudes «a,, with gate voltage. The period of this modulation is
the same for the fundamental frequency component and the higher harmonics.
When the interfering modes are not mixed, i.e., Eq. (3.4) applies, we can
predict the oscillations of the amplitudes of the different frequency components
as a function of gate voltage. Let us rewrite the two channel transmission
formula for the armchair geometry, Eq. (3.4),

T(Vy) = To(Vy) + Ty (Vy)
= [atan cos(nka(Vy) L) + i cos(nky(Vy)L)] .

Since Kq; ~ Kp,; We can assume k, ~ ky and o, ~ ap,. Then, a minimum
of the harmonic term of order n is given by the destructive interference of
both waves, i.e.,

|ko — kp|nL = m + 2wm

for integer m. The period of the modulation of higher harmonics with gate
voltage thus decreases with n, i.e.,

KoV — Ry (V)L = T2 (3.13)
This behavior is confirmed in a Fourier analysis of numerical transmission
data for a (7,7) armchair CNT, see Fig. 3.8(b).

In the Fourier analysis of numerical transmission data for an armchair-like
(10,4) CNT in Fig. 3.8(c,d), the amplitudes of the fundamental component
and the higher harmonics all oscillate with the same period. A difference in
the FT of the transmission for armchair and armchair-like CN'Ts is expected,
since we concluded in Sec. 3.2.2 that mode mixing inhibits an application of
Eq. (3.7) — the starting point of this analysis. The gate dependent oscillation
of the frequency components in the experimental data, Fig. 3.6(b), shows
a closer resemblance to the numerical results for the armchair-like CNT
as expected from the analysis in Sec. 3.2.2. The period in the FT of the
experimental data is the same for all frequency components. However, the
maxima of the oscillations of the fundamental frequency component in the
experimental data are shifted along the gate voltage axis with respect to the
higher harmonics (for a maximum in |aq (V)| we find a minimum in |o, (Vy)|,
n > 1). This is not observed in the numerical result in Fig. 3.8(d).

3.2.5 Open questions

The difference in the length of the average electron path The aver-
age length of the electron path is shorter when evaluated directly from the
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Figure 3.8: Transmission data from tight-binding calculations for a (7,7)
armchair CNT (a) and a (10,4) armchair-like CNT (c). (b) Fourier transform
of (a) on a logy-scale obtained from the transmission data using a sliding
window of width 0.015eV. (d) Fourier transform of (b) using a sliding window
of width 0.019eV.
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transmission function instead of the decay of the Fourier transform ampli-
tudes, see Tab. 3.2. When considering finite temperatures, the FP resonances
are essentially broadened as soon as kg7 > I' [57]. We thus expect that
lavg decreases since T, is reduced and 7T, is increased. l{;ng also decreases
since it directly reflects the non-sinusoidal shape of the resonances, i.e., the
sharpness of the resonances. Preliminary calculations confirm that an increase

in temperature can not lead to the observed difference between l,,, and ZEEVTg.

Another source of error lies in the assumption that Eq. (3.4) is applicable
(in principle) to the transmission when channel mixing is present. From
this assumption, the equality of l,, and Il, follows. In the tight-binding
results we observe, that for random on-site energies on the contact ring 75, is
decreased and Ty, is increased. In Fig. 3.4(a), where the conductance for a
zigzag-like (6,3) CNT is shown, the peak transmission is reduced compared
to the theoretically expected maximum of 4e*/h. On the other hand, in
armchair-like CN'Ts the peak conductance and the average conductance remain
unaffected, see Fig. 3.3(a). From this qualitative argument it seems likely
that mode mixing which is induced by a breaking of the rotational symmetry
in the contacts can lead to a decrease in l,ys. Further checks are needed to
see if I}, and the ratio between the amplitudes of the harmonics in the FT
remains constant when the rotational symmetry is broken in zigzag-like CN'Ts.
When this is the case, the difference between I}, and I, can be used to
distinguish between CN'T cavities with intrinsic and extrinsic mode mixing.

The size of the bandgap Note that a bandgap of the size reported in
Tab. 3.1, i.e., 66 meV, is not expected as a consequence of the curvature of
the CNT. When we estimate the curvature gap for a (7,4) armchair-like
CNT (0 = 21°, R = 3.8 A) using Eq. (1.11) we obtain a size of the gap of
Eqop = 31meV. This value sets an upper bond to the range of curvature
induced band-gaps since only CNTs with R > 4 A are considered stable.
Typical values for larger radii and chiral angles lie below 10 meV. For the
next candidate, the (8,5) CNT (6 = 22°, R = 4.5A), we obtain already
Fgp = 20meV. This deviation of the size of the theoretically estimated
curvature gap and the experimentally observed bandgap in nominally metallic
CNTs is observed frequently [99]. The authors of Ref. [99] suggest that the
bandgap size is dominated by an electron interaction effect. A Mott gap due
to repulsive electron interaction at half filling can lead to bandgap sizes in
the range 10 — 100 meV. Using the relation between the CNT radius r and
the size of the Mott gap, A = fr~13, we obtain r ~ 1 nm.
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3.3 Summary

We analyze wave interference effects in the electronic transport spectrum
of a strongly coupled CNT. We focus on the low-bias conductance at low
temperature. We start our analysis from a simple plane wave model for the FP
interference in CN'Ts. From basic arguments we follow that the symmetries
present in different CNT classes strongly affect the FP interference pattern.
Under the assumption that the contact interfaces between metal and CNT
do not break the rotational symmetry of the CNT, zigzag and zigzag-like
CNT cavities only show conventional Fabry Perot interference, the primary
interference. Armchair and armchair-like CNTs reveal additional periodic
modulations with a larger period, the secondary interference. Specifically, a
beat or beating is predicted for armchair CN'Ts where the two independent
cavity modes acquire different phases due to a change in bias or gate voltage,
and a slow oscillation of the average transmission is expected in armchair-like
CNTs. The latter arises due to the mixing of transport channels which is
an intrinsic feature of the armchair-like geometry. The predictions from the
simple model are confirmed in numerical tight-binding calculations for all
CNT classes. When we brake the rotational symmetry of the contact interface
in the numerical model for zigzag-like CN'Ts, secondary interference can be
observed in this class as well. The evolution of the period of this interference
pattern as a function of gate voltage strongly suggests that this effect can be
related to channel mixing, similar to what we observe in the armchair-like
class.

