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We present a density fitted local configuration interaction singles (CIS) method for calculating op-
tical bandgaps in 3D-periodic systems. We employ an Ewald technique to carry out infinite lattice
summations for the exciton-exciton interaction, and robust product-density specific local density fit-
ting in direct space for the electron-hole interaction. Moreover, we propose an alternative to the usual
cyclic model with Born-von Karman periodic boundary conditions, the so called Wigner-Seitz su-
percell truncated infinite model, which exhibits much improved convergence of the CIS excitation
energy with respect to the size of the supercell. Test calculations on a series of prototypical systems
demonstrate that the method at the present stage can be used to calculate the excitonic bandgaps of
3D periodic systems with up to a dozen atoms in the unit cell, ranging from wide-gap insulators to
semiconductors. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767775]

I. INTRODUCTION

Although the electronic bandgap is one of the most im-
portant characteristic properties of crystalline systems, its rig-
orous theoretical description is difficult. Time-dependent den-
sity functional theory (TD-DFT), which is one of the most
common techniques in molecular excited state studies, is
hardly applicable for periodic systems. One of the intrin-
sic problems of DFT, the self-interaction error, artificially
lowers the excitation energies of excited states with charge
transfer character. In infinite systems, this has extreme con-
sequences: the lowest non-hybrid TD-DFT excitation energy
is equal to the simple DFT highest occupied crystalline or-
bital (HOCO) - lowest unoccupied crystalline orbital (LUCO)
energy difference.1, 2 An approach to excited states in periodic
systems, based on the quasi-energy GW formalism,3, 4 is more
successful. It provides a first-order correction to the Kohn-
Sham orbital energies, and, if furthermore combined with
solving the quasi-particle Bethe-Salpeter equation, includes
the excitonic effects, i.e., the electron-hole attraction.4–10 Cal-
culations employing these methods are, however, computa-
tionally rather expensive.

The quantum chemical approach to the problem, i.e.,
starting from a configuration interaction singles (CIS) wave-
function and subsequently including correlation effects,
which has been very successfully applied in countless molec-
ular studies, is to a large extent unexplored for solids. Previous
work in this context includes 1D periodic implementations
of the uncorrelated CIS method,1 and correlation corrections
to it.11, 12 There are also examples of early applications of
approximate CIS or time-dependent Hartree-Fock (TD-HF)

a)Electronic mail: martin.schuetz@chemie.uni-regensburg.de.
b)Electronic mail: denis.usvyat@chemie.uni-regensburg.de.

techniques to simple 3D systems.1 Recently, also a 3D pe-
riodic semiempirical CIS implementation, based on the in-
termediate neglect of differential overlap approximation, has
been reported.13 There exists also a periodic implementation
of the algebraic diagrammatic construction scheme for the
self-energy in the canonical representation.14 An alternative
technique to evaluate the TD-HF excitation energies in peri-
odic systems has been developed in Ref. 15. It implies fitting
of the explicitly calculated values of the coupled perturbed
HF polarizability to a model function, inversely dependent on
frequency. The excitation energies are then evaluated as poles
of this model function.

Finally, finite cluster approaches to excited states of pe-
riodic systems, based on the incremental scheme,16 or other
fragment techniques, have been proposed.17–19 However, the
slow convergence with cluster size (depending on the charac-
ter of the excited state) and the existence of parasitic cluster
surface states render such approaches as not straightforward.

The goal of our work is to develop a hierarchy of peri-
odic quantum chemical excited state methods for solids. In
a previous paper20 (denoted in the following as Paper I), we
have presented formalism, implementation, and test applica-
tions of a periodic local density fitted CIS method for 1D pe-
riodic systems like polymers. In the present work, the sec-
ond paper in this series, the method is generalized to full
3D periodic systems (crystals). There are two fundamental
complications compared to the 1D case. First, the infinite lat-
tice sums occurring in the Coulomb part of the matrix-vector
product20 no longer converge. Second, the direct space den-
sity fitting approach based on a single common fit-domain,
as employed in the 1D case to calculate the exchange part
of the matrix-vector product becomes prohibitively expensive
for bulky systems. To remedy the first problem, the Coulomb
part is now calculated by employing an approach based on

0021-9606/2012/137(20)/204119/14/$30.00 © 2012 American Institute of Physics137, 204119-1
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an approximate Ewald potential function,21 using multipole
representations of the periodically repeated product densi-
ties beyond a certain distance. To fix the second problem a
product-density specific local density fitting scheme in direct
space with multiple different fit-domains is now used for the
exchange part. In order for the fit to be robust, i.e., to make
the fitting error in the integrals second-order with respect to
the fitting error in the individual orbital product densities, the
three-term formula for density fitting has to be used.

The paper is organized as follows: in Sec. II, we briefly
review the theory for periodic local CIS, and discuss the
cyclic, and the Wigner-Seitz supercell truncated infinite mod-
els (WSS-TIM). Then, the calculation of the Coulomb and ex-
change parts of the matrix-vector product via Ewald, and local
density fitting in direct space, respectively, are discussed. In
Sec. III, we briefly focus on some details of the implemen-
tation, relevant for accuracy and computational efficiency. In
Sec. IV, we present results from test calculations for different
crystals, ranging from wide-gap insulators to semiconductors.
The focus here is on the locality of the exciton in reciprocal
and direct space. Section V finally concludes the paper.

II. PERIODIC LOCAL CIS THEORY

In the present paper, we use the same convention for in-
dices as in Paper I: indices i, j, . . . and a, b, . . . denote Wannier
functions (WFs)22, 23 φi, φj, . . . and projected atomic orbitals
(PAOs)20, 24–26 φa, φb, . . . , respectively, or their Fourier im-
ages. WFs and PAOs are local orbitals spanning the occupied
and virtual spaces, respectively. For the corresponding canon-
ical orbitals indices with an overbar are used. Indices P, Q,
. . . denote auxiliary fitting functions φP, φQ, . . . and μ, ν,
. . . AOs φμ, φν , . . . . The calligraphic indices I, A, P , M,
. . . identify the lattice vectors RI , RA, RP , RM, . . . of the
cells, where the functions φiI , φaA, φPP , φμM, . . . , respec-
tively, are centered. Sums or differences between lattice vec-
tors are denoted by ⊕ and � symbols, respectively, applied
to the corresponding cell indices. Products of two orbitals are
called product densities and designated by the symbol ρ, e.g.,
ρμνN = φμφνN . The atoms, the PAOs φa, φb, . . . belong to,
are denoted as A, B, . . . . Vectors ki, ka, and kP are the wave-
vectors of the first Brillouin zone (BZ) (i.e., the so called k-
vectors or k-points) corresponding to the occupied, virtual, or
auxiliary functions. The chemical (Mulliken) notation is em-
ployed for the two-electron integrals.

The CIS wavefunction for a �-point exciton, as intro-
duced in Paper I, reads

��
exc =

∑
iaA

ci
aA

∑
I

�
a(A+I)
iI =

∑
īāk

cī
ā(k)�ā

ī
(k), (1)

where k is the translational symmetry index of both the occu-
pied and virtual canonical orbitals ī and ā (for the �-point ex-
citons they have to coincide (cf., Eq. (6) in Ref. 20). �

a(A+I)
iI

and �ā
ī
(k) are singly excited determinants in local and canon-

ical space, respectively.
The CIS eigenvalue problem is solved by means of

the Davidson diagonalization procedure,27 carried out in the
canonical (reciprocal) space. The refresh procedure is used for
the small Davidson subspace not to exceed a predefined max-

imal size. The standard first-order update for the trial vector,

(�c(n))īā(k) = − (Hc(n))ā
ī
(k) − ω

(n)
CIS(c(n))īā(k)

εā(k) − εī(k) − ω
(n)
CIS

, (2)

is used, with a subsequent orthogonalization to the previous-
iteration trial vectors of the small Davidson space and normal-
ization. Here, H stands for the CIS Hamiltonian, c(n) and ω

(n)
CIS

are the nth iteration CIS vector and excitation energy, respec-
tively, and the orbital energies at a certain k-point are denoted
by εī(k) and εā(k).

