Der Einfluss von Endothelin auf die Regulation des Reninsystems

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Fakultät für Biologie und Vorklinische Medizin
der Universität Regensburg

vorgelegt von
Christoph Matthias Langer
aus Neumarkt i.d.OPf.
im Jahre 2016
Die vorliegende Arbeit entstand im Zeitraum September 2013 bis Oktober 2016 unter der Anleitung von Frau Prof. Dr. Charlotte Wagner am Institut für Physiologie der Universität Regensburg.

Die Arbeit wurde angeleitet von Frau Prof. Dr. Charlotte Wagner.

Prüfungskommission:

Erstgutachter: Frau Prof. Dr. rer. nat. Charlotte Wagner
Zweiter Gutachter: Frau PD Dr. med. Dr. rer. nat. Barbara Braunger
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Zusammenfassung</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Einleitung</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Anatomie der Niere</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 Makroskopische Anatomie</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Mikroskopische Anatomie</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3 Feinbau der Nierenkörperchen</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4 Der glomeruläre Filter</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Das Blutgefäßsystem der Niere</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Der juxtaglomeruläre Apparat</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Anatomie und physiologische Bedeutung</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 Die juxtaglomeruläre Zelle</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3 Retrograde Rekrutierung</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Das Renin-Angiotensin-Aldosteron-System</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Reninsynthese und -sekretion</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Regulation der Reninsynthese und -sekretion</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1 Physiologische Regulation</td>
<td>18</td>
</tr>
<tr>
<td>1.6.2 Humorale Regulation</td>
<td>22</td>
</tr>
<tr>
<td>1.6.3 Faktoren der zellulären Regulation</td>
<td>23</td>
</tr>
<tr>
<td>1.7 Endothelinsynthese und -sekretion</td>
<td>27</td>
</tr>
<tr>
<td>1.7.1 Überblick</td>
<td>27</td>
</tr>
<tr>
<td>1.7.2 Endothelinsynthese</td>
<td>27</td>
</tr>
<tr>
<td>1.7.3 Endothelinrezeptoren</td>
<td>29</td>
</tr>
<tr>
<td>1.7.4 Endothelinwirkung auf das Gefäßsystem</td>
<td>30</td>
</tr>
<tr>
<td>1.7.5 Endothelinwirkung auf die Niere</td>
<td>32</td>
</tr>
</tbody>
</table>
1.7.6 Endothelinwirkung auf humorale Systeme

2 Fragestellung und Zielsetzung

3 Material und Methoden

3.1 Material

- **3.1.1 Geräte**
- **3.1.2 Verbrauchsmaterial**
- **3.1.3 Chemikalien, Enzyme, Kits**
- **3.1.4 Primer**
- **3.1.5 Antikörper**
- **3.1.6 Puffer und Lösungen**
- **3.1.7 Software und Internetdienste**

3.2 Methoden

- **3.2.1 Versuchstiere**
- **3.2.2 Atomemissionsspektrometrie**
- **3.2.3 Osmometrie**
- **3.2.4 Histologische Methoden**
- **3.2.5 Dreidimensionale Rekonstruktion**
- **3.2.6 Molekularbiologische Methoden**
- **3.2.7 Statistische Methoden**

4 Ergebnisse

4.1 Lokalisation der Endothelinrezeptoren

- **4.1.1 Lokalisation der Endothelinrezeptoren im Gefäßsystem der Mausniere**
- **4.1.2 Lokalisation der Endothelinrezeptoren im Tubulus- und Sammelrohrsystem**

4.2 Elektrolyt- und Osmolalitätsmessungen

- **4.2.1 Elektrolyte**
- **4.2.2 Osmolalität**
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Unterkapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Einfluss von Endothelin auf die Reninexpression – Qualitative und quantitative Analyse des Reninexpressionsmusters</td>
<td>80</td>
</tr>
<tr>
<td>4.3.1</td>
<td>mRNA-Analyse</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Histologische Darstellung des Reninexpressionsmusters</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Dreidimensionale Darstellung des Reninexpressionsmusters</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Bedeutung des ET(_A)-Rezeptors für die Stimulierbarkeit des Renin-systems</td>
<td>94</td>
</tr>
<tr>
<td>4.4.1</td>
<td>mRNA-Analyse</td>
<td>94</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Histologische Darstellung des Reninexpressionsmusters</td>
<td>99</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Dreidimensionale Darstellung des Reninexpressionsmusters</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Lokalisation der Endothelminrezeptoren</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Analyse der Elektrolyt- und Osmolalitätsmessungen</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Einfluss von Endothelin auf die Reninexpression – Qualitative und quantitative Analyse des Reninexpressionsmusters</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>Bedeutung des ET(_A)-Rezeptors für die Stimulierbarkeit des Renin-systems</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Schlussfolgerungen</td>
<td>122</td>
</tr>
<tr>
<td>5.6</td>
<td>Ausblick</td>
<td>123</td>
</tr>
</tbody>
</table>

Abkürzungsverzeichnis 125
Abbildungsverzeichnis 130
Literaturverzeichnis 133
Danksagung 160
Eigenständigkeitserklärung 161
Zusammenfassung

