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We investigate the possibility of spin-preserving symmetries due to the interplay of Rashba and
Dresselhaus spin-orbit coupling in n-doped zinc-blende semiconductor quantum wells of general
crystal orientation. It is shown that a conserved spin operator can be realized if and only if at
least two growth-direction Miller indices agree in modulus. The according spin-orbit field has in
general both in-plane and out-of-plane components and is always perpendicular to the shift vector
of the corresponding persistent spin helix. We also analyze higher-order effects arising from the
Dresselhaus term, and the impact of our results on weak (anti)localization corrections.

Extending the spin lifetime is essential for the facili-
tation of spintronic devices [1]. In semiconductors, ow-
ing to spin-orbit coupling (SOC) and impurity scatter-
ing, spin polarized electrons or holes are subject to re-
laxation of their spin. However, as a consequence of
the interplay of Rashba and Dresselhaus SOC and, if
necessary, strain or curvature effects, particular param-
eter configurations can be found [2–7]. These cases give
rise to spin-preserving symmetries that remain intact
in presence of spin-independent disorder. Their exis-
tence has been unambiguously confirmed in numerous
experiments by means of optical and transport measure-
ments [8–14]. The latter exploit the impact of SOC on
weak (anti)localization. A recent review summarizes the
key developments in both theory and experiment [15].

For a two-dimensional electron gas (2DEG) with SOC
being linear in wave vector k, such a scenario leads to a
SU(2) symmetry of the Hamiltonian H, yielding persis-
tent solutions for the spin diffusion equation with spin
densities that are either homogeneous or helical in co-
ordinate space. This special symmetry is characterized
by circular Fermi contours ε± shifted by a constant wave
vector Q, i.e., ε−(k) = ε+(k + Q), and by a spin-orbit
field (SOF) which is collinear in k-space. As a conse-
quence, the spin of electrons traversing the system un-
dergoes a well-defined rotation about the constant direc-
tion of the SOF, which is independent of the propagated
path, but solely determined by the initial and final posi-
tion [2], a phenomenon known by now as the persistent
spin helix [3].

The well-established cases of the above scenario are
restricted to quantum wells grown along [001], [110], or
[111]-direction, where the SOF is either purely in-plane,
purely out-of-plane, or vanishes, respectively [15, 16].
However, as we shall see in this article, also low-
symmetry growth directions allow for such situations,
and the orientation of the SOF with respect to the sur-
face normal n can in principle be designed arbitrarily.
This opens a wide range of possibilities for engineering
spintronic devices.

Model Hamiltonian. We consider a 2DEG whose crys-
tal orientation is defined by an arbitrary normal unit vec-
tor n = (nx, ny, nz) with the underlying basis vectors x̂,

ŷ, and ẑ pointing along the crystal axes [100], [010], and
[001], respectively. The Hamiltonian describing the low-
est conduction subband in an infinite quantum square
well is given by

H =
~2k2

2m
+ Ω · σ, (1)

where m is the effective electron mass and σ denotes
the vector of Pauli matrices. The effects due to Rashba
(R) and Dresselhaus (D) SOC are comprised in the SOF

Ω = ΩR + Ω
(1)
D + Ω

(3)
D with the dominant contributions

ΩR = α (k× n) , Ω
(1)
D = β(1) κ, (2)

where κx = 2nx(nyky − nzkz) + kx(n2y − n2z) and analo-
gously for the other components by cyclic index permu-
tation [16, 17]. In this formulation, the electron wave
vector k is constrained by k ·n = 0. The field coefficients
are given by α = γR E0 and β(1) = γD

[
(π/a)2 − k2/4

]
.

Hereby, the Rashba SOC strength α is characterized by
an electric field E = E0n as a result of a potential gradi-
ent in growth direction n of the quantum well. In con-
trast, the Dresselhaus parameter β(1) strongly depends
on the quantum well width a. Additionally, both SOC
coefficients are scaled by a material and confinement spe-
cific parameter γi. In the definition of β(1), the result of
D’yakonov et al., Ref. [17], is extended by including the
effect of k-cubic Dresselhaus terms, focusing only on the
lowest angular harmonics in k. The k-cubic terms reduce
the Dresselhaus SOC strength β(1) by a factor that de-
pends on the wave vector k which was already observed
in Refs. [18, 19] for [001] 2DEGs. The impact of k-cubic
Dresselhaus terms w.r.t. higher angular harmonics is de-

scribed by the field Ω
(3)
D . Commonly, these terms consti-

tute an obstacle for the realization of SU(2) symmetry.
We observe that only the [111] and [110] growth direction
allow to construct a collinear SOF despite of the presence

of Ω
(3)
D . Yet, since the contribution Ω

(3)
D is usually very

small, it will be neglected hereafter. It is discussed in
more detail in the Supplemental Material.

