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We consider a two-phase problem for two incompressible, viscous and immiscible fluids which are

separated by a sharp interface. The problem arises as a sharp interface limit of a diffuse interface

model. We present results on local existence of strong solutions and on the long-time behavior of

solutions which start close to an equilibrium. To be precise, we show that as time tends to infinity,

the velocity field converges to zero and the interface converges to a sphere at an exponential rate.
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1. Introduction

We study the flow of two incompressible, viscous and immiscible fluids inside a bounded domain

˝ � Rn, n D 2; 3. The fluids fill domains ˝C.t/ and ˝�.t/, t > 0, respectively, with a common

interface � .t/ between both fluids. The flow is described in terms of the velocity vW .0;1/ �˝ !

Rn and the pressure pW .0;1/�˝ ! R in both fluids in Eulerian coordinates. We assume the fluids

to be of Newtonian type, i.e., the stress tensors of the fluids are of the form T .v; p/ D 2�˙Dv�pI

in ˝˙.t/ with constant viscosities �˙ > 0 and 2Dv D rv C rvT . Moreover, we consider the

case with surface tension at the interface. In this model the densities of the fluids are assumed to be

the same and for simplicity set to one. For the evolution of the phases we take diffusional effects

into account and consider a contribution to the flux that is proportional to the negative gradient of

the chemical potential �. Precise assumptions are made below. This is motivated e.g. from studies

of spinodal decomposition in certain polymer mixtures, cf. [28].

To formulate our model we introduce some notation first. Denote by �� .t/ the unit normal of

� .t/ that points outside ˝C.t/ and by V and H the normal velocity and scalar mean curvature of

� .t/ with respect to �� .t/. By ŒŒ��� we denote the jump of a quantity across the interface in direction

of �� .t/, i.e.,

ŒŒf ��.x/ D lim
h!0

�
f .x C h�� .t// � f .x � h�� .t//

�
for x 2 � .t/:
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Then our model is described by the following system

@tv C v � rv � divT .v; p/ D 0 in ˝˙.t/ for t > 0; (1.1)

div v D 0 in ˝˙.t/ for t > 0; (1.2)

m�� D 0 in ˝˙.t/ for t > 0; (1.3)

��� .t/ � ŒŒT .v; p/�� D �H�� .t/ on � .t/ for t > 0; (1.4)

V � �� .t/ � vj� .t/ D �mŒŒ�� .t/ � r��� on � .t/ for t > 0; (1.5)

�j� .t/ D �H on � .t/ for t > 0; (1.6)

together with the initial and boundary conditions

vj@˝ D 0 on @˝ for t > 0; (1.7)

�˝ �mr�j@˝ D 0 on @˝ for t > 0; (1.8)

˝C.0/ D ˝C
0 ; (1.9)

vjtD0 D v0 in ˝; (1.10)

where v0;˝
C
0 are given initial data satisfying @˝C

0 \ @˝ D ; and where �;m > 0 are a surface

tension and a mobility constant, respectively. Here and in the following it is assumed that v and �

do not jump across � .t/, i.e.,

ŒŒv�� D ŒŒ��� D 0 on � .t/ for t > 0:

Equations (1.1)–(1.2) describe the conservation of linear momentum and mass in both fluids and

(1.4) is the balance of forces at the boundary. The equations for v are complemented by the non-

slip condition (1.7) at the boundary of ˝ . The conditions (1.3), (1.8) describe together with (1.5) a

continuity equation for the masses of the phases, and (1.6) relates the chemical potential � to the

L2-gradient of the surface area, which is given by the mean curvature of the interface.

For m D 0 the velocity field v is independent of �. In this case, (1.5) describes the usual

kinematic condition that the interface is transported by the flow of the surrounding fluids and (1.1)–

(1.10) reduces to the classical model of a two-phase Navier–Stokes flow as for example studied by

Denisova and Solonnikov [10] and Köhne et al. [23], where short time existence of strong solutions

is shown. On the other hand, if m > 0, the equations (1.3), (1.6), (1.8) with v D 0 define the

Mullins–Sekerka flow of a family of interfaces. This evolution describes the gradient flow for the

surface area functional with respect to theH�1.˝/ inner product. Therefore we will also call (1.1)–

(1.10) the Navier–Stokes/Mullins–Sekerka system.

The motivation to consider (1.1)–(1.10) with m > 0 is twofold: First of all, the modified system

gives a regularization of the classical modelm D 0 since the transport equation for the evolution of

the interface is replaced by a third order parabolic evolution equation (cf. also the effect of m > 0

in (1.13) below). Secondly, (1.1)–(1.10) appears as sharp interface limit of the following diffuse

interface model, introduced by Hohenberg and Halperin [20] and rigorously derived by Gurtin et
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al. [19]:

@tv C v � rv � div.2�.c/Dv/C rp D �" div.rc ˝ rc/ in ˝ � .0;1/; (1.11)

div v D 0 in ˝ � .0;1/; (1.12)

@tc C v � rc D m�� in ˝ � .0;1/; (1.13)

� D "�1f 0.c/ � "�c in ˝ � .0;1/; (1.14)

vj@˝ D 0 on @˝ � .0;1/; (1.15)

@ncj@˝ D @n�j@˝ D 0 on @˝ � .0;1/; (1.16)

.v; c/jtD0 D .v0; c0/ in ˝: (1.17)

Here c is the concentration of one of the fluids, where we note that a partial mixing of both fluids

is assumed in the model, and f is a suitable “double-well potential”, e.g., f .c/ D c2.1 � c/2.

Moreover, " > 0 is a small parameter related to the interface thickness, � is the so-called chemical

potential and m > 0 is the mobility. We refer to [2, 8] for some analytic results for this model

and to [18, 22] for results for a non-Newtonian variant of this model. For some results on the sharp

interface limit of (1.11)–(1.17) we refer to A. and Röger [5, Appendix] and A., Garcke, and Grün [4].

The purpose of this paper is to prove existence of strong solutions of (1.1)–(1.10) locally in time.

Moreover, we will prove stability of spheres, which are equilibria for the systems. (More precisely,

we show dynamic stability of the solutions v � 0, �;p � const., and˝C.t/ D BR.x/ � ˝ for all

t > 0.) Existence of weak solutions for large times and general initial data was shown in [5].

In the following we will assume that˝ � Rn, n D 2; 3, is a bounded domain with C 4-boundary

and that �˙; m; � > 0 are constants. One essential feature of (1.1)–(1.10) is the coupling of lower

order between the velocity field v and the chemical potential � in equation (1.5). Indeed, we will

obtain functions in the regularity classes � 2 Lp.J IW 2
p .˝n� .�/// and

v 2 H 1
2

�
J IL2.˝/

n
�

\ L2

�
J IH 2

2

�
˝n� .�/

�n
�
:

Taking the trace to � .t/ yields r�j� 2 Lp.J IW
1�1=p

p .� .�//n/ and by complex interpolation and

Sobolev embeddings we obtain

v 2 H 1
2

�
J IL2.˝/

n
�

\ L2

�
J IH 2

2

�
˝n� .�/

�n
�
,! Lq

�
J IW 1

p

�
˝n� .�/

�n
�
;

where q > p and p 6 2.nC 2/=n. This shows that the trace

vj� 2 Lq

�
J IW 1�1=p

p

�
� .�/

�n
�

possesses more regularity with respect to time compared to r�j� . We make essential use of

this fact by applying the following strategy for the proof of local-in-time well-posedness. After

parameterizing the free interface � .t/ via the Hanzawa transform by a height function h, the basic

idea is to reduce (1.1)–(1.10) to a single equation for h. To this end we first assume that the interface,

hence h, is given. Then we solve the (transformed) two-phase Navier–Stokes equations to obtain a

solution operator v D SNS .h/. Doing the same for the (transformed) two-phase Mullins–Sekerka

equations, this yields a solution operator � D SMS .h/. Finally, we consider the transformed

evolution equation (1.5) for the height function h and replace v and � by SNS .h/ and SMS.h/,
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respectively, to obtain a single equation for h. This quasilinear parabolic equation in turn can be

solved by parabolic theory. The only point one has to take care of is that the solution operator SNS

is nonlocal in time and space. Therefore one has to deal with a parabolic equation with local leading

part and lower order perturbations which are nonlocal (in time and space). Having solved the single

equation for h one readily computes the velocity, the pressure and the chemical potential by the

solution operators obtained before.

Let us comment on the choice of an L2-setting for the Navier–Stokes part, while the equations

for the height function h and the chemical potential � are treated by an Lp-theory, p > 2. One

advantage is that the optimal regularity result for the two-phase Navier–Stokes equations with a

given interface (see Theorem A.1) is more or less easy to prove since it relies solely on resolvent

estimates in L2. Another benefit is the reduction of the regularity of the initial velocity and the

compatibility conditions at t D 0. For instance, if p D 2, then there is no compatibility condition

for the initial value v0 coming from the jump of the stress tensor, that is equation (1.4).

The structure of the paper is as follows: First we introduce some basic notation and auxiliary

results in Section 2. Then we will prove that for a given sufficiently smooth interface � .t/ the

Navier–Stokes part of the system, i.e., (1.1)–(1.2), (1.4), (1.7), (1.10) possesses for sufficiently small

times a unique strong solution v in L2-Sobolev spaces, which are second order in space and first

order in time. This result is proved using a coordinate transformation to the initial domains ˝˙
0

which goes back to Hanzawa and applying the contraction mapping principle. A key tool in our

analysis will be a maximal L2-regularity result for the linearized Stokes system, which is proved

in the appendix. Afterwards in Section 4 we prove that the full system possesses a strong solution

locally in time for sufficiently smooth initial data by reducing the whole system to a single equation

for the height function h (see above). Then in Section 5 we prove stability of the stationary solutions

that are given by v � 0, �;p � const: and � .t/ � @Br .x0/ � ˝ and we show that .v.t/; � .t//

converges to an equilibrium as t ! 1 at an exponential rate.

2. Preliminaries

2.1 Notation and Function Spaces

If X is a Banach space, r > 0, x 2 X , then BX .x; r/ denotes the (open) ball in X around x

with radius r . We will often write simply B.x; r/ instead of BX .x; r/ if X is well known from the

context.

The usual Lp-Sobolev spaces are denoted by W k
p .˝/ for k 2 N0; 1 6 p 6 1, and

H k.˝/ D W k
2 .˝/. Moreover W k

p;0.˝/ and H k
0 .˝/ denote the closure of C1

0 .˝/ in W k
p .˝/,

H k.˝/, respectively. The vector-valued variants are denoted byW k
p .˝IX/ andH k.˝IX/, where

X is a Banach space. The usual Besov spaces are denoted by Bs
p;q.R

n/, s 2 R, 1 6 p; q 6 1,

cf., e.g., [7, 36]. If ˝ � Rn is a domain, Bs
p;q.˝/ is defined by restriction of the elements of

Bs
p;q.R

n/ to ˝ , equipped with the quotient norm. We refer to [7, 36] for the standard results on

interpolation of Besov spaces and Sobolev embeddings. We only note that Bs
p;q.˝/ and W k

p .˝/

are retracts of Bs
p;q.R

n/ and W k
p .R

n/, respectively, because of the extension operator constructed

in Stein [35, Chapter VI, Section 3.2] for bounded Lipschitz domains. In particular, we have

�
W k

p0
.˝/;W kC1

p1
.˝/

�
�;p

D BkC�
p;p .˝/ if

1

p
D
1 � �

p0

C
�

p1

; k 2 N0; (2.1)
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for all � 2 .0; 1/, cf. [36, Section 2.4.2 Theorem 1]. We also denote W kC�
p .˝/ D BkC�

p;p .˝/ for

k 2 N0, � 2 .0; 1/, 1 6 p 6 1. Furthermore, we define

L2
.0/.˝/ D

n
f 2 L2.˝/ W

Z

˝

f .x/ dx D 0
o
;

L2
� .˝/ D

˚
f 2 C1

0 .˝/n W divf D 0
	L2.˝/n

:

In order to derive some suitable estimates we will use vector-valued Besov spaces Bs
q;1.I IX/,

where s 2 .0; 1/, 1 6 q 6 1, I is an interval, and X is a Banach space. They are defined as

Bs
q;1.I IX/ D

˚
f 2 Lq.I IX/ W kf kBs

q;1.I IX/ < 1
	
;

kf kBs
q;1.I IX/ D kf kLq.I IX/ C sup

0<h61

k�hf .t/kLq .IhIX/;

where �hf .t/ D f .t C h/ � f .t/ and Ih D ft 2 I W t C h 2 I g. Moreover, we set C s.I IX/ D