Reninproduktion zwischen Wildtyp- und Knockout-Stämmen. Zusammenfassend lässt sich sagen, dass die Lokalisation der Endothelinrezeptoren in Mäusenieren weitgehend der Expression von Endothelinrezeptoren in der Niere anderer Säugetiere entspricht. Abweichungen ergeben sich insofern, als im Vas afferens, im distalen Tubulus sowie im Sammelrohr keine ET\textsubscript{B}, im proximalen Tubulus hingegen keine ET\textsubscript{A}-Rezeptoren nachzuweisen waren. Die Analyse der Elektrolytkonzentrationen förderte keine aufschlussreichen Erkenntnisse zu Tage, eine endotheliale Beeinflussung der Elektrolythomöostase kann nicht postuliert werden. Im Hinblick auf die Reninfreisetzung zeigten die durchgeführten Untersuchungen keine signifikanten Unterschiede. Trotz der Expression renaler Endothelinrezeptoren scheint sowohl deren Antagonismus als auch deren reninzellspezifische Abwesenheit in vivo keine signifikanten Einflüsse auf das Reninsystem nach sich zu ziehen. Diese mangelnde Einflussnahme bei funktioneller Defizienz der Endothelinrezeptoren lässt mit Blick auf die in der Literatur beschriebenen Auswirkungen von Endothelinen auf eine Vielzahl renaler Parameter – einschließlich des Reninsystems – die Existenz kompensatorischer Mechanismen vermuten. Im Fokus dieser Kompensationsmechanismen könnten möglicherweise Prostaglandine und NO stehen. Ferner verbleibt die Rolle des ET\textsubscript{B}-Rezeptors sowie der Endothelinsubtypen ET\textsubscript{2} und ET\textsubscript{3} genauer zu eruieren.
1 Einleitung

1.1 Anatomie der Niere

1.1.1 Makroskopische Anatomie

Bereits mit bloßem Auge lässt sich am Nierenquerschnitt die Unterteilung des Nierenparenchyms in eine dunkler gefärbte Nierenrinde und ein innen gelegenes helle-
res Nierenmark erkennen (Hees and Sinowatz, 2000). Dabei umfasst die Nierenrinde
in Form einer sogenannten Nierensäule (Columna renalis) das pyramidenförmige
Nierenmark. Von der Basis der Pyramide ziehen sogenannte Markstrahlen – dabei
handelt es sich um Bündel von Sammelrohren und Tubulusabschnitten – in die
Rinde und unterteilen letztere in Nierenlabyrinthe. Dies verleiht dem Nierenmark
ein gestreiftes Aussehen. Die Spitze der Markpyramide (Papilla renalis) mündet
in das Nierenbecken und wird von einem Nierenkelch (Calyx renalis) umfasst. Das
Nierenmark wird in eine äußere Zone (Zona externa) mit einem Außen- und ei-
nem Innenstreifen und eine innere Zone (Zona interna) unterteilt. Morphologisch
gliedert sich das Nierenmark in Markpyramiden (Pyramis renalis). Die Niere von
Mäusen enthält einen zusätzlichen Abschnitt der äußeren Markzone, der als „inner-
most stripe“ bezeichnet wird: Er bildet den Übergang zwischen der Außen- und
der Innenzone, hat Ähnlichkeit mit dem Innenstreifen und enthält distale Tubuli
(Welsch, 2009; Weisert, 1990; Junqueira et al., 2005).

1.1.2 Mikroskopische Anatomie

Die strukturelle und funktionelle Einheit der Niere stellt das Nephron dar. Es be-
est aus dem Nierenkörperchen (Corpusculum renale = Malpighi-Körperchen) und
dem sich anschließenden Tubulussystem (Tubuli renales). Die Nierenkörperchen lie-
gen am Beginn des Nephrons und setzen sich aus drei Einheiten zusammen: der
Bowman-Kapsel, dem Glomerulus (einem der Filtration dienenden Kapillarknäu-
el) sowie dem Mesangium. Das Tubulussystem seinerseits gliedert sich in folgende
Abschnitte: Am Harnpol des Nierenkörperchens befindet sich der proximale Tubu-
lus mit einer gewundenen Pars convoluta und einer geraden Pars recta. Der sich
anschließende intermediäre Tubulus (Tubulus attenuatus) zieht mit einer Pars de-
scendens und einer Pars ascendens schleifenartig in die Marksubstanz, gefolgt vom
distalen Tubulus, wiederum bestehend aus einer Pars recta und einer Pars convo-
luta. Über ein Verbindungsstück (Tubulus renalis colligens) mündet das Tubulus-
system in ein Sammelrohr. Zusammen werden Verbindungsstück und Sammelrohr
auch als Sammelrohrsystem bezeichnet. Die Pars recta des proximalen Tubulus, der
intermediäre Tubulus sowie die Pars recta des distalen Tubulus bilden gemeinsam

1 Die Bezeichnung des Gewebes zwischen den Kapillarschlingen als Mesangium erfolgt in Anlehnung an das Mesenterium zwischen den Darmschlingen (Junqueira et al., 2005).
1.1.3 Feinbau der Nierenkörperchen

Zum Glomerulus werden folgende anatomiche Strukturen gerechnet: Kapillarknüdel, Podozyten, glomeruläre Basalmembran und Mesangium.