Spin diffusion equation. To gather information about
the spin relaxation, we study the impact of SOC on the
spin diffusion equation for weak SOC and disorder in the
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Fig. 1. (Color online) (a) Global minimum λmin (in terms of

Qso = 4mβ(1)/~2) of the spectrum of the spin diffusion op-
erator Λsd for the optimal ratio of Rashba and Dresselhaus
coefficients α/β(1) for different growth directions [ñx, ñy, 5]
(ñx, ñy ∈ Z). The white lines emphasize the vanishing min-
ima. (b) Ratio between the global minimum λmin and the

minimum 1/(Deτ̂
(0)
s,min) found by considering the spectrum at

q = 0 solely, which corresponds to the D’yakonov Perel’ spin
relaxation tensor, Eq. (4). Along the white lines, both minima
vanish exactly due to the SU(2) symmetry.

regime of zero temperature. Selecting the Fourier repre-
sentation with small wave vectors k, q, and frequencies ω
leads to the equation for the spin density s(q, ω) [20–22]:

0 =
(
Deq

2 − iω + 1/τ̂ (0)s

)
s +

4iτe
m
〈(q · k) Ω〉 × s. (3)

Here, τe denotes the mean elastic scattering time, De =
v2Fτe/2 the 2D diffusion constant with the Fermi (F) ve-
locity vF = ~kF/m. The corresponding D’yakonov Perel’
spin relaxation tensor is given by [23, 24](

1/τ̂ (0)s

)
ij

= 4τe/~2(〈Ω2〉 δij − 〈ΩiΩj〉). (4)

The averaging 〈. . .〉 is performed over all in-plane di-
rections of k using the relation 〈kikj〉 = (k2F/2)(δij −
ninj) [16]. It is practical to rewrite Eq. (3) by means of
the spin-diffusion operator Λsd(q), i.e., 0 = (DeΛsd(q)−
iω) s. Parameter configurations which yield a vanish-
ing eigenvalue λ of Λsd at a specific q = qmin lead to
an infinite spin lifetime. Thereby, we distinguish two
cases depending on qmin: (i) for qmin = 0, the long-lived
spin state does not precess in coordinate space, (ii) for
qmin = Q 6= 0, a persistent spin helix is formed.

Conditions for persistent spin states. In Fig. 1(a) we
display the global minimum λmin of the spectrum of Λsd

in dependence of the 2DEG orientation. It is determined
by identifying individually for a 2DEG with the Miller in-
dices [ñx, ñy, 5] (ñx, ñy ∈ Z) the optimal ratio of α/β(1).
Along the white lines λmin vanishes exactly. This in-
dicates that a vanishing eigenvalue λ demands at least
two equal indices |ni| of the normal vector n. Rigorous
analytical calculations confirm this supposition (see Sup-
plemental Material).

Thus, without loss of generality we restrict our analysis
to the first octant, i.e., ni > 0, and for simplification set
nx = ny ≡ η and nz =

√
1− 2η2 due to normalization.

The relation to the polar angle θ w.r.t. [001] is given by
η = sin(θ)/

√
2. Hence, the growth direction is defined by

a plane which comprises all commonly known cases that
allow for spin-preserving symmetries, i.e., [001], [111],
and [110]. For an arbitrary η ∈

[
0, 1/
√

2
]

the Rashba
and Dresselhaus coefficients need to fulfill the relation

α/β(1) = Γ0 := (1− 9η2)
√

1− 2η2. (5)

Inserting this particular condition in Eq. (1), we can
rewrite the Hamiltonian in a form which reveals the
SU(2) symmetry, that is,

H =
~2

2m

(
k2 + (k ·Q) Σ

)
. (6)

The spin operator

Σ =

(
σx + σy +

3η
√

1− 2η2

3η2 − 1
σz

)
/N ≡ Π · σ, (7)

with the normalization constant N =
√

2− 3η2/|1−3η2|
is a conserved quantity, i.e., [H,Σ] = 0. The direction of
the collinear SOF is determined by the vector Π. As a
result, it is always perpendicular to the [110] axis and,
thus, also to the wave vector

Q =
Q0√

2
(−1, 1, 0), (8)

with Q0 = |1 − 3η2|
√

1− 3η2/2Qso and Qso =
4mβ(1)/~2, which induces the shift of the Fermi con-
tours and describes the spin precession of the propagat-
ing electrons. The length Ls := 2π/Q0 is denoted as
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Fig. 2. (Color online) Characteristic parameters in case of a
persistent spin helix symmetry in dependence of the growth
direction. Notice the degeneracy for α/β(1) in the [001] direc-
tion.

spin precession length. It specifies the distance along
Q that spin-polarized electrons need to propagate un-
til their spin has performed a full precession cycle. The
corresponding precession axis is given by the orientation
of Π. Note that an additional solution occurs for η = 0,
that is, α = −β(1), which results in Q = Q0(1, 1, 0)/

√
2

and Σ = (σx − σy)/
√

2 for a [001] confined 2DEG.