The period of the secondary interference depends on the evolution of the
phase difference between the two modes. This evolution, in turn, is governed
by the trigonal warping of the dispersion relation. The effect of the trigonal
warping on the one-dimensional dispersion relation increases with chiral angle
and is strongest in armchair CNTs.

In the second part of the chapter we apply our analysis to experimental
data. In the zero-bias conductance we observe a superimposed slow modu-
lation in the conductance with a period of 10 — 20 times the period of the
fast primary oscillation. This modulation is also reflected in an oscillation
of the average conductance. In the spirit of our analysis we estimate the
chiral angle, 22° < 6 < 30°, from the period of the slow modulation. The
accuracy of this estimate is governed by uncertainties in the conversion from
gate voltage values to the energy scale used in the model, and by the precision
of the tight-binding overlap energy t.

As a side note, we comment on the Fourier transform of CNT FP cavities
and infer the average electronic path length from the decay of the amplitudes
of the higher harmonics.



Chapter 4

Loose ends: CNT transport
data to be still analyzed

In this chapter we present data recorded in the strong coupling regime that
is not yet analyzed. The measurements are conducted with two samples,
AD_CB14 (I) and CB3224 (II) at low temperatures. The fabrication details
for (I) can be found in the appendix, Sec. 4.D together with the characteristics
of the transport in the FP regime in Sec. 4.E. The second sample (II) was
fabricated by P. Stiller (cf. Sec. 2.B) and the measurements were conducted
by D. R. Schmid, P. Stiller and the author in the course of three different
experiments: Data recorded in February 2011 at 300mK in a He? cryostat
is labeled (Ila), data recorded in October and November 2011 in a dilution
fridge at different temperatures is labeled (IIb) while data recorded in July
2012 in a dilution fridge at 30 mK is labeled (Ilc). Refer to Tab. 4.1 for an
overview. The data discussed in Sec. 1.2.3 resulted from the experiment (Ilc).

experiment sample date researchers temperature
(1) AD CB14 Oct. 13 AD 15mK

(ITa) CB3224 Feb. 11 PS, DS 300 mK
(IIb) CB3224 Oct. 11 PS, DS var.

(ILc) CB3224 Jul. 12 DS, AD 30mK

Table 4.1: The different experiments performed on the samples AD_CB14
and CB3224. PS is a shortcut for P. Stiller, DS stands for D. R. Schmid and
AD for the author of the thesis.
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Figure 4.1: (a) G(Vg, V}) for finite bias in the electron transport regime in
(I). (b) Linetraces from (a) at Vi, = 0V (blue dashed line) and at V, = 5mV
(green solid line). The zero-bias graph resembles the corresponding graph on
the hole side, see Fig. 4.E.1. The graph at finite bias clearly oscillates with a
period ~ 0.1 — 0.2V along the gate voltage axis.

4.1 Conductance oscillations in the Fabry-Perot
regime at finite bias

In this section, solely data from (I) is discussed. In Fig. 4.1(a) we observe
conductance oscillations as a function of the gate voltage that can not straight-
forwardly be related to the Fabry-Perot cavity behavior. These oscillations
with a period ~ 0.1 — 0.2V are not prominent in the zero-bias conductance,
Fig. 4.1(b, blue dashed line), while for finite bias, 2mV < 1}, < 8 meV, they
are clearly visible, see Fig. 4.1(b, green line). Additional higher frequency
components in a zero-bias Fabry-Perot interference pattern that do not coin-
cide with the usual hierarchy of harmonics, f, = nf;, can be attributed to
additional scattering centers along the CNT.

However, the Fourier transform of the zero-bias signal, Fig. 4.E.2(b)
does not show prominent higher frequency components. That this feature
clearly depends on the bias voltage can be seen in Fig. 4.2(a,b). In (a),
we plot the FT amplitudes of linetraces taken along the gate voltage axis
in the range 1V < V, < 10V for different values of the bias voltage. The



Conductance oscillations in the Fabry-Perot regime at finite bias 121

a) b) T T T T
\Al/GoOO35
| (107
= 50 5 0.030
= off <
- =
8 1
o)
5H 0.010
0.005
10 0 0.000—————
o 5810 15 20 6 -4 -2 0 2 4
freq. (1/V) bias voltage (V)

Figure 4.2:  (a) FT amplitudes of linetraces in G(V,,V;) in the range
1V <V, < 10V for different bias voltages in (I). The peculiar component
corresponding to the fast oscillations in Fig. 4.1 is marked by small arrows.
(b) Linetrace of (a) along the bias voltage axis for the frequency component
marked by the little arrows in (a) (blue line). The green line is a fit to a
function (Vi, — AW,)® with o = 0.61.
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component corresponding to the fast oscillations is highlighted and we note
that it does not follow the same evolution as the harmonics of the FP cavity
interference although its frequency lies very close to the fourth harmonic.
The FP interference amplitudes decay for finite bias voltage and are maximal
in the vicinity of zero bias. In Fig. 4.2(b) we plot a linetrace of (a) for the
highlighted component with a frequency of f* = 6.6%.

