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The Fano factor stability diagram of a C3v symmetric triangular quantum dot is analysed for
increasing electron fillings N . At low filling, conventional Poissonian and sub-Poissonian behavior,
caused by the interplay of electron-electron interactions and Fermi statistics, is found. At larger
filling, N ≥ 2, super-Poissonian noise and a peculiar bias voltage dependence of the Fano factor are
observed at Coulomb and interference blockade. An analysis of the Fano map unravels a nontrivial
electron bunching mechanism arising from the presence of degenerate many-body states combined
with orbital interference and Coulomb interactions.
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Current fluctuations in out of equilibrium nanoscale
systems can yield information about relevant transport
mechanisms not accessible from the knowledge of the av-
erage current only [1]. While sub-Poissonian noise is
ubiquitous in fermionic tunneling structures, fermionic
bunching leading to enhanced shot noise is a signature of
subtle quantum correlations. For example, in single level
quantum dot systems, the interplay between Pauli princi-
ple and repulsive Coulomb interactions yields Poissonian
shot noise (corresponding to a Fano factor F = 1, see
Fig. 1(a)), and sub-Poissonian noise with 1/2 < F < 1 in
the Coulomb blockade and sequential transport regimes,
respectively [2–7]. The sub-Poissonian Fano factor nat-
urally originates from the requirement of charge conser-
vation at zero frequency and the fact that each tunnel-
ing barrier can be regarded as an independent source
of Poissonian noise [8]. The enhancement of the shot
noise requires a multilevel structure of the quantum dot
[4, 8, 9] or complex multiple quantum dot devices [11–14].
Independent of the details of the nanosystems, super-
Poissonian noise implies the presence of slow and fast
channels, and mechanisms which, virtually (cotunneling)
or really (sequential tunneling), occasionally allow for
charge transfer on a time scale much shorter than the
average residence time in the slow channel state. The
mechanism of dynamical channel blockade [4, 9], giving
rise to super-Poissonian noise, is illustrated in Fig. 1(b).

In this letter we investigate the Fano stability diagram
of a C3v symmetric triangular triple quantum dot (TQD),
schematically sketched in Fig. 1(d), as a function of its
occupation. TQDs are the smallest systems where the in-
terplay of statistics, Coulomb interactions and geometry
allows one the study of peculiar many-body effects such
as super-exchange induced triplet-singlet transition [2],
many-body interference [1, 5, 13], cellular automata phe-
nomena [18], charge frustration [19–21], or channel block-
ade [22]. TQDs have been recently realized in lateral
semiconducting heterostrucures [18, 19, 22, 23], which
are tunable down to the few electron regime by means of
plunger and depletion gates [23], and by means of atomic
STM manipulation [24]. In the latter experiment, orbital
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FIG. 1. (a) Single level quantum dot in the Coulomb block-
ade regime with Fano factor F = 1. (b) If an excited state
is present in the bias window of a Coulomb blockaded quan-
tum dot, electron bunching through the excited state yields
super-Possonian noise (F > 1). (c) Interference of energy
degenerate orbitals gives rise to coupled, c, and decoupled,
d, states, and in turn to super-Poissonian noise. Solid arrows
show fast processes, dashed ones the dominant slow processes.
(d) A gated triangular triple quantum dot (TQD) features all
the three dynamical situation sketched in (a)-(c) depending
on the occupation number and on the applied bias and gate
voltages Vb and Vg, respectively.

degeneracy in a C3v symmetric triangular dot could be
demonstrated.

So far, investigations of transport noise have been re-
stricted to set-ups in which the C3v symmetry of an
isolated TQD is broken in various ways, e.g. by as-
suming unequal interdot hoppings and/or onsite energies
[12, 13, 25–27]. These asymmetries remove orbital de-
generacies and hence the possibility to observe current
suppression due to the destructive interference of energy
degenerate states [28]. In this work we demonstrate that
the Fano map of a C3v symmetric, weakly coupled TQD
is characterized by regions of super-Poissonian noise out-

ar
X

iv
:1

61
0.

08
44

7v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
6 

O
ct

 2
01

6



2

side the Coulomb blockade region, see Fig. 1(c), with
specific fractional values of the Fano factor being a signa-
ture of such many-body interference. Inside the Coulomb
blockade region, large super-Poissonian Fano factors due
to an interplay of dynamical channel blockade [4, 9] and
interference are identified.

Model and method. – We examine a single-electron
transistor model described by the total Hamiltonian H =
HTQD + Htun + Hres. The TQD spectrum derives from
a three-site Hubbard model with hopping b < 0, onsite
Coulomb repulsion U and extended by the inter-site re-
pulsion V , which is adequate for many TQDs [3]. The
according Hamiltonian is

HTQD = ξ
∑
iσ

niσ + b
∑
i 6=j,σ

d†jσdiσ

+ U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(1)

+ V
∑
i<j

(ni↑ + ni↓ − 1) (nj↑ + nj↓ − 1) ,

where ξ = ε − eαVg includes the onsite energy ε and
the effects of an applied gate voltage Vg with level arm

α. Here, operators d†iσ and diσ create and annihilate
an electron with spin projection σ in dot i = 0, 1, 2,
and niσ = d†iσdiσ, cf. Fig. 1(d). Due to the C3v

symmetry, such Hamiltonian is invariant under rotations
of 2π/3 around an axis passing through the center of
the TQD. Moreover, HTQD also conserves particles and
spin. Using these symmetries, we have been able to cal-
culate the whole energy spectrum and the eigenvectors
|N,E;S, Sz, Lz〉 of HTQD in analytic form (see Supple-
mentary Material, Tables I and II). The quantum num-
bers refer to the eigenvalues of the occupation number
operator N , the energy E, the eigenvalues of the spin
operators S2 and Sz, and of the component along the
rotation axis, Lz, of the total angular momentum. The
two leads are considered as reservoirs of non-interacting
electrons at chemical potentials µL/R = µ0 ± eVb/2
for the left (L) and right (R) lead, with Vb the ap-
plied bias voltage. The corresponding Hamiltonian is
Hres =

∑
αkσ ξαkc

†
αkσcαkσ, with α = L,R. Finally, tun-

neling between TQD and leads is described by Htun =∑
αkσ

∑
i

(
t∗αic

†
αkσdiσ + tαid

†
iσcαkσ

)
. In the following,

we consider equal coupling to the left and right leads, and
set the coupling constants tL1 = tR2 = t and otherwise
tαi = 0. We identify for later convenience d1σ = dLσ,
d2σ = dRσ.