In Fig. 2 we display the characteristic quantities in
case of a persistent spin helix symmetry in dependence
of the quantum well growth direction. Here, ξ is de-
fined as the polar angle between the surface normal n
and the direction Π of the collinear SOF. Obviously, Ls

reaches a minimum for a [001] orientation. For [111], i.e.,
η = 1/

√
3, the wave vector vanishes due to an overall van-

ishing SOF as the Rashba and Dresselhaus contributions
cancel each other exactly. Another peculiar situation oc-
curs for η = 1/3. Similarly to a [110] 2DEG, it yields a
conserved spin quantity for a vanishing Rashba SOC. As
η = 1/3 corresponds to an irrational Miller index, this
growth direction cannot be realized. Yet, it can be well
approximated by, e.g., a [225] crystal vector.

Imprints on weak (anti)localization. An indispens-
able tool to probe experimentally the D’yakonov Perel’
spin relaxation are low-field magnetoconductivity (MC)
measurements. Quantum interference in weakly disor-
dered conductors, i.e., εFτ/~ � 1, leads to a correction
to the Drude conductivity ∆σ which is highly sensitive
to magnetic fields as they break the time-reversal invari-
ance. Depending on the strength and structure of the
SOF the contribution to the conductivity can be positive
or negative, which is denoted as weak localization (WL)
or weak antilocalization (WAL), respectively. For 2D
electron systems the theory was developed by Hikami et
al. [25] and Iordanski et al. [18]. However, Knap et al. [26]
discovered later that the spin relaxation rates induced by
Rashba and Dresselhaus SOC are not additive and re-
flect the spin-preserving symmetries. Subsequently, the
theoretical models for WAL/WL have been successfully
applied to planar and tubular 2DEGs [11, 12, 27].

Considering the standard white-noise model for the im-
purity potentials and weak disorder, we can write the 2D
correction to the conductivity as [19]

∆σ =
2e2

h

∫
Q<√ce

d2Q
(2π)2

(
1

Q2 + cφ + cB

−
∑

j∈{±1,0}

1

λj(Q)/Q2
so + cφ + cB

)
, (9)

with the conductance quantum 2e2/h. Moreover, we used
the dimensionless orthogonal in-plane wave vectors of the
2DEG, Q = (Q+,Q−) where Q = q/Qso. Possible di-
vergencies in the integral are removed by the upper and
lower cutoffs ci = 1/(DeQ

2
soτi), i ∈ {φ, e,B}, due to finite

dephasing, elastic scattering and magnetic phase shifting
rates, τ−1φ , τ−1e , and τ−1B , respectively. The latter takes
into account external magnetic fields B = B n perpen-
dicular to the quantum well, i.e., 1/τB = 2Dee|B|/~ [28].
These fields are considered small enough that the Lan-
dau basis is not the appropriate choice. The spectrum of
the Cooperon and the spin diffusion equation are identi-
cal as far as time-reversal symmetry is not broken [29].
As a consequence, the spin relaxation rates, determined
by the eigenvalues λj of the spin diffusion operator Λsd,
become manifest in the gaps of the triplet eigenvalues of
the Cooperon and, thus, directly enter Eq. (9). In case of
a gapless mode, that is, a vanishing spin relaxation, this
results in a negative contribution to the conductivity, i.e.,
WL, despite of the presence of SOC and irrespective of
its strength. Therefore, a gate-controlled crossover from
WAL to WL provides a solid evidence of spin-preserving
symmetries [11, 12]. The explicit form of Λsd in case of
two identical Miller indices is given in the Supplemental
Material.

Magnetoconductivity near SU(2) symmetry. In the
vicinity ε of the optimal ratio of Rashba and Dresselhaus
SOC, i.e., α/β(1) 7→ Γ0 + ε, the structure of the eigen-
values λj , j ∈ {0,±1}, can be approximated by three
parabolas of the form

λj/Q
2
so = Q2

+ + (Q− + jξ)
2

+ ∆|j|. (10)

The minima of λ± are shifted to finite in-plane wave vec-
tors Q− = ±ξ which are oriented along [110], represent-
ing the long-lived helical spin states. Expanding Λsd to
lowest order in ε and neglecting all q-independent terms
yields a shift ξ2 ≈ Q2

0/Q
2
so+∆0+ε(1−3η2)