In the spirit of the Fabry-Perot analysis of the previous chapter we interpret
the pattern as a interference of electron waves in a CNT of length L. In this
case, the corresponding waves travel at velocities © = vp* f*/f; = 3.1-105m/s
according to Eq. (4.11). As a function of bias voltage, we observe a power law
suppression of the f* component, i.e., G ~ V. We fit the amplitude of the
f* component in Fig. 4.2(b, blue line) using the function (V;, — AV;)* and
obtain a = 0.61. AV}, accounts for the offset in bias voltage which appears
due to the current-voltage amplifier used in the measurement setup.

Such a power-law suppression is also observed in interacting one-dimensional
electron systems that form a Luttinger liquid(LL) [40]. Within this interpre-
tations, the observed interference pattern stems from plasmon waves that
travel at velocities ¥ = vp/g, where g is proportional to the strength of the
interaction. Following this argument we find g = 0.26. According to Ref. [40],
the exponent o that governs the power law suppression of the plasmon exci-
tations with bias voltage is in this case given by a = (1/g — 1)/4. Again, we
obtain a similar value, g = 0.29.

Although tempting, the interpretation of the f* oscillations as a result of
the formation of a LL does not hold. A LL requires a continuous spectrum of
electron states [100]. Thus, to observe features related to the LL, the quanti-
zation energy €p/g ~ 12meV, see Sec. 4.E, is required to be small with respect
to eV}, [101]. In our experiment, the f* oscillations emerge already at ~ 3mV.
At this point we can not give a satisfactory explanation of the observations. It
would be interesting to measure G(Vg, 4,) at different temperatures to check
if the linear conductance is suppressed with temperature, too.

4.2 A 0.7-like feature to the left of the bandgap

The 0.7 anomaly is a famous effect in quantum transport. By increasing a
local gate that determines the potential of a quantum point contact (QPC)
between two reservoirs, the conductance decreases stepwise by 2¢?/h. When
the last channel of a quantum point contact is closed, the conductance does not
show a clean step but exhibits a shoulder at a height of 0.7 - 2¢?/h [102]. The
shoulder is sensitive to magnetic field and temperature and is accompanied
by a zero-bias peak (ZBP), much like the Kondo effect [103]. We discuss data
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Figure 4.1:  G(V, 4,) to the left of the bandgap for experiment (I) and (Ila).
In (I), no Coulomb blockade is observed and the device enters the FP regime
directly. In (IIa), a Coulomb blockade diamond is observed at V; >~ 0.35 V.

from (I), (ITa), (IIb) and (Ilc) in the light of the 0.7 anomaly. The stability
diagram in the region of interest, i.e., close to the bandgap on the hole side, is
shown for (I) and (ITa) in Fig. 4.1. The analysis will remain on a qualitative
level and is not sufficient to prove that the observed effect can indeed be
mapped to its QPC analogue straightforwardly.

4.2.1 Magnetic field behavior

In measurements of the 0.7 anomaly in QPCs the magnetic field is always
oriented in-plane with the 2DEG of the reservoirs. In CNTs, the field parallel
to the axis affects the bandstructure considerably (cf. Sec. 1.2.3) and the
0.7-like behavior is difficult to identify. Therefore, we analyze data that
is recorded with the magnetic field perpendicular to the CNT axis.! The
zero-bias conductance at T' ~ 30 mK does not reach the theoretical limit of
4e?/h in both samples. To compare the behavior to the QPC we relate the
conductance to its maximum in the observed range, G .., Without magnetic
field, the conductance in (I) shows a clear shoulder at ~ 0.7 G ,.x approaching
the bandgap from the hole side, see Fig. 4.2(I). The shoulder is getting
more pronounced when the field is increased and eventually forms a peak at

IThe setup allows for a rotation of the magnetic field in the plane of the sample surface.
Data recorded in the presence of parallel magnetic field is available, too.
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Figure 4.2:  G(V,) for different equidistant magnetic field values in the
range 0T (top line) to 8T (bottom line). The magnetic field is oriented
perpendicular to the nanotube axis. (I): A shoulder can be clearly observed
at ~ 0.7Gax which turns into a step for ~ 4T. At 8T, a dip is followed by
a peak. (Ilc): The zero-field signature resembles more a step at ~ 0.7Gpax
than a shoulder. With increasing field the step transforms into a plateau at
~ 0.6Gpax-

~ 0.7 - Ghax followed by a dip at ~ 0.4G .. Up to ~ 4T, the behavior is in
agreement with experimental observations of the 0.7 anomaly in QPCs where
the conductance is expected to exhibit an additional step at 0.5 - G.x due
to spin-splitting [104]. The dip-peak feature at high fields, however, is not
observed in the QPC.

In Fig. 4.2(Ilc), the signature is less pronounced and clear. At zero field, a
step is observed at ~ 0.7G ., and the conductance decreases with increasing
field eventually forming a plateau at ~ 0.6G pax-

4.2.2 Temperature dependence

Measurements with varying temperature where only conducted in (IIb), see
Fig. 4.3. Note that the curve for 7' = 30 mK is only roughly similar to the
curve for B; = 0T from experiment (Ilc) in Fig. 4.2, a clear indication that the
transport properties of the sample changed over time. At low temperature,
we observe a clean shoulder at ~ 0.7G.x Which deepens for increasing
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Figure 4.3: G(Vj) in the vicinity of the bandgap for different temperatures
in the range 30 mK < 7" < 1K in experiment (IIb). The shoulder is getting
more pronounced with increasing temperature.

temperature. The signature is clear and agrees nicely with observations for
the QPC [102].