Bs
1;1.I IX/, s 2 .0; 1/. Now letX0; X1 be two Banach spaces. Using f .t/�f .s/ D

R t

s
d
dt
f .�/ d�

it is easy to show that for 1 6 q0 < q1 6 1

W 1
q1
.I IX1/ \ Lq0.I IX0/ ,! B�

q;1.I IX� /;
1

q
D
1 � �

q0

C
�

q1

; (2.2)

where � 2 .0; 1/ and X� D .X0; X1/Œ�� or X� D .X0; X1/�;r , 1 6 r 6 1. Furthermore,

B�
q;1.I IX/ ,! C �� 1

q .I IX/ for all 0 < � < 1; 1 6 q 6 1 with � �
1

q
> 0; (2.3)

cf., e.g., [32]. Furthermore, for s 2 .0; 1/ we define H s.0; T IX/ D Bs
2;2.0; T IX/, where f 2

Bs
2;2.0; T IX/ if and only if f 2 L2.0; T IX/ and

kf k2
Bs

2;2
.0;T IX/ D kf k2

L2.0;T IX/
C

Z T

0

Z T

0

kf .t/ � f .�/k2
X

jt � � j2sC1
dt d� < 1:

In the following we will use that

Z T

0

Z T

0

kf .t/ � f .�/k2
X

jt � � j2sC1
dt d� 6

Z T

0

Z T

0

jt � � j2.s0�s/�1 dt d�kf k2

C s0
.Œ0;T �IX/

6 Cs0;sT
2.s0�s/C1kf k2

C s0
.Œ0;T �IX/

for all 0 < s < s0 6 1, which implies

kf kH s.0;T IX/ 6 Cs;s0T
1
2 kf kC s0

.Œ0;T �IX/ for all f 2 C s0
.Œ0; T �IX/ (2.4)

provided that 0 < s < s0 6 1, 0 < T 6 1.

Furthermore, we note that the space of bounded k-times continuously differentiable functions

f WU � X ! Y with bounded derivatives are denoted by BC k.U IY /, where X; Y are Banach

spaces and U is an open set. Moreover, f 2 C k.U IY / if for every x 2 U there is some

neighborhood V of x such that f jV 2 BC k.V IY /.
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We will frequently use the following multiplication result for Besov spaces:

kfgkBs
p;max.q1;q2/

6 Cr;s;p;qkf kBr
p1;q1

kgkBs
p;q2

(2.5)

for all f 2 Br
p1;q1

.Rn/; g 2 Bs
p;q2

.Rn/ provided that 1 6 p 6 p1 6 1, 1 6 q1; q2 6 1, r > n
p1

,

and

�r C n
�

1
p1

C 1
p

� 1
�

C
< s 6 r;

cf. [21, Theorem 6.6]. Since W s
p .R

n/ D Bs
p;p.R

n/ for every s 2 .0;1/ n N, this implies that

kfgkW s
p .Rn/ 6 Cs;pkf kW s

p .Rn/kgkW s
p .Rn/ for all f; g 2 W s

p .R
n/ (2.6)

provided that s � n
p
> 0, 1 6 p 6 1. Concerning composition operators, we note that

G.f / 2 Bs
p;q.R

n/ for all G 2 C1.R/ with G.0/ D 0; f 2 Bs
p;q.R

n/ (2.7)

provided that again s � n
p
> 0, 1 6 p; q 6 1. This implies that f �1 2 Bs

p;q.˝/ for all f 2

Bs
p;q.˝/ such that jf j > c0 > 0 if ˝ is a bounded Lipschitz domain. Moreover, the mapping

f 7! G.f / is bounded on Bs
p;q.R

n/ under the previous conditions. We refer to Runst [29] for an

overview, further results, and references. Furthermore, using the boundedness of f 7! G.f / one

can easily derive that

G.�/ 2 C 1
�
Bs

p;q.R
n/

�

for any G 2 C1.R/ with G.0/ D 0. To this end one uses

G
�
f .x/C h.x/

�
D G

�
f .x/

�
CG0

�
f .x/

�
C

Z 1

0

G00
�
f .x/C th.x/

�
dt h.x/2

together with (2.6) and the fact that .G00.f C th//t2Œ0;1� is bounded in Bs
p;q.R

n/.

Finally, by standard methods these results directly carry over to W s
p .˙/; B

s
p;q.˙/ if ˙ is an

n-dimensional smooth compact manifold. Then G.0/ D 0 is no longer required since constant

functions are in Bs
p;q.˙/.

2.2 Coordinate Transformation and Linearized Curvature Operator

In the following let ˙ � ˝ be a smooth, oriented, compact and .n � 1/-dimensional (reference)

manifold with normal vector field �˙ . Moreover, for a given measurable “height function” hW˙ !

R let

�hW˙ ! R
nWx 7! x C h.x/�˙ .x/:

Then �h is injective provided that khkL1 6 a for some sufficiently small a > 0, where a depends

on the maximal curvature of ˙ . Moreover, we choose a so small that 3a < dist.˙; @˝/. Then the

so-called Hanzawa transformation is defined as

�h.x; t/ D x C �
�
d˙ .x/=4a

�
h
�
t;˘.x/

�
�˙

�
˘.x/

�
; (2.8)

where d˙ is the signed distance function with respect to ˙ , ˘.x/ is the orthogonal projection onto

˙ , � 2 C1.R/ such that �.s/ D 1 for jsj < 1
3

and �.s/ D 0 for jsj > 2
3

as well as j�0.s/j 6 4 for
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all s 2 R, and khkL1 < a. It is well-known that �h.:; t/W˝ ! ˝ is a C 1-diffeomorphism. Hence

�h WD �h.˙/ D �h.˙/ is an oriented, compact C k-manifold if h 2 C k.˙/ with khkL1.˙/ < a.

For the following let

U D
˚
h 2 W

4� 4
p

p .˙/ W khkL1 < a
	
; (2.9)

E1;T D Lp
�
0; T IW

4� 1
p

p .˙/
�

\W 1
p

�
0; T IW

1� 1
p

p .˙/
�
;

where 3 < p 6
2.nC2/

n
, 0 < T < 1. Furthermore, let

K.h/ WD Hh ı �h; (2.10)

where HhW�h ! R denotes the mean curvature of �h D �h.˙/, i.e., it is the sum of all principal

curvatures.

LEMMA 2.1 Let 3 < p 6
2.nC2/

n
and U � W

4� 4
p

p .˙/ be as above. Then there are functions

P 2 C 1
�
U;L

�
W

4� 1
p

p .˙/;W
2� 1

p
p .˙/

��
; Q 2 C 1

�
U;W

2� 1
p

p .˙/
�

such that

K.�/ D P.�/�CQ.�/ for all � 2 U \W
4� 1

p
p .˙/:

Moreover, if ˙ D SR WD @BR.0/, then

DK.0/ D D WD DSR
WD �

1

n � 1

�
n � 1

R2
C�SR

�
: (2.11)

Proof. The proof follows essentially from the proof of [12, Lemma 3.1] and [12, Remark 3.2 a.].

To this end let f.Ul ; 'l/ W 1 6 l 6 Lg be a localization system for ˙ , i.e., ˙ D
SL

lD1 Ul and

'l W .�a; a/
n�1 ! Ul is a smooth local parametrization of Ul for all l D 1; : : : ; L. Moreover, let

s D .s1; : : : ; sn�1/ be the local coordinates of Ul with respect to this parametrization and

�l .s/ WD �
�
'l.s/

�
; Xl.s; r/ WD X

�
'l.s/; r

�
; .s; r/ 2 .�a; a/n

be the local representations of �;X , where X W˙ � .�a; a/ ! Rn with X.s; r/ D s C r�˙ .s/

and � 2 U � W
4� 4

p
p .˙/. Then it follows from [12, Equations (3.4), (3.5), Remark 3.2 a.] that

K.�/ D P.�/� CQ.�/, where P.�/;Q.�/ have the local representations

Pl .�/ D
1

n � 1

0
@

n�1X

j;kD1

pjk.�/@sj
@sk

C

n�1X

iD1

pi .�/@si

1
A ; Ql.�/ D

1

n � 1
q.�/;
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where

pjk.�/ D
1

l3�

�
� l2�w

jk.�/C

n�1X

l;mD1

wjl .�/wkm.�/@sl
�@sm

�
�
;

pi .�/ D
1

l3�

0
@l2�

n�1X

j;kD1

wjk� i
jk C

n�1X

j;lD1

wjlwki� n
jk@sl

�C

n�1X

k;mD1

2wkm� i
nk@sm

�

�

n�1X

j;k;l;mD1

wjlwkm� i
jk@sl

�@sm
�

1
A ;

q.�/ D �
1

l�

n�1X

j;kD1

wjk.�/� n
jk.�/; l� D

vuut1C

n�1X

j;kD1

wjk.�/@sj
�@sk

�;

� i
jk.�/ D

n�1X

mD1

wim.�/@sj
@sk
X � @sm

X j.s;�.s//; i ¤ n;

� n
jk.�/ D @sj

@sk
X � @sn

X j.s;�.s//; wjk.�/.s/ D @sj
X � @sk

X j.s;�.s//;

and .wjk.�/.s//n�1
j;kD1

is the inverse of .wjk.�/.s//
n�1
j;kD1

.

Since ˙ is smooth, X and @sj
X � @sj

X are smooth. Therefore wjk.�/ 2 W
4� 4

p
p .˙/ because

of (2.7). Since det..wjk/
n�1
j;kD1

/ > c0 > 0 by construction, we obtain wjk.�/ 2 W
4� 4

p
p .˙/ for all

j; k D 1; : : : ; n � 1 because of (2.7).

Moreover, @sj
� 2 W

3� 4
p

p .˙/ and therefore

n�1X

j;kD1

wjk.�/@sj
�@sk

� 2 W
3� 4

p
p .˙/

due to (2.6). Using (2.7) again, we obtain l� 2 W
3� 4

p
p .˙/. Proceeding this way, we finally obtain

that pjk.�/; pi .�/; q.�/ 2 W
3� 4

p
p .˙/ for all � 2 U. Now (2.5) implies that

kauk
W

2� 1
p

p .˙/
6 Cpkak

W
3� 4

p
p .˙/

kuk
W

2� 1
p

p .˙/

for all a 2 W
3� 4

p
p .˙/; u 2 W

2� 1
p

p .˙/. Hence

P 2 C 1
�
U;L

�
W

4� 1
p

p .˙/;W
2� 1

p
p .˙/

��
;

Q 2 C 1
�
U;L

�
W

2� 1
p

p .˙/
��

since the operators are compositions of C 1-mappings. Moreover, (2.11) follows directly from the

observations in the proof of [12, Lemma 3.1].
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COROLLARY 2.2 Let K be as in (2.10). Then

K 2 C 1
�
E1;T \ UIH

1
4

�
0; T IL2.˙/

�
\ L2

�
0; T IH

1
2 .˙/

��
:

Moreover, for every " > 0; 0 < T0 < 1 there is some C > 0 such that

kKk
BC 1.E1;T \U"IH

1
4 .0;T IL2.˙//\L2.0;T IH

1
2 .˙///

6 C

for all 0 < T 6 T0, where U" D fa 2 U W kakL1.˙/ 6 a � "g.

Proof. We use that

K.h/ D
X

j˛j62

a˛.x; h;rsh/@
˛
s h

for all h 2 C 2.˙/, where a˛ W˙ � R � R
n�1 ! R is smooth. Since

E1;T ,! B
2
3

p;1

�
0; T IW

2� 1
p

p .˙/
�

\ B
1
3

p;1

�
0; T IW

3� 1
p

p .˙/
�

due to (2.2) and

B
2
3

p;1

�
0; T IW

2� 1
p

p .˙/
�
,! C

1
3

�
Œ0; T �IC 0.˙/

�

due to (2.3) and p > 3, we conclude that

a˛.x; h;rsh/ 2 C
1
3

�
Œ0; T �IC 0.˙/

�
for all h 2 E1;T \ U

and for all j˛j 6 2. Moreover, the mapping

U \ E1;T 3 h 7! a˛.x; h;rsh/ 2 C
1
3

�
Œ0; T �IC 0.˙/

�

is C 1 since a˛ are smooth. Furthermore, we conclude that

ka˛.x; h;rsh/@
˛
s vk

H
1
4 .0;T IL2.˙//

6 C"ka˛.x; h;rsh/@
˛
s vk

B
1
3

p;1.0;T ILp.˙//

6 C"ka˛.x; h;rsh/k
C

1
3 .Œ0;T �IC 0.˙//

kvk
B

1
3

p;1.0;T IW
1� 1

p
p .˙//

6 C"ka˛.x; h;rsh/k
C

1
3 .Œ0;T �IC 0.˙//

kvkE1;T

for all j˛j 6 2, v 2 E1;T , h 2 E1;T \ U", " > 0. Since multiplication is smooth (if bounded), it

follows that

K 2 BC 1
�
E1;T \ U"IH

1
4

�
0; T IL2.˙/

��

for any " > 0. Finally, we use that a˛.x; h;rsh/ 2 BUC.Œ0; T �IC 1.˙// and

E1;T \ U" 3 h 7! a˛.x; h;rsh/ 2 BUC
�
Œ0; T �IC 1.˙/

�

is in C 1 with bounded derivative. Hence

a˛.x; h;rsh/r
˛
s h 2 Lp

�
0; T IW

1� 1
p

p .˙/
�
,! L2

�
0; T IH

1
2 .˙/

�

for every h 2 U" \ E1;T , " > 0 and the mapping h 7! K.h/ is in BC 1 with respect to the

corresponding spaces. Altogether we have proved the corollary.