Zwischen den ineinander verzahnten Fußfortsätzen benachbarter Podozyten be-

3Die Fenster im Endothel der Kapillaren besitzen einen Durchmesser von 70–100 nm (Lüllmann-Rauch 2015).

1.1.4 Der glomeruläre Filter

1.2 Das Blutgefäßsystem der Niere

Die zuführenden Arteriolae glomerulares afferentes verzweigen sich in dünne Äste, die in das Kapillarknäuel des Glomerulus übergehen, an dessen Ende das Blut das Nierenkörperchen über eine Arteriola efferens wieder verlässt. Die Arteriola efferens versorgt die Tubuli der Nierenrinde und teilt sich in zahlreiche Vasa recta, die als feine arterielle Gefäße der Versorgung des Nierenmarks dienen. Im Anschluss an ein Kapillarnetz sammelt sich das Blut zunächst in venösen Vasa recta, welche über Vv. corticales radiatae in Vv. arcuatae übergehen. Letztere verlaufen parallel

Um die glomeruläre Filtration möglichst konstant zu halten, unterliegt die Durchblutung der Nieren einer Autoregulation. Die Angriffspunkte der Autoregulation stellen dabei die afferenten und die efferenten Arteriolen dar; vermittels Vasokonstriktion beider Gefäße wird eine Reduktion des Filtrationsdrucks bei steigendem Perfusionsdruck der Niere erreicht. Die genauen Mechanismen dieser Regulation sind allerdings noch nicht vollständig geklärt (Speckmann et al., 2013).

1.3 Der juxtaglomeruläre Apparat

1.3.1 Anatomie und physiologische Bedeutung

functionelle Rückkopplung zwischen Tubulus und Glomerulus, wie sie im Bereich des juxtaglomerulären Apparats erfolgt, wird als tubuloglomeruläre Rückkopplung bezeichnet (Welsch, 2009).

1.3.2 Die juxtaglomeruläre Zelle

Die juxtaglomeruläre Zelle ist der Ort der Reninsynthese und -speicherung und zuständig für die exozytotische Sekretion des Renins in die Blutbahn (Peters and Clausmeyer, 2002; Wagner and Kurtz, 1998). Bei diesem Zelltyp handelt es sich um modifizierte glatte Muskelzellen, die typischerweise in der Tunica media im terminalen Gefäßabschnitt der Arteriola afferens zu finden sind. Die juxtaglomerulären Zellen ersetzen an dieser Stelle die Glattmuskelzellen und bilden so einen Teil der Gefäßwand des Vas afferens, exprimieren im Gegensatz zu diesen aber kein Glattmuskelaktin (α-SMA), ein kontraktiles Protein, das üblicherweise in pe-

1.3.3 Retrograde Rekrutierung

1.4 Das Renin-Angiotensin-Aldosteron-System

13
1.5 Reninsynthese und -sekretion

Eine Besonderheit ist die Existenz eines zweiten reninkodierenden Genlocus bei einem Teil der Mäusepopulation. So besitzen manche Labormausstämme zwei Reningene, Ren-1d und Ren-2, wohingegen andere Stämme lediglich ein Reningen, das Ren-1c, aufweisen. Die Existenz des zweiten reninkodierenden Gens wurde zunächst durch Duplikation des einen genuinen Reningens vor etwa 3 Millionen Jahren zu erklären versucht (Dickinson et al., 1984; Castrop et al., 2010). Da aber ältere Mausspezies beide Reningene aufzuweisen scheinen, wird auch eine Deletion des ursprünglichen zweiten Gens diskutiert (Holm et al., 1984; Morris, 1992). Die funktionelle Bedeutung der Existenz beider Genloci ist noch unklar. Das Genprodukt des Ren-2-Gens wird hauptsächlich in der Glandula submandibularis exprimiert. Es weist keine Glykosylierungen auf und wird deshalb konstitutiv sezerniert. Die Plasmareninkonzentrationen unterscheiden sich allerdings nicht in Abhängigkeit der Existenz eines zweiten reninexprimierenden Genlocus (Dzau et al., 1988; Castrop et al., 2010).

Die Aspartyl-Protease Renin spielt eine Schlüsselrolle bei der Regulation des RAAS. Vornehmlich in den juxtaglomerulären Zellen, die sich in der Wand der afferenten Arteriole am Eingang in den glomerulären KapillarknüDEL befinden, wird Renin als Pre-Pro-Renin gebildet, welches zunächst unter Abspaltung eines Signalpeptids in die Zisternen des endoplasmatischen Retikulums transportiert wird. Das hierdurch gebildete Pro-Renin – ein Polypeptid mit 43 kDa – gelangt zur weiteren
The sorting of renin to the regulated secretory pathway is not highly efficient in juxtaglomerular cells; only 25% of the synthesized renin is directed to the regulated secretory pathway for regulated exocytosis. The mature granules are then stored and released by regulated exocytosis.

Abbildung 1.5: Schematische Darstellung der Reninsynthese und -sekretion

Abbildung nach Schweda et al. (2007).

Modifizierung und zur Verpackung in sekretorische Vesikel in den Golgi-Apparat. Das Pro-Renin wird entweder als inaktives Renin mittels kleiner Vesikel konstitutiv sezerniert oder der regulierten Exozytose als aktives Renin\(^4\) zugeführt (Morris, 1992; Schweda et al., 2007).

