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The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving
force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g.,
by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric
substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic
various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-
orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction,
together with anisotropic Elliott- Yafet spin relaxation, yields significant corrections to the magnetization-induced
dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to
the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin
current polarized parallel to the magnetization. This “inverse-spin-filter” contribution depends markedly on the
parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the
different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In
the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect.
A measuring scheme that could isolate this contribution is discussed.
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I. INTRODUCTION

The active control of the spin degrees of freedom in a solid-
state system is the central concern of spintronics [1]. The
exchange coupling between the magnetization and the spin of
charge carriers is routinely exploited two ways: to generate
spin currents and nonequilibrium spin polarizations and to
employ such currents and polarizations, generated by other
means, to exert a torque on the magnetization. In this work we
are concerned with only the first scenario, although all setups
that will be discussed can be, and typically are, used for both
purposes.

In this context, spin pumping [2—5] and the inverse spin Hall
effect ISHE) [5-9] are the tools of choice for generation and
detection of electronic spin currents, respectively. The typical
spin-pumping setup consists of a magnet/normal-metal bilayer
[10]. The magnetization of the magnetic material is driven
such that it performs a conical precession, and a spin current
perpendicular to the interface (here, along the z direction)
builds up, j, ~ g,T ‘nxn+ g[T 1. The vector components of
Jz» ie., j¢, with a = x,y,z, represent the spin polarization, n
is the instantaneous magnetization direction, and g,T v (gl.T i)
is the real (imaginary) part of the spin-mixing conductance
gN [3]. Due to the ISHE in the bulk of the normal metal,
this spin current can be detected by measuring the inverse
spin Hall voltage appearing therein. The inverse spin Hall
voltage is associated with the spin Hall angle 6%, which is
defined as the ratio of the spin Hall and charge conductivities.
Large spin Hall angles are typically found in transition metals
such as Au [9,11], Pt [7,9,12—-14], and Ta [14,15]. The same
class of setups is also used to study the reciprocal effect,
when spin currents generated in the normal layer enter the
magnetic material and exert a torque on its magnetization
[13,15-17]. The spin-galvanic effect (SGE) [18,19], which
can be related to the ISHE [20,21], represents another channel
for spin-to-charge conversion. It is also referred to as the
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inverse Edelstein effect [22,23] and consists of the generation
of a charge current perpendicular to the polarization of a
nonequilibrium spin density. Of course, its inverse can also
be used to induce a torque on magnetizations [24,25].
Besides the magnet/normal-metal system just discussed,
different spin-pumping setups are possible. For example,
spin-charge coupled transport in a Fe/GaAs bilayer can be
understood as taking place in an effective two-dimensional
(2D) magnetized electron gas at the Fe/GaAs interface [26,27],
which can be regarded as a magnet/normal-metal system with
the normal metal in the 2D limit. Indeed, experimentally
realized thin films span the range of thicknesses from a few
monolayers [28,29] up to tens of nanometers [11,14,30], so
that the full three-dimensional (3D) to 2D range is available.
Clearly, the analysis of spin pumping is different in the 3D
and 2D scenarios. In the latter case no spin current can flow
perpendicular to the 2D metal, while in-plane spin currents
will be generated by the driving magnetization as soon as
in-plane spin-orbit coupling is taken into account, thus leading
to in-plane ISHE physics. We will concentrate on the 2D to
quasi-2D regime, in a sense to be made more precise later,
and connect our analysis to the one usually performed for 3D
systems in the closing. Note that this kind of 2D analysis
is also relevant for magnet/topological-insulator structures,
which have recently been employed for both spin-pumping
and reciprocal torque-inducing purposes [31,32] due to the
intrinsic 2D nature of the topological surface states.
Typically, spin pumping is most effective as long as the
thickness of the film does not exceed the spin-relaxation
length of the normal metal [3,4]. In thin films, on the other
hand, Elliott-Yafet scattering, an important spin-relaxation
mechanism in various metals [1], should be more effective
for in-plane spins than for out-of-plane ones: in the 2D limit
it does not lead to any relaxation of the out-of-plane spins
at all [33]. Furthermore, corrections arise in the presence of
magnetic textures and intrinsic spin-orbit fields, and indeed,
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such corrections turn out to be necessary for the physical
consistency of the spin dynamics. These corrections are taken
into account, as well as anisotropic spin relaxation.

While the magnetization of the spin-pumping setups men-
tioned above is homogeneous, the situation is even more
interesting in the presence of magnetic textures/spin waves
when complex spin-charge and magnetization dynamics takes
place [34-37]. Hence, we will consider the general situation
where the driving is due to a time-dependent magnetic texture,
whose spatial and temporal profile can have any form, and
only needs to be smooth on the Fermi wavelength and energy
scales. We will model the thin metallic system as a nearly
free electron gas and employ an SU(2)-covariant kinetic
formulation [38] to compute the effective forces which act
on the conduction electrons. The latter are generated by
the interplay of the magnetization dynamics and spin-orbit
coupling. We remark that our kinetic treatment can include
finer details of the spin-orbit field, such as those described in
Ref. [26], where the latter is shown to depend on the direction
of the main (static) component of the magnetization. However,
in order to focus on the essentials and avoid overburdening
the equations, we assume only a Rashba-like spin-orbit field.
Such an effective field is taken to be homogeneous across the
whole, not necessarily strictly 2D, sample, similar to the case
in Refs. [17,39]. The opposite limit of a bulk metal with a sharp
8-like Rashba spin-orbit coupling at the interface has also been
considered [21,40—42] and recently discussed in great detail
[43,44].