48 H. ABELS AND M. WILKE

3. Two-Phase Navier–Stokes System for Given Interface

In this section we assume that the family of interfaces f� .t/gt>0 is known and we will solve the

system (1.1), (1.2), (1.4), (1.7), (1.10) together with the jump condition ŒŒv�� D 0.

For the following let˙ � ˝ be a smooth compact .n�1/-dimensional reference manifold as in

the previous section. Moreover, we assume that there is a domain e̋C
0 �� ˝ such that ˙ D @e̋C

0 .

Moreover, we assume that

� .t/ D
˚
x C h.t; x/�˙ .x/ W x 2 ˙

	
DW �h.t/

for some h 2 U \ E1;T , where

E1;T WD W 1
p .J IX0/ \Lp.J;X1/;

J D Œ0; T �, and

X0 D W
1� 1

p
p .˙/; X1 D W

4� 1
p

p .˙/;

for p > max.nC3
2
; 3/ D 3, n D 2; 3, and �˙ .x/ is the exterior normal on @e̋C

0 D ˙ . Here U is as

in (2.9).

For given h 2 E1;T let Qh D Eh 2 eE1;T , where

EWE1;T ! eE1;T WD W 1
p

�
J IW 1

p .˙a/
�

\ Lp

�
J IW 4

p .˙a/
�

is a continuous extension operator and ˙a D fx 2 ˝ W dist.x;˙/ < ag. Then by Lion’s trace

method of real interpolation, we have

eE1;T ,! BUC.Œ0; T �I eX /; eX D W
4� 3

p
p .˙a/ ,! C 2.˙a/; (3.1)

since p > nC3
2

. Moreover, if we equip E1;T and eE1;T with the norms

kukE1;T
D kuk

W 1
p .J IW

1� 1
p

p .˙//\Lp.J;W
4� 1

p
p .˙//

C ku.0/kX
;

kukeE1;T
D kukW 1

p .J IW 1
p .˙a//\Lp.J;W 4

p .˙a// C ku.0/keX
;

then the operator norm of the embedding (3.1) is bounded in T > 0. Additionally, we have

eE1;T ,! C 1� 1
p

�
Œ0; T �IW 1

p .˙a/
�
:

Interpolation with (3.1) implies

eE1;T ,! C �
�
Œ0; T �IB

2C n
p

p;1 .˙a/
�
,! C �

�
Œ0; T �IC 2.˙a/

�

for some � > 0 since p > nC3
2

. Here again all operator norms of the embeddings are bounded in

T > 0. We will need the following technical lemma:

LEMMA 3.1 For every " > 0 the extension operator E above can be chosen such that for every

0 < T < 1

sup
06t6T

h
�
t;˘.�/

�
�Eh.t; �/


C 1.˙a/

6 "khkE1;T
:
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Proof. First of all, since Eh.t; x/ D h.t; x/ for all x 2 ˙ , t 2 Œ0; T �,

sup
06t6T

h
�
t;˘.�/

�
� Eh.t; �/


C 1.˙a0 /

6 a0 sup
06t6T

kEh.t; �/kC 2.˙a0 / 6 Ca0khkE1;T

for any 0 < a0 6 a, where C is independent of 0 < T < 1. Hence, if, for given " > 0, a0 is chosen

sufficiently small, we have

sup
06t6T

h
�
t;˘.�/

�
�Eh.t; �/


C 1.˙a0 /

6 "khkE1;T
: (3.2)

If we now define E 0WE1;T ! eE1;T by

.E 0h/.t; x/ D .Eh/
�
t;˘.x/C

a0

a
d˙ .x/�˙

�
˘.x/

��
for all x 2 ˙a; t 2 Œ0; T �;

then E 0WE1;T ! eE1;T is an extension operator, which satisfies the statement of the lemma.

For technical reasons, we modify the Hanzawa transformation�h to

e�h.x; t/ D x C �.d˙ .x/=a/ Qh.t; x/�˙

�
˘.x/

�
;

where Qh D Eh 2 eE1;T is the extension of h to ˝ as above. Then

e�h.:; t/ ��h.:; t/


C 1.˝/
6 C

 Qh.:; t/ � h
�
˘.:/; t

�
C 1.˙a/

for all 0 6 t 6 T , where C is independent of h and 0 < T < 1. If we now choose " > 0 in (3.2)

sufficiently small, e�h.:; t/W˝ ! ˝ is again a C 1-diffeomorphism for every 0 6 t 6 T . This can

be shown by applying the contraction mapping principle to

x D ��1
h

�
�h.x/ � e�h.x/C y

�

for given y 2 ˝ , which is equivalent to e�h.x/ D y. Moreover, e�h.˙; t/ D �h.˙; t/ D � .t/ for

all 0 6 t 6 T .

Now let

Fh;t D e�h.:; t/ ı e�h.:; 0/
�1:

Then Fh;t W˝ ! ˝ with Fh;t .˝
˙
0 / D ˝˙.t/ and Fh;t .�0/ D � .t/, where �0 D � .0/ D @˝C.0/.

Moreover, Fh D .Fh;t /t2Œ0;T � 2 BUC.Œ0; T �IW
4� 3

p
p .˝// \W 1

p .0; T IW 1
p .˝// and

kFh1
� Fh2

kC � .Œ0;T �IC 2.˝// 6 Ckh1 � h2kE1;T
; (3.3)

kFh1
� Fh2

kW 1
p .0;T IW 1

p .˝// 6 Ckh1 � h2kE1;T
; (3.4)

for all khj kE1;T
6 R, j D 1; 2, where C is independent of hj and 0 < T < 1. Since Fh;0 D Id˝

for all h 2 E1;T , (3.3) implies

kFh1
� Fh2

kBUC.Œ0;T �IC 2.˝// 6 CT � kh1 � h2kE1;T
: (3.5)
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Now we consider

@tv C v � rv � �˙�v C r Qp D 0 in ˝˙.t/; t 2 .0; T /;

div v D 0 in ˝˙.t/; t 2 .0; T /;

ŒŒv�� D 0 on � .t/; t 2 .0; T /;

ŒŒ�� .t/ � T .v; Qp/�� D �H� .t/�� .t/ on � .t/; t 2 .0; T /;

vj@˝ D 0 on @˝; t 2 .0; T /;

vjtD0 D v0 on˝˙.t/; t 2 .0; T /:

Defining

u.x; t/ D v
�
Ft;h.x/; t

�
; q.x; t/ D Qp

�
Ft;h.x/; t

�
;

the latter system can be transformed to

@tu � �˙�uC rq D a˙.hIDx/.u; q/C @tFh � rhu � u � rhu in Q˙
T ; (3.6)

divu D Tr
��
I �A.h/

�
ru

�
DW g.h/u in Q˙

T ; (3.7)

ŒŒu�� D 0 on �0;T ; (3.8)

ŒŒ��0
� T .u; q/�� D t.hIDx/.u; q/C �eH h on �0;T ; (3.9)

uj@˝ D 0 on @˝T ; (3.10)

ujtD0 D v0 on ˝˙
0 ; (3.11)

whereQ˙
T D .0; T /�˝˙

0 ,˝�
0 D ˝ n .�0 [˝C

0 /, �0;T D .0; T /��0, @˝T D .0; T /� @˝ . Here

a˙.hIDx/.u; q/ D �˙ divh.rhu/ � �˙ div ruC .r � rh/q;

rh D A.h/r; divh u D Tr.rhu/; A.h/ D DF�T
t;h ; �h D

A.h/��0

jA.h/��0
j
;

t.h;Dx/.u; q/ D ŒŒ.��0
� �h/ � .2�˙Du � qI /C 2�h � sym.ru � rhu/��;

QHh.x/ D H� .t/.Fh;t .x//�� .t/.Fh;t .x// for all x 2 �0:

In the following let YT D Y 1
T � Y 2

T , where

Y 1
T D

n
u 2 BUC

�
Œ0; T �IH 1.˝/n

�
\H 1

�
0; T IL2;� .˝/

�
W uj

˝˙
0

2 L2

�
0; T IH 2.˝˙

0 /
n
�o
;

Y 2
T D

n
q 2 L2

�
0; T IL2;.0/.˝/

�
W rqj

˝˙
0

2 L2

�
.0; T / �˝˙

0

�n
o
:

The main result of this section is:

THEOREM 3.2 Let R > 0, h0 2 U . Then there is some T0 D T0.R/ > 0 such that for every

0 < T 6 T0 and h 2 E1;T \ U with hjtD0 D h0 and v0 2 H 1
0 .˝/

n \ L2;� .˝/, n D 2; 3, with

maxfkhkE1;T
; kv0kH 1

0
.˝/g 6 R there is a unique solution .u; p/ DW FT .h; v0/ 2 YT of (3.6)–(3.11).

Moreover, for every " > 0

FT 2 BC 1.A";R � BH 1
0
.0;R/IYT /;

where

A";R D
n
h 2 BE1;T

.0;R/ W h.0/ D h0; sup
06t6T

kh.t/kL1.˙/ 6 a � "
o
:
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We can formulate (3.6)–(3.11) as an abstract fixed-point equation

Lw D G.wIh; v0/ in ZT (3.12)

for w 2 YT , where

L.u; q/ D

0
BB@

@tu � �˙�uC rq

divu

ŒŒ��0
� T˙.u; q/��

ujtD0

1
CCA ;

G.u; qIh; v0/ D

0
BB@

a˙.hIDx/uC @tFh � rhu � u � rhu

g.h/u � 1
j˝j

R
˝
g.h/u dx

t.hIDx/.u; q/C � eH h

v0

1
CCA

for all w D .u; q/ 2 YT , where ZT D Z1
T �Z2

T �Z3
T �Z4

T ,

Z1
T D L2

�
.0; T / �˝0

�n
; Z4

T D H 1
0 .˝/

n \L2;� .˝/;

Z2
T D L2

�
0; T IH 1

.0/.˝0/
�

\H 1
�
0; T IH�1

.0/ .˝0/
�
;

Z3
T D L2

�
0; T IH

1
2

2 .�0/
n
�

\H
1
4

�
0; T IL2.�0/

n
�
;

and Z4
T D H 1

0 .˝/
n \ L2;� .˝/. Here H 1

.0/
.˝0/ D H 1.˝0/ \ L2;.0/.˝/ is normed by kr � kL2

,

H�1
.0/
.˝/ D .H 1

.0/
.˝//0.

First of all, let us note that (3.12) implies (3.6)–(3.11) except that (3.7) is replaced by

divu D g.h/u �
1

j˝j

Z

˝

g.h/ dx:

But the latter equation implies (3.7), which can be seen as follows: LetK.t/ D 1
j˝j

R
˝
g.h.x; t// dx

and v.x; t/ D u.F �1
h
.x; t/; t/. Then v.t/ 2 H 1

0 .˝/ for all t 2 .0; T / and therefore

0 D

Z

˝

div v.x; t/ dx D

Z

˝

Tr
�
A

�
h.x; t/

�
ru.x; t/

�
detDFh.x; t/ dx

D K.t/

Z

˝

detDFh.x; t/ dx

for all t 2 Œ0; T �. Since the last integral is positive, we obtainK.t/ D 0 for all t 2 .0; T /.