Sezerniertes Renin findet sich im Blutplasma sowohl in seiner aktiven als auch zu einem relativ großen Anteil in seiner inaktiven Form (Sealey et al., 1983). Die Sekretion von aktivem Renin erfolgt durch reife sekretorische Granula, wohingegen die Sekretion von inaktivem Renin, das eine verkürzte Version des aktiven Prorenins darstellt (Hirose et al., 1985), durch Exozytose unreiferer Granula vermittelt wird. Renin-Granula können als modifizierte Lysosomen aufgefasst werden (Taugner et al., 1987). Lysosomale Enzyme, sekretorische Proteine und Plasmamembran-Proteine werden im rauen endoplasmatischen Retikulum synthetisiert. Nach Abspaltung eines Signalpeptids wird eine kotranslationale Glykosylierung vermittelt, im Anschluss an Translokation und Transport zum Golgi-Apparat erfährt die Mischung aus lysosomalen Enzymen und sekretorischen Proteinen eine Vielzahl post-

\(^4\) Renin ist ein aus 340 Aminosäuren bestehendes Polypeptid mit einem Molekulgewicht von 38 kDa (Morris, 1992).

1.6 Regulation der Reninsynthese und -sekretion

Renin stellt den limitierenden Faktor in der Synthese von Angiotensin II dar. Verschiedene Faktoren auf systemischer und zellulärer Ebene regulieren die Reninsynthese und -sekretion in juxtaglomerulären Zellen (Bader and Ganten, 2000).

1.6.1 Physiologische Regulation

1.6.1.1 Blutdruck

Der stärkste Stimulus für die Sekretion von Renin besteht in der Abnahme des renalen Perfusionsdrucks. Eine Erhöhung des Blutdrucks, nicht des Blutflusses, bewirkt eine Reduktion der Freisetzung von Renin aus den juxtaglomerulären Zellen.

Eine Zunahme der Kontraktion des Aktin-Myosin-Netzwerks hemmt die Freisetzung von Renin (Kurtz and Wagner, 1999).
vermittelt durch eine steigende intrazelluläre Calzium-Konzentration (Bader and Ganten, 2000).

1.6.1.2 Macula Densa und Salzhaushalt

Die orale Salzzufuhr stellt einen wichtigen Regulationsmechanismus der Aktivität des RAAS dar (Castrop et al., 2010). Untersuchungen von Holmer et al. (1993) belegen eine negative Korrelation zwischen der dietetisch aufgenommenen NaCl-Menge und der Reninsekretion sowie der mRNA-Konzentration (Holmer et al., 1993), insbesondere wirkt ein Abfall der lokalen NaCl-Konzentration an der Macula densa stimulatorisch auf die Reninproduktion (Skött and Briggs, 1987; Davis and Freeman, 1976).

1.6.1.3 Das sympathische Nervensystem

Wenngleich die beiden oben erwähnten Mechanismen vorrangig in der Regulation der Reninsekretion sind, spielt auch die nervale Versorgung der Niere bei der Regulation der Reninsekretion eine Rolle: Taquini et al. (1964) beschrieben eine Verringerung des Reningehalts an denervierten Rattennieren, und wie Untersuchungen von Tobian et al. (1965) belegen, ging eine deutliche Reduktion der Anzahl der Granula der juxtaglomerulären Zellen damit einher. Eine direkte elektrische Stimulation renaler Nervenendigungen hingegen führte zu einem Anstieg der Reninfrei-
Das sympathische Nervensystem führt über verschiedene Effekte zu einer differenzierten Regulation der Nierenfunktion, indem es Einfluss auf Blutgefäße, Nierentubuli und juxtaglomeruläre Zellen nimmt. Dies ermöglicht eine optimale Flexibilität in der Koordination der physiologischen Antwort auf eine Vielzahl homöostatischer Anforderungen (DiBona, 2000).

Das sympathische Nervensystem stellt somit eine Art tonischer Stimulator für die Reninsekretion und die mRNA-Expression dar. Im Normalfall wird dieser Effekt allerdings durch die inhibitorische Wirkung des renalen Perfusionsdrucks auf das Reninsystem maskiert. Damit ist die Aktivität renaler Nerven zwar eine wichtige Determinante der Reninstimulation, deren Bedeutung aber insbesondere bei reduziertem arteriellen Blutdruck in der Niere zum Tragen kommt (Wagner et al., 1999).
1.6.1.4 Angiotensin II

1.6.2 Humorale Regulation

Neben diesen klassischen Faktoren der Reninregulation nehmen auch eine Reihe humoraler und lokal sezernierter Faktoren Einfluss auf die Synthese und Sekretion von Renin. Die Stimulation der Expression des Reningens und die Reninsekretion erfolgen unter anderem durch Adrenomedullin, Arachidonsäure, Bradykinin, Calcitonin Gene-Related Peptide (CGRP), Dopamin, Histamin, NO, Prostaglandin PGE$_2$, Prostazykin (PGI$_2$), außerdem durch Thyroxin, Triiodthyronin.
Intracellular Signals Controlling Renin Release

At the cellular level, the numerous systemic and local factors that regulate renin release merge into three intracellular second messenger systems: the cAMP, cGMP, and calcium (Ca$^{2+}$/H$^{+}$) pathways (Fig. 4).