The outline of the paper is as follows. We first (Sec. II)
introduce the system and connect its model form to real-world
structures. In so doing, we also clarify the meaning of the
important parameters related to the physical energy scales of
the problem. In Sec. III we introduce the model in detail, along
with the transport equations for the charge and spin distribution
functions. The general theoretical results, in particular, the
derivation of the generalized effective force acting on the
conduction electrons in the presence of spin-orbit coupling,
are presented in Sec. IV. Sections III and IV are technically
more involved and can be skipped by the reader mostly inter-
ested in their specific physical consequences. An experimen-
tally relevant example is dealt with in Sec. V, which analyzes
the typical spin-pumping configuration. More precisely, we
show that the buildup of a dc electric field in a narrow
metallic film is mainly due to the SGE and is substantially
modified by spin relaxation and suggest that this can be probed
by comparing longitudinal and orthogonal measurements on
the same sample. Here, we also comment on the connection
between the 2D analysis of spin pumping and the established
3D one. A brief conclusion is given in Sec. VI. Finally, the
appendixes show detailed derivations of the collision integrals
and of the generalized spin diffusion equations.

II. THE SYSTEM AND ITS ENERGY SCALES

The system consists of a substrate/normal-metal/magnetic
material structure, as sketched in Fig. 1(a), and is characterized
by various energy scales, which will now be introduced. First
of all, the Fermi energy € is assumed to be much larger than
any other relevant energy; that is, we are dealing with a “good
metal.”
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FIG. 1. (a) A sketch of the considered structure; n(r,z) is the
magnetization direction in the magnetic material, here illustrated as
a Néel domain wall. The precise nature of the magnetic layer, e.g.,
ferro- or ferrimagnetic insulator, is inconsequential for our treatment,
although it will determine the value of the physical parameters
entering the effective Hamiltonian. The same holds for the normal
metal, whose thickness can be anything from a few monolayers (2D)
up to tens of nanometers (3D). Electrons therein feel an effective
Rashba spin-orbit field due to inversion symmetry breaking, as well
as (random) spin-orbit scattering from impurities. The substrate is a
generic structureless insulator, possibly the vacuum. (b) A possible
experimental realization of a spin-pumping setup, where precession
of the (here homogeneous) Fe magnetization drives the spin-charge
dynamics of a 2D electron gas formed at the interface with GaAs.

We then assume a proximity-induced magnetization in the
metallic film. The coupling between the itinerant s and the
localized d electrons, i.e., the induced magnetic texture, is
described within the s-d model:

o
Hyy = Axe Il(l‘,t) . 5’ (1)

where 0 = (0°,07,0%) denotes the vector of Pauli matrices,
Ay is the ferromagnetic exchange band splitting, and n is
the magnetization direction. At first sight, this model might
appear questionable since we wish to study the dynamics in the
nonmagnetic metallic film. However, it is known that metals
like Pt and Pd can be magnetized due to the magnetic proximity
effect [45—47] and that the exchange energy may be large, i.e.,
much larger than the disorder broadening, Ax.t/A > 1, with
T denoting the momentum relaxation time. The precise value
of Ay. depends on the material properties of the magnetic and
nonmagnetic layers and of the interface.

Furthermore, we assume two types of spin-orbit coupling,
a Rashba-like spin-orbit term due to structure inversion
asymmetry [see Fig. 1(a)] and extrinsic spin-orbit coupling
due to impurities. The Rashba spin-orbit coupling Hamiltonian
reads

a
HRz—Eaxi-p, 2)
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with the Rashba parameter o estimated to be between 0.03
and3eV A, depending on the structure and material properties
of the system [48]. The associated spin-orbit splitting Ay, =
2apr/h is taken to be small in the sense that Ay, t/h <K 1.
This condition is often appropriate and, in addition, useful for
obtaining physically transparent equations for the spin-charge
coupled dynamics. However, since typical values for the spin-
orbit splitting are in the range 1073, ...,107! eV [26,28,29],
this condition is not universally realistic. Extrinsic spin-orbit
coupling with impurities is described by

)\2
Hey = 4h0' x VV(r)-p, 3)
where A is the effective Compton wavelength, whose strength
is material and impurity type dependent, and V (r) is the disor-
der potential. Due to the two types of spin-orbit coupling, both
Dyakonov-Perel (DP) and Elliott-Yafet (EY) spin-relaxation
mechanisms are present. The corresponding energies are
given by

h 2ma\ 2
— =h = D, )
B hapr\?