LEMMA 3.3 Let R > 0, " > 0, and let YT ; ZT , h0 be as above. Moreover, let

A";R D
n
h 2 E1;T W sup

06t6T

kh.t/kL1.˙/ 6 a � "; h.0/ D h0; khkE1;T
6 R

o
:

Then there is some T0 > 0 such that for every 0 < T 6 T0 the mapping G defined above is

well-defined and

G 2 C 1.BYT
.0;R0/ � A";R � BH 1

0
\L2;�

.0;R0/IZT /:
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Moreover, there are some C; ˛ > 0 such that

kG.w1Ih; v0/ �G.w2Ih; v0/kZT
6 CT ˛kw1 �w2kYT

for every w1; w2 2 BYT
.0;R0/, 0 < T 6 T0, h 2 A";R, and v0 2 BH 1

0
\L2;�

.0;R/.

Proof. First of all, because of (3.3), for any " > 0 there are some C; T0 > 0 such that

kDxFh � id kBUC.Œ0;T �IC 1.˝// 6 "khkE1;T

for all 0 < T 6 T0, khkE1;T
6 R. Hence Ft;hW˝ ! ˝ is a C 2-diffeomorphism and DxFh is

invertible with uniformly bounded inverse for these h; T . Since matrix inversion is smooth on the

set of invertible matrices,

A.h/ D DF�T
h 2 C �

�
Œ0; T �IC 1.˝/

�

for some � > 0 if khkE1;T
6 R. Moreover, interpolation of (3.3) and (3.4) yields

DFh 2 C
1
2

� 1
2p

C �
2
�
Œ0; T �IC 0.˝/

�

due to W 1
p .0; T IX/ ,! C 1� 1

p .Œ0; T �IX/, where the operator norm of the latter embedding is

bounded in 0 < T < 1 if W 1
p .0; T IX/ is normed by

kf kW 1
p .0;T IX/ WD k.f; f 0/kLp.0;T IX/ C kf .0/kX :

Here we have also used that kf kC 1.˝/ 6 Ckf k
1
2

C 0.˝/
kf k

1
2

C 2.˝/
andW 1

p .˝/ ,! C 0.˝/. Hence

A.h/ D DF�T
h 2 C

1
2

� 1
2p

C �
2 .Œ0; T �IC 0

�
˝/

�
:

Furthermore,

A 2 BC 1.BE1;T
.0;R/IX/ with (3.13)

X D C � .Œ0; T �IC 1
�
˝/

�
\W 1

p

�
0; T ILp.˝/

�
\ C

1
2 � 1

2p C �
2 .Œ0; T �IC 0

�
˝/

�
; (3.14)

again since matrix inversion is smooth.

Using the above observations, one easily obtains

k.rh � r/f k
L2.0;T IH k.˝˙

0
//

6 CT �khkE1;T
kf k

L2.0;T IH kC1.˝˙
0

//

for all f 2 L2.0; T IH k.˝˙
0 //, k D 0; 1, khkE1;T

6 R. From this estimate, one derives

ka˙.hIDx/.u; q/kL2..0;T /�˝˙
0

/
6 CT �khkE1;T

k.u; q/kYT
;

kg.h/uk
L2.0;T IH 1.˝˙

0
//

6 CT �khkE1;T
kuk

L2.0;T IH 2.˝˙
0

//
;

kv �DFhruk
L2..0;T /�˝˙

0
/

6 CT
1
2 kvk

L1.0;T IW 1
p .˝˙

0
//

kuk
L1.0;T IW 1

p .˝˙
0

//

6 CT
1
2 kvkY 1

T
kukY 1

T
;

k@tFh � ruk
L2..0;T /�˝˙

0
/

D k .@tFh � @tF0/ � ruk
L2..0;T /�˝˙

0
/

6 CT
1
2

� 1
p khkE1;T

kukL1.0;T IH 1.˝//

6 CT
1
2

� 1
p khkE1;T

kukY 1
T
;
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where we have used (3.4) for the last estimate. Moreover,

kt.h;Dx/ukZ2
T

6 CT ˛khkE1;T
k.u; q/kYT

(3.15)

for some ˛ > 0 can be proved in the same way as in [1, Proof of Lemma 4.3]. In order to estimate

g.h/u 2 H 1.0; T IH�1
.0/
.˝//, we use that

�
g.h/u; '

�
˝

D �
�
u; div

�
.I � A.h/T /'

��
˝

for all ' 2 H 1
.0/.˝/:

Therefore we obtain for all ' 2 H 1
.0/
.˝/ with kr'kL2.˝/ D 1

d

dt

�
g.h/u; '

�
˝

D �
�
@tu; div

�
.I �A.h/T /'

��
˝

� .ru; .@tA.h/
T /'/˝

� hF1.t/; 'i C hF2.t/; 'i;

where

ˇ̌
ˇ̌
�
@tu.t/; div

��
I � A

�
h.t/

�T �
'

��

˝

ˇ̌
ˇ̌ 6 Ck@tu.t/kL2.˝/kI �A.h/T kL1.0;T IC 1.˝//

6 CT �k@tu.t/kL2.˝/khkC � .Œ0;T IC 1.˝//

and

ˇ̌
ˇ̌
�

ru.t/;
�
@t

�
I �A

�
h.t/

��T

'
��

˝

ˇ̌
ˇ̌ 6 Ckuk

L1

�
0;T IH 1.˝/

�kk@tE
�
h.t/

�
kW 1

p .˝/

6 CkukY 1
T

k@tA
�
h.t/

�
kW 1

p .˝/

for all t 2 .0; T /. Hence

kF1kL2.0;T IH �1
.0/

/ 6 CT �k@tukL2.˝�.0;T //khkC � .Œ0;T �IC 1.˝//

kF2kL2.0;T IH �1
.0/

/ 6 CkukY 1
T

k@tA.h.t//kL2.0;T IW 1
p / 6 CT

1
2 � 1

p kukY 1
T

khkE1;T
:

and therefore

k@tg.h/ukL2.0;T IH �1
.0/

/ 6 C.R/T min.�; 1
2

� 1
p

/khkE1;T
kukY 1

T

for all h 2 E1;T with khkE1;T
6 R. Here we have used that A 2 BC 1.A";RIX/, where X is as in

(3.14).

Finally, it remains to estimate the term QHh. To this end we use that

QHh D
�
K.h/ ı ��1

h0

�
�h;

where �h0
WD Q�h.�; 0/j˙ W˙ ! �0 bijectively. Here

K 2 BC 1
�
A";RIH

1
4

�
0; T IL2.˙/

�
\ L2

�
0; T IH

1
2 .˙/

��
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because of Corollary 2.2. Since �h0
2 C 2.˙/n is independent of t and h, the same is true for

K.�/ ı ��1
h0

with ˙ replaced by �0. Because of (3.13), we have for QH.h/ WD QHh for all h 2 A";R

QH 2 BC 1
�
BE1;T

.0;R/IH
1
4

�
0; T IL2.�0/

�
\ L2

�
0; T IH

1
2 .�0/

��
:

Altogether, since all terms in G are linear or bilinear in .u; q/ and A.h/, these considerations imply

that G 2 BC 1.BYT
.0;R/ � A";R �BH 1.˝/n.0;R/IZT / and

kG.w1Ih; v0/ �G.w2Ih; v0/kZT
6 CT ˛0

kw1 �w2kYT
(3.16)

for all wj D .uj ; qj / 2 YT with kwj kYT
6 R, h 2 A";R, v0 2 BZ4

.0;R/ and 0 < T 6 T0 for

some ˛0 > 0.

Proof of Theorem 3.2: Let " > 0. Using Lemma 3.3 and choosing T0 > 0 sufficiently small,

L�1G.:Ih; v0/WBYT
.0;R0/ ! BYT

.0;R0/

becomes a contraction and is invertible if h 2 A";R and kv0kH 1.˝/ 6 R, where

R0 D 2 sup
nL�1G.0Ih; v0/


YT

W h 2 A";R; kv0kH 1.˝/ 6 R
o
:

Hence for every .h; v0/ 2 A";R � BZ4
.0;R/ there is a unique w DW FT .h; v0/ 2 BYT

.0;R0/ such

that

w D L�1G.wIh; v0/:

Moreover, (3.16) implies

L�1DwG.wIh; v0/


L.ZT /
6 CT ˛0

6
1

2

for all wj D .uj ; qj / 2 YT with kwj kYT
6 R, .h; v0/ 2 A";R �BH 1

0
\L2;�

.0;R/, and 0 < T 6 T0

if T0 is sufficiently small. Hence we can apply the implicit function theorem to

F.wIh; v0/ D w � L�1G.wIh; v0/ D 0

and conclude that

FT 2 BC 1
�
A";R � BZ4

.0;R/IBYT
.0;R0/

�

since DwF.wIh; v0/ is invertible for all w 2 BYT
.0;R0/, h 2 A";R; v0 2 BZ4

T
.0;R/. �

Finally we obtain that the mapping h 7! .�h � u/ ı .�hjtD0/j˙ satisfies the conditions to apply

the general result of [6]:

COROLLARY 3.4 Let R; " > 0, T0 D T0.R/ > 0, A";R, and FT be as in Theorem 3.2. For every

h 2 A";R, v0 2 H 1
0 .˝/

n \ L2;� .˝/ with kv0kH 1
0

.˝/ 6 R let

GT .hI v0/ WD .�h � u/ ı .�hjtD0/j˙ ;

where .u; p/ D FT .h; v0/, 0 < T 6 T0. Then there is some q > p such that GT 2 C 1.A";R �

BH 1
0

\L2;�
.0;R/ILq.0; T IX0//. Moreover, if h1jŒ0;T 0� D h2jŒ0;T 0� for some 0 < T 0 6 T , then

GT .h1I v0/jŒ0;T 0� D GT .h2I v0/jŒ0;T 0�, i.e., the mapping h 7! GT .hI v0/ is a Volterra map in the

sense of [6].
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Proof. First let n D 3. Then by interpolation

H 1
�
J IL2.˝/

�
\ L2

�
J IH 2.˝/

�
,! L4

�
J IH

3
2 .˝/

�
\L2

�
J IH 2.˝/

�

,! Lq.J IH s.˝// ,! Lq.J IW 1
p .˝//

where

s D 1C
n

2
�
n

p
2

�
3

2
; 2

�
;

1

q
D
n

2

�
1

2
�
1

p

�
2

�
0;
1

p

�

since 3 < p < 10
3

and n D 3. If n D 2, we use that

H 1
�
J IL2.˝/

�
\L2

�
J IH 2.˝/

�
,! L4

�
J IW 1

4 .˝/
�
,! L4

�
J IW 1

p .˝/
�
:

Hence FT 2 C 1.A";R �BH 1
0
.0;R/ILq.J IW 1

p .˝// for some q > p. The rest of the first statement

follows from the trace theorem, the fact that

h 7! �h 2 C 1
�
BE1;T

.0;R/; BUC
�
Œ0; T �IC 1.˝/

��
;

and that �hjx2˙;tD0W˙ ! �0 is a C 2-diffeomorphism.

Finally, the Volterra property follows easily from the fact that the solution of (3.6)–(3.11) on a

time interval .0; T / is also a solution of (3.6)–(3.11) on .0; T 0/ for any 0 < T 0 < T (after restriction)

and the uniqueness of the solution.

4. Local Well-Posedness

In this section we show that the system (1.1)–(1.10) admits a unique local-in-time solution by

reducing the whole system to a single quasilinear evolution equation for the height function h. For

this purpose we use the solution operator obtained in the previous section and the solution operator

for the (transformed) chemical potential coming from (4.6)–(4.8).