1. cAMP

Undoubtedly, cAMP is the central intracellular stimulator of renin release. This conclusion is supported by several lines of indirect and direct evidence. For instance, the activation of β_{1}/adrenoreceptors, which are known to enhance adenylyl cyclase activity, stimulates the renin secretion in a broad range of experimental in vitro models, including single JG cells as well as in vivo (54, 235, 423, 484, 903, 944). Moreover, the renin release in response to renal nerve stimulation is mediated by the β_{1}/adrenoreceptors (349), and β_{1}/2-adrenoreceptor knockout mice possess low plasma renin concentrations (PRC) (434).

In addition to catecholamines, other hormones, such as the prostaglandins E$_2$ and I$_2$ (prostacyclin) (402), dopamine (476), calcitonin gene-related peptide (482), pituitary adenylyl cyclase activating polypeptide (PACAP) (322), and adrenomedullin (397), stimulate the renin release from isolated JG cells and increase the intracellular cAMP concentrations. The stimulation of adenylyl cyclase activity in response to activation of G protein-coupled receptors is mediated via the stimulatory G protein G_{s}. In line with the stimulatory role of G_{s} and cAMP for renin release, the PRC is markedly reduced in mice carrying a conditional deletion of G_{s} in JG cells (146). Notably, PRC is not stimulated in the G_{s} KO mice in response to catecholamines, inhibition of the macula densa mechanism, or a drop in blood pressure, underscoring the central role of the cAMP pathway in the regulation of renin release (146).

Additionally, the direct activation of adenylyl cyclase activity by the diterpen forskolin strongly increases cAMP levels and renin release in isolated JG cells (283, 484), as well as in the renin-producing cell line As4.1 (283, 442). Finally, a direct link between cytosolic cAMP levels and renin release was demonstrated by the fact that membrane cAMP levels are lower in renin-producing cells than in non-renin-producing cells (283, 484).

1.6.3 Faktoren der zellulären Regulation

Ein Überblick über die intrazellulären Signalwege findet sich in Abbildung 1.6.
1.6.3.1 Der cAMP-Signalweg

1.6.3.2 Der cGMP-Signalweg

Zyklisches Guanosin-Monophosphat (cGMP) kann stimulatorische, inhibitorische oder biphasische Effekte auf die Reninsekretion haben (Schricker and Kurtz, 1993; Noble et al., 1994; He et al., 1995; Greenberg et al., 1995; Gambaryan et al., 1996).
Die stimulatorischen und inhibitorischen Signalwege von cGMP sind wahrscheinlich räumlich voneinander getrennt (Castrop et al., 2010).

Einerseits ist cGMP in der Lage, die Reninsekretion zu stimulieren: Die Hydrolyse von cAMP durch die in der renalen Arteriola afferens relativ stark exprimierte cAMP-Phosphodiesterase 3 (PDE-3) wird durch cGMP inhibiert (Beavo et al., 1995; Sandner et al., 1999). Der daraus resultierende cAMP-Anstieg fungiert als endogener Stimulus auf die Reninsekretion (Beierwaltes, 2006; Friis et al., 2002). Auf diese Weise erhöht cGMP die intrazelluläre Konzentration von cAMP in den juxtaglomerulären Zellen. Die damit einhergehende gesteigerte Adenylatzyklaseaktivität stimuliert die Reninfreisetzung.

Andererseits sind cGMP-basierte regulatorische Systeme entscheidend, um dem RAAS entgegenzuwirken (Gambaryan et al., 1996). Die Reninfreisetzung korreliert invers mit der intrazellulären Konzentration an cGMP. Auf diese Weise vermittelt cGMP einen inhibitorischen Effekt auf die Reninsekretion, lässt die intrazelluläre Calzium-Konzentration dabei aber unbeeinflusst (Kurtz, 1989). Eine zentrale Rolle spielt hierbei Typ II der cGMP-abhängigen Proteinkinase (cGKII). Die cGKII findet sich unter anderem in den juxtaglomerulären Zellen der Niere, lokalisiert in den Reninspeichergranula und an der Zellmembran. Der Angiotensin-II-Rezeptor-Blocker Losartan, ein indirekter Aktivator der Reninexpression, erhöht die Konzentration an Renin und cGKII in juxtaglomerulären Zellen. Dies legt eine Beteiligung von cGKII an der Freisetzung von Renin nahe (Gambaryan et al., 1996). Hohe Konzentrationen von cGMP vermögen die cGKII zu aktivieren, welche prinzipiell die Stimulation der Reninfreisetzung hemmen kann. Deshalb supprimieren hohe Konzentrationen von cGMP die Reninsekretion (Castrop et al., 2010). Auf diese Weise wirkt cGKII als natürlicher Antagonist zum cAMP in der Regulation der Reninsekretion in juxtaglomerulären Zellen (Kurtz and Wagner, 1999).