The matrix-vector products (Hc)ā
ī
(k) required to evalu-

ate the small Davidson space Hamiltonian matrix (Eq. (12) in
Ref. 20) and the residuum (here, c stands for a trial or full
CIS vector) are partially calculated in canonical and partially
in local space,

(Hc)ā
ī
(k) =(

εā(k) − εī(k)
)
cī
ā(k)

+ FT RA

{
2

∑
jJ bB

(i aA|jJ bB)cjJ
bB

−
∑
jJ bB

(i jJ |aA bB)cjJ
bB

}
, (3)

where FT RA denotes the Fourier transformation with respect
to the vector RA.

The two-electron part Vc of the CIS matrix-vector prod-
uct Hc = Fc + Vc consists of the so called Coulomb term
(which describes the exciton-exciton interaction and vanishes
for a triplet state)

(coulVc)aAi =
∑
jJ bB

(i aA|jJ bB)cjJ
bB (4)

and the exchange term (which describes the electron-hole at-
traction)

(exchVc)aAi =
∑
jJ bB

(i jJ |aA bB)cjJ
bB . (5)

These contractions are calculated with robust density fitting,
which factorizes the four-index electron repulsion integrals
(ERIs) into three- and two-index objects.28–35 Different decay
behaviour of the lattice summations in Eqs. (4) and (5) lead
to two principally different density fitting approaches. The
Coulomb term Eq. (4), involving long-range summations, is
fitted in the reciprocal space, while the relatively short-range
exchange term Eq. (5) (governed by the locality of the exci-
ton) is fitted in the direct space (vide infra).20

A. Cyclic model versus Wigner-Seitz supercell
truncated infinite model of a crystal

The cell index A in the direct representation of the
CIS coefficients ci

aA in Eq. (1) or the matrix-vector products
(Vc)aAi in Eq. (4) or (5) formally runs to infinity. For obvious
reasons, however, it is not possible to treat a crystal as an in-
finite object in practical calculations. Fortunately, locality of
the exciton can effectively truncate the essential range for this
index, which does not need to extend further than the exciton
to be captured.
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In Paper I, a cyclic model for a crystal, i.e., a finite model
with Born-von Karman periodic boundary conditions, was
considered. Such a model features a finite number of k-points
in the reciprocal space representation of the wavefunction (1),
equal to the number of unit cells A in the supercell of the
cyclic system.20, 36, 37 The transformations between the direct
and reciprocal spaces correspond in this case to the discrete
Fourier and inverse-Fourier transforms [e.g., in Eq. (3)]. The
convergence of the excitation energies with respect to the su-
percell size was explored in Paper I by increasing the super-
cell size, and, with that, the density of the k-mesh.

Yet, in the infinite model of a crystal the direct space rep-
resentation of, e.g., the CIS-coefficients are, in fact, the coeffi-
cients of an infinite Fourier-series expansion of the reciprocal
space CIS-coefficients ci

a(k). For fixed i and a the latter is a
continuous and periodic function of the variable k,

ci
a(k) =

∑
A

ci
aA exp(ık · RA). (6)

The Fourier-coefficients ci
aA in turn are defined as integrals

over the period in the k-space, i.e., the BZ,

ci
aA =

∫
BZ

dkci
a(k) exp(−ık · RA). (7)

The same holds for the matrix-vector products (Vc)ai (k).
Starting from this model, an approximation can be intro-

duced in Eq. (6), which restricts the number of the terms in the
Fourier series, without affecting the expression for the Fourier
coefficients (7). In practice, of course, the integration (7) has
to be performed numerically using a large, but finite number
of k-points. But importantly, the density of the k-mesh, used
for the integral quadrature, is now effectively decoupled from
the number of the direct space vectors used in the finite sum-
mation (6). The truncation of the Fourier series is done in our
approach by restricting the index A to a supercell, chosen in
the WS form. For each CIS coefficient ci

aA or matrix-vector
product (Vc)aAi , the origin of the WS supercell is chosen to
coincide with the centering point of the WF φi. With this def-
inition the most rapid convergence of the truncated Fourier
series to the untruncated result is expected, since for each
i the truncating surface, i.e., the border of the Wigner-Seitz
supercell, is as distant and as spherical-like as possible. Fur-
thermore, since the Wigner-Seitz supercell is invariant with
respect to the point group symmetry of the crystal, the sym-
metry of the exciton is not compromised by the truncation.
For future reference, we denote this model as the WSS-TIM
model of a crystal as an alternative to the cyclic model.

For the CIS method for polymers reported in Paper I very
large supercells could be used without a considerable penalty
in the computational time. Therefore, the number of unit cells
in the supercell was set to be equal to the number of k-vectors
in the mesh, i.e., the cyclic model was always employed. In
bulky systems, however, the situation is different. Expansion
of a 3D supercell is very costly due to the cubic increase
of the number of unit cells (and the ERIs to be computed)
with linear increase in the supercell size. Therefore, in our ap-
proach, where the computational demands for the reciprocal
space part of the calculation [Eqs. (2) and (3)] are negligi-
ble compared to that of the direct space (vide infra), at least

for small and medium sized unit cells, WSS-TIM is clearly
advantageous.

From the angle of WSS-TIM, the cyclic model for not
yet converged results suffers from two independent sources
of errors (i) the inaccurate quadrature for the k-point inte-
gration (7), and (ii) the truncation of the Fourier series (6).
The integration over the BZ (7) in our case can be performed
very accurately, employing very dense k-meshes, and hence,
eliminating one (and, as the calculations show, cf. Sec. IV C,
the main) of these two deficiencies. This substantially speeds
up the convergence of the results with respect to the A-
truncation range, which in WSS-TIM is the only remaining
approximation.

B. Density fitting for the Coulomb term

As was shown in Ref. 20, evaluation of the Coulomb term
Eq. (4) simplifies considerably within the reciprocal-space
density fitting procedure. The orthogonality relations for the
irreps of the translational symmetry group (represented by the
k-vectors) eliminate all but the kP = 0 term from the kP-
summation (integration) of the back-Fourier transform,20, 34, 38

yielding

(coulVc)aAi =
∑
P

(i aA|P )∗(kP =0)

∑
j bB′

d
j bB′
P (kP =0)c

j

bB′ , (8)

where (i aA|P )(kP ) and d
j bB′
P (kP ) are the Fourier images of the

three-index Coulomb integrals and density fitting coefficients,
respectively, and the vector B′ is defined as B � J . The DF
coefficients, which correspond to the minimum of the fitting
functional with the Coulomb metric, are evaluated also in the
reciprocal space20 as

d
j bB′
P (kP ) =

∑
Q

(j bB′|Q)(kP )([J(kP )]
−1)QP , (9)

whereas the three-index integrals are calculated in the direct
space and Fourier-transformed thereafter,

(i aA|P )(kP =0) =
∑
P

(i aA|PP). (10)

The same applies also to the two-index metric matrix, the in-
verse of which is occurring in Eq. (9); it is the reciprocal im-
age of the two-index Coulomb integral,

(J(kP =0))QP = (Q|P )(kP =0) =
∑
P

(Q|PP). (11)

As seen from Eqs. (10) and (11), evaluation of both the three-
index (i aA|P )(kP =0) and two-index (Q|P )(kP =0) reciprocal
images of the Coulomb integrals imply non-convergent infi-
nite lattice summations in the 3D case. This non-convergence
issue is not a feature of the reciprocal space density fitting for-
malism, but reflects the true physics of the Coulomb CIS term
(4), which indeed is of long-range nature.