We transform (1.3), (1.5), (1.6) and (1.8) to the fixed domain ˝n˙ , with ˙ � ˝ as in the

previous section, by means of the Hanzawa transform. This yields

m�h� D 0 in ˝T n˙T ; (4.1)

@th � .�h � u/ ı .�hjtD0/j˙ D �mŒŒ�h � rh��� on ˙T ; (4.2)

�j˙ D �K.h/ on ˙T ; (4.3)

�˝ �mr� D 0 on @˝T ; (4.4)

hjtD0 D h0 on ˙; (4.5)

where ˙T WD .0; T / � ˙ , �.t; x/ WD �.Ft;h.x/; t/ and K.h/ denotes the transformed mean

curvature operator. Assume that we already know a solution .u; h/ 2 Y 1
T � E1;T . Then we may

use Corollary 3.4 to write .�h �u/ı .�hjtD0/j˙ D GT .hI v0/. Consider the elliptic (time dependent)

problem

m�h� D 0 in ˝T n˙T ; (4.6)

�j˙ D �K.h/ on˙T ; (4.7)

�˝ �mr� D 0 on @˝T : (4.8)
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If

h 2 E
U
1;T WD

˚
h 2 E1;T W h.Œ0; T �/ 2 U

	
;

where U � W
4�4=p

p .˙/ is a sufficiently small neighborhood of zero, then (4.6)–(4.8) admits a

unique solution � DW S.h/K.h/ 2 Lp.0; T IW 2
p .˝n˙//. Defining B.h/� WD mŒŒ�h � rh��� we may

reduce (4.1)–(4.5) to a single equation for h:

@thC B.h/S.h/K.h/ D GT .hIu0/ on ˙T ; h.0/ D h0 on ˙:

Employing the decomposition from Lemma 2.1 we may write

@thC A.h/h D F1;T .h/C F2.h/ on ˙T ; h.0/ D h0 on ˙; (4.9)

where A.h/ WD B.h/S.h/P.h/, F1;T .h/ WD GT .hI v0/ and F2.h/ WD �B.h/S.h/Q.h/. Note that

A and F2 are nonlocal in x but local in t , whereas F1;T is nonlocal operator in t and x, but it has

the Volterra property with respect to t . Firstly we show that F2 2 C 1.U IW
1�1=p

p .˙//. By Lemma

2.1 we have

Q 2 C 1
�
U IW 2�1=p

p .˙/
�
:

Next we show that S 2 C 1.U I L.W
2�1=p

p .˙/;W 2
p .˝n˙///. Writing

�h D

n�1X

j;kD1

ah
jk@j @k C

n�1X

j D1

ah
j @j

with coefficients

ah
jk D ajk.x; h;rh;r

2h/; ah
j D aj .x; h;rh;r

2h/;

depending smoothly on .x; h;rh;r2h/, it is not hard to see that

ah
jk.�; h;rh;r

2h/; ah
j .�; h;rh;r

2h/ 2 BUC.˝n˙/2;

for all h 2 U . Here we used the embedding

W 2�4=p
p .˙/ ,! C.˙/

whenever p > .nC 3/=2. This in turn yields that

h 7! �h 2 C 1
�
U I L

�
W 2

p .˝n˙/;Lp.˝/
��
:

We can now write

S.h/g D .�h; ; N;@˝/
�1.0; g; 0/

for some function g 2 W
2�1=p

p .˙/: Here  denotes the trace operator to ˙ and N;@˝ stands for

the Neumann derivative on @˝ . Since the mapping h 7! .�h; ; N;@˝/ belongs to

C 1
�
U I L

�
W 2

p .˝n˙/;Lp.˝/ �W 2�1=p
p .˙/ �W 1�1=p

p .@˝/
��
;
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and inversion is smooth, we may conclude that

S 2 C 1
�
U I L

�
W 2�1=p

p .˙/;W 2
p .˝n˙/

��
:

Finally, we show that B 2 C 1.U I L.W 2
p .˝n˙/;W

1�1=p
p .˙///. We may write B.h/ DPn�1

j D1 b
h
j @j , where the coefficients bh

j D bj .x; h;rh/ depend smoothly on .x; h;rh/. This yields

bj .�; h;rh/ 2 C 1.˙/; for each h 2 U since W
3�4=p

p .˙/ ,! C 1.˙/ for p > .nC 3/=2. It follows

readily that

h 7! bh
j @j 2 C 1

�
U I L

�
W 2

p .˝n˙/;W 1�1=p
p .˙/

��
:

Summarizing we have shown that

F2 2 C 1
�
U IW 1�1=p

p .˙/
�
;

hence the desired assertion.

Concerning the mapping h 7! A.h/, we would like to show that

h 7! A.h/ 2 C 1
�
U I L

�
W 4�1=p

p .˙/;W 1�1=p
p .˙/

��
:

But this is an immediate consequence of Lemma 2.1, since

h 7! P.h/ 2 C 1
�
U I L

�
X1;W

2�1=p
p .˙/

��
:

It has been shown in [27, Proof of Theorem 4.1] that A.0/ has the property of maximalLp-regularity

in X0 D W
1�1=p

p .˙/, that is for each given f 2 Lp.0; T IX0/ there exists a unique solution

h 2 H 1
p .0; T IX0/ \ Lp.0; T IX1/ of the problem

@th.t/C A.0/h.t/ D f .t/; t 2 .0; T /; h.0/ D 0;

where X1 D W
4�1=p

p .˙/. If U � W
4�4=p

p .˙/ is a sufficiently small neighborhood of zero, then,

by a perturbation argument, also A.h0/ has maximal Lp-regularity, whenever h0 2 U .

Note that the principal part in (4.9) is local in time. Furthermore, by Corollary 3.4, we have

F1;T 2 C 1
�
A";R �BH 1

0
\L2;�

.0;R/ILq.0; T IX0/
�
;

for some q > p. This means that the nonlocal term F1;T is somehow of lower order with respect to

t . Based on this fact we are in a situation to apply existence and uniqueness results for quasilinear

evolution equations with main part being local in time. We show that the nonlocal term F1;T satisfies

the Lipschitz estimate

kF1;T .h1/ � F1;T .h2/kLp.0;T IX0/ 6 �.T /kh1 � h2kE1;T
(4.10)

for all h1; h2 2 Br;E1;T
, where �.T / ! 0C as T ! 0C and

Br;E1;T
WD

˚
h 2 E1;T W kh � h�kE1;T

6 r; h.0/ D h0

	
; r 2 .0; 1�:
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Here h� 2 E1;T0
solves the linear Cauchy problem

@th�.t/C A.0/h�.t/ D 0; t 2 .0; T0/; h�.0/ D h0;

for each T0 > 0. Let T 2 .0; T0/, ı > 0 such that kh0k
W

4�4=p
p .˙/

< ı. It follows that

kh.t/k
W

4�4=p
p .˙/

6 kh.t/ � h�.t/kW
4�4=p

p .˙/
C kh�.t/ � h0k

W
4�4=p

p .˙/
C kh0k

W
4�4=p

p .˙/

6 Mr C sup
t2Œ0;T0�

kh�.t/ � h0k
W

4�4=p
p .˙/

C ı

6 a � ";

for all h 2 Br;E1;T
, provided that r; T0; ı > 0 are sufficiently small. Here a > 0 denotes the number

in the definition of the set A";R in Theorem 3.2.

Choosing R > r C kh�kE1;T0
we obtain that Br;E1;T

� A";R for all T 2 .0; T0/. It holds that

F1;T .h1/ � F1;T .h2/ D

�Z 1

0

DF1;T .h2 C �.h1 � h2//d�

�
.h1 � h2/:

Hence

kF1;T .h1/ � F1;T .h2/kLq.0;T IX0/ 6 kF1;T0
.e.h1// � F1;T0

.e.h2//kLq.0;T0IX0/

6 Cke.h1/ � e.h2/kE1;T0

6 CM kh1 � h2kE1;T
C CM kh1.0/� h2.0/kW

4�4=p
p .˙/

for all h1; h2 2 Br;E1;T
, where

C WD sup
˚DF1;T0

.h/


L.E1;T0
ILq.0;T0IX0//

W h 2 Br;E1;T0

	
> 0;

and e denotes an appropriate linear extension operator from E1;T to E1;T0
, T < T0, such that

e.h/

E1;T0

6 M
�
khkE1;T

C kh.0/k
W

4�4=p
p .˙/

�

holds for all h 2 E1;T and M > 0 does not depend on T < T0 and h (see e.g. [6, Lemma 7.2]).

Since q > p, an application of Hölder’s inequality yields

F1;T .h1/ � F1;T .h2/


Lp.0;T IX0/
6 T

q�p
pq

F1;T .h1/ � F1;T .h2/


Lq.0;T IX0/

6 T
q�p
pq CM kh1 � h2kE1;T

for all h1; h2 2 Br;E1;T
. Therefore we can choose �.T / D T

q�p
pq CM . In particular, the nonlocal

term F1;T .h/ is a small perturbation in Lp.0; T IX0/ provided that T > 0 is small enough. This can

be seen as follows

kF1;T .h/kLp.0;T IX0/ 6 kF1;T .h/� F1;T .h�/kLp.0;T IX0/ C kF1;T .h�/kLp.0;T IX0/

6 �.T /r C T
q�p
pq kF1;T .h�/kLq.0;T IX0/;
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for all h 2 Br;E1;T
and the right side of the last inequality can be made as small as we wish, by

decreasing T > 0.

We may now follow e.g. the lines of the proof of [24, Theorem 2.1] to conclude that for each

initial value h0 2 U there exists a possibly small T > 0 such that (4.9) admits a unique solution

h 2 H 1
p .0; T IX0/ \ Lp.0; T IX1/ which depends (locally) Lipschitz continuously on the initial

data h0.

We have proven the following result.

THEOREM 4.1 Let 3 < p 6 2.n C 2/=n, n D 2; 3, R > 0 and U D B
W

4�4=p
p .˙/

.0; ı/. Then

there exist a sufficiently small ı > 0 and T > 0 such that the (transformed) system (3.6)–(3.11),

(4.1)–(4.5) has a unique solution

.u; q; �; h/ 2 Y 1
T � Y 2

T �Lp

�
0; T IW 2

p .˝n˙/
�

� E1;T ;

provided that h0 2 U and v0 2 H 1
0 .˝/

n \L2;� .˝/, kv0kH 1 6 R.

5. Qualitative Behavior

This section is devoted to the long-time behavior of solutions to (1.1)–(1.10) starting close to

equilibria. We will study the spectrum of the full linearization of the transformed two-phase

Navier–Stokes/Mullins–Sekerka equations around an equilibrium. Since, among other things, the

divergence-free-condition for the velocity field v is destroyed under the Hanzawa transform, we

have to split the solutions into two parts, one part which is divergence free and the remaining

part which is not. The treatment of the first part is done by considering the so-called normal form

of the equations in exponentially weighted spaces and the fact that the set of equilibria can be

parameterized over the kernel of the linearization. The remaining part, which is not divergence free

can be handled by the implicit function theorem.

For simplicity we assume that the dispersive phase is connected. Moreover, we assume for

simplicity thatm D 1. (By a simple scaling in time one can always reduce to that case.) Note that the

pressure p as well as the chemical potential � may be reconstructed by the semiflow .v.t/; � .t//

as follows:

.rpjr�/L2
D

�
�˙�v � v � rvjr�

�
L2

for all � 2 W 1
2 .˝/;

ŒŒp�� D 2ŒŒ�˙.Dv/�� .t/ � �� .t/��C �H on � .t/;

and

m�� D 0; t > 0; x 2 ˝˙.t/;

�j� .t/ D �H; t > 0; x 2 � .t/;

�˝ �mr� D 0; t > 0; x 2 @˝:

Therefore we may concentrate on the set of equilibria E for the flux .v.t/; � .t// which is given by

E D
˚�
0; SR.x0/

�
; SR.x0/ � ˝ is a sphere

	
:
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The linearization of the (transformed) two-phase Navier–Stokes-Mullins–Sekerka problem around

an equilibrium .0;˙/ 2 E reads as follows:

@tu � �˙�uC rq D fu; t > 0; x 2 ˝˙;

div u D fd ; t > 0; x 2 ˝˙;

�2ŒŒ�˙Du���˙ C ŒŒq���˙ � �.A˙h/�˙ D gu; t > 0; x 2 ˙;

ŒŒu�� D 0; t > 0; x 2 ˙;

u D 0; t > 0; x 2 @˝;

@th � u � �˙ � ŒŒ@�˙
��� D gh; t > 0; x 2 ˙;

�� D f�; t > 0; x 2 ˝˙;

�j˙ C A˙h D g�; t > 0; x 2 ˙;

@�� D 0; t > 0; x 2 @˝;

u.0/ D u0; x 2 ˝˙;

h.0/ D h0; x 2 ˙;

(5.1)

where A˙ D n�1
R2 I C �˙ and �˙ denotes the Laplace-Beltrami operator on ˙ . We want to

reformulate (5.1) as an abstract evolution equation. To this end we introduce the Banach spaces

X0 WD L2;� .˝/ �W
1�1=p

p .˙/ and X1 WD .L2;� .˝/ \W 2
2 .˝ n˙/n/ �W

4�1=p
p .˙/, where

L2;� .˝/ WD fu 2 C1
0 .˝/n W div u D 0g

k�kL2.˝/
:

Define a linear operator A W D.A/ � X1 ! X0 by means of

A.u; h/ WD
�

� �˙�uC rq;�u � �˙ � ŒŒ@�˙
���

�
;

with domain

D.A/ D
˚
.u; h/ 2 X1 W u D 0 on @˝; ŒŒu�� D 0 on˙

	
:

Here q 2 H 1
.0/
.˝n˙/ and � 2 W 2

p .˝n˙/ are determined as the solutions of the elliptic

transmission problems

.rqjr�/L2
D

�
�˙�ujr�

�
L2

for all � 2 H 1.˝/;

ŒŒq�� D 2ŒŒ�˙.Du/�˙ � �˙ ��C �A˙h on ˙;

and

�� D 0; t > 0; x 2 ˝ n˙;

�j˙ C A˙h D 0; t > 0; x 2 ˙;

@�� D 0; t > 0; x 2 @˝:

In the sequel we will use the solution formula

rq D T1

�
�˙�u/C T2.2ŒŒ�

˙.Du/�˙ � �˙ ��
�
:
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Setting z D .u; h/ and f D .fu; gh/ we may rewrite (5.1) as

Pz.t/C Az.t/ D f .t/; t > 0; z.0/ D z0 WD .u0; h0/; (5.2)

provided that fd D gu D f� D g� D 0. The operator A has the following properties.