Zyklisches Guanosin-Monophosphat scheint eine bedeutende Rolle bei der Regulation des Gefäßtonus zu spielen. Es vermittelt die vasorelaxierende Wirkung verschiedener pharmakologischer sowie physiologischer Agonisten (NO) der Guanylatzyklase. Im Hinblick auf die enge Verbindung zwischen Vasorelaxation und Reninfreisetzung ist cGMP als möglicher intrazellulärer Botenstoff an der Kontrolle der Reninsekretion beteiligt (Hackenthal et al., 1990).
Insofern übt cGMP eine zweifache Kontrolle der Reninsekretion aus: Es besitzt eine inhibitorische Wirkung mittels cGKII und vermittelt eine stimulatorische Wirkung über cAMP (Kurtz and Wagner, 1999).

1.6.3.3 Intrazelluläres Calzium und Proteinkinase C

Der supprimierende Effekt von Calzium auf die Renin-Freisetzung wird durch Hemmung der Adenylylzyklase-Isoformen AC5 und AC6 in juxtaglomerulären Zellen vermittelt: Diese werden durch Calcium inhibiert, weshalb eine verringerte intrazelluläre Calzium-Konzentration die Inhibition der Adenylylzyklasen reduziert, woraus die Synthese von cAMP und in der Folge die Freisetzung von Renin resultiert. Dies liefert eine Erklärung für das Calzium-Paradoxon (Grünberger et al., 2006; Ortiz-Capisano et al., 2007).

1.7 Endotheline

1.7.1 Überblick

1.7.2 Endothelinsynthese

Alle drei aktiven Endotheline bestehen aus 21 Aminosäuren (siehe Abbildung 1.7). Das menschliche ET-1-Gen liegt auf Chromosom 6 und besteht aus 6838 bp. Die ET-1-mRNA kodiert für ein biologisch inaktives Preproendothelin-1 (PPET1), das
beim Menschen aus 212 und bei der Maus aus 202 Aminosäuren besteht (Vignon-Zellweger et al., 2012). Durch Abspaltung eines Signalpeptids entsteht Pro-ET-1, welches mittels Endopeptidasen in ein aus 38 Aminosäuren bestehendes, biologisch ebenfalls inaktives Big ET-1 gespalten wird (Denault et al., 1995). In Endothelzellen erfolgt diese Umwandlung durch Furin-Konvertasen. Die physiologisch relevante Proteolyse von Big ET-1 zu ET-1 wird mittels sogenannter Endothelin-Converting Enzymes (ECE-1, -2, -3) vollzogen (Xu et al., 1994; Emoto and Yanagisawa, 1995). Verschiedene Isoformen des ECE-1 ermöglichen die Spaltung von Big ET-1 in aktives ET-1 sowohl intra- als auch extrazellulär (Kohan et al., 2011; D’Orleans-Juste et al., 2003). Die Aminosäuresequenz von ET-1 ist bei Mensch und Maus identisch (Vignon-Zellweger et al., 2012).
1.7.3 Endothelinrezeptoren

Es gibt zwei Typen von Endothelin-Rezeptoren, ET\textsubscript{A} und ET\textsubscript{B} (Arai et al., 1990; Sakurai et al., 1990). Bei Säugetieren kodieren zwei Gene für diese beiden Rezeptoren: Das Gen für den menschlichen ET\textsubscript{A}-Rezeptor ist auf Chromosom 4 lokalisiert, das für den ET\textsubscript{B}-Rezeptor auf Chromosom 13. Der ET\textsubscript{A}-Rezeptor besitzt die höchste Affinität für ET-1, der ET\textsubscript{B}-Rezeptor bindet alle Endotheline mit gleicher Affinität (Vignon-Zellweger et al., 2012). ET-1 weist beiden Rezeptoren gegenüber dieselbe Affinität auf (Arai et al., 1990; Sakurai et al., 1990). Obwohl nahezu jede Körperzelle Endothelin-Rezeptoren exprimiert, ist ET\textsubscript{A} vornehmlich auf glatten Gefäßmuskelzellen und Myozyten zu finden, während ET\textsubscript{B} hauptsächlich auf Endothelzellen und renalen Tubuluszellen vorkommt. Nach Aktivierung beider Rezeptortypen werden die intrazellulären Signalwege G-Protein-gekoppelt vermittelt und führen zur Stimulation der Phospholipase C. Die nachfolgende Produktion von Inositoltriphosphat (IP\textsubscript{3}) und Diacylglycerol (DAG) erhöht die intrazelluläre Calcium-Konzentration über die Freisetzung von Calcium aus dem endoplasmatischen Retikulum und den Calcium-Einstrom über membranständige Calcium-Kanäle (Simonson and Dunn, 1990). Daran schließt sich nach Aktivierung von Adenylatzyklasen, Cyclooxygenasen (COX) oder NO-Synthasen (NOS) eine Vielzahl von Signalkaskaden an (Kohan et al., 2011).