Due to the mutual orthogonality of the occupied and vir-
tual spaces, the interacting iaA-product densities are charge-
less. This guarantees that the lattice sum (4) of the Coulomb
term is convergent, although only conditionally. s-type fitting
functions, on the other hand, are not chargeless, which would
lead to divergent summations (10) and (11). A remedy to
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this problem is the use of mixed auxiliary basis sets, contain-
ing Poisson-type-orbitals (PTOs), together with a few GTOs.
The use of PTOs as a fitting basis35, 39–41 allows for a stable
scheme, which does not involve any charge-multipole inter-
actions. The PTOs, which are Laplacians of standard GTOs,
are free of moments of any order. This property leads to an
exponential decay of the Coulomb integrals, and therefore to
a fast decay of the lattice sums (10) and (11). PTOs, however,
must be complemented by a few GTOs in order to fully repre-
sent real product densities, which are not momentless. It is, in
fact, sufficient to introduce just one GTO of each angular mo-
mentum per center. Since, as discussed above, iaA-product
densities are chargeless, the troublesome s-type GTOs are not
needed.

The convergence of the lattice sums involving GTO-
fitting functions (especially the p-GTOs) in 3D still remains
an issue. Note that the use of a combined PTO-GTO fitting
basis implies that for the main PTO-part of the fitting ba-
sis the lattice sums (10) and (11) converge exponentially.42

Nevertheless, for the smaller GTO-part of the fitting basis the
summations (10) and (11) converge either very slowly or even
only conditionally and thus convergence acceleration tech-
niques like the Ewald procedure are needed.

The value, to which a conditionally convergent series
converges, depends on the chosen order of summation. For
Coulomb lattice sums, this mathematical uncertainty in an in-
finite lattice reflects the strong dependence of the electrostatic
potential on the particular shape of a real finite crystal. The
Ewald-type summation of the conditionally convergent series
effectively corresponds to a specific choice of the summa-
tion order, each partial sum of which corresponds to zeroing
the charge, dipole, and quadrupole moments of the unit cell,
canceling thus the not absolutely convergent contributions.43

Formally, this is equivalent to a substitution of the condition-
ally convergent Coulomb potential [Eq. (18) of Ref. 21] by
an Ewald potential [Eqs. (43) and (44) of Ref. 21], which
consists of two absolutely convergent sums. The Ewald tech-
nique dates back to more than 90 years,44 and different for-
mulations of it have been proposed over the years.43 Here,
we adopt an implementation used in the CRYSTAL program to
compute the Coulomb part of the Fock matrix in HF or DFT
calculations.21, 45

In the present context, the Ewald procedure is utilized for
calculating the three-index integrals in the AO basis,

(μνN |P )(kP =0) =
∑
P

(μνN |PP)

=
∑
P

(μ(�P)ν(N � P)|P ). (12)

Evaluation of such an integral proceeds via three quantities,

(μνN |P )(kP =0) = Ew�P
μνN − δ�P

μνN ({P}pen)

+ δKP
μνN ({P}pen), (13)

which are defined in the following.

The first term Ew�P
μνN is the contribution originating

from the Ewald potential

Ew�μνN (r) =
∫

dr′ρμνN (r′)A(r′ − r), (14)

of an infinite lattice, generated by the periodic images of the
AO product densities ρμνN . Here, A(r) is the Ewald poten-
tial function, defined in Eq. (44) of Ref. 21, which consists
of two absolutely convergent series, one with respect to the
direct space vectors, the other with respect to the reciprocal
space vectors. The interaction between the lattice of the peri-
odically repeated densities ρμνN and the fitting function φP is
evaluated by invoking the multipole representation of the lat-
ter with the multipole moments ηml

P of the angular momentum
l and its projection m,

Ew�P
μνN = Ew�μνN (rP )

lmax∑
l=0

l∑
m=−l

Zml(rP )ηml
P (rP ). (15)

Here, rP is the position vector of the center of the fitting func-
tion φP, and Zml(r) denotes the renormalized solid harmonics,
corresponding to the angular momentum l and m (Eqs. (97)
and (98) of Ref. 21). The expression (15) utilizes the fact that
the fitting GTOs do not possess charge (vide supra), and thus
their spheropole21 is zero.

The second and third terms of (13) provide a correction
to the Ewald potential in the region around the fitting func-
tion φP, where it overlaps with the (periodically repeated)
densities ρμνN , rendering the multipole representation of the
former as invalid. This region (or cavity) is determined on
the basis of the overlap between the most diffuse Gaussians
of φμ(�P), φν(N�P), and φP as a subset {P}pen of P-vectors.
The densities ρμ(�P)ν(N�P) with P ∈ {P}pen hence can signif-
icantly penetrate the fitting functions φP. By default, a thresh-
old of 10−9 is used for the overlap criterion defining this cav-
ity. The quantities δ�P

μνN ({P}pen) and δKP
μνN ({P}pen) are cal-

culated within this cavity as

δ�P
μνN ({P}pen) =

∑
P∈{P}pen

[∫
dr

ρμνN (r)

|r − RP − rP |
]

×
lmax∑
l=0

l∑
m=−l

Zml(rP )ηml
P (rP ), (16)

and

δKP
μνN ({P}pen) =

∑
P∈{P}pen

(μ(�P)ν(N � P)|P )

=
∑

P∈{P}pen

(μνN |PP). (17)

The term (16) subtracts from the integral (15) the contri-
bution from the cavity {P}pen, treated at the point-multipole
level. This contribution is then recalculated explicitly in (17),
i.e., without the multipole approximation, and added to the
integral (μνN |P )(kP =0).

After calculating the three-index integrals (12) in AO
basis they are transformed to WF/PAO basis, yielding the
transformed three-index integrals of Eq. (10), as required in
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Eq. (8),

(iaA|P )(kP =0) =
∑
νN

Cν(N�A),a

∑
μM

CμM,i

× (μν(N � M)|P )(kP =0). (18)

Here, Cν(N�A),a = CνN ,aA and CμM,i are the LCAO coeffi-
cients of the WF φi, and the PAO φaA, respectively.

The two-index integrals (11) are treated analogously,
with the sole difference that instead of the orbital product
density ρμνN an auxiliary function φQ enters, and an AO to
MO transformation (18) is obviously not needed. To eval-
uate the objects Ew�P

μνN and δ�P
μνN ({P}pen) already exist-

ing CRYSTAL routines, adapted for the current purpose, are
employed.21, 46

C. Density fitting for the exchange term

The ERIs occurring in the Coulomb (4) and exchange (5)
terms are different. In the latter, the orbital product distribu-
tions of the ERIs generally are not chargeless. This, in turn, re-
quires s-type GTOs to be included in the fitting basis sets. The
reciprocal-space fit for such integrals then indeed becomes
problematic due to divergent lattice sums for three-index in-
tegrals involving s-GTO fitting functions. However, the actual
lattice summations of (5) do not go to infinity, but are effec-
tively truncated by the locality of the CIS coefficients. In our
approach, where the direct space images of the CIS vectors
are obtained by the back-Fourier-transform,20 their locality is
enforced by restricting the lattice vector RA to the Wigner-
Seitz supercell (cf. Sec. III). Since no long-range lattice sum-
mations are required, the local density-fitting scheme in direct
space is more appropriate for the exchange term.

