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Abstract

This dissertation presents a new metaheuristic related to a two-dimensional ensemble empir-

ical mode decomposition (2DEEMD). It is based on Green’s functions and is called Green’s

Function in Tension - Bidimensional Empirical Mode Decomposition (GiT-BEMD). It is

employed for decomposing and extracting hidden information of images. A natural image

(face image) as well as images with artificial textures have been used to test and validate

the proposed approach. Images are selected to demonstrate efficiency and performance of

the GiT-BEMD algorithm in extracting textures on various spatial scales from the different

images. In addition, a comparison of the performance of the new algorithm GiT-BEMD

with a canonical BEEMD is discussed. Then, GiT-BEMD as well as canonical bidimen-

sional EEMD (BEEMD) are applied to an fMRI study of a contour integration task. Thus, it

explores the potential of employing GiT-BEMD to extract such textures, so-called bidimen-

sional intrinsic mode functions (BIMFs), of functional biomedical images. Because of the

enormous computational load and the artifacts accompanying the extracted textures when

using a canonical BEEMD, GiT-BEMD is developed to cope with such challenges. It is

seen that the computational cost is decreased dramatically, and the quality of the extracted

textures is enhanced considerably. Consequently, GiT-BEMD achieves a higher quality of

the estimated BIMFs as can be seen from a direct comparison of the results obtained with

different variants of BEEMD and GiT-BEMD. Moreover, results generated by 2DBEEMD,

especially in case of GiT-BEMD, distinctly show a superior precision in spatial localization

of activity blobs when compared with a canonical general linear model (GLM) analysis em-

ploying statistical parametric mapping (SPM). Furthermore, to identify most informative

textures, i.e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) clas-

sifier is employed. Classification performance demonstrates the potential of the extracted

BIMFs in supporting decision making of the classifier. With GiT-BEMD, the classification

performance improved significantly which might also be a consequence of a clearer struc-

ture for these modes compared to the ones obtained with canonical BEEMD. Altogether,

there is strong believe that the newly proposed metaheuristic GiT-BEMD offers a highly

competitive alternative to existing BEMD algorithms and represents a promising technique

for blindly decomposing images and extracting textures thereof which may be used for fur-

ther analysis.





Zusammenfassung

Die Dissertation beschreibt eine neue Metaheuristic im Zusammenhang mit einer zwei-

dimensionalen empirischen Modenzerlegung (2DEEMD). Sie basiert auf Green’schen Funk-

tionen und nennt sich Green’s Function in Tension - Bidimensional Empirical Mode De-

composition (GiT-BEMD). Mit ihr können Bilder in Komponenten zerlegt werden und so

verborgene Bildinhalte sichtbar gemacht werden. Natürliche wie auch künstliche Bilder

werden verwendet, um die Leistungsfähigkeit des vorgeschlagenen Algorithmus zu testen

und zu bewerten. Insbesondere werden Texturen in den Bildern mit unterschiedlichen

Ortsfrequenzen extrahiert und geordnet. Der vorgeschlagene Algorithmus wird an diesen

Testbildern in seiner Leistungsfähigkeit mit einer kanonischen 2DEEMD verglichen. An-

schließend werden beide Algorithmen zur Analyse von funktionellen magnetresonanztomo-

graphieschen (fMRT) Abbildungen verwendet. Letztere wurden während einer Kontourin-

tegrationsaufgabe registriert. Damit wird das Potential des neuen Algorithmus zur Anal-

yse biomedizinischer fMRT Aufnahmen ausgelotet. Insbesondere werden die extrahierten

intrinsischen Moden verglichen und bewertet. Der Vergleich zeigt, dass GiT-BEMD die

erforderliche Rechenleistung drastisch senkt und die Qualität der erhaltenen intrinsischen

Moden steigert. Selbst die bei der kanonischen 2DBEEMD verbleibenden Artefakte werden

mit GiT-BEMD weigehend beseitigt. Angewandt auf reale fMRT Datensätze erreicht GiT-

BEMD eine bessere rümliche Fokussierung der Aktivitätsblobs als dies mit dem Standard-

model (Generalized Linear Model - GLM mit dem Softwarepacket Statistical Parametric

Mapping Version 8) erreicht wird. Zur Unterscheidung der Erkennungsleistung der Proban-

den bzgl einer in den flächigen Gabor - Reizmustern enthaltenen Kontour werden zwei

Klassifikationsalgorithmen eingesetzt, nämlich eine Support Vektormaschine (SVM) und

ein Random Forest von Baumklassifikatoren. Damit können jene intrinischen Moden identi-

fiziert werden, deren Texturen fr die Unterscheidung der Erkennungsleistung besonders in-

formativ sind. Mit GiT-BEMD wird eine signifikant höhere Klassifikationsleistung erreicht,

was auf die erheblich besser definierten Texturen der extrahierten intrinischen Moden zurck

zu führen ist. Zusammenfassend lässt sich sagen, dass der neu vorgeschlagene Algorithmus

existierende Verfahren in seiner Leistungsfähigkeit übertrifft und eine vielversprechende

Methode zur Analyse funktioneller biomedizinischer Bilder und Datensätze darstellt.
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Chapter 1

Introduction

The increasing importance of functional imaging techniques in cognitive brain studies cre-

ates the need for adapting modern data mining and machine learning methods to the specific

requirements of biomedical images, most notably functional Magnetic Resonance Imaging

(fMRI) techniques. The latter has become a powerful tool in human brain mapping. fMRI is

a non-invasive technique to capture brain activations with a relatively high spatial resolution

in the sub-millimeter range. Also it provides an opportunity to advance our understanding in

how the brain works. Typically, fMRI is used with a rather simple stimulus protocol, aimed

at improving the signal-to-noise ratio for statistical hypothesis testing. When natural stimuli

are used, the simple designs are no longer appropriate. Also, fMRI allows to reveal neural

processing and cognitive states during cognitive task performance. Moreover, it can be used

repeatedly as it does not apply harmful ionizing radiation to subjects [54, 156]. Recently,

neuroscience researches have been focusing on the thought-provoking question of whether

patterns of activity in the brain as measured by fMRI can be used to predict the cognitive

state of a subject.

Generally, there are several common challenges in the analysis of fMRI data. These

include localizing regions of the brain activated by a cognitive task, determining distributed

networks that correspond to brain function, and making predictions about psychological or

disease states. Each of these challenges can be addressed through the application of suit-

able methods, and researchers have been employing their abilities to tackle these problems.

These abilities can range from determining the appropriate methods or techniques to the de-

velopment of new or unique techniques, adapted specifically towards the analysis of fMRI

images. With the emergence of new or more sophisticated experimental designs and equip-

ments, the role of researchers in this field increases in importance and points to a promising

future.

The large data volume acquired by such image series renders their analysis and inter-

pretation tedious and creates the need for robust and automatized techniques to extract the

information buried in such images, to analyze them objectively and to classify them properly.

However, fMRI voxel time courses or corresponding spatial variations of activity distribu-

tions in fMRI images represent non-linear and non-stationary signal variations. Hence, most

statistical analysis tools fail to analyze such data as the latter need, at least, wide-sense sta-

tionary signal distributions. Thus, most classical methods are based on a voxelwise analysis
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of the related activation statistic. If temporal or spatial dependencies are considered, then

most often windowing techniques are employed which assume stationarity within properly

chosen data segments. Such windowing techniques are also employed in recent unsuper-

vised, data-driven techniques which contrast model-based, supervised learning paradigms

by analyzing spatio-temporal correlations within the data.

Model-based techniques, in the first place, need a good model of the hemodynamic

response of the activated neuronal tissue. This is because fMRI, basically, relies on the

Blood Oxygenation Level Dependent (BOLD) effect which leads to local magnetic suscep-

tibility changes in response to an increased supply of neurons with oxyhemoglobin to sus-

tain metabolic activity. Therefore, several methods and techniques have been proposed to

overcome the effect of BOLD variability, i. e. the spatio-temporal variation of magnetic

susceptibility, in model-based studies. For example, Friston et al. [48] and Woolrich et al.

[163] have proposed different basis sets for the Hemodynamic Response Function (HRF).

They first define an HRF basis set of functional forms which could depict reasonable HRF

shapes. According to that, BOLD signals from different subjects could be modeled with

different HRFs from the predefined basis set. These methods generalize the assumption of

BOLD signals from a fixed model to a model set.

Besides model-based analysis methods, data-driven techniques become more and more

popular in the area of fMRI data analysis. With such techniques, brain activation is estimated

using only information included in the fMRI signal itself, thus they belong to the realm of

unsupervised learning methods. Blind signal decomposition methods such as Principal or

Independent Component Analysis (PCA / ICA) [10, 112, 154], combined with clustering

techniques [49, 51], have been used to extract the main response components from fMRI

time series. As with most data driven techniques, the components of activation are extracted

individually from each subject; the intra-subject variability of the BOLD signals does not ef-

fect the analysis results. Therefore, data-driven approaches may also be considered a means

of solving the problem of intra-subject HRF variability. This is corroborated by some inves-

tigations which did not care about the shape of the BOLD signal. For example, Backfrieder

et al. [6] used Principal Component Analysis (PCA) for fMRI data analysis, visual and

motor stimulation experiments. They showed that their method yielded an accurate abso-

lute quantification of the activity distribution in the brain. Also, McIntosh et al. [102] have

proposed Partial Least Squares (PLS) as a powerful multivariate analytic tool to identify

brain activity patterns. They used event-related fMRI data to proof that their method could

produce a robust statistical assessment regardless any assumptions about the shape of the

HRFs.

Recently, an empirical nonlinear analysis tool for univariate and one-dimensional com-

plex, non-stationary temporal signal variations has been pioneered by N. E. Huang et al.

[59]. Afterwards, an extension to multi-dimensional and multi-variate spatio-temporal sig-

nal variations was put forward by Nunes et al. [110], Mandic et al. [127] and, recently,

especially by Wu et al. [166]. Such techniques are commonly referred to as Empirical

Mode Decomposition (EMD), and, if combined with Hilbert spectral analysis, they provide

a Hilbert-Huang Transform (HHT) of the data. They adaptively and locally decompose

any non-stationary signal in a sum of Intrinsic Mode Functions (IMFs) which represent
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zero-mean, amplitude and frequency/spatial-frequency modulated components. EMD, and

its two-dimensional counterpart (2DEMD), represent a fully data-driven, unsupervised sig-

nal decomposition which does not need any a priori defined basis system. In contrast to

competing Exploratory Matrix Factorization (EMF) techniques like Independent Compo-

nent Analysis (ICA) [24, 29] and Nonnegative Matrix and Tensor Factorization (NMF/NTF)

[30], EMD also satisfies the perfect reconstruction property, i.e. superimposing all extracted

IMFs, together with the residual slowly varying trend, reconstructs the original signal with-

out information loss or distortion. Thus EMD lacks the scaling and permutation indeter-

minacy familiar from blind source separation techniques [34]. Because EMD operates on

sequences of local extremum, and the decomposition is carried out by direct extraction of the

local energy associated with the intrinsic time scales of the signal itself, the method is thus

similar to traditional Fourier or Wavelet decompositions. It differs from the wavelet-based

multi-scale analysis, however, which characterizes the scale of a signal event using pre-

specified basis functions. Owing to this feature, EMD, and even more so its noise-assisted

variant called Ensemble Empirical Mode Decomposition (EEMD), is highly promising in

dealing with problems of a multi-scale nature. But the interpretation of IMFs is not straight-

forward, and it is still a challenging task to identify and/or combine extracted IMFs in a

proper way so as to yield physically and/or physiologically meaningful components, espe-

cially with two-dimensional signal distributions. Within 2DEEMD, two-dimensional IMFs,

which represent the same spatial scale, are combined to more global bi-dimensional IMFs,

henceforth called BIMFs, which reveal characteristic underlying textures of the spatial in-

tensity distributions, and allow for a more transparent and intuitive interpretation. At its

core, however, this thesis presents a novel method of envelope surface interpolation based

on Green’s functions, which called Green’s function in tension-based BEMD (GiT-BEMD).

The latter shows efficiently usability in image processing and decomposition in terms of

reducing computation load and extracting pure BIMFs ( free of artifacts). Such artifacts

are accompany with extracted BIMFs by a canonical BEEMD and cannot be avoid. Note,

these artifacts are not related to the data itself, but it is produced because of the nature of

decomposition of a canonical BEEMD. Also, by analyzing fMRI images, the dissertation

shows, using GiT-BEEMD, many characteristics of such biomedical signal.

On the other hand, automated feature detection proofs especially useful in cognitive

neuroscience research. The improvements of neuroimaging methods such as functional

magnetic resonance imaging (fMRI) allows neurophysiologists to investigate thousands of

locations in the brain while subjects are performing cognitive tasks. For example, Kriegesko-

rte et al. [75] used searchlight approaches which multivariately test the information in small

groups of voxels centered on each region in the brain. Also classification methods that

analyze the brain as a whole have been tested (e.g. [55, 107]). They are typically based

on Beta Images (β -images) resulting from a linear regression analysis, calculated by pow-

erful tools like the widely used Statistical Parametric Mapping (SPM), which statistically

examine each voxel separately. Features extracted from such images were, for example,

used in lie-detection based on a Support Vector Machine (SVM) classifier, which was used

to discriminate between the spatial patterns of brain activity associated with lie and truth

[170]. Lately, there has been a growing interest in state-of-the-art classification techniques
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for investigating whether stimulus information is present in fMRI response patterns, and

attempting to decode the stimuli from the response patterns with a multivariate classifier.

However, little is known about the relative performance of different classifiers on fMRI

data. These techniques have been successfully applied to the individual classification of a

variety of neurological conditions [42, 68, 78, 151], and allow capturing complex multivari-

ate relationships in the data. Multivariate machine learning methods allow for multi-voxel

pattern analysis and can reveal patterns amongst voxels in fMRI data [57, 108]. And so may

provide much more detailed information about brain activity, i. e. not only local increases

but distributed patterns of activity are identified.

Beside, pattern-based classification methods arise with increasing frequency in the func-

tional neuroimaging area [56, 66, 105]. These methods use machine learning algorithms

to analysis different mental states, behavior and other variables from fMRI images. Con-

trary to other methods, a machine learning classifier is complex to implement but it makes

a fundamental advance in the state-of-the-art by linking patterns of brain activity to exper-

iment design variables [115]. No matter which analysis approach is used, the study of the

relationship between function and structure in the human brain, based on the analysis of sub-

jects individually or across groups, is fundamental to further our understanding of cognitive

processes. In this respect, voxel-based spatial normalization is required for multi-subject

studies in order to bring fMRI images of different subjects into the same coordinate system,

such as Talairach space [147] or Montreal Neurological Institute and Hospital (MNI) coor-

dinate system space [41]. After spatial normalization, all subjects should be registered to

such a standard space for the same coordinates to correspond to the same brain structure.

Any further analysis can then be applied in this standard space. This method thus relies on

the assumption that for all spatially normalized subjects, the same coordinates in standard

space correspond to similar brain structures with identical functions. However, even though

many registration methods have been proposed [21, 175], due to the limitation of the al-

gorithms and the complexity of human brain analysis, the problem of properly correcting

registered image data still exists. Slice timing correction and motion correction are applied

routinely to the fMRI images, meanwhile. Then, classically, the fMRI data is processed

with a General Linear Model (GLM). Many methods have been proposed to parcellate the

brain non-invasively [119, 124, 140]. Coulon et al. [35] have proposed a method that uses

hierarchical grey-level blobs to describe individual activation maps in terms of structures.

A comparison graph is constructed based on these blobs for group analysis. This method

can be considered as one of the earliest studies to use parcellation for the analysis of func-

tional activation maps. Later, Flandrin et al.[45] presented parcellation as a way of dealing

with the shortcomings of spatial normalization for model-driven analysis. They parcellate

the brain of each subject into many functionally homogeneous parcels with GLM parame-

ters and group analysis is implemented on the parcels. However, this method is specifically

designed for GLM analysis.

In general, classification analysis tests hypotheses in terms of separating pairs (or more)

of conditions. Note that the hypothesis is that a different pattern of activity occurs in the

voxels making up a region and not that the activation level is different. This enables us

to stay away from interpreting BOLD patterns in terms of activated voxels, a term which
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means that these neurons are more active than others, which may or may not be correct [39].

The type of hypothesis, and its associated test, is especially useful if the conditions under

investigation recruit different neural networks. Hence, in this thesis, a visual detection task

is used where spatially distributed Gabor patterns had to be grouped into continuous con-

tours according to their relative orientation and position [44]. Because the contours extend

beyond the receptive field size of neurons in lower (occipital) visual processing regions, an

integration across space, administered through parietal and frontal brain activity, is neces-

sary for contour integration and detection [132]. The fact that partly different brain regions

are involved into contour and non-contour processing renders the task challenging for a

whole-brain classification analysis.

Previous neuroimaging results on contour integration suggest that both early retinotopic

areas as well as higher visual brain sites contribute to contour processing. Kourtzi and

his colleagues conducted a set of fMRI adaptation studies with macaque monkeys as well

as healthy human participants [3, 4, 72, 73]. The subjects adapted to arrays of randomly

oriented Gabor patches until sudden orientation changes revealed either a contour within

the fluctuating stimulus, or a random pattern remained. If a contour emerged from the

stimulus fluctuation, the BOLD responses increased all along early visual areas V1 to V4,

as well as in lateral occipital and posterior fusiform areas within the inferior temporal lobe.

Furthermore, for all areas, the BOLD increase relative to the on-contour condition was

higher for detected (perceived) compared to undetected contours [3].

Other authors combined magneto- or electro-encephalographic (MEG/EEG) recordings

with source reconstruction methods to investigate the temporal dynamics and the neural

sources of contour processing. They uniformly showed that differences between contour

and non-contour stimuli do not occur before 160 [ms] after stimulus onset, within the N1 to

P2 time range of the Event-Related Potentials or Fields (ERP/ERF). Neural sources of the

N1/P2 differences were located within middle occipital [122, 149] and occipito-temporal

areas [141], as well as in primary visual cortex [122, 141]. These results generally comply

with the view that different visual areas contribute to contour perception. Additionally, due

to the relatively late onset of ERP/ERF differences in primary visual areas, they suggest that

the increased BOLD and ERP responses in early visual cortex during contour processing

are mainly driven by feedback from higher visual sites.

Anyway, understanding and analyzing how the human brain functions has always been

one of the big challenges and the ultimate goal of neuroscience. Studying the human

brain is one of the most important topics in many research areas, including neuroimaging,

biomedicine, psychology, and information theory. Current knowledge of brain structure

and function is still quite modest, although growing fast lately, due to modern imaging and

analysis techniques. Also, in machine learning, the increasing knowledge of the brain can

lead to new theories in, e.g., signal processing, neural computation, pattern recognition, ma-

chine vision, artificial intelligence and so on. The theoretical models can, in turn, be used

to depict or predict monitored behavior in the real brain. The cooperative benefits have led

to the fusion of neuroscience and information technology into a rapidly growing research

field called neuroinformatics. The difficulty in understanding the brain has added to the

excitement of the research and cooperation extended between different fields to facilitate
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this complication. For example, this work was conducted in close collaboration with the

group of Computational Intelligence and Machine Learning (CIML) in the Department of

Biophysics and Physical Biochemistry of the University Regensburg and the chair of Exper-

imental Psychology (courtesy of Prof. Greenlee) of the Department of Psychology of the

University of Regensburg.

Hence, this dissertation is an interdisciplinary research project that presents new solu-

tions for analyzing and extracting the information buried in biomedical images by develop-

ing new tools, like the Green’s function-based BEEMD and combining existing techniques

such as BEEMD with ICA. Such solutions mainly focus on enhancing the quality, strongly

reducing the computational cost and enhancing usability greatly. These issues are associ-

ated with many different scholarly disciplines, most notably information engineering, psy-

chology and computer science. Thus, so to speak, this work is a typical information science

(IS) project, as IS has many connecting factors to extracting hidden and useful information

as well as to developing a user-friendly tool for image processing.

1.1 Outline of the dissertation

This thesis is organized as follows:

• In the rest of this chapter, the related publications with this thesis, and others which

the author has contributed during his PhD, are listed .

• Chapter 2 presents some theoretical background about the human brain and intro-

duces functional brain imaging, with the focus on fMRI. Also, the history of contour

integration and visual information processing are discussed briefly. Then, this chapter

is closed by providing a short background about metaheuristics.

• Chapter 3 thoroughly explores the metaheuristics EMD, EEMD and its extension to

2DEEMD. The latter will be used in this thesis for extracting proper textures from

fMRI images recorded while performing a cognitive task, more specifically a contour

integration task while viewing oriented Gabor patches presented as visual stimuli.

Following, shortcomings of canonical BEEMD are described such as a huge com-

putation load or several artifacts occurring during the decomposition. To overcome

such problems, a novel method of envelope surface interpolation based on Green’s

functions, which called Green’s function in tension-based BEMD (GiT-BEMD), is

presented in this thesis. The new method is based on Green’s functions for splines un-

der tension, and is used to estimate the upper and lower envelopes of local extrema of

the recorded activity distribution. Including a tension parameter greatly improves the

stability of the method relative to gridding without tension. Based on the properties

of the proposed approach, it is considered as Fast and Stable BEMD (GiT-BEMD).

Then, simulation results are presented which demonstrate that GiT-BEMD is not only

fast and robust, but also outperforms the canonical BEEMD in terms of the quality

of the BIMFs extracted. Furthermore, an extension of GiT-BEMD to an Ensemble

GiT-BEMD (GiT-BEEMD), is described in this chapter as well.
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• In Chapter 4, another problem is dimensionality reduction by using popular meta-

heuristics, specifically PCA, ICA and NMF, are briefly reviewed, such methods are

partially overlapping discussions in several chapters of this thesis.

• In Chapter 5, sophisticated machine learning methods for classifying extracted tex-

tures (the BIMFs) are reviewed in detail. For classification optimization, the features

extracted from fMRI textures are adhered to further analysis by employing some com-

mon features selection techniques, like Gini index, T-test, information gain and Fisher

score. The extracted features by such techniques are, then, fed into the classifiers. The

latter serve to corroborate the discriminative power of the extracted features, and by

way of proper statistical measures, component images most discriminative for deci-

sion making become identified. Subsequently, activity distributions related within

these BIMFs can be analyzed with respect to activated brain areas involved and with

respect to available knowledge about visual processing and contour integration, accu-

mulated in the open literature. As during the scan the subjects are asked to indicate

the presence or absence of a contour in the stimulus pattern, there are two classes to

differentiate: Contour True (CT) and Non-Contour True (NCT).

• In Chapter 6, the fMRI datasets, experiment and materials, used in this thesis, are

presented in detail.

• Chapter 7 is devoted to discuss the results of analyzing and classifying fMRI images,

taken during the contour integration task, by employing BEEMD and GiT-BEMD.

First, various parameters of the method like the number of sifting steps, the amplitude

of added white noise, the number of extracted BIMFs etc., of the algorithm need to

be varied systematically to develop strategies for determining respective optimal val-

ues, followed by employing a canonical 2DEEMD to extract characteristic textures

on different spatial scales. Then, the extracted features of the latter are fed to a so-

phisticated classifiers, mainly Support Vector Machine (SVM) and Random Forest

(RF). Here the results show the performance of the classifiers, and the sensitivity and

specificity of their responses can be deduced. These classification results will reveal

those component images, and their concomitant neuronal activity distributions, which

best differentiate between the classes, hence contain the most information as to where

neuronal activations are localized in the brain while operating on contour integration

tasks within visual processing. In addition, a sort of fusion of fMRI-EEG data by

combining BEMD/EMD and Independent Components Analysis (ICA) is discussed.

• Finally, a conclusion and important points of this work are drawn in Chapter 8.

1.2 Publications

The work presented in this thesis has been partially published in (or to be publish in) differ-

ent journals or conference proceedings.
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Chapter 2

Background

The idea of localization of function came out at the beginning of the nineteenth century, and

it is still the basis for most neuroimaging studies [64]. This idea behind is that distinct brain

regions actively support particular cognitive processes. Early studies were unsophisticated

and invasive, and often led to incorrect findings. Recent imaging methods are typically non-

invasive and allow for detailed analysis of brain anatomy and function, including tracking

changes during the lifetime of a subject, e.g., studying the progress of diseases. The basic

anatomical structure of the human brain is shown in Fig. 2.1. The brain stem and subcorti-

cal regions are mainly involved in lower level functions and signal processing. Higher level

functions, such as conscious thoughts, are performed in the cortex, i.e., the surface of the

brain. However, higher level functions are based on functions located in subcortical areas.

The division of the cortex into the four lobes, as shown in Fig. 2.1, is somewhat arbitrary.

It is dependent on major sulci and fissures, visible on the surface. In addition, fine details,

like the density of neurons and their size and shape, differ between the areas. Naturally,

the boundaries are not so clear in a real brain, and can change slightly from one subject

to another. Functional brain imaging often deals with the surface of the brain but the con-

nections are also very important. Generally, the neuronal configuration is essentially the

same throughout the surface, but different inputs and outputs of the circumferential nervous

system are connected to different areas of the brain. Thus, each area is specialized in pro-

cessing a different kind of information. Fig. 2.1 shows the location of some of the common

primary processing areas in the cortex. These areas are contralaterally connected across the

hemispheres, meaning that areas on the left hemisphere are mainly responsible for signals

from the right side of the body. The primary areas are further connected to neighboring

areas on the same hemisphere, or ipsilaterally. These higher cognitive areas usually perform

more sophisticated functions based on the processing achieved in the primary areas. The

left and right hemispheres of the brain are functionally quite symmetric, but some complex

tasks have a dominant side. The functional structure of the brain is also very adaptive, e.g.

after an injury, nearby areas can take over some lost functionality.

In this chapter a short overview of the fMRI technique will be given. Visual information

processing, including contour integration, will be described in this context. Also, a short

background about metaheuristics employed in signal analysis is introduced.
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Fig. 2.1 Anatomical structure of the human brain. Top Left: The horizontal view from above

and the sagittal views from Top Middle: the side and Top Right: middle of the brain show the

basic structures and divisions, including the four lobes separated by sulci and fissures. Im-

portant names and directions are also shown. Bottom: Functional areas of the human brain

which shows primary areas involved in processing different sensory information. (adapted

and extended from [169]).
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2.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is an imaging technology which is mainly

used to detect brain activity distributions by measuring neuronal activities [113]. fMRI is a

popular imaging technique, especially in neuroimaging experiments, as it does not involve

any hazardous radiation. It is non-invasive, has a high spatial resolution in the submillimeter

range and is comparatively easy to use. For example, the studied experiment in this thesis,

the scanner produces data on a lattice of size 54× 64× 46 with a uniform spacing of size

(3× 3× 3) [mm3]. Such are called an elementary cube a voxel and consider it a single

data point in this uniformly spaced lattice. Usually, the three-dimensional lattice mentioned

above contains roughly ten thousands voxels. In Fig. 2.2, a 2-dimensional slice of a typical

fMRI image overlaid on a structural MRI brain image is shown. A voxel typically contains

tens of thousands of neurons. Therefore, the observed signal shows the average activation in

a spatial neighborhood rather than individual neuronal activations. Unfortunately, the data

is corrupted with noise from various sources. Some of this noise can be removed through

proper preprocessing steps, but some noise will remain even in the preprocessed data. The

temporal resolution of fMRI is limited by the slow BOLD signal. In our experiments, a three

dimensional image, every two seconds, is obtained. The BOLD signal takes several seconds

to appear. The temporal response of the BOLD signal shows a momentary decrease imme-

diately after neuronal activity increases. This is followed by an increase up to a peak around

six seconds, see Fig. 6.2. The signal then falls back to a baseline and usually undershoots

it around twelve seconds after the increase in neuronal activity. Nevertheless, resolution

levels on the order of milliseconds can be achieved if the relative timing of events are to

be distinguished [104]. Thus, fMRI measures secondary physiological correlates of neural

activity indirectly through the BOLD signal. When comparing across individuals, it is not

possible to quantitatively measure whether the differences are of neuronal or physiological

origin. However, fMRI has been validated in many experiments. For instance, fMRI signals

are shown to be directly proportional to average neuronal activations and are observed to be

in agreement with electroencephalographic (EEG) signals [58].

In neuroscience, fMRI has been an important tool for the investigation of functional

areas that distinguish particular mental processes, including memory formation, language,

pain, learning, emotion and visual information processing [22, 23]. FMRI is a powerful tool

to measure magnetic susceptibility changes of neuronal tissue by tracking changes of blood

flow inside the brain with concomitant changes in diamagnetic oxy-versus paramagnetic

deoxyhemoglobin concentrations. Thus, the difference in magnetic properties leads to small

differences in the local MR signal depending on the degree of oxygenation of the blood,

which in turn depends on the neural activity. In fMRI the BOLD signal is measured, and

this BOLD signal is considered a proper though indirect indicator of neural activity.

Compared to other brain imaging techniques, fMRI has a high spatial resolution on the

order of one millimeter. This technique allows mapping brain functions in various regions

of the human brain. Before MRI techniques have been invented, the most commonly used

functional neuroimaging technique was Positron Emission Tomography (PET). However,

PET imaging has several shortcomings, including the invasiveness of the radioactive injec-
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tions, the expense of generating radioactive isotopes, and the slow speed with which images

are acquired.

Fig. 2.2 fMRI activations (shown with color dots) overlaid on a transverse slice of the corre-

sponding structural MRI brain image (in grayscale). Each color dot represents a particular

voxel. Top (bottom) represents the anterior (posterior) part of the brain. The cross-red line

represents the current coordinates.

2.2 Visual Information Processing

"The whole is other than the sum of the parts", Kurt Koffka. This is very true, because

a primary task of vision is to identify pieces of a visual scene which combine with other

pieces to make up coherent objects. Processes which fulfill the integration of identified

pieces into a unique percept are subsumed under the term visual information processing

(VIP) or perceptual grouping (PG). The human visual system implements such mechanisms

at several levels in the visual hierarchy, based on spatial, temporal, and chromatic features

of the stimulus [8, 53, 81, 116]. Many of these processing mechanisms relate to a set of

rules formulated by Gestalt psychologists early in the last century [69, 158]. Gestalt theory

is focused around the concept of perception, according to which perception tends to be

organized in a regular, simple, and meaningful manner. Based upon this essential proposal,

more specific rules have been suggested to account for well- known patterns of perceptual

grouping. In group of these Gestalt rules, the two principles with the highest prominence

for perceptual organization are proximity and similarity. According to the rule of proximity,

distinct elements are probably to be organized as a collective or whole if they are in the

spatial or temporal domain close to each other (Fig. 2.3a). The rule of similarity specifies

that elements are organized as a whole if they share common features like color, depth,

or size (Fig. 2.3b). Four other principles are included in the original assembly of Gestalt
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rules. The rule of good continuation, as shown in Fig. 2.3c, follows from the notion that a

sequence of separate objects aligned with a common spatial or temporal trajectory will be

grouped due to the perceived foreseen relationship among the elements. Exemplified in Fig.

2.3d is the rule of closure, claiming that elements will be grouped if they follow a closed

overall shape. Although the spatial configuration of the dots in Fig. 2.3d would allow for

the perception of two opposite open arcs, the visual system favors to integrate the dots into

a closed circle. The rule of symmetry captures the notion that objects in a visual scene tend

to be organized by means of symmetrical shapes. Fig. 2.3e is therefore most likely to be

interpreted as two overlapping rectangular frames rather than two polygons bordering on a

central small diamond shape. The last in the set of Gestalt principles is the rule of common

fate, the rule of common fate predicts that humans group elements which have the same

fate, i.e. which move coherently into one direction or which are flashed at the same time.

This seems to be the first Gestalt rule which emerges in the developing visual system. The

significant difference between the rules of common fate and good continuation becomes

apparent in Fig. 2.3f. While good continuation does only account for the grouping of local

elements into three rays, common fate integrates all three rays into a whole percept. In

addition to this and the Gestalt rules, other knowledge about typical feature concurrence in

the world can also be crucial in order to interpret a visual scene. One common example

for such object which can hardly be recognized without prior knowledge about the world

is Richard Gregory’s Dalmatian dog, which is shown in Fig. 2.3g as well. This picture

contains a Dalmatian dog, snuffing on the floor and heading to the left, whose texture is so

similar to the environment, that he can only be detected with the help of prior knowledge.

2.2.1 Contour Integration

As already mentioned, the human visual system tends to group local stimulus elements into

global wholes. Such grouping is often based on simple rules such as similarity, proximity,

or good continuation of the local elements [40]. First attempts to develop an expository

foundation for contour integration considered the task too complex for being achieved by

local feature processing units early in the visual pathway, but argued in favor of a glob-

ally precedent mechanism that integrates information from multiple feature dimensions in

order to reconstruct a visual object [9, 150]. Many discussions were initiated by this con-

cept, which was challenged in neurophysiology [7, 82, 97], neuroimaging [3, 4],[73], psy-

chophysics [43, 44, 74, 101, 106, 132] and computational studies [28, 50, 76, 85, 121, 135],

from which a general concept emerged about how contour grouping is implemented by the

visual system. Contour integration is one of the most elementary tasks during visual feature

integration. The ability to integrate oriented contrast edges (Gabor elements) into a contour

depends on the spacing and orientation of the Gabor elements relative to the path orienta-

tion [44, 83]. So, contour integration is believed to be a fundamental step in the process

of object recognition. Similar principles apply in the multi-stable organization of regular

arrays of elements in rows and columns [31, 32]. Other, more general, stimulus properties

also seem to influence the binding of contour elements: Closed contours are more easily

detected than open ones [74, 121]. Likewise, symmetric contours are also easier to detect
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Fig. 2.3 Stimulus examples of perceptual grouping phenomena relating to Gestalt rules from

left to right and from top to bottom , Proximity, Similarity Continuation, Closure, Symmetry,

Common Fate and Richard Gregory’s picture of a Dalmatian dog. The latter can hardly be

recognized without prior knowledge. (adapted and modified from [120]).
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than asymmetric ones [95]. Indeed, contour integration improves when Gabor elements are

oriented perpendicular to the contour within a closed area, and deteriorates, when these ele-

ments are oriented parallel to the contour [37]. One special instance of perceptual grouping

is a contour integration where local parts of Gabor elements are re-integrated into a good

continuous contour line. The principle of good continuation, however, will, in most cases,

not suffice to readily enable perceptual grouping of contour elements. Sufficient conditions

for contour integration may then be established by complementary measures. Good continu-

ation can be reinforced by providing local elements with information about the course of the

global trajectory such as orientation collinearity, or be augmented with additional Gestalt

rules like proximity, similarity, or closure, as well as with salient feature contrast cues. In

this thesis, a sort of good continuation during contour integration is typically tested with

a stimulus paradigm where arrays of Gabor patches are presented to the subjects (see Fig.