To compute the current and shot noise we use a mas-
ter equation approach for the generalized reduced den-
sity matrix ρχ = Trres

{
eiχNRρ

}
, where χ and NR are

the counting field and number operator for the right
lead, and ρ the total density operator [6, 30]. A trunca-
tion to second order in Htun yields the generalized mas-
ter equation ρ̇χ =

[
L+ (eiχ − 1)J + + (e−iχ − 1)J−

]
ρχ
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FIG. 2. Current and Fano factors vs appplied gate and bias
voltages. (a) Average current where the number of electrons
in the blockade regions is displayed. The white dotted lines
delimit regions where transport is inhibited due to Coulomb
blockade. (b) Fano factor and (c) Fano factor without Lamb
shifts due to virtual transitions. Some values discussed in the
text are indicated. Parameters used for the simulations are
U = 5|b|, V = 2|b|, kBT = 0.002|b|, Γ = |b| and b = −1.

[31], where L is the Liouville superoperator, and we de-
fined the current superoperators for increasing, J +, and
decreasing, J−, the number of electrons in the right lead.
This results in the equations for the stationary reduced
density matrix, ρ∞ = limt→∞ ρχ=0, and the moments
F∞k = limt→∞ dk/d(iχ)kρχ|χ=0. Introducing the trace-
less part of the first moment, F∞1⊥ = (1− ρ∞TrTQD)F∞1 ,
one finds in particular

Lρ∞ = − i
~

[HTQD +HLS, ρ
∞] + Ltρ∞ = 0,

LF∞1⊥ =
(
I − J + + J−

)
ρ∞,

(2)

where HLS is an effective Hamiltonian accounting for
Lamb shifts due to virtual excitations [5, 32], and Lt
is the tunneling part of the Liouvillian. Importantly, the
operatorial form of Eq. (2) allows us to fully account for
interference effects captured in the off-diagonal elements
of ρ∞. The current I (first cumulant) and shot noise S
(second cumulant) in turn follow as [31]

I = −e TrTQD

(
J + − J−

)
ρ∞, (3)

S = e2TrTQD

[
2
(
J + − J−

)
F∞1⊥ +

(
J + + J−

)
ρ∞
]
.

As a dimensionless measure for the relative noise strength
we employ the Fano factor F = S/e|I|.
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Current and Fano maps. – The stationary current is
shown as a function of bias and gate voltage in Fig. 2(a).
For comparison, the same parameters as in Ref. [28]
were used. Notice that the closed topology of the TQD
breaks the particle-hole symmetry otherwise present in
linear triple dots [2]. The stability diagram displays
Coulomb diamonds inside which current is exponentially
suppressed (in second order in Htun) due to Coulomb
blockade, but also regions outside the Coulomb diamonds
with suppression due to orbital interference [5]. We have
indicated with dotted lines the Coulomb diamonds when
no longer visible due to the additional interference block-
ade. A measurement of the current alone, however, does
not enable one to tackle down the different blockade
mechanisms. This is in contrast to the Fano map, shown
in Fig. 2(b), which displays a much richer structure than
the current. In Fig. 2(c) we also show the Fano factor
Fnv, which is obtained by neglecting the Lamb shift term
HLS in the stationary Eq. (2). Clearly, the virtual tran-
sitions responsible for the Lamb shifts blur the otherwise
poligonal Fano pattern.

At first glance one can observe a sub-Poissonian shot
noise 1/2 < F < 1 in the transport regime and both
Poissonian, F = 1, and super-Poissonian, F > 1, shot
noise in the regions of vanishing current. Furthermore,
F diverges when Vb → 0 due to Johnson-Nyquist noise.
Finally, vertical steps in the Fano factor are clearly visi-
ble at the center of the 3- and 5-particles Coulomb dia-
monds. At these positions the energy levels of the states
with one electron more and less than the participating
Coulomb- or interference-blocked state are aligned, and
a little change in the gate voltage favors one or the other
side in transport, leading to a sudden change in the statis-
tics that is unaffected by the bias voltage [33, 34].

The complexity of the Fano pattern increases with
growing electron filling, so from right to left. The break-
ing of electron-hole symmetry is strikingly revealed in a
Fano factor smaller (larger) than one, in the transport
(blockade) regions involving the N = 0 (6) and N = 1 (5)
groundstates. Moreover, large values of F are observed
for intermediate filling. The Fano map at low filling
is easily understood by observing that the one-electron
groundstates {|1, E10 ; 1/2,±1/2, 0〉} are only spin degen-
erate. Then, in the region with zero and one electron
occupation, the Fano map resembles the one of the sin-
gle impurity Anderson model, with F = 5/9 and F = 1/2
in the transport regions, and F = 1 at Coulomb blockade
[7]. As shown below, subtle correlations are responsible
for the super-Poissonian noise at larger filling.