In Paper I, a local-density fitting approach with a single,
common, and sufficiently large fit-domain D was employed,

(exchVc) =
∑
jJ bB

∑
PP∈D

d
ijJ
PP (PP|aAbB)cjJ

bB , (19)

with the DF-coefficients

d
ijJ
PP =

∑
QQ∈D

(i jJ |QQ)([JD]−1)QQPP . (20)

Here, JD
QQPP is defined as the two-index Coulomb metric ma-

trix within the fit-domain D, i.e., (PP|QQ)
∣∣
(PP,QQ)∈D

. Such
an approach has certain advantages: (i) robust fitting47, 48 is
achieved with just the one- rather than the three-term formula
(two of the terms in the latter cancel); (ii) only one inversion
of the metric matrix in Eq. (20) needs to be computed, and (iii)
its implementation, even when exploiting translational sym-
metry, is not too complicated. On the other hand, the com-
mon fit-domain D must be large enough to support all possi-
ble ijJ - or aAbB orbital product distributions in the ERIs of
Eq. (5). Consequently, D needs to be somewhat larger (due to
B) than the whole Wigner-Seitz supercell, to which the index
A is restricted (vide infra). For the 1D polymers this is not
problematic, but for 2D slabs, and especially 3D crystals, D
would become prohibitively large.

To solve this problem, we have implemented a robust
three-term local density fitting scheme with product-density-

specific fit-domains, i.e.,

(exchVc)aAi =
∑
jJ bB

∑
PP∈[ijJ ]

d
ijJ
PP (PP|aAbB)cjJ

bB

+
∑
jJ bB

∑
PP∈[aAbB]

(ijJ |PP)daAbB
PP c

jJ
bB

−
∑
jJ bB

∑
PP∈[ijJ ]

∑
QQ∈[aAbB]

d
ijJ
PP (PP|QQ)daAbB

QQ c
jJ
bB ,

(21)

with the two-internal DF coefficients

d
ijJ
PP =

∑
QQ∈[ijJ ]

(i jJ |QQ)([J [ijJ ]]−1)QQPP (22)

and the two-external DF coefficients

daAbB
PP =

∑
QQ∈[aAbB]

(aA bB|QQ)([J [aAbB]]−1)QQPP . (23)

In Eqs. (21)–(23), the summations over auxiliary functions
and the dimensions of the metric matrices are restricted to
ijJ - or aAbB-density specific fit-domains, denoted as [ijJ ],
or [aAbB], respectively. The (multiple) metric matrices to
be inverted (for each ijJ - and aAbB-density) thus are quite
small. As demonstrated below in Sec. IV high accuracy in the
fit is already achieved with just a few atoms per fit domain.

By exploiting the translational symmetry the above ex-
pressions simplify. For example, the expression for the two-
external DF coefficients (23) can be rewritten as

dabB′′
PP ′′ =

∑
QQ′′∈[abB′′]

(a bB′′|QQ′′)([J [abB′′]]−1)QQ′′PP ′′ , (24)

with B′′ = B � A, P ′′ = P � A, and Q′′ = Q � A.
The first and the second term of Eq. (21) can be treated

similarly. The first term then reads as

∑
jJ bB

∑
PP∈[ijJ ]

d
ijJ
PP (PP|aAbB)cjJ

bB

=
∑

PP∈[ijJ ]

∑
jJ

d
i jJ
PP

∑
bB′

c
j

bB′

× (P (P � A)|a b(B′ � A ⊕ J )) (25)

with B′ = B � J . The second term can be recast as

∑
jJ bB

∑
PP∈[aAbB]

(ijJ |PP)daAbB
PP c

jJ
bB

=
∑

PP ′′∈[abB′′]

∑
jJ

(ijJ |P (P ′′ ⊕ A))

×
∑
bB′′

dabB′′
PP ′′ c

j

b(B′′⊕A�J ). (26)
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Finally, the third term of Eq. (21) can be rewritten as
∑
jJ bB

∑
PP∈[ijJ ]

∑
QQ∈[aAbB]

d
ijJ
PP (PP|QQ)daAbB

QQ c
jJ
bB

=
∑
jJ

∑
PP∈[ijJ ]

d
i jJ
PP

∑
bB′′

c
j

b(B′′⊕A�J )

×
∑

QQ′′∈[abB′′]

(P (P � A)|QQ′′)dabB′′
QQ′′ . (27)

The contraction of the two-index integrals (P (P � A)|QQ′′)
with the two-external DF coefficients dabB′′

QQ′′ in Eq. (27) leads
to an object which has exactly the same structure as the two-
external integrals (P (P � A)|a b(B′ � A ⊕ J )) of the first
term, Eq. (25) (note that B′ � A ⊕ J = B′′). Since the re-
maining contractions are identical for the first and the third
term, this object can simply be added to the two-external in-
tegrals of the first term, calculating first and third term contri-
butions to (exchVc)aAi in one sweep.

Similar to the Coulomb term, the four-index integrals of
Eq. (5) are never assembled (this would nominally scale as
O(N 5)). Instead, the CIS coefficients are first contracted with
the two-external three-index integrals [first term, Eq. (25)] or
DF coefficients [second term, Eq. (26)]. The results of these
contractions are directly assembled to the Vc matrix-vector
products. Both procedures have a nominal scaling of O(N 4).

Evidently, only translationally irreducible sets of three-
or two-index objects (i.e., those with the first index belonging
to the reference cell) are to be evaluated and explicitly kept.
However, these objects are to be correctly translated in the
contractions, which leads to a somewhat complicated book-
keeping. Furthermore, note that the calculation of the fitting
coefficients Eq. (24) does not involve any translations by RA.
On the other hand, for the assembly of the matrix-vector prod-
uct (exchVc)aAi such translation vectors do occur in the two-
external, and two-internal integrals of Eqs. (25) and (26), re-
spectively. This implies that these integral distributions, pri-
marily the two-external one, are rather large, since RA runs
over the whole Wigner-Seitz supercell (vide infra).

III. IMPLEMENTATION REMARKS

First of all, we note that in the direct space part of the cal-
culations the translational symmetry is fully exploited (point
group symmetry is not yet utilized). This implies that only
translationally irreducible direct-space objects, where the first
index is restricted to the zero cell, are computed, stored, or
read from disk. In contractions involving objects with the
first index outside the zero cell, their translationally equiva-
lent counterparts are found and processed instead.

As discussed in Sec. II C, the three-term density fitting
scheme used for calculating the exchange term, employs lo-
cal fit-domains [ijJ ] and [abB′′], specific for each product-
density ρijJ and ρabB′′ . The fit-domains represent a set of fit-
ting functions, centered on several atoms, such that they pro-
vide sufficient support for the densities to be fitted. The fit
domains are constructed by using a similar technique as pro-
posed in Ref. 35: for a WF-pair φiφjJ , or a pair of PAO-atoms
ABB′′ a quasi-population q

ijJ
DD , or qABB′′

DD of the associated

product densities on an atom DD is defined as

q
ijJ
DD =

∑
μM∈DD

[1 + P (i, jJ )]

(
CμMi

∑
νN∈DD

SμMνNCνN jJ

)2

(28)

or

qABB′′
DD =

∑
a∈A

∑
b∈BB′′

∑
μM∈DD

[1 + P (a, bB′′)]

×
(

CμM,a

∑
νN∈DD

SμMνNCνN ,bB′′

)2

, (29)

respectively. Here, CνN ,jJ and CνN ,bB′′ are the LCAO coef-
ficients of the WF jJ and PAO bB′′, respectively, S is the
AO overlap matrix, and P is an index permutation operator.
Each fit-domain comprises a predefined number ND of atoms
DD with the highest populations qDD. For all PAO pairs abB′′

belonging to a common pair of atoms ABB′′, the same fit-
domains [ABB′′] are used. As is shown in Sec. IV, the re-
sulting fit domains are very compact; already with a very
low number of atoms ND per fit domain a very accurate fit
is achieved.