o= ‘(%) : ©)

respectively, with the effective mass m, the Fermi momentum
pr, and the diffusion constant D = v%t/d, where d = 2,3
represents the dimensionality. Note that the expression for
h/tpp follows from the condition At/ < 1. Dyakonov-
Perel relaxation is intrinsically nonisotropic since the Rashba
term (2) contains only in-plane momenta, and while its strength
depends on the dimensionality of electronic motion through
D, its anisotropy does not. Elliot-Yafet relaxation is, on the
other hand, strongly anisotropic only in the 2D limit. Here,
however, “2D” does not refer to the electronic motion, being
rather determined by the ratio of the metal thickness ¢,, to the
spin-relaxation length: Elliott-Yafet is 2D (3D) roughly for
small (large) 7, in this sense. The transition is modeled by
introducing a phenomenological parameter 0 < ¢ < 1, with
=0« 2D, ¢ =1+« 3D (see Sec. III). We focus on the
experimentally relevant regime 1/tpp > 1/, [22]. Together
with the strong exchange assumption, Ay t/h > 1 [47], this
leads to the following hierarchy of energy scales:

i i < i L1k i (6)
Axcts Axc‘L'DP AXCT soT )
—— ——

ﬂ: /3DP

Equation (6) defines the spin torque parameters 8, and Spp,
which will appear repeatedly below.

The magnetization is assumed to be smooth on the Fermi
wavelength A r scale, and the frequency of its time dependence
is taken to be small compared to the spin-flip rate,

ot /i K 1, @)

applicable for the typical adiabatic pumping regime. In Sec. IV,
we will in addition consider the diffusive regime,

wt,ql L 1, (®)
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where ¢ is the typical wave vector of the system inhomo-
geneities and / = vp7t the mean free path.

III. THE KINETIC EQUATIONS

In order to describe the transport phenomena in the presence
of spin-orbit coupling and a magnetic texture, we use the
SU(2) formulation of the Boltzmann-like equation [38]. The
Hamiltonian of the system reads

1 o\ ? o?
H= —<P + Aa7> +ed + \Il“(r,t)7 + V(r) + Hex,

T 2m
)

where A“ is an SU(2) vector potential which describes
the intrinsic spin-orbit coupling, @ is the electric potential
with e = |e|, and W* is an SU(2) scalar potential. Here and
throughout the paper, upper (lower) indices will indicate spin
(real-space) components. A summation over repeated indices
is implied.

For the system discussed in Sec. II, we have

Hyq < WO(r,t) = Axcn(r,1), (10)
2mao

[compare Eqs. (1) and (2)].

According to Ref. [38] and for §-correlated (short-range)
disorder, the Boltzmann equation for the distribution function
f=f"+f.0, with O (f) denoting the particle (spin)
distribution function, reads

3 N 1 1
G+ 2.V 4 AF Voft=—=(f — (/N + Lexf],
m 2 T
(12)

where (---) denotes the angular average with respect to the
momentum. The covariant time (spatial) derivative d; (V) and
the generalized force F are given by

< il ,o0¢
3t=3t—P—i|:\IJ 77'i|7 (13)
~ l' O.Ll
Vr:Vr+ﬁ|:A“7,~], (14)
a __a
f:—eE—(£+3xB> 7, (15)
m 2
and
a a 1 abc\y b Ac
&'=-V;¥ —ﬁe w2 A7, (16)
1 X X
B = _Egijkg“’"/lf. ‘ 17)

with V; denoting the ith component of V.. The dot within
the commutator in Egs. (13) and (14) is a placeholder for the
object on which the covariant derivative acts. Using Eqs. (10)
and (11), the ith component of the generalized force reads

. o 2ma? .
Fi = —eEi + Ax(Vin) - 3 T 5 CuePio (18)
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FIG. 2. Impurity-averaged self-energy which determines the
Elliott-Yafet collision operator. The boxed crosses, the dashed
line, and the arrowed double line represent spin-orbit coupling,
impurity correlations, and the Green’s function in Keldysh space,
respectively.

The ith component of the (3D) covariant derivative v, is
defined as
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sense that [v]b = v x b for an arbitrary vector b. The vector
a; is defined as a; = 2ma/h2(—8,-y,8,~x,0). Analogously, from
now on we use the “3D covariant time derivative,” defined as

Axe
7 [n].
The quantity Igy on the right-hand side (rhs) of Eq. (12)
is the Elliott-Yafet collision operator, representing spin-flip
processes. It follows from the impurity-averaged self-energy
as depicted in Fig. 2 and is substantially modified in the
presence of intrinsic spin-orbit coupling and magnetic textures.
The corrections are obtained via a first-order SU(2) shift (see
Appendix A), which yields the following generalized collision

5,=a,+

(20)