ET\textsubscript{A} und ET\textsubscript{B} können synergistische oder antagonistische Wirkungen vermitteln, in Abhängigkeit von Zelltyp, Gewebetyp und physiologischer Situation. Die Bindung von ET-1 an seine Rezeptoren, vor allem an ET\textsubscript{A}, zieht lang andauernde biologische Effekte nach sich. Einerseits ist das auf eine nahezu irreversible Bindung des Peptids an den Rezeptor zurückzuführen, andererseits bleibt die Bindung von ET-1 an ET\textsubscript{A} auch nach Endozytose des Rezeptors erhalten. ET\textsubscript{B}-Rezeptoren sind vornehmlich für die Beseitigung des zirkulierenden ET-1 verantwortlich, welche hauptsächlich in der Lunge, der Leber und in den Nieren erfolgt (Johnström et al., 2005). Nach Aktivierung wird der ET\textsubscript{B}-Rezeptor internalisiert und den Lysosomen zugeführt (Bremnes et al., 2000). Die Plasmakonzentration von Endothelin ist gering und besitzt physiologischerweise vermutlich keinen systemischen Einfluss auf die Zellfunktion. Die lokalen Endothelin-Konzentrationen im Gewebe hingegen
sind um ein Vielfaches höher und physiologisch relevant. Die meisten polarisierten Zellen sezernieren Endothelien auf ihrer basolateralen Seite. Auf Epithelzellen sind auch die Endothelin-Rezeptoren primär auf der basolateralen Seite lokalisiert, wodurch eine autokrine und parakrine Regulation ermöglicht wird. Deshalb sollten Endothelien als autokrine und parakrine Regulatoren der Zellfunktion und nicht als endokrine Faktoren angesehen werden. Mit diesem Konzept lässt sich die Vielzahl häufig entgegengesetzter Wirkungen der Endothelien erklären (Kohan et al., 2011).

Endothelinrezeptoren können als Homo- und Heterodimere (ET\textsubscript{A}/ET\textsubscript{A}, ET\textsubscript{A}/ET\textsubscript{B}, ET\textsubscript{B}/ET\textsubscript{B}) vorliegen, worauf die Komplexität der ET-1-vermittelten Wirkungen beruhen könnte (Evans and Walker, 2008). Antagonisten der Endothelinrezeptoren sind Peptide mit hoher Rezeptorselektivität. Nach Watts (2010) existieren für beide Rezeptortypen spezifische Antagonisten, etwa der ET\textsubscript{A}-Antagonist BQ-123 oder der ET\textsubscript{B}-Antagonist BQ-788 (Ishikawa et al., 1994). Bei Bosentan handelt es sich um einen kombinierten ET\textsubscript{A}/ET\textsubscript{B}-Rezeptor-Blocker (Iglarz et al., 2008). Die Rezeptor-Selektivität dieser Substanzen resultiert aus in-vitro-Experimenten, die Bestätigung ihrer Spezifität in vivo ist ausstehend (Kohan et al., 2011).

1.7.4 Endothelinwirkung auf das Gefäßsystem

Im Gefäßsystem werden ET\textsubscript{A}-Rezeptoren auf glatten Gefäßmuskulatoren exprimiert, ET\textsubscript{B}-Rezeptoren zusätzlich auf Endothelzellen. Die Anzahl der ET\textsubscript{B}-Rezeptoren im Gefäßsystem übersteigt die der ET\textsubscript{A}-Rezeptoren (Kohan et al., 2011). Allerdings weist jedes Gefäßbett eine unterschiedliche Verteilung der Rezeptoren auf, wodurch die jeweilige Antwort auf ET-1 moduliert wird (Calo et al., 1996). Das von den Endothelzellen produzierte ET-1 wird größtenteils basolateral sezerniert und bindet auf parakrinem Wege sowohl an ET\textsubscript{A}- als auch an ET\textsubscript{B}-Rezeptoren der glatten Muskelzellen (Wagner et al., 1992). Die Bindung von ET-1 an den ET\textsubscript{A}-Rezeptor zieht eine Vasokonstriktion nach sich (Curtis and Scholfield, 2001; Perrnow and Modin, 1993). Die Bindung an ET\textsubscript{B}-Rezeptoren hingegen bewirkt einen vasorelaxierenden Effekt: ET-1 aktiviert ET\textsubscript{B}-Rezeptoren auf Endothelzellen, woraus eine Stimulation der endothelialen NO-Synthase (eNOS) und die konsekutive
had wide ranges of specificity and most had a low range of the early commercially available RIA and ELISA kits for ET-1 versus Big ET-1 and the other isopeptides. Many plasma ET-1 levels come from the range of specificities circulation. A complicating feature of understanding ET-1 is the very efficient system for clearing ET-1 from the C. Plasma ET-1 Concentrations

ducers of ET-1 synthesis. This is thought to become par-

but inflammatory cytokines are known to be potent in-
demonstrated using cell culture preparations as well as in vascular wall is not always limited to the endothelium.

release (35).

undergo continuous basal production of ET-1 from secretory ves-

icles. Interestingly, these vesicles also stain positive for ECE and Big ET-1 immunoreactivity, suggesting addi-

tional synthesis of the mature peptide even after cellular

Weibel-Palade bodies (652). There also appears to be a common pathway to stimulate regulated release from ing ANG II and thrombin, appear to function through a.