The ERIs (ijJ |P (P ′′ ⊕ A)), and (abB′′|P (P � A)) in
Eqs. (25) and (26) become very small for large RJ , and RB′′ ,
respectively, due to the spatial locality of the WFs and PAOs
in the respective orbital product densities. The ranges of the
cell indices J and B′′ hence can effectively be prescreened
on the basis of the quasi-populations defined in Eqs. (28) and
(29). In our implementation, the ERIs are evaluated and trans-
formed only for those J and B′′-cells, for which

max
(DD ij )

q
ijJ
DD > T J , and max

(DDAB)
qABB′′

DD > T B′′
, (30)

where T J and T B′′
are appropriate thresholds. It turns out that

the convergence of the resulting excitation energies with re-
spect to T B′′

is relatively slow, despite reasonably good local-
ization of the PAOs. Therefore, in order to reach meV conver-
gence in the CIS excitation energies several spheres of lattice
vectors B′′ need to be included.

The ranges of the fitting functions PP and PP ′′ in the
fitting coefficients d

ijJ
PP and dabB′′

PP ′′ are restricted to the corre-
sponding fit-domains, i.e., PP ∈ [ijJ ] and PP ′′ ∈ [abB′′],
and thus are relatively small and close to the zeroth unit cell.
In particular, the dependence on RA drops out, on going from
Eq. (23) to Eq. (24). This, however, is not the case for the
three-index ERIs, which are contracted with these coefficients
in Eqs. (25) and (26). Here, the dependence on RA remains,
and the ranges of the fitting functions are substantially ex-
tended due to addition of all possible RA vectors. These RA
appear in the final matrix-vector product (Hc)aAi , and thus in
the residual vector; the A range hence reflects the locality of
the exciton.

The B′′ and A ranges thus are the two critical parameters
influencing the size of the (abB′′|P (P � A)) integral distri-
bution. Calculation (transformation), storage, and reading of
these ERIs presently constitutes the computational bottleneck
in terms of central processing unit (CPU) time, input/output,
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memory, and disk resources. The transformation of the three-
index ERIs from AO to PAO basis is done similarly as for the
(iaA|PP) ERIs used for local second-order Møller-Plesset
perturbation theory (LMP2).31 However, since there are sub-
stantially more PAOs per cell than WFs, and since the for-
mer are usually less localized, the number of half-transformed
ERIs is much larger in the present, than in the LMP2 case.
Therefore, an efficient transformation procedure requires a lot
of memory, and, in addition, special paging techniques.

As is explained in Sec. II A, the range for the A-cells
is restricted to the WS supercell. Moreover, each WF φi pos-
sesses its own WS supercell, hence, its own A range. Since the
ERIs (abB′′|P (P � A)) appearing in Eq. (25) do not explic-
itly refer to index i, the index A here is element of the union
of all WS supercells belonging to different i. Yet, because all
i are restricted to the zero cell the union of all WS supercells
belonging to different i is not much larger than the individual
Wigner-Seitz supercells themselves. The implications on the
size of this integral set thus are not excessive.

IV. CALCULATIONS AND DISCUSSION

The method as described above has been applied to sev-
eral 3D test systems ranging from wide-gap insulators to
semiconductors. These comprise crystals with different types
of bonding, i.e., hydrogen bonded orthorhombic ice, the ionic
crystals LiH, MgO, and LiF, and the covalent crystals dia-
mond, SiC, and Si. Double zeta quality basis sets are uti-
lized in this work, which are derived from the corresponding
molecular cc-pVDZ basis sets49, 50 or taken from some pre-
vious periodic studies.51, 52 Detailed structural and basis set
descriptions are provided as supplementary material.53

A. Convergence with respect to the parameters
of the computational scheme

Density fitting with a common, sufficiently large fit-
domain, used for all orbital product densities to be fitted, has
been employed in Paper I for the 1D case. There, it was shown
that a sufficiently high accuracy of the fitting was achieved
already with a small fitting basis set, e.g., a GTO cc-pVDZ
DF-MP2 fitting basis54 converted into the mixed cc-pVDZ
GTO/PTO basis35 for a DZ+P AO basis set. The same holds
true also for the 3D case based on our local fitting scheme
with much smaller, density-specific fit domains and the robust
three-term formula (vide supra): e.g., for a CIS calculation on
the LiF crystal in a DZ+P AO basis, extending the fitting ba-
sis set from VDZ to VTZ quality affects the excitation ener-
gies only in the sub-microhartree range. As is evident from
Table I, the resulting excitation energies are very insensitive
with respect to the fit-domain size (already a very few atoms
in the fit domain suffice for microhartree-accuracy). A default
threshold of 6 atoms appears as a very conservative choice,
and has been employed in all further calculations. Additional
atoms are added to these domains for particular densities, if
dictated by their symmetry. Interestingly, for the density-fitted
periodic LMP2 method, based on local density fitting, micro-

TABLE I. Singlet and triplet CIS excitation energies depending on the fit
domain size. The given domain sizes are the minimal domain sizes plus sym-
metry related atoms. The energies for LiF and MgO are calculated with a 5 ×
5 × 5 and 6 × 6 × 6 cells in the WS supercell, respectively, and a threshold
T B′′ = 10−5.

ωS (eV) ωT (eV)

Domain size MgO LiF MgO LiF

2 11.9208 15.8371 11.2565 15.1146
4 11.9209 15.8371 11.2566 15.1144
6 11.9209 15.8371 11.2567 15.1143
8 11.9209 15.8370 11.2567 15.1142
12 11.9210 15.8371 11.2567 15.1142

hartree accuracy in the correlation energy is only achieved
when using somewhat larger fit-domains.35

Other important parameters of the current scheme are
the thresholds T J and T B′′

defining the ranges for the three-
index integrals to be evaluated and processed according to
the spatial proximity of WF φi to WF φjJ or PAO φa to
PAO φbB, respectively (see Sec. III). The two-internal ERIs
(ijJ |P (P ′′ ⊕ A)) are relatively inexpensive and not numer-
ous, and therefore can be calculated with tight T J without too
much effort. Moreover, the results turned out to be insensitive
with respect to this threshold. In all reported calculations, a
value of T J = 10−5 was used.

Yet for the two external ERIs (abB′′|P (P � A)) the situ-
ation is different: tightening the T B′′

-threshold noticeably in-
creases the size of this integral distribution, making the calcu-
lation considerably more expensive. Unfortunately, as shown
in Table II, the convergence of the excitation energies with re-
spect to this threshold is relatively slow: with T B′′ = 10−4 the
error can still be as large as 0.1 eV. A similar behaviour was
observed also for other test systems (SiC, Si, LiH). Thus, a
rather conservative value of T B′′ = 10−5 has been employed
in the subsequent calculations. Compared to T B′′ = 10−4 this
implies on average an increase in the computing time by about
40%, but the error reduces to a few hundredths of an eV.