V=V +[alx, (19)  integral:
where we have introduced the notation for an antisymmetric Iy = II(-Z)Y +5 I]%PY 48 I];:"\‘{ , Q1
matrix [v], with its components defined by ([v],)* =
—g4b¢y¢, This definition corresponds to a cross product in the where
|
1 () /
Igy = TNt (E) fdp S(ep — eIy +1,)]- 0, (22)
w _ mp (A * / 0 0
Slgy = —— | =) [dp'8(ep — )W) - [fJo + £, — (1 + €pdc, ) (fyo — )], (23)
N()‘L’ 2h P
l )\' ¢ / a a a a
o1 = = (3) o — A Lonlo (53— 590+ (5 + 5] 4

withW = A n,dp' =d?p' /2rh)! Ly y = (p?+p-p)p —
(p®> +p-p)p’. No being the density of states per volume
and spin, and I' = diag(1,1,¢). The latter takes into ac-
count the anisotropy of spin-flip processes, as discussed
above, and hence depends on the thickness 7, of the nor-
mal metal. Clearly, 0 < ¢ < 1, with ¢ = 0 representing the
limit that the normal metal is a 2D gas, i.e., for small
tn, whereas one may assume ¢ =1 when ¢, > {;, where
£, is the spin-relaxation length of the normal metal. We
emphasize that Eqs. (23) and (24) are valid for arbitrary
spin-orbit fields, not only Rashba coupling, and magnetic
textures.

Expressions (23) and (24) are “first order” in the SU(2)
fields, provided we take the spin distribution function f
to be “zero order”” However, as discussed in the next
section in connection with Eq. (30), f contains a local-
equilibrium part f.q, which formally is also first order.
Thus, in order to treat relaxation due to the EY collision
operator consistently, it becomes necessary to include also
a specific second-order correction in the SU(2) shift, which is
given by

1/
8I$LI/ = _E<E> - Aipipzaep <€paepfe%>’ (25)

where fe% is the Fermi function. As a consequence,
only the nonequilibrium part of the spin density s will
enter the effective force, Eq. (48). An even more de-
tailed investigation of the EY collision operator is well
underway [49].

IV. SPIN-CHARGE COUPLED DYNAMICS

Here, we present the coupled equations for the electron
density, the electron current, the spin density, and the spin
current, respectively defined as follows [50]:

n= 2/dp 1o, (26)
=2 a2y @
s = /dpf, (28)

ji = / dp Ly, (29)

We focus first on the spin sector (Sec. IV A) and second on the
charge sector (Sec. IV B) and third discuss the interpretation
of the different contributions to the effective force (Sec. IV C).

A. Spin sector

In order to study the spin sector, we multiply the Boltzmann
equation by the Pauli vector ¢ and perform the trace. Before
doing so, it is convenient to split the spin distribution function

f as
f =1 +df, 30)

withfe, = (-0, e%)(AXC /2)n, where fc% is the Fermi function.
This is motivated by the form of the spin density

S = Seq + 35, €29}
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where s.q = (NoAx:/2)n is the equilibrium part of s which
adiabatically follows the magnetization. The dynamics of
the itinerant electrons, which is typically much faster than
the magnetization dynamics, leads to the nonequilibrium
contribution §s.

We trace over the spin sector and obtain the following 3 x 3
matrix equation:

Msf = N(5f) + S, (32)
with
M=1+-—T+13 +2%, (33)
271 m
N=1—-_T, (34)
27,
TA .
S = (9, /2) 2"°n (35)

Note that we have neglected small deviations of f° from its
angular average, f° ~ (f9), since these are at least first order
in the electric field E or the magnetic texture, i.e., V;n or n.
Furthermore, we assume ( f°) ~ e%.
By an integration of the spin sector over the momentum we

obtain

= S . 1 NOAXC .

0,68+ V;jy=——I8s— ——n. (36)

T 2

Next, we consider the quasiadiabatic limit, 7,0;6s < §s, as
well as 7,0,8s < ¢8s. We are then able to solve for the
nonequilibrium spin density:

ds = (8s), + (88)j, (37)
where
(08)y = — NOA;CTS (r + ﬂ;l[n]x)_]fl (38)

denotes the part of §s which is associated directly with the
magnetization and

©s);, = =7 (T + B m].) ' Vi (39)

the part which is associated with the spin current. In general the
spin current itself depends on the spin density, which has to be
kept in mind when solving for the spin density from Eq. (36).
The split in Eq. (37) is found to be technically convenient.

In the following, we shall calculate the spin current in the
diffusive regime. Our approach is to rewrite the matrix M in
Eq. (32) as follows:

M=(1+&M, (40)
where
AgeT
M= <1 + = [n]x) Se
and
&= <LF+18,+T&Vi)M_1~ (42)
27y m

In the diffusive regime we can approximate (1 + £)~! ~ 1 — &
and rewrite Eq. (32) as

8t = M~'(1 — &)(N(st) +S). (43)
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Spin density Spin current
s = (ds),, + (9s);, Ji = ({i)n + (Gi)s

\' Effective force /

Fi = (Fy)s + (F)j

s

FIG. 3. Scheme of the various contributions to the effective force.

By multiplying the latter equation by p;/m and integrating
over the momentum, we obtain the spin current:

Ji = Gn + (s, (44)
where
Gi)n = %1)1\7(,Ax01\4*1%1\r1 n (45)
denotes the part arising directly from the magnetization and
(Gi)s = —DM~'V; M~ '5s (46)
the part of the spin current which has its source in the spin

density.