√
1− 2η2. Ap-

plying this and keeping only the leading terms in ε, one
finds ∆0 ≈ 2∆1 ≈ ε2/4. The gaps ∆ = 1/(DeQ

2
soτs) are

a consequence of the finite spin relaxation rates τ−1s due
to the broken SU(2) symmetry. We stress that the gap at
Q = 0 is twice as large as the gap at Q = (0,±ξ). This
fact is underlined by the results which are illustrated in
Fig. 1(b). There, we compare the global minimum λmin

of the spectrum of the spin diffusion operator Λsd(q) with
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Fig. 3. (Color online) 2DEG grown along [113] for ce/cφ = 103

and ce = 1 with α/β(1) close to the SU(2) symmetry point. (a)
Relative MC ∆σR(B) = ∆σ(B) −∆σ(0) for different values
of ε. The colored lines correspond to exact numerical calcu-
lations, the black dotted lines to the approximate expression,
Eq. (11). Gray dashed lines show the trend of the minima
∆σ(Bmin) in dependence of ε. (b) The respective MC mini-
mum as a function of ε. Red solid lines correspond to exact
numerical calculations, black dotted and green dashed lines
to approximate formulas.

the one arising from the terms at q = 0 purely, Eq. (4),
for various growth directions. Besides the cases of SU(2)
symmetry (white lines), the minima at q = 0 are gener-
ally about a factor 2 larger than the minima λmin. These
observations highlight the superior spin lifetime of heli-
cal spin densities which was previously observed in planar
and tubular 2DEGs with Rashba SOC [19, 27].

With this, the integral in Eq. (9) yields an analytical
result which solely depends on the the quantities ξ and
∆0,1 and the cutoff parameters ci, i ∈ {φ, e,B}:

∆σ ≈ e2

2πh
ln

(
4Υ100Υ010Υ2

001

Υ000Υ110 (Υ101 − ξ2 +
√
υ)

2

)
, (11)

with the tensor Υjkl = cφ+cB +jce +k∆0 + l∆1 and υ =
Υ2

101+2Υ-101ξ
2+ξ4. A particularly important character-

istic feature for experimental probing is the gate-control
of the MC minima Bmin where ∂B(∆σ(B)) = 0 [10, 14].
Exploiting the fact that ε, cφ, cB, and c−1e are small quan-
tities and neglecting the shift ξ, we can use Eq. (11) to

derive an approximate expression for Bmin as

Bmin ≈
(
√

5− 1)m2α̃2

2e~3
− ~

2eDeτφ
, (12)

where we defined α̃ = β(1)ε. According to this, the
crossover from positive to negative MC appears at α̃2 ≈
(1 +

√
5)~4/(4Dem

2τφ). These simple relations allow
for a direct determination of SOC coefficients and de-
phasing rate without parameter-fitting. The quadratic
scaling Bmin ∝ α̃2 was recently confirmed in experi-
ments [10, 14]. We stress that our numerical investiga-
tions indicate that the approximate formulas show gen-
erally better agreement for ε > 0.

To give an example, we consider a [113] orientated
2DEG, which has gathered attention as it facilitates long
spin relaxation times of 2D hole systems [30]. In Fig. 3(a)
we demonstrate the gate-induced crossover from positive
to negative relative MC ∆σR(B) = ∆σ(B) − ∆σ(0) by
varying the Rashba SOC strength, which is encapsulated
in the quantity ε, around the SU(2) symmetry point. The
colored lines correspond to the exact calculation by using
Eqs. (3) and (9), the black dotted lines to the approxi-
mate expression, Eq. (11). The gray dashed lines de-
pict the trend of the minimum ∆σ(Bmin) obtained by
Eqs. (11) and (12). The approximate formulas for the
respective Bmin and the horizontal offset (black dotted
and green dashed lines) are compared to exact numerical
calculation (red solid lines) in Fig. 3(b).

In summary, we have identified general sufficient and
necessary conditions for spin-preserving symmetries in
2DEGs of arbitrary growth directions. They demand a
specific ratio of Rashba and Dresselhaus SOC for an ar-
bitrary growth direction with at least two Miller indices
equal in modulus. Going from [001] to [110], the cor-
responding collinear SOF gradually transforms from in-
plane to out-of-plane, simultaneously modifying the spin
precession length. Also, we determined two specific situ-
ations, i.e., [111] and [110], where the inclusion of higher
angular harmonics of the Dresselhaus term continues to
allows for a homogeneous persistent spin state. Further-
more, by analyzing the spectrum of the spin diffusion
equation, we show that besides the cases of perfect SU(2)
symmetry, the spin of the long-lived homogeneous spin
state relaxes about a factor two faster than for the heli-
cal spin state. In addition, we derived analytical expres-
sions for the magnetoconductivity and the location of its
minimum around the SU(2) symmetry point. The latter
enables a fitting-free experimental determination of the
transport parameters. This work may trigger the inter-
est for investigating 2DEGs with low-symmetry growth.
It opens up new perspectives and supports the progress
towards tailoring spintronic devices.