B. Localization of the CIS coefficients

The physical nature of an exciton manifests itself (i)
in the localization of the CIS coefficients in the reciprocal-
space canonical representation with respect to the band and

TABLE II. Singlet and triplet CIS excitation energies of MgO and LiF (cal-
culated with 6 × 6 × 6 and 5 × 5 × 5 cells in the WS supercell, respectively)
for different values of the threshold T B′′

.

ωS (eV) ωT (eV)

T B′′
MgO LiF MgO LiF

10−2 12.3243 15.9471 11.6740 15.2305
10−3 12.1917 15.9249 11.5163 15.1960
10−4 11.9785 15.8476 11.3068 15.1229
10−5 11.9209 15.8371 11.2567 15.1143
10−6 11.8781 15.8345 11.2176 15.1117
10−7 11.8687 15.8344 11.2101 15.1117
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k-vector indices, and (ii) in their spatial localization in the
direct-space representation. These characteristics influence
various physical properties, as well as the computational ef-
fort needed to correctly evaluate the corresponding excitation
energies.

1. Localization in reciprocal space

The relative contributions of the squared CIS coefficients
related to different bands (summed over the k-points), of the
CIS wavefunctions calculated for the SiC and MgO crystals,
are shown in Fig. 1. Since the lowest excited states in these
systems are degenerate (triply degenerate in MgO, and dou-
bly in SiC) the contributions are averaged over these states. It
is seen that for the lowest excited states the major contribu-
tion comes from the LUCO-band, while the other unoccupied
bands virtually do not contribute. Indeed, exclusion of all the
virtual bands apart from the LUCO-band affects the CIS ex-
citation energy only marginally, i.e., it increases by only 0.5
eV in MgO, and by 0.6 eV in SiC.

A modification of the AO basis set itself, on the other
hand, has a much larger impact on the resulting energies: as
was shown in Ref. 55 for the case of the MgO crystal, a varia-
tion of the exponent of only one sp-shell of the AOs centered
on the Mg atoms reduces the excitation energy by nearly 2 eV.
This originates from the fact that the standard basis sets, opti-
mized for the ground state, are suboptimal for excited states,
which leads to an unbalanced description of ground and ex-
cited states, and thus to a substantial overestimation of the
excitation energies. In molecular calculations, this problem is

usually alleviated by augmenting the basis set with diffuse
functions, which in many cases returns the desired balance,
although Rydberg states are often overcorrected.

For solids, due to linear dependencies, diffuse orbitals are
difficult to process, and, furthermore, hardly useful in 3D-
packed systems.55, 56 This is quite a general issue for AO-
based calculations of excited states, asking, in our view, for
considerable attention in the future.

The limited size of the virtual space required for a
proper description of the lowest CIS state, as illustrated in
Fig. 1, unfortunately cannot straightforwardly be exploited
in our scheme, since a truncation of the virtual space in
reciprocal space to specific bands does not translate to a
corresponding truncation of the PAOs in direct space. Pos-
sibly, the virtual space could be represented by a limited
number of specially constructed Wannier functions, designed
to reproduce the low-lying virtual bands as accurately as
possible,57–59 yet this was not tried in the present work. The
CIS method presented here is meant as an integral part of a
higher-order correlated treatment, which in turn will demand
a rich virtual space to properly describe electron correlation
effects.

The canonical CIS coefficients, as displayed in Fig. 2,
are also localized with respect to the k-vectors within the re-
spective band, yet not as pronounced as with respect to the
band index. The CIS coefficients of the lowest energy exci-
tons of MgO tend to localize around the �-point, while those
of SiC around the X-point of the BZ, which in both cases cor-
relates with the position of HOCO-LUCO energy difference
minimum.
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FIG. 1. The CIS coefficients in canonical space. The columns show a HOCO-band−n to a LUCO-band+m (m, n = 0, 1, 2, 3) contribution to the squares of the
CIS coefficient of the singlet state (summed over all k-points) �n

m = ∑
k |cHOCO−n

LUCO+m(k)|2. The contributions are averaged over the 3 and 2 degenerate excitonic
states in (a) MgO and (b) SiC, respectively.
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FIG. 2. HOCO-LUCO contribution to the CIS wavefunction, |cHOCO
LUCO (k)|2, of (a) MgO and (b) SiC and corresponding HF HOCO-LUCO differences. In the

case of MgO different k-meshes are taken.

The degeneracy of the HOCO of MgO at the �-point
is 3, while the related LUCO is not degenerate. Therefore,
the orbital energies of the HOCO, HOCO-1, and HOCO-2
bands around the �-point are quite close, implying that the
weights of the determinants related to these orbitals are simi-
lar. This explains why in Fig. 1 the excitations from the three
uppermost occupied bands of MgO have similar weight in the
CIS wavefunction. The bands HOCO-3 and LUCO+1, on the
other hand, are energetically well separated from HOCO and
LUCO, respectively, within this region of the BZ. Hence, the
weights of the determinants related to these bands are much
smaller compared to the weights related to excitations from
HOCO, HOCO-1, or HOCO-2 to LUCO.

A similar situation occurs for the SiC crystal, with the
sole difference that the essential contributions come from
k-vectors in the vicinity of the X-point. The HOCO state
is doubly degenerate there, while the LUCO state is again
non-degenerate. Therefore, only excitations from HOCO and
HOCO-1 to LUCO are mainly involved in building the CIS
wavefunction related to the lowest state.

The better the localization of the CIS coefficients in the
k-space is, i.e., the less smooth these coefficients as a func-
tion of k are, the denser a uniform k-grid has to be chosen
for the numerical quadrature over the BZ (cf. Sec. III for a
detailed discussion). The degree of localization of the CIS co-
efficients in the k-space (non-smoothness as a function of k)
relates conversely to their localization in direct space, which
in turn is related to the electron-hole attraction. It thus pro-
vides a measure for the nature of the exciton. Moreover, the
localization of the CIS coefficients in direct space determines

to large extent the computational resources needed to perform
the calculation. Indeed, in order to obtain a converged value
for the excitation energy the Wigner-Seitz supercell truncat-
ing the RA vectors must be chosen large enough that it covers
all non-negligible CIS coefficients ci

aA, making delocalized
excitons more difficult to treat.

2. Localization in direct space

Figure 3 displays a histogram of the maximal CIS coeffi-
cients maxia|ci

aA| for different distances between a WF and a
PAO. Evidently, the localization of the exciton correlates with
the value for the bandgap (cf. Sec. IV D). Among the systems
considered here, the most localized exciton is observed for the
wide-gap insulator LiF, while the localization of the exciton
in the semiconductor Si is the weakest. Interestingly, despite
a lesser localization of the exciton in Si relative to that in di-
amond in terms of the absolute distance; both excitons have
very similar localization in terms of the number of unit cells to
be included in the Wigner-Seitz supercell. The computational
cost hence is similar for both systems. For all exemplary sys-
tems ranging from wide-gap insulators to semiconductors, the
lowest-energy excitons are all reasonably well localized, such
that they can be treated with the proposed approach.

3. Reciprocal space vs. direct space localization

In Subsections IV B 1 and IV B 2, it was shown that
the character of the (lowest) excited CIS states implies both
localization in direct (position vector) and reciprocal (energy)
spaces. Here, we discuss the origins of this localization.
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In atoms or small molecules, excited states possess ei-
ther Rydberg or local character. In the former case, the excited
electron is very delocalized and moves in a field of a point-like
positive ion, while in the latter case the excited state density is
more or less localized around the atom or the small molecule.
The CIS description includes the zeroth-order orbital energy
differences, the first-order interaction between the electron-
hole dipoles (the Coulomb term, which is usually destabiliz-
ing, but small), and the attractive interaction between the ex-
cited electron and its hole (the exchange term). For locally
excited states on the one hand, the electron-hole attraction is
sizable since the excited electron is spatially close to the hole.
On the other hand, for Rydberg states the excited electron is
farther away from the hole, and the attractive excitonic attrac-
tion is much lower. At the same time, Rydberg states, which
predominantly involve diffuse virtuals, benefit from lower or-
bital energy differences in the zeroth-order term.