6.2).

2.3 Information-theoretic Metaheuristics

Throughout the human history, especially at the early stages, the methodology in problem

solving has been heuristic or metaheuristic following the trial and error principle. Accord-

ingly, many important inventions came to life by ’thinking outside the box’, and often by

chance; that is heuristics. In fact, the way a human-being follows daily in learning expe-

rience, at least as a child, is dominantly heuristic. However, though the metaheuristic is

not invented, metaheuristics, as a scientific approach to problem solving, is in fact a new

phenomenon, it is difficult to determine a proper date when the metaheuristic method was

first used.

In information-theoretic metaheuristic algorithms, meta- means ’beyond’ or ’higher

level’ procedure, and such algorithms generally represent extensions of simple heuristic al-

gorithms. They perform better than the simpler counterparts, especially with incomplete or

imperfect information or limited computational capacity. All metaheuristic algorithms use a

certain trade-off between local and global search, and provide a variety of good solutions (in

the sense of a Pareto front in multi-objective optimization), which are often accomplished

via randomisation. The latter provides a sufficient way to move from local to global search.

Therefore, almost all metaheuristic algorithms intend to be suitable for global optimization.

Although metaheuristics are quite widely used, there is no commonly accepted definition of

heuristics and metaheuristics in the literature. It is just in the last few years that some re-

searchers in the field tried to propose a definition. Here, two of most interesting definitions

are quoted:

“A metaheuristic is an iterative master process that guides and modifies the operations

of subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

subordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a construction method” [152].

“A metaheuristic is formally defined as an iterative generation process which guides

a subordinate heuristic by combining intelligently different concepts for exploring and ex-
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ploiting the search space, learning strategies are used to structure information in order to

find efficiently near-optimal solutions” [114].

Some researchers still use heuristics and metaheuristics interchangeably. However, re-

cently there is an increasing tendency to name all stochastic algorithms with randomisation

and global exploration as metaheuristics. So, this thesis follows this convention.

Metaheuristics methods can produce acceptable solutions, by using a trial and error prin-

ciple, to a complex problem in reasonable time. The complexity of real problems often leads

to difficulty of searching every possible solution or even combination, the goal is rather to

find an appropriate solution in reasonable time. However, there is no guarantee that an

optimal solution can be found. Furthermore, in some cases there is no a prior knowledge

whether an algorithm will work or not. In other cases, even if it works, it is difficult to

know why it does so. Hence, the main idea behind such metaheuristics algorithms is to have

an effective and practical way which can produce solutions of sufficient quality. Among

such solutions, it would be expected, some of them may be almost optimal, though, again,

there is no guarantee for such optimal solutions. The components of any algorithm based

on metaheuristics are exploitation and exploration [15], like in all bio-inspired optimiza-

tion techniques. Exploration means to explore diverse solutions globally, while exploitation

means to search a current good solution locally by exploiting the information that is found

in a local region. This kind of combination leads to select the best solution which con-

verges to optimality. An intelligent combination of these two main components most often

ensures that global optimality is nearly achieved. Generally, the main properties which can

characterize metaheuristics according to Blum et al. [15] are:

• Metaheuristics are strategies that “guide” the search process.

• The aim is to efficiently instigate the search space to reach a near- optimal solutions.

• Metaheuristic algorithms are composed from range of algorithms, from simple local

search procedures to complex learning processes.

• Metaheuristic algorithms usually are not deterministic but sort of approximation algo-

rithms.

• Metaheuristics may mix mechanisms to avoid problems in confined areas of the search

space.

• The main idea of metaheuristics is to permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics

that are controlled by the upper level strategy.

• Currently more advanced metaheuristics use search experience (embodied in some

form of memory) to guide the search.
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In short, metaheuristics are high level strategies for exploring search spaces by using

diverse techniques. Throughout this thesis sophisticated heuristics, such as PCA, ICA, SVM,

BEEMD and the newly proposed variant of of BEMD (GiT-BEMD), are employed to extract

textures, reduce dimensionality, process and optimize features for further analysis.





Chapter 3

Textures Extraction

Although there is no conventional definition of an image texture so far, it can be understood

as an homogeneous pattern or spatial arrangement of pixels, which can be easily detected by

the eyes and recognized by the brain. Texture are believed to be a rich source of visual infor-

mation. Textures are composed of a large number of more or less ordered similar patterns,

giving rise to a perception of homogeneity [52]. Therefore, texture is an important approach

to segment and describe different regions of an image. Generally speaking, textures are

complex visual patterns composed of entities, or sub-patterns, that have characteristics like

brightness, color, shape, etc [133]. The local sub-pattern properties give rise to perceived

lightness, directionality, coarseness, etc., of the texture as a whole [133]. Still these char-

acteristics alone sometimes cannot describe the texture sufficiently well. Furthermore, a

texture may consist of a structured and/or random placement of elements, but also may be

without fundamental sub-units. Commonly, three principal approaches to describe the tex-

ture of a region used in image processing are: statistical properties, structural properties,

and spectral properties [52].

In this thesis, two major stages in biomedical fMRI image texture analysis are consid-

ered. The first stage concerns textures extraction. It tries to reveal characteristic information

buried in an fMRI image, which is able to accurately describe its texture properties in terms

of wide-sense stationary patterns on different scales. The second stage consists of three

main issues [98]:

1. Texture discrimination to define the region of interest related to our perceptual task,

each corresponding to a perceptually homogeneous texture for contour integration.

2. Feature extraction from identified textures to compute a characteristic quantity of a

digital image able to numerically describe its texture properties .

3. Texture classification to determine to which of a classes (contour and non-contour) a

homogeneous texture region belongs.

In this Chapter, the techniques of the first stage are discussed in detail, i.e. texture

extraction. Results obtained from this stage are subjected to further analyze like feature

extraction, texture discrimination and texture classification in the next chapters.
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Many decomposition algorithms, for example wavelet algorithms, have been employed

to figure out if they could serve as adaptive decompositions for any signal [88]. But because

of combining filters and cost functions with different signals in such algorithms renders

this undertaking difficult. However, EMD deems a perfect tool to achieve this task. It is

an adaptive decomposition with which any complicated signal can be decomposed into its

Intrinsic Mode Functions (IMF). EMD is an analysis method that can expose details of any

non-stationary signal and gives a better understanding of the physics behind the signals.

Additionally, and because it can describe short time changes in frequencies that cannot be

achieved by Fourier spectral analysis, it can be used for nonlinear and non-stationary time se-

ries analysis. For every IMF, and according to its representation as a complex signal, one can

deduce from its time-dependent phase a well-defined instantaneous frequency. This adds the

possibility for a time-frequency analysis via a Hilbert-Huang Transform (HHT). Thus, one

of the ultimate goal for every EMD is to find a decomposition of a signal which makes it

possible to use the instantaneous frequency for time-frequency analysis of non-stationary

signals. Hence, this powerful technique provides an adaptive decomposition technique for

any multi-dimensional nonlinear and non-stationary signal in the context of an fMRI image

analysis.

This chapter is dedicated to understanding EMD in terms of one and two dimensions.

These algorithms are explained and put the focus on the latter, BEMD and Git-BEMD,

which are more relevant for our data. This chapter begins with a review of an EMD applied

to time series signals. To remember, because that EMD and BEMD lack a mathematical

background and formalism on which it is based. Thus, the concept is truly empirical. In this

work, such empirical approach is kept as new methods and variants of BEMD are expanded

and developed, especially to two-dimensional images. Two main BEMD algorithms are pre-

sented, the canonical BEMD and a new approach, called GiT-BEMD as mentioned before

in chapter 1. Both decompose an image into a number of BIMFs and a residue, the latter in

an especially fast and robust manner. This latter quality makes it possible to use GiT-BEMD

routinely for image processing. Finally, signal oscillations in the traditional frequency con-

cept are briefly described, particularly a Hilbert-Huang spectrum. An intuitive examples of

such an implementation are investigated and show its shortcomings as well.

3.1 Empirical Mode Decomposition

Roughly a decade ago, an empirical nonlinear analysis tool for complex, non-stationary

time series has been pioneered by N. E. Huang et al. [59]. It is commonly referred to as

Empirical Mode Decomposition (EMD) and if combined with a Hilbert spectral analysis it

is called Hilbert-Huang Transform (HHT). It can be applied to any non-stationary and also

nonlinear data set, and represents a heuristic data decomposition technique which adaptively

and locally decomposes any non-stationary time series in a sum of Intrinsic Mode Functions

(IMF), by the so-called sifting process . The sifting process locally sieves out oscillations

at certain scales, starting with the highest frequency oscillation in the following iterative

procedure:
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1. Initialization: set r(tn) = X(tn) . Identify all local maxima and local minima of r.

2. Interpolate the local maxima (resp. minima) to obtain the upper envelope emax and

local minima (resp. maxima) to obtain lower envelop emin, by a suitable interpolation

techniques; for instance cubic splines interpolation.

3. The mean m = [emax+emin]/2 is computed and subtracted from r to obtain r′ = r−m.

4. Update r by r′. Repeat steps 1 to 3 until the stopping criterion is met.

To get IMF, the stooping criterion must match two conditions:

• zero-mean amplitude and frequency modulated components, i.e. the local average of

upper and lower envelope of an IMF has to be zero;

• An IMF has only one extremum between two subsequent zero crossings, i.e. the

number of local extrema and zero crossings differs at most by one.

Note that an IMF can be considered roughly stationary, as long as the first condition is

obeyed, i.e the local mean estimation with envelopes does not deviate from the true local

mean. Hence, dealing with stationary data renders its analysis much easier. But an IMF may

have amplitude and frequency modulation as is shown in Fig. 3.1.
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Fig. 3.1 Shows an Intrinsic Mode Function (IMF) with amplitude and frequency modulation.

Note further, that there is no a strict way to determine the number of inherent modes

in advanced. Wu et al. [165] suggested that the number of IMFs extracted from a time

series is roughly equal to L≈ log2(N); where N denotes the number of samples of the time

series. Anyway, sifting progresses as long as two conditions are met: the signal has at least

one minimum and one maximum and riding waves are excluded. The latter are used to

identify intrinsic modes. Riding waves could be included in the signal. Such riding waves

lead a signal to have its own characteristic scale [86]. Thus, the features extracted from the

original signal are still dominant in the IMFs extracted by EMD because IMFs are created by

searching the riding waves. Additionally, the EMD process can expose oscillations which

are not clearly seen by the human eye in the original signal.

Most importantly, EMD represents a fully data-driven, unsupervised signal decompo-

sition and does not need any a priori defined basis system. EMD also assures perfect



3.1 Empirical Mode Decomposition 22

reconstruction, i.e. superimposing all extracted IMFs together with the residual trend re-

constructs the original signal without information loss or distortion. However, if only par-

tial reconstruction is intended, it is not based on any optimality criterion rather on a binary

include or not include decision. The empirical nature of EMD offers the advantage over

other signal decomposition techniques like Exploratory Matrix Factorization (EMF) [77] of

not being constrained by conditions which often only apply approximately. Especially with

cognitive image processing, one often has only a rough idea about the underlying modes or

components, and frequently their number is unknown.

Eventually, the original signal x(t) can be expressed as

x(t) = ∑
j

c( j)(t)+ r(t) (3.1)

where the oscillatory components c( j)(t) of the signal represent the IMFs and r(t) the re-

maining non-oscillating trend. Consequently, the instantaneous frequency of these IMFs

can be calculated in a meaningful way.

3.1.1 Instantaneous Frequency

Formally, instantaneous frequency (IF) is defined as the time derivative of the time-dependent

phase of the complex representation of the signal under study. Simply speaking, instanta-

neous frequency (IF) denotes the oscillation frequency of a signal at a certain point in time.

But when the frequency is considered in terms of how many cycles occur during a certain

time span, this necessitates the existence of more reference points rather than just one to

measure frequency of a time-dependent signal. Thus, instantaneous frequency is consid-

ered as an ambiguous concept. So, prospecting for alternative definitions of IF has been

motivated by reality where in numerous cases the variability of the phase angle is large

which, in turn, leads to large fluctuations of the IF about the mean value. Anyway, there is

a consensus on the fact that the IF is appropriate when applied to monocomponent signals

[86], which have been loosely defined as narrow band. The definition of monocomponent

is discussed in detail by Cohen [33]. A component is seen as a mountain ridge, the center

forming a trajectory in the time-frequency plane while expansion of this ridge varies. The

frequency spectrum of the components is misleading because these components only exist

locally in time [33]. Boashash [16] explored the instantaneous frequency mathematically

and discussed the interpretation of instantaneous frequency. He discusses the Hilbert trans-

form in the context of an analytical signal, and monocomponent as well as multi-component

signals. Boashash [16] concluded that the meaning of instantaneous frequency is clear but

with multi-component signals a decomposition is needed for it to be meaningful.

Nonlinear time series often features intra-wave frequency modulation. This means that

in addition to inter-wave modulation, the local frequency changes during one oscillation

cycle. Fourier-type transforms cannot extract intra-wave frequency modulation because

wavelets span more than one oscillation [65, 86]. Instantaneous frequency reveals intra-

wave frequency modulation which, traditionally, has been described by harmonics. How-
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ever, nonlinearly distorted harmonics, as produced by Fourier analysis, have no physical

meaning. So, to apply the concept of IF to such signals, to extract underlying meaningful

information, it is necessary to first decompose the signal into a series of monocomponent

contributions. EMD is a powerful tool to carry out this decomposition in a systematic man-

ner. Then, an IF of a resulting mode c j(t) is obtained from its Hilbert transform through a

simple derivative as shown in the following:

H
{

c( j)(t)
}

=
1

π
P

{

∫ +∞

−∞

c( j)(τ)

(tn− τ)
dτ

}

(3.2)

where P indicates the Cauchy principal value. This way, an analytical signal z( j)(t) can be

defined via

z j(t) = c( j)(t)+ iH
{

c( j)(t)
}

= a j(t)exp(iφ j(t) (3.3)

with amplitude a j(t) and instantaneous phase φ j(t) given by

a j(t) =

√

(

c( j)(t)
)2

+
(

H
{

c( j)(t)
})2

(3.4)

φ j(t) = tan−1

(

H
{

c( j)(t)
}

c( j)(t)

)

(3.5)

The instantaneous frequency ω( j)(t) of the signal can be obtained from the time deriva-

tive of the instantaneous phase

ω j(t) =
dφ j(t)

dt
(3.6)

Because this derivative of the time-dependent phase can be applied to only one frequency

at a time, the function in question has to be monocomponent. Thus, multicomponent sig-

nals need to be decomposed. The IMFs satisfy this requirement since EMD extracts each

characteristic oscillation as one component [55, 67, 153]. If a signal has only one frequency

component at a time, its instantaneous frequency can be calculated with this derivative. A

naturally occurring signal usually has more than one frequency component at a given time

[55]. Generally, the concept of intrinsic mode functions is considered because they represent

monocomponent signals.

Eventually, the original signal x(t) can be expressed as
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x(t) = ∑
j

c( j)(t)+ r(t)

c( j)(t) = Re
{

a j(t)exp(iφ j(t))
}

= Re
{

a j(t)exp(i
∫ t

−∞
ω j(t

′)dt ′)
}

(3.7)

where the c( j)(t) represent the IMFs and r(t) the remaining non-oscillating trend. Fur-

thermore, a j(t) denotes a time-dependent amplitude, φ j(t) =
∫

ω j(t)dt represents a time-

dependent phase and ω j[rad/s] =
dφ j(t)

dt
denotes the related instantaneous frequency. Plot-

ting both amplitude a j(t) and phase φ j(t) as a function of time for each extracted IMF

represents a Hilbert - Huang spectrogram [5].

Contrarily, a Fourier Transform decomposes any stationary signal into simple harmonic

components c( j)(t) with globally constant amplitude a j and constant frequency ω j accord-

ing to

c( j)(t) = a jexp(iω jt) (3.8)

Finally, one could get a better understanding of the concept of an IF by examining a chirp

signal visually. A chirp signal, as depicted in Fig. 3.2(le f t), has an obvious interpretation

in terms of a frequency varying linearly over time as is shown in Fig. 3.2(right) with the

phase angle of the analytic signal and the instantaneous frequency computed according to

Eq. (3.5) and Eq. (3.6). As one can see, the Hilbert transform can capture the time variation

of the frequency accurately. Note that when the chirp is represented in the Fourier domain,

the result contains a large number of components with different frequencies and the simple

essence of the signal is lost.

Fig. 3.2 Left: linear chirp. Right: phase angle and instantaneous frequency of the corre-

sponding linear chirp.
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After the main principles of Empirical Mode Decomposition have been presented, the

mathematical properties and other issues of EMD will be discussed in the following. Also,

a few shortcomings will be further investigated, above all errors corrupting the decom-

position at the borders of the time series leading to boundary artifacts. Furthermore, an

overview of recent extensions of Empirical Mode Decomposition, e.g. Ensemble Empiri-

cal Mode Decomposition (EEMD) will be explored. Moreover, an extension of EMD to

high-dimensional signal spaces is thoroughly discussed in this chapter as well.

3.2 EMD Issues

To date, and despite of its considerable success, Empirical Mode Decomposition still has

some restrictions. One of the main difficulties is the lack of a solid mathematical basis.

Hence, issues of mathematical EMD, namely completeness, orthogonality, reproducibility,

stopping criteria, and shortcomings can therefore only be reviewed numerically. In this

context, a short overview of such terms linearity and stationarity are given first.

3.2.1 Reproducibility

Reproducibility is the ability to correctly and fully reproduce an entire collection of Intrinsic

Mode Functions (IMFs) when decomposing the original dataset, either by ones own EMD

implementation, or by someone else working independently on the dataset, as long as all the

modalities and implementation variants of the EMD algorithm are kept constant. Even when

some of the parameters of the EMD algorithm are changed, as for example the stopping

criterion, results generally may be different in terms of quantity but not of quality. So the

lack of reproducibility sometimes leads to difficulties in interpreting the message of the

results in a meaningful and consistent way.

Settings of the Empirical Mode Decomposition (EMD) algorithm can be implemented

in different ways. Thus, this could lead to difficulties in choosing the optimal parameters

of an EMD. Because the decomposition strongly depends on the choice of parameters im-

plemented by an algorithm, the reproducibility of the decomposition cannot be guaranteed

always. Among the critical options are the envelope construction, the boundary conditions

and the stopping criterion, which will be discussed in next sections. Some of these issues

are shortly presented by Peel et al. [118] and Rilling et al. [129]. They concluded that

the quality of the resulting decomposition of different EMD algorithm implementations can

only be tested empirically and numerically using toy data experiments. With this in mind,

the implemented variants of the EMD algorithms used throughout this thesis were tested in

advance on toy examples.

3.2.2 Stopping Criterion

A critical option of the EMD procedure is the stopping criterion of the sifting process. It

should be remembered that the sifting process does not have any mathematical basis for pro-

ducing IMFs. Thus any stopping criterion must be based on heuristics. The sifting process is



3.2 EMD Issues 26

repeated until a new IMF is found i.e. k− sifting steps are performed until the conditions for

an IMF is satisfied. So, choosing an inappropriate stopping criterion, leads to too many iter-

ations which, in turn, tends to over-decompose a signal leading to what is called over-sifting

[86]. As a result, the supposedly meaningful IMFs turn to meaningless modes. There is, so

far, no strict way to avoid this problem completely. Nevertheless, the commonly accepted

way is to go on sifting until a certain condition for the standard deviation between consec-

utive components is met. If two components from sequential iterations are close enough to

each other, it is supposed that the extracted component is actually the oscillation mode [86],

hence is considered an IMF. The standard deviation between successive components hi(k−1)

and hik during the kth iteration is defined in the following equation

σi,k =

√

√

√

√

N

∑
n=1

(

hi,k−1(t)−hi,k(t)
)

h2
i,k−1(t)

< θ (3.9)

The predefined threshold θ should be small enough in order to enable the sifting process

of extracting all the oscillatory modes. A large threshold θ does not work out all sifting steps

and yields poor modes only. Furthermore, larger thresholds might cause early stopping and

leave some modes unseparated. Huttunen et al. [60] suggest to set the threshold between 0.2
and 0.3 depending on the assumption that all extracted components are intrinsic mode func-

tions (IMFs), indeed. However, a more serious problem with this Cauchy-like convergence

criterion is that it does the test for an IMF only based on the two defining conditions of an

IMF [59]. To address this problem, another stopping criterion should be added by selecting

a predefined number J of sifting steps. If the number of extrema and zero crossings are the

same or differ at most by one after J sifting steps, a component is considered an IMF. In

this way, the stopping criterion becomes active, but there is no guaranty that this “IMF” has

global zero-mean. Alternatively, Rilling et al. [129] proposed a way to guarantee that the

mean stays close to zero almost everywhere, and at the same time is taking into account

large deviations from zero which might occur locally. This is done by using two predefined

thresholds θ1, θ2, and comparing the amplitudes of the mode with an evaluation function

σ(t) depending on the upper and lower envelopes U(t) and L(t), respectively .

σ(t) =

∣

∣

∣

∣

∣

(

U(t)+L(t)

U(t)−L(t)

)∣

∣

∣

∣

∣

(3.10)

Then the sifting process is repeated until σ(t)< θ1 for some prescribed fraction (1−α)
of the total duration, while σ(t)< θ2 for the residual. The entire implementation for EMD

stops when the residuum r(t) is either a constant, a monotonic slope or contains only one

extremum.

Finally, the number of sifting steps can also simply be fixed. Wu and Huang [164]

suggested that roughly 5 sifting iterations are enough to meet the stopping criterion. In any

case, to guarantee convergence and stability of the resulting IMFs, a suitable number of



3.2 EMD Issues 27

sifting steps (S-number) should be predefined. Again, the adherence of the resulting IMFs

to the defining criteria for an IMF is also not guaranteed, however, deviations should be

small. Additionally, it has the advantage of creating modes with similar frequency content.

3.2.3 Completeness and Orthogonality

By the nature of the decomposition process, completeness is achieved according to the re-

construction equation:

x(t) = ∑
j

c( j)(t)+ r(t) (3.11)

In addition, completeness also can easily be recognized visually by reconstruction. Fur-

thermore, the difference between the original data and the reconstructed data can also proof

numerically this property by computing, for a complete decomposition, the mean squared

error (MSE). This reconstruction error normally yields

ε =
(

x(t)−
(

∑
j

c( j)(t)+ r(t)
)

)2

/n≃ 10−30 (3.12)

Furthermore, and by the nature of the decomposition, the extracted IMFs are locally

orthogonal to each other [59]. Although this is mostly true in practice, it is not guaran-

teed theoretically. Hence, orthogonality of extracted IMFs should be checked numerically

aposteriori. This could be done by simply rewriting the reconstruction equation as follows:

x(t) = ∑
j

c( j)(t)+ r(t) = ∑
j

X ( j)(t) (3.13)

in which the residual r(t) is added as an additional mode.

Then, consider the square of the signals to check the orthogonality of IMFs:

x2(t) = ∑
j

(X ( j)(t))
2
+2∑

j
∑
k

X ( j)(t)X (k)(t) (3.14)

On the other hand, orthogonality can be used as an indicator for the validity of the

decomposition. Huang et al. [59] suggest an Orthogonality Index (IO) to validate that the

IMFs indeed are very close to a locally orthogonal basis. If the basis is orthogonal at least

locally, all terms of the second part on the right hand side given in the equation Eq. (3.14)

should be zero. Thus the orthogonality index (IO) is defined as:

IO = ∑
t

(

∑
j
∑
k

X ( j)(t)X (k)(t)/x2(t)
)

≃ 0 (3.15)
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3.2.4 Envelope Estimation

A major critical point for EMD is the way how the envelopes are constructed. First, the

extrema (local maxima and local minima) of the data are identified. Then, the local maxima

are connected to each other by using a suitable interpolation method to form the upper

envelope U(t), after which the same is done to the local minima L(t). Next, the mean of

these envelopes m(t) is computed,

m(t) =

(

L(t)+(U(t)
)

2
(3.16)

The ultimate goal is that the mean of the signal should be zero locally everywhere. There

are many interpolation techniques to create the envelops. However, the most common is the

spline interpolation. Splines are functions which are piecewise composed of polynomials of

order j, and which are a sufficiently smooth at the points (which are known as knots) where

the polynomial pieces connect to each other. At these knots, splines comply with certain

conditions like continuity or being k−1 times continuously differentiable. The estimation

of the envelopes is the cornerstone of the EMD implementation. So, the envelopes are im-

plemented to estimate the local mean of the signal for every sample point. Thus, it is of

utmost importance to rather precisely reproduce the local extrema (maxima and minima) of

the function x(t) by the envelope functions. Estimating proper envelopes which precisely

interpolate all extrema of the signal remains a challenge. Cubic splines are most commonly

used to interpolate local maxima and local minima, respectively [59, 129]. Alternative in-

terpolation methods have been proposed by Huang et al. [59] and Peel et al. [118], which

rely on an additional parameter that guaranties a smooth transition between a linear and a

cubic spline. The modifications resulted in minor improvements only, rather they either led

to too many extracted IMFs or increased the number of sifting steps. Also other polynomial

interpolations have been tested [129], but they also lead to increasing numbers of sifting

steps, which, in turn, resulted in over-sifting. In addition, the optimized quadratic cost func-

tions, which introduced to construct the envelopes, are very expensive computationally and

show only moderate improvement [155]. Moreover, B-splines were proposed in [26], and

despite good results the number of extracted modes increased which corrupted their phys-

ical interpretation. In summary, although cubic splines are costly, they generally produce

very good results. Additionally, cubic splines are a good trade-off for practical applications

compared to the more precisely tunable higher order splines, which on the one hand become

even more costly computationally, and on the other hand tend to show large overshoots be-

tween the sample points. As a further alternative, instead of interpolating the extrema of the

studied data directly, the maxima and minima of the high-pass filtered data are used as knots

for the spline interpolation. Then, for interpolation, Hermite polynomials have been applied

[70, 71]. Recently there have been attempts also to estimate local means directly and give up

of the idea of using envelopes. First results [80, 103] are encouraging, but the technique yet

needs to be further investigated and developed. In this thesis, a cubic spline interpolation is

compared to a new approach of envelope estimation based on Green’s function with tension.

The latter method is fast and robust, applicable to data of any dimension and yields results

superior to those obtained with cubic spline envelope estimates.
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3.2.5 Boundary Effects

Determining proper boundary conditions of the splines used for estimating the envelopes is

another critical point of the sifting process. The default boundary conditions of the cubic

spline produce artifacts which need to be alleviated afterwards. Several solutions have been

proposed like mirroring the extrema close to the end edges [129], padding the edges with

ideal waves [59], taking the average of the two closest extrema for the maximum and mini-

mum spline [27], constructing two periodic series from the data by even and odd extension

and then estimating the envelopes using cubic spline with periodic boundary condition [172]

and the SZero approach [117].

An alternative simple way is to remove the corrupted first and last samples of the decom-

position. The latter is sufficient in case the available data is large enough. However, none of

these approaches performs completely optimal. Anyway, the canonical EMD algorithm, in

this thesis, works as described in [125]. The first sample point of the data is considered as

the first maximum and minimum m1 = t1. Then the slope between the second and the third

maxima, (m2|xm2),(m3|xm3), is computed

δ23 =
xm2− xm3

m2−m3
=
△xm23

△m23
(3.17)

According to the computed slope, a straight line is created passing through both the

second and third maximum. Then the intersection point δ23(m1−m2)+ xm2 between the

straight line and the vertical line at m1 is computed and used as the new first maximum

(m1|xm1), if the current value is larger than the x-value of the first sample x(m1)

xm1 = max[δ23(m1−m2)+ xm2,x(m1)] (3.18)

This approach is used similarly for the extrema at the end-effects of the data. However,

an alternative way of dealing with boundary issue of 2D datasets will be introduced later on.

3.2.6 Shortcomings

Because the EMD algorithms are completely empirical, the most serious drawback of it is,

in fact, its lack of any mathematical basis, which allow to quantify the method in objective

terms. Thus, the only way, so far, to carefully evaluate the performance of the method is

employing generated toy data to imitate the decomposition procedure into IMFs and test the

impact of the various parameters and settings of the sifting process criteria. However, the

physical meaning of the extracted modes (IMFs) cannot be guaranteed for most applications.

Additionally, one of the major shortcomings of the original EMD is the so-called mode

mixing, which is defined as an IMF or IMFs either consisting of component signals of widely

separated scales, or a signal of a similar scale existing in different IMFs. Mode mixing is in

most cases a consequence of an existing intermittency in the original signal. Consequently,

the generated IMFs contain not only unwanted aliasing, but also lack any physical meaning.

Furthermore, as stated above, reproducibility of the decomposition cannot be guaranteed,

too. Hence, based on the parameters used, the generated IMFs may be different in terms
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of appearance and characteristics. To alleviate some of these shortcomings, a new noise-

assisted data analysis (NADA) approach has been proposed by Wu et al. [165, 166], called

ensemble empirical mode decomposition (EEMD). Following EEMD is discussed in detail.

3.3 Ensemble EMD

During sifting, mode mixing as well as boundary artifacts can be largely avoided by a vari-

ant called Ensemble Empirical Mode Decomposition (EEMD) which has been introduced

by [165]. It represents a noise-assisted data analysis method. First white noise of finite

amplitude is added to the data, and then the EMD algorithm is applied. These two steps are

repeated many times, and the IMFs are calculated as the mean of an ensemble, consisting of

the signal and added white noise. With a growing ensemble number, the IMF converges to

the true IMF [165]. Adding white noise to the data can be considered a physical experiment

which is repeated many times. The added noise is treated as random noise, which appears

in the measurement. In this case, the n− th noisy observation will be

xn(t) = x(t)+ εn(t) = ∑
j

c
( j)
n (t)+ rn(t), (3.19)

where x(t) is the true signal, εn(t) is the random noise and c
( j)
n = c( j) + εn(t) represents

the IMF obtained for the n-th noise observation. For the sake of simplicity, henceforth the

residuum is denoted as rn(t) ≡ c
(J)
n (t), hence formally include it into the summation over

the IMFs. EEMD considers true IMFs c j and the residuum r as an ensemble average of

extracted IMFs according to

c j =
1

N

N

∑
n=1

c j
n (3.20)

r =
1

N

N

∑
n=1

rn (3.21)

where N represents the number of ensembles. Later on, the assisting noise is added to and

subtracted from the studied data to completely remove remnant noise still residing in the

extracted IMFs after the sifting process. Hence, the EEMD is implemented twice, which

formally can be represented by rewriting the equation above simply as

c j =
1

2N

N

∑
n=1

c j
n (3.22)

r =
1

2N

N

∑
n=1

rn (3.23)

Thus, by averaging the respective IMFs, noise contributions wipe out, leaving only the

true IMFs.
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Noise amplitudes can be chosen arbitrarily but the ensemble number N should be large.

However, Wu et al. [165] suggested a white noise with an amplitude amounting to 0.1
standard deviations of the original signal, which is added to the data at every iteration. With

a growing ensemble number, the ensemble-averaged IMF converges to the true IMF [165,

166]. The number of sifting steps, and the number of IMFs are predefined to render the

extracted IMFs truly comparable. In this way, the stopping of the sifting process does not

take the commitment of the IMF criteria into account, though.

Most importantly, an EEMD reduces the mode mixing and enhances the separation of

modes with similar frequencies. Because of the added noise, the studied data contains a lot

of local extrema which renders the estimation of the envelopes computationally costly. Also

more high-frequency components result, since the white noise is not wiped out completely

in practical applications [165]. However, a new solution for such problems are proposed in

this work, which will be described in this section. Briefly, EEMD is computationally costly

but, due to its advantageous effects, should be considered the canonical EMD.
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Fig. 3.3 Signal in the bottom obtained as the superposition of the waveforms plotted in the

top x1(t) and middle x2(t) to generate an intermittent signal x3(t) = x1(t)+ x2(t).

An illustrative example of the performance of EEMD compared to EMD is given in Fig.

3.3. Two artificial signals are generated:

x1(t) = sin(
πt

10
)

x2(t) = 0.1sin(2πt+5sin(
πt

100
)).∗ (exp(−(t−25)2/10)

+exp(−(t−45)2/10)+ exp(−(t−65)2/10))
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where t is a variable linearly varying between 0 ≤ t ≤ 100, and where 9500 sample points

are taken. Then, both functions are summed up to produce the intermittent signal x3(t) =
x1(t)+x2(t) (Fig. 3.3(bottom)), whereby in the signal x1(t) the oscillation is interrupted for

certain time spans by x2(t) to simulate a situation which often happens in real applications.

Fig. 3.4(left) illustrates the IMFs obtained with canonical EMD while Fig. 3.4(right)

depicts IMFs obtained with EEMD using ensemble number, EN = 50, different noisy sig-

nals to construct an ensemble starting from the original signal. Clearly, canonical EMD

exhibits strong mode-mixing in this case, see IMF1 and IMF2, while EEMD copes quite

well with this complicated signal, see IMF5 and IMF7. However, because the white noise

is not completely canceled out, over-sifting has happened. So, one can see clearly in Fig.