We thank Ch. Gradl, M. Schwemmer and T. Korn for
useful discussions. This work was supported by Deutsche
Forschungsgemeinschaft via Grant No. SFB 689.
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SUPPLEMENTAL MATERIAL

Key requirement on crystal orientation for
persistent spin states

In the following, we prove that the realization of
a SU(2) symmetry in a two-dimensional electron gas
(2DEG) demands a growth direction with two Miller in-
dices equal in modulus.

The Hamiltonian HSO describing the spin-orbit cou-
pling (SOC) for a 2DEG which is grown along an arbi-
trary normal unit vector n = (nx, ny, nz) takes the form
HSO = Ω(k)·σ. Focusing on the first angular harmonics,

the spin-orbit field (SOF) Ω consists of Ω = ΩR + Ω
(1)
D .

The respective Rashba (R) and Dresselhaus (D) SOF,

ΩR and Ω
(1)
D , are defined in Eq. (2) of the main text.

The vector σ denotes the vector of Pauli matrices. We
can reformulate HSO as

HSO = k>Ξ σ, (13)

with a k-independent tensor Ξ which collects the wave
vector coefficients of the according components of the
SOF. In consequence of the 2D confinement, the wave
vector obeys the relation k ·n = 0. Thus, without loss of
generality we assume nz 6= 0 and replace kz = −(kxnx +
kyny)/nz in Ω. Using this and setting Γ = α/β(1) gives

Ξ = β(1)


2n2x + n2y − n2z + Γ

nxny

nz
−
(

4nxny + Γ
n2
x+n

2
z

nz

)
(n2y − n2x + 2n2z)

nx

nz
+ Γny

4nxny + Γ
n2
y+n

2
z

nz
−
(

2n2y + n2x − n2z + Γ
nxny

nz

)
−
(

(n2x − n2y + 2n2z)
ny

nz
+ Γnx

)
0 0 0

 . (14)

In case of a SU(2) symmetry, the SOC Hamiltonian HSO can be rewritten in the form HSO = (k ·Q)(Π · σ). In this
formulation, both vectors Q and Π are required to be independent of k. The vector Π determines the direction of
the collinear SOF and therefore the homogeneous persistent spin state. In contrast, the vector Q induces the shift of
the Fermi contours and describes the spin precession of the persistent spin helix. Assuming this relation to hold, we
can identify ai = Q Πi, i ∈ {1, 2, 3}, where ai denotes the i-th column vector of Ξ. Hence, in order to obtain SU(2)
symmetry, the column vectors ai of Ξ need to be collinear. This yields three equations a1×a2 = a3×a1 = a2×a3 = 0
which are equivalent to

nxΓ2 + nynz(10n2x + n2y + n2z)Γ = nx[n4x + 2(n4y + n4z)− 3n2x(n2y + n2z)− 11n2yn
2
z], (15)

nyΓ2 + nznx(10n2y + n2z + n2x)Γ = ny[n4y + 2(n4z + n4x)− 3n2y(n2z + n2x)− 11n2zn
2
x], (16)

nzΓ
2 + nxny(10n2z + n2x + n2y)Γ = nz[n

4
z + 2(n4x + n4y)− 3n2z(n

2
x + n2y)− 11n2xn

2
y]. (17)

From nx = 0 in Eq. (15) follows that either Γ = 0 or
ny = 0. The latter case corresponds to two equal indices.
Using the solution nx = Γ = 0 in Eq. (16) leads again to
ny = 0. As this allows to exclude the cases nx = ny = 0
from the discussion, we can eliminate Γ2 by subtracting
the distinct equations from each other. Taking addition-
ally into account normalization, i.e., n2x + n2y + n2z = 1,
one finds

Γ(n2x − n2y) =
nxny
nz

(1− 9n2z)(n
2
x − n2y), (18)

Γ(n2y − n2z) =
nynz
nx

(1− 9n2x)(n2y − n2z), (19)

Γ(n2z − n2x) =
nznx
ny

(1− 9n2y)(n2z − n2x). (20)

On condition that all indices |ni| are different from each
other, we can cancel the factors (n2i −n2j ). This, however,
causes inconsistent solutions for Γ. As a result, at least
two indices are required to be equal in modulus and we

obtain three cases:

nx = ±ny : Γ = ± nz − 9nxnynz, (21)

ny = ±nz : Γ = ± nx − 9nxnynz, (22)

nz = ±nx : Γ = ± ny − 9nxnynz, (23)

which includes the result of the main text.