Factors that increase intracellular Ca

in vivo under nonpathological conditions are poorly un-

that regulate ET-1 release from the vascular endothelium

Evidence that ET

has an extremely slow dissociation rate (806, 840). Described often as published observations). This efficient clearance mecha-

change plasma ET-1 immunoreactivity (D. Pollock, un-

Freisetzung von NO resultiert. NO vermittelt über die Reduktion der intrazellulären Calzium-Konzentration eine Vasodilatation (Kohan et al., 2011; Vignon-Zellweger et al., 2012). Eine selektive Blockade von ET

-Rezeptoren verstärkt die NO-vermittelte Vasodilatation (Verhaar et al., 1998; Prié et al., 1998; Barton et al., 1998), wohingegen eine Blockade von ET

-Rezeptoren zu einer Vasokonstriktion führt (Verhaar et al., 1998). Genetisch bedingter Mangel an ET-1 führte bei Mäusen zu einem geringgradig höheren Blutdruck (Kurihara et al., 1994).

Im renalen Gefäßbett ruft ET-1 eine vergleichsweise starke Vasokonstriktion hervor. Die physiologisch bedeutendere Rolle von ET-1 besteht aber in der ET

vermittelten Vasodilatation. ET-1-induzierte Vasokonstriktion dauert auch nach Entfernung des Liganden an (Clozel and Clozel, 1989), während der vasodilatato-

rische Einfluss vorübergehend ist. Ein Hauptmechanismus für die endothelinver-

mittelte renale Vasokonstriktion ist die Veränderung der Ca

-Konzentration in glatten Muskulzellen, über welche der prä- und postglomeruläre Gefäßwiderstand reguliert wird (Kohan et al., 2011).
1.7.5 Endothelinwirkung auf die Niere

1.7.5.1 Überblick

1.7.5.2 Renales Gefäßsystem

Conditions production can be modulated. ECE-1 in human kidney was detected on the endothelial surface of arcuate and interlobular arteries as well as glomerular arterioles and endothelial cells (599). In the medulla, ECE-1 was detected in vasa recta bundles and tubular elements. Endothelial staining was confirmed by immunohistochemical detection with von Willebrand factor, which paralleled ECE-1 mRNA distribution (599). Subsequent immunocytochemistry studies confirmed that endothelial cells of human interlobular and arcuate arteries and adjacent veins produce mature ET-1 (348). Big ET-1 colocalized with ET-1 in those vascular segments (348). Positive staining was also detected in glomerular capillary endothelial cells but not endothelia from other intrarenal capillaries. Interestingly, no immunostaining was evident in the vascular smooth muscle cells of these endothelium-positive arterial segments.

Generally speaking, ET-1 release occurs soon after it is generated by ECE-1 from pre-pro ET-1. Therefore, secreting cells do not contain stores of biologically active ET-1 to be released in response to a secretory stimulus. Endothelial cells produce biologically active ET-1 from pre-pro ET-1, mainly through the catalytic actions of ECE; however, other mechanisms are implicated under physiological and pathophysiological conditions, and in tissue specific manners (131, 386). ET-1 production can come from many sources and under a number of conditions. Renal ET-1 production is facilitated by shear stress, inflammatory conditions/mediators, oxidative stress, the renin/ANG II system, and others (58, 171, 234, 533). Most of this is probably generated by tubular epithelial and interstitial cells; how much renal ET is derived directly from renal microvascular endothelial and smooth muscle cells, and how this ET might influence renal microvascular or tubular function, is not known.

3. Effect of ET on the renal circulation

A) OVERVIEW

As in other tissues, the renal vascular effects of ET are mediated by activation of ET$_A$ and ET$_B$. Therefore, secreting cells do not contain stores of biologically active ET-1 to be released in response to a secretory stimulus. Endothelial cells produce biologically active ET-1 from pre-pro ET-1, mainly through the catalytic actions of ECE; however, other mechanisms are implicated under physiological and pathophysiological conditions, and in tissue specific manners (131, 386). ET-1 production can come from many sources and under a number of conditions. Renal ET-1 production is facilitated by shear stress, inflammatory conditions/mediators, oxidative stress, the renin/ANG II system, and others (58, 171, 234, 533). Most of this is probably generated by tubular epithelial and interstitial cells; how much renal ET is derived directly from renal microvascular endothelial and smooth muscle cells, and how this ET might influence renal microvascular or tubular function, is not known.

Studien von Pollock and Opgenorth (1993, 1994) weisen darauf hin, dass die Vasokonstriktion der afferenten Arteriole die Aktivierung von ET_A- und ET_B-Rezeptoren widerspiegelt. Eine ET_A-Blockade schwächt diesen Effekt ab, eine Blockade beider Rezeptor-Subtypen verhindert ihn komplett. Auch an der Vasokonstriktion der efferenten Arteriole sind beide Rezeptortypen beteiligt, ihr Zusammenspiel aber ist komplizierter. So bewirkt etwa die ET_A-Blockade bei geringer ET-1-Konzentration unter 100 pM eine moderate Vasodilatation, wohingegen ET-1-Konzentrationen über 1 nM eine Vasokonstriktion hervorrufen. Die Ergebnisse legen nahe, dass der vasodilatatorische ET_B-Rezeptor auf dem Gefäßendothel eine dominantere Rolle für die efferente Arteriole spielt und die ET_B-abhängige Vasokonstriktion erst bei höherer Konzentration der Agonisten hervorgerufen wird. Damit scheint der ET_B-Rezeptor einen vasodilatatorischen Einfluss auf die effe-
rente Arteriole auszuüben, aber als Vasokonstrktor auf die afferente Arteriole zu fungieren. Eine Hochsalz-