3.4(right) that many unphysical high-frequency components appeared. Hence, one needs ad-

ditional efforts to recognize the correct underlying modes, which have a physical meaning

and interpretation.
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Fig. 3.4 Left: the intermittent signal and extracted modes by canonical EMD decomposition

with 10 sift iteration. Right: the intermittent signal and extracted modes by EEMD, an

ensemble member of 50 and sifting iteration of 10 are used, and the added white noise in

each ensemble member has a standard deviation of 0.1.

Here, a new solution is suggested in order to avoid over-sifting in such an intermittent

signal as follows:
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1. Add white noise with small amplitude; a good amplitude choice is in the range of

(1−9) ·10−4 ·σs of the standard deviation σs of the original signal.

2. The number of sifting steps is adapted during the sifting process as follows:

a. initialize the number of sifting iterations (SR), SR = N×100; where N represents

the predefined number of modes. If the amplitude of the added noise is very

small, the number of sifting iterations should be increased and vice-versa.

b. extract the first noisy mode (IMF1).

c. reduce the number of modes by one N = N−1;

d. set the new number of the sifting iteration itr = log(N(2N2)).

e. extract the next mode

f. repeat steps from c till f.

3. This sifting process extracts modes free from mode mixing and/or over-siffting prob-

lems.
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Fig. 3.5 Left: the signal and extracted modes by EMD algorithm decomposition with a

proposed tiny assisted noise, the added white noise has a standard deviation of 0.0001. Right:

the signal and extracted modes by proposed EMD algorithm decomposition.
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Hence, according to the proposed solution and after the original signal has been decom-

posed, see Fig. 3.5, following notices were observed: when white noise with a small ampli-

tude is added without changing the number of sifting iterations (first step of the proposed

improvements), an EEMD succeeds to estimate the underlying modes rather correctly, but

it still fails to cope with the added noise. Also over-sifting appeared because the intermit-

tency remained in the components IMF1 and IMF2. While applying the proposed method,

see Fig. 3.5 (right), the modes obtained perfectly match the original ones: the added noise

in IMF1, the intermittent signal in IMF2 and the pure signal in IMF3. So the trade-off be-

tween the amplitude of the added noise and the sifting iterations is required. Hence a new

suggestion, to solve this kind of problem, is introduced. In addition to the performance of

this proposed improvement in coping such mode mixing problem, the computational load is

reduced compared to an EEMD-50 analysis roughly 6−fold.

3.4 Bi-dimensional Ensemble Empirical Mode Decomposi-

tion

Soon after its invention, EMD has been extended to higher dimensions [46, 109, 126–

128, 166] including complex-valued data sets [2, 93, 148]. Obviously, two-dimensional

image data sets were of special interest [130]. In a first approach, such two-dimensional

data was treated as a collection of one-dimensional slices, which were decomposed with

one-dimensional EMD. This procedure is called pseudo-two-dimensional EMD [166]. How-

ever, pseudo-2D-EMD needs a coherence structure associated with the spatial scales in a

particular direction, which significantly limits its use. These recent developments in analy-

sis methods for non-linear and non-stationary data sets have received considerable attention

by image analysts. Thus several attempts have been started lately to extend EMD to multi-

array data sets like two-dimensional (2D) data arrays and images. These extensions are

variously known as bi-dimensional EMD (BEMD), image EMD (IEMD), 2D EMD and so

on [38, 87, 90, 91, 109–111, 167, 168]. The most demanding operation of these algorithms

involves an envelope surface interpolation step. In [38] the influence of various interpola-

tion methods is studied, and a sifting process is proposed based on a Delaunay triangulation

with subsequent cubic interpolation on triangles. In [12, 13] the envelope surface interpo-

lation step is replaced by either a direct envelope surface estimation method or radial basis

function interpolators. In [173] a new two-dimensional EMD (2DEMD) method is pro-

posed, which is claimed being faster and better-performing than current 2DEMD methods.

In [167] rotation-invariant texture feature vectors are extracted at multiple scales or spatial

frequencies based on a BEMD. Also, in [109–111] the BEMD-based texture extraction al-

gorithm is demonstrated in experiments with both synthetic and natural images. Finally, the

modified 2D EMD algorithm proposed in [167] implements the FastRBF algorithm in an es-

timation of the envelope surfaces. Some of these works exploit decompositions to compute

texture information contained in the images. Textures are an especially relevant feature of

biomedical images if their subsequent classification is intended as is the goal of this thesis

also.
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Besides a genuine 2D implementation of the BEMD process, 1D EMD has also been

applied to images to extract 2D IMFs or bi-dimensional IMFs (BIMFs) [91, 92]. The lat-

ter technique treats each either row or each column of the 2D data set separately by a 1D

EMD, which renders the sifting process faster than in a genuine 2D decomposition. But

this parallel 1D implementation results in poor BIMF components compared to the canon-

ical 2D procedure due to the fact that the former ignores the correlation among the rows

and/or columns of a 2D image [89]. A major breakthrough has been achieved by Wu et

al. [166], who recently proposed a Multi-dimensional Ensemble Empirical Mode Decom-

position (MEEMD) for multidimensional data arrays. The well-known ensemble empirical

mode decomposition (EEMD) is applied to slices of data in each and every dimension in-

volved. The combination of partial IMFs to the final multi-dimensional IMF is based on a

comparable-minimal-scale-combination principle (CMSC-principle). MEEMD turned out

to be very efficient in practical applications, especially if applied to the two-dimensional

case, and will be used in this thesis to analyze fMRI images taken while subjects were

performing a cognitive task.

Following the BEEMD approach developed by Wu et al. [166] as a canonical BEMD

variant and contrast it with a novel fast and stable bi-dimensional EMD (GiT-BEMD) ap-

proach, that replaces the cubic spline interpolation step by an interpolation with splines in

tension employing Green’s functions [160], are deeply considered. Although, cubic splines

are in widespread use because of their smooth shape, these functions can exhibit unwanted

oscillations between data points. Adding tension to the spline overcomes this drawback.

Here, a technique for interpolation and gridding in bi-dimension EMD applications, using

Green’s functions for splines under tension, is used as well as examining some of the proper-

ties of these functions. The technique is borrowed from geophysics where it is in use already

since more than a decade [159]. Physical sciences have a frequent need for data interpola-

tion and griding. Such tasks are commonly accomplished by averaging [157] and finite

difference methods [20] employing cubic splines on a regular grid. Introducing surface

tension often helps to suppress undesired oscillations of such splines [142]. The Generic

Mapping Tools offer a software package implementing an algorithm which uses continuous

curvature splines under tension [161, 162]. Minimum curvature gridding, based on Green’s

functions of the bi-harmonic operator, has been proposed first by [134]. It offered enhanced

flexibility by employing both data values and gradients to constrain the interpolating surface,

allowed least squares fitting to noisy data sets and could evaluate the surface at any location

instead of being confined to a regular grid. However, the appearance of extraneous inflection

points, common to all minimum curvature methods, still represented a major obstacle to ap-

plications. Wessel and Bercovici [160] generalized the approach of Sandwell by including

surface tension to the Green’s function expansion of the interpolating surface. In summary,

for moderate amounts of data, the Green’s function technique is superior to conventional

finite difference methods because both data values and directional gradients can be used to

constrain the model surface. Also, noise can be suppressed easily by striving a least-squares

fit rather than considering a strict interpolation, and the model can be estimated at arbitrary

locations rather than only on a rectangular grid [160]. Moreover, including surface tension

greatly improves the stability of the method relative to gridding without tension. Recently,
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Wessel presented a Green’s function based general purpose interpolator for both Cartesian

and spherical surface data called Greenspline [159] (available at http:

www.soest.hawaii.edu/pwessel/greenspline).

In this thesis, joining the Green’s function method with the BEMD technique is pro-

posed, thus eliminating the poor interpolation effects and reducing the computation time

for each iteration. Most favorably, this interpolation technique only needs few iterations

for estimating each BIMF. The proposed Green’s function in tension BEMD (GiT-BEMD)

method thus can be a good alternative providing an efficient BEMD processing.

The organization of the rest of this chapter is as follows: Before introducing the novel

concepts of GiT-BEMD, the regular BEMD process is introduced. The detailed description

of the proposed GiT-BEMD algorithm is given, next. Then, the method of detecting local

extrema suggested in GiT-BEMD is explained to further understanding of the proposed

envelope estimation technique, since it requires information about local extrema as its basic

ingredients. The final section, describes the new method of envelope estimation. Further

simulation results with various images comparing GiT-BEMD and canonical BEEMD are

given also in chapter 7.

3.4.1 General BEMD

General BEMD is a sifting process that decomposes X(m,n) into multiple hierarchical com-

ponents known as BIMFs. Similar to 1D sifting process, a 2D can be summarized in the

following iterations:

1. Initialization: set S(m,n) = X(m,n) . Identify all local maxima and local minima of

S(m,n) .

2. Interpolate the local maxima (resp. minima) to obtain the surface upper envelope

emax(m,n) and local minima (resp. lower envelope emin(m,n)) to obtain surface lower

envelop.

3. The mean σ(m,n) = [emax(m,n) + emin(m,n)]/2 is computed and subtracted from

S(m,n) to obtain S′(m,n) = S(m,n)−σ(m,n) .

4. Update S(m,n) by S′(m,n). Repeat steps 1 to 3 until the stopping criterion is met.

3.4.2 Canonical BEEMD

The general BEMD sketched above has been adapted to deal with two-dimensional data ar-

rays, especially images. This canonical BEEMD will be described in detail in the following.
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Analyzing 2D data arrays, for example an fMRI brain slice, one starts by applying EEMD

to each column X∗n ≡ xn of the M×N - dimensional data matrix X

X = [xm,n] =











x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N
...

... · · · ...

xM,1 xM,2 · · · xM,N











(3.24)

The 1D-EEMD decomposition of the n-th column becomes

xn := X∗,n =
J

∑
j=1

C
( j)
∗,n =

J

∑
j=1













c
( j)
1,n

c
( j)
2,n
...

c
( j)
M,n













(3.25)

where the column vector C
(J)
∗,n represents the residuum of the n-th column vector of the

data matrix. This finally results in J component matrices, each one containing the j-th

component of every column xn,n = 1, . . . ,N of the data matrix X.

C( j) = [c
( j)
1 c

( j)
2 · · · c

( j)
N ] = [C

( j)
∗,1 C

( j)
∗,2 · · · C

( j)
∗,N ]

=













c
( j)
1,1 c

( j)
1,2 · · · c

( j)
1,N

c
( j)
2,1 c

( j)
2,2 · · · c

( j)
2,N

...
... · · · ...

c
( j)
M,1 c

( j)
M,2 · · · c

( j)
M,N













(3.26)

Next one applies an EEMD to each row of Eq. (3.26) yielding

C
( j)
m,∗ =

(

c
( j)
m,1c

( j)
m,2 · · ·c

( j)
m,N

)

=
K

∑
k=1

(

h
( j,k)
m,1 h

( j,k)
m,2 · · ·h

( j,k)
m,N

)

=
K

∑
k=1

H
( j,k)
m,∗ (3.27)
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where c
( j)
m,n = ∑K

k=1 h
( j,k)
m,n represents the decomposition of the rows of matrix C( j). These

components h
( j,k)
m,n can be arranged into a matrix H( j,k) according to

H( j,k) =













h
( j,k)
1,1 h

( j,k)
1,2 · · · h

( j,k)
1,N

h
( j,k)
2,1 h

( j,k)
2,2 · · · h

( j,k)
2,N

...
... · · · ...

h
( j,k)
M,1 h

( j,k)
M,2 · · · h

( j,k)
M,N













(3.28)

The resulting component matrices have to be summed to obtain

C( j) =
K

∑
k=1

H( j,k). (3.29)

Finally this yields the following decomposition of the original data matrix X

X =
J

∑
j=1

C( j) =
J

∑
j=1

K

∑
k=1

H( j,k) (3.30)

where each element is given by

xm,n =
J

∑
j=1

K

∑
k=1

h
( j,k)
m,n (3.31)

To yield meaningful results, components h
( j,k)
m,n with comparable scales, i. e. similar spa-

tial frequencies of their textures, should finally be combined [166]. Note, that the CMSC-

principle affords to have K = J. In practice, for two-dimensional data sets this implies

that the components of each row, which represent a common horizontal scale, and the com-

ponents of each column, which represent a common vertical scale, should be summed up

[166].

Hence, the CMSC - principle leads to BIMFs given by

S(k′) =
K

∑
k=1

H(k,k′)+
J

∑
j=k′+1

H(k′, j) (3.32)

which thus yields a decomposition of the original data matrix X into BIMFs according to

X =
K

∑
k′=1

S(k′) (3.33)

where S(K) represents the non-oscillating residuum. The extracted BIMFs can be considered

features of the data set which, according to the CMSC - principle, reveal local textures with

characteristic spatial frequencies which help to discriminate the functional images under

study.
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Fig. 3.6 An illustration of the 2DEEMD decomposition of an fMRI image. IMFs along

each row or column represent textures of comparable scale and are to be summed up to

yield a BIMF. To improve visibility, histogram equalization has been applied on each image

separately.

Fig. 3.6 illustrates the 2DEEMD and the CMSC - principle in case of a decomposition

of an fMRI image. It clearly describes the steps of the 2DEEMD algorithm using an fMRI
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image, i. e. a single brain slice, as an example. The image presented in the upper left corner

represents the original fMRI image. The first column on the left side, with the exception of

the original image in the upper left corner and the reconstructed image represented on the

bottom left side, represents the component images resulting from decompositions along the

x-direction. The columns 2→ 6, except the last row, represent the component images result-

ing from a decomposition along the y-direction of each component image which resulted

from a decomposition along the x-dimension. The last row, except the reconstructed image

on the bottom left side, represents the final BIMFs of the original fMRI image obtained by

applying the CMSC - principle. Thus, canonical BEEMD is applied to the fMRI images

considered in this thesis.

3.5 A Green’s function-based BEMD

With the intention of overcoming the difficulty in implementing BEMD via the application

of surface interpolation, a novel approach of BEMD is proposed here based on a represen-

tation of upper and lower surface envelopes via suitable Green’s functions for spline inter-

polation including surface tension, so-called (GiT-BEMD). Introducing a tension parameter

alleviates surface interpolation problems and greatly improves the stability of the method

relative to gridding without tension. Based on the properties of the new proposed approach,

GiT-BEMD is considered a fast and stable technique for image decomposition. GiT-BEMD

thus differs from the canonical BEEMD algorithm basically in the process of robustly esti-

mating the upper and lower envelope surfaces, and in limiting the number of iterations per

BIMF to a few iterations only. Hence, the GiT-BEMD is considered an algorithm of supe-

rior efficiency compared to other BEMD algorithms. The details of the extrema detection

and surface formation of the GiT-BEMD process are discussed in the following section.

3.5.1 Extraction of local extrema

Local extrema are points that have the largest or smallest pixel values relative to their K-

connected neighbors, therefore in a 2D image the pixel with coordinates (x,y) has 8 con-

nected neighbors with coordinates (x±1,y),(x,y±1),(x±1,y±1),(x±1,y∓1). The 2D

region of local maxima is called a maxima map, and the 2D array of local minima is called

a minima map, respectively. Like some BEMD variants, a neighboring window method

is employed to detect local extrema during intermediate steps of the sifting process for es-

timating a BIMF of any source image. Here, a data point/pixel is considered as a local

maximum (minimum), if its value is strictly higher (lower) than all of its neighbors. Let

P = {Pi|i = 1, ....N} be a set of local minima (maxima) of an x×y- dimensional data matrix

such that it exists a small (large) neighborhood around any such locally optimal point Pi on

which the pixel value is never larger (smaller) than f (xi,yi) at Pi. Local extrema occur only

at critical points. Let S(x,y) = fxx fyy− ( fxy)
2 measure the curvature of the surface. If S > 0

at a critical point, then the critical point Pi is a local extremum. The signs of fxx and fyy

determine whether the point is a maximum or a minimum. If S ≤ 0 at a critical point, then
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the point Pi is a saddle point. In practice, a 3×3 window results in an optimal extrema map

for a given 2D image for many applications.

3.5.2 Green’s function for estimating envelopes

In BEMD, spline interpolation is basically used to find the smoothest surface passing through

a grid of irregularly spaced extrema, either maxima or minima. In this work it is proposed to

employ Green’s functions, deduced from proper data constraints, to expand the interpolating

surface under tension. Thus the envelope surfaces connecting local extrema in 2D space are

determined to minimize the curvature of the surface in the presence of surface tension [160].

Interpolation with Green’s functions implies that the points of the interpolating envelope

surface can be expressed as

s(xu) =
N

∑
n=1

wnΦ(xu,xn) (3.34)

where xu denotes any point where the surface is unknown, xn represents the n-th data con-

straint, Φ(xu,xn) is the Green’s function and wn is the respective weight in the envelope

representation. Several works discuss the use of Green’s functions in interpolation prob-

lems (see for example [159]). Following the basics of the Green’s function method for

spline interpolation using surface tension are summarized.

It has been shown by Sandwell [134] that the Green’s function Φ(x) obeys the following

relation at any data constraint xn, n = 1, . . . ,N

[

D∆2
op−T ∆op

]

Φ(xu,xn) = δ (xu−xn) (3.35)

where, ∆2
op and ∆op = ∇2, denote the bi-harmonic, the Laplace and the Nabla operator,

respectively, D is the flexural rigidity of the curve or surface, T is the tension used at the

boundaries, and Φ(xu,xn) represents the Green’s function containing the spatial position

vectors xu,xn as argument. With vanishing surface-tension, i. e. T → 0, the minimum

curvature solution Φ(xu,xn) = x2 log(x), x = |xu− xn| is achieved [134]; while in case of

a vanishing surface rigidity, i. e. D→ 0, the solution approaches Φ(xu,xn) = log(x). The

general solution is expected to retain these limiting characteristics. To obtain the former,

rewrite Eq. (3.35) in terms of the curvature Ψ(x) = ∇2Φ(x) of the Green’ s function and

transform it to the conjugate Fourier domain where it then reads

[

∆op +
p2

k2

]

Ψ(k) =− 1

T

p2

k2
. (3.36)

Here k = |k| represents the radial wavenumber, p2 = T
D

, k denotes the wavenumber vector

and Ψ(k) represents the Fourier transform of Ψ(x). In Fourier space, the solution is obtained

as

Ψ(k) =− 1

T

( p2

k2 + p2

)

(3.37)
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From this the general solution of Eq. (3.35) in a 2-D spacial domain [160] can be

achieved by using the inverse Hankel transform as

Ψ(x) =− 1

T

∫ ∞

0

p2

k2 + p2
J0(kx)kdk =− 1

T
p2K0(px) (3.38)

where K0 denotes the modified Bessel function of the second kind and order zero given

by

K0(px) =

∫ ∞

0

cos(kpx)dk
√

k2 + p2
∝

{

exp(−px) if px→ ∞
− log(px) if px→ 0

(3.39)

Integrating Ψ(x) twice and rescaling, finally, yields the Green’s function Φ(x) and its

local gradient ∇Φ(x) as

Φ(xu,xn) = log(p|xu,xn|)+K0(p|x,xn|) = log(pxun)+K0(pxun) (3.40)

∇Φ(xu,xn) =

[

1

pxun
−K1(pxun)

]

p
(xu−xn)

|xu−xn|
(3.41)

where p ∝ T represents the tension parameter, |.| denotes the Euclidean distance and K0(.)
represents the modified Bessel function. Hence, by decreasing the tension parameter p ∝ T ,

the solution is expected to reach the minimum curvature solution represented by the bi-

harmonic Green’s function [134]. In contrary, increasing the tension parameter T , thus also

p, renders the arguments of Φ(x) large and leads to an interpolating surface dominated by

tension. Thus varying the tension p achieves a continuous spectrum of Green’s functions

reflecting the trade-off between the minimum curvature solution driven by the log(px) term

and the impact of the surface tension via the modified Bessel function K0(px). Thus, Includ-

ing N data constraints yields for the defining equation and its solution [134]

∆op

[

∆op− p2
]

c(xu) =
N

∑
n=1

wnδ (xu−xn)

c(xu) =
N

∑
n=1

wnΦ(xu−xn) (3.42)

The coefficients wn can be obtained by solving the system of linear equations Gw = c

where the Green’s matrix collects all Green’s functions Φ(xm− xn) at the data constraints

m,n = 1, . . . ,N. Corresponding slopes sm in directions n̂m can be obtained by evaluating the

relations

sm =
N

∑
m=1

wm∇Φ(xm−xn) · n̂)m m = 1, . . . ,N.
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In summary, the interpolation procedure is based on two steps: the first step estimates

the weights w = [w1 w2 . . .wP] and the second step estimates the interpolating envelope

surface:

• The surface values s(xn) = [s(x1, . . . ,s(xN]
T ≡ c = [c1,c2, . . . ,cN ]

T are known in a

total of N locations xn = [xn,yn]
T , then using the interpolation Eq. (3.34) for each of

the known points a linear system with N equations is obtained

Gw = c

where n-th row of matrix G is the evaluation of the Green’s function Φ(xn,xm),m =
1,2 . . .N. Therefore solving for the weights w = G−1c.

• Using the weights w, the value s(xu)≡ cu of the envelope surface can be estimated at

any point xu by solving Eq. (3.34), which can be re-written as

cu = wT Φ (3.43)

where the vector Φ = [Φ(xu,x1) Φ(xu,x2) . . .Φ(xu,xN)]
T contains the Green’s func-

tion values of all distances between the N data constraints and the considered location.





Chapter 4

Features Extraction

A contour detecting system consists of a series of stages, of which the texture extraction,

feature extraction and classification are the most crucial for its overall performance. The

feature extraction reduces the dimensionality of the sample space of the extracted textures

by extracting the most discriminatory information. The feature extraction step may also al-

leviate the worst effects of the so-called ’curse of dimensionality’. Hence, the performance

of the feature extraction stage has a significant impact on the performance of the next stages,

feature selection and classification. If the most informative set of features is selected, the

workload of subsequent classifiers will be low. On the contrary, if the features with little dis-

criminatory power are selected, an even more sophisticated classification model may not be

able to achieve the goal. But, of course, some additional issues should be considered even

having selected the best features, for example parameter selection to enhance the classifica-

tion performance. However, feature extraction is still a challenge and widely dependent on

the characteristics of the dataset. For example, in pattern recognition tasks, a good feature

extractor with high-dimensional sample spaces might not work well in situations where the

dimensionality of the sample space is small.

Three powerful feature extraction techniques for high-dimensional spaces like fMRI

data like Principle and Independent Component Analysis (PCA and ICA) and Non-negative

Matrix Factorization (NMF), are used in this study. High-dimensional spaces are quite

different from the three-dimensional (3-D) space in terms of geometrical and statistical

properties. For example, the volume of an fMRI dataset and corresponding Volume In-

trinsic Mode Functions (VIMFs) extracted by BEMD/GiT BEMD are considered as 3-D

space in terms of geometrical properties and for visualization purposes, but it belongs to a

high-dimensional space when this volume is considered an input vector to a classifier. Al-

though high-dimensional sample spaces contain more information concerning the capability

of distinguishing different sample class with better accuracy, classifiers that carry out com-

putations at full dimensionality may not take advantage of high-dimensional sample spaces

if there are insufficient training samples. Hence, reliable density estimation is extremely im-

portant but complicated. Therefore, the dimensionality of the sample space must be reduced

via dimension reduction and feature extraction methods before the application of a classifier

to data samples in high-dimensional spaces can be considered. Thus, in order to retain the

most informative and discriminatory information which the high-dimensional sample spaces
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provide, powerful dimension reduction techniques are needed. The aim of feature extraction

is to reduce the high-dimension of fMRI data but at the same time retain as much as possible

of their discriminatory information. Hence, a good feature extractor selects features which

are similar for patterns in the same class and very different for patterns in different classes.

The feature extraction is quite important for fMRI image classification, because fMRI is in-

herently high-dimensional. Typically, one volume of fMRI contains about 160,000 voxels,

and one experiment will include several volumes. Processing all these voxels as features for

classification is practically impossible because of computer memory and computation time

limitations. It is necessary to consider some projections, or use only part of these voxels

(down-sampling), to reduce the dimensionality of fMRI data. After the feature extraction,

feature selection can be performed. Since the dimensionality of the sample space is reduced

after the feature extraction step, extraction will yield savings in memory and time consump-

tion. The object of feature selection is to use part of these extracted features as input of a

classifier. In many cases, even after feature extraction has been performed, the number of

features is still too large to feed the classifier or they contain artifacts. Feature selection is

thus required to filter our extracted features and identify the group of most discriminatory

features which can achieve the best classification performance.

In this thesis, PCA, ICA and NMF feature extraction methods, which exploit the advan-

tages of high-dimensional spaces, are proposed. Beside such techniques reduce the high-

dimensional of our images, the key point of choosing these techniques as feature extraction

methods is their speed as well.Then, a variation of a linear subspace classifiers which is

suitable for detecting contour tasks in high-dimensional spaces is applied. These classifiers

were also generalized to the nonlinear case by employing kernel functions. The useful-

ness of the proposed methods are demonstrated with experiments using our dataset. Con-

sequently, it can help to improve the performance of classification rate. Also, the effect of

these feature selection techniques, which are used in this thesis, will be discussed in detail

later on.

4.1 Principal Component Analysis

Principal Components Analysis (PCA) is a rather general statistical procedure used in many

applications, such as statistical data analysis, feature extraction and data compression. The

goal of PCA is to find a smaller informative set of variables with less redundancy which

represent the original signal as accurately as possible [62]. In PCA, the redundancy is mea-

sured in terms of correlation between the observed data. This will be further strengthened

in the next section, where ICA is introduced. In this chapter, the theoretical details of PCA

are explained.

Problems arise when one wish to perform classification and recognition in a high-dimensional

space. The aim of PCA is to decrease the dimensionality of the data by retaining as much

as possible of the total data variance of our original data set.

On the other hand, dimensionality reduction implies some information would be lost.

Hence, the best low-dimensional space is determined by the best principal components as

its coordinate axes. The main advantage of PCA, in this thesis, is using it to reduce the size
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of our dataset for detecting textures and their contours. The extracted textures from the past

step, see chapter 3, are stored in the form of feature vectors in the database. These feature

vectors are determined by projecting each and every trained volume to the set of eigenvol-

umes obtained. PCA serves to determine these eigenvolumes with which the dimensionality

of a large data set may be reduced then.

4.1.1 Eigenvalues and Eigenvectors

The eigenvectors of a linear operator are non-zero vectors, which result in a scalar multiple

of them upon action of the operator on them. This scalar is then called eigenvalue (λ )
associated with the eigenvector (z). An eigenvector is thus a vector that is simply scaled

by a linear transformation. Such simple scaling can be effected by the action of a matrix

operator, for example. When a matrix acts on a vector, only the magnitude of the vector is

changed not its direction.

Az = λz (4.1)

where A is a matrix operator. Hence,

(A−λ I)z = 0 (4.2)

where I is the identity matrix. This is a homogeneous system of equations. And it is known,

from fundamental linear algebra, that a non-trivial solution exists if and only if the charac-

teristic equation is obeyed:

det(A−λ I) = 0 (4.3)

where det denotes the determinant. When evaluated, the solution becomes a polynomial

of degree n. This is called characteristic polynomial of A. If A is n× n, then there are

n solutions or n roots of the characteristic polynomial. Thus there are n eigenvalues of A

satisfying the following equation:

Azi = λizi (4.4)

where i = 1,2,3, .....n. If the Eigenvalues are all distinct, there are n associated linearly

independent eigenvectors, whose directions are unique and which span an n dimensional

Euclidean space.
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4.1.2 Eigendecomposition of VIMFs

Dimension reduction can be achieved by applying a Principal Component Analysis (PCA).

To perform a PCA, VIMFs from all Ns j = 19 subjects and for the two conditions, CT and

NCT, are collected into a data matrix M

M =











m11 . . . m1S

m21 . . . m2S
...

. . .
...

mR1 . . . mRS











(4.5)

Then VIMFs can be projected onto eigenvolumes resulting from a PCA, and the result-

ing projections are used as appropriate features for classification. The goal of a principal

component decomposition of the VIMFs, obtained through a 2DEEMD and/or GiT-BEMD,

is to compute the eigenvolumes U of the co-variance or, for centered data (see Fig. 4.1),

correlation matrix R that span the space of all voxels. This allows for a new representation

of the data in an orthogonal axis system which maximizes the variance of the data along

each principal direction. Projecting all VIMFs onto these eigenvector directions reveals the

contribution of each eigenvector to the volume mode. PCA eigenvolumes can be determined

by decomposing the R×S dimensional matrix M of VIMFs with the help of a singular value

decomposition (SVD), see Fig. 4.1.

M = UDVT (4.6)

Fig. 4.1 Graphical representation of SVD.

where, D denotes a diagonal matrix (i. e. a square matrix with non-zero entries only along

the diagonal), which contains derived constants called singular values sorted in descending

order. Each singular value represents the amount of variance that is captured by a particular

dimension. The left-singular and right-singular vector linked to the highest singular value

represent the most important dimension in the data (i.e. the dimension that explains the most

variance of the matrix); the singular vectors linked to the second highest value represent the

second most important dimension (orthogonal to the first one), and so on. Furthermore, U
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and V are the eigenvector matrices of the non-normalized correlation matrix R = MMT

and the related kernel matrix K = MT M, whose corresponding column vectors u,v form

orthogonal eigenvectors in spaces of dimension R×R and S×S, respectively. A key property

of the derived vectors is that all directions are orthogonal (i.e. linearly independent) to each

other, so that each eigenvector is uncorrelated to the others. Very briefly, PCA or SVD thus

performs a second order decorrelation of a dataset.

Intuitively, SVD is able to transform the original matrix with an abundance of overlap-

ping dimensions into a new, many times smaller matrix that is able to describe the data in

terms of its principal components. Due to this dimension reduction, a more succinct and

more general representation of the data is obtained. Redundancy is filtered out, and data

sparseness is reduced. Therefore the columns of U span the voxel space while the columns

of V span the (participants× conditions) space. It is important to note that from only S≪ R

observations the components of the eigenvector matrix U cannot be determined reliably.

However, one has to resort to study the related kernel matrix as only an eigenvalue decom-

position of matrix K is feasible. This finally yields, substituting results from above, for the

singular value decomposition of the matrix of observations M the following relation

K = MT M = (UDVT )T UDVT = (VDUT )UDVT

= VD2VT = VΛVT (4.7)

Therefore the eigenvalues λs are the square of the singular values ds and the eigenvector

matrix V is the right eigenvector matrix of SVD. Hence, Λ = D2 and the eigenvector matrix

U of the correlation matrix R can be obtained from the matrix of observations M and its

SVD via U = MVΛ−1/2.

Now consider projecting all data vectors onto the new basis vectors, i. e. consider the

projections Z := UT M. Hence Z represents the matrix of projections of the data vectors M

onto the eigenvectors U of the correlation matrix R which also span the space of all voxels

of the component images. From the discussion above it follows that

UT M := Z = DVT = Λ1/2VT (4.8)

Note that both, D and V follow from an eigendecomposition of the kernel matrix of

the observations. Every row Zn,∗ of the projection matrix Z contains a projection of a data

vector onto one of the new basis vectors U∗,n. The latter are ordered via their corresponding

eigenvalues ds =
√

λs. This allows to select only the most informative projections to be used

as features for a classifier, for example. Anyway, only S≪ R projections can be obtained

which renders the problem tractable.

In summary, the eigenvalue decomposition of the kernel matrix K, i. e. the matrix

of inner products of the data vectors, provides all ingredients to compute the projections

onto at most S directions. Each row of Z contains a projection onto one such basis vector.

Again note that the latter are ordered via their corresponding eigenvalues λs. Considering

the data set studied, a further dimension reduction is possible by selecting a subset of those

S projections, e.g. choosing the L < S leading rows of the projection matrix Z. Then the
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classifier will only have L ≤ S inputs and S examples which represents a stable situation

in the sense that sufficient information is provided to the classifier to achieve a reliable

classification of the data. Note that this decomposition into eigenvolumes has been applied

to both the average volumes ∠Vsc(x,y,z)〉 as well as to the VIMFs resulting from a preceding

BEEMD/GiT-BEMDdecomposition.

4.2 Independent Component Analysis

Independent component analysis (ICA) aims to find a linear representation of data based on

maximally non-Gassian components which renders them statistically independent.

Independent components are achieved by applying a, yet to be determined, S×S rotation

matrix W to the projected data Z. The INFOMAX algorithm [34] was used to estimate the

rotation matrix, and the new representation of the projected data is obtained via

S = WZ = WUT M (4.9)

Afterwards the rows of S are re-ordered according to their correlations to the rows of

Z as the obtained independent components lack any natural ordering. Therefore after re-

ordering, the first row of S should have the largest correlation with the first row of Z, the

second row of S should have the largest correlation with the second row of Z and so on.

This allows to select only the most informative projections to be used as features for

a classifier. Anyway, only S≪ R projections can be obtained which renders the problem

tractable.

In contrary to PCA, the ICA spatial components (patterns) have to be not only decor-

related (orthogonal), but statistically independent with few large voxel values in each com-

ponent. In Independent Component Analysis (ICA), the assumption is that of statistical

independence of the extracted sources, the so-called independent components. Statistical

independence is a much stronger requirement than decorrelation discussed in the last sec-

tion. In fact, all ICA algorithms employ decorrelation and centering, called whitening, as

the first step to independence. It can be shown that, assuming independence, one might

achieve a unique solution of the matrix decomposition, if at most one of the sources has a

Gaussian distribution and the mixing matrix has full column rank. The latter implies that

the number of mixtures is at least as large as the number of sources. Uniqueness in this

context means unique modulo scaling and permutation; performing these operations on S

can always be compensated by corresponding operations on the columns of W. In practice,

it is not straightforward to measure statistical independence, which therefore has to be ap-

proximated. To this end, a common approach is non-gaussianity [62]. From a hand-waving

interpretation of the central limit theorem it follows that any weighted sum of independent

sources is more “Gaussian" than the sources themselves. So maximizing non-gaussianity is

a way to reveal the underlying sources. This property can be quantified by the fourth-order

cumulant, called the kurtosis. The kurtosis K(x) := E(x4)− 3(E(x2)2) is measure for the

peakedness of a probability distribution p(x) and vanishes for a Gaussian. An alternative

measure is the negentropy, which is based on the information-theoretic concept of entropy.
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The entropy of a random variable is related to the information that its observation gives. The

more random, i.e., unpredictable and unstructured the variable is, the larger its entropy. Its

largest value among all random variable distributions of equal variance is found for a Gaus-

sian. Robust approximations of negentropy instead of kurtosis may enhance the statistical

properties of the resulting estimator. Examples of common ICA implementations are the

JADE algorithm [25], the INFOMAX algorithm [11] and the f astICA algorithm [61] .