4.2.3 Zero-bias peak

Along the bias axis, a peak is observed in G(Vg, 4,) at the top of the first
step in the conductance in QPCs [102]. In the data of (I) in Fig. 4.4, the ZBP
clearly appears (slightly offset by V4, = 0.66 V as can be seen from Fig. 4.1(I)).
It is accompanied by satellite peaks at V}, ~ £3mV, another reminiscence of
the Kondo effect [17]. There is no data available on how the ZBP and the
satellites evolve with magnetic field. Surprisingly, the ZBP evolves from a
split-peak into a single one at V; = 0.4V which is not a common feature in
QPC data [102]. In Fig. 4.5, the ZBP in (IIa) is plotted. Here, the peak
conductance in the vicinity of the bandgap is smaller, Gyax ~ 2¢*/h. Prior to
the evolution of the ZBP at V, ~ 0.42V, there are again tiny satellite peaks
visible at V}, ~ £3mV. At V; ~ 0.4V, the peak splits due to the CB charging
state, compare Fig. 4.1(Ila).
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Figure 4.4: G(V},) for different values of V; in a series of line plots. (I) shows
a prominent ZBP which emerges from a split-peak at V, = 0.4 V. Between the
ZBP and the bandgap, satellite peaks appear at V;, ~ 23mV and V, ~ 0.65V

(cf. Fig. 4.1(1)).
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Figure 4.5: G(V4) for different values of V4 in (Ila). The conductance data
exhibits two small satellite peaks at V4, ~ £3mV and V, >~ 0.45V before the
7ZBP emerges when we decrease the gate voltage starting from the bandgap.
When we decrease V, further starting from the ZBP, the peak splits again
due to the CB charging state, compare Fig. 4.1(11a).






Appendix

4.A Details on the tight-binding calculations

For the numerical calculations M. del Valle uses a tight-binding Hamiltonian
for the description of the CNT. Interactions up to first-nearest neighbors are
considered and the model is restricted to one 2p orbital per atom. The 2p
orbitals give rise to the m and 7* bands, which are responsible for the CNT’s
conduction as the next molecular orbitals lie energetically far apart.

The Hamiltonian describing our systems reads

Hy=>" €apcic; + > tijCICj7 (4.1)
i (i,4),i#]

where the indices (7, j) indicate nearest neighbor atom sites and the summation
is extended over all points in the lattice. The transfer integrals €g, serve as the
onsite energies and ¢;; are the hopping parameters. Our energy scale is shifted
in order to have vanishing on-site energies, setting €3, = 0. The Tomanek-
Louie parametrization for graphite up to nearest-neighbor interactions is used,
including the hopping parameter t = —2.66 €V [105]. This parametrization set
includes also the ¢ molecular orbitals, and has been proven to be a consistent
parameter set. The o orbitals mix with the 7 molecular orbitals due to the
finite curvature. To account for curvature and include also spin-orbit effects
in the calculations, a set of parameters containing the Slater-Koster hopping
integrals for the different molecular orbitals is included. The transfer integrals
describing the hopping between nearest neighbors are not given by constants
any more but depend on the relative three-dimensional position of the atoms,
and on the strength of the spin-orbit interaction. The derivation of these
transfer integrals can be found in Ref. [106], together with the spin-orbit
coupling parameter used in our numerical calculations. The finite curvature
and the spin-orbit interaction do not affect the main secondary interference
pattern in the numerical results. For simplicity, calculations in the main text
do not include these effects.

Coherent transport in finite CNTs is calculated within the Landauer
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Figure 4.A.1: (a) Conductance of an armchair-like (10,4) CNT (L = 660 nm)
from tight-binding calculations including curvature and spin-orbit effects. The
secondary interference pattern, i.e., a modulation of the conductance over a
period of 0.05 — 0.10€V, is evident. (b) Average value of (a) obtained using a
0.019 eV-wide sliding window. Slow oscillations of the average conductance
values are clearly visible. The peak positions are marked by filled circles.
(¢) Transmission of a (7,7) armchair CNT (L = 660nm) from tight-binding
calculations including curvature and spin-orbit effects. The average is constant
(green line).



Evaluation of the gate voltage lever arm 131

approach using real-space Green’s functions [107]. The finite length requires
the application of decimation techniques to reduce computational costs [108].
The barriers at the interfaces with the leads are modelled by considering
a reduced hopping parameter t{; = 0.73t;; and an enlarged onsite energy
€9p = 0.1eV for the atoms on the ring that forms the contact to the leads.
This model of the barriers has been used successfully in real-space transport
calculations in the Fabry-Perot regime [109]. Unless specified otherwise, all
on-site energies on the contact ring are equal in the numerical results shown in
the main text. Thus, the barriers respect the symmetries (rotational, parity)
of all CNTs.

In Fig. 4.A.1(a) we show the results for the transmission of a (10,4)
armchair-like CNT with a length L = 660 nm. The secondary interference
pattern can be observed. The sliding average of the transmission in (b) follows
the slow modulation of the transmission signal. Contrarily, the transmission
through the (7,7) armchair nanotube in Fig. 4.A.1(c) exhibits a beat, and
the sliding average (green line) is constant, just as it is observed for CNTs
where curvature and spin-orbit effects are not included.