B. Charge sector

For the charge sector, we trace over the Boltzmann equation
(12), multiply by p;, and integrate over the momentum, with
the following result:

(I+70)ji + DVin = —npE; +

‘CN() Axc F, ( 47)

m
where = et/m 1is the electron mobility and nu = op/e,
with op being the Drude conductivity. The effective force F;
combines the contributions of the nonequilibrium part of the
spin density and the spin current.

A scheme of the various contributions to the effective force
isdepictedin Fig. 3. We split F; = (F;)s + (F})j, into two terms
which represent the contribution of the spin density (F;)s and
the direct contribution of the spin current (F;);,. According to
this split, it is clear that (F;)s is associated with the SGE, and
(F);, is associated with the ISHE. The two contributions to
the effective force explicitly read

F»—l[V 5+ A8<] 48
(t)s—ﬁo(tn)'s h_2,8s(zx S)ta ( )

1
(F)j, = D_NO|:/3DP(jZ x ), + %n: 'ji:|» 49)
with n; = I'n. With respect to the second term on the rhs
of Eq. (48), compare it to the discussion in connection with
Eq. (25).
We further divide (F;)s into contributions arising from (8s),
and (8s);, :

(Fi)s = (Fi)sn + (Fi)s.jy » (50)
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where (Fj)sn and (F;)sj, have the same form as (F;)s in
Eq. (48), but with §s being replaced by (ds), and (ds);,,
respectively. Analogously, we define

(F)j, = (F)j,n + (Fij s (51
with (F;);, n and (F)); s having the same form as (F));
in Eq. (49), but with j; being replaced by (j;)n and (j;)s,
respectively. The idea behind this separation is to express the

effective force in terms of the drive n and the spin current, with
the subscripts indicating the respective origins.

1. The contribution (F;)sn

The spin density related directly to the dynamical magne-
tization [see Eq. (38)] is explicitly given by
ANy 1 . 1.
(88)y = —— = [ xn— BgI'nl.
2 n;
We insert Eq. (52) into Eq. (48) and find

hol
52
ZnC

(52)

(Fi)sm = {(Vin) : (ng X n— ﬂsé'r‘_]ﬁ)

2mao .
+ ﬁ_z[(“ ‘N )Z XN

+ B2 x (n; x N+ ¢n x rln)],-}. (53)

Assuming ¢ =1 (i.e., t,, > £;), the last equation reduces to
Eq. (11) in Ref. [51] (see also Refs. [35,52-56]). Recall that ¢
describes the anisotropy of spin-flip relaxation and that ¢ = 1
corresponds to the isotropic case. As far as we know, this is the
first time that such anisotropy (¢ < 1) is explicitly taken into
account. However, experiments on thin films typically deal
with samples on the scale of a few nanometers; hence, it is
appropriate to include this effect.

2. The contributions (F;);; and (F;);, . (homogeneous case)

For the sake of simplicity and since we are mostly interested
in the competition between the SGE and the (in-plane) ISHE,
we shall focus here on the Rashba contribution; that is, we
consider V; =~ [a;] in Egs. (39) and (48), which corresponds
to a spatially homogeneous situation. Neglecting terms ~ 2
and smaller for the spin-density-dependent contribution, we
find

11 L
(Fisj, = D—Non—?ﬁDP{(n -0 )[Z X ()nli
+2 3 [n:(), — na(), )@ % n),-}. (54)

Adding the contribution by (j;)n [Eq. (49) with j; — (ji)nl, we
obtain

1 1— 2
(Fs,j, + (Fyj,n { Bord ( oin

= DN, - (2 % (j%)nli + 2Bpp
X D)), ), |

+ Tinf G- (55)
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Note that (F;);, n features a direct contribution due to the
driving source, i.e., n, whereas (F;); s contributes more
indirectly through &s. Apparently, Eq. (55) yields a nontrivial
interplay between the two “origins” [spin density versus spin
current; see Eqgs. (50) and (51)] since the first term on the rhs
of Eq. (49) is canceled to some extent by the first term on the
rhs of Eq. (5§4). This demonstrates once more that the interplay
between SGE and ISHE is nontrivial.

C. Discussion: Effective forces

We emphasize that expressions (48) and (49), obtained by
properly integrating the kinetic equation, have general validity.
Before going into the details of the spin-pumping configuration
(Sec. V), we comment on the relation of these equations
to previous results. First, neglecting the Rashba contribution
in the first term on the rhs of Eq. (48), i.e., V;n — V;n,
considering the isotropic case (¢ = 1), and taking into account
that

fiN
8s = TO[n x 1 — B

(56)
in this limit, this force term agrees with the result given
in Ref. [35]. Second, including the Rashba contribution but
neglecting the spin current contribution to s [see Eq. (39)]
and again for { = 1, Eq. (48) reduces to Eq. (11) in Ref. [51].
Third, the first term on the rhs of Eq. (49), which is due to
Rashba spin-orbit coupling, is related to the ISHE: a charge
current in the x — y plane is generated by a spin current (in
that plane) polarized in the z direction, with the charge current
direction being perpendicular to the spin current direction,
~j° x Z (cf. Ref. [6]).