Fig. 4.2 Top: Illustration example of 3-D data distribution and corresponding PC and IC

axes. Each axis is a column of the mixing matrix found either by PCA or ICA. Note that

axes of PCs are orthogonal while the IC axes are not. If only two components are allowed,

ICA chooses a different subspace than PCA. Bottom Left: Distribution of the first PCA

coordinates of the data. Bottom Right: Distribution of the first ICA coordinates of the

data. Note that since the ICA axes are nonorthogonal, relative distances between points are

different in PCA than in ICA, as are the angles between points (adapted from [94]).

4.3 Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is another method to render the high-dimension

problem tractable. Non-negative matrix factorization is a data decomposition, data cluster-

ing and dimensionality reduction technique that has been becoming popular in various fields

such as image recognition, speech recognition and machine learning. The main idea behind
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NMF is to impose a non-negativity constraint on the factorization of the data matrix. This

constraint conducts a parts-based representation, because only additive and no subtractive

combinations are allowed. In many cases, this constraint is very useful for the inductive ca-

pabilities of the dimensionality reduction. The NMF algorithm can extract clear and distinct

characteristics from the studied data. The difference between the parts-based induction of

NMF and the holistic induction of global methods such as PCA (and the related singular

value decomposition) are illustrated in detail with an example from facial image recognition

in [79]. Lee and Seung [79] found there are a small number of prototypical faces represented

by the eigenvectors that are found by applying PCA to a database of facial images. Positive

as well as negative values could be associated with the produced eigenfaces. The point in

such methods that they are holistic: an eigenface contains all sorts of facial traits, and thus

represents a prototypical face. By taking a linear combination of various ’eigenfaces’, a

particular pattern of a face may be reconstructed. The way NMF results look like is quite

different. Instead of finding holistic, prototypical faces, the algorithm produces particular

facial traits (different kinds of eyes, noses, mouths and so on ). By enforcing a non-negative

constraint, the algorithm can make up a parts-based representation of facial images. A par-

ticular instance of a face may then be reconstructed by taking a linear combination of the

different parts. The very same characteristic will also prove to be beneficial for making

up projected representations from fMRI images. Recently, NMF has gained attention in a

variety of applications. So, non-negative matrix factorization (NMF) [79] is the name for a

group of algorithms in which a matrix M is factorized into two other nonnegative matrices,

H and W. Fig. 4.3 shows a graphical representation of non-negative matrix factorization.

M ≈ HW (4.10)

Fig. 4.3 A graphical representation of non-negative matrix factorization.

Typically the inner dimension k is much smaller than R,S so that both instances and

features are expressed in terms of a few components. As mentioned above, non-negative

matrix factorization enforces the constraint that all factor matrices must be non-negative, so

all elements must be greater than or equal to zero. This factorization may not always be

achieved perfectly, whence it can only be an approximate decomposition into non-negative

causes with non-negative weights. Obviously, the inner dimension has to be reduced, oth-
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erwise the factorization is completely arbitrary. Also, this decomposition is far from being

unique and needs to be regularized by additional constraints like minimum volume require-

ments. There are two objective functions that may be used in order to quantify the quality

of the approximation of the original matrix. One objective function minimizes the sum of

squares:

min ‖M−HW ‖F = min∑
i

∑
j

(

Mi j−∑
k

HikWk j

)2

(4.11)

which is related to Gaussian error statistics. The other one minimizes the Kullback-Leibler

divergence following from Laplacian error statistics:

minDKL(M ‖HW) = min∑
i

∑
j

(

Mi j log
Mi j

(HW)i j

−Mi j +(HW )i j

)

(4.12)

Practically, the factorization can be efficiently carried out through the iterative applica-

tion of multiplicative update rules. The set of update rules that minimizes the Euclidean

distance are given in the following equations, Eq. (4.13) and Eq. (4.14).

Waµ ← Waµ
(HT M)aµ

(HT HW)aµ
(4.13)

Hia ← Hia
(MWT )ia

(HWWT )ia

(4.14)

The set of update rules that minimizes the Kullback-Leibler divergence are given in Eq.

(4.15) and Eq. (4.16)

Waµ ← Waµ

∑i Hia
Miµ

(HWiµ )

∑k Hka

(4.15)

Hia ← Hia

∑µ Waµ
Miµ

(HWiµ )

∑v Wav
(4.16)

Matrices H and W are randomly initialized, and the update rules are iteratively applied

alternating between them. In each iteration, the matrices H and W are suitably normalized,

so that the rows of the matrices sum to one. The algorithm stops after a fixed number of itera-

tions, or according to some stopping criterion, for example when the change of the objective
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function drops below a certain threshold. The update rules are guaranteed to converge to a

local optimum. In practice, it is usually sufficient to run the NMF algorithm repeatedly in

order to find the global optimum. Note that fMRI images are non-negative but the extracted

modes are combining of negative and positive components (oscillations) because of nature

of the BEMD decomposition. So, in this work, the extracted modes are normalized between

0 and 1 before employing NMF.





Chapter 5

Classification

Functional magnetic resonance imaging (fMRI) is an neuroimaging technology which is

mainly used to detect brain activity distributions by measuring neuronal activity in the brain

during a specific task. Classification of fMRI scans using machine learning (ML) is a field

of interest in cognitive neuroscience and the medical community because of its potential

to provide an automated system of detecting neurological conditions while jointly giving

insight into potential causes of underlying disorders.

Discrimination has been successfully performed using spatially localized signal differ-

ences to distinguish among different groups (see for example [47, 174]). But it is also pos-

sible to make use of pattern recognition techniques to predict the stimuli being presented

from the corresponding brain images and activation patterns. One of the primary objec-

tive of this dissertation is the use of well-known classification methods in the context of an

event-related functional contour integration experiment where participants viewed images

of contour and non-contour stimuli, and test whether these classifiers can predict, depending

on the collected images, the cognitive state precisely from the stimulus response. The utility

of feature selection methods in improving the prediction accuracy of classifiers, trained on

functional neuroimaging data and corresponding extracted textures ( by canonical BEMD

and/or Git-BEMD), are explored in details. In addition, the optimization of classifiers’ pa-

rameters were considered to enhance their classification accuracy as well. To identify the

most informative textures, i.e. VIMFs, a support vector machine (SVM) as well as a random

forest (RF) classifier was trained for two different stimulus/response conditions. Classifica-

tion performance was used to estimate the discriminative power of the extracted VIMFs.

5.1 Support Vector Machine

A Support Vector Machine (SVM) is a classifier, which can deal with linear or nonlinear data.

The key concept of an SVM, which was first developed for binary classification problems,

is to define decision boundaries separating data points of different classes by a hyperplane.

The simplest approach of an SVM is the two class problem, which is initially done by con-

structing a hyperplane with maximum distance (margin) from these two classes. Thus, an

SVM classifier finds the optimal hyperplane maximizing the margin between positive and
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negative examples while jointly minimizing misclassification errors in the training set. SVM

classifiers generalize well and have been observed to outperform other classification meth-

ods in many practical applications. In some problems, however, the two classes are hard

to separate linearly. But an SVM can handle both simple, linear classification problems as

well as more complex, i.e. nonlinear classification problems. Both linearly separable and

non-separable problems are managed by an SVM. In case of complex, non-linearly separa-

ble problems, the SVM has the opportunity to transform the data with a mapping (or kernel)

function into a high dimensional space (feature space), where the decision hyperplane can

be constructed more easily. This principle is illustrated in Fig. 5.1

Fig. 5.1 Illustrates the principle of SVMs. left: illustrates the simple way of separating two

classes linearly . Right: illustrates how the data is hardly to separate non-linearly in two

dimensions. Hence one can use a kernel function to map the data into the feature space

(three dimensional in this example). In this feature space the data can be classified easily.

image adapted from http://www.imtech.res.in/raghava/rbpred/svm.jpg

5.1.1 Separating Hyperplanes

Consider a given training data set {zi,yi}N
i=1, in a dot product space Γ , with pattern vectors

z1, . . . ,zs ∈ Γ being the input vectors and yi ∈ {−1,1} the class labels. The seperating

hyperplane can be defined as

{z ∈ Γ < 〈w,z〉+b = 0},w ∈ Γ ,b ∈ R (5.1)

Where w is the vector orthogonal to the hyperplane and b is a bias related with the

distance of the hyperplane from the origin of the coordinate system. For a w with ‖ w ‖= 1

the term 〈w,z〉 is the length of z along the direction of w. In Eq. (5.1) one can multiply w

and b with the same non-zero constant. This undue freedom can be explained by using the

following definition(cf. [138]):

The pair (w,b) ∈ Γ ×R is called a canonical form of the hyperplane (Eq. (5.1)) with

respect to z1, . . . ,zs ∈ Γ , if it is scaled such that

min
i=1,...,s

[〈w,zi〉+b = 1〉] , (5.2)
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which is to say that the point closest to the hyperplane in its canonical form has a distance

of 1
‖w‖ , while

|b|
‖w‖ is the perpendicular distance of the non-canonical hyperplane from the

origin. For any such separating hyperplane, uniquely characterized in its canonical form by

a pair (w,b), a classifier can be constructed as in Eq. (5.3). The different orientation leads

to two different, inverse to each other, decision functions (cf. [138]) :

fw,b : Γ →{±1}
z 7−→ fw,b = sgn(〈w,z〉+b)

(5.3)

In case there is do not exist class labels, yi ∈ {±1}, which are associated with the zi,

the two hyperplanes cannot be distinguished. In case of a labeled dataset, the discrimina-

tion between classes can definitely be achieved: The two hyperplanes make opposite class

assignments. The goal is to find a solution fw,b, which correctly classifies the labeled exam-

ples (zi,yi) ∈ Γ ×{±1}. This solution should satisfy fw,b = yi for all i,see Fig. 5.2.

Fig. 5.2 Illustrates example of different separating hyperplanes. The thick line is the optimal

hyperplane in this example.

5.1.2 The Geometric Margine

For a hyperplane {z ∈ Γ |< 〈w,z〉+b = 0}, the expression

ρ(w,b)(z,y) := y
(〈w,zi〉+b)

‖ w ‖ (5.4)

measures the margin of the point (z1,y1) ∈ Γ ×{±1} from the hyperplane. The mini-

mum value

ρ(w,b) := min
i=1,...,s

ρ(w,b)(zi,yi) (5.5)
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is called the geometrical margin of (z1,y1), . . . ,(zs,ys).
In this thesis, from now on the margin always refers to the geometrical margin.

If a point (z,y) was classified correctly, the margin equals the distance between z and

the hyperplane. For a hyperplane

(ŵ,b) :=
( w

‖ w ‖ ,
b

‖ w ‖
)

where ‖ ŵ ‖= 1

(5.6)

one can compute the quantity

y
(

〈ŵ,z〉+ b̂
)

. (5.7)

The expression 〈ŵ,z〉 simply considers the length of z in direction perpendicular to the

hyperplane, the adding of b̂ equals the distance to it. Multiplying the expression with the

label y ensures that the margin is positive for correctly classified points, and negative for

incorrect classified points. For canonical hyperplanes the margin is 1
‖w‖ . Hence, a larger

margin means a good classifier and as a consequence, the classification accuracy improves.

5.1.3 Optimal Margin Hyperplane

To define what an optimal hyperplane is simply means maximizing its margins in way that

can be identified in a computationally efficient way. Solving the optimization problem by

computing the best hyperplane with a set of examples (z1,y1), . . . ,(zs,ys),zi ∈ Γ ,yi ∈ {±1}
can be done by finding a decision function

fw,b(z) = sgn(〈w,z〉+b) (5.8)

satisfying fw,b(zi) = (yi)

If such a function exists, canonically implies

yi(〈zi,w〉+b)≥ 1. (5.9)

Constructing an optimally separating hyperplane can be achieved by solving the opti-

mization problem:

minimize
w∈Γ ,b∈R

τ(w) =
1

2
‖ w ‖2 (5.10)

subject to yi(〈zi,w〉+b)≥ 1 for all i = 1, . . . ,S (5.11)

Eq. (5.11) is called the primal optimization problem. As it represents a constrained

optimization problem, it can be related within a Lagrange formalism to a dual problem
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which has the same solutions, but is easier to solve. At first, one has to start with the

Lagrangian(α)

L(w,b,α) =
1

2
‖ w ‖2 −

s

∑
i=1

αi(yi(〈zi,w〉+b)−1) (5.12)

where the αi ≥ 0 represent Lagrange multipliers. The aim is to maximize L with respect to

αi and minimize L with respect to w and b. From this it follows that

∂

∂b
L(w,b,α) =

∂

∂w
L(w,b,α) = 0, (5.13)

which leads to

s

∑
i=1

αiyi = 0 (5.14)

w =
s

∑
i=1

αiyizi. (5.15)

According to the Karush-Kuhn-Tucker conditions (cf. [138]), only the αi that are non-

zero at the saddle point fulfill the constraints 5.11. Hence, one can derive the following

condition:

αi[yi(〈zi,w〉+b)−1] = 0 (5.16)

The patterns zi for which αi ≥ 0 are called Support Vectors (SVs). All of the other

patterns of the training examples are irrelevant.

To derive the dual form of the optimization problem one has to insert Eq. (5.14) and Eq.

(5.15) into the Lagrangian in Eq. (5.12):

maximize
α∈Rm

W (α) =
S

∑
i=1

αi−
1

2

S

∑
i, j=1

αiα jyiy j〈z(i),z( j)〉 (5.17)

subject to αi ≥ 0, i = 1, . . . ,S (5.18)

and
S

∑
i=1

αiyi = 0. (5.19)

where 〈z(i),z( j)〉 represents the dot product between the training data. The resulting decision

function, considering a test vector ztest to be classified, takes the form

f (ztest) = sgn

(

S

∑
i=1

αiyi〈ztest ,z(i)〉+b

)

(5.20)
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5.1.4 Non-linear Support Vector Classifiers

In the previous section, only the linearly separable case was discussed. But what if the

data cannot be separated with a large margin hyperplane, rather would need a hypersurface?

Then, the formulation given above can be further extended to build a non-linear SVM. For

this extension, one can non-linearly transform the input data z1, . . . ,zS ∈ X into a high di-

mensional feature space using a mapping Φ : zi 7−→ zi. Such a transformation of the input

data enables a linear separation in the high-dimensional feature space, thus rendering the

classification of nonlinearly separable data possible. Applying such a mapping within a

SVM algorithm requires only simple modifications. Maximizing the corresponding target

function Eq. (5.17) and evaluating the related decision function Eq. (5.20) requires the

computation of dot products 〈Φ(z),Φ(zi)〉 in a high-dimensional feature space. The main

drawback of this approach is that it is computationally very expansive. Schölkopf et al.

[138] could show that one can use positive definite kernels to reduce these costs, i.e.:

〈Φ(z),Φ(zi)〉= k(z,zi) (5.21)

This kernel produces a decision function of the form

f (z) = sgn
( S

∑
i=1

yiαik(z,zi)+b
)

(5.22)

The kernels used most often are the following:

• Linear kernel

k(z,zi) = zT zi,

• Polynomial kernels of degree d

k(z,zi) = 〈z,zi〉d ,

• Radial basis function (RBF)

k(z,zi) = exp(−‖z−zi‖2

σ2 ),

• Sigmoid kernels, so-called Multi-layer Perceptron (MLP)

k(z,zi) = tanh(γzT
(i)z( j)+ r),

where k(., .) is positive definite for all σ values in the RBF kernel case, and with parameters

γ > 0,r < 0 in the MLP case. These parameters are user-defined and need to be assigned

before running the optimization algorithm. Due to the kernel trick, the optimization problem

turns into

maximize
α

W (α) =
S

∑
i=1

αi−
1

2

S

∑
i, j=1

αiα jyiy jk(zi,z j), (5.23)

subject to the constraints Eq. (5.18) and Eq. (5.19). Schölkopf et al. [138] show that for a

positive definite kernel k the matrix elements Qi j := (yiy jk(zi,z j)) is also positive definite. It
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turns out, that this is a convex problem which can be efficiently solved. The KKT conditions,

αi > 0 and Eq. (5.21) imply:

S

∑
i=1

yiαik(z j,zi)+b = yi (5.24)

From this follows for the threshold b:

b = yi−
S

∑
i=1

yiαik(z j,zi) (5.25)

for all points with α j > 0 (Support Vectors).

The traditional SVM is solved using quadratic programming methods. However, these

methods are often computationally costly and are difficult to implement adaptively [36, 137].

Research has been undertaken to use a quadratic error criterion instead of the L1 norm used

for the SVM. Ridge regression methods, using a quadratic error criterion, were developed

for classification problems [36], and afterwards [96] used a quadratic error criterion to find

an iterative solution to their Lagrangian SVM networks. These methods still have inequality

constraints, however, recently Suykens et al. [146] proposed to modify the SVM method-

ology by introducing a least squares loss function and equality instead of inequality con-

straints, resulting in a so called Least Squares SVM (LS-SVM). Also recently a Sequential

Minimal Optimization SVM (SMO-SVM) was proposed by Platt [123] especially for non-

linear SVMs. Unlike QP-SVM and LS- SVM learning algorithms, which use numerical

quadratic programming (QP) as an inner loop, SMO uses an analytic QP step[123].

Accordingly, the common types of SVM methods QP-SVM, LS-SVM and SMO-SVM

are used in this thesis, to classify the binary contour integration problem in terms of de-

tecting a contour or non-contour condition from the stimulus response. Additionally, the

well-known kernels, listed above, are used as well.

5.1.5 Soft Margin Hyperplanes

So far, as it has been discussed in the previous two sections, generally SVMs can handle

linearly separable and nonlinearly separable input data depending on the following approach.

In real measurements noise is included always. Hence, a SVM algorithm must tolerate

noise and outliers, for instance a pattern which is mislabeled, which can crucially affect the

hyperplane, if it is constructed with one of the two methods discussed above.

To avoid this drawback, one has to use an algorithm which tolerates minor training errors.

According to this one needs so called slack variables ζ (cf. [138] )

ζ ≥ 0,where i = 1, . . . ,S (5.26)

to relax the separation constraints according to

yi(〈zi,w〉+b)≥ 1−ζi, i = 1, . . . ,S (5.27)
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Obviously, this constraint can always be fulfilled by making the ζi large enough. To

avoid any trivial solution, it is common to penalize large values in the objective function by

adding an additional term ∑i ζi. The simple case is the so called C-SVM with a constant

C > 0:

minimize
w∈Γ ,ζ∈RS

τ(w,ζ ) =
1

2
‖ w ‖2 +

C

S

S

∑
i=1

ζi (5.28)

subject to the constraints Eq. (5.26) and Eq. (5.27). In case the constraints are met

with ζi = 0, the corresponding point is no margin error. Otherwise, all points with ζ > 0

are margin errors and if ζi reaches too high values, a good separation cannot be always

guaranteed. According to [138], in the separable case the solutions have an extension

w =
S

∑
i=1

αiyizi. (5.29)

The coefficients αi are non-zero only for points (zi,yi) which meet precisely the con-

straint in Eq. (5.27). Hence, the αi can be computed by solving the quadratic optimization

problem:

maximize
α∈Rm

W (α) =
S

∑
i=1

αi−
1

2

S

∑
i, j=1

αiα jyiy jk(z(i),z( j)) (5.30)

subject to 0≤ αi ≤
C

S
for all i = 1, . . . ,S−1 (5.31)

and
S

∑
i=1

αiyi = 0. (5.32)

Due to Eq. (5.27), for all SVs z j for which ζ = 0, one can obtain the threshold like in Eq.

(5.24). So far, C has always been a constant, determining the trade-off between minimizing

the training error and maximizing the margin. Unfortunately, this parameter C is still a

rather unintuitive parameter and there is no a priori knowledge to select it. To avoid this,

C can be replaced by another parameter ν . The latter is explained in [138] as a parameter

which allows to control the number of margin errors and Support Vectors. The ν-SVC can

be written as:

minimize
w∈Γ ,ζ∈RS,ρ,b∈R

τ(w,ζ ,ρ) =
1

2
‖ w ‖2−νρ +

1

S

S

∑
i=1

ζi (5.33)

subject to yi(〈zi,w〉+b)≥ ρ−ζi (5.34)

and ζi ≥ 0, p≥ 0. (5.35)

where ρ in Eq. (5.35) is the margin of Eq. (5.4). Note that ν represents an upper bound

on the fraction of margin errors and a lower bound on the fraction of Support Vectors. Note
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further that ν allows more errors, i.e. the margin increases. The quadratic optimization

problem for ν-SVC can be written as:

maximize
α∈Rm

W (α) =
S

∑
i=1

αi−
1

2

S

∑
i, j=1

αiα jyiy jk(z(i),z( j)) (5.36)

subject to0≤ αi ≤
1

S
(5.37)

S

∑
i=1

αiyi = 0, (5.38)

S

∑
i=1

αi ≥ ν (5.39)

Therefore, the resulting decision function can take the form

f (z) = sgn
( S

∑
i=1

αiyik(z,zi)+b
)

(5.40)

5.2 Random Forests

A Random Forest (RF) is an ensemble classifier that consists of a collection of tree-structured

classifiers and outputs. It can be used for classification or regression by combining so-called

classification and regression trees (CARTs) (cf. [19]). CARTs are binary decision trees con-

structed by repeated splits of nodes into child-nodes. Nodes, which are not split any more

are called terminal nodes. This is illustrated in Fig. 5.4. The main idea which has to be

discussed is how to construct a CART and how to find the best split. For RF classifiers the

Gini criterion is used, (see section feature importance)

The RF combines Breiman’s "bagging" idea [19] and the random selection of features.

The growing of a CART begins with the root node, which contains the whole learning set.

Then, this set will be split into two subsets. The splitting point is called node. This process

continues until each node contains only one class (in this work CT or NCT ). Random

Forests use a large number of such CARTs, where each CART takes another bootstrap

sample from the training set. For every CART, the split variables are chosen randomly and

so every tree learns its own data set. The generalization error converges with the number of

trees. This makes it easy to decide how many trees should be used. The whole RF algorithm

is implemented as depicted in Fig. 5.3

5.2.1 Splitting Rule

The random forest algorithm, developed by Breiman [143], is a set of binary decision trees,

each performing a classification. The final decision is taken by majority voting. Each tree is

grown using a bootstrap sample from the original data set. Each node of the tree randomly
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Fig. 5.3 Illustrates the flow chart of the random forest (RF) algorithm.
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Fig. 5.4 An example of a classification tree. Here, brain is split into four smaller subsets

regions, resting state networks (RSNs)
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selects a small subset of features for splitting the data into two subsets. An optimal split

separates the set of samples at each node into two supposedly more homogeneous or purer

sub-groups with respect to the class of its elements. The impurity level of each set of

samples with respect to class membership can be measured by the Gini index. Denoting

class labels by ωc, c = 1 . . .C, the Gini index of node i is defined as

G(i) = 1−
C

∑
c=1

(P(ωc))
2 (5.41)

where P(ωc) is the probability of class ωc in the set of instances that belong to node i. Note

that G(i) = 0 whenever node i is pure, e.g, if its data set contains only instances of one class.

To perform a split, one feature zl is tested on the set of samples with n elements according to

zl > zth, which is then divided into two sub-groups (left and right) with nl and nr elements.

The change in impurity is computed as

△G(i) = G(i)−
(nl

n
G(il)+

nr

n
G(ir)

)

(5.42)

That feature among all zl and the threshold zth which yields the largest decrease of the Gini

index is chosen to perform the split at node i. Each tree is grown independently, and no

pruning is applied on the grown trees. The main steps of this algorithm [63], are depicted in

the Fig. 5.3 and the following section.

5.2.2 Construction of a Tree

Constructing a tree requires a method to use the input data to determine the binary splits of

the training set into smaller subsets. The main goal is to find a split which produces subsets

purer than the parent sets. The construction of the tree contains three important steps:

1. Given a data set T with N examples, each with L features, select the number T of

trees, the dimension of the subset mtry< L of features, and the parameter that controls

the size of the tree (it can be the maximum depth of the tree, the minimum size of the

subset in a node to perform a split).

2. Construct the t = 1 . . .T trees.

(a) Create a training set Tt with N examples by sampling with replacement the orig-

inal data set. The out-of-bag data set Ot is formed with the remaining examples

of T not belonging to Tt .

(b) Perform the split of node i by testing one of the mtry = ⌊
√

L⌋ randomly selected

features.

(c) Repeat step 2b up to the tree t is complete.

(d) Use the out-of-bag (OoB) data Ot as test set of the t-th tree. Keep track of the

votes for each class instance each time it is in the out-bag data set. The number

of false classifications, averaged over all cases, yields the OoB error estimate. In
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this way an out-of-bag (OoB) error results, measuring the classification perfor-

mance of the RF classifier.

3. Repeat step 2 to grow the next tree if t 6= T . In this work T = 500 decision trees were

employed.

5.2.3 Out-of-Bag (OoB) Error Estimate

In Breiman’s implementation [17] of the RF, each tree is trained on about 66% of the avail-

able data set. As the forest is built, the rest of the data, about 33%, can be tested and reports

the misclassification rate. This process is called Out-of-Bag(OoB) error estimate. Accord-

ing to the nature of the calculation of the OoB error out of the training set, there is no need

for cross validation or additional testing. The OoB error estimation works by classifying

each instance left out in the construction with the RF. Then compare the classification re-

sults with the true assignments of the instances left out of the bag. Hence, the OoB error

is estimated by considering the proportion of times that the classification is not equal to the

true class averaged over all samples.

5.2.4 Feature Importance

The feature importance, which is well-known as variable importance, is a powerful tool

which was introduced by Breiman’s Random Forest [18]. It reports how importantly that

feature contributes in classifying the data. This is very helpful to make the classification

results easier interpretable. The commonly available variable importance measures are:

1. Mean Decrease Gini

The RF uses the Gini coefficient mentioned in Eq. (5.42) to determine how each fea-

ture contributes to split the nodes and leaves in the resulting RF. For two descendant

nodes, the Gini impurity criterion for each split made on a feature m is less than for

the parent node. The changes in Gini impurity can be summed up over all trees and

normalized at the end of the calculation, resulting in a feature importance. Features

that result in nodes with higher purity have a higher decrease in Gini coefficient.

2. Mean Decrease Accuracy

The mean decrease in accuracy is another quick estimate to evaluate a feature deter-

mined during the OoB error calculation phase. To calculate the mean decrease in

accuracy, count the number of correct votes for the OoB instances. Then the variables

m are permuted randomly and the correct votes are counted again. The mean decrease

in accuracy is the average, over all trees, of the difference between the correct votes

of the permuted and the unpermuted data. Note the accuracy of the random forest

decreases due to the addition of a single feature, the more important the feature is

considered, and therefore variables with a large mean decrease in accuracy are more

important for classification of the data.
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In summery, the importance of each variable for the best split is measured by induces

called mean decrease Gini or mean decrease accuracy. Both yield similar results,

hence in this thesis only the former is considered for simplicity. The Gini impurity

criterion applied to each selected feature determines the best split at each node. For

two descendant nodes, their Gini impurity is less than for the parent node. This de-

crease in the Gini index can be summed up over all trees and yields a fast and easy

way to estimate variable importance.

5.3 Classification Optimization

Often, fMRI images have many features (i.e., they are represented as vectors in a high-

dimensional space). In chapter 4, dealing with high dimension of such, for reducing dimen-

sionality as much as possible, has been discussed, while still retaining most information

relevant for the task at hand. There are many reasons to perform such dimension reduction.

It may remove redundant or irrelevant information and thus yield a better classification per-

formance; subsequent analysis of the classification results is easier; low dimensional results

may be visualized, and thus further better understanding.

Besides, for further optimization, the next step of feature extraction is to identify (by

some criterion) those features that contribute most to the class separability. For example,

one may select d features out of all the given features, using some method of ranking (the

univariate approach) or optimizing classifiers parameters. Both are discussed briefly in next

sections.

5.3.1 Features Selection

The feature selection task is defined simply as follows: Given a set of m measurements

(features) on y labeled instances, what is the best subset of features, f , that contribute in

discriminating between classes more precisely?” The number of such possible subsets is

m!/ f !(m− f )!, which is really very large even for moderate values of m and f . As a conse-

quence, one has recourse to a suitable heuristics for searching through the space of possible

features. There are different strategies for feature selection. For example, one can define an

objective function, e.g., one that measures accuracy on a fixed held out set, and use sequen-

tial forward or backward selection. A sequential forward selection (SFS) is a bottom-up

search where new features are added to a feature set one at a time. At each step, the selected

feature is one that, when added to the current set, maximizes the objective. The feature set is

initially empty. The algorithm stops when the best remaining feature relapses the objective,

or when the desired number of features is reached. The main drawback of this method is that

it does not delete features from the feature set once they have been already selected. As new

features are found in a sequential, greedy way, there is no guarantee that they should belong

to the final set. Besides the SFS, sequential backward selection (SBS) is the corresponding

top-down search: features are deleted one at a time until d features remain. This procedure

has the drawback over SFS that it is computationally more demanding, since the objective

function is evaluated over larger sets of features. Hence, in this thesis, common methods of
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feature ranking and information theoretic ranking are used as a principle selection mecha-

nism because of its simplicity, scalability, and good empirical success.

5.3.1.1 Gini Index

Gini index is an impurity-based criterion that measures the divergences between the proba-

bility distributions of the target attributes values. The Gini index has been used in various

works such as [19] and as it is defined before as:

G(i) = 1−
C

∑
c=1

(P(ωc))
2 (5.43)

where ωc,c = 1 . . .C represents the class labels. Consequently, the evaluation criterion for

selecting the attribute i is defined as:

△G(i) = G(i)−
(nl

n
G(il)+

nr

n
G(ir)

)

(5.44)

To introduce this idea, take the random forest as an example. Random forest (RF) is

a classification method, but it also provides feature importance as well. A forest contains

many decision trees. Each decision tree is constructed by instances randomly sampled with

replacement. Therefore about one-third of the training instances are left out. These are

called Out-of-Bag (OoB) data. This OoB data can be used to estimate the classification

error. The basic idea behind feature importance is simple and is achieved by using OoB

data. For every decision tree in the forest, put down its OoB data and count the number

of correct predictions. Then randomly permute the values of the z-th feature among all zl

OoB instances, and put these instances down the tree again. Subtract the number of correct

predictions in permuted OoB data from that in unpermuted OoB data.

5.3.1.2 T-test

The Student’s t-test is historically a statistical hypothesis test, which used to compare two

normally distributed samples or populations [145]. It candidates features with a maximal

difference of mean value between groups and a minimal variability within each group to

further analysis, but it could statistically collapse when there are not sufficient number of

samples, often less than 30 samples. As enough data is available, here, a t-test as an univari-

ate feature selection algorithm is used, where features are ranked and select only a subset of

features zl that is most discriminating between the class labels. First, the data are parted into

two sets CT and NCT. Thus, let µCT ; σCT denote the average and variance of the data CT

and µNCT and σNCT denote the average and variance of the data set NCT . Also, n1 and n2

represent the number of samples of CT and NCT , respectively. Then a T-score for a feature

i, in the data, is defined as:

T (i) =
µ
(i)
CT
−µ

(i)
NCT

√

σ
(i)
CT
n1

+
σ
(i)
NCT
n2
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Finally, features zl with the highest T-scores (most discriminating features) are selected

as our data.

5.3.1.3 Information gain

Information gain (relative entropy, or Kullback-Leibler divergence), in probability theory

and information theory, is a measure of the difference between two probability distributions.

In statistics, it arises as an expected logarithm of the likelihood ratio. In the context of

classification, the distribution of samples among classes is the accountable information. If

the samples are randomly appointed among the classes, the number of bits necessary to

encode this class distribution is high, because each sample would need to be counted. On the

other hand, if all the samples are in a single class, the entropy would be lower, because the

bit-string would simply say “All samples save for these few are in the first class”. Therefore

a function measuring entropy must increase when the class distribution gets more spread

out and be able to be used recursively to allow finding the entropy of subsets of the data

H(z) =−∑(ni/n) log
(ni

n

)

(5.45)

where dataset z has n = |z| instances and ni members in class ci ( in our case, either CT or

NCT). The entropy of any subset is calculated as

H(z | x) =−∑
( |x j|

n

)

H(z | x− x j) (5.46)

where H(z | x− x j) is the entropy computed relative to the subset of samples that have a

value of x j for attribute x. If x is a good description of the class, each value of that feature

will have little entropy in its class distribution; for each value most of the instances should

be primarily in one class. The information gain of an attribute is measured by the reduction

in entropy. Hence, it evaluates a feature z by measuring the amount of information gained

with respect to the class (or group) as follows:

IG(x) = H(z)−H(z | x) (5.47)

The greater the decrease in entropy when considering attribute x individually, the more

significant feature x is for prediction.

Shortly, it measures the difference between the marginal distribution of observable x as-

suming that it is independent of feature y(P(x)) and the conditional distribution of x assum-

ing that it is dependent of y(P(x|z)). If z is not differentially expressed, x will be independent

of z, thus z will have small information gain value, and vice versa.