4.B Evaluation of the gate voltage lever arm

We can analyze the conductance data by considering energy conservation of
the transmitted electrons, similar to the analyis carried out for the weakly
coupled quantum dot in Sec. 1.1. Note, however, that our understanding of the
two regimes is quite different: In the sequential tunneling picture, an incident
electron tunnels into a state on the quantum dot, looses its phase memory
and tunnels out of the dot. The electron-electron interaction is important due
to the small capacitance of the quantum dot. The related energy scale, the
charging energy FE., is large compared to the effective coupling energy and
the thermal energy. This leads to quantization in the charge occupancy of
the quantum dot. On the other hand, in the regime with highly transparent
contacts, the fluctuations in the conductance are governed by electron wave
interference and theoretical modeling is best done in terms of scattering states
or Green’s functions. This difference between the two pictures is discussed in
more detail in Ref. [26], Ch. 6.

The energy of an electron on the CN'T with respect to the potential of
the unbiased contact is given by

E(Vy, Vi) = neVi, — ael,
E(Vg, Vy) = —(1 —n)eVy, — ael,

when injected from source or drain contact, respectively. nel}, is the energy
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Figure 4.B.1: Resonant transport in the ballistic regime. (a) Schematic of
the conductance as a function of gate and bias voltages. The filled circles
highlight regions where both electrons from the source and from the drain
contact resonate within the cavity. Along the lines that connect the circles,
only one resonance condition is met. (b) Energy band diagrams for the three
coordinates highlighted by (I-III) in (a). (I) At this point, both source and
drain electrons are resonant. Note that the finite bias affects the bottom of
the band in the CNT as indicated by the red line. (II) We increase the bias
voltage by 2V.. Note that the energy of the electron on the CNT is changed
by 2E; = eV},. Due to the asymmetric drop neither of the resonant conditions
is met. (IIT) We shift the CNT band by changing the gate voltage to recover
the two resonance conditions.

difference of the electrostatic potential between source contact and CNT. This
potential follows the quasi-Fermi level of the system within one screening
length in the metallic contacts [26]. The variation of the electrostatic potential
across the system is indicated by a red line in Fig. 4.B.1(b, I). In this
approximation we neglect the potential due to extra charges on the nanotube.
This potential becomes important at comparably large bias voltages > 50 meV
where it determines the threshold voltage of a CNT that is operated as a
field effect transistor [22]. We also assume that the capacitances between
the contacts and the nanotube are negligible compared to the capacitance of
the backgate. In a careful analysis, all capacitances in the system and the
potential due to extra charges are used in the Poisson equation to iteratively
compute a self-consistent potential of the electrons on the nanotube [3].

When we change the bias, the electrostatic potential of the nanotube is
modified as well. In Fig. 4.B.1(b, I), we start from a resonant coordinate in
the G(W,, Vg)-plane and increase the bias by 214,. Due to an asymmetric drop
n # 0.5, the resonance condition which depends on the electrostatic potential
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is not met in Fig. 4.B.1(b, II). We can shift the CNT bands by changing the
gate voltage to recover the resonance, see Fig. 4.B.1(b, III). Note that we
choose 17 # 0.5 here to keep the discussion general. The potential drop can
be explained by the formation of a resisitivity dipole in the contacts which is
symmetric and we can assume 7 = 0.5 [26].2

Let us assume that we change the gate voltage from one point V,; where
the resonance condition is met to the next point V,,, i.e., the roundtrip
phase in channel j changes by |¢;(Vyg1, Vb =0V) — ¢j(Vg2, Vb, =0V)| = 27.
The energy of the electron on the CNT is changed by AE = «o|Vy1 — Vgl
Now, we keep the gate voltage constant and move from a point in the
stability diagram where the resonance condition is met for negative bias,
(Vg, Vi, = —V.), to the point where the condition is met for positive bias
values, i.e., |¢;(Vy, Vo) — ¢;(Vy, Vo)| = 27, where we assume 7 = 0.5. Along
this line we change the energy of the incident electron by AE = 2eV,. /2. This
enables us to infer the gate voltage lever arm « from the width and from the
half of the height of the resonant pattern in the G(V}, V;)-plane,

Ve

a= m. (4.4)

4.C A simple transfer matrix approach to sec-
ondary interference

Using a simple (non-unitary) transfer matrix description of the system [110],
we can understand the evolution of the slow modulation of the conductance
in armchair-like CN'Ts from the mixing of the channels upon reflection at the
contacts. We consider two waves in the channels a and b before and after
the scattering event. For simplicity, we consider only one pair of incident
waves from one side of the cavity and one pair of outgoing waves on the other
side of the cavity. Since we do not study the full scattering problem, which
would include both in- and out-going waves on both sides of the cavity, the
amplitudes can not be related to probabilities. The initial and final states
are represented by the vectors

|¢>:<‘g> (initial)  and  |f) = M]i) (final),

where M is a (complex) two-by-two transfer matrix and a and b are complex
numbers characterizing the plane waves before entering the cavity. Although

2For positive gate voltages the quantum dot is seperated from the leads by Schottky
barriers. These barriers can induce largely asymmetric voltage drops.
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M is not describing the full scattering problem, the squares of the amplitude
of the transmitted wave |f) in the two channels reproduce the transmission

T, ie.,
ij

M is constructed from a product of matrices which describe the effect
of different elements of the cavity on the wave function. In particular, the
transmission through the (symmetric) left and right barriers is described by

matrices
t 0
T_Tl_Tr_<0 t>7

where the coefficients ¢ are real for simplicity. Passing through the CNT we
acquire gate voltage dependent phases ¢,(V;) and ¢,(Vy) in the two modes,

respectively:
ida
e 0
T.= ( 0 ei¢b> '

The reflection at the two interfaces is described by
/

R=R, =R, = (T, 7">,
ror

where the reflection coefficients r and " are real numbers and 7’ induces a
mixing of the channels.