Note, however, that the various terms are not independent
of each other. In particular, spin density and spin current are
closely related, as already pointed out in Ref. [57], due to
the interplay of Rashba coupling and EY relaxation. This
is apparent from Eq. (36), which for time-independent and
spatially homogeneous situations reads

Xc

1
nxoés+a; xj =——I6s. 57)
T

Taking this equation into account, it is possible to relate
the total effective force derived here to the one discussed
in Ref. [23] [see Eq. (12) therein]. First, consider the limit
Ax. — 0, which leaves only the second term in (48) and
the first term in (49). The latter is readily identified with
the “Hall-like” force [23]; however, using Eq. (57), we find
that Eq. (48), which results from the EY collision operator
[Eq. (24)], gives an identical contribution; thus, our result
appears to be larger by a factor of 2. Further differences become
apparent for finite Ayc.

Last but not least, the second term on the rhs of Eq. (49) is
denoted the “inverse-spin-filter” term, as it describes a force
arising from a spin current which is polarized parallel to
the magnetization (roughly speaking), with its strength being
Nrs_l. To the best of our knowledge, such a term has not
been explicitly considered before. However, it can be related
to the anomalous Hall effect: imagine that an electric field
in the x direction creates a spin current via the spin Hall
effect (in the y direction, polarized in the z direction). This
spin current leads, via the inverse-spin-filter term, to a charge
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current in the y direction. Note that a nonzero ¢ is required
for this argumentation to be valid. In this context, see also the
discussions given in Refs. [47,58].

V. SPIN-PUMPING CONFIGURATION

In this section we consider the magnetization dynamics to
be fixed, namely, as a precession with a cone angle 6 and
angular frequency w about an axis fixed by an external static
and homogeneous magnetic field [59]. The magnetization
direction is parametrized as follows:

no cos 6
n(t) = Ry | 6ny(t) | = Ry | sinf coswt |, (58)
on (1) sin 6 sin wt

with Ry being a rotation matrix around the z axis,

cos¢p —sing O
Ry =[sing cos¢p O], 59)
0 0 1

where ¢ is the angle between the x axis and the cone axis
(see Fig. 4).

Furthermore, we assume open-circuit conditions in the x
and y directions in order to determine the electric field along
these directions. Since the magnetization is homogeneous, we
expect the particle current to be homogeneous as well, and due
to the open-circuit condition we have j, , = 0 in the whole
sample. From Eq. (47) we find

opEyy = %Fw. (60)
m
According to Ref. [57], the spin Hall conductivity can be
expressed as [60] 0! = elit Ny/2mt, (for T, > 1pp); hence,
we may rewrite Eq. (60) as
295H
ek, , = —F,,, (61)
Bs

where 6 = eo*! /o, is the spin Hall angle. In order of
magnitude, 6% ~ i /ert,. Our focus in the following is on
the dc contribution to the electric field; thus, we will average
Eq. (61) with respect to time.

26

(a) (b)

FIG. 4. (a) The studied configuration, i.e., a metallic film on top
of a magnetic material (shown in blue). (b) Sketch of the conical
precession of the magnetization, defining the relevant angles 6
and ¢.
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Let us now explicitly consider the x component of the
effective force. According to Egs. (53) and (55), as well as
Eq. (49) with j; — (j;)s, it is the sum of the following three
contributions:

mo . .
(Fi)sn = _T[ny + Bs(1 + &) x m), ], (62)

_ Por PN
2o feat - oni (i),

(Fx)s,jx + (F-X)j,\'an

+2m, 3 i), a0,
a=x,y
1

+W_n§ (.]x)n’ (63)

1
( Fjs DN |:,3DP(J),) %n; ~(jx)si|s (64)

Where in order to derive Egs. (62) and (63), we approximated
{ 2~ 1 and n; - n = 1 since the cone angle 6 is usually small
[8]. For this reason, we shall also allow only terms up to sin> 6
when performing the time average; hence, we neglect terms of
order n since the time average would lead to ~ sin* @ terms.
We reahze that the first term on the rhs of Eq. (63), which
has its origin in the interplay of the spin density and the spin
current, is negligible.
We rewrite Egs. (62)—(64) in order to elucidate the different
effects:

FX - DN() (]’)s’ (65)

FB = —@[ﬂy + (1 + O)(n x i), ]

2p . -
D]]\)]];n" Z [nZ(Ja)n n“(]a)n]’ (66)

a=x,y
1 r

FO = s 67

X DNors -J (67)

where F can be related to the ISHE and F'® can be related

to the SGE. The last term, F )SC), describes the buildup of

an effective force (or electric field) due to the spin current

polarized parallel to the magnetization [61] and is denoted the

inverse-spin-filter term, as discussed in Sec. IV B.
Analogously, we obtain for the y component

A= =22 (), )
FP = P [nx + Bs(1 + ¢)(m x n)xi|
2Bpp ay 2
15D MO N R
1
FO = T lng -y (70)

In the following sections, we consider a narrow wire
(see Fig. 5) and the electric field that will be measured in
longitudinal and orthogonal measurements. We assume that
the wire is “narrow” such that the width of the wire is
smaller than the spin diffusion length ¢{; = /Dt;. For such a
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<Ear>t ¢ <Ezl/>t

o

' /

O s,

FIG. 5. Bottom: top view of the setup; the length is denoted /,,, and
the width is denoted /, (I, < ;). Top: qualitative plot of the dc electric
fields, (eE,), and (e E}),, for longitudinal (left) and orthogonal (right)
measurements. In both cases we set { = 0.

configuration, the spin current contribution polarized parallel
to the magnetization and flowing parallel to the narrow edge
vanishes (see Appendix B).