5.3.1.4 F-Score

F-score (Fisher score) is a simple criterion to measure the discrimination between a feature

and the label. F-score of a single feature is defined as follows: Given a data set z with two
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groups, denote samples in class 1 as CT , and those in class 2 as NCT . Assume (µz)k
j is the

average of the jth feature in zk. The F-score of the jth feature is:

F( j) =
(µz1

j −µz2
j)

2

(s1
j)

2 +(s2
j)

2
(5.48)

where

(sk
j)

2 = ∑
z∈zk

(z j−µzk
j)

2 (5.49)

The numerator indicates the intra-class discrimination , and the denominator indicates

the inter-class scatter. Hence, the features are more discriminative with larger F-score.

Therefore, this score can be a criterion for feature selection.

5.4 Parameter optimization

Unfortunately, there are no comprehensive theories to guide the parameter selection of clas-

sifiers like SVM, which largely limits its application. In order to get optimal parameters

automatically, researchers have tried a variety of methods. Frequently, for example, using

Grid search to optimize parameters of an SVM classifier is one of the favorite methods.

Grid search simply performs a full-scale search among a manually predefined subset of the

hyperparameter space of a learning algorithm. A grid search algorithm is subjected to some

performance metric, typically measured by cross-validation on the training set or evaluation

on a held-out validation set.

Though the parameter space of a machine learner could be set by any real-valued or

unbounded value space for some parameters, a grid search needs bounds and manual dis-

cretization in advance. For example, a typical soft-margin SVM classifier provided with

an RBF kernel has at least two hyperparameters, a regularization constant C and a kernel

hyperparameter γ , that need to be tuned for good performance on unseen data. Both param-

eters are unlimited. So, they could be set by selecting a finite set of "reasonable" values for

each to perform a grid search, say for example C ∈ {1,2,3,4,5} and γ ∈ {0.2,0.4,0.6,0.8}.
In this way, a grid search then trains an SVM classifier with each pair (C,γ) in each round

of implementation of these two sets and evaluates their performance on a held-out valida-

tion set or by internal cross-validation on the training set, in which case multiple SVMs

are trained per pair. Finally, the grid search algorithm produces the best accuracy that was

achieved by the optimal value of a pair during the validation procedure. Although a grid

search suffers from the curse of dimensionality, it can be worked over in a highly parallel

fashion because the hyperparameter settings it typically evaluates are independent of each

other.





Chapter 6

Materials

6.1 Gabor Stimuli

The stimuli were generated with a procedure similar to that of [100]. Stimulus displays

contained odd symmetric Gabor elements arranged in an invisible 10 by 10 grid subtending

16.6 deg×16.6 deg of visual angle. The corresponding stimulus protocol is illustrated in

Fig. 6.1. The luminance distribution L(x,y) of a single Gabor element is defined by the

equation

L(x,y) = L0(1+ s(x,y) ·g(x,y)) (6.1)

where L(x,y) [cd/m2] is the luminance at point (x,y) and L0 is the background luminance.

The function s(x,y) represents a 2D - sinusoid, describing the carrier wave, and g(x,y) the

related Gaussian envelope, describing the amplitude modulation. These functions are given

by

s(x,y) =C sin [kx · xcos(θ)+ ky · ysin(θ))] (6.2)

where C = 0.9 is the Michelson contrast, ‖k=(kx,ky)
T ‖ [rad/m]= 2π f [cpd] is the angular

wave number with f = 3 [cpd] the corresponding spatial frequency in [cycles/deg], and θ
is the orientation from vertical which depends on the experimental condition. Furthermore,

g(x,y) = exp

(

−x2 + y2

2σ 2

)

(6.3)

where σ = 0.25 deg is the standard deviation of the Gaussian envelope, measured in degrees

of visual angle.

For contour displays, a path of 10 invisible line segments was constructed and placed at a

random location within the visual field, with the restrictions that none of the segment centers,

where the Gabor elements were finally placed, fell into the inner 2×2 grid cells, and that at

least 4 segment centers fell into the inner 6×6 grid cells. This ensured that the Gabor path

did not cross the central fixation mark, and that the eccentricity of the path was not too large.

The angle between adjacent line segments was the path angle α plus an orientation jitter ∆α
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drawn from a uniform distribution p(∆α) ∈ [−1,+1]. Gabor elements were placed at the

center of each line segment and aligned to the line orientation. The separation s between

neighbouring elements depended on the length of the corresponding line segments. It was

chosen as α ± δα = 2 ± 0.55 degrees of visual angle. After setting up the Gabor path,

empty grid cells were filled with randomly oriented Gabor elements. The size of the grid

cells was set to 2s/(1+
√

2) = 1.66 degrees of visual angle. This ensured that the mean

distance between distracting Gabor elements was close to the mean distance between the

elements making up the Gabor path. The distracting Gabor elements were placed in the

center of each grid cell and jittered vertically and horizontally by ± 0.55 degrees of visual

angle. New Gabor elements were not drawn if their visible part overlapped with an already

existing Gabor element by more than 5 pixels. The whole stimulus was withdrawn if more

than 10 Gabor elements could not be drawn. Thus, each stimulus contained 90−100 Gabor

elements. For constructing non-contour displays, the same algorithm was used as for the

construction of contour displays but rotating adjoining Gabor elements by ± 45 deg. Thus,

non-contour displays resembled contour displays with respect to spacing, positioning and

the number of elements, but did not contain a Gabor path.

For the experiment, a set of 150 non-contour stimuli was generated, which was the same

for all subjects. Then a set of 150 contour stimuli was generated separately for each subject,

where the path angle α was adjusted to the individual maximum tolerable path angle. These

angles were obtained during behavioral pre-testing and ranged from 21 deg→ 34 deg.

6.2 Experimental setup

In this study, functional images were recorded with a 3-Tesla head scanner (Siemens Alle-

gra, Erlangen, Germany) , see Fig. 6.1 at the courtesy of Prof. M. Greenlee, Experimental

Psychology, University of Regensburg, Germany. For the functional series whole brain

images were continuously acquired with 46 interleaved axial slices using a standard T2∗-
weighted echo-planar imaging sequence employing the following parameters: repetition

time T R = 2000 [ms]; echo time T E = 30 [ms]; flip angle θ = 90 [deg]; 64×64 matrices;

in-plane resolution: 3× 3 [mm]; slice thickness: 3 [mm]. After the functional scans, high-

resolution sagittal T1- weighted images were acquired for obtaining a 3D structural scan,

using a magnetization prepared rapid gradient echo sequence (MP−RAGE) and employ-

ing the following parameters: T R = 2250 [ms];TE = 2.6 [ms];1 [mm] isotropic voxel size.

This sequence is optimized to differentiate between white and gray matter. Subjects were

positioned supine in the scanner with their head secured in the head coil to minimize head

movement. Visual stimuli were presented, using the software package Presentation 12.0
(Neurobehavioral Systems Inc., Albany, Canada), on a standard PC equipped with a 3D

graphics card, and back-projected via an LCD video projector (JVC, DLA-G20, Yokohama,

Japan) onto a translucent circular screen. The stimuli were seen on a mirror reflecting the

image from the projection screen. The projector had a resolution of 800× 600 pixels and

a refresh rate of 72 [Hz]. The viewing distance to the projection screen was 64 [cm]. Par-

ticipants were subjected to a perceptual detection task, see Fig. 6.2. In each trial, a visual

stimulus was presented for 194 [ms], followed by a blank screen. In half of the stimuli,
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some Gabor patches formed contours as targets to be detected, while the rest of the patches

was oriented randomly as was the case in all the remaining stimuli. Each stimulus array

contained 90−100 Gabor patterns and subtended 16.6 by 16.5 degrees of visual angle. A

cohort of 19 subjects has been studied during 3 sessions, each encompassing numerous

(. 150) trials with Gabor stimuli, organized in 5 blocks. In each trial, the subjects classi-

fied the stimulus as contour or non-contour by pressing an associated response button with

either the left or the right hand. This resulted in 4 conditions:

1. there was a contour and the subject recognized it correctly (decoded as CT),

2. there was a contour and the subject did not recognize it (decoded as CF),

3. there was no contour but the subject falsely recognized a contour (decoded as NCF)

and

4. there was no contour and the subject recognize its absence correctly (decoded as

NCT).

In this study, the two conditions CT and NCT are analyzed, only as for the other two

conditions far less trials were available.

Fig. 6.1 shows a subject during experiment preparing. An EEG cap is put on the

subject’s head and laid on a movable bed to take him inside the scanner.

Functional data were preprocessed with the software package SPM 8 (Wellcome Depart-

ment of Imaging Neuroscience, London, UK), running under MATLAB 7.0 (Mathworks,

Natick, MA). This preprocessing included slice-time correction, motion-correction, spatial

normalization and spatial Gaussian smoothing. Except from this no further pre-processing

has been considered and these "raw" images have been analyzed.
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Fig. 6.2 Stimuli and stimulus design: a) Stimulus protocol and Gabor patches either

forming a contour line (CT) or not (NCT), b) prototypical hemodynamic response

function (HRF)
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6.3 Data set

The subjects participating in the study encompassed 6 male and 13 female volunteers be-

tween 20− 29 years old, i. e. (22.79 ± 2.7) [years]. All subjects were right-handed and

had normal or corrected-to-normal vision. Based on self-reports, the subjects had no neu-

rological or psychiatric disorders, brain injuries or drug dependencies. This study also was

approved by the local ethics committee (study number 10− 101− 0035). Subjects were

treated according to the principles laid down in the Helsinki declaration.

Note that with fMRI recordings, the brain is scanned in a number of slices, here (Ns =
46), which together comprise a 3D activity distribution, henceforth called a volume of acti-

vations. Each such brain slice represents a 2D data array which is decomposed by 2DEEMD

into K = 6 BIMFs per slice. Fig. 6.3 illustrates corresponding results for a single brain slice.

Note that the BIMFs for both conditions have been normalized jointly to render their relative

activation levels comparable, but that the resulting difference BIMFs have been normalized

separately to enhance visibility of sometimes small differences.

Fig. 6.3 Illustration of the BIMFs resulting from an 2DEEMD decomposition of a single

brain slice for both stimulus conditions, i. e. CT and NCT. Note that BIMFs for both condi-

tions have been normalized to the same scale to render them comparable, while the differ-

ence images have been normalized separately for enhancing visibility of small differences.

Given there are Nc = 790 scans per session, each one comprising Ns = 46 brain slices,

each complete scan is considered, further on called volume scan, as being equivalent to

a data volume Vc(x,y,z) where x,y,z denote the spatial coordinates of the voxels in the

brain volume. Here index c counts these scans, thus forming an index set {C|c ∈ N,c =
1, . . . ,790}. Now choose the subset of indices corresponding to those volume scans ac-

quired during the time when the hemodynamic response (HR) appeared after the stimulus

onset. The HR usually happens roughly τ ≈ 5 [s] after the stimulus onset. So, for any

given stimulus/response condition, the term trials corresponds to those volume scans regis-

tered while the hemodynamic response was active. For each of the conditions contour true

(CT) and non-contour true (NCT) there were Nt ≈ 90−120 trials across all three sessions,

corresponding to an equal number of volume scans.
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To summarize, the whole data set being analyzed is thus characterized by the following

parameters:

• the number of slices per volume: Ns = 46

• the number of voxels per slice: Nvs = 53×63 = 3339

• the number of stimulus conditions analyzed: Nst = 2, corresponding to the conditions

CT - contour true, NCT - non-contour true

• the number of trials per condition: 90≤ Nt ≤ 120

• the number of subjects analyzed: Ns j = 19

• the number of voxels per volume: R = Ns×Nvs

• the size of the analyzed data set: S = Ns j×Nst = 38

To reduce the computational load, per condition, these volume scans were averaged,

yielding one volume of average activations per condition and session 〈Vsc(x,y,z)〉 according

to

V (x,y,z)≡ 〈Vsc(x,y,z)〉=
1

Nt
∑

sc∈C

Vsc∈C(x,y,z)

where sc ∈ C denotes those indices of the volumes, belonging to stimulus condition sc ∈
{CT,NCT}. Note that 〈Vsc∈C(x,y,z = ns)〉 ≡ Xns

represents an average brain slice to be

decomposed by 2DEEMD (see Eq. (3.33)) into K BIMFs. If repeated for all brain slices

Xns
, ns = 1, . . . ,Ns, this decomposition results in K Volume Intrinsic Mode FunctionsV IMFk, k=

1, . . . ,K. For further processing, each VIMF is concatenated into a column vector.





Chapter 7

Results and Discussion

This chapter reports the results and simulations of metaheuristics which have been proposed

and developed in this work. Section 7.1 explores optimal parameters for the canonical

BEMD by applying to fMRI image like sifting steps, noise level, number of modes an so

on. Such parameters play an important role in the quality of the extracted modes. Thus,

selection process for these parameters should be evaluated carefully. Section 7.2 investi-

gates the quality of the newly proposed BEMD variant (GiT-BEMD) and compares it with

the canonical BEMD in terms of computations load, quality of extracted BIMFs and deal-

ing with mode mixing problem. In the GiT-BEMD algorithm, the envelope estimation, as

applied in a canonical BEMD, is replaced by a 2D surface interpolation based on Green’s

functions with tension. For comparison purposes, a canonical BEMD and a GiT-BEMD

are applied to three types of images: synthetic image, natural image and fMRI images. Re-

sults are discussed throughly as well. Section 7.3 shows clearly the benefits of employing

canonical BEMD and GiT-BEMD in analyzing fMRI data compared to the resulting in SPM.

The latter which is considered as a gold standard tool in the biomedical field. Also, in this

section statistical analysis and visualization of the extracted modes which are produced by

a canonical BEEMD and the newly proposed GiT-BEEMD are thoroughly discussed. In

addition, results of both methods are compared to the results achieved by SPM using first

(inter-subject) and second (intra-subject) analysis. Note that the analysis of the fMRI exper-

iments of the controversial contour integration task focuses on the two stimulus/response

conditions, i. e. contour true (CT) and non-contour true (NCT) . Section 7.4 presents the

results of classification to discriminate between CT and NCT using sophisticated classifiers ,

mainly an SVM and an RF. Also, preprocessing techniques are employed for enhancing the

accuracy performance. The accuracies of all modes generated from a canonical BEEMD or

GiT-BEMD are also investigated. Finally, Section 7.5 shortly presents summary of previous

studies which are related to this study, especially related to contour integration task.
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7.1 Evaluation Methods of fMRI image

Following, the required parameters for decomposing one fMRI image using a canonical

BEEMD are explored in detail. The formers have to fixed in advance. Consequently, the

optimal of such parameters are generalized during the decomposition of the whole dataset.

7.1.1 BEEMD parameter estimation for fMRI images

Despite the introduction of VIMFs, the canonical BEEMD decomposition has been per-

formed at the level of average brain slices. As was already mentioned in the introduction,

proper parameters, such as the number of sifting steps, the ensemble size, the noise ampli-

tude etc., have to be assigned before one can apply the canonical BEEMD to fMRI images.

Thus in this study, the space of parameters has been explored on fMRI image, see Fig 7.1,

in a systematic fashion to decide on appropriate values for each parameter as is discussed in

the following subsections.
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Fig. 7.1 Left: Normalized fMRI image. Right: the corresponding intensity distributions.

7.1.1.1 Number of sifting steps

For rendering decompositions comparable, one cannot use a stopping criterion which is

deduced from the data as then each BIMF of a brain slice Xns
will result from a different

number of sifting steps. Then the BIMFs will vary in each slice and their comparison will be

unjust. It is common experience that only a small number of sifting steps is needed usually

to extract a proper BIMF. Huang et al. [59] suggest that 15 sifting steps should be sufficient

to create reliable BIMFs. So, the number of sifting steps to this suggested number is fixed

in this thesis as well.
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Fig. 7.2 Canonical BEEMD with spatial smoothing, an added noise level of an = 0.2σ and

Ensemble size of NE = 20 : Top left: Number of sifting step NS = 5, Top right: NS = 15,

Bottom left: NS = 25, Bottom right: NS = 50.

7.1.1.2 Ensemble Size

A large number of members forming an ensemble, henceforth called ensemble size NE , re-

sults in high quality decompositions as, due to self-averaging, the noise in the data becomes

almost perfectly canceled out. But this strategy also results in a heavy computational load

which often becomes prohibitive. Fig 7.3 shows the effect upon the BIMFs of varying the

number of the members of an ensemble. Especially BIMF4 and BIMF5 when decomposed

with a small number of members of the ensemble, show decomposition artifacts like the

vertical lines visible in the images. Accordingly, in a large scale simulation, the number NE

of members comprising an ensemble has been varied systematically. As the ensemble size

increases, these artifacts almost vanish. They rather disappear when the number of members

of the ensemble exceeds NE ≥ 100. It can be seen that there is not much difference between

an ensemble size of NE = 100 and NE = 200 members, respectively. However, the computa-

tional load increases linearly with the number of members forming an ensemble. Hence, a

canonical BEEMD with NE = 100 members takes five times more computation time than a

canonical BEEMD with NE = 20 members. Thus keeping computational costs low and still

keeping image modes almost free from artifacts, a linear filter in combination with a canon-
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ical BEEMD (BEEMD-LF) is introduced. This latter variant, BEEMD-LF, works simply

by applying a linear Gaussian filter which replaces each voxel in a BIMF with a Gaussian

filter with a kernel matrix of 5×5. As a result, this spatial smoothing almost eliminates all

artifacts from the BIMFs. In Fig. 7.3 one can see clearly the effect of this smoothing filter.

Consequently, in this work an ensemble size NE = 20 with spatial smoothing to the activity

distributions is used.

Fig. 7.3 Canonical BEEMD with spatial smoothing and an added noise level of an = 0.2σ .

Top left: Ensemble size NE = 20, Top right: Ensemble size NE = 20, Gaussian filtering,

Bottom left: NE = 100, Bottom right: NE = 200

7.1.1.3 Noise Amplitude

A clear effect on the quality of BIMFs is seen after changing the amplitude of the added

noise. Fig 7.4 clearly demonstrates that with increasing noise amplitude mainly streak ar-

tifacts become very prominent. This is because the size of the ensemble is kept constant

rather than increased with increasing the amplitude of the noise added. This is enforced by

the prohibitive computational load otherwise. As a consequence, in this thesis only a small

noise amplitude of an = 0.2 ·σ , where σ denotes the standard deviation of the intensity

distribution of the original fMRI images, has been chosen.
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Fig. 7.4 Canonical BEEMD modes with noise added or ensemble size increased: Top left:

NE = 20,an = 0.2σ , Top right: NE = 20,an = 1.5σ , Bottom left: NE = 20,an = 2.5σ ,

Bottom right: NE = 100,an = 2.5σ .

7.1.1.4 Number of image modes

Finally, in order to assure comparable results, the number of extracted BIMFs needs to be

kept constant throughout this study. Fig. 7.5 shows that an optimal number of extracted

BIMFs turned out to be K = 6. With seven or eight extracted BIMFs no further textures

at larger spatial scales appeared. On the other hand, with less than K < 6 BIMFs, one can

see that the last component does not represent a trend yet. Although there is no strict way

to estimate the number of modes in advance, here and from observation, one could say the

expected number of extracted modes is calculated beforehand by dividing the logarithm to

the basis 2 of the number of intensity image constituents (voxels) by two and rounding the

resulting number to the nearest integer as follows:

K ≈
(

log2(N)

2

)

(7.1)
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Fig. 7.5 Canonical BEEMD with variable number K of modes extracted. From Top to

Bottom: K = 4,5,6,7

Where K is the expected number of properly extracted modes, and N represents the

number of intensity components. So, from Eq. (7.1) the expected number of modes of an

fMRI image with width×height = 53×63 = 3339 voxels is

K ≈
(

log2(3339)

2

)

= 6 (7.2)

Note that this figure also corresponds to an estimate following visual inspection after

systematically varying the number of modes to be extracted. Similarly, the number of ex-

tracted modes from one dimension (time series) was suggested by Wu et el. [165] to be

roughly equal to K ≈ log2 N with N denoting the number of samples of time series.

7.1.1.5 Hilbert Spectrum of fMRI Modes

As already mentioned, the extracted image modes are ordered according their spatial fre-

quencies from high to low frequency (from a small spatial scale to a large one). Here, to

see the effect of this property, each BIMF could be further analyzed by two-dimensional

Hilbert spectral analyses, whereby the intrinsic characteristics of the image textures can be

obtained, see Fig. 7.6. Such spectral properties may be useful for further analysis in some

applications. Note, the correlation between the extracted modes and the variance of each
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mode also are depicted in Fig. 7.6. Note further, these modes are extracted from slice shown

in Fig. 7.1.

Fig. 7.6 shows 6 modes extracted of fMRI image by a canonical BEEMD and their corre-

sponding Hilbert . The brightness, in right figure, represents the absolute amplitude of the

frequencies of Hilbert.
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Fig. 7.7 Left: shows the correlation between the 6 modes shown in Fig. 7.6, color bar

represents how correlation strong between modes. Right: shows the variances of the 6

modes.

7.2 Simulation Results of GiT-BEMD

Before applying the new method to fMRI images, a natural image (face image) as well

as images with artificial textures have been used to test and validate the proposed approach.
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Images are selected to demonstrate efficiency and performance of the GiT-BEMD algorithm

in extracting textures on various spatial scales from the different images. In addition, a fair

comparison of the performance of both algorithms, GiT-BEMD and BEEMD, is provided.

7.2.1 Artificial Image

An artificial texture image (ATI) of size 101×101 is considered, which is composed of im-

ages of the same size containing artificial texture components (ATCs). The ATCs represent

sinusoidally varying spatial oscillations with horizontal (h1 = 20,h2= 4,h= 1) and vertical

(v1 = 20,v2 = 4,v3 = 1) spatial frequencies and unit amplitudes. The first ATC contains

the highest spatial frequency, the second ATC shows a medium spatial frequency, and the

third ATC exhibits a very low spatial frequency. The ATI and ATCs are shown in Fig. 7.8,

while the intensity profiles of the ATI and ATCs are presented in Fig. 7.11. These artificial

textures provide a good performance indication of the algorithm even though some imper-

fections cannot be avoided. The latter arise from the fact that though the superposition of

the ATCs in Fig. 7.8 reproduces the original ATI of Fig. 7.11, application of either canon-

ical BEMD or the newly proposed GiT-BEMD to the ATI might yield BIMFs which not

necessarily reproduce the ATCs of Fig. 7.11.

Let us first investigate the upper (UE) and lower (LE) envelope surfaces generated from

the ATI by GiT-BEMD during the sifting process while extracting the first intrinsic mode

(BIMF1). Fig. 7.9 displays, for 10 iterations, the combined three-dimensional mesh plots

of size 101× 101 pixels taken from the same locations as were used for the original ATI,

and the envelopes obtained by GiT-BEMD with tension parameter T = 0.1. The figure

demonstrates the effectiveness of the proposed scheme of Green’s function-based envelope

estimation. The related computational load for the decomposition of the ATI is given in

the Tab. 7.1, where it is compared with corresponding computational costs of other BEMD

variants. These results clearly show that the envelope estimation takes much shorter time

with GiT-BEMD than with canonical BEMD. In general, increasing the size E of the en-

semble in case of a canonical BEMD increases computational costs for the decomposition

accordingly, but also for estimating the BIMFs in the GiT-BEEMD process. However, the

number of extremal points decreases for BIMFs with lower spatial frequencies leading to a

decrease in computation time for envelope estimation. Anyway, the overall computational

load of the canonical BEMD process still remains much higher compared to GiT-BEMD.

Next comparisons the decomposition of the ATI of Fig. 7.8, when effected with either

the new GiT-BEMD or a canonical BEMD, are presented. Let us first consider the appli-

cation of the GiT-BEMD algorithm. The resulting BIMFs and the reconstructed ATI are

displayed in Fig. 7.8. The corresponding intensity profiles are displayed in Fig. 7.11. The

latter reveals the close similarity of the BIMFs with the original ATCs. The BIMFs may

not be expected to match the original ATCs perfectly because of truncation/rounding er-

rors introduced at various steps of the decomposition process. This holds true for both, the

canonical BEMD or the GiT-BEMD. Still such errors remain very small as is corroborated

with Fig. 7.10 where the reconstructed ATI represents an almost perfect copy of the original

ATI.
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Fig. 7.8 Top row: (right) component 1 (ATC-1) resulted of product (le f t) and (middle),

Upper Middle row: (right) component 2 (ATC-2), resulted of product (le f t) and (middle),

Lower Middle row: (right) component 3 (ATC-3), resulted of product (le f t) and (middle),

Bottom row: shows the produced original artificial texture image (ATI) by summation the

component ATC-1, ATC-2 and ATC-3. 1D intensity profiles of ATC-1, ATC-2, and ATC-3

are shown also.
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Fig. 7.9 Sifting process using Green’s function for splines with tension parameter T = 0.1,

and Ns = 10 iterations, ordered from top left to bottom right, to extract the first intrinsic

mode (BIMF1) of the ATI.

The intrinsic modes (BIMFs), extracted from the original ATI by applying Green’s

function-based GiT-BEMD with surface tension, are displayed in Fig. 7.10 for a tension

parameter T = 0.1. The intensity profiles of the corresponding component images are dis-

played in Fig. 7.11. Also, one can see clearly the effect of increasing the tension parameter

up to T = 0.9 in Fig. 7.12. The ATI is next decomposed using canonical BEMD to compare

the results with those obtained from the new GiT-BEMD method. The BIMFs resulting

with canonical BEMD are displayed in Fig. 7.13(Top). Similarly, the BIMFs resulting from

an application of the canonical BEEMD with ensemble sizes of either E = 20 or E = 50

are given in Fig. 7.13(Middle) and Fig. 7.13(Bottom), respectively. In all cases, three

BIMFs are extracted. As one can see, results turn better with increasing size of the en-

semble of the noise-assisted BEEMD. This is because of the self-compensating property of
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Fig. 7.10 Decomposition of the ATI using GiT-BEMD , Top: represents the extracted BIMFs

(BIMF1, BIMF2, BIMF3) by GiT-BEMD and Bottom: the summation of BIMFs.

Fig. 7.11 Top: intensity profiles of the original ATI, Left column: intensity profiles of

BIMF1, BIMF2 obtained by canonical BEEMD with ensemble size E = 50 and Right col-

umn: intensity profiles of corresponding BIMFs obtained by GiT-BEMD.

added noise which helps to even cancel the noise included in the original images. Moreover,

with canonical BEMD, increasing the number of sifting steps on the one hand yields bet-

ter BIMFs in cases where the modes have high spatial frequencies but leads to over-sifting

with modes having low spatial frequencies. Hence, it is generally better to limit the num-

ber of sifting steps, even if the standard deviation (SD) threshold criterion is not met yet,
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Fig. 7.12 Illustrates the components of ATI obtained by GiT-BEMD with different tension

parameters T = 0.001, T = 0.1 and T = 0.9, respectively.

Fig. 7.13 Top: Decomposition of the ATI using canonical BEMD. Middle: Decomposition

of the ATI using canonical BEEMD with ensemble size E = 20. Bottom: Decomposition of

the ATI using canonical BEEMD with ensemble size E = 50.
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Fig. 7.14 Illustrate the effect of increasing the extracted modes, from ATI, by GiT-BEMD.

From top to bottom M = 3, M = 4 and M = 5, respectively.

or decrease the number of sifting iterations for the lower frequency modes to prevent over-

sifting [38, 139]. An additional performance assessment of the GiT-BEMD and BEEMD

algorithms, the computational load for the decomposition of the ATI image, is presented

in Tab. 7.1. The algorithm GiT-BEMD, using a tension parameter T = 0.1 or smaller ap-

pears to be the better choice for decomposing the ATI image. Note that with the Green’ s

function-based BEMD (GiT-BEMD) decomposition using a small surface tension the num-

ber of sifting steps has been fixed to Ns = 10, while in the canonical BEEMD application,

the condition for a vanishing mean everywhere has to be met as closely as possible. This

observation has been established already in literature [38, 139]. Thus relaxing this condition

in case of the canonical BEEMD algorithm by reducing the number of sifting steps in order

to prevent over-sifting may compromise achieving optimal intrinsic modes. The Green’s

function-based GiT-BEMD algorithm, instead, only needs few sifting steps and does not

yield better results if the latter is further increased. This of course helps to keep the compu-

tational load as low as possible. In fact, the condition of a vanishing local mean everywhere

is seen to be met very closely in the simulations (the global mean for BIMF1 is −0.00004,

for BIMF2 is −0.0001 and for the BIMF3 is 0.0004). Thus all performance measures are in

favor of the new GiT-BEMD algorithm to be used for image decomposition.
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7.2.2 Face image

In Fig. 7.15, the decomposition into intrinsic modes, i. e. spatial textures, is performed

on the famous Lena image. The latter is often used as a benchmark in image processing

applications. The size of the image is 111×111 pixels. Different variants of EMD, includ-

ing pseudo-2D EMD, canonical bi-dimensional EMD (BEMD), canonical bi-dimensional

ensemble EMD (BEEMD) with an ensemble size E = 20, fast bi-dimensional EMD (GiT-

BEMD), fast bi-dimensional ensemble EMD (GiT-BEEMD) with an ensemble size E = 2

and the newly fast bi-dimensional ensemble EMD (GiT-BEEMD) with an ensemble size

E = 20, have been applied for comparison and are exhibited in Fig. 7.15.

Fig. 7.15 Top left: the extracted BIMFs of Lena image obtained by pseudo-2D EMD, Top

middle: by canonical BEMD, Top right: by BEEMD with ensemble size E = 20, Bottom

left: by GiT-BEMD, Bottom middle: by GiT-BEEMD with E = 2 and Bottom right: by

GiT-BEMD with E = 20.

In all cases, the Lena image has been decomposed into four intrinsic modes (BIMFs)

and a non-oscillating residue. Looking at the decomposition of the face images it becomes

obvious that the GiT-BEMD approach yields very well-defined BIMFs, which represent
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characteristic image textures (features) at various spatial scales. These results are much

better than those obtained with pseudo-2D EMD, and better or similar to the canonical

BEMD method. Unwanted stripes and other artifacts often accompany the BIMFs when

obtained via the canonical BEMD algorithm as is apparent in the Fig. 7.15. Such artifacts

provide an extra challenge to a subsequent processing of the extracted image modes and even

might render them unsuited. However, as the application to artificial textures demonstrates,

GiT-BEMD is able to suppress most of these image distortions during the decomposition

(see Fig. 7.15).

Fig. 7.16 Impact of the tension parameters T = 0.1 , T = 0.3, T = 0.5, T = 0.6, T = 0.8
and T = 0.9. From Top left to Bottom right, respectively.

Preliminary studies on edge detection and noise removal using GiT-BEMD show promis-

ing and significantly better performance compared to the analysis using BEMD. Thus, the

newly proposed algorithm GiT-BEMD provides a distinctly improved quality of the BIMFs

extracted from the Lena image. The BIMFs show no or only few distortions, and more

clearly reveal the edges and other characteristic features at different scales compared to the

BIMFs obtained by other BEMD variants. But, as Fig. 7.16 reveals, the effect of a large
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tension parameter, p→ ∞, results in noisy textures because of under- and/or over-shooting

problems, especially at low spatial frequencies. Thus a decomposition employing Green’s

functions with a moderate tension parameter is advisable to avoid unwanted oscillations of

the interpolating envelope surface during sifting. This is especially true if the number of ex-

trema turns small [12]. In fact, yet no solution is known to the problem of how to determine

an optimal tension parameter, hence some trial and error is unavoidable still.

7.2.3 fMRI Image

Finally, the new GiT-BEMD algorithm with fMRI images is tested. Texture analysis is

considered as a challenging task for the latter images. The ability to effectively and reliably

extract textures from such images for classification and segmentation purposes is of key

importance not only in medical image analysis but also in scene analysis and many other

application areas.

Fig. 7.17 Top left: shows the original fMRI slice, Top right:shows the extracted BIMFs by

GiT-BEMD, Bottom left: shows the extracted BIMFs by GiT-BEEMD with E = 2 , Bottom

right: shows the extracted BIMFs by GiT-BEEMD with E = 20 .

In this section, GiT-BEMD is applied to functional magnetic resonance images (fMRI).

These images were decomposed within the framework of a canonical BEEMD analysis.
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Fig. 7.18 Left: shows the extracted BIMFs by canonical BEEMD with E = 20 and Right:

shows the extracted BIMFs by GiT-BEEMD with E = 2 .

With these images the performance of the GiT-BEMD algorithm can be tested thoroughly,

as such images suffer from mode mixing and boundary artifacts. Because of this, most

BEMD variants have problems to decompose them properly. Though canonical BEEMD

could be shown to do well, it takes a prohibitively long time to compute the BIMFs, and

stripe-like artifacts remain which are hard to get rid of them using a canonical BEEMD, as

already shown. So, further post-processing the BIMFs is needed, for example by applying

a kind of filtering or any other technique to dealing with these kind of artifacts. For this

reason, applying GiT-BEMD directly will produce poor BIMFs also. However, it is well

known that mode mixing as well as boundary artifacts can be avoided during sifting by

employing a noise-assisted ensemble EMD (EEMD). Thus, ensemble GiT-BEMD ( GiT-

BEEMD) applied with an ensemble size E = 2 only produces proper BIMFs which look

very similar to the BIMFs resulting from a canonical BEEMD with an ensemble size E = 20.

Increasing the size of the ensemble to E = 20 in case of GiT-BEEMD only resulted in a

marginal improvement of the BIMFs. Fig. 7.17 shows the BIMFs extracted by GiT-BEMD,

GiT-BEEMD with E = 2 and GiT-BEEMD with E = 20. Thus good quality BIMFs can

be extracted at low computational costs when using GiT-BEEMD with an ensemble size as

small as E = 2. Also, compared with canonical BEEMD, the quality of the intrinsic modes

extracted with GiT-BEEMD with E = 2 seems considerably better, and, as Tab. 7.1 shows,

the computational costs are much lower.