Inclusion of electron correlation on top of CIS obviously
corrects the description of the excited state. However, the ef-
fects of screening of the excited electron from its hole by other
electrons (which is a correlation effect) is not strong in neither
of these two cases, particularly not for Rydberg states. Nev-
ertheless, usually the overall correlation effects in the excited
state exceed those in the ground state, and consequently, the
uncorrelated CIS treatment then overestimates the excitation
energy. Yet in certain cases the excited state correlation en-
ergy happens to be of a similar or even smaller magnitude
than that of the ground state. In such cases, the CIS method
benefits from an effective error compensation and either deliv-
ers quite accurate excitation energies (cf., e.g., the low-lying
Rydberg states of ethylene60), or even underestimates the ex-
citation energy (cf., e.g., the lowest triplet state of ethylene60).

Let us now consider a crystal formed from atoms or small
molecules. Rydberg states obviously do not occur in such an
infinite bulk structure. Bloch waves of locally excited states
of the individual molecules, on the other hand, do exist in the
crystal. For such a local state the electron-hole attraction is
expected to remain rather large, i.e., of about the magnitude
as in the isolated molecule. However, the zeroth-order orbital
energy difference contribution in a crystal requires some con-
sideration: when individual molecules condense to a periodic
structure the molecular energy levels transform into bands,
whose widths depend on the strength of the interaction be-

tween the individual molecules. Localization of an exciton
in direct space necessitates delocalization in the reciprocal
space, implying that not minimal orbital energy differences
throughout the highest valence and lowest conduction bands
constitute a fairly large destabilizing contribution to the ex-
citation energy. In other words, a large attractive excitonic
effect implies a large destabilizing zeroth-order contribution
and, vice versa, a minimal zeroth-order contribution the com-
plete loss of any attractive excitonic effect. Consequently, the
variational principle tries to find an optimal compromise be-
tween the two counteracting contributions. In doing so, the
localization in the direct space is partially sacrificed in order
to concentrate the exciton in the reciprocal space around k-
points with minimal difference between HOCO and LUCO
bands.

This is illustrated by a calculation on the ice crystal,
where the converged CIS coefficients of a molecular calcu-
lation (for technical reasons we had to use a water tetramer
rather than a single water molecule) are used as the starting
guess for a periodic CIS calculation on ice (cf. Table III). Ev-
idently, in the zeroth iteration of the periodic CIS calculation
the Coulomb and exchange terms (the latter reflecting the at-
tractive excitonic effect) are very similar to the corresponding
values in the molecular calculation, whereas the zeroth-order
orbital energy difference contribution is much larger (25.2
rather than 20.3 eV). In the course of the iterations of the

TABLE III. The HOCO-LUCO (HOMO-LUMO) energy and CIS lowest
singlet excitation energy, partitioned in the orbital-energy-difference (Fock),
Coulomb and exchange contributions for (i) a cluster of four water molecules
cut from the ice crystal, (ii) the ice crystal with the converged four-molecule
cluster CIS solution, and (iii) the ice crystal with the converged periodic CIS
solution. The energies are given in eV.

Solid

Four-molecule Cluster CIS Periodic CIS
cluster solution solution

HOMO-LUMO/HOCO-LUCO 17.51 17.75
CIS 9.60 14.81 12.18
Fock (cFc) 20.30 25.15 21.32
Coulomb (ccoulVc) 0.87 0.80 0.52
Exchange (cexchVc) − 11.57 − 11.14 − 9.66
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periodic CIS calculation, the zeroth-order contribution re-
duces to 21.3 eV, at the price of increasing the excitonic con-
tribution from −11.1 to −9.7 eV. Notably, the lowest CIS state
of the molecular calculation (which cannot be a Rydberg state
since no diffuse basis functions were included in this calcula-
tion) is actually lower than that of ice.

Such a reduced direct space localization of the exciton as
it occurs in the crystal is actually reminiscent of intramolecu-
lar charge transfer states in large molecules. Since the excited
electron is on average localized at a certain distance from its
hole, the other electrons effectively screen the electron-hole
attraction. Such a screening (which is absent or very small
in local or Rydberg states) is a pure correlation effect and
not included in the CIS description. It eases delocalization of
the exciton, thus lowering the exciton energy for such states.
For charge transfer states in large molecules, CIS is known to
overestimate the excitation energy, in some cases quite sub-
stantially, in agreement with the analysis outlined here. In
solids, where screening effects are considerably stronger due
to the 3D dimensionality,61 the overestimation of CIS is ex-
pected to be even larger.

C. Convergence with respect to reciprocal space
sampling and Wigner-Seitz supercell size

In Sec. II A, two finite models of a crystal, namely,
the cyclic model20, 36, 37 and WSS-TIM were discussed. Here,
we investigate the convergence of the excitation energies
with respect to the truncation parameter within both models.
Figure 4 displays, for the cases of the MgO and SiC crystals,

the calculated excitation energies as a function of the Wigner-
Seitz supercell, (i) for the cyclic model, and (ii) for the WSS-
TIM with a very dense k-mesh (15 × 15 × 15, and 16
× 16 × 16 for SiC and MgO, respectively). Evidently, for the
WSS-TIM the convergence of the excitation energies to the
infinite crystal values is much better than for the pure cyclic
model. Already for a Wigner-Seitz supercell corresponding
to k-meshes of modest density (7 × 7 × 7 for SiC and 5
× 5 × 5 for MgO) the resulting excitation energies are essen-
tially converged. The error of the cyclic model thus originates
mainly from an inadequate quadrature over the BZ. Increasing
the density of the k-mesh is, as already stated above, compu-
tationally inexpensive, but significantly improves the quality
of the calculation. At the same time, due to spatial localiza-
tion of the CIS coefficients ci

aA in direct space (cf. Fig. 3),
restricting them [and their matrix-vector products (Hc)aAi ] to
a finite Wigner-Seitz supercell, i.e., truncating RA, causes a
much smaller error.

The importance of the improved BZ quadrature is also
illustrated by Fig. 2 showing the locality of the (most impor-
tant) HOCO-LUCO contribution to the CIS vector in the BZ:
apparently only 163 k-points provide sufficient support to ac-
curately describe it along the L-�-X direction.

D. Comparison to experiment

Table IV compares the lowest CIS excitation energies
to the corresponding experimental values of our set of test
systems. The used threshold of T B′′ = 10−5 (cf. Secs. III
and IV A), as well as the obtained value for the norm of the
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FIG. 4. Singlet state excitation energies of (a) SiC and (b) MgO as a function of the number of unit cells included in the direct space description of the exciton.
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TABLE IV. Experimental direct optical and fundamental bandgaps, vertical Hartree-Fock HOCO-LUCO differ-
ences (EHF

g ), �-point CIS excitation energies for the lowest singlet and triplet states and corresponding norms of
the CIS vector in direct space.20 The energies are given in eV.