PROPOSITION 5.1 Let n D 2; 3, p 2 .3; 2.nC 2/=n/, �˙ > 0; � > 0 be constants and let X0 and

A be defined as above. Then the following assertions hold.

(1) The linear operator �A generates an analytic C0-semigroup e�At in X0 which has the property

of maximal Lp-regularity.

(2) The spectrum ofA consists of countably many eigenvalues with finite algebraic multiplicity and

is independent of p.

(3) �A has no eigenvalues � with nonnegative real part other than � D 0.

(4) � D 0 is a semi-simple eigenvalue with multiplicity nC 1, i.e. X0 D N.A/˚R.A/.

(5) The kernel N.A/ is isomorphic to the tangent space Tz�E of E at the given equilibrium z� D

.0;˙/ 2 E.

(6) The restriction of e�At to R.A/ is exponentially stable.

Proof. Consider (5.1) with fd D gu D f� D g� D 0 and let J D .0; T /, T > 0. Suppose that

h 2 W 1
p

�
J IW 1�1=p

p .˙/
�

\ Lp

�
J IW 4�1=p

p .˙/
�

is known. Then solve problem .5:1/1-.5:1/5 with initial value u0 2 H 1
0 .˝/

n\L2;� .˝/ by Theorem

A.1 with g D a D 0 to obtain a unique solution

u D S1;T .h/ 2 H 1
�
0; T IL2;� .˝/

�
\L1

�
0; T IH 1

0 .˝/
n
�

\L2

�
0; T IH 2.˝ n˙/n

�
;

for each T > 0. Plugging u D S1;T .h/ into .5:1/6 and denoting by � D S2.�A˙h/ D �S2.A˙h/

the unique solution to .5:1/7;8;9, we obtain the linear nonlocal problem

@th�mŒŒ@�˙
S2.A˙h/�� D S1;T .h/C gh on ˙T ; h.0/ D h0 on ˙: (5.3)

By [27, Proof of Theorem 4.1] the operator Œh 7! mŒŒ@�˙
S2.A˙h/��� has maximal Lp-regularity.

Furthermore it holds that S1;T .h/ 2 Lq.0; T IW
1�1=p

p .˙// for some q > p which means that this

term is of lower order in Lp.0; T IX0/ compared to mŒŒ@�˙
S2.A˙h/���. This can be seen as in the

proof of Corollary 3.4.

Hence, by perturbation arguments we may conclude that (5.3) has for each given h0 2

W
4�4=p

p .˙/ a unique solution

h 2 W 1
p

�
J IW 1�1=p

p .˙/
�

\ Lp

�
J IW 4�1=p

p .˙/
�
:

In other words, we have shown that for each T > 0 and for each given f D .fu; gh/ 2

L2.J IL2;� .˝// �Lp.J IW
1�1=p

p .˙// there exists a unique solution z D .u; h/ of (5.2) with

u 2 H 1
�
0; T IL2;� .˝/

�
\ L1

�
0; T IH 1

0 .˝/
n
�

\ L2

�
0; T IH 2.˝ n˙/n

�
;

and

h 2 W 1
p

�
J IW 1�1=p

p .˙/
�

\Lp

�
J IW 4�1=p

p .˙/
�
;
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provided that u0 2 L2;� .˝/ \H 1
0 .˝/

n and h0 2 W
4�4=p

p .˙/.

Mimicking the proof of [26, Proposition 1.2] it follows that the operator �A generates an

analytic semigroup in X0 D L2;� .˝/�W
1�1=p

p .˙/.

By compact embedding, the resolvent of A is compact and therefore the spectrum �.A/ of A

consists of countably many eigenvalues with finite algebraic multiplicity and �.A/ does not depend

on p, by classical results. Let � 2 �.�A/ with eigenfunctions .u; h/. Then the corresponding

eigenvalue problem is

�u ��uC rq D 0; x 2 ˝ n˙;

div u D 0; x 2 ˝ n˙;

�2ŒŒ�˙.Du/���˙ C ŒŒq���˙ � �.A˙h/�˙ D 0; x 2 ˙;

ŒŒu�� D 0; x 2 ˙;

�h � u � �˙ � ŒŒ@�˙
��� D 0; x 2 ˙;

�� D 0; x 2 ˝ n˙;

�j˙ C A˙h D 0; x 2 ˙;

@�� D 0; x 2 @˝;

u D 0; x 2 @˝:

(5.4)

Taking the inner product of equation .5:4/1 with u, integrating by parts and invoking the boundary

as well as the transmission conditions, we obtain

�kuk2
2 C 2k�˙Duk2

2 C �kr�k2
2 � � N�.A˙hjh/L2.˙/ D 0: (5.5)

If � ¤ 0, then

�

Z

˙

hdo D

Z

˙

�˙ � udoC

Z

˙

ŒŒ@�˙
���do D

Z

˝C

divudx D 0;

hence h has mean value zero. It is well-known that the operator A˙ D n�1
R2 C �˙ is negative

definite on L2;.0/.˝/. Taking real parts in (5.5) it follows that � D const and Du D 0, hence

u D 0 by Korn’s inequality since uj@˝ D 0. This in turn yields h D 0 by .5:4/5, showing that there

are no eigenvalues � ¤ 0 of �A with Re � > 0. Next we show that � D 0 is an eigenvalue of A.

If � D 0, then (5.5) implies � D �1 D const and Du D 0. Hence, as before, u D 0 by Korn’s

inequality. Since q is constant by .5:4/1 it follows from .5:4/3;7 that

�1 D
ŒŒq��

�
D
n � 1

R2
hC�˙h;

which is a linear second order partial differential equation for h on ˙ . Note that a special solution

to this linear equation is given by the constant function h1 D �1R
2=.n � 1/. The solution space

L of the corresponding homogeneous equation A˙h D 0 is given by

L D spanfY1; : : : ; Yng;

where Yj , j 2 f1; : : : ; ng, are the spherical harmonics of degree one. Furthermore it holds that

dim L D n. Since the constant �1 D ŒŒq��=� is arbitrary, we see that dimN.A/ D nC 1.
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Let z1 2 N.A/ such that Az D z1. The corresponding problem for z D .u; h/T is given by

��uC rq D 0; x 2 ˝ n˙;

div u D 0; x 2 ˝ n˙;

�2ŒŒ�Du���˙ C ŒŒq���˙ � �.A˙h/�˙ D 0; x 2 ˙;

ŒŒu�� D 0; x 2 ˙;

�u � �˙ � ŒŒ@�˙
��� D h1; x 2 ˙;

�� D 0; x 2 ˝ n˙;

�j˙ C A˙h D 0; x 2 ˙;

@�� D 0; x 2 @˝;

u D 0; x 2 @˝;

(5.6)

since z1 D .0; h1/ and h1 D
Pn

j D0 j̨Yj , Y0 WD 1. From the divergence condition we obtain

0 D

Z

˝

divudx D

Z

˙

�
u � �˙ C ŒŒ@�˙

���
�
do D �

Z

˙

h1do;

hence h1 has mean value zero and this in turn implies A˙h1 D 0. Multiplying .5:6/1 by u,

integrating by parts and taking into account the boundary and transmission conditions, we obtain

2k�˙Duk2
2 C �kr�k2

2 C �.A˙hjh1/L2.˙/ D 0: (5.7)

Since A˙ is self-adjoint in L2.˙/ it follows that the last term in (5.7) vanishes and then, as before,

� D const and u D 0, by Korn’s inequality. In this case .5:6/5 yields h1 D 0, i.e. z 2 N.A/, hence

N.A2/ D N.A/. Since A has compact resolvent, it follows that R.A/ is closed in X0 and � D 0 is

a pole of .� � A/�1. Therefore [25, Remark A.2.4] yields that � D 0 is semisimple, in particular

it holds that X0 D N.A/˚ R.A/. Moreover, the restricted semigroup e�At jR.A/ is exponentially

stable, since we have a spectral gap.

Finally we show that the tangent space Tz�E of E at z� D .0;˙/ 2 E coincides with N.A/.

This can be seen as follows. Assume w.l.o.g. that ˙ is centered at the origin of Rn with radius R.

Suppose S is a sphere that is sufficiently close to ˙ . Denote by .y1; : : : ; yn/ the center of S and let

RC y0 be the corresponding radius of S. Then by [12, Section 6] the sphere S can be parametrized

over˙ by the distance function

d.y/ D

nX

j D1

yjYj �R C

vuuut
0
@

nX

j D1

yjYj

1
A

2

C .RC y0/2 �

nX

j D1

y2
j :

Denoting by O a sufficiently small neighborhood of 0 in RnC1, the mapping d W O ! W
4�1=p

p .˙/

is smooth and the derivative at 0 is given by

d 0.0/w D

nX

j D0

wjYj ; for all w 2 R
nC1: (5.8)

Therefore, near ˙ , the set of equilibria E is a smooth manifold in QX1 of dimension n C 1 and

Tz�E D N.A/ by (5.8).
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Since X0 D N.A/ ˚ R.A/ and �.AjR.A// � CC it follows that the restricted semigroup

e�At jR.A/ is exponentially stable. The proof is complete.

We are now ready to prove the main result of this section. Note that the transformed equations

near an equilibrium .0;˙/ 2 E read as follows.

@tu � �˙�uC r� D Fu.u; �; h/; t > 0; x 2 ˝˙;

div u D Fd .u; h/; t > 0; x 2 ˝˙;

�ŒŒ�.ruC ruT/���˙ C ŒŒ����˙ � �.A˙h/�˙ D Gu.u; h/; t > 0; x 2 ˙;

ŒŒu�� D 0; t > 0; x 2 ˙;

@th � u � �˙ � ŒŒ@�˙
��� D Gh.u; �; h/; t > 0; x 2 ˙;

�� D F�.�; h/; t > 0; x 2 ˝˙;

�j˙ C A˙h D G�.h/; t > 0; x 2 ˙;

@�� D 0; t > 0; x 2 @˝;

u D 0; t > 0; x 2 @˝;

u.0/ D u0; x 2 ˝˙;

h.0/ D h0; x 2 ˙;

(5.9)

where the derivatives of the nonlinearities on the right hand side with respect to .u; h/ vanish at

.u; h/ D .0; 0/ for constant � and constant �.

THEOREM 5.2 The equilibrium .0;˙/ 2 E is stable in the sense that for each " > 0 there exists

some ı."/ > 0 such that for all initial values .u0; h0/ subject to

kh0k
W

4�4=p
p .˙/

C ku0kH 1
0

.˝/n 6 ı."/

there exists a unique global solution .u.t/; h.t// of (5.9) and it satisfies

kh.t/k
W

4�4=p
p .˙/

C ku.t/kH 1
0

.˝/n 6 " for all t > 0:

Moreover, there exists some h1 2 W
4�1=p

p .˙/ such that�h1
˙ D @BR.x/ � ˝ for some R > 0,

x 2 ˝ , and

lim
t!1

�
kh.t/ � h1k

W
4�4=p

p .˙/
C ku.t/kH 1

0
.˝/n

�
D 0:

The convergence is at an exponential rate.

Proof. The nonlinear phase manifold for the semiflow is given by

P M D
˚
.u; h/ 2 H 1

0 .˝/
n �W 4�4=p

p .˙/ W divu D Fd .u; h/
	
:

In a first step we want to parametrize P M over its tangent space at .0; 0/, that is

P M0 WD
˚
.u; h/ 2 H 1

0 .˝/
n �W 4�4=p

p .˙/ W divu D 0
	
:
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To this end we consider the generalized Stokes equation

��uC r� D 0 in ˝;

divu D f in ˝;

u D 0 on @˝

(5.10)

for which we have the following existence and uniqueness result.