A. Longitudinal measurement

Let us consider a narrow wire as depicted in Fig. 5. For such
a sample we find a homogeneous spin current flowing in the
x direction which, in particular, has a contribution polarized
along n, giving rise to the force in Eq. (67) when performing
a longitudinal measurement. We perform the time average of
Egs. (65)—(67), insert the results into Eq. (61), and obtain the
following dc electric fields:

F, F,
(E)(cA))z ~ ﬂDP95H7 < QSH?v (71)
(B) s Fo : ;2
(EX >t = 20" —(14¢)sin¢gsin“ 0, (72)
e
©) st Fa : ‘2
(E¢ )t =—0 ?(1 — ¢)sing sin” 0, (73)

with F, = awm /h. We realize that the ISHE (A) term plays
only a minor role in the total electric field, (E,), = (E" +
E® 4+ E©),. Note that for ¢ ~0 the inverse-spin-filter
contribution is of the same order of magnitude as the SGE
term, whereas it vanishes for { = 1.

B. Orthogonal measurement

In the case of an orthogonal measurement (see Fig. 5, right),
the contribution given in Eq. (70) vanishes since the spin
current j, lacks a contribution parallel to the magnetization
(ly < £). For the dc electric field along the y direction, we
find

uFe  uFe
(ES), ~ Boet! == < 0=, (74)
Fy .
(E®) = —261-2(1 + ¢)cos ¢ sin’ 6, (75)
e
c
(E; )>t =0, (76)

leaving only the SGE term to contribute to the total dc electric
field.
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C. Discussion

Comparing the results for the longitudinal and orthogonal
measurements, we see that the signal can be up to 1.5 times
larger in the longitudinal measurement (for { = 0; see Fig. 5).
For a 2D electron gas one should thus be able to probe a
Rashba-induced SGE and, by comparing samples of different
thicknesses, to additionally obtain estimates of « and ¢.

Recent articles [3,8,9,62] discussed spin pumping and the
induced ISHE on the basis of a spin current j, which flows
perpendicular to the interface, i.e., in the z direction into
the normal-metal film. This is significantly different from the
situation we are discussing here (j, = 0). Nevertheless, the
electric field estimated in such a way [8] shows the same
angular dependence of the magnetization as our result:

Ref. [8]: E, ~ F,i singsin®6, (77)

Eq. (72): E, ~ F,sin¢sin’ 6. (78)

Comparing the relevant forces, Fyr = e’wg™ /(4op) and F,,
for reasonable parameter values, g™ ~ 2.1 x 10" m~2 and
op ~ 2.4 x 10° Q~'m~!, for a Pt film [8], we find the forces to
be of the same order of magnitude for ¢ =~ 0.3 eV A. Thus, we
conclude that the SGE contribution and the inverse-spin-filter
effects due to Rashba-induced spin currents and spin density,
as discussed here, should both be taken into account when
interpreting experiments.

VI. CONCLUSIONS

We have studied the spin-charge coupled dynamics in a
magnetized thin metallic film with Rashba spin-orbit coupling.
In particular, we have considered a generalized Elliott-Yafet
collision integral, valid for arbitrary spin-orbit fields and
magnetic textures, and taken into account anisotropic spin-flip
processes. Significant modifications of the kinetic equations
describing spin and charge transport have been found. The
effective force acting on the charge carriers in the presence of
spin-orbit coupling has been derived in a very general form and
has been evaluated in detail for the case of a time-dependent
texture. For a narrow wire in the typical spin-pumping
configuration an in-plane electric field is generated, for which
the spin-galvanic effect is crucial, while the (in-plane) spin
Hall effect turns out to be negligible. However, an additional
contribution of similar strength from an inverse-spin-filter
effect is found to be relevant for a longitudinal measurement,
while it vanishes for an orthogonal measurement. This suggests
the possibility of determining the strength of the spin-galvanic
effect and the spin-orbit coupling parameter, Rashba in our
specific scenario, by performing both measurements on the
same sample.
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APPENDIX A: THE ELLIOTT-YAFET
COLLISION OPERATOR

In this appendix we follow the procedure outlined in
Ref. [38]. We start by deriving the Elliott-Yafet collision
operator within first order in the SU(2) fields from the
microscopic Green’s function G and the Elliott-Yafet self-
energy Xgy (diagrammatically depicted in Fig. 2) in the
two-dimensional case and comment on the three-dimensional
case at the end.

The Elliott-Yafet collision operator is given by

Igy = I/diK
Y = T unn s

with L = [Xgy, G]. The superscript K represents the Keldysh
component, and the tilde indicates the SU(2) shift; clearly,

J

(AD)

B d2p/
0. =C
Y / (27h)?