Singlet Triplet

System Exp. (optical) Exp. (fundamental) EHF
g ω Norm ω Norm

LiH 4.9a,5.0b – 12.82 7.68 0.9993 7.13 0.9997
Ice 8.6c 10.9c 18.28 12.18 0.9999 11.42 1.0000
Diamond 6.4d,e, 7.2e,f 6.5d, 7.3f 14.65 11.72 0.9916 10.34 0.9981
MgO 7.7g, 7.6h 7.8g, 8.7h 16.29 11.94 0.9993 11.27 0.9997
LiF 12.6i 13.6i, 14.2j 22.40 15.84 1.0000 15.12 1.0000
SiC 6.0e,k, 7.0e,f 6.0k, 7.0f 13.80 9.74 0.9957 9.29 0.9967
Si 4.2d,e, 3.5e,f 4.2d, 3.5f 8.43 6.05 0.9886 5.62 0.9917

aReference 64.
bReference 65.
cReference 66.
dReference 67.
eEstimated on the basis of the indirect exciton binding energy.
fReference 68.
gReference 69.
hReference 70.
iReference 71.
jReference 72.
kReference 73.

exciton in direct space representation (cf. Paper I) suggest,
that the values for the CIS excitation energies are converged
up to a few hundredths of an eV with respect to the size of the
Wigner-Seitz supercell and the T B′′

threshold.
There is a certain scatter in the experimental values re-

ported in the literature (by more than 1 eV). Furthermore,
for indirect bandgap systems (in our case C, Si, and SiC), we
were not able to find experimental values for the direct optical
bandgaps, which correspond to �-point excitons. The values
of the experimental optical bandgaps given in Table IV for
these three systems are obtained by subtracting the indirect
exciton binding energies (which are for these crystals in fact
very small) from the direct fundamental bandgaps.

In any case, it is evident, that the CIS method grossly
overestimates the experimental excitation energies. The
largest error of about 5 eV was observed for diamond. This is
in accord with the TD-HF results of Ref. 15. In molecular cal-
culations, the errors of the CIS method usually do not exceed
1-2 eV, at least for the lowest valence states without charge-
transfer character. There are two possible origins of the larger
discrepancy for solids, as observed in our calculations.

First of all, the CIS description lacks dynamical electron
correlation effects. As is discussed in Sec. IV B 3, in solids the
excited states are relatively delocalized and resemble molec-
ular charge-transfer rather than local or Rydberg states. The
CIS error due to the neglect of screening in charge-transfer
excited states is usually quite significant in molecules, and in
3D crystals it is expected to be even larger. The main rea-
son is the inadequate zeroth order description of the funda-
mental bandgap in terms of the uncorrelated Hartree-Fock
HOCO-LUCO orbital energy difference. Also the excitonic
effect is considerably overestimated by CIS due to the lack
of screening, but this helps to some extent to counterbalance
the much too large zeroth order contribution. The first order
CIS method clearly provides an improvement over the zeroth
order orbital energy difference treatment: the CIS excitation

energy is substantially closer to the optical bandgap than the
HOCO-LUCO difference to the fundamental bandgap. Inclu-
sion of electron correlation (screening) is expected to cor-
rect the CIS description of optical bandgaps, and even more
so the estimates for electron affinities and ionization poten-
tials (cf., e.g., Ref. 62, which reports MP2-level correlation
corrections to the fundamental bandgap exceeding 10 eV for
diamond).

The second major problem severely affecting the accu-
racy of calculated bandgaps in solids is the AO basis set de-
ficiency. In molecular calculations, this problem can usually
be circumvented by augmenting the AO basis by diffuse func-
tions. Yet such a strategy is difficult or even impossible in 3D
packed systems due to linear dependencies in the augmented
basis. The AO basis sets commonly used in periodic calcu-
lations are clearly biased towards the electronic ground state,
which leads to a further overestimation of the excitation en-
ergy. As already mentioned in Sec. IV B, and demonstrated
in Ref. 55, tweaking the basis set by lowering the exponent
of one AO type significantly affects the position of the lower
conduction bands and thus leads to a sizable decrease of the
bandgap. We note in passing that an improvement of the ba-
sis set not necessarily implies a lower CIS bandgap: as an
example, we employed the Ahlrichs valence triple-zeta basis
set63 in a calculation on MgO. Although the HOCO-LUCO
difference dropped by around 0.5 eV relative to the value of
16.3 eV of Table IV, the CIS bandgap nevertheless increased
by 0.2 eV to 12.2 eV.

Comparison of our AO based HOCO-LUCO differences
with those of the plane wave Hartree-Fock calculations re-
ported in Ref. 62 (for Si, SiC, and C the indirect bandgaps,
which are in our case 7.65 eV, 9.82 eV, and 12.56 eV, respec-
tively, should be compared) reveals a discrepancy of up to an
eV. In most cases, the HOCO-LUCO differences of the plane
wave calculations are smaller, which again illustrates the bias
of AO basis sets towards the electronic ground state.
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Both issues, i.e., the lack of dynamical electron correla-
tion, and the basis set problem, will be addressed in future
work.

V. CONCLUSIONS

In this contribution, we presented theory, implementa-
tion, and first results for a general 3D periodic density-fitted
local CIS method. The method is a generalization of a 1D
periodic CIS method presented recently. The Davidson diag-
onalization of the CIS Hamiltonian matrix is carried out in re-
ciprocal space, while the diagrams of the residual calculation
are evaluated partially in the direct, and partially in the re-
ciprocal space. For the Coulomb diagram describing exciton-
exciton interaction an Ewald technique was utilized to effi-
ciently carry out the necessary infinite lattice summations.
The exchange diagram describing the electron-hole interac-
tion is calculated entirely in direct space, employing a robust
product-density specific density fitting scheme. The sparsity
due to the spatial locality of the orbitals and CIS coefficients
is fully utilized.

All the calculations presented in this paper were per-
formed by using a serial version of our program. The compu-
tational time is mainly determined by the size of the Wigner-
Seitz supercell, i.e., by the locality of an exciton. The calcula-
tions took from a few hours (for the relatively well localized
exciton in LiF, where a 6 × 6 × 6 supercell was sufficient) to
a few days for Si (where a 9 × 9 × 9 supercell was needed).
Note that for larger unit cells smaller Wigner-Seitz supercells
can be used to capture an exciton of a certain locality. For ex-
ample, for ice, already a 3 × 3 × 3 supercell was sufficient.
The present bottleneck of the calculations are evaluation, sort-
ing, and storage of the three-index ERIs (abB′′|P (P � A))
(cf. Sec. II C and III).

The reciprocal-space parts of the calculation are inex-
pensive, which allows for the use of dense k-meshes, de-
coupled from the actual size of the WS supercell via the
Wigner-Seitz supercell truncated infinite model, WSS-TIM. It
turns out that such a decoupling is very beneficial, leading to
much quicker convergence of the resulting excitation energies
with respect to the size of the underlying supercell in direct
space.

The CIS method itself, although substantially improving
the zeroth-order bandgap energy (i.e., the HOCO-LUCO en-
ergy difference), still noticeably overestimates the experimen-
tal bandgaps by several eV. Reasons for this are (i) the lack
of dynamical correlation effects (screening), and (ii) deficien-
cies in the AO basis sets. The CIS method presented here, is
to be seen as the first building block of a more elaborate treat-
ment including dynamical correlation effects via, e.g., local
CIS(D)74 or CC275–77 methods. A promising possibility to fix
the problem of AO basis set deficiencies would be to augment
the AO basis sets by a small amount of plain waves (with
low energy cutoff). Another route to explore is the combina-
tion of the present periodic CIS method with TD-DFT (or its
Tamm-Dancoff approximation) in the framework of a long-
range–short-range separation of the electron-electron interac-
tion operator.78
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