We calculate M taking into account two different electron paths in the
cavity. This is the minimal ingredient to observe wave interference in the
transmitted signal. The first electronic path is one where the electron is
directly transmitted, while in the second path it travels one lap before leaving
the cavity. The transfer matrix reads

M = TT,T + TT.RT .RT.T = TT.(1 + RT.RT,)T. (4.6)

When we relate M to the transmission using Eq. (4.5), the matrices TM and

T outside the bracket only add global phases and amplitudes to the diagonal

elements. The global phases vanish when taking the absolute values and the

global amplitudes are not important for our argument. Evaluating the part
in brackets in Eq. (4.6), we obtain

14 r2e2i%a 4 1 26i(0a+00)  ppd (eilGatdn) | oi20y

1+ RT.RT. = ( tr/(ei(¢a+:;,) + el200) 1+ r<2€21¢b + r:gei(¢a+)¢b)> (4.7)
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Figure 4.C.1: The sum _,; |M,;|? plotted as a function of energy in arbitrary
units. The green line is the sliding average of the black line. ¢,(V;) and
op(Vy) are given by second order polynomials with slightly different quadratic
prefactor. (a) " = 0, no mode mixing occurs and a beat can be observed.
The sliding average is constant. (b,c) Mode mixing is increased to " = 0.3
(b) and to " = 0.9 (c). The off-diagonal terms induce a slow modulation of
the signal that is reflected also in the sliding average.

In the pure armchair case ' = 0, so we end up with a diagonal matrix and
obtain, using Eq. (4.5),

T 22; [1+ RT R = 2 {1+ " + 7 [cos(26,) + cos(2¢)] } ,  (4.8)
n=1

where [M];; refers to the matrix element M;;. The transmission can be
identified as a beat of two waves with phases ¢, # ¢, as a function of the
gate voltage.

When we allow for " # 0, the square of the absolute values of a diagonal
entry of the matrix in Eq. (4.7),

2 4 2 /
Hl + RTCRTC]H‘ =147+ 2r° cos(2¢,) + 21’ cos(¢q + ¢s)
+ 2r%r"? cos(¢g — ¢p) + O(r'), (4.9)

is proportional to the cosine of the phase difference ¢, — ¢,. Note that the
off-diagonal entries,

[1+RTRT] ["=[1+RTRT] =222 (1 +cos(d, — &), (4.10)
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contain these phase differences, too. They are responsible for the slow
oscillation of the conductance and its sliding average.

In Fig. 4.C.1 we plot 3_;; |M;;|? as a function of energy for different values
of . To obtain the plots, we write the function ¢;(E) as a second order
polynomial with a slightly different coefficient in front of the quadratic term
for the two channels j. In Fig. 4.C.1(a), the mixing is absent, ' = 0, and
Eq. (4.8) shows a beat. The hull curve evolves with a phase ¢, — ¢y, see
Fig. 4.C.1(a), exhibiting two maxima of transmission within one period. The
average of the transmission calculated over a few periods of ¢, or ¢ is
constant since both constituents of the transmission function bear a constant
average. In (b), the finite mixing leads to a deformation of every second
anti-node (i.e., regions with constructive interference). The sliding average
(yellow line in (b)) is slightly modulated. Finally, in Fig. 4.C.1(c), the terms
ox cos(¢a—¢p) in Eq. (4.9) and Eq. (4.10) induce a more prominent modulation
of the transmission as a function of the phase difference. The average of the
transmission clearly follows the modulation.

4.D Fabrication of Sample AD_ CB14

The base of the structure is made of a conducting Si substrate with high
positive doping with a 500 yum SiO, layer on top. The wafers are cut into
4 x 4mm pieces, spin-coated with negative photoresist (Shipley Microposit
1805), and exposed to a mercury light source for 30 s under a optical mask.
The mask allows the exposure of 25 structures with 6 contact pads on each
structure. After developement, the sample is put in a vacuum and 40nm
Re is sputtered on top. After a lift-off of the remaining resist and the metall
on top, only the contact pads remain. In a next step, PMMA-resist is
spin-coated for an electron-beam lithography (EBL) process to define the
smaller, sub-um structures. After the development, 35 nm of Re is sputtered
in vacuum followed by 5nm of Pt. After another lift-off process, the metallic
structures on the sample are complete. In a similar, final lithographical
step, small dots of catalyst solution, composed of transition metal oxide and
metalorganic particles suspended in methanol, are deposited in the center
of the structures. They serve as seed particles for the CNT growth in a
chemical-vapor deposition (CVD) process that takes place in a quartz tube at
900° C under an atmosphere of hydrogen and methane. The growth direction
of the CNT can not be controlled within our setup. Hence, the design of the
inner contact structures is chosen in a way to achieve a reasonable yield of
CNTs that bridge two contacts. The CVD completes the fabrication process.
We apply the CVD growth as the last step of the process in order to achieve
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Figure 4.D.1: Overview of the fabrication process for sample AC_CB14. (a)
Optical lithography is used to define the bonding pads. (b) In an EBL step,
the inner structures that serve as contacts to the CNT are patterned and
metallized. (c¢) A small quantity of catalyst is deployed by means of EBL
lithography in the center of the structure. (d) In a chemical-vapor deposition
(CVD) process, a CNT forms starting from the catalyst dot and bridging a
pair of contacts. (e) Electron micrograph of a sample similar to sample (A)
after the CVD process. The sample shows inner structures that are slightly
deformed by melting during the CVD process. The measurment circuit is
indicated by white symbols. Between a pair of contacts, a bias voltage V}, is
applied. The current signal is amplified by a current-voltage amplifier with
an amplification A. The resulting current is given by the product with the
measured voltage signal I = AV]. The potential of the quantum dot can be
changed by the global backgate voltage V.
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defect free nanotubes [8]. We try to avoid any further steps that can lead
to a contamination after the CVD step, including electron beam or force
microscopy. Details on the parameters of each fabrication step can be found
below.