Interplay of channel blockade and interference. – High
values of F for a doubly occupied TQD have already
been noticed in Ref. [13] and interpreted in terms of
the dynamical channel blockade mechanism sketched in
Fig. 1(b). This requires a Coulomb blockaded level, and
excited states in the transport window which provide a
fast transport channel. The larger the degeneracy of the

excited states, the larger is the Fano factor [4]. In the
presence of interference, however, the multiplicity of the
involved states alone cannot properly account for the ob-
served values of F or Fnv. As shown in the Supplement,
at Coulomb blockade and µL > µR the Fano factor Fnv
of a system of fast, (f), and slow, (s), channels can be
expressed in terms of effective filling rates Γpα = RpαΓα as

FCBnv = 1 +
2ΓfL

ΓsL + ΓsR
, (4)

where Γα = 2π|t|2Dα/~ is the bare tunneling rate for lead
α, proportional to the density of states at the Fermi en-
ergy Dα. In the following we assume identical leads, such
that ΓL = ΓR = Γ, see Fig. 1(d). The coefficients Rpα
weight the fast and slow channels, and account for both
spin degeneracies and orbital interference. For our sym-
metric TQD the 2-particles groundstate |2, E20 ; 0, 0, 0〉
is non degenerate, while the first set of excited levels is
given by the sextuplet {|2, E21 ; 1, Sz,±1〉, Sz = 0,±1},
due to both orbital and spin degeneracy (see Tables of
the Supplement). By applying the formula (4) naively as-
suming that Rpα is just the channel multiplicity (Rsα = 1
and Rfα = 6), we would expect FCBnv = 7, which is big-
ger than the observed value Fnv ≈ 6. This discrepancy
arises because the orbitally degenerate excited states can
undergo interference blockade, thus yielding non trivial
weights Rpα. The latter do not have in general a simple
analytical form, since the involved many-body states are
the sum of many Slater determinants. A fully analyti-
cal treatment is possible in the parameter region involv-
ing the N = 6 groundstate |6, E6; 0, 0, 0〉 := |6〉 and the
N = 5 groundstate quadruplet {|5, E50 ; 1/2,±1/2,±1〉}.
This situation is addressed below.

Interference blockade at the 50 ↔ 6 resonance. – When
a set of orbitally degenerate levels participate in trans-
port, interference can yield a (many-body) state com-
pletely decoupled from one lead [28] such that electrons
in the dot can only leave via thermal activation through
the other lead or via virtual excitations, see Fig. 1(c).
This yields current suppression. If this blocking channel
is decoupled at the left lead, the Fano factor is

F IBnv = 1 + 2
ΓfR
ΓsR

, (5)

as shown in the Supplementary Material. Bias traces of
currents and Fano factors at the gate voltage correspond-
ing to ξ = −7.5|b| (green line in Fig. 2) are shown in Fig.
3. The current Inv, which does not account for the Lamb
shifts, is exponentially suppressed in the voltage range
0.5 < eVb/|b| < 3.5. The associated Fano factor takes
the values Fnv = 5/3 at low bias, and Fnv = 4/3 above
eVb/|b| = 2, when transitions from 50 to the 4-particle
groundstates {|4, E40 ; 1, Sz, 0〉} dominate the bottleneck
process for transport [35]. Virtual transitions modify this
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picture: the current I (Fano factor F ) varies with bias
voltage and has a minimum (maximum) at eVb ≈ |b|.

For the blockade due to an orbital degenerate ground-
state with one coupled and one decoupled state one would
naively expect RfR = RsR and therefore a Fano factor
F IBnv = 3, as found in many systems [4, 9, 11, 12]. The
values Fnv = 5/3 and 4/3 again indicate that interference
requires a more precise analysis.

To this extent, let us observe that since the total
Hamiltonian H conserves particles, energy and spin, the
stationary density matrix ρ∞ has a block diagonal struc-
ture, with blocks ρNSSz (E) of definite N , S, Sz, and E
[36]. Due to the equivalence of the configurations with
different Sz for the dynamics, we introduce the matrices
ρNLzL′z (E) :=

∑
Sz

(ρNSSz (E))LzL′z . For example, since
there exists only one configuration for occupation N = 6,
ρ6 is a number. On the other hand, ρ5(E50) is the 2× 2
matrix associated to the 5-particles groundstate. By us-
ing the Wigner-Eckart theorem [37] to calculate matrix
elements of creation and annihilation operators, d†ασ and
dασ, between states of different particle number and spin,
and summing over σ, Eq. (2) yields for the case of uni-
directional transport near the 50 ↔ 6 resonance [35]

0 = −i
[∑
α

ωαRα, ρ5
]

+ 2ΓRRρ6 −
Γ

2

{
RL, ρ5

}
, (6)

which, together with TrTQD{ρ} = 1, fully determines
ρ6 and ρ5(E50). The first term on the r.h.s. of Eq. (6)
is the Lamb shift contribution. The remaining terms
are fully characterized by the rate matrix (Rα)mn =
1
2

∑
σ〈5, E50 ; 1

2 ,−σ,m|dασ|6〉〈6|d†ασ|5, E50 ; 1
2 ,−σ, n〉,

with m,n = ±1. A transformation from
the localized to the angular momentum basis,
d†lσ = 1/

√
3
∑
α e
−iαl2π/3d†ασ, (l = 0,±1) readily

yields (Rα)mn = 1
3e
iα(n−m)2π/3. The matrices RL and

RR cannot be diagonalized simultaneuously. In the
basis spanned by the vectors |c〉 ∝ |0〉 − 2|1〉 + |2〉 and
|d〉 ∝ |0〉 − |2〉, with the latter decoupled from the left
lead (|j〉 indicates a 5-particles state with a hole at site
j), we get

RL =
1

3

(
2 0
0 0

)
and RR =

1

6

(
1 −i

√
3

i
√

3 3

)
. (7)

Neglecting the Lamb shift term, the matrix ρ5(E50) is
diagonal, with elements ρdd = 1, ρcc = 0 at deep inter-
ference blockade. The diagonal terms 2/3, 0 and 1/6,