Tab. 7.1 Comparison among various GiT-BEMD/BEMDs for the three images discussed in

this section in terms of total time required. Where the number in the end of the methods

refers to the number of ensemble which employed in each.

image Method

pseudo-2D EMD BEMD BEEMD20 BEEMD50 GiT-BEMD GiT-BEEMD2 GiT-BEEMD20

Lena 0.23 min 2.60 min 52.00 min 0.50 min 2.00 min 20.00 min −
ATI − 1.00 min 16.04 min 40.03 min 0.35 min − −
fMRI

slice

− 2.30 min 48.00 min − 0.42 min 0.64 min 14.00 min
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Fig. 7.19 Image modes resulting from a decomposition of the Lena image using GiT-BEMD

with a decreasing surface tension. The tension parameter tk decreases from top left to bottom

right in steps of ∆tk = 0.2

In summary, the newly proposed algorithm GiT-BEMD provides image modes with less

distortions and better defined texture contours easing further processing of the component

images. Essentially two properties render the GiT-BEMD algorithm superior to its prede-

cessors:

• Speed of computation: Most importantly, a dramatic improvement in computation

time results from combining the Green’s function - based envelop estimation with the

EMD decomposition. This is especially important in real world applications where a

canonical BEEMD may take hours to be completed. Moreover, envelope estimation

in GiT-BEMD, employing Green’s functions with surface tension, guaranties that the

envelopes closely follow the image. Also, GiT-BEMD is inherently free from bound-

ary effects, and thus it does not require additional boundary condition processing. On

the contrary, envelope estimation in the canonical BEMD method, employing surface

interpolation, is highly dependent on the maxima or minima maps, and the envelopes

are not guaranteed to follow the image. In some cases when there are only very few

data points in the maxima or minima maps, BEMD tends to generate an inaccurate

surface, which in turn leads to boundary and saddle point problems, and thus produces

improper BIMFs. In Tab. 7.1, the time consumption for a BEMD-based decomposi-

tion is compared to the time consumption of an GiT-BEMD-based decomposition of

three texture images. While GiT-BEMD often takes only seconds, and at most a few

minutes, a canonical BEMD takes many hours, even if only very few iterations are



7.3 Statistical Analysis of fMRI modes and Visualization 95

performed per BIMF. This severely hampers the application of canonical BEMD in

many practical applications. Note, the experimental computer is Intel(R) Core(TM)2

Quad CPU Q9650 @ 3.00GHz RAM 8GHz; and the platform is MATLAB R2014b

(Version 8.4).

• Stability: A proper tuning of the tension parameter provides increased stability to the

GiT-BEMD process. A trial and error selection procedure may have to be performed

to find a suitable value for the surface tension parameter while extracting the textures

inherent to the image under investigation. But, it is observed that setting the surface

tension to a large value in case of modes with a high inherent spatial frequency, and

decreasing the surface tension in proportion to the decrease in the inherent spatial

frequency, i. e. according to tk+1 = tk− 1
K

, where K represents the number of modes;

leads to a better decomposition of images. This reduction in surface tension avoids

to have blob-like artifacts in low frequency modes which otherwise show up if a high

tension parameter is used, see Fig. 7.19 . Also the GiT-BEMD algorithm can be

extended simply to a noise-assisted variant GiT-BEEMD thus avoiding mode mixing

problems in applications which suffer from this problem.

Notably, GiT-BEEMD does not need more than two members in the ensemble to cope

with mode mixing. In contrast, other BEMD algorithms such as canonical BEMD

need at least 20 members in the ensemble to alleviate mode mixing problems. How-

ever, GiT-BEEMD suffers from on-board memory limitations when dealing with large

images. A work-around this drawback can be achieved in future studies by extending

GiT-BEEMD to a sliding window GiT-BEEMD similar to one-dimensional WSEMD

algorithm[171].

7.3 Statistical Analysis of fMRI modes and Visualization

In this section statistical analysis and visualization of the extracted modes which are pro-

duced by canonical BEEMD and GiT-BEEMD are thoroughly discussed. In addition, re-

sults of both methods are compared to the results achieved by SPM, which represents a gold

standard tool in the field of biomedical image analysis.

Note that the analysis of the fMRI experiments focuses on the two stimulus/response

conditions, i. e. contour true (CT) and non-contour true (NCT). Hence, results will be

discussed later on in terms of differences of normalized VIMFs for both conditions. Alto-

gether VIMFs from 19 subjects and for two stimulus conditions have been obtained as an

average over Nt trials during the three sessions, resulting in a total of 38 VIMFk for each k.

The activity distributions within the VIMFs have been normalized for both conditions taken

together. Results are presented as difference images

∆VIMFk =V IMFkCT −V IMFkNCT (7.3)

|∆V IMFk| have been normalized separately to clearly show the, sometimes small, differ-

ences. Only differences above 0.7∆max are shown in the images which exhibit an axial, a
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sagittal and a coronal view, see Fig. 7.20. This threshold is, so to speak, explicitly equiva-

lent to the threshold which shows the activity distribution with SPM in case the uncorrected

p-value is 0.001. This kind of threshold has been chosen because it is impossible to perform

a t-test within subjects while, as already mentioned, the average over trials of the activation

volumes was taken, to end up with just two volumes corresponding to CT and NCT. Be-

sides, a t-test within subjects is done by SPM through all trials of each subject, which is

called a first level analysis. Then the average of a first level analysis is computed, see Fig.

7.22. In general, a high biological variability is observed as seen in the Fig. 7.20 for VIMF3

and VIMF4 in case of the canonical BEEMD and VIMF1, VIMF3 and VIMF4 in case of

GiT-BEMD in Fig. 7.21. The latter shows a high biological variability in VIMF1 compared

to the first one. Additionally, some activity regions was lighted in an interchangeably way

between modes extracted by the canonical BEEMD or GiT-BEEMD.

Fig. 7.20 and Fig. 7.21 illustrate the most informative differences ∆V IMF3 and ∆VIMF4

, produced by BEEMD and ∆V IMF1, ∆V IMF3 and ∆VIMF5 generated by GiT-BEEMD,

as averages over all subjects to highlight robustly obtained activation loci. The differences

clearly show highly focused and spatially localized activities.

In case of BEEMD,

• ∆V IMF3, instead, shows activity mainly in the temporal gyrus, but activity is more

pronounced in the left temporal gyrus compared to the right temporal gyrus, especially

in the left inferior and middle temporal gyrus.

• ∆V IMF4, exhibits a pronounced activity in the (left) paracentral lobule.

While in case of GiT-BEEMD,

• ∆V IMF1 exhibits activity exclusively in the left hemisphere, but varying from occip-

ital via temporal and medial to frontal gyrus.

• ∆V IMF3 shows activity similar to ∆V IMF2 in left and right medial gyrus, but it

extends it to the right hemisphere in precuneus and occipital gyrus.

• ∆V IMF4, finally, exhibits activity in the area of the thalamus which none of the modes

extracted by canonical BEEMD ever indicated. In addition, it shows activity in the

right hemisphere in the cingulate cortex and in the left hemisphere in the postcenteral

gyrus.

Moreover, less significant activity distribution is shown in the other modes, see Fig. A.1

and Fig. A.2 in Appendix

Note that the activity distribution in each difference image has been normalized sepa-

rately to the range 0−1 and only the highest 30% of the activities are shown in the images,

overlaid onto an anatomical image. Corresponding Montreal Neurological Institute and

Hospital (MNI) coordinate system of these localized activity blobs, of extracted modes by

BEEMD and GiT-BEEMD, are collected in Tab. A.1 and Tab. A.2, see in Appendix, se-

quentially.
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Fig. 7.20 Illustration of the most informative modes, VIMF3 and VIMF4, resulting from

a canonical BEEMD decomposition of a whole brain volume. The difference refers to

the VIMFs for the two conditions CT and NCT, respectively. Each difference VIMF is

normalized separately to enhance visibility.

Fig. 7.21 Illustration of the important modes (VIMF1,VIMF3 and V IMF4), resulting from

an GiT-BEEMD decomposition of a whole brain volume. The difference refers to the

VIMFs for the two conditions CT and NCT, respectively. Each difference VIMF is nor-

malized separately to enhance visibility.
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Fig. 7.22 Illustration of the significant activity resulted by the first and second SPM level,

respectively. In both levels the activity is significant in case of contrast CT is larger than

NCT condition while no significant activity when NCT is greater than CT .

Fig. 7.23 Illustration of the first three modes ( V IMF1,VIMF2 and V IMF3) , resulting from

an BEEMD decomposition of a whole brain volume. The difference refers to the VIMFs

for the two conditions CT and NCT, respectively. Each difference VIMF is significant with

α = 0.001.

Considering a comparative analysis of the activity distributions resulting from a canon-

ical BEEMD and GiT-BEE analysis , see Tab. A.1 and Tab. A.2, with the ones obtained

using the canonical SPM tool, Fig. 7.22 clearly demonstrates the superior detail and spatial

localization which ∆V IMF2,∆VIMF3 and ∆V IMF4 extracted by the canonical BEEMD

and all modes extracted by GiT-BEEMD exhibit compared to the SPM results which most
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Fig. 7.24 Illustration of the first three modes ( V IMF1,VIMF2 and VIMF3) resulting from

an GiT-BEEMD decomposition of a whole brain volume. The difference refers to the

VIMFs for the two conditions CT and NCT, respectively. Each difference VIMF is sig-

nificant with α = 0.001

closely resemble ∆V IMF4 on a first level analysis, denoted SPM1. Only at the second level

of analysis, denoted SPM2, also other activity blobs become visible, though less localized

and focused. Note that only activations corresponding to the same level of statistical signifi-

cance are exhibited to render images from both approaches comparable. So far, a first level

analysis for extracted volume modes and “raw” modes have been discussed using SPM1,

i. e. analysis within subjects. Now the analysis results of the second level are investigated.

This sort of analysis is done between subjects by using the results of the first level analysis

to form an input for a t-test analysis which, in turn, shows where our hypothesis that spa-

tial loci of activity distribution is significantly different between the two conditions CT and

NCT. Also, as in the first level analysis, this analysis is done by using modes extracted by

the canonical BEEMD and GiT-BEEMD, respectively. Fig. 7.23 and Fig. 7.24 illustrate

significantly different activity distributions between the two condition CT and NCT across

subjects, where a p-value (p < 0.001,uncorrected) is used. A one-sample t-test illustrates

active areas that are significantly different for each condition individually. By looking at

the pair-wise contrasts of extracted modes, V IMF1,VIMF2 and VIMF3 , by canonical

BEEMD shown in Fig. 7.23, one can easily observe the active area of the modes, extracted

by both techniques, indicating response differences between CT and NCT conditions. These

active areas are different for each mode and only few overlaps are seen between modes from

both methods. Generally, the t-test analysis suggests that the activity with respect to the CT

condition is notably larger than with the NCT condition. For further details read Appendix.

Compared to SPM2, one can see in Fig. 7.23 and Fig. 7.24 clearly that the extracted

modes, VIMF1,VIMF2 and VIMF3, by canonical BEEMD and GiT-BEEMD overcome

on SPM2. Moreover, the extracted modes exhibit active areas also for the NCT condition

which SPM completely fails to show.
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Corresponding MNI coordinates of these localized activity blobs of the modes extracted

by BEEMD and GiT-BEEMD in case of a second level analysis are also collected in Tab.

A.3 and Tab. A.4. The corresponding activity distributions of the latter are shown in Fig.

A.3 and A.4, respectively (See in Appendix).

7.4 Classification Results

The baseline for classification performance of this work is the Voxels-as-Features (VAF)

approximation shown in Tab. 7.2, which uses all voxels in each raw image as a feature

vector. It is used as an input to the SVM-SMO as well as RF classifiers. The original feature

vector has 153,594 features. A leave-one-out cross-validation (LOOCV) strategy is used

and several metrics are used to measure the performance of the classifiers, namely accuracy

(acc), sensitivity (sens) and specificity (spec).

Tab. 7.2 Results of the baseline classification VAF.

Method Acc ± std Spec ± std Sens ± std

SVM-SMO 0.50±0.04 0.54±0.08 0.40±0.04

RF 0.32±0.02 0.29±0.02 0.35±0.03

7.4.1 Classification fMRI modes extracted by a canonical BEEMD

Here, two approaches for fMRI classification are presented in detail:

Approach I : As depicted in Fig. 7.25 (Top), the dimensionality reduction techniques

PCA, ICA and NMF are first applied to the whole dataset either raw data or the extracted

modes (VIMFs). Afterwards, data are projected onto the respective inherent coordinates.Then

the LOOCV procedure is employed using these projected data.

Approach II : As depicted in Fig. 7.25 (Bottom), the dimensionality techniques PCA,

ICA and NMF are applied to only the training dataset, either raw data or the extracted

modes (VIMFs), except one image at a time. The latter is used as a test image. This image

is then projected onto the basis vectors resulting from the training data. Afterwards, the

produced projected data of a test image is plug in as input to a classifier. In this way, the

LOOCV is used as well. Consequently, this approach is more robust and can be generalized.

Note, although the former approach could produce ultimate accuracies, it suffers from

serious drawbacks like over-fitting, as will be discussed more later on. Unfortunately, many

researchers do not pay much attention to such pitfalls. On the other hand, the latter, Ap-

proach II, could not reach to maximum accuracies but is more trust than other. Both ap-

proaches are dependent on extracted features during a pre-processing step, but Approach II

is more general than Approach I.

For each approach, classification of two data sets has been considered:
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Fig. 7.25 Top: Illustration of the Approach I procedure for classification. Bottom: Illustra-

tion of the Approach II procedure for classification. Dot lines represent the optimization

process of classification framework.
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• Projections onto principal directions of average volumes 〈Vsc(x,y,z)〉 deduced from

"raw" data and collected in an L×S matrix Zav.

• Projections onto principal directions of volume modes VIMFk,k = 1, . . . ,K deduced

either from a 2DBEEMD or a GiT-BEEMD decomposition of average volumes 〈V (x,y,z)〉
and collected in an L×S matrix Zvm.

Also, in this section two experiments are discussed:

– Experiment 1: The VIMFs resulted from a canonical BEEMD are used without em-

ploying any filtering to take artifacts away.

– Experiment 2: Gaussian filtering is applied to the VIMFs before the feature generation

stage in order to deal with artifacts accompany with extracted modes from a canonical

BEEMD decomposition.
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Fig. 7.26 Normalized eigenvalue spectrum and related cumulative variance for vol-

ume mode VIMF3 after decomposition with PCA.

These projections are called orthogonal projections and are used as features for classi-

fication. The scree plot, see Fig. 7.26, illustrates the normalized eigenvalue spectrum and

related cumulative sum of variances for the most discriminative volume mode VIMF3. It

can be seen that the eigenvalue spectrum levels off after only L = 10 eigenvalues which

in total already explains roughly 80% of the data variance. The eigenvolumes, i. e. the

columns of matrix U , represent uncorrelated partial activity distributions in the brain. Fig.
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Fig. 7.27 Top: Illustration of the first eigenvolume of the raw data and VIMF3 obtained by

PCA, respectively. Middle: shows the corresponding extracted by ICA. Bottom: Illustration

of the first non-negative factor (coefficients) of raw and VIMF3 obtained by NMF.
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7.27 illustrates the eigenvolume related with the second largest eigenvalue for both the raw

data and VIMF3, respectively. Both underline the relevance of the occipital area for contour

integration. However, the activity distribution provided by VIMF3 is much more focused

than in case of the raw data.

Given all orthogonal projections Z discussed above, a rotation matrix W is estimated.

The resulting independent projections, after re-ordering, are collected

• in an L×S matrix Sav in case of the projected "raw" data, or

• in an L×S matrix Svm in case of the projected volume modes.

Also, the basis vectors extracted by NMF are considered:

• in an L×S matrix Hav in case of metagenes represented "raw" data, or

• in an L×S matrix Hvm in case of the metagenes represented volume modes.

Either orthogonal (Zav,Zvm) and independent (Sav,Svm) projections or non-negative basis

vectors (Hav,Hvm) thus obtained have been input to either an RF or an SVM-SMO classifier.

Later on, the other types of SVM algorithm is employed. All are trained by adding one

feature at a time following a LOOCV strategy. Both RF and SVM-SMO with a sigmoidal

kernel are considered as stochastic algorithms, because Sequential Minimization Optimiza-

tion(SMO) breaks the problem into sub-problems and the initial weight of the sigmoidal

kernel is random and RF uses a bagging technique internally. On the contrary, the alter-

native SVM methods, SVM-QP and SVM-LS, are deterministic algorithms. SVM-SMO

training can be performed efficiently by applying a SMO technique which breaks the large

quadratic programming (QP) problem into a sequence of smaller QP sub-problems which

can be solved analytically [138]. For both stochastic classifiers, training and testing was

repeated 10 times, later on only once for the deterministic classifiers, while permuting the

whole data set randomly, and an LOOCV strategy was invoked to obtain reliable results.

Several metrics were used to measure the performance of the classifiers, namely accuracy

(acc), sensitivity (sens), specificity (spec) and the Receiver Operating Characteristic (ROC)

curve. This procedure is applied using both approaches, Approach I and Approach II.

7.4.1.1 Raw data

Approach I : first "raw" features, i. e. the projections Zav of average volumes, resulting

from "raw" data, onto their principal directions have been fed to an SVM-SMO classifier

yielding an average accuracy acc = 0.75±0.03, an average specificity spec = 0.72±0.03

and an average sensitivity sens = 0.77±0.05 (see first column of Fig. 7.28). These figures

have been obtained by varying the number of principal components L and choosing the

optimal number of PCs (L = 10) according to the highest accuracy achieved.

Next, the same "raw" features have been fed to an RF classifier resulting in an average

accuracy acc = 0.66±0.04, an average specificity spec = 0.66±0.07 and an average sensi-

tivity sens= 0.65±0.07. These results have been obtained with the total number of features

(L = 38) according to the highest accuracy obtained.
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The orthogonal projections of the raw data onto the PCs leave some statistical depen-

dencies, hence ICA was applied to remove the latter. The resulting independent projections

Sav were again fed into the SVM-SMO classifier resulting in the following statistical mea-

sures: an average accuracy acc = 0.64± 0.02, an average specificity spec = 0.64± 0.02

and an average sensitivity sens = 0.64±0.05. Then, the same ICs (features) have been fed

to an RF classifier yielding an average accuracy acc = 0.66± 0.00, an average specificity

spec = 0.68±0.00 and an average sensitivity sens = 0.63±0.00.

Besides, NMF is a parts-based technique while PCA and ICA are global techniques.

This behavior is reflected in the bases obtained by these techniques. So, the basis vectors,

resulting from NMF, were used as input to an SVM-SMO classifier and resulted in an aver-

age accuracy acc = 0.80±0.06, an average specificity spec = 0.77±0.10 and an average

sensitivity sens = 0.88± 0.04. These results have been obtained with the optimal number

of basis vector Hav (L = 17) according to the highest accuracy achieved. Then, the same

basis vectors (features) have been fed to an RF classifier resulting in an average accuracy

acc = 0.42± 0.01, an average specificity spec = 0.40± 0.02 and an average sensitivity

sens = 0.45±0.02.

Approach II : the "raw" features, i. e. the projections of the average volumes training data

Ztrainav, have been used to train an SVM-SMO classifier. Afterwards, the test data Ztestav

projected on the eigenvector resulted from training phase. Then the produced projected

data of new, formerly unseen average volumes is tested by the trained classifier. This is

performed M−1 times, based on LOOCV, and yielded an average accuracy acc = 0.74±
0.00, an average specificity spec= 0.75±0.00 and an average sensitivity sens= 0.72±0.00.

These results were obtained by varying the number of principal components L and choosing

the optimal number of PCs (L = 16) according to the highest accuracy achieved. Next,

the same procedure was applied to an RF classifier and resulted in an average accuracy

acc = 0.60± 0.00, an average specificity spec = 0.52± 0.03 and an average sensitivity

sens = 0.57± 0.00. These results have been obtained with the total number of features

(L = 38) according to the highest accuracy obtained.

The orthogonal projections of the raw training data onto the PCs leave some statistical

dependencies, hence ICA was applied to remove the latter. The resulting independent pro-

jections Stestav, fed into the SVM-SMO classifier, resulted in the following statistical mea-

sures: an average accuracy acc = 0.73± 0.03 , an average specificity spec = 0.72± 0.01

and an average sensitivity sens = 0.74± 0.00 . Then, the same ICs (features) have been

fed to an RF classifier getting an average accuracy acc = 0.65±0.00, an average specificity

spec = 0.67±0.01 and an average sensitivity sens = 0.63±0.00.

Also, "raw" features were extracted by applying an NMF and used as input to an SVM-

SMO classifier and resulting in an average accuracy acc= 0.73±0.03, an average specificity

spec = 0.74±0.03 and an average sensitivity sens = 0.80±0.03. These results have been

obtained with the optimal number of basis vectors Htrainav and Htestav (L = 10) according

to the highest accuracy achieved. But, when the same basis vectors (features) have been fed

into an RF classifier, no more than by chance 50 % resulted.
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Note, though, using Approach I, the results provided in case of NMF were superior to

those obtained when using PCA and ICA, while the latter achieved results superior to those

of an NMF application using Approach II. This means that generalizing the model should

be done in combination with PCA or ICA rather than NMF when fMRI data is considered.

7.4.1.2 Volume Image Modes

Approach I : obviously projections Zav of "raw" data yield poor classification accuracies

only. A canonical BEEMD decomposition of the "raw" data set resulted in six volume

modes V IMFk, k = 1, . . . ,K = 6 which might have been further processed by a Gaussian

smoothing filter to remove certain streak artifacts. Afterwards, the corresponding orthogonal

(Zvm) or independent (Svm) projections or the NMF basis vectors (metagenes) of the VIMFs

(Hvm) were used as appropriate features and have been fed into either an SVM or an RF

classifier trained to differentiate between the stimulus/response conditions CT and NCT.
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Fig. 7.28 Boxplot comparing the accuracy achieved by the SVM classifier using

projections of the "raw" data as well as of the volume modes (VIMFs) resulting

from a canonical BEEMD analysis with subsequent Gaussian smoothing.

An exhaustive experimental evaluation of the classifiers has been conducted, having

as input either Zvm, Svm or metagenes Hvm. Here the number of features L was also a

variable for the SVM classifier, but kept constant to L = 38 in case of the RF classifier.

The results show that an SVM classifier achieves the best performance with L = 11± 2

input features. In addition, both classifiers exhibit their highest performance with features

extracted from VIMF3. Even the remaining modes, with the exception of VIMF1, also

present better results than the raw data in many cases. Furthermore, the quality of the
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Fig. 7.29 Variation of statistical measures, obtained with SVM and Gaussian fil-

tering, with the number of principal components extracted from volume modes

V IMF3 and VIMF1, respectively.
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Fig. 7.30 Receiver Operating Characteristics (ROC) from all six volume modes (VIMFs)

for Experiment 2. Left: ROC curves of VIMFs resulting from an SVM classification.

Right: ROC curves of VIMFs resulting from an RF classification.
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classifier behavior was similar using metamodes or orthogonal features. The NMF was

tested with different 2 ≤ l ≤ 18. For more than 18 features, the algorithm converges to

a solution of lower rank than L, which may indicate that the result is not optimal. Then

the classifier were applied to each l separately and the best results are reported. Moreover,

the performance of the classifiers is better with orthogonal features than with independent

features. And the linear filtering, applied to the VIMFs, also has a positive impact on the

performance. Best results are summarized in Tab. 7.3, Tab. 7.4, Tab. 7.5 , Tab. 7.6,

Tab. 7.8 and Tab. 7.7. Among all modes, the highest accuracy is performed with V IMF3

except in case of combining random forest classifier with NMF, the highest accuracy is

done with V IMF4. Also, from results shown in tables, one can see that combining SVM

with NMF has achieve the highest classification accuracy in exp. 1 ,with Acc.= 0.83±0.06.

With exp. 2, combining SVM with PCA performed slightly better than the former with

Acc. = 0.82±0.07. Again, although the other combination of classifiers either SVM or RF

has generated good classification accuracies as well, only the surprising results come from

the combination RF with NMF , the classification accuracy with all modes is not better than

by-chance. Thus, such combination should be further investigated in future work.

Fig. 7.28 illustrates the accuracy achieved with all VIMFs resulting from an SVM classi-

fier and Gaussian filtering (exp. 2). Fig. 7.29 provides a more complete picture. It illustrates

the dependence of accuracy (acc), specificity (spec) and sensitivity (sens) on the number of

PCs extracted, hence the dimension of the feature subspace. These statistical measures

were achieved using features, i. e. projections, of the first ZV IMF1 and third ZV IMF3 vol-

ume modes, respectively. While VIMF1 always represents a small scale, VIMF3 exhibits

textures which provide the most discriminative features for contour vs non-contour stim-

uli. As an additional statistical measure, Fig. 7.30 presents the related Receiver Operating

Characteristic (ROC) curves for all VIMFs and average volumes resulting from a data de-

composition involving Gaussian filtering (exp. 2). The related area-under-curve (AUC)

indicator yields AUC = 0.86 and AUC = 0.80 in case of VIMF3 classified with SVM and

RF, respectively. Corresponding measures in case of VIMF4 amount to AUC = 0.82 and

AUC = 0.78, respectively.

Tab. 7.3 Statistical measures evaluating classification results obtained by PCA and SVM clas-

sifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the VIMFs

(Approach I).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.72±0.05 0.69±0.06 0.75±0.56 0.66±0.05 0.62±0.07 0.70±0.07

VIMF2 0.79±0.06 0.79±0.04 0.78±0.10 0.75±0.05 0.75±0.04 0.75±0.09

VIMF3 0.80±0.05 0.82±0.07 0.79±0.05 0.81±0.04 0.84±0.04 0.78±0.05

VIMF4 0.79±0.06 0.83±0.08 0.75±0.08 0.77±0.03 0.75±0.04 0.77±0.05

VIMF5 0.74±0.03 0.75±0.04 0.72±0.07 0.72±0.11 0.66±0.10 0.77±0.14

VRes. 0.77±0.03 0.74±0.07 0.79±0.04 0.72±0.03 0.71±0.07 0.73±0.04
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Tab. 7.4 Statistical measures evaluating classification results obtained with PCA and an RF

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach I).

RF

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.48±0.02 0.47±0.03 0.50±0.03 0.53±0.04 0.56±0.04 0.51±0.04

VIMF2 0.58±0.02 0.63±0.03 0.53±0.03 0.51±0.02 0.48±0.03 0.53±0.03

VIMF3 0.75±0.02 0.79±0.04 0.71±0.04 0.78±0.02 0.81±0.04 0.75±0.04

VIMF4 0.71±0.02 0.71±0.03 0.71±0.03 0.73±0.02 0.70±0.03 0.77±0.03

VIMF5 0.61±0.02 0.57±0.04 0.65±0.04 0.47±0.01 0.46±0.02 0.48±0.02

VRes. 0.65±0.04 0.68±0.05 0.61±0.05 0.52±0.03 0.57±0.04 0.47±0.04

Tab. 7.5 Statistical measures evaluating classification results obtained with ICA and an SVM

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach I).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.67±0.01 0.64±0.03 0.70±0.04 0.64±0.03 0.65±0.02 0.62±0.05

VIMF2 0.69±0.04 0.70±0.07 0.68±0.03 0.70±0.03 0.70±0.05 0.69±0.04

VIMF3 0.76±0.03 0.78±0.06 0.74±0.03 0.73±0.01 0.68±0.00 0.77±0.02

VIMF4 0.70±0.03 0.67±0.04 0.73±0.08 0.72±0.04 0.68±0.04 0.76±0.04

VIMF5 0.70±0.06 0.72±0.06 0.68±0.10 0.63±0.02 0.63±0.04 0.64±0.04

VRes. 0.60±0.02 0.66±0.04 0.53±0.02 0.62±0.05 0.67±0.03 0.56±0.10

Tab. 7.6 Statistical measures evaluating classification results obtained with ICA and an RF

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach I).

RF

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.39±0.01 0.41±0.03 0.37±0.02 0.44±0.00 0.52±0.00 0.36±0.00

VIMF2 0.56±0.02 0.59±0.00 0.54±0.05 0.42±0.03 0.44±0.02 0.50±0.04

VIMF3 0.70±0.02 0.70±0.03 0.66±0.03 0.76±0.03 0.77±0.04 0.76±0.03

VIMF4 0.61±0.02 0.52±0.02 0.65±0.02 0.74±0.02 0.74±0.04 0.74±0.04

VIMF5 0.55±0.04 0.56±0.07 0.55±0.03 0.40±0.00 0.38±0.00 0.42±0.00

VRes. 0.66±0.01 0.68±0.00 0.65±0.02 0.53±0.00 0.47±0.00 0.58±0.00

In face, though some results, in Approach I, looks reasonable, this approach is considers

as unstable model in general. Later on, especially under optimization framework, the effect

of over-fitting problem wit this approach will be seen clearly.
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Tab. 7.7 Statistical measures evaluating classification results obtained with NMF and an SVM

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach I).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.80±0.07 0.84±0.04 0.76±0.10 0.77±0.10 0.79±0.08 0.76±0.14

VIMF2 0.80±0.04 0.80±0.04 0.80±0.06 0.78±0.07 0.81±0.12 0.75±0.05

VIMF3 0.83±0.06 0.77±0.10 0.88±0.04 0.80±0.03 0.79±0.04 0.81±0.04

VIMF4 0.80±0.04 0.76±0.06 0.83±0.04 0.80±0.04 0.77±0.04 0.82±0.07

VIMF5 0.77±0.02 0.81±0.04 0.73±0.03 0.83±0.04 0.82±0.06 0.85±0.04

VRes. 0.81±0.06 0.76±0.09 0.87±0.08 0.84±0.05 0.84±0.08 0.84±0.07

Tab. 7.8 Statistical measures evaluating classification results obtained with NMF and an RF

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach I).

RF

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.36±0.01 0.36±0.01 0.35±0.02 0.42±0.00[1] 0.47±0.00 0.36±0.00

VIMF2 0.44±0.00 0.42±0.00 0.47±0.00 0.47±0.00[1] 0.42±0.00 0.52±0.00

VIMF3 0.39±0.00 0.42±0.00 0.37±0.00 0.53±0.00[1] 0.63±0.00 0.42±0.00

VIMF4 0.58±0.00 0.63±0.00 0.52±0.00 0.39±0.00[1] 0.36±0.00 0.42±0.00

VIMF5 0.44±0.00 0.42±0.00 0.47±0.00 0.47±0.00[1] 0.47±0.00 0.47±0.00

VRes. 0.52±0.00 0.52±0.00 0.52±0.00 0.47±0.00[1] 0.47±0.00 0.47±0.00

Approach II : from Tab. 7.9, Tab. 7.12, Tab. 7.10, Tab. 7.13 and Tab. 7.11, one can

see clearly how the SVM-SMO and RF classifiers yield, for specific modes and in case of

PCA and ICA, slightly better classification accuracies using Approach I than Approach II,

and this holds even more so when NMF-based features were employed. Although results

achieved with Approach I look better, those obtained with Approach II are more robust and

more generally valid than with Approach I. Following one can see how the optimization

process will enhance the accuracy of Approach I strongly but still stay unreliable. As Ap-

proach II, the corresponding orthogonal (Zvm) and independent (Svm) projections, or the

non-negative factors (Hvm) of the VIMFs were used as appropriate features and have been

fed into either an SVM-SMO or an RF classifier trained to differentiate the stimulus/re-

sponse conditions CT and NCT. An exhaustive experimental evaluation of the classifiers

has been conducted, having as input (Zvm) , (Svm) or (Hvm). Here the number of features

L was almost similar to a variable considered in Approach I for the SVM classifier, and

reduced dramatically in case of RF classifier only with (Hvm) , L = 1± 2 . Note again,

Approach I may produce a high accuracy but it does not generalize properly like Approach

II. Thus the high accuracy achieved on the training samples has to be considered overfitting.

Hence, again Approach II is more realistic, robust and reliable.
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Tab. 7.9 Statistical measures evaluating classification results obtained by PCA and an SVM

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach II).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.71±0.00 0.68±0.01 0.74±0.00 0.76±0.02 0.78±0.03 0.73±0.01

VIMF2 0.76±0.00 0.77±0.03 0.74±0.01 0.71±0.00 0.74±0.01 0.67±0.03

VIMF3 0.83±0.02 0.82±0.04 0.84±0.00 0.82±0.00 0.84±0.01 0.78±0.01

VIMF4 0.81±0.03 0.77±0.04 0.83±0.01 0.79±0.00 0.85±0.03 0.73±0.01

VIMF5 0.76±0.00 0.73±0.03 0.79±0.01 0.79±0.00 0.88±0.03 0.69±0.01

VRes. 0.80±0.04 0.81±0.08 0.79±0.00 0.76±0.00 0.73±0.03 0.79±0.00

Tab. 7.10 Statistical measures evaluating classification results obtained by ICA and an SVM

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach II).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.76±0.01 0.83±0.01 0.68±0.01 0.65±0.02 0.58±0.00 0.72±0.04

VIMF2 0.66±0.02 0.57±0.03 0.73±0.01 0.76±0.00 0.94±0.01 0.59±0.01

VIMF3 0.74±0.05 0.73±0.03 0.76±0.08 0.79±0.00 0.79±0.00 0.78±0.01

VIMF4 0.69±0.00 0.84±0.01 0.53±0.00 0.74±0.00 0.74±0.00 0.74±0.01

VIMF5 0.76±0.02 0.89±0.01 0.62±0.03 0.81±0.01 0.73±0.03 0.89±0.00

VRes. 0.69±0.05 0.71±0.06 0.67±0.04 0.66±0.02 0.69±0.03 0.64±0.01

Tab. 7.11 Statistical measures evaluating classification results obtained with NMF and an

SVM classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs (Approach II).