2/ a
Ca dp < Z{\P“%,G(P/)}GZ—{\I’ % o*G(p)o° }) ® P,

(27{1%)2

5 C d2 / _ aaa 5 i
5t =S [ 0 (| v -

(27th)?

where C
have

= (2 th*No)~'(1/2)*. For the Green’s functions we

K=(G*-GMH1 -2/,

where f = f% +f. o denotes the distribution function 2x2
matrix; furthermore,

GR — G* = —27ib(e — €p). (A8)

Note that the SU(2)-shifted retarded and advanced Green’s
functions are diagonal in spin. Inserting L into Eq. (A1) and
using Eqs. (A4)—(A8) lead to the collision operators as given
in Egs. (22)—(24) for ¢ = 0, corresponding to the 2D case.

When we consider the bulk 3D case, we have the following
replacement:

(AT)

Z

o o’ xPaP x P (A9)

within the integrals in Eqgs. (A4)—(A6), respectively. Then
we obtain, using the same procedure as outlined in Sec. I,
Egs. (22)-(24) for ¢ =1, except for a small numerical
difference related to the angular average in 2D versus 3D.
In order to describe the anisotropy in the intermediate
regime, we insert the matrix I' = diag(1,1,¢), with0 < ¢ < 1
[see Egs. (22) and (23)].

of(px P = o

APPENDIX B: NARROW WIRES

Here, we show that the contribution which is polarized
parallel to the magnetization of the spin current flowing in
the narrow direction vanishes in the homogeneous case. We
consider a narrow wire along the x direction, i.e., [, < £, and
Iy > £,, and an open-circuit condition, j,(y =0) = j,(y =
ly) = 0. For the sake of simplicity we put { = 1. Since the
system is homogeneous, we assume that the spin current

PHYSICAL REVIEW B 95, 115404 (2017)

L = [Zgy,G]. In first order, we have

L~L—-3{A,.00L}, (A2)
with the four-potential A, = (—W,.A) and 9, = (0¢,Vp). We
recall that the components of the four-potential are SU(2)
gauge fields, i.e., ¥ = W%¢“/2 and A = A% “%/2. In order
to derive the explicit expression for the collision operator, we
need in the first step the impurity-averaged and SU(2)-shifted
self-energy (compare Fig. 2), which reads

ey = 80, + 658 + 554, (A3)

with
*G(poi(p x ), (A4)
(AS)
{A % o*G(p))o° } )(p x 2. (A6)

(

flowing in the x direction is homogeneous as well and given by
Egs. (44)—(46) with V, — [a,]«. According to Eqs. (37)—-(39)
the spin density can be expressed as

8s(y) = 8so — M 'V i, (y), (B1)
with
3so = (88)y — 7o M, [ac]xjy- (B2)

In addition, My = M(t — 1,), where M [see Eq. (41)] is
explicitly given by

T B —n, ny
M=1+—"-Inl,=8"n B -n|, (B3
—n, Ny B

where B; =/i/A.7. The spin current flowing in the y direction
is given by Eqgs. (44)-(46):

i) = DMV M7 [NoB ' — 8s(»)].  (B4)

We insert Eq. (B1) into Eq. (B4) and obtain approximately
(V,Jy = V,j,) the following differential equation:

(1= M7 M72V0)i () = v, (BS)

where the rhs, which is spatially constant, is given by

Jvo =DM '[a, ], M~ (NoB; ' — 8s0). (B6)

It is apparent that j, o is a particular solution of Eq. (BS).
In order to determine the complete solution jy = jy.» + Jjy,0
we have to add the solution of the homogeneous differential
equation, which can be written as follows:

(MM? — £3¥7)jyn(y) = 0. (B7)
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It is convenient to change the basis by the following transfor-
mation:

ne /Al (nxn) /|
R=|ny, #y/nl (@xn),/n|, (B8)
ne  ng/lal - (nxn) /(|

which replaces n by e, in Eq. (B7):

[(1+ B, Texl) (1 + B7'e]w)” = €2V2]7,4(») =0, (B9)

with j,, =R7j, . The x component of j,, represents
the contribution of the spin current which is parallel to the
magnetization. The matrix in Eq. (B9) has an eigenvalue 1
with eigenvector e,, leading to

Jyn = Aexp <—%> + Bexp (—}-%)

(B10)

PHYSICAL REVIEW B 95, 115404 (2017)

For I, <« £ the general solution thus reads

o y ),
= A(l - Z) +B<1 + Z) + 7o

where j;,o is the x component of R7j,,. We then use
the boundary conditions j,(y = 0) = j,(y = [,) = 0, with the
result

(B11)

A=B=-1j, (B12)

Finally, we insert A and B into Eq. (B11) and find j§ =
therefore, the spin current contribution which is parallel to the
magnetization vanishes, n - j, = 0.

We remark that the transverse-polarization components of
the spin current, i.e., j; and j;,, do not vanish since the
transverse spin-relaxation length ¢;- is orders of magnitude
smaller than ¢; [63]. An explicit solution of the above diffusion
equations, obtained assuming A7/ > 1, yields Eﬁ- < £,B;.
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