PROPOSITION 5.3 For every f 2 L2
.0/
.˝/ D fu 2 L2.˝/ W

R
˝
udx D 0g the Stokes problem

(5.10) admits a unique solution .u; �/ 2 H 1
0 .˝/

n � L2
.0/
.˝/, which depends continuously on

f 2 L2
.0/
.˝/.

Proof. The proposition is a special case of [33, Theorem III.1.4.1].

With the help of this result we may continue as follows. For a given . Qu; Qh/ 2 P M0 with a

sufficiently small norm, we solve the auxiliary problem

�� NuC r N� D 0 in ˝;

div Nu D P0Fd . NuC Qu; Qh/ in ˝;

Nu D 0 on @˝;

(5.11)

where P0 W L2.˝/ ! L2
.0/
.˝/ is defined by P0f D f � 1

j˝j

R
˝
fdx. Since the Fréchet derivatives

of the nonlinearities vanish in .0; 0/, the implicit function theorem yields the existence of a ball

B.0; r/ � H 1
0 .˝/

n \W
4�4=p

p .˙/ and a unique solution

. Nu; N�/ D Q�. Qu; Qh/ 2 H 1
0 .˝/ � L2

.0/.˝/

with a function Q� 2 C 1.B.0; r// such that Q�0.0/ D 0. Define � Qh
.x/ as in (2.8) with h replaced by

Qh, which does not depend on t . Let v.x/ WD . NuC Qu/.��1
Qh
.x//. Then v 2 H 1

0 .˝/
n and

div v.x/ D Tr
�
D��T

Qh
.x/r. QuC Nu/

�
��1

Qh
.x/

��

D Tr
��
D��T

Qh
.x/ � I

�
r. QuC Nu/

�
��1

Qh
.x/

��
C div. NuC Qu/

�
��1

Qh
.x/

�

D �Fd . NuC Qu; Qh/
�
��1

Qh
.x/

�
C P0Fd . NuC Qu; Qh/

�
��1

Qh
.x/

�

D �
1

j˝j

Z

˝

Fd . NuC Qu; Qh/.x/ dx;

since div Qu D 0. Because of 0 D
R

˝
div v.x/dx, it follows that P0Fd . NuC Qu; Qh/ D Fd . NuC Qu; Qh/.

Let

P WH 1
0 .˝/

n � L2
.0/.˝/ ! H 1

0 .˝/
n; P.u; �/ D u;

and set �. Qu; Qh/ D P Q�. Qu; Qh/. It is not difficult to see that

.u; h/ WD . Qu; Qh/C
�
�. Qu; Qh/; 0

�
2 P M:
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Note that this mapping is injective. For the final construction of the parametrization we have to show

that this mapping is also surjective. For that purpose we solve the linear problem

�� NuC r N� D 0 in ˝;

div Nu D P0Fd .u; h/ in ˝;

Nu D 0 on @˝;

(5.12)

for given functions .u; h/ 2 P M. Setting . Qu; Qh/ D .u � Nu; h/ we obtain that Qu 2 H 1
0 .˝/

n and

div Qu D Fd .u; h/ � P0Fd .u; h/ D
1

j˝j

Z

˝

Fd .u; h/dx:

Since 0 D
R

˝
div Qudx this yields P0Fd .u; h/ D Fd .u; h/.

Furthermore it holds that . Qu; Qh/ 2 P M0 and Nu D �. Qu; Qh/ by injectivity. This in turn proves

surjectivity. Observe that also �.0/ D 0. This can be seen as follows. Suppose that Qu D Qh D 0.

Then obviously Nu D 0 and N� D const: is a solution of (5.11). By the uniqueness it follows that

�.0/ D 0. Furthermore, if .u1; h1; �1; �1/ is an equilibrium of (5.9), then u1 D 0 and

�1 D ŒŒ�1��=� D H.h1/ D const:

Since Fd .0; h1/ D 0, the unique solvability of (5.11) implies that �.0; h1/ D 0. This is reasonable

since the equilibria are contained in the linear phase manifold P M0.

Let .u0; h0/ D . Qu0; Qh0/C.�. Qu0; Qh0/; 0/ 2 P M and let .u; h; �; �/ be the solution of (5.9) to this

initial value on some interval Œ0; a�. With the help of the map � we want to derive a decomposition

for .u; h/. To be precise we want to write

.u; h/ D .u1; h1/C . Qu; Qh/C . Nu; Nh/;

where . Qu; Qh/.t/ 2 P M0 for all t 2 Œ0; a� and .u1; h1; �1; �1/ is an equilibrium of (5.9). Consider

the two coupled systems

! NuC @t Nu � �˙� NuC r N� D Fu.u; �; h/

div Nu D Fd .u; h/

�P˙ ŒŒ�.r NuC r NuT/���˙ D G� .u; h/

�.ŒŒ�˙.r NuC r NuT/���˙ j�˙ /C ŒŒ N��� � �A˙
Nh D G�.u; h/CG .h/�G .h1/

ŒŒ Nu�� D 0

Nuj@˝ D 0

! NhC @t
Nh � Nu � �˙ � ŒŒ@�˙

N��� D Gh.u; �; h/

� N� D F�.�; h/

N�j˙ C A˙
Nh D G�.h/�G�.h1/

@� N�j@˝ D 0

Nu.0/ D �. Qu0; Qh0/; Nh.0/ D 0;

(5.13)
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and

@t Qu � �˙� QuC r Q� D ! Nu t > 0; x 2 ˝n˙

div Qu D 0 t > 0; x 2 ˝n˙

�P˙ ŒŒ�
˙.r QuC r QuT/���˙ D 0 t > 0; x 2 ˙

�.ŒŒ�.r QuC r QuT/���˙ / � �˙ C ŒŒ Q��� � �A˙
Qh D 0 t > 0; x 2 ˙

ŒŒ Qu�� D 0 t > 0; x 2 ˙ (5.14)

Qu D 0 t > 0; x 2 @˝

@t
Qh � Qu � �˙ � ŒŒ@�˙

Q��� D ! Nh t > 0; x 2 ˙

� Q� D 0 t > 0; x 2 ˙

Q�j˙ C A˙
Qh D 0 t > 0; x 2 ˙

@� Q� D 0 t > 0; x 2 @˝

with initial values Qu.0/ D Qu0 and Qh.0/ D Qh0 � h1. Here � D �1 C Q� C N� and � D �1 C Q�C N�.

We recall that u1 D 0 and �1; �1 are constants and it holds that

�1 D ŒŒ�1��=� D H.h1/:

With the help of the operator A introduced above, we may rewrite problem (5.14) as

PQz.t/CAQz.t/ D R.Nz/.t/ for t 2 .0; T /; Qz.0/ D Qz0 � z1; (5.15)

where Qz0 WD . Qu0; Qh0/, z1 WD .0; h1/, Qz D . Qu; Qh/ and Nz D . Nu; Nh/. Here the mappingR is given by

R.Nz/ D
�
!.I � T1/ Nu; ! Nh

�
:

Thanks to Proposition 5.1 we have the decomposition X0 D N.A/ ˚ R.A/. Let P c denote the

spectral projection corresponding to �c.A/ D f0g and set P s D I � P c . Then R.P c/ D N.A/

and R.P s/ D R.A/. Following the lines of [27, Remark 2.2 (b)] we may parametrize the set of

equilibria near 0 over N.A/ via a C 2 map Œx 7! x C  .x/� such that  .0/ D  0.0/ D 0 and

R. / � D.As/, where As D AP s . This is true, since the nonlinearities on the right side in (5.9)

are bilinear and smooth.

For z1 sufficiently close to 0 there exists x1 such that z1 WD x1 C  .x1/. Introducing the

new variables x WD P c Qz and

y WD P s Qz �  .x1 C P c Qz/C  .x1/

we obtain from (5.15) the so-called normal form

Px D T .Nz/; x.0/ Dx0 � x1;

Py C Asy D S.x1; x; Nz/; y.0/ Dy0; (5.16)

where T .Nz/ D P cR.Nz/,

S.x1; x; Nz/ D P sR.Nz/ � As

�
 .x1 C x/ �  .x1/

�
�  0.x1 C x/T .Nz/;
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and x0 WD P c Qz0, y0 WD P s Qz0 �  .x0/ with Qz0 D . Qu0; Qh0/. Observe that S.0/ D S 0.0/ D 0 by the

properties of the function  and since T .0/ D 0.

Let

E1.RC/ WD H 1
�
RCIL2;� .˝/

�
\ L2

�
RCIH 2.˝n˙/

�
;

E2.RC/ WD W 1
p

�
RCIW 1�1=p

p .˙/
�

\ Lp

�
RCIW 4�1=p

p .˙/
�
:

and let

E1.RC; ı/ WD
˚
v 2 L2

�
RCIL2.˝/

�
W eıtv 2 E1.RC/

	
;

E2.RC; ı/ WD
˚
v 2 Lp

�
RCILp.˝/

�
W eıtv 2 E2.RC/

	
;

where ı 2 .0; ı0/ and ı0 > 0 depends on the spectral bound of the operator As (see Proposition

5.1). Clearly, T W E.RC; ı/ ! Ec.RC; ı/; where

E.RC; ı/ WD E1.RC; ı/ � E2.RC; ı/

and Ec.RC; ı/ WD P cE.RC; ı/. For given .x0; y0; Nz/ we want to solve (5.16) for .x; y; x1/. First,

for given .x0; Nz/ 2 Xc
0 � E.RC; ı/ with Xc

0 WD P cX0 we define

x1 WD x0 C

Z 1

0

T .Nz/.s/ds DW K1.x0; Nz/ 2 Xc
0 :

Then

x.t/ WD �

Z 1

t

T .Nz/.s/ds DW K2.Nz/

solves the first differential equation in (5.16) and

x.0/ D �

Z 1

0

T .Nz/.s/ds D x0 � x1:

Observe that by Young’s inequality we have

x 2 P c
h
H 1

�
RC; ıIL2;� .˝/

�
�W 1

p

�
RC; ıIW

1�1=p
p .˙/

�i
:

These exponentially weighted function spaces are defined in exactly the same way as Ej .RC; ı/.

Substituting the expressions for x1 and x into the function S , we obtain

Py C Asy D S1.x0; Nz/; y.0/ D y0;

where

S1.x0; Nz/ WD S.K1.x0; Nz/;K2.Nz/; Nz/;

and y0 2 X s
0 \ P M0. If one takes into account that the first component of  is identically zero, it

follows easily from the definition of S and the smoothness of  that

S1.x0; Nz/ W Xc
0 � E.RC; ı/ ! X

s.RC; ı/
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where

X
s.RC; ı/ WD P s

�
L2

�
RC; ıIL2;� .˝/

�
� Lp

�
RC; ıIW

1�1=p
p .˙/

��
:

Here X s
0 WD P sX0. Since �.As/ � CC, we obtain for ı > 0 sufficiently small

y D

�
d

dt
C As; tr

��1

.S1.x0; Nz/; y0/ 2 E
s.RC; ı/;

where tr v WD v.0/ and

E
s.RC; ı/ WD P s

E.RC; ı/:

Here ı > 0 depends on the growth bound of the semigroup. Putting things together, we see that

Qz D QG.x0; y0; Nz/ WD x C  .x C x1/ �  .x1/C y

and

z1 D G1.x0; y0; Nz/ WD x1 C  .x1/:

We turn our attention to (5.13). Let L! be the linear operator defined by the left side of (5.13). Then

we can rewrite (5.13) in the shorter form

L! Nw D N.w1 C Qw C Nw/ �N.w1/; (5.17)

with initial value Nw.0/ D Nw0 WD .�. Qu0; Qh0/; 0/.

Here we have set w1 D .u1; h1; 0; 0/. Due to the first part of the proof, the nonlinearities

on the right hand side of (5.13) depend only on .x0; y0; Nw/, where Nw D . Nu; Nh; N�; N�/ since w1 D

.G1.x0; y0; Nu; Nh/; 0; 0/ and since there exists a function QH such that

Qw D . Qu; Qh; Q�; Q�/ D QH.x0; y0; Nu; Nh/:

This follows from the considerations above, as . Q�; Q�/ can be written in terms of . Nu; Nh/ and . Qu; Qh/ D

Qz D QG.x0; y0; Nz/. Moreover, the right hand sides in (5.13) do not depend on .�1; �1/, since these

quantities are constant.

In order to solve (5.13) we define

M.x0; y0; Nw/ WD N
�
w1 C Qw C extı

��
�. Qu0; Qh0/; 0

�
�

�
Nu.0/; Nh.0/

��
C Nw

�
�N.w1/;

where

extı W fH 1
0 .˝/

n \ L2;� .˝/g �W 4�4=p
p .˙/ ! E.RC; ı/ � f0g � f0g;

such that .extız/.0/ D .z1; z2; 0; 0/ with z D .z1; z2/. We want to solve the equation

L! Nw D M.x0; y0; Nw/; . Nw1; Nw2/.0/ D .�. Qu0; Qh0/; 0/; (5.18)

by the implicit function theorem. Let

NE.RC; ı/ WD E.RC; ı/ � L2

�
RC; ıIH

1
.0/.˝n˙/

�
� Lp

�
RC; ıIW

2
p .˝n˙/

�

and define

K.x0; y0; Nw/ WD Nw � .L! ; tr/
�1

�
M.x0; y0; Nw/;

�
�. Qu0; Qh0/; 0

��
:
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The mapping K W B.r; ı/ ! NE.RC; ı/ is well defined, provided that ! > 0 is sufficiently large

since .M.x0; y0; Nw/; .�. Qu0; Qh0/; 0// satisfies all relevant compatibility conditions at t D 0. To be

precise, we have ŒŒ�. Qu0; Qh0/�� D 0, �. Qu0; Qh0/j@˝ D 0 as well as

div�. Qu0; Qh0/ D div
�
Qu0 C �. Qu0; Qh0/

�
D Fd

�
Qu0 C �. Qu0; Qh0/; Qh0

�
;

since div Qu0 D 0. Here we have set

B.r; ı/ WD
˚
.x0; y0; Nw/ 2 Xc

0 � .X s
0 \ P M0/ � NE.RC; ı/ W k.x0; y0; Nw/kŒP M0�2� NE.RC;ı/ 6 r

	
;

where r > 0 is sufficiently small.

Note that M.0; 0; 0/ D M 0.0; 0; 0/ D 0 since �.0; 0/ D �0.0; 0/ D 0. Therefore the implicit

function theorem yields a ball

B.0; �/ � Xc
0 � .X s

0 \ P M0/

and a unique solution Nw D ˚.x0; y0/ of (5.18), where ˚ 2 C 1.B.0; �//. Note that by construction,

Nw is a solution of (5.13).

Finally this shows that . Qu.t/; Qh.t// as well as . Nu.t/; Nh.t// converge in H 1
0 .˝/

n � W
4�4=p

p .˙/

to zero as t tends to infinity at an exponential rate.

Therefore .u.t/; h.t// ! .u1; h1/ in H 1
0 .˝/

n � W
4�4=p

p .˙/ as t ! 1, where the

equilibrium .u1; h1/ is determined by .u0; h0/.

Appendix A. Maximal Regularity for the Linear Stokes System

For the following let ˝C
0 , ˝ be bounded domains with C 3-boundary such that �0 WD @˝C

0 � ˝

and let ˝�
0 D ˝ n˝C

0 . Recall that H 1
.0/
.˝/ D H 1.˝/ \ L2;.0/.˝/ and H�1

.0/
.˝/ D H 1

.0/
.˝/.

In this appendix we consider the unique solvability of the system

@tu � �˙�uC rq D f in ˝˙
0 � .0; T /; (A1)

divu D g in ˝˙
0 � .0; T /; (A2)

ŒŒu�� D 0 on �0 � .0; T /; (A3)

ŒŒ��0
� T .u; q/�� D a on �0 � .0; T / DW �0;T ; (A4)

uj@˝0
D 0 on @˝0 � .0; T /; (A5)

ujtD0 D v0 on ˝0; (A6)

where T .u; q/ D �˙Du � qI in ˝˙
0 .

THEOREM A.1 Let 0 < T 6 T0 < 1, n > 2, and ˝ � R
n be a bounded domain

with C 3-boundary. For every v0 2 H 1
0 .˝/

n; f 2 L2.QT /
n; g 2 L2.0; T IH 1.˝ n �0// with

g 2 H 1.0; T IH�1
.0/
.˝//,

a 2 H
1
4

�
0; T IL2.�0/

�
\ L2

�
0; T IH

1
2 .�0/

�
DW H

1
4 ; 1

2 .�0;T /

such that

div v0 D gjtD0;

Z

˝

g.t; x/ dx D 0 for almost all t 2 .0; T / (A7)
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the system (A1)–(A6) has a unique solution

u 2 H 1.0; T IL2.˝/
n/ \L1.0; T IH 1

0 .˝/
n/ \L2.0; T IH 2.˝ n �0/

n/:

Moreover, there is some constant C independent of T 2 .0; T0�, u; f; g; a; v0 such that

k.@tu;ru/kL2.J IL2.˝// C
X

˙

k.r2u;rq/k
L2.J IL2.˝˙

0
//

6 Cq

�
k.f;rg/kL2.QT / C k@tgkL2.J IH �1

0
.˝// C kak

H
1
4

; 1
2 .�0;T /

C kv0kH 1.˝/

�

where J D Œ0; T �.

REMARK A.2 The result follows from a result announced by Shimizu [31], where a general Lq-

theory is discussed. In the case q D 2, the proof is much simpler since Hilbert-space methods are

available and the result basically follows from the resolvent estimate proved by Shibata and Shimizu

in [30]. For the convenience of the reader we include a proof.

Proof of Theorem A.1: First we consider the case g D a D v0 D 0. We can assume without loss

of generality that f 2 L2.0; T IL2;� .˝//. Otherwise we replace f by P�f and q by q�q1, where

rq1 D f � P�f . Then (A1)–(A6) are equivalent to the abstract evolution equation

d

dt
u.t/C Au.t/ D f .t/; t 2 .0; T /; (A8)

u.0/ D 0; (A9)

where AW D.A/ ! L2;� .˝/ with

Auj˝˙ D ��˙�uC rq

D.A/ D
n
u 2 H 1

0 .˝/
n \ L2;� .˝/ W r2uj

˝˙
0

2 L2.˝˙
0 /; ŒŒ2� � �˙Dv��� D 0

o

where q 2 L2;.0/.˝/ with rqj
˝˙

0

2 L2.˝
˙
0 /

n is uniquely defined by

�q D 0 in ˝˙
0 ;

ŒŒq�� D ŒŒ2�˙@�v� �� on �0;

@�qj@˝ D � � ���uj@˝ on @˝:

Because of [30, Theorem 1.1], A is a generator of an exponentially decaying analytic semi-group

and the graph norm kukD.A/ is equivalent to

kukH 1.˝/ C
X

˙

kr2uk
L2.˝˙

0
/
:

Since L2;� .˝/ is a Hilbert space, for every f 2 L2.0; T IL2;� / there is a unique u 2

H 1.0; T IL2;� / \ L2.0; T I D.A// solving (A8)–(A9) and


d

dt
u


L2.0;T IL2;� /

C kAukL2.0;T IL2;� / 6 Ckf kL2.0;T IL2;� /



72 H. ABELS AND M. WILKE

with some C > 0 independent of T 2 .0;1�. In the case T D 1 this statement follows from [9]

or [11, Theorem 4.4], part “(ii) implies (i)”, where we note that R-boundedness of an operator

family on a Hilbert space coincides with uniform boundedness, cf. [11, Section 3.1]. The case

T < 1 follows from the latter case by extending f W .0; T / ! H by zero to Qf W .0;1/ ! H . This

proves the theorem in the case g D a D v0 D 0.

The general case can be reduced to the latter case as follows: First we reduce to the case

.f; g; v0/j˝C
0

� 0. To this end let

vC 2 H 1
�
0; T IL2.˝

C
0 /

n
�

\ L2

�
0; T IH 2.˝C

0 /
n
�
; qC 2 L2

�
0; T IH 1.˝C

0 /
�

be the solution of

@tv
C � �C�vC C rqC D f j

˝
C
0

in ˝C
0 � .0; T /;

div vC D gj
˝

C
0

in ˝C
0 � .0; T /;

��0
� .2�CDvC � qC/ D 0 on �0 � .0; T /;

vCjtD0 D v0j
˝

C
0

in ˝C
0 :

The existence of such a vC follows from well known results for the instationary Stokes system with

Neumann boundary conditions, cf. e.g. [3]. Moreover, there is some constant C > 0 such that for

every 0 < T 6 1

.@tv
C;rvC;r2vC;rqC/


L2.J IL2.˝

C
0

//

6 Cq

�
k.f;rg/k

L2.J �˝
C
0

/
C k@tgk

L2.J IH �1.˝
C
0

//
C kv0k

H 1.˝
C
0

/

�
:

Now we extend vC and qC to some functions

QvC 2 L2

�
0; T IH 2.˝0/

�n
\H 1

�
0; T IL2.˝0/

�n
; QqC 2 L2

�
0; T IH 1.˝C

0 /
�

satisfying an analogous estimate as before. Now subtracting . QvC; QqC/ from .u; q/ we reduce to the

case .f; g; v0/j˝C
0

� 0. Next we observe that

gj˝�
0

2 H 1
�
0; T IH�1

.0/ .˝
�
0 /

�

because of Z

˝
C
0

g.x; t/'.x/ dx D

Z

˝0

g.x; t/ Q'.x/ dx

for every ' 2 H 1
.0/
.˝C

0 /, where Q' 2 H 1
.0/
.˝0/ is an arbitrary extension of ' to ˝0. Hence there

are some

v� 2 H 1
�
0; T IL2.˝

�
0 /

n
�

\ L2

�
0; T IH 2.˝�

0 /
n
�
; q� 2 L2

�
0; T IH 1.˝�

0 /
�

solving

@tv
� � ���v� C rq� D f j˝�

0
in ˝�

0 � .0; T /;

div v� D gj˝�
0

in ˝�
0 � .0; T /;

v� D 0 on �0 � .0; T /;

v�jtD0 D v0j˝�
0

in ˝�
0 :
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Existence of such a solution together with analogous estimates as for .vC; qC/ follows e.g. from

[3, 13, 16, 17, 34]. Now extending v� and q� by zero to ˝0 and subtracting the extensions from

.u; p/ we can reduce to the case .f; g; v0/ � 0.

In order to reduce to the case, where also a� � 0, we construct some A 2 H 1.0; T IL2.˝
C
0 //\

L2.0; T IH 2.˝C
0 // such that

.A; @tA;rA;r
2A/


L2.Q

C
T

/
6 Ckak

H
1
4

; 1
2 .�0;T /

and

AjtD0 D Aj�0
D 0; .��0

� 2�CDA/� j�0
D a� ; divA D 0 in ˝0:

This can be done as follows: Choose some

QA 2 H 1
�
0; T IL2.˝

C
0 /

n
�

\ L2

�
0; T IH 2.˝C

0 /
n
�

such that

k. QA; @t
QA;r QA;r2 QA/k

L2.˝
C
0

�.0;T //
6 Ckak

H
1
4

; 1
2 .�0;T /

and

QAj�0
D QAjtD0 D 0; .��0

� 2�CD QA/� j�0
D a� ; div QAj�0

D 0:

The existence of such an QA e.g. follows from [3, Lemma 2.4]. Moreover, C > 0 in the estimate

above can be chosen independently of 0 < T 6 T0 for any T0 > 0. Since div QAj�0
D 0,

div QA 2 H 1
0 .˝

C
0 / and we can apply the Bogovski operator B , cf. e.g. [14], to div QA. Then we

obtain B.div QA/ 2 L2.J IH 2
0 .˝

C
0 / \ L2

.0/
.˝C

0 // and

kB.div QA/k
L2.J IH 2.˝

C
0

//
6 Ck QAk

L2.J IH 2.˝
C
0

//
:

Moreover, due to [15, Theorem 2.5] we also have

kB.div QA/k
H 1.J IL2.˝

C
0

//
6 Ck div QAk

H 1.J IH �1
.0/

.˝
C
0

//
6 C 0k QAk

H 1.J IL2.˝
C
0

//
:

Since the Bogovski operator is independent of time, the latter constant can be chosen independently

of 0 < T 6 T0 for any T0 > 0. Altogether, we obtain that A WD QA � B.div QA/ has the properties

stated above. Replacing u by u � A�
˝

C
0

, we can finally reduce to the case v0 � g � a� � 0.

Finally, we can also reduce to the case a� � 0 by subtracting a suitable extension of a� from the

pressure q. �
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