1/2 of Rα correspond to the weights RfL, RsL, and RfR,
RsR, respectively. Using these values, Eq. (5) yields
F IBnv = 5/3. Let us now turn at the impact of the Lamb
shift term. It describes a precession of the Bloch vector n
of the orbitally degenerate block ρ5(E50) = p(I+n·σ)/2,
where σ is the vector of Pauli matrices, p = ρdd + ρcc,
and the decoupled state points along the z-axis. The
precession frequencies ωα account for virtual transitions
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FIG. 3. Bias trace of (a) current, (b) Fano factor and (c) pre-
cession frequencies ωL,R at ξ = −7.5|b|, corresponding to the
green dashed line in Fig. 1. The numerical data well agree
with analytical expressions from the text. Inset: the popu-
lation of the coupled and decoupled states of the 50 doublet
depends on the effective rates for the 50 ↔ 6 resonance and
on the precession frequency ωR.

from the 5-particles groundstates to the state |6〉 and
to levels with energies E40,1,2,3 , and are given in the
Supplement. Their bias dependence is shown in Fig.
3(c). We find the stationary solution ρdd = 1 − 3ω2

R/D,
ρcc = 2ω2

R/D with D = 2 + 8ω2
L − 12ωLωR + 9ω2

R. Due
to the precession, the populations of the decoupled and
coupled states are affected by partially coherent gain and
loss, as illustrated in the inset of Fig 3(c). The sys-
tem gets quadratically stuck in the decoupled state for
ωR → 0. We find I = −e4Γω2

R/3D and, to lowest or-
der in ωR, F = 5/3 + 16ωLωR/3(1 + 4ω2

L) [35], yielding
limωR→0 F = 5/3. These formulas show good agreement
with the numerics, as seen in Figs. 3(a) and 3(b). In
the regime of linear conductance and Johnson-Nyquist
noise the agreement is easily obtained by relieving unidi-
rectionality [35].

Conclusions. – Using a full counting statistics ap-
proach in Liouville space we obtained the Fano stabil-
ity diagram of a C3v symmetric TQD. In the region of
current suppression the Fano factor helps unraveling the
underlying blocking mechanisms. Poissonian statistics
suggests ”classical” Coulomb blockade, whereas super-
Possonian noise (up to F & 6) points to the presence
of fast and slow channels. The value attained by the
Fano factor at specific gate and bias voltages further re-
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veals the internal level structure and dynamics of the sys-
tem. In the case of interference blockade, we chose the
50 ↔ 6 resonance to show that a population redistribu-
tion, induced by virtual excitations, results in a nontrivial
bias dependence of the the Fano factor, which attains its
maximal value F = 5/3 only when the blockade is per-
fect. Our results are robust against perturbations which
weakly break the C3v symmetry, and hence orbital de-
generacy, as long as the resulting level splitting is smaller
than the coupling Γ [38].

The authors acknowledge financial support by the
Deutsche Forschungsgemeinschaft via GRK 1570 and
SFB 689.
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125320 (2003).
[12] C. W. Groth, B. Michaelis, and C. W. J. Beenakker,

Phys. Rev. B 74, 125315 (2006).
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SUPPLEMENTARY MATERIAL

Many-body spectrum and eigenfunctions of a symmetric TQD

The single particle part of the triple quantum dot Hamiltonian Eq. (1) is diagonalized in the basis of the angular

momentum states {|l〉 = 1/
√

3
∑2
α=0 e

−iαl2π/3|α〉, l = 0,±1}. Accounting for the spin degree of freedom σ, we use
this single particle basis to construct many-body states in the occupation number representation, where a generic
vector |n0↑, n1↑, n−1↑;n0↓, n1↓, n−1↓〉 is fully characterized by the occupation numbers nlσ. Finally, we use this many-
body basis to diagonalize the TQD Hamiltonian HTQD and find its eigenvalues and eigenfunctions. HTQD commutes

with the total particle number operator N =
∑
lσ nlσ, the total spin operator S2 =

∑
i lσσ′(d

†
lσs

i
σσ′dlσ′)

2 (here is
si = ~

2σ
i and σi the i-th Pauli matrix), the spin projection Sz = ~

2

∑
lσ σnlσ, and the angular momentum operator

Lz = ~
∑
lσ lnlσ|mod 3. Hence, one can use the quantum numbersN,S, Sz and Lz associated to these operators together

with the energy E to characterize the eigenvectors of the interacting TQD Hamiltonian. In the following we use the
notation |N,E;S, Sz, Lz〉 for a generic eigenvector. In particular, S2|N,E;S, Sz, Lz〉 = ~

2S(S + 1)|N,E;S, Sz, Lz〉
and, as usual, −S ≤ Sz ≤ S. Such eigenvectors and the associated eigenvalues in the occupation number basis are
reported in Tables I, II.

We notice that a classification of many-body states using the angular momentum quantum number Lz has been
proposed in [1] for the case of a symmetric triangular dot with intrasite repulsion only (i.e. U 6= 0, V = 0). Our
analysis with U 6= 0, V 6= 0 thus generalizes that work and recovers the results reported in [2], where a localized
representation is used to discuss topological Hund rules and derive effective low energy spin Hamiltonians. For finite
onsite and intersite interactions U and V , the composition of the eigenstates is the result of a complex interplay
between Pauli statistics and Coulomb repulsion, and we refer to the review by [3] for useful insights. For example, for
double occupancy of the TQD, the configurations with S = 1 corresponds to excited states with singly occupied dots,
due to Pauli principle. The configurations with S = 0, however, contain both doubly occupied and singly occupied
dots, with weight determined by the difference U − V . For U = V , the groundstate is in the occupation number
representation the singlet |100, 100〉, with equal weights on single and doubly occupied sites, as seen in Table I. The
splitting between the sextuplet of excited states and the groundstate singlet is dominated by the hopping energy with
a correction given by super-exchange processes due to the doubly occupied singlet configurations [2]. For a TQD
with occupancy N = 4 (i.e. with two-holes), the groundstate is always a triplet if b < 0, as in our work. Finally, of
relevance for the discussion in the main manuscript, the 5-particles groundstate is a quadruplet due to orbital and
spin degeneracy while the first excited state is only spin degenerate.