4.D.1 Optical lithography

Si/Sios samples, 8 X 8 mm in size, are cleaned by oxygen plasma and acetone.
As a first step, we apply the Shipley S1805 positive photo-resist. The resist
centrifuge is set to 4500 rpm for 30s. On a hotplate, the resist is baked for
120 s. In a second step, a Karl Suss MJBS3 mask aligner is used to expose parts
of the sample to ultra-violet light for 30s. As a last step, a 1:3 NaOH/H50
mixture is used to develop the resist by immersing the sample for 30 — 40s.
The sample is cleaned by rinsing in high-purity water.

4.D.2 Electron beam lithography

Metal contacts We prepare the sample by rinsing with acetone and iso-
propanol. As a resist, we deploy polymethyl-methacrylate (PMMA) 200k,
dissolved in chlorobenzene (3.5%) by spin-coating in two phases: 5s at
3000 rpm and 30s at 8000 rpm. The resist is baked at 150 °C for 6 min.

For the electron beam lithography, a Zeiss LEQO electronic microscope is
used. Within high vacuum (pressure < 2 - 107° mbar), a small acceleration
voltage of 10kV is used to align the sample and reduce the exposure prior to
the writing process. The lithography process for the metallic structures is
performed at an acceleration voltage of 30kV using a 30 um aperture and an
area dose of 195 C/cm?. The resulting beam current is 320 pA. We develop
the exposed resist within a mixture of methyl-isobutylketone (MIBK) and
iso-propanol (1:3) for 120 s and rinse the sample with iso-propanol for 30s.

Catalyst dot As a resist, we apply two layers of resist: 2% PMMA (950k)
on top of 7% PMMA (200k). For both layers, the spin-coating parameters
are similar to the recipe for the contacts. During the EBL process, a higher
area dose of 300 uC/cm? at 25kV is used.

4.D.3 Metallization

In this step, a metal film with different layers is sputtered on top of the resist.
Within a high-vacuum (10~® mbar) chamber, we first create an argon plasma
(Ar 6.0) at a power of 100 W yielding a deposition rate for Re of 1.5 A /s.
Within a second deposition step, we use an electron gun on a Pt target. At a
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40 mg Fe(N03)3 . 9HQO
30mg Al,O3 nanoparticles

Table 4.D.1: Constituents of the catalyst solution serving as a seed for the
chemical vapor deposition of the CNT.

gun current of 440 mA we typically obtain deposition rates of 0.1 — 0.2 A /s.
The rates highly depend on the quality of the electron beam focus and the
condition of the Pt target. The surplus metal is removed by keeping the
sample in acetone at 60 C° for at least one day followed by additional rinsing
within acetone with the help of a syringe.

4.D.4 Catalyst deployment

The constituents of the catalyst solution are given in Tab.4.D.1. One droplet is
applied per 4 x 4 mm sample and blow-dried carefully. A uniform distribution
of catalyst on the sample is desirable. On a hot-plate, the sample is baked
for 6min. For the lift-off, we immerse the sample in acetone for 4 min.
The amount of catalyst particles on the sample is checked with an optical
microscope. Additional rinsing is performed as needed.

4.D.5 CNT growth

The final step of the fabrication process is the chemical vapor deposition of
the CNTs. Within a quartz tube attached to a gas handling system, the
sample is heated under argon atmosphere (1500 sccm) to 850 °C. The argon
valve is closed and the remaining argon is rinsed by hydrogen (20sccm) for
10 min. The methane valve is opened to allow for a flow of 10 sccm. Under this
conditions, CN'Ts form starting from the catalyst particles. After 15 min, we
close the methane and hydrogen valves, open the argon valve again (1500 sccm)
and initiate the cool-down.

4.E Transport characteristics of AD_ CB14

AD_ CB14 exhibits a high level of conductance up to 3.5Gq (Go = €*/h), see
Fig. 4.E.1. On the hole side, i.e., for values V, < 0.7V we clearly observe a
Fabry-Perot interference pattern in Fig. 4.D.1(b) with a frequency doubling
in the region =8V <V, < =5V. On the electron side for V; > 2V the wave
guide behavior can also be observed. The gate conversion factor is given by
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Figure 4.E.1: Differential conductance as a function of gate and bias voltage (a)
and at zero bias (b). Besides an oscillation with the fundamental frequency
fi that can be observed, e.g., in the region —3V < V, < 0V, secondary
interference is visible on the left and on the right side of the gap above 6 V
and below —5 V.

app = 0.0062 4 0.0005 in these regions.®> On the electron side in the range
1.5V <V, < 1.0V, one charging state characteristic to transport in the
Coulomb blockade regime can be distinguished. For the charging state we
obtain acg = 0.11. The bandgap measures 40 = 5meV. The fundamental
frequency of the Fabry-Perot transmission signal extracted by a Fourier
analysis, f1 >~ 250 £+ 20 —; 1 , is related to the length of the cavity, L, as

L = whup fi. (4.11)

At a Fermi velocity of 800km/s [38], we estimate a length of L ~ 420 +
10nm, in agreement with the approximate height of the rhombic pattern,
AV, ~ 3.6meV ~ 1/afi, in Fig. 4.E.1(a). We summarize these FP transport
characteristics in Tab. 4.E.1.