In the following section, we demonstrate that, in turn,
starting from the assumption nx = ny = η, the relation
Γ = (1 − 9η2)nz must hold true in order to generate a
collinear spin-orbit field. The latter induces SU(2) sym-
metry since it allows to reformulate the SOC Hamiltonian
HSO in the form HSO = (k ·Q)(Π · σ) as it is shown in
the main text.
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Collinear spin-orbit field and the effects of higher
angular harmonics

Again, we assume a 2DEG which is oriented along
an arbitrary normal unit vector n = (nx, ny, nz). The
Hamiltonian HSO which describes the SOC is written as

HSO = Ω · σ = (ΩR + ΩD) · σ, (24)

where the Rashba SOF ΩR is defined in Eq. (2) of
the main text. The full Dresselhaus SOF ΩD, includ-
ing angular harmonics up to third order, is given by

ΩD = Ω
(1)
D + Ω

(3)
D = γDν with the components [16, 17]

νx =
(π
a

)2 [
2nx(nyky − nzkz) + kx(n2y − n2z)

]
+ kx

(
k2y − k2z

)
(25)

and similar for νy and νz by cyclic index permutation.
The vector σ denotes the vector of Pauli matrices, a the
width of the square well confinement along the growth
direction, and γD a material and confinement specific pa-
rameter. In consequence of the 2D confinement, the wave
vectors obey the relation k ·n = 0. In the given represen-
tation, the basis vectors x̂, ŷ, and ẑ correspond to the
principal crystal axes [100], [010], and [001], respectively.

It is convenient to rotate the Hamiltonian HSO such
that the z-axis of the transformed system is aligned with
the 2DEG’s growth direction. Focusing on the scenario
where the persistent spin helix symmetry can be realized
up to higher angular harmonics, we set nx = ny ≡ η

and nz =
√

1− 2η2. For simplicity, we restrict to the
first octant only, i.e., η ∈

[
0, 1/
√

2
]
. The relation to the

polar angle θ with respect to [001] yields η = sin(θ)/
√

2.
With this, the rotation can be performed by means of
the rotation matrix

R =
1√
2

 nz −1
√

2η

nz 1
√

2η

−2η 0
√

2nz

 . (26)

The Hamiltonian in the rotated system, i.e., H′SO =
Ω′ · σ′, is obtained by replacing k 7→ R·k′ and σ 7→ R·σ′
with the according basis vectors x̂′ = (nz, nz,−2η)/

√
2,

ŷ′ = (−1, 1, 0)/
√

2, and ẑ′ = (η, η, nz).

After applying this transformation, the Rashba SOF
lies in the plane of the quantum well and reads

Ω′R = αk′ (sin(ϕ),− cos(ϕ), 0), (27)

with α = γRE0 where γR is a material and confinement
specific parameter and E0 results from an electric field
E = E0ẑ′ perpendicular to the 2DEG. Here, we intro-
duced polar coordinates for the in-plane wave vectors,
k′x = k′ cos(ϕ) and k′y = k′ sin(ϕ). The Dresselhaus SOF
Ω′D can be split into two contributions that contain the

angular harmonics in k of the first and third order, Ω
′(1)
D

and Ω
′(3)
D , respectively. Thus, we find

Ω′D = Ω
′(1)
D + Ω

′(3)
D , (28)

with the SOF w.r.t. the l-th angular harmonics

Ω
′(l)
D = β(l)k′

 b
(l)
1 sin(lϕ)

b
(l)
2 cos(lϕ)

b
(l)
3 sin(lϕ))

 , (29)

where β(1) = γD
[
(π/a)2 − k′2/4

]
, β(3) = γDk

′2/4, and

the respective coefficients b
(l)
j are comprised in the vectors

b(1) =

 (1 + 3η2)nz
(1− 9η2)nz
−
√

2η(1− 3η2)

 , b(3) =

 (1− 3η2)nz
−(1− 3η2)nz
3
√

2η(1− η2)

 .

(30)

We note that each of the Dresselhaus fields lies in a plane
which is defined by the corresponding normal vector

v′(l) = (b
(l)
3 , 0,−b(l)1 ). The planes coincide if η = 0 or η =

1/
√

2, i.e., in case of a [001] or [110] 2DEG. In general, the

field Ω
′(3)
D gives a correction Ω

(3)
D · σ to the Hamiltonian

H in Eqs. (1) and (6) of the main text. To this end, the
Dresselhaus contribution due to third angular harmonics

Ω
′(3)
D ·σ′ has to be back transformed to the initial coordi-

nate system corresponding to the principal crystal axes.
This is achieved by replacing σ′ 7→ R−1σ, k′ 7→ R−1k,
and using the relations k′ cos(3ϕ) = k′x(k′2x − 3k′2y ) and
k′ sin(3ϕ) = −k′y(k′2y − 3k′2x ).