Current and Fano factor for a minimal model with one slow and one fast channel

Let us consider a minimal system consisting of a single slow and fast channel which for example can be a groundstate
in Coulomb blockade (CB) plus an excited state in the bias window, or the coupled and decoupled states in the case
of interference blockade (IB) near the 50 ↔ 6 resonance, as depicted in Figs. 1(b),(c) respectively, of the main
manuscript. This system spends most of the time in the state corresponding to the slow channel and therefore the
exponentially suppressed current is dominated by the bottleneck process of escaping this state. The Liouvillian L
or the tunneling Liouvillian Lt are super-operators whose matrix elements are obtained from their action on the
reduced density matrix. In order to obtain a suitable representation of such Liouvillians, it is convenient to work
in the Liouville space, where the density matrix elements are ordered in a vector. Let us consider a situation of
positive electrochemical potential, such that particle transport occurs from the left, L, to the right, R, lead. Then, far
from resonance (e.g. inside the Coulomb blockade or interference blockade regions), we can approximate the Fermi
functions to 1 or 0, except for the dominant slow process ΓsRf

±
R which transfers an electron from the slow state |s〉

to a state |p〉 with one electron more (p = +) or less (p = −). Then, depending on whether p = ±, the minimal
Liouvillian for such a system with slow and fast |f〉 channels takes in the basis {|p〉〈p|, |s〉〈s|, |f〉〈f |} the form

LCBt =

−ΓfL − ΓsL − ΓsR ΓsRf
−
R ΓfR

ΓsL + ΓsR −ΓsRf
−
R 0

ΓfL 0 −ΓfR

 , p = − LIBt =

−ΓfR − ΓsR ΓsRf
+
R ΓfL

ΓsR −ΓsRf
+
R 0

ΓfR 0 −ΓfL

 , p = + (1)
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for the two situations pictured in Fig. 1(b),(c). The corresponding current superoperators for the right lead are

J +
CB =

0 ΓsRf
−
R ΓfR

0 0 0

0 0 0

 , J−CB =

 0 0 0

ΓsR 0 0

0 0 0

 , J +
IB =

 0 0 0

ΓsR 0 0

ΓfR 0 0

 , J−IB =

0 ΓsRf
+
R 0

0 0 0

0 0 0

 . (2)

In our considerations, ΓsRf
∓
R gives the bottleneck for transport in the CB and IB cases, respectively. To lowest order

in f±R this results in the current

ICB = −eΓsR(ΓfL + ΓsL)

ΓsL + ΓsR
f−R , IIB = −eΓfRf+R . (3)

For high asymmetry between the couplings to the leads, ΓsL � ΓsR, Eq. (3) simplifies to ICB = −eΓsRf−R (1 + ΓfL/Γ
s
L),

in agreement with the finding in [4]. For a completely symmetric setup (ΓsL = ΓsR = Γs) the current in situation (b)
is ICB = −e(Γf + Γs)f−R /2.

Similar calculations as for the current yield the Fano factors

FCBnv = 1 +
2ΓfL

ΓsL + ΓsR
, F IBnv = 1 + 2

ΓfR
ΓsR

. (4)

The expression for case (b) simplifies to FCBnv = 1 + 2ΓfL/Γ
s
L for high asymmetry [4], and to FCBnv = 1 + ΓfL/Γ

s
L for

the symmetric case. In all cases it holds F > 1.

Current and Fano factor for a minimal model at ξ = −7.5|b|

A striking feature at the left side of the stability diagram, a Fano factor of F = 4/3, cannot be obtained considering
a minimal model using only the 5- and 6-particle states. It appears at bias and gate voltages where f−R (E50 − E40)
overcomes f+R (E6−E50) and the transition to the triplet of ground states with 4 particles becomes the new bottleneck
of transport. At ξ = −7.5|b|, this happens at eVb = (E6 − E40) = V . A minimal model can be written in the
basis {|6〉〈6|, |d〉〈d|, |c〉〈c|, |4〉〈4|}, with the coupled |c〉, decoupled |d〉 and the channel |4〉 associated to the triplet
{4, E40 ; 1, Sz, 0〉}. The Liouvillian and current superoperators are

L =


−ΓcR,65 − ΓdR,65 0 ΓcL,65 0

ΓdR,65 −ΓdR,54f
−
R 0 ΓdL,54 + ΓdR,54

ΓcR,65 0 −ΓcL,65 ΓcL,54 + ΓcR,54
0 ΓdR,54f

−
R 0 −ΓdL,54 − ΓdR,54 − ΓcL,54 − ΓcR,54

 ,

J + =


0 0 0 0

ΓdR,65 0 0 0

ΓcR,65 0 0 0

0 ΓdR,54f
−
R 0 0

 , J− =


0 0 0 0

0 0 0 ΓdR,54
0 0 0 ΓcR,54
0 0 0 0

 ,

(5)

where f−R is the Fermi function between the 5- and 4-particle groundstates at the right lead and is responsible for the
bottleneck process. To lowest order in this Fermi function, the current and Fano factor read

I = −eΓdR,54f−R
ΓcL,54(ΓcR,65 + 2ΓdR,65) + ΓcR,54(ΓcR,65 + ΓdR,65) + ΓdL,54ΓdR,65

ΓdR,65(ΓcL,54 + ΓcR,54 + ΓdL,54 + ΓdR,54)
,

F =
ΓcL,54

(
2(ΓcR,65)2 + 5ΓcR,65ΓdR,65 + 4(ΓdR,65)2

)
+ ΓcR,54

(
2(ΓcR,65)2 + 3ΓcR,65ΓdR,65 + (ΓdR,65)2

)
+ ΓdL,54(ΓdR,65)2

ΓdR,65(ΓcL,54(ΓcR,65 + 2ΓdR,65) + ΓcR,54(ΓcR,65 + ΓdR,65) + ΓdL,54ΓdR,65)
.