SVM

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.64±0.01 0.57±0.02 0.71±0.03 0.57±0.00 0.39±0.15 0.76±0.15

VIMF2 0.67±0.13 0.78±0.10 0.55±0.15 0.71±0.03 0.75±0.02 0.68±0.10

VIMF3 0.71±0.10 0.70±0.07 0.71±0.13 0.68±0.03 0.59±0.13 0.76±0.05

VIMF4 0.68±0.06 0.58±0.10 0.77±0.02 0.72±0.02 0.61±0.07 0.82±0.02

VIMF5 0.70±0.07 0.68±0.10 0.71±0.05 0.81±0.05 0.80±0.07 0.81±0.05

VRes. 0.76±0.03 0.73±0.00 0.72±0.07 0.74±0.00 0.71±0.05 0.75±0.07

From the discussion of the two approaches above, stable results have clearly been pro-

duced by combining PCA with an SVM classifier. So, henceforth, further optimization are

performed using PCA and SVM, only.
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Tab. 7.12 Statistical measures evaluating classification results obtained by PCA and RF clas-

sifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the VIMFs

(Approach II).

RF

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.45±0.00 0.52±0.01 0.37±0.00 0.60±0.00 0.47±0.00 0.73±0.00

VIMF2 0.48±0.00 0.47±0.00 0.42±0.00 0.45±0.00 0.58±0.00 0.32±0.00

VIMF3 0.52±0.00 0.42±0.00 0.62±0.00 0.55±0.00 0.58±0.00 0.53±0.00

VIMF4 0.31±0.00 0.36±0.04 0.26±0.01 0.57±0.00 0.57±0.00 0.57±0.00

VIMF5 0.34±0.00 0.31±0.00 0.36±0.00 0.42±0.00 0.42±0.00 0.42±0.00

VRes. 0.42±0.04 0.42±0.08 0.42±0.00 0.44±0.00 0.47±0.03 0.42±0.00

Tab. 7.13 Statistical measures evaluating classification results obtained by ICA and RF clas-

sifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the VIMFs

(Approach II).

RF

experiment 1 experiment 2

Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

Raw 0.65±0.00 0.67±0.01 0.63±0.00 − − −
VIMF1 0.49±0.00 0.41±0.03 0.58±0.01 0.50±0.02 0.53±0.03 0.47±0.01

VIMF2 0.52±0.01 0.47±0.00 0.57±0.03 0.57±0.02 0.58±0.00 0.56±0.04

VIMF3 0.58±0.01 0.53±0.01 0.64±0.01 0.63±0.00 0.68±0.00 0.58±0.00

VIMF4 0.39±0.00 0.42±0.01 0.36±0.00 0.60±0.01 0.68±0.01 0.52±0.01

VIMF5 0.63±0.00 0.57±0.01 0.68±0.03 0.44±0.01 0.25±0.03 0.63±0.00

VRes. 0.65±0.05 0.73±0.01 0.58±0.00 0.57±0.01 0.56±0.03 0.57±0.00

7.4.2 Optimization of Classification Accuracy

In the previous section principal component analysis was used to reduce the number of

input dimensions to the classifiers. The principal components were ranked in decreasing

order according to the amount of variance accounted for in the original data (i. e., based on

the eigenvalues). The final set of principal components used was determined empirically

by adding one principal component at a time to the classifier, training the classifier, and

then evaluating its performance using LOOCV. Then, the set of principal components that

produced the best performance were reported. In case of RF, the importance of features eval-

uated by the gini index (GI) as an indication that the order of feature importance does not

conform to the order of features according to the amount of the variance explained. Hence,

ranking the principal components according to the amount of variance they account for,

may not reflect how well they discriminate between classes. Therefore, another procedure

is also evaluated to determine which of the principal components have the most discrimi-

nating power. This procedure is a stepwise add-on procedure based on adding the principal

component that improves the performance of the classifiers. This ranking of the principal



7.4 Classification Results 113

Fig. 7.31 Illustration of the normalized amount of total variance of explained by PCA, and

the most discriminant principal components ranked by t-test for all modes, K = 1 . . .6, re-

spectively.
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components was determined by first training a classifier on all Z = 38 principal components,

in case of Approach I, and M− 1 in case of Approach II, using a random forest. Another

classifier was then created by taking the ranked features from the initial classifier by the

Gini index measure, one at a time, and testing using LOOCV. The principal component that

performed the best was next used with the remaining features one at a time, and now the

pair of features that gave the best performance was used with the remaining features. This

procedure was carried out by incrementally adding principal components to the classifier

based on their ability to improve performance. Eventually, one can see clearly the effect of

ordering features in terms of their discriminating power. In addition to the Gini Index, in this

chapter other common strategies are descried, for feature selection like T-test, information

gain (IG) and Fisher score (FS), which were introduced in the chapter about classification.

These feature selection techniques are independent of the classifier used, except the Gini

index. In this section the effect of feature selection techniques, to help in improving the

accuracy, is shown. Following, the classification performance of other traditional different

types of SVM methods is compared to the SVM-SMO. Finally, the SVM-SMO classifier

parameters are tuned using a grid search strategy.

Approach I : Tab. 7.14 shows how the accuracy, achieved with an SVM-SMO classi-

fier, has been enhanced notably with all VIMFs, especially with VIMF4, which reached an

accuracy of Acc. = 0.94 with all feature selection methods except the Gini index, which

achieved Acc. = 0.92 . Similarly, with an RF classifier the accuracy is enhanced dramati-

cally with all modes. The best accuracy was almost similar with VIMF3 and VIMF4 in case

of exp. 1, which was equal to Acc. = 0.82, and only VIMF4 in case of exp. 2 and, which

equal to Acc. = 0.89. On the other hand, the worse accuracy using SVM and Gini Index is,

Acc. = 0.81, performed with V IMF1 in case of exp. 1 and with V IMF2 in case of exp. 2,

Acc. = 0.82. With SVM and Fisher Score, the worse accuracy, in exp. 1, is reported with

the residuum, Acc. = 0.76, and V IMF4 with accuracy Acc. = 0.84 in case of exp. 2. With

SVM and Information Gain, VIMF1 reports less accuracy among others with Acc. = 0.82

in case of exp. 1 while V IMF3 with Acc. = 0.83 in case of exp. 2. Finally, with SVM and

T-test, V IMF2 achieves the worse accuracy with Acc. = 0.79 in case of exp. 1 and V IMF1

with Acc. = 0.79 in case of exp. 2. Likewise, for RF with the different features selection,

Tab. 7.15 shows the the optimal accuracies with bold font and the worse accuracies also

are easily recognizable. In addition to the sigmoidal kernel, the other common kernels are

used. Tab. 7.16 shows the effect of the linear, quadratic, Gaussian and polynomial kernel,

respectively. One can see that with the linear kernel, the accuracy achieved with all modes

in this approach reached the maximum Acc. = 1.00. With other kernels, the best accuracy

was achieved with VIMF3 and VIMF4 amounting to Acc.= 0.92±0.04. In exp. 1, one can

see in many cases that V IMF3 and VIMF4 provide the same accuracy, for example with

RF and T-test the accuracy of both is Acc. = 0.82. The values between square brackets in

Tab. 7.14, Tab. 7.15 and Tab. 7.16, as well in other tables throughout this work, show the

number of selected features for an optimal performance, and the first column indicates the

proper mode.
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In summary, from Tab. 7.14, the highest classification accuracies, using PCA and fea-

tures selection techniques with either SVM for Approach I, are:

• in exp. 1 with FS, the highest accuracy is 0.94 for V IMF4,

• in exp. 1 with IG, the highest accuracy is 0.94 for VIMF4,

• in exp. 1 with T-test, the highest accuracy is 0.94 for VIMF4 as well,

• and in exp. 2 with GI, the highest accuracy is 0.89 for V IMF3 and VIMF4.

Correspondingly, from Tab. 7.15, the highest classification accuracies, using PCA and fea-

tures selection techniques with either RF for Approach I, are:

• in exp. 1 with GI and T-test, the highest accuracy is 0.82 for VIMF3 and V IMF4,

• in exp. 1 with T-test, the highest accuracy is 0.82 for VIMF3 and V IMF4,

• in exp. 2 with GI, FS, IG and T-test, the highest accuracy is 0.89 for V IMF4.

Tab. 7.14 Statistical measures evaluating classification results obtained by PCA and SVM

classifier either with (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the VIMFs.

The selection features are employed to order the extracted features (Approach I).

SVM

experiment 1 experiment 2

Feature Selection modes Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.86±0.02[3] 0.89±0.05 0.84±0.00 0.88±0.06[17] 0.88±0.09 0.88±0.03

GI VIMF2 0.85±0.05[16] 0.85±0.06 0.85±0.07 0.82±0.06[17] 0.85±0.05 0.78±0.09

VIMF3 0.83±0.06[16] 0.79±0.06 0.83±0.05 0.89±0.01[4] 0.87±0.02 0.85±0.01

VIMF4 0.92±0.00[4] 0.94±0.00 0.89±0.00 0.89±0.01[2] 0.89±0.00 0.86±0.02

VIMF5 0.89±0.04[9] 0.88±0.06 0.91±0.04 0.83±0.08[18] 0.78±0.10 0.87±0.07

VRes. 0.81±0.03[13] 0.79±0.03 0.83±0.04 0.86±0.07[25] 0.87±0.01 0.86±0.05

VIMF1 0.81±0.04[12] 0.80±0.07 0.82±0.04 0.88±0.01[6] 0.88±0.02 0.88±0.03

VIMF2 0.79±0.02[8] 0.80±0.02 0.77±0.06 0.88±0.03[20] 0.90±0.05 0.85±0.02

FS VIMF3 0.83±0.06[21] 0.80±0.06 0.85±0.08 0.86±0.06[21] 0.87±0.08 0.84±0.09

VIMF4 0.94±0.01[6] 0.95±0.02 0.94±0.02 0.84±0.00[1] 0.89±0.00 0.79±0.00

VIMF5 0.83±0.07[4] 0.88±0.06 0.78±0.09 0.87±0.03[6] 0.87±0.02 0.87±0.02

VRes. 0.76±0.00[8] 0.79±0.00 0.74±0.00 0.88±0.03[8] 0.87±0.04 0.88±0.04

VIMF1 0.82±0.03[4] 0.88±0.04 0.77±0.04 0.87±0.03[5] 0.85±0.03 0.90±0.04

VIMF2 0.83±0.04[17] 0.85±0.05 0.81±0.04 0.86±0.05[21] 0.88±0.06 0.84±0.09

IG VIMF3 0.85±0.03[12] 0.86±0.04 0.85±0.04 0.83±0.03[17] 0.79±0.09 0.86±0.07

VIMF4 0.94±0.03[7] 0.96±0.03 0.91±0.04 0.86±0.03[20] 0.87±0.07 0.86±0.06

VIMF5 0.85±0.03[16] 0.85±0.06 0.85±0.04 0.84±0.03[9] 0.80±0.01 0.89±0.05

VRes. 0.85±0.03[11] 0.86±0.04 0.87±0.04 0.88±0.04[6] 0.87±0.04 0.88±0.04

VIMF1 0.82±0.03[4] 0.88±0.04 0.77±0.04 0.79±0.02[5] 0.89±0.03 0.69±0.03

VIMF2 0.79±0.00[8] 0.80±0.02 0.77±0.06 0.87±0.03[20] 0.90±0.05 0.85±0.02

T-test VIMF3 0.83±0.06[21] 0.80±0.06 0.85±0.08 0.87±0.06[21] 0.87±0.08 0.84±0.09

VIMF4 0.94±0.01[6] 0.95±0.02 0.93±0.02 0.84±0.00[1] 0.89±0.00 0.79±0.00

VIMF5 0.87±0.06[9] 0.85±0.10 0.91±0.05 0.80±0.04[17] 0.80±0.07 0.81±0.07

VRes. 0.83±0.07[8] 0.81±0.06 0.87±0.09 0.88±0.04[5] 0.90±0.04 0.88±0.07
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Tab. 7.15 Statistical measures evaluating classification results obtained by PCA and RF clas-

sifier either with (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the VIMFs. The

selection features are employed to order the extracted features (Approach I).

RF

experiment 1 experiment 2

Feature Selection modes Acc ± std Spec ± std Sens ± std Acc ± std Spec ± std Sens ± std

VIMF1 0.74±0.02[3] 0.77±0.02 0.71±0.03 0.79±0.02[5] 0.89±0.03 0.69±0.03

VIMF2 0.69±0.01[3] 0.73±0.00 0.74±0.03 0.71±0.00[4] 0.74±0.00 0.69±0.01

GI VIMF3 0.82±0.05[6] 0.84±0.00 0.79±0.01 0.84±0.01[7] 0.83±0.03 0.84±0.00

VIMF4 0.82±0.00[3] 0.74±0.00 0.89±0.00 0.89±0.00[4] 0.89±0.00 0.89±0.00

VIMF5 0.76±0.00[4] 0.87±0.06 0.91±0.04 0.76±0.01[7] 0.79±0.00 0.73±0.03

VRes. 0.76±0.00[8] 0.79±0.00 0.74±0.00 0.88±0.03[8] 0.88±0.04 0.87±0.03

VIMF1 0.81±0.01[5] 0.83±0.02 0.79±0.00 0.76±0.02[3] 0.79±0.04 0.74±0.00

VIMF2 0.74±0.01[7] 0.74±0.00 0.75±0.02 0.72±0.03[7] 0.70±0.02 0.74±0.00

FS VIMF3 0.81±0.01[18] 0.84±0.02 0.79±0.02 0.84±0.02[9] 0.85±0.04 0.84±0.00

VIMF4 0.81±0.00[3] 0.79±0.00 0.84±0.01 0.89±0.00[10] 0.89±0.00 0.89±0.00

VIMF5 0.80±0.01[7] 0.68±0.05 0.91±0.00 0.76±0.02[6] 0.78±0.02 0.74±0.03

VRes. 0.76±0.00[8] 0.79±0.00 0.74±0.00 0.85±0.02[8] 0.79±0.03 0.91±0.03

VIMF1 0.80±0.01[3] 0.84±0.00 0.75±0.02 0.88±0.01[6] 0.88±0.01 0.788±0.03

VIMF2 0.74±0.01[7] 0.74±0.00 0.75±0.02 0.72±0.01[7] 0.70±0.02 0.74±0.00

IG VIMF3 0.80±0.01[20] 0.83±0.02 0.79±0.02 0.84±0.01[9] 0.84±0.04 0.84±0.00

VIMF4 0.82±0.00[3] 0.79±0.00 0.84±0.01 0.89±0.00[11] 0.89±0.00 0.89±0.00

VIMF5 0.78±0.01[11] 0.72±0.02 0.85±0.02 0.76±0.02[7] 0.75±0.03 0.77±0.03

VRes. 0.73±0.02[5] 0.75±0.03 0.72±0.03 0.85±0.02[8] 0.79±0.03 0.91±0.02

VIMF1 0.79±0.01[3] 0.84±0.00 0.75±0.02 0.76±0.02[3] 0.79±0.04 0.74±0.00

VIMF2 0.74±0.01[7] 0.74±0.00 0.75±0.02 0.72±0.01[7] 0.70±0.02 0.74±0.00

T-test VIMF3 0.82±0.02[17] 0.83±0.02 0.80±0.02 0.84±0.01[10] 0.84±0.02 0.84±0.00

VIMF4 0.82±0.00[3] 0.79±0.00 0.84±0.01 0.89±0.00[4] 0.89±0.00 0.89±0.00

VIMF5 0.82±0.01[11] 0.75±0.02 0.88±0.02 0.75±0.03[8] 0.77±0.06 0.74±0.00

VRes. 0.78±0.02[8] 0.79±0.00 0.77±0.04 0.83±0.01[6] 0.79±0.01 0.87±0.02

Consequently, in Approach I, so to speak, one can get even maximal accuracy. But, in

this way, almost overfitting cannot be avoided while the test data has been already involved

during the training phase. Thus, again, this approach could not be generalized. So, in

the rest of this discussion, only Approach II is further investigated while this approach

can provide realistic, robust and generalizable results even though the accuracy could not

reach the maximum. This is very true because the test date is not considered during the

training phase at all. Thus, the new dataset is consider blindly by the generated model during

training phase. Note, even the optimal parameters of classifiers for optimization purposes

are selected apart from the test data. Note, only modes generated by a canonical BEEMD

are used for justification the drawbacks of Approach I. Hence, for comparison purposes,

the second approach (Approach II ), is employed. Note further, only the model which

generated the highest accuracy in both experiments, exp. 1 and exp. 2, will be employed for

evaluating the modes extracted by the newly proposed method GiT-BEEMD. Also, the latter

is inherently free from boundary effects, and thus it does not require additional boundary

processing. Conversely, envelope estimation in the canonical BEMD method, employing

surface interpolation, is highly dependent on the maxima or minima maps, and the envelopes

are not guaranteed to follow the image, and the mode mixing problem cannot be completely

averted. Hence, also, ICA combining with the canonical BEEMD is introduced. Then, the

conclusion of this direct comparison is drawn later on.
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Tab. 7.16 Comparison Statistical measures evaluating classification results obtained by PCA

and SVM classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter

to the VIMFs using different kernels and IG feature selection. The selection features are

employed to order the extracted features according their importance (Approach I)

SVM-SMO

experiment 1 experiment 2

Kernel type modes Acc Spec Sens Acc Spec Sens

VIMF1 1.00[11,13,14,30] 1.00 1.00 1.00[20−22,24−27,32,33] 1.00 1.00

VIMF2 1.00[11−15,20,23−25] 1.00 1.00 1.00[7−8,10−26,31−35] 1.00 1.00

Linear VIMF3 1.00[7−9,12−16,34] 1.00 1.00 1.00[6,8,9] 1.00 1.00

VIMF4 1.00[7,10−11,13,35] 1.00 1.00 1.00[5−8,10,36] 1.00 1.00

VIMF5 1.00[14,31,32] 1.00 1.00 1.00[14−15,26,33] 1.00 1.00

VRes. 1.00[24,27,28] 1.00 1.00 1.00[14−31] 1.00 1.00

VIMF1 0.86[7] 0.89 0.84 0.84[3] 0.84 0.84

VIMF2 0.79[11] 0.79 0.79 0.81[7] 0.84 0.79

Quadratic VIMF3 0.90[9] 0.89 0.89 0.84[3,12] 0.84 0.84

VIMF4 0.92[5] 0.94 0.89 0.84[3] 0.89 0.79

VIMF5 0.89[5] 0.89 0.89 0.76[3] 0.74 0.79

VRes. 0.89[10] 0.89 0.89 0.87[7] 0.84 0.89

VIMF1 0.86[4,5] 0.89 0.84 0.84[3] 0.79 0.89

VIMF2 0.82[5] 0.84 0.79 0.82[2] 0.84 0.79

Gaussian VIMF3 0.87[4] 0.84 0.89 0.82[2] 0.84 0.79

VIMF4 0.84[2,4] 0.89 0.79 0.89[3] 0.94 0.84

VIMF5 0.81[3,4] 0.84 0.79 0.76[5] 0.79 0.74

VRes. 0.86[4] 1.00 0.79 0.81[5] 0.84 0.79

VIMF1 0.92[9] 0.89 0.94 0.92[18] 0.94 0.89

VIMF2 0.97[12,14,21] 0.94 1.00 1.00[13,14] 1.00 1.00

Polynomial VIMF3 0.98[11] 0.95 1.00 0.97[22,23] 0.94 1.00

VIMF4 0.95[12] 0.95 0.95 0.97[12,13] 0.94 1.00

VIMF5 0.95[23,24] 0.95 0.95 0.97[21] 1.00 0.95

VRes. 0.92[10] 0.89 0.94 1.00[14,15,16] 1.00 1.00

Approach II : First, according to the previous results of SVM-SMO based on feature

selection, there is no significant improvement in the accuracies when the data is shuffled

and repeated 10-fold. So, in order to keep computational cost of classification process

low, henceforth, only one implementation based SVM-SMO is done. Hence, the standard

deviation of the accuracies cannot be reported any further in the following results. Also,

for other SVM methods, there is no need to shuffle data and repeat simulations, because

they represent deterministic algorithms in terms of reproducibility same results. Tab. 7.17

shows how feature selection techniques enhance the classification performance using SVM-

SMO classifier, in case of exp. 1 and exp. 2. SVM-SMO exhibits its highest classification

performance with VIMF3 and VIMF4. In exp. 1, the same accuracy with VIMF4 and

VIMF3, Acc = 0.87, is obtained based on T-test and Fisher score. And with information

gain, the optimal accuracy with VIMF3 is Acc = 0.87 as well. In exp. 2, a similar accuracy

as in exp. 1 is achieved, using T-test, is enhanced a bit better than exp. 1, Acc = 0.89, except

with VIMF3, see Tab. 7.17.

Tab. 7.18 and Tab. 7.19 show the performance accuracies which have been achieved.

Tab. 7.18 shows the effect of combing SVM with PCA and features selection- the latter
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have been employed to select the most informative features from the features generated by

PCA. One can observe the following:

• in exp. 1 with GI, the highest accuracy is 0.84 for VIMF3 and V IMF4,

• in exp. 1 with FS and T-test, the highest accuracy is 0.87 for V IMF3 and VIMF4,

• in exp. 1 with IG, the highest accuracy is 0.87 for only VIMF3,

• in exp. 2 with GI and FS, the highest accuracy is 0.87 for V IMF4,

• and in exp. 2 with FS, the highest accuracy is 0.87 for only V IMF4 as well.

Tab. 7.17 Statistical measures evaluating classification results obtained by PCA and SVM

classifier either without (exp. 1) or with (exp. 2) applying a linear Gaussian filter to the

VIMFs. The selection features are employed to order the extracted features and LOOCV

(Approach II).

SVM-SMO

experiment 1 experiment 2

Feature Selection modes Acc Spec Sens Acc Spec Sens

VIMF1 0.78[22] 0.78 0.78 0.67[5] 0.84 0.47

VIMF2 0.71[18] 0.63 0.78 0.76[19] 0.68 0.84

GI VIMF3 0.84[30] 0.84 0.84 0.82[28] 0.84 0.79

VIMF4 0.84[6,7] 0.84 0.84 0.87[5] 0.89 0.84

VIMF5 0.76[27] 0.79 0.74 0.68[26] 0.63 0.73

VRes. 0.78[4] 0.74 0.84 0.73[1] 0.58 0.89

VIMF1 0.76[12] 0.84 0.68 0.67[5] 0.84 0.47

VIMF2 0.79[10] 0.79 0.79 0.76[19] 0.68 0.84

FS VIMF3 0.87[21] 0.79 0.94 0.82[28] 0.84 0.79

VIMF4 0.87[20] 0.84 0.89 0.87[5] 0.89 0.84

VIMF5 0.76[1] 0.74 0.79 0.68[26] 0.63 0.73

VRes. 0.79[12,13,14] 0.79 0.79 0.73[1] 0.58 0.89

VIMF1 0.76[17] 0.79 0.73 0.74[23] 0.63 0.84

VIMF2 0.76[21] 0.68 0.84 0.76[24] 0.79 0.74

IG VIMF3 0.87[25] 0.89 0.84 0.87[3] 0.84 0.89

VIMF4 0.82[14,15] 0.79 0.84 0.84[1,2] 0.84 0.84

VIMF5 0.76[1] 0.74 0.79 0.68[20] 0.63 0.73

VRes. 0.81[15] 0.84 0.79 0.79[26] 0.68 0.89

VIMF1 0.73[12] 0.84 0.63 0.74[23] 0.63 0.84

VIMF2 0.79[10,20] 0.79 0.79 0.76[12] 0.74 0.79

T-test VIMF3 0.87[21] 0.79 0.94 0.89[29] 0.89 0.89

VIMF4 0.87[20] 0.84 0.89 0.84[1,2] 0.84 0.84

VIMF5 0.76[1] 0.74 0.79 0.74[7] 0.68 0.79

VRes. 0.79[14,20,24] 0.79 0.79 0.78[26] 0.68 0.89
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Tab. 7.18 Statistical measures evaluating classification results obtained by PCA and SVM

classifier with (exp. 1). The T-test is employed to rank the extracted features and LOOCV

with different kernels as well as different methods (Approach II).

SVM

LS SMO QP

Kernel Method modes Acc Spec Sens Acc Spec Sens Acc Spec Sens

VIMF1 0.60[2] 0.74 0.47 0.73[12] 0.84 0.63

VIMF2 0.66[1] 0.42 0.89 0.79[10,20] 0.79 0.79

Sigmoid VIMF3 0.74[16] 0.63 0.84 0.87[21] 0.79 0.94

VIMF4 0.82[3] 0.79 0.84 0.87[20] 0.84 0.89 can not convergence

VIMF5 0.71[1] 0.57 0.84 0.76[1] 0.74 0.79

VRes. 0.74[5] 0.79 0.68 0.79[14,20,24] 0.79 0.79

VIMF1 0.74[10,12] 0.84 0.63 0.63[7,8] 0.63 0.63 0.71[5] 0.73 0.68

VIMF2 0.81[2] 0.84 0.79 0.79[2] 0.79 0.79 0.81[1] 0.79 0.84

Linear VIMF3 0.87[1] 0.84 0.89 0.87[1] 0.84 0.89 0.87[1] 0.84 0.89

VIMF4 0.79[1−5] 0.79 0.79 0.87[3] 0.84 0.89 0.79[1,2] 0.79 0.79

VIMF5 0.71[1] 0.68 0.74 0.74[1] 0.68 0.79 0.76[1] 0.68 0.84

VRes. 0.79[3] 0.68 0.89 0.79[3] 0.68 0.89 0.81[2] 0.79 0.84

VIMF1 0.68[5] 0.63 0.74 0.60[4] 0.47 0.47 0.68[5] 0.58 0.79

VIMF2 0.81[1] 0.84 0.79 0.66[1] 0.53 0.79 0.71[1] 0.63 0.79

Polynomial VIMF3 0.79[1] 0.74 0.84 0.68[1] 0.47 0.89 0.68[1] 0.53 0.84

VIMF4 0.81[3] 0.84 0.79 0.76[2] 0.68 0.84 0.84[2] 0.79 0.89

VIMF5 0.65[1] 0.68 0.63 0.60[1] 0.47 0.73 0.66[1] 0.58 0.74

VRes. 0.81[2] 0.74 0.89 0.79[3] 0.68 0.89 0.79[1] 0.74 0.84

VIMF1 0.63[4] 0.63 0.63 0.68[6] 0.63 0.74 0.63[4] 0.63 0.63

VIMF2 0.79[1] 0.79 0.79 0.79[1] 0.74 0.84 0.79[1] 0.79 0.79

Gaussian VIMF3 0.74[5] 0.68 0.79 0.74[5] 0.68 0.79 0.74[5] 0.68 0.79

VIMF4 0.82[3] 0.84 0.79 0.82[2] 0.79 0.84 0.81[3] 0.84 0.79

VIMF5 0.71[1] 0.68 0.74 0.68[1] 0.63 0.74 0.71[1] 0.68 0.74

VRes. 0.81[2] 0.73 0.89 0.81[3] 0.74 0.89 0.81[2] 0.74 0.89

VIMF1 0.68[5] 0.68 0.68 0.60[4,5] 0.53 0.68 0.65[5] 0.63 0.68

VIMF2 0.76[2] 0.74 0.79 0.71[1] 0.63 0.79 0.79[2] 0.79 0.79

Quadratic VIMF3 0.79[2] 0.74 0.84 0.79[2] 0.74 0.84 0.79[2] 0.74 0.84

VIMF4 0.79[2] 0.79 0.79 0.76[3] 0.68 0.84 0.74[3,4] 0.74 0.74

VIMF5 0.74[1] 0.68 0.79 0.71[1] 0.68 0.74 0.76[1] 0.74 0.79

VRes. 0.79[2] 0.74 0.84 0.76[3] 0.68 0.84 0.79[2] 0.74 0.84

Tab. 7.18 and Tab. 7.19 show the effect of different SVM methods, i. e., LS-SVM and

QP-SVM compared to SVM-SMO among the different kernels for exp. 1 and exp. 2, re-

spectively. Clearly that SVM-SMO, based on linear and sigmoidal kernel in exp. 1, and

only based on sigmoid kernel in exp. 2, outperform the others. Note, that SVM-QP cannot

convergence to any solution with such data in both experiment, exp. 1 and exp. 2. Also, one

can clearly see that T-test perform better than others feature selection techniques. Thus, the

SVM-SMO using a sigmoidal kernel as well a T-test as pre-processing step for feature selec-

tion is chosen to improve the performance using a grid search for parameters optimization.

Afterwards, the extracted modes by GiT-BEEMD are employed for classification subject

to such optimal parameters, the same classifier and pre-processing technique. Thus, a fair

comparison is introduced based on the classification accuracy, also.
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Tab. 7.19 Statistical measures evaluating classification results obtained by PCA and SVM

classifier with (exp. 2) applying a linear Gaussian filter to the VIMFs. The T-test is employed

to order the extracted features and LOOCV with different kernels and different methods (Ap-

proach II).

SVM

LS SMO QP

Kernel Method modes Acc Spec Sens Acc Spec Sens Acc Spec Sens

VIMF1 0.63[3] 0.72 0.53 0.74[23] 0.63 0.84

VIMF2 0.63[1] 0.58 0.68 0.76[12] 0.74 0.79

Sigmoid VIMF3 0.76[1] 0.68 0.84 0.89[29] 0.89 0.89

VIMF4 0.71[34,35] 0.74 0.68 0.84[1,2] 0.84 0.84 can not convergence

VIMF5 0.63[21] 0.68 0.58 0.74[7] 0.68 0.79

VRes. 0.76[2] 0.84 0.68 0.78[26] 0.68 0.89

VIMF1 0.63[4] 0.73 0.53 0.60[4,9] 0.68 0.53 0.60[3,4] 0.68 0.53

VIMF2 0.79[1] 0.79 0.79 0.79[1] 0.74 0.84 0.79[1] 0.79 0.79

Linear VIMF3 0.84[1] 0.84 0.84 0.81[1,3] 0.79 0.84 0.84[1] 0.84 0.84

VIMF4 0.89[3] 0.89 0.89 0.84[1,2,6] 0.84 0.84 0.84[1,2,5, ,6] 0.84 0.84

VIMF5 0.63[1] 0.63 0.63 0.60[1] 0.57 0.63 0.63[1] 0.63 0.63

VRes. 0.76[1] 0.63 0.89 0.76[3] 0.68 0.84 0.74[2−5] 0.68 0.79

VIMF1 0.66[2] 0.68 0.63 0.55[3] 0.63 0.47 0.66[3] 0.63 0.68

VIMF2 0.76[1] 0.74 0.79 0.68[1] 0.53 0.84 0.76[1] 0.74 0.79

Polynomial VIMF3 0.82[1] 0.74 0.89 0.68[1] 0.53 0.84 0.71[1] 0.58 0.84

VIMF4 0.84[3] 0.84 0.84 0.76[1] 0.68 0.84 0.76[3] 0.73 0.78

VIMF5 0.53[1,5] 0.53 0.53 0.50[1] 0.32 0.68 0.44[5] 0.47 0.47

VRes. 0.76[1] 0.63 0.89 0.76[1] 0.63 0.89 0.76[1] 0.63 0.89

VIMF1 0.63[3] 0.63 0.63 0.68[3] 0.68 0.68 0.63[3] 0.63 0.63

VIMF2 0.79[1] 0.74 0.84 0.76[1] 0.68 0.84 0.79[1] 0.74 0.84

Gaussian VIMF3 0.76[1] 0.68 0.84 0.76[1] 0.68 0.84 0.76[1] 0.68 0.84

VIMF4 0.84[1] 0.84 0.84 0.84[1] 0.84 0.84 0.84[1] 0.84 0.84

VIMF5 0.60[2] 0.58 0.63 0.58[1] 0.58 0.58 0.61[2] 0.58 0.63

VRes. 0.76[3] 0.74 0.79 0.76[2] 0.68 0.84 0.76[3] 0.73 0.79

VIMF1 0.73[4] 0.84 0.63 0.66[3] 0.74 0.58 0.68[4] 0.74 0.63

VIMF2 0.79[1] 0.74 0.84 0.71[1] 0.64 0.79 0.79[1] 0.73 0.84

Quadratic VIMF3 0.79[1] 0.74 0.84 0.76[3] 0.68 0.84 0.76[1] 0.68 0.84

VIMF4 0.84[1] 0.84 0.84 0.79[2] 0.76 0.84 0.82[1,2] 0.79 0.84

VIMF5 0.68[1] 0.68 0.68 0.55[1] 0.47 0.63 0.71[3] 0.74 0.68

VRes. 0.76[1] 0.63 0.89 0.76[4] 0.68 0.84 0.76[3] 0.68 0.84

Tuning parameters : Here, to optimize the accuracy, a grid search in parameter space

in the range of C ∈ {2−5,2−4,2−3, · · · ,23,24} and γ ∈ {2−7,2−6,2−5, · · · ,21,22} and r ∈
{−1,−0.9,−0.8, · · · − 0.01,−0.001} is employed to identify the best parameters of sig-

moidal kernels. Starting with, these parameters are applied, combined with the T-test feature

selection as described above. Tab. 7.21 shows the performance which has been achieved

by using the optimal parameters as is described in Tab. 7.20. Note, the tunning parameters

help to improve the performance of all modes, especially with VIMF3. Even the remaining

modes, with the exception of VIMF4 and VRes in case of exp. 1, which achieve even worse

than the default parameters. In exp. 2, the tuning parameters improve the accuracy signif-

icantly with VIMF4 from Acc = 0.84 to 0.89. The performance in exp. 2 with VIMF3 is

the same as with the default parameters. The performance of other modes, in exp. 2, are

improved, except in case of VIMF5.
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Tab. 7.20 Optimal parameters of sigmoid kernel

are chosen by using grid search strategy.

Parameters experiment 1 experiment 2

cost(c) 16 0.5

gamma(γ) 8 1

coef (r) -1 -0.5

In summary, the optimal performance was obtained with VIMF3 in exp. 1 with an

accuracy Acc = 0.89, and in exp. 2 an optimal accuracy was achieved by VIMF4 and

VIMF3 with Acc = .89. As mentioned in the section about texture extraction, the 2BEEMD

could suffer from redundant data among different extracted modes. Therefore, in the next

section, a new approach to suppress this kind of problem is proposed, using a combination

of 2DBEEMD and ICA.