Typically, taking into account the effects of the third
angular harmonics inhibits the realization of a perfect
SU(2) symmetry. The spin rotation is no more well-
defined as it depends on the electron’s propagated path.
Nonetheless, in the following we show that the [111] and
[110] directions allow to construct a collinear SOF de-

spite of the presence of Ω
(3)
D which facilitates homoge-

neous persistent spin states. By adding the contributions

Ω′R + Ω
′(1)
D it becomes obvious that a collinear SOF field

is formed if the Rashba and Dresselhaus coefficients α
and β(1) fulfill the relation

α/β(1) = b
(1)
2 = (1− 9η2)

√
1− 2η2 (31)

which generates the SU(2) symmetry as demonstrated in
the main text. Adopting this and focusing on the first
angular harmonics yields the collinear field

Ω′R + Ω
′(1)
D = β(1)k′ sin(ϕ)(3η2 − 1)

−2nz
0√
2η

 . (32)

Comparing with Ω
′(3)
D , we observe that the collinearity is

generally destroyed apart from two particular situations
where η = 1/

√
3 or η = 1/

√
2, that is, the [111] or [110]
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direction, respectively. For [111], the SOF spanned by

Ω′R + Ω
′(1)
D vanishes as both contributions cancel each

other. The remaining field is given by Ω
′(3)
D which is

collinear to the [111] direction. In case of a [110] 2DEG,

we have Ω′R = 0 and the Ω
′(3)
D contribution is collinear

to the [110] axis which coincides with the collinear field

due to Ω
′(1)
D .

Summarizing, we have demonstrated that choosing a
growth direction which corresponds to identical Miller in-
dices and focusing on the first angular harmonics opens
the possibility to generate a collinear SOF. Also, we iden-
tified two specific scenarios, where the inclusion of higher
angular harmonics does not destroy this collinearity and
continues to allows for a homogeneous persistent spin
state.

Spin diffusion operator for two identical Miller
indices

Let us consider again a 2DEG grown along a crystal
direction with two identical Miller indices with focus on
the first octant, i.e., nx = ny ≡ η and nz =

√
1− 2η2 for

η ∈
[
0, 1/
√

2
]
. Analogously to the previous section, by

replacing q 7→ R · q′ we choose the in-plane coordinate
representation. Furthermore, we define the dimension-
less in-plane wave vectors of the spin density as Q+ =
Q cos(ϕ) and Q− = Q sin(ϕ) with Q = q′/Qso which cor-
respond to the basis vectors x̂′ = (nz, nz,−2η)/

√
2 and

ŷ′ = (−1, 1, 0)/
√

2, respectively. With these definitions,
the spin diffusion operator can be written as

Λsd/Q
2
so =

 K L M
L∗ N O
M∗ O∗ P

 , (33)

with the components

K = Q2 +
1

4

[
1 + Γ2 +

(
Γ2 + 16Γnz − 3

)
η2

+43η4 − 81η6
]
, (34)

L = i
√

2Q sin(ϕ)η(2nz + Γ)− 1

2
nzΓ

+
1

4

[
(Γ2 + 10nzΓ− 9)η2 + 58η4 − 81η6

]
, (35)

M =
η

4
[Γ(3− 5η2) + nz(2 + Γ2 − 2η2)]

− i Q√
2

{
[Γ + nz(9η

2 − 1)] cos(ϕ)

+(η2 − nzΓ− 1) sin(ϕ)
}
, (36)

N = K, (37)

O = M − i
√

2Q sin(ϕ)(1 + nzΓ− η2), (38)

P = K +
1

4
(1− 3η2)(1 + Γ2 − 16η2 + 27η4), (39)

where Γ = α/β(1), Qso = 4mβ(1)/~2, and higher angular
harmonics ∝ β(3) are neglected. The eigenvalues λj of
Λsd directly enter Eq. (9) of the main text which yields
the weak (anti)localization correction to the Drude con-
ductivity.

∗ michael1.kammermeier@ur.de
[1] D. D. Awschalom and M. E. Flatte, Nat. Phys. 3, 153

(2007).
[2] J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev.

Lett. 90, 146801 (2003).
[3] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys.

Rev. Lett. 97, 236601 (2006).
[4] M. Trushin and J. Schliemann, New J. Phys. 9, 346

(2007).
[5] V. E. Sacksteder and B. A. Bernevig, Phys. Rev. B 89,

161307 (2014).
[6] T. Dollinger, M. Kammermeier, A. Scholz, P. Wenk,

J. Schliemann, K. Richter, and R. Winkler, Phys. Rev.
B 90, 115306 (2014).

[7] P. Wenk, M. Kammermeier, and J. Schliemann, Phys.
Rev. B 93, 115312 (2016).