4.E.1 Properties of the Fabry-Perot cavity

Although G(V;) in Fig. 4.E.1 exhibits clear signs of secondary interference,
an analysis similar to the one carried out for KG__R3BB lacks a minimal

3A discussion on the extraction of the lever arm in the ballistic FP regime can be found
in Sec. 4.B.
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acp[107°]  app[107%]  Egp AEgp h [&] L [pum]
1.1+02 73£04 40+5 70+£0.5 250+10 0.4140.03

Table 4.E.1: Gate conversion factors, energy gap, offset of the energy gap,
fundamental frequency and length extracted for sample AD_CB14. acg is
specific to the range 1.5V <V, <2.0V. For V; < 0.7V and V; > 2.0V we
obtain app. All energies are given in units of meV.

-0.8

-2.0

. -3.2

N gate vo?tage (V) ° log(|A]/G,)

Figure 4.E.2: (a) Zero bias conductance G(V;). (b) Logarithmic plot of
the FT amplitudes of (a) using a sliding window of width 3V (grey shaded
area). The amplitudes of the first four harmonics f,, n = 1,...,4 appear as
horizontal lines highlighted by small triangles.

number of periodic slow modulations. The extremal gate voltage values used
in the conductance measurements are smaller, —10V and 10V. It is thus
less likely to observe multiple periods of the secondary interference, since the
period decreases for higher energies. At the same time, the tube is shorter
by a factor of two and both the period of the primary and the period of the
secondary interference are doubled.

However, the estimation of the average length of the electron path in the
spirit of Sec. 3.2.3 is possible. In Fig. 4.E.2(a) we show G(V;) together with
the logarithm of the FT amplitudes in (b). Up to six harmonics are visible
as horizontal lines. Using Eq. (3.12) and Eq. (3.9) we estimate the average
length of the electronic path from the decay of the amplitudes. Similar to the
analysis in Sec. 3.2.3, the amplitudes are averaged over the gate voltage range
to the right of the bandgap and over the range to the left of the bandgap,
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logy(lal/Go)

Figure 4.E.3: FT amplitudes averaged over the left, V, < —0.5V (green
dashed line), and over the right side, Vy > 2.5V (blue solid line), of the
bandgap on the gate voltage axis. The decay of the amplitudes with the
harmonic number is fitted using Eq. (3.12).

sample Tove Ty ry Ty lavg[ L] Dhg[L]

avg

AD CB14 046 0.76 0.71 0.35 1.1 1.4
KG_R3BB 0.24 047 097 033 1.3 1.8

Table 4.E.2: Table with extracted parameters for samples AD CB14 and
KG__R3BB. The reflection coefficients r; and r, are evaluated directly from
the peak and average values of the conductance data. The two values in the
last column for ZEVE are extracted from the positive gate voltage range and

the negative gate voltage range for AD_CB14 and for the ranges —5V <
Ve < —0.5Vand —14V <V, < =5V for KG_R3BB, respectively.

respectively. This way we obtain the averaged amplitudes as a function of the
frequency for the gate voltage ranges —10V < V; < —0.5V (green dashed
line in Fig. 4.E.3) and 2.5V <V, < 10V (blue line). From a fit to Eq. (3.12)
we extract the product |r||rs| and calculate I}, The results are shown in
Tab. 4.E.2 together with an estimation of the path from the peak conductance
and the average conductance (compare Sec. 3.2.3).

Sample AD__CB14 is more transparent and most electrons are directly
transmitted. Again, the [,y extracted directly from the conductance data is

smaller than I, from the Fourier analysis.



Part 1V

Concluding remarks
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We study two conceptually different regimes of electronic transport in
carbon nanotubes. In the first part, we start from the sequential tunneling
description that is suitable for the Coulomb blockade regime and apply a
non-perturbative extension, the dressed-second order(DSQO) approach, to
access the intermediate regime between Coulomb blockade and mixed-valence
regime, where stronger correlations between quantum dot and contacts lead
to the Kondo effect. The charge fluctuations that are accounted for in the
DSO approach are sensitive to the ferromagnetic properties of the contacts.
This enables us to analyze the specific features observed in the differential
conductance and the tunneling magneto-resistance data. For even stronger
coupling, we enter the regime of ballistic transport, where we observe electronic
wave-interference phenomena, similar to the Fabry-Perot interference in optics.
This is the subject of the second part. We find that the symmetries of the
carbon nanotube are the key to the interpretation of the peculiar secondary
interference patterns. The second part closes with experimental observations
in the transparent regime that require a more detailed analysis. This collection
of data is meant to encourage future studies which hopefully can answer the
open questions connected to these experimental observations.

The two opposite regimes we discuss here are only two examples of a
variety of phenomena that can often be observed in experiments on a single
device, just by varying the gate voltage. From the measurement on sample
CB3224, e.g., we briefly discussed the spectrum of excited states of the single-
electron state in Sec. 1.2.3. Yet, already the spectrum of the two-electron
state is subject to an ongoing analysis which would span a chapter on its
own. When the coupling to the quantum dot on the CNT is increased in
the very same measurement, for higher gate voltages, we obtain data that
strikingly demonstrates a SU(4) Kondo effect, specific to CNTs. This part of
the analysis is covered in Ref. [17] in detail. For negative gate voltages we
observe hole transport in this sample, and a Fabry-Perot interference pattern,
similar to the one we discussed in Ch. 3, is found. In yet another experiment
on the same device, nanomechanical experiments focus on the vibrational
degrees of freedom, see Ref. [52]. Pointing out this rich variety, we hope
to convince the reader that electronic transport in carbon nanotubes is a
versatile playground for the curious physicist that still deserves its unique
standing among solid state material systems.
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