(6)

The rate matrix for the 50 ↔ 40 transition reads (Rα)50↔40
mn = 1

2

∑
σ,τ 〈5, E50 ; 1

2 , σ,m|d†ατP4,E40
dατ |5, E50 ; 1

2 , σ, n〉,
in the angular momentum basis, with m,n = ±1 and where PNE =

∑
Sz,Lz

|N,E;S, Sz, Lz〉〈N,E;S, Sz, Lz| is the
projector on the N -particle level with energy E and spin S. Under the bias and gate voltage conditions considered
here, the system still remains in the interference ground state blocking associated to the 50 ↔ 6 transition. The
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corresponding coupled-decoupled basis introduced shortly above Eq. (7) of the main text is thus the most convenient
representation. With the help of the eigenstates listed in Table II and the Wigner-Eckart theorem one calculates,

Γdα, 54 = 3
2ΓRfα and Γcα, 54 = 3

2ΓRsα with R
f/s
α as given below Eq.(7) in the main text. Finally, by substitution into

Eq.(6), one obtains I = −eΓf−R /4 and F = 4/3.

Liouvillian, current and Fano factor at the 50 ↔ 6 resonance

The far left part of the stability diagram shown in Fig. 2 is dominated by 5 ↔ 6 particle transitions. As seen
in Table II, there exists only one configuration with 6 electrons given by the state |6〉 := |6, E6; 0, 0, 0〉. On the
other hand, when 5 electrons populate the TQD a total of 6 configurations are possible. In particular, for b < 0 the
groundstate is the quadruplet {|5, E50 ; 1/2,±1/2,±1〉}, due to both orbital and spin degeneracy. The first excited
state is the doublet {|5, E51 ; 1/2,±1/2, 0〉} and is only spin degenerate. In this section we provide the explicit form
of the tunneling Liouvillian Lt when the Fock space is restricted to the subspaces associated to the 5- and 6-particles
groundstates. Such a Liouvillian determines the stationary reduced density matrices ρ5(E50) and ρ6 when Lamb shifts
are neglected. Since the 6 particle groundstate is a singlet, ρ6 is just a 1×1 matrix. On the other hand, the calculation

of ρ5(E50) involves first the evaluation of the matrix elements ρ
5 1

2Sz
LzL′z

= 〈5, E50 ; 1/2, Sz, Lz|ρ∞|5, E50 ; 1/2, Sz, L
′
z〉, and

then a summation over Sz: ρ
5
LzL′z

:=
∑
Sz
ρ
5 1

2Sz
LzLz

. Hence, ρ5(E50) is a 2× 2 matrix in a basis spanned by the vectors

|5+0 〉 and |5−0 〉, where ± refers to the associated values of the angular momentum. Notice that coherences between
states with the same particle number but different angular momentum have to be considered. We choose the basis
{|5+0 〉〈5+0 |, |5−0 〉〈5−0 |, |6〉〈6|, |5+0 〉〈5−0 |, |5−0 〉〈5+0 |}. Then the tunneling Liouvillian can be written as

Lt =
Γ

3


−f+R − f+L 0 2(f−R + f−L ) 1

2X
1
2X
∗

0 −f+R − f+L 2(f−R + f−L ) 1
2X

1
2X
∗

f+R + f+L f+R + f+L −4(f−R + f−L ) −X −X∗
1
2X
∗ 1

2X
∗ 2(1 +X∗) −f+R − f+L 0

1
2X

1
2X 2(1 +X) 0 −f+R − f+L

 , (7)

with the short notation X = e−i
2π
3 f+R + ei

2π
3 f+L . Note that the phases e±i

2π
3 arise from changing from position into

angular momentum basis. The solution of the equation Ltρ∞ = 0, together with the constraint TrTQD{ρ∞} = 1 (with
TrTQD = (1, 1, 1, 0, 0)), yields the stationary density matrix vector

ρ∞ =
1

2(f+R f
−
L + f+L f

−
R ) + f+R f

+
L



f+R f
−
L + f+L f

−
R

f+R f
−
L + f+L f

−
R

f+R f
+
L

1
2 (f+R − f+L )

[
f+
R−f

+
L

f+
R+f+

L

− i
√

3
]

− 1
2 (f+R − f+L )

[
f+
R−f

+
L

f+
R+f+

L

+ i
√

3
]


. (8)

The current operators for the right lead can be calculated along the same lines and read in the same basis

J + =
Γ

3
f−R


0 0 2 0 0

0 0 2 0 0

0 0 0 0 0

0 0 −2ei
2π
3 0 0

0 0 −2e−i
2π
3 0 0

 , J− =
Γ

3
f+R


0 0 0 0 0

0 0 0 0 0

1 1 0 −e−i 2π3 −ei 2π3
0 0 0 0 0

0 0 0 0 0

 , (9)

which results in the current through the drain lead

I = −eΓ

3

(f+L − f+R )f+R f
+
L

(f+R + f+L )
[
2(f+R f

−
L + f+L f

−
R ) + f+R f

+
L

] , (10)
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and the Fano factor

Fnv =
2(3f−L + 1)(f+R )2

(
(f+L )2 + 2f+L f

−
L − 2f−L f

+
R

)
(f+L + f+R )(f+L f

−
R + f+L + 2f−L f

+
R )2

+
5(f+L )2 + 5f+L f

+
R + 3(f+R )2

(f+L + f+R )2

+
f+R
(
(f+L )2(−(8f−L + f+R + 4)) + 4f+L f

−
L f

+
R + 4f−L (f+R )2

)
(f+L + f+R )2(f+L f

−
R + f+L + 2f−L f

+
R )

+
6f−L f

+
R

f+R − f+L

(11)

Away from resonance lines, the Fermi functions can be approximated by step functions. Setting f+L = f−R = 1,
f−L = f+R = 0 (valid at positive electrochemical potential eVb), the Liouvillian simplifies to

Lt =
Γ

3


−1 0 2 Y

2
Y ∗

2

0 −1 2 Y
2

Y ∗

2

1 1 −4 −Y −Y ∗
Y ∗

2
Y ∗

2 2(1 + Y ∗) −1 0
Y
2

Y
2 2(1 + Y ) 0 −1

 , (12)

where Y = ei2π/3. Similarly, the density matrix becomes

ρ∞ =

(
1

2
,

1

2
, 0,− i

i+
√

3
,

i

−i+
√

3

)>
, (13)

which shows full occupation of the 5-particles groundstates and an empty 6-particles state. Therefore the current
through the system is blocked. Since the 50 groundstates block the current, one speaks of groundstates blockade
[5]. The stability diagram for the current, Fig. 2(a) in the main manuscript, shows how the current gets strongly
suppressed at the groundstates blockade and only features a small line of finite current at the groundstates resonance,
E6(Vg, Vb) = E50(Vg, Vb).