Tab. 7.21 Statistical measures evaluating classification results ob-

tained by PCA and SVM classifier either without (exp. 1) or with

(exp. 2) applying a linear Gaussian filter to the VIMFs. The optimal

parameters showed in Tab. 7.20 and features are used with LOOCV

and T-test feature selection (Approach II).

SVM-SMO

experiment 1 experiment 2

modes Acc Spec Sens Acc Spec Sens

VIMF1 0.81[7] 0.84 0.79 0.79[31] 0.79 0.79

VIMF2 0.82[4] 0.84 0.79 0.82[1,24] 0.79 0.84

VIMF3 0.89[2,11] 0.89 0.89 0.89[29] 0.89 0.84

VIMF4 0.84[3] 0.84 0.84 0.89[3] 0.89 0.89

VIMF5 0.84[29] 0.89 0.79 0.71[29] 0.63 0.79

VRes. 0.79[26] 0.74 0.84 0.80[27] 0.74 0.89

7.4.3 A combined EMD - ICA analysis of simultaneously registered

EEG-fMRI Data

In fact, fMRI dataset of this study was recorded simultaneously with EEG dataset. Integra-

tion of both, EEG and fMRI, recordings into one dataset for combined data analysis can

be performed either in a symmetrical or an asymmetrical way. The latter methods include

fMRI - directed EEG analysis and EEG-directed fMRI analysis [14]. Symmetrical data fu-

sion methods mainly resort to different variants of Independent Component Analysis (ICA).

Simultaneously recording EEG and fMRI signals is a demanding technique in terms of data

recording and signal processing. However, their combination can reveal both the location

of active brain areas and the temporal order of their activation. A very recent example is

provided by a study of the dynamics of contour integration in the human brain, where EEG

and fMRI data were acquired simultaneously during passively viewing Gabor stimuli under
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contour and non-contour conditions. By applying JointICA to the EEG and fMRI responses

of the subjects, the authors gained temporally and spatially highly resolved brain responses

during contour integration which could not be derived from unimodal recordings. Within

a combined EEG-fMRI study of contour integration, responses to Gabor stimuli with an

Empirical Mode Decomposition combined with an Independent Component Analysis is an-

alyzed. Generally, responses to different stimuli are very similar thus hard to differentiate.

EMD and ICA are used intermingled and not simply in a sequential way. This novel combi-

nation helps to suppress redundant modes resulting from an application of ensemble EMD

alone. This sort of combination yields a signal decomposition free of redundant remnants

of other components in any extracted IMF. The newly proposed methods works as follows:

1. Decompose the measured signal or image X with EEMD and BEEMD resulting in

IMFs or BIMFs which are ordered according to their frequency content.

2. Initialize i= 1 and j = 1; where i, j = 1.....K and K represents the number of extracted

modes.

3. Choose a pair of IMFs, IMFi and IMFj 6=i, and feed it into an ICA algorithm. After de-

composing the IMFs with ICA, two independent components ICi and IC j are obtained,

respectively.

4. If i > j, choose the IC with higher frequency (HF) according to their Hilbert - Huang

Transform [59]. Otherwise, choose the IC with the lower frequency (LF).

5. Replace IMFi with the selected IC.

6. Increase j by one and repeat the steps above until j =K. This results in a new Intrinsic

Mode Component (IMC).

7. Increase i by one and repeat steps 3 to 6 until i = K.

8. This procedure yields IMCs/BIMCs which neither fulfill the conditions for an IMF or

a BIMF nor an IC.

In order to demonstrate the performance of the proposed method, one EEG signal and a

slice of the related fMRI image collected during a contour integration task is selected. Such

signals are illustrated for both stimuli, contour and non-contour (see Fig. 7.32). The EEG

signals and related fMRI images, as shown in Fig. 7.32, are decomposed by EEMD in case

of EEG signals, and by BEEMD in case of fMRI images. Eight IMFs are extracted from

the EEG signals (but only three are shown), and six IMFs are obtained from each fMRI

image. The resulting components are shown in Fig. 7.33. As can be seen from the original

signals, exhibited in Fig.7.32, no noticeable differences between the recorded signals, fol-

lowing contour and non-contour stimuli, can be detected. Even from the IMFs and BIMFs,

obtained from an EEMD/BEEMD decomposition (shown in the top row of Fig.7.33) no

characteristic difference can be noticed. A similar result is obtained if, after decomposing

the recorded signals with EEMD/BEEMD, an ICA is applied to the IMFs/BIMFs directly

(see Fig. 7.33, middle row). This is due to incomplete signal decompositions by these meth-

ods which leave remnants of one components in others, causing some redundancy in the

different components. Such redundancies load a large subjectivity onto any diagnosis based

on these methods. In contrast, the IMCs/BIMCs extracted by our proposed method, can

overcome this limitation and yields clearly different characteristics corresponding to both

stimuli. This can be seen clearly from the bottom row of Fig. 7.33. As a cross-check, ICs
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identical to the ones shown in Fig. 7.33 , middle row, are obtained if ICA is applied to the

IMCs/BIMCs obtained from our method. This corroborates that no information loss has

occurred during the analysis.

Fig. 7.32 Left: contour and non-contour stimuli. Middle: EEG signals and their corre-

sponding Fourier spectra. Right: stimulus-related fMRI images and their spatial frequency

spectra.

In real applications, stimulus responses would most likely not be identical under differ-

ent conditions. Rather some response asymmetries are to be expected. Because response

differences are small, they become submerged in the background of the extracted modes.

Hence, such differences cannot be classified simply by visual inspection of the responses.

Even such small differences, which cannot be revealed by plain EEMD/BEEMD or a se-

quential combination of EEMD with ICA, are demonstrated. The reason is some partial

mode mixing which appears in noise-assisted ensemble EMD. Our proposed method is able

to do so because it helps to suppress remnants of other modes interfering in any of the ex-

tracted modes. This results in clean modes with no interferences from other modes and thus

improves the separation quality considerably. The results showed that the proposed method

can be applied to efficiently extract features from biomedical signals and images. This is

especially important if different response classes need to be differentiated.

Response classification of our proposed method has been evaluated against competing

methods like applying BEEMD to the raw data sets or applying BEEMD and ICA sequen-

tially (see Tab. 7.22 and Tab. 7.23). The study comprised 18 subjects where a combined

EEG-fMRI analysis has been performed within a contour integration task with contour and

non-contour Gabor stimuli. As classifier, a Support Vector Machine (SVM) using the Leave

One Out Cross Validation (LOOCV) technique has been employed,which uses n-1 of the to-

tal n samples to train the classifier and test it with the one sample left . Dimension reduction

has been achieved by projecting the extracted modes onto principal components and using

the projections as input to the classifier. A Student t-test was used to select informative

features and the parameters of the classifier were optimized by using a grid search approach.

The values between square brackets in Tab. 7.23 and Tab. 7.22 show the number of selected

features for an optimal performance and the first column indicates the mode.

Finally, for more details about the analysis of EEG dataset which recorded jointly with

fMRI in this study, see [1] .
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Fig. 7.33 fMRI activity distributions and EEG recordings in response to contour (column 1

and column 3, red line) and non-contour (column 2 and column 3, green line) stimuli. Top:

BIMFs and related IMFs extracted with BEEMD and EEMD from fMRI and EEG record-

ings. Middle: ICs resulting from an ICA applied to BIMFs and related IMFs obtained from

original data sets directly. Bottom: BIMCs and related IMCs extracted with our proposed

method. For fMRI images, modes are sorted from left to right and from top to bottom ac-

cording to their spatial frequency content. For EEG time series, the three interesting modes

are shown together with their corresponding Fourier spectra.

Tab. 7.22 Comparison of statistical measures (Accuracy, Specificity and Sensitivity) ob-

tained with different techniques evaluating corresponding classification results for EEG.

EEMD EEMD-ICA IMC (Proposed Method)

♯ Acc Spec Sens Acc Spec Sens Acc Spec Sens

1 0.61[23] 0.67 0.56 0.75[1] 0.72 0.78 0.72[7] 0.83 0.61

2 0.69[18] 0.67 0.72 0.67[20] 0.61 0.72 0.72[7] 0.72 0.72

3 0.61[3] 0.83 0.39 0.69[16] 0.67 0.72 0.89[16] 0.83 0.94

4 0.56[3] 0.56 0.56 0.58[5] 0.67 0.50 0.64[3] 0.77 0.50

5 0.67[16] 0.72 0.61 0.75[17] 0.78 0.72 0.75[8] 0.83 0.67

6 0.72[21] 0.67 0.78 0.72[3] 0.78 0.67 0.79[20] 0.78 0.74

7 0.67[1] 0.77 0.55 0.74[1] 0.61 0.50 0.75[14] 0.72 0.78

8 0.69[3] 0.61 0.78 0.64[16] 0.56 0.72 0.64[7] 0.67 0.61
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Tab. 7.23 Comparison of statistical measures (Accuracy, Specificity and Sensitivity) ob-

tained with different techniques evaluating corresponding classification results for fMRI.

BEEMD BEEMD-ICA BIMC (Proposed Method)

♯ Acc Spec Sens Acc Spec Sens Acc Spec Sens

1 0.81[7] 0.84 0.79 0.84[34] 0.80 0.89 0.92[35] 0.89 0.94

2 0.82[4] 0.84 0.79 0.68[1,30] 0.68 0.68 0.63[1] 0.58 0.68

3 0.89[2,11] 0.89 0.89 0.79[23] 0.79 0.79 0.71[32] 0.78 0.63

4 0.84[3] 0.84 0.84 0.63[22] 0.68 0.57 0.84[3] 0.84 0.84

5 0.84[29] 0.89 0.79 0.66[18] 0.63 0.68 0.74[29] 0.74 0.74

6 0.79[26] 0.74 0.84 0.76[29] 0.84 0.69 0.71[21] 0.68 0.74

7.4.4 Classification fMRI modes extracted by GiT-BEEMD

While the ultimate goal is to build a model with an optimal performance, the extracted

textures by GiT-BEEMD, also, are used for classification purpose, based on the optimal

parameters previously used with a canonical BEEMD. Hence the SVM-SMO classifier is

used based on the T-test feature selection and the same tunning parameters used with the ex-

tracted textures by a canonical BEEMD. Tab. 7.20 and Tab. 7.24 show accuracies achieved

based on the extracted modes by GiT-BEEMD.

Tab. 7.24 Statistical measures evaluating classification results ob-

tained by PCA and SVM-SMO classifier to the VIMFs extracted

by the newly proposed GiT-BEEMD. The optimal parameters

showed in Tab. 7.20 and features are used with LOOCV and

T-test feature selection (Approach II).

SVM-SMO

deafult parameters tuning parameters

modes Acc Spec Sens Acc Spec Sens

VIMF1 0.92[16] 0.89 0.94 0.92[23] 0.89 0.94

VIMF2 0.87[13] 0.84 0.89 0.92[13] 0.89 0.94

VIMF3 0.82[16] 0.84 0.79 0.84[21] 0.89 0.79

VIMF4 0.79[30] 0.79 0.79 0.79[11] 0.74 0.84

VIMF5 0.63[18] 0.68 0.57 0.68[18] 0.68 0.68

VRes. 0.68[19] 0.68 0.68 0.71[5] 0.63 0.78

The highest accuracy was reported with VIMF1 Acc= 0.92, as already explained in com-

bining a canonical BEEMD with ICA. This result, according to Approach II, supports the

assumption that GiT-BEEMD can perform better than the canonical BEEMD. In addition,

the same result, with VIMC1 extracted by combining BEEMD with ICA and VIMF1 ex-

tracted by GiT-BEEMD, proves that modes extracted by GiT-BEEMD are free of redundant

information among different modes. Note, no further smoothing filter, with GiT-BEEMD is

used as with BEEMD. Note further, to keep overall computational load low, in this study, the

optimal parameters is tested only with VIMF3 extracted by a canonical BEEMD and gener-
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alize for others modes extracted by both the canonical BEEMD and GiT-BEEMD. Hence,

further investigations of a possible future work for optimal parameters of each mode, indi-

vidually, would improve the accuracy.

7.5 Relation to other works

In general, classification analysis tests hypotheses in terms of separating pairs (or more) of

conditions. Note that the hypothesis is that a different pattern of activity occurs in the voxels

making up a region, not that the activation level is different. This enables us to stay away

from interpreting BOLD patterns in terms of activated voxels, a term which means that these

neurons are active more than others, which may or may not be correct [39]. The type of hy-

pothesis and associated test is especially useful if the conditions under investigation recruit

different neural networks. A visual detection task is used where spatially distributed Gabor

patterns had to be grouped into continuous contours according to their relative orientation

and position [44]. Because the contours extend the receptive field size of neurons in lower

(occipital) visual processing regions, an integration across space, administered through pari-

etal and frontal brain activity, is necessary for contour integration and detection [132]. The

fact that partly different brain regions are involved into contour and non-contour processing

makes the task suitable for a whole-brain classification analysis.

Previous neuroimaging results on contour integration suggest that both early retinotopic

areas as well as higher visual brain sites contribute to contour processing. In a set of MRI

adaptation studies Kourtzi and colleagues found that contours compared to non-contour

patterns evoked increased BOLD responses all along earlier visual areas V 1 to V4, as well

as in lateral occipital and posterior fusiform areas within the inferior temporal lobe [3, 4, 72,

73]. Other authors combined magneto- or electroencephalographic recordings (MEG/EEG)

with source reconstruction methods to investigate the temporal dynamics and the neural

sources of contour processing. They uniformly found that differences between contour and

non-contour stimuli do not occur before 160 ms after stimulus onset, within the N1 to P2

time range of the event-related potentials or fields (ERP/ERF). The neural sources of the

P1 / N1 differences were located within middle occipital [122, 149] and occipito-temporal

areas [141], as well as in primary visual cortex [122, 141]. These results generally comply

with the view that different visual areas contribute to contour perception. Additionally, due

to the relatively late onset of ERP/ERF differences in primary visual areas, they suggest that

the increased BOLD and ERP responses in early visual cortex during contour processing

are mainly driven by feedback from higher visual sites.

Importantly, however, it is also true that neural responses to contour stimuli are highly

variable across tasks. For example, the N1 ERP difference occurs later for misaligned com-

pared to readily detectable contours [99], and differences between contour and non-contour

stimuli can even be absent in untrained observers [84]. In order to explain the variability

of brain responses, there is need to consider that contours are no well-defined targets for

detection. Numerous instances of contours can occur during the experiment so that frequent

updates of the target representation and the associated task are necessary for a successful

contour detection. The updating and maintenance of task-related information, e. g. of task-



7.5 Relation to other works 127

related memories [136] or the task representation itself [144], are commonly considered

frontal brain functions. In this study and for the first time that frontal brain activity alone,

captured in VIMF2 and VIMF1, performs reasonably as a classifier for contour and non-

contour trials. The results thus underline the importance of frontal brain activity in contour

integration and may mark a starting point for further investigations on that topic.





Chapter 8

Conclusion

The investigation presented discusses the application of two-dimensional ensemble empir-

ical mode decomposition (2DEEMD) to an fMRI study of a contour integration task. Be-

cause of the enormous computational load involved, data sets averaged over many trials and

sessions is discussed. A systematic optimization of the parameters inherent to the method

lead to a decomposition of whole brain scans into so-called volume modes, the equivalent

of intrinsic mode functions in plain EMD, which exhibited characteristic textures on various

spatial scales. Related activity distributions showed strong spatial localization and different

modes exhibited activation in clearly separated areas of the brain. Though in agreement

with results of a canonical analysis with a GLM approach (using SPM 8), the canonical

BEEMD results show better localization, and activations appear more sparse and highly

focused. Hence, the superior precision in spatial localization of activity blobs highlights

the potential of 2DEEMD when analyzing functional imaging data sets. The evaluation of

the classification performance based on VIMFs, most notably V IMF3 and V IMF4, also re-

vealed a superior classification accuracy compared to "raw" data. Moreover, comparing two

classifiers based on different principles, namely an RF and an SVM, the latter significantly

outperforms an RF in terms of accuracy and ROC/AUC characteristics.

Unfortunately, in most of the existing implementations of BEEMD, the sifting process

affords the frequent estimation of upper and lower envelope surfaces interpolating extremal

data points. The computation of these envelope surfaces represents a bottleneck in existing

BEEMD variants because of its high computational load - the computation time grows expo-

nentially with the data dimension - and the accompanying artifacts, like boundary artifacts

and undue oscillations in high local gradient areas, which often corrupt the extracted modes.

Hence, a new variant of BEMD is presented which is called Green’s function in tension

empirical mode decomposition (GiT-BEMD). It is faster than the canonical BEEMD by a

factor 100, roughly. In addition, including an optional tension parameter during Green’s

function-based spline interpolation renders the process much more stable than if gridding

without tension is used. As it is still an open problem how to estimate an optimal tension

parameter for any given surface interpolation problem, a screening of this parameter for a

visual recognition of the induced differences in the resulting BIMFs is provided. But, given

our experience, a small value for the tension parameter is strongly recommended, in case of

extracting a low-frequency mode. To the contrary, a large value for the tension parameter
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should be chosen in case of extracting a high-frequency mode. Furthermore, it has been

proven that GiT-BEMD does not need more than a few iterations, roughly Ns ≈ 5, during

the sifting process to extract proper BIMFs. Also it is demonstrated that an ensemble of size

E = 2 suffices whereby the assisting noise is added and subtracted before averaging. Thus,

any ensemble technique, encompassing large ensembles with concomitant exponentially

growing computation time, can be avoided largely. This also contributes to a substantial

improvement of the algorithm in terms of computational load. Besides reducing the latter,

GiT-BEMD achieves a higher quality of the estimated BIMFs as can be seen from a direct

comparison of the results obtained with BEEMD and GiT-BEMD. Moreover, extending

GiT-BEMD to ensemble GiT-BEMD (GiT-BEEMD) is very simple, though hardly ever nec-

essary. By applying GiT-BEMD to natural and synthetic images, the new method provided

a much better quality of the extracted BIMFs compared to canonical BEEMD. GiT-BEMD

is also applied to images from an fMRI study of a contour integration task. The GiT-BEMD

results show better localization, and activations appear sparser and highly focused. Conse-

quently, the superior precision in spatial localization of activity blobs highlights the potential

of GiT-BEMD when analyzing functional imaging data sets. The evaluation of the classifica-

tion performance based on V IMFs, most notably VIMF1 and V IMF2, revealed a superior

classification accuracy compared to "raw" data, too.

Altogether, there is a strong belief that GiT-BEMD offers a highly competitive alterna-

tive to existing BEMD algorithms and represents a promising technique for blindly decom-

posing images and extracting textures thereof which may be used for further analysis.

Also a new approach is presented which combines ICA and canonical BEEMD to ana-

lyze a simultaneous fMRI-EEG recording. It is noted that this approach can suppress the

redundant information inherited by later modes from earlier ones. Simulation results corrob-

orate this effect. There an evaluation of mode VIMF1 results in the highest classification

accuracy while this was achieved with mode V IMF3 in case of a canonical BEMD analysis.

A similar result was obtained when the simultaneously recorded EEG time series have been

analyzed where ICA/canonical EEMD achieved highest classification accuracy with mode

IMF3 instead of IMF6 in case of canonical EEMD. The results of a combined ICA/canoni-

cal BEEMD analysis could be obtained similarly by employing the new GiT-BEMD without

a need for an ICA preprocessing.

For classification, two different approaches were discussed: Approach I and Approach

II. The latter is very robust and more general, because the test dataset in this approach is

dealt with completely blindly, while with Approach I some prior knowledge is available.

Thus, though Approach I can achieve better performance, it is not robust and cannot be

generalized.

With respect to the perceptual task, there is a consensus that contour integration relies

on distributed activity within higher as well as lower visual brain areas (e. g. [3, 73]). How-

ever, a systematic investigation on whole-brain patterns of activity that might discriminate

between contour and non-contour conditions has not been conducted yet. Our data, using a

first level analysis, show for the first time that

• if analyzed with canonical BEEMD, distributed activity

– in bilateral inferior temporal brain areas (see mode V IMF3) and
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– in superior occipital areas (see VIMF4 and V IMF3) and

– in pre-frontal cortex (see VIMF2)

• or if analyzed with GiT-BEMD, distributed activity

– in the bilateral superior medial gyrus (see V IMF2) and

– in superior occipital areas (see VIMF4 and V IMF3) and

– in left occipital, temporal medial and frontal areas (see V IMF1)

is maximally predictive for the stimulus condition. Considering a second level analysis,

the extracted modes exhibited significant activity for both stimulus conditions, while SPM2

showed significant activity only with the CT stimulus condition and did not show any sig-

nificant response in case of an NCT stimulus condition. However, the activity distribution

is more pronounced with a CT stimulus condition.

The result adds up to those of previous fMRI studies [3, 73] and underlines the impor-

tance of higher brain areas for the perceptual integration of local stimulus details into a

global form [72].

Generally, results clearly demonstrate the potential usefulness of a BEEMD analysis

of functional imaging data. A subsequent classification based on features generated from

the intrinsic modes (V IMFs), extracted by BEEMD and the newly proposed GiT-BEMD,

respectively, relies on two feature characteristics: highly localized activity distributions in

fMRI component images (V IMFs) compared to a GLM/SPM analysis, and a higher discrim-

inating power compared to a classification of "raw" data sets.

Finally, and linking to what Kurt Koffka said “The whole is other than the sum of the

parts”; I would say that “The components (modes) of an image could provide further infor-

mation than the whole original image.”
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Appendix

The extracted VIMF1 by GiT-BEEMD shows the activity regions in frontal and in top head

as shown on VIMF2 and VIMF4, respectively, produced by BEEMD. Practically, and ac-

cording to the nature of the two methods, that is expected as already mentioned in the

method section. However, in both, across all 19 subjects activity is consistently localized

in the area of the temporal, frontal and occipital gyrus, though to a varying extent. For

visualization purposes, the MRIcro analyze viewer [131] has been used.

For example, Fig. A.2 illustrate differences ∆V IMF2, ∆VIMF5 and ∆VRes. , produced

by GiT-BEEMD as averages over all subjects to highlight robustly obtained activation loci.

The differences clearly show highly focused and spatially localized activities.

• ∆V IMF2 shows activity in left and right medial gyrus in addition to left parietal lob-

ule.

• ∆V IMF5 shows activity in a different area distributed between cingulate cortex, as

∆V IMF4 but in left posterior area, temporal and occipital gyrus, as ∆VIMF1 but in

left temporal instead of right and left superior instead of left middle, and olfactory

cortex.

• Finally, ∆VRes., instead, shows activity mainly in the right middle temporal gyrus,

but activity is shown more clearly in an unknown area map according to probabilistic

cytoarchitectonic maps(PCM), with 52% probability that area is located in the parital

cortex.

Note further that MNI coordinates, in Tab. A.3 and Tab. A.4, represent the maximum of

each cluster blob shown in the extracted modes and ordered according to the size of these

clusters.

With canonical BEMD the activity distribution according to the extracted modes as the

following:

• VIMF1 shows activity in the frontal gyrus but at different MNI coordinates. And,

though VIMF1 exhibits pronounced activity in the left hemisphere, the activity is

shown in posterior-medial frontal and parietal lobule for CT, while the activity is

exhibited in post-central gyrus for NCT. Additionally, VIMF1 shows activity in an

unknown area according to PCM for both conditions.
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• VIMF2 shows its largest activation in the parietal lobule and the occipital gyrus for

CT and a similar activity for CT and NCT is shown in the frontal gyrus. In addition,

VIMF2 shows a significant activity in unknown area according to PCM map for both

conditions.

• VIMF3 exhibits the largest activity among modes especially for CT condition. This

activity focused on the frontal, the occipital, the post-centeral gyrus and the parietal

lobule in the left and right hemisphere for CT and only activity, with a 60% probability,

on the putamen area in the right hemisphere for NCT and on unknown area for the

other activity .

• VIMF4 demonstrates the activation on the right hemisphere for CT in occipital, frontal

and medial gyrus and for NCT some activity is shown in an unkown area according

to PCM map.

• VIMF5 exhibits different active areas for CT and NCT. For CT the activity is shown

obviously in linual and posterior-medial frontal gyrus in the left hemisphere and pre-

centeral gyrus of the right hemisphere, while the activity is exclusively focused on the

left thalamus if some unknown area is ignored, which is activated in both conditions.

• Finally, VRes. shows largest activity out of the probability map of the brain, and some

activity on the left cerebelum.

In contrast, the significant activity distribution differences of the modes extracted by

GiT-BEEMD.

• VIMF1 exhibits activity mainly on left hemisphere in occipital and frontal gyrus for

CT and on the right superior frontal gyrus and unknown area map for NCT.

• VIMF2 shows activities on different areas for CT which include the right hemisphere

the precuneus, post-centeral gyrus and in the left hemisphere the temporal, medial and

orbital gyrus in addition to the parietal lobule.

• VIMF3 shows activity distribution clearly in middle of frontal, temporal and occipital.

• VIMF4 illustrate that activities are focused almost on frontal area.

• The residual mode shows activity for the CT condition which is distributed mainly in

frontal, temporal, occipital, post-centeral areas much as in VIMF3, VIMF4 and VRes.

VIMF5 shows also a bit acitvity in right rectal gyrus and left orbital gyrus. Also,

VRes. shows additional activity in left fusiform gyrus and right precuneus.
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Fig. A.1 Illustration of four VIMFs (V IMF1,VIMF2,VIMF5 and Residum) resulting from

an BEEMD decomposition of a whole brain volume. The difference refers to the VIMFs

for the two conditions CT and NCT, respectively. Each difference VIMF is normalized

separately to enhance visibility.

Fig. A.2 Illustration of three VIMFs( VIMF2,VIMF54 and Residum) resulting from an GiT-

BEEMD decomposition of a whole brain volume. The difference refers to the VIMFs for the

two conditions CT and NCT, respectively. Each difference VIMF is normalized separately

to enhance visibility.
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Tab. A.1 MNI coordinates of the activity distributions

highlighted in Fig. A.1 extracted by BEEMD (Level-I).

SPM1 and SPM2 are shown as well.

modes x y z anatomical structure

VIMF1 -63 -16 10 left superior temporal gyrus

-63 -22 16 left postcentral gyrus

-69 -31 4 left middle temporal gyrus

60 -43 - 5 right middle temporal gyrus

VIMF2 0 44 -17 left rectal gyrus

VIMF3 -48 8 -35 left inferior temporal gyrus

-48 5 -29 left middle temporal gyrus

57 -46 -14 right inferior temporal gyrus

-45 2 -14 left superior temporal gyrus

-42 11 -17 left temporal pole

42 8 -38 right medial temporal pole

54 -22 -20 right inferior temporal gyrus

VIMF4 -18 -85 4 left superior occipital gyrus

-30 -70 -17 left fusiform gyrus

0 -13 70 left paracentral lobule

-3 32 -17 left rectal gyrus

VIMF5 0 44 40 left superior medial gyrus

-60 -52 -2 left medial temporal gyrus

0 32 61 left superior medial gyrus

63 -46 -2 right middle temporal gyrus

SPM1 45 -25 64 right postcentral gyrus

36 -19 70 right precentral gyrus

-42 -22 64 left precentral gyrus

SPM2 0 50 1 left anterior cingulate cortex

0 32 58 left superior medial gyrus

-36 -13 67 left precentral gyrus

51 20 -11 right inferior frontal gyrus

30 8 -20 right temporal pole

-6 2 10 left caudate nucleus
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Tab. A.2 MNI coordinates of the activity distributions

highlighted in Fig. A.1 extracted from GiT-BEEMD

(Level-I)

modes x y z anatomical structure

VIMF1 -51 -70 4 left middle Temporal Gyrus

-51 -73 16 left middle occipital gyrus

-9 65 28 left superior medial gyrus

-18 -46 79 left superior parietal lobule

-24 64 7 left superior frontal gyrus

VIMF2 -42 -52 58 left inferior parietal lobule

0 53 37 left superior medial gyrus

12 56 37 right superior medial gyrus

VIMF3 9 29 49 right superior medial gyrus

-6 41 49 left superior medial gyrus

18 -79 28 right superior occipital gyrus

15 -61 61 right precuneus

VIMF4 -6 -25 13 left thalamus

9 -25 13 right thalamus

3 -19 43 right middle cingulate cortex

-27 -34 43 left postcentral gyrus

VIMF5 0 -37 28 left posterior cingulate cortex

0 17 -8 left olfactory cortex

18 17 -2 right putamen

-27 8 -2 left putamen

72 -37 -2 right middle temporal gyrus

-12 -103 10 left superior occipital gyrus

VRes. -21 -22 10 Unknown area. Th-parital, probability 52%

72 -37 -2 right middle temporal gyrus
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Fig. A.3 Illustration of the less scale volume modes (VIMF4,VIMF5 and Residum) result-

ing from an BEEMD decomposition of a whole brain volume. The difference refers to the

VIMFs for the two conditions CT and NCT, respectively. Each difference VIMF is signifi-

cant with α = 0.001.

Fig. A.4 Illustration of the last three extracted volume modes (VIMF4,VIMF5 and

Residum) resulting from an GiT-BEEMD decomposition of a whole brain volume. The

difference refers to the VIMFs for the two conditions CT and NCT, respectively. Each

difference VIMF is significant with α = 0.001

Note again that MNI coordinates represent the maximum of each cluster blob shown in

the extracted modes and order them according to the size of this clusters.
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Tab. A.3 MNI coordinates of the activity distributions

highlighted in Fig. A.3 extracted from BEEMD (Level-

II)

modes x y z anatomical structure condition

VIMF1 -27 47 37 left middle frontal gyrus CT

0 -10 55 left posterior-medial frontal CT

0 -67 64 unknown area CT

-36 -79 40 left inferior parietal lobule CT

-27 -34 58 left postcenteral gyrus NCT

-63 5 46 unknown area NCT

-30 28 31 left middle frontal gyrus NCT

VIMF2 -30 -58 79 unknown area map CT

36 35 40 right middle frontal gyrus CT

-36 -64 55 left superior parietal lobule CT

33 79 46 right superior occipital gyrus CT

-9 26 16 unknown area map NCT

-18 2 58 left superior frontal gyrus NCT

VIMF3 12 47 19 right ACC,unknown area map CT

30 44 19 right middle frontal gyrus CT

-9 -91 19 left superior occipital gyrus CT

9 -67 43 right precuneus CT

-21 -85 10 left middle occipital gyrus CT

21 -76 40 left superior parietal lobule CT

-54 8 10 right superior occipital gyrus CT

-42 -79 31 left middle occipital gyrus CT

-60 -1 22 left postcenteral gyrus CT

42 -85 4 right middle occipital gyrus CT

30 2 4 right putamen, unknown area map NCT

33 -4 37 unknown area map NCT

-66 -25 -26 unknown area map NCT

VIMF4 39 -73 19 right middle occipital gyrus CT

-39 -100 4 right posterior-medial frontal CT

-3 47 4 unknown area map CT

9 62 25 right superior medial gyrus CT

-33 -7 79 unknown area map CT

-21 -19 31 unknown area map NCT

-15 -22 5 unknown area map NCT

-15 5 7 unknown area map NCT

VIMF5 -21 -82 -5 left linual gyrus CT

30 -13 85 right precenteral gyrus CT

12 -7 58 right posterior-medial frontal gyrus CT

-24 29 7 unknown area map CT

-12 -19 19 left thalamus NCT

0 8 40 unknown area map NCT

45 -28 25 unknown area map NCT

VRes. 21 71 34 Unknown area map CT

-18 74 28 Unknown area map CT

-24 -46 -20 left cerebelum CT
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Tab. A.4 MNI coordinates of the activity distributions

highlighted in Fig. A.4 extracted from GiT-BEEMD

(Level-II)

modes x y z anatomical structure condition

VIMF1 -30 -85 10 left middle occipital gyrus CT

-39 53 25 left middle frontal gyrus CT

12 -43 13 unknown area NCT

18 47 28 right superior frontal gyrus NCT

VIMF2 -33 26 14 unknown area CT

6 -76 43 unknown area, right precuneus CT

60 -13 34 right postcentral gyrus CT

-60 -19 46 left inferior parietal lobule CT

-42 -56 -11 left middle orbital gyrus CT

-60 5 -29 left middle temporal gyrus CT

0 56 1 left superior medial gyrus CT

-12 -34 37 unknown area map NCT

21 -40 43 unknown area map NCT

VIMF3 39 50 19 right middle frontal gyrus CT

-45 -22 -5 unknown area map CT

51 -64 19 right middle temporal gyrus CT

-48 -70 10 left middle temporal gyrus CT

-21 -85 10 left middle occipital gyrus CT

-18 -73 49 left superior parietal lobule CT

-54 8 10 left IFG (p. Opercularis) CT

21 -37 67 right postcenteral gyrus CT

-3 -34 25 unknown area map NCT

VIMF4 -30 26 37 left middle frontal gyrus CT

12 20 49 right posterior-medial frontal CT

-3 47 4 LACC, unknown area map CT

-27 47 4 left middle frontal gyrus CT

15 -100 28 unknown area map NCT

VIMF5 30 -13 55 right precenteral gyrus CT

6 17 55 right posterior-medial frontal CT

21 -1 55 right superior frontal gyrus CT

3 23 -17 right rectal gyrus CT

-15 14 -17 left superior orbital gyrus CT

VRes. 12 38 64 Unknown area map CT

9 -10 76 right posterior-medial frontal CT

21 -31 76 right postcenteral gyrus CT

-57 -52 52 Unknown area map CT

39 14 35 right medial temporal pole CT

-42 5 35 left inferior temporal gyrus CT

-30 -16 -35 left fusiform gyrus CT

-24 -67 16 Unknown area map CT

-9 -67 16 left calcarine gyrus CT

-18 -79 28 left superior occipital gyrus CT

3 -67 22 right precuneus CT

24 -64 58 right superior parietal lobule CT
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