[8] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig,
S.-C. Zhang, S. Mack, and D. D. Awschalom, Nature
458, 610 (2009).

[9] Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev. Lett.
102, 226601 (2009).

[10] S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, and
T. Koga, Phys. Rev. B 83, 115309 (2011).

[11] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis,
Nat. Phys. 8, 757 (2012).

[12] M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger,
P. Olbrich, C. Schönhuber, I. Caspers, V. V. Bel’kov,
L. E. Golub, D. Weiss, K. Richter, J. Nitta, and S. D.
Ganichev, Phys. Rev. B 86, 081306 (2012).

[13] J. Ishihara, Y. Ohno, and H. Ohno, Applied Physics
Express 7, 013001 (2014).

[14] K. Yoshizumi, A. Sasaki, M. Kohda, and J. Nitta, Appl.
Phys. Lett. 108, 132402 (2016).

[15] J. Schliemann, (2016), arXiv:1604.02026v1.
[16] I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys.

76, 323 (2004).
[17] M. D’yakonov and V. Y. Kachorovskii, Sov. Phys. Semi-

cond 20, 110 (1986).
[18] S. V. Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus,

JETP Lett. 60, 206 (1994).
[19] S. Kettemann, Phys. Rev. Lett. 98, 176808 (2007).
[20] A. G. Mal’shukov, L. Y. Wang, C. S. Chu, and K. A.

Chao, Phys. Rev. Lett. 95, 146601 (2005).
[21] P. Schwab, M. Dzierzawa, C. Gorini, and R. Raimondi,

Phys. Rev. B 74, 155316 (2006).
[22] P. Wenk and S. Kettemann, Phys. Rev. B 81, 125309

(2010).
[23] M. I. Dyakonov and V. I. Perel, Soviet Physics Jetp-Ussr

33, 1053 (1971).
[24] G. E. Pikus and A. N. Titkov, in Optical Orientation,

Modern Problems in Condensed Matter Sciences, Vol. 8,
edited by F. Meier and B. P. Zakharchenya (North-
Holland, Amsterdam, 1984) Chap. 3, p. 73131.

mailto:michael1.kammermeier@ur.de
http://dx.doi.org/10.1038/nphys551
http://dx.doi.org/10.1038/nphys551
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.90.146801
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://stacks.iop.org/1367-2630/9/i=9/a=346
http://stacks.iop.org/1367-2630/9/i=9/a=346
http://dx.doi.org/10.1103/PhysRevB.89.161307
http://dx.doi.org/10.1103/PhysRevB.89.161307
http://dx.doi.org/ 10.1103/PhysRevB.90.115306
http://dx.doi.org/ 10.1103/PhysRevB.90.115306
http://dx.doi.org/10.1103/PhysRevB.93.115312
http://dx.doi.org/10.1103/PhysRevB.93.115312
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/10.1103/PhysRevLett.102.226601
http://dx.doi.org/ 10.1103/PhysRevB.83.115309
http://dx.doi.org/http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/ 10.1103/PhysRevB.86.081306
http://stacks.iop.org/1882-0786/7/i=1/a=013001
http://stacks.iop.org/1882-0786/7/i=1/a=013001
http://scitation.aip.org/content/aip/journal/apl/108/13/10.1063/1.4944931
http://scitation.aip.org/content/aip/journal/apl/108/13/10.1063/1.4944931
https://arxiv.org/abs/1604.02026
http://arxiv.org/abs/1604.02026v1
http://arxiv.org/abs/cond-mat/0405528
http://arxiv.org/abs/cond-mat/0405528
http://www.jetpletters.ac.ru/ps/1323/article_20010.pdf
http://link.aps.org/abstract/PRL/v98/e176808
http://dx.doi.org/10.1103/PhysRevLett.95.146601
http://dx.doi.org/ 10.1103/PhysRevB.74.155316
http://dx.doi.org/10.1103/PhysRevB.81.125309
http://dx.doi.org/10.1103/PhysRevB.81.125309


8

[25] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor.
Phys. 63, 707 (1980).

[26] W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-
Staszewska, D. Bertho, F. Kobbi, J. L. Robert, G. E.
Pikus, F. G. Pikus, S. V. Iordanskii, V. Mosser,
K. Zekentes, and Yu. B. Lyanda-Geller, Phys. Rev. B
53, 3912 (1996).

[27] M. Kammermeier, P. Wenk, J. Schliemann, S. Heedt,
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