As expected, the Fano factor is Poissonian, F = 1, in the region of the 6 particles Coulomb diamond and diverges
for Vb → 0. In the region of the groundstates blockade it has the super-Poissonian value of Fnv = 5/3, in agreement
with the full numerical results shown in Fig. 2(c).

Interference dynamics

The Lamb shift Hamiltonian in Eq. (6) can be cast, following [5] into the form HLS = ~
∑
α
ωαRα where the

precession frequencies for the block ρN (E∗) with spin S is independent on Sz (ωα,Sz = ωα)

ωα,Sz =
Γα
2π

∑
S′z,E

〈N,E∗;S, Sz, Lz|d0S′zPN+1,Ed
†
0S′z
|N,E∗;S, Sz,−Lz〉pα (E − E∗)

+〈N,E∗;S, Sz, Lz|d†0S′zPN−1,Ed0S′z |N,E
∗;S, Sz,−Lz〉pα (E∗ − E)

(14)

where PNE =
∑
Sz,Lz

|N,E;S, Sz, Lz〉〈N,E;S, Sz, Lz| is the projector on the N -particle level with energy E and spin
S. We defined the function pα (∆E) = −Reψ [1/2 + i(∆E − µα)/2πkBT ] where T is the temperature, ψ the digamma
function and µα the chemical potential of lead α. The stationary density matrix in the ordering ρcc, ρdd, ρ6, ρcd, ρdc

obtained as solution to Eq. (6) is

ρ∞ =
1

2 + 8ω2
L − 12ωLωR + 9ω2

R


2ω2

R

2 + 8ω2
L − 12ωLωR + 6ω2

R

ω2
R

2
√

3ωR(1 + i(ωL − ωR))

2
√

3ωR(1− i(ωL − ωR))

 , (15)

The corresponding current is

I = −eΓ

3

4ω2
R

2 + 8ω2
L − 12ωLωR + 9ω2

R

. (16)
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For ωR → 0 the system gets quadratically stuck in the decoupled state and thus current is supressed. The resulting
Fano factor is

F =
20 + 320ω4

L − 704ω3
LωR + 32ω2

R + 195ω4
R − 16ωLωR(11 + 36ω2

R) + 16ω2
L(10 + 53ω2

R)

3(2 + 8ω2
L − 12ωLωR + 9ω2

R)2
, (17)

which to lowest order in ωR is F = 5/3+16ωLωR/3(1+4ω2
L). Therefore, the limit of F = 5/3 is recovered at complete

blockade. Since ωL > 0, the Fano factor is not maximal at ωR = 0 but instead at a little lower bias voltage.
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N Eigenenergy S Sz Lz Eigenstate in the basis {|n0↑, n1↑, n−1↑;n0↓, n1↓, n−1↓〉}
0 E0 = 0 0 0 0 |000, 000〉

1

E10 = ξ − U
2
− 2V + 2b 1

2

− 1
2 0

|000, 100〉
1
2

|100, 000〉

E11 = ξ − U
2
− 2V − b 1

2

− 1
2

−1 |000, 001〉
1 |000, 010〉

1
2

−1 |001, 000〉
1 |010, 000〉

2

E20 = 2ξ − U − 3V + b+ U−V
2
− s−2 0 0 0 cos(φ2)|100, 100〉 − sin(φ2) 1√

2
(|010, 001〉+ |001, 010〉)

E21 = 2ξ − U − 3V + b 1

−1
−1 |000, 101〉
1 |000, 110〉

0
−1 1√

2
(|100, 001〉 − |001, 100〉)

1 1√
2

(|100, 010〉 − |010, 100〉)

1
−1 |101, 000〉
1 |110, 000〉

E22 = 2ξ − U − 3V − b
2

+ U−V
2
− s+1 0 0

−1 cos(φ1)|010, 010〉 − sin(φ1) 1√
2

(|100, 001〉+ |001, 100〉)
1 cos(φ1)|001, 001〉 − sin(φ1) 1√

2
(|100, 010〉+ |010, 100〉)

E23 = 2ξ − U − 3V − 2b 1
−1

0
|000, 011〉

0 1√
2

(|010, 001〉 − |001, 010〉)
1 |011, 000〉

E24 = 2ξ − U − 3V − b
2

+ U−V
2

+ s+1 0 0
−1 sin(φ1)|010, 010〉+ cos(φ1) 1√

2
(|100, 001〉+ |001, 100〉)

1 sin(φ1)|001, 001〉+ cos(φ1) 1√
2

(|100, 010〉+ |010, 100〉)
E25 = 2ξ + b− U − 3V + U−V

2
+ s−2 0 0 0 sin(φ2)|100, 100〉+ cos(φ2) 1√

2
(|010, 001〉+ |001, 010〉)

3

E30 = 3ξ − 3
2
U − 3V + 2

3
(U − V ) [1− λ0/(2|a|)] 1

2

− 1
2

−1 v0,1|100, 101〉 − v0,2|010, 110〉 − v0,3|001, 011〉
1 v0,1|100, 110〉+ v0,2|001, 101〉 − v0,3|010, 011〉

− 1
2

−1 v0,1|101, 100〉 − v0,2|110, 010〉 − v0,3|011, 001〉
1 v0,1|110, 100〉 − v0,2|101, 001〉+ v0,3|011, 010〉

E31 = 3ξ − 3
2
U − 3V 3

2

− 3
2

0

|000, 111〉
− 1

2
1√
3

(|001, 110〉 − |010, 101〉+ |100, 011〉)
1
2

1√
3

(|011, 100〉 − |101, 010〉+ |110, 001〉)
3
2

|111, 000〉

E32 = 3ξ − 3
2
U − 3V + 2

3
(U − V ) [1− λ1/(2|a|)] 1

2

− 1
2

−1 v1,1|110, 100〉 − v1,2|101, 001〉+ v1,3|011, 010〉
1 v1,1|100, 110〉+ v1,2|001, 101〉 − v1,3|010, 011〉

− 1
2

v v1,1|101, 100〉 − v1,2|110, 010〉 − v1,3|011, 001〉
1 v1,1|100, 101〉 − v1,2|010, 110〉 − v1,3|001, 011〉

E33 = 3ξ − 3
2
U − 3V + (U − V ) 1

2

− 1
2

0

1√
2

(|001, 110〉 − |100, 011〉)
1√
6

(|001, 110〉+ 2|010, 101〉+ |100, 011〉)

1
2

1√
6

(|110, 001〉+ 2|101, 010〉+ |011, 100〉)
1√
2

(|110, 001〉 − |011, 100〉)

E34 = 3ξ − 3
2
U − 3V + 2

3
(U − V ) [1− λ−1/(2|a|)] 1

2

− 1
2

−1 v−1,1|100, 101〉 − v−1,2|010, 110〉 − v−1,3|001, 011〉
1 v−1,1|100, 110〉+ v−1,2|001, 101〉 − v−1,3|010, 011〉

1
2

−1 v−1,1|101, 100〉 − v−1,2|110, 010〉 − v−1,3|011, 001〉
1 v−1,1|110, 100〉 − v−1,2|101, 001〉+ v−1,3|011, 010〉

TABLE I. Eigenvalues and eigenstates of a C3v symmetric TQD Hamiltonian for occupation numbers N = 0 − 3. Such
eigenvectors are furthermore characterized by the spin quantum numbers S and Sz, and by the orbital quantum number
Lz. Their composition in the basis of the occupation number vectors is provided in the rightmost column. The order-
ing of the eigenergies depends on the TQD parameters b, U and V . We chose U = 5|b|, V = 2|b| and b < 0. We de-

fined a = (U − V )/(9b), θ = arccos
((

(3a2)/(1 + 3a2)
) 3

2

)
/3, λα = 2

√
(1 + a2)/3 cos

(
θ + α 2π

3

)
, vα,1 = (a − λα)|a − λα −

1|sgn(a − λα + 1)/
√

3(a− λα)4 + 1, vα,2 = |(a − λα)2 − 1|/
√

3(a− λα)4 + 1, vα,3 = (a − λα)|a − λα + 1|sgn(a − λα −

1)/
√

3(a− λα)4 + 1, s±1 = 1
2

√
9b2 ± 2b (U − V ) + (U − V )2, s±2 =

√
9b2 ± b (U − V ) +

(
U−V

2

)2
, φ1 = 1

2
arctan

(
2
√
2(U−V )

U−V+9b

)
and φ2 = 1

2
arctan

(
2
√
2(U−V )

U−V−18b

)
.
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N Eigenenergy S Sz Lz Eigenstate in the basis {|n0↑, n1↑, n−1↑;n0↓, n1↓, n−1↓〉}

4

E40 = 4ξ + 2b− U − 3V 1
−1

0
|100, 111〉

0 1√
2

(|101, 110〉 − |110, 101〉)
1 |111, 100〉

E41 = 4ξ − U − 3V + b
2

+ U−V
2
− s−1 0 0

−1 cos(φ3)|110, 110〉+ sin(φ3) 1√
2

(|011, 101〉+ |101, 011〉)
1 cos(φ3)|101, 101〉 − sin(φ3) 1√

2
(|011, 110〉+ |110, 011〉)

E42 = 4ξ − U − 3V − b+ U−V
2
− s+2 0 0 0 cos(φ4)|011, 011〉+ sin(φ4) 1√

2
(|101, 110〉+ |110, 101〉)

E43 = 4ξ − U − 3V − b 1

−1
−1 |001, 111〉
1 |010, 111〉

0
−1 1√

2
(|011, 101〉 − |101, 011〉)

1 1√
2

(|011, 110〉 − |110, 011〉)

1
−1 |111, 001〉
1 |111, 010〉

E44 = 4ξ − U − 3V + b
2

+ U−V
2

+ s−1 0 0
−1 sin(φ3)|110, 110〉 − cos(φ3) 1√

2
(|011, 101〉+ |101, 011〉)

1 sin(φ3)|101, 101〉+ cos(φ3) 1√
2

(|011, 110〉+ |110, 011〉)
E45 = 4ξ − U − 3V − b+ U−V

2
+ s+2 0 0 0 − sin(φ4)|011, 011〉+ cos(φ4) 1√

2
(|101, 110〉+ |110, 101〉)

5
E50 = 5ξ − U

2
− 2V + b 1

2

− 1
2

−1 |101, 111〉
1 |110, 111〉

1
2

−1 |111, 101〉
1 |111, 110〉

E51 = 5ξ − U
2
− 2V − 2b 1

2

− 1
2 0

|011, 111〉
1
2

|111, 011〉
6 E6 = 6ξ 0 0 0 |111, 111〉

TABLE II. Eigenvalues and eigenstates of a C3v symmetric TQD for electron numbers N = 4–6. The parameters and notations

are chosen as in Table I. The ordering is for U = 5|b|, V = 2|b| and b < 0. We defined s±1 = 1
2

√
9b2 ± 2b (U − V ) + (U − V )2,

s±2 =
√

9b2 ± b (U − V ) +
(
U−V

2

)2
, φ3 = 1

2
arctan

(
2
√
2(U−V )

U−V−9b

)
and φ4 = 1

2
arctan

(
2
√
2(U−V )

U−V+18b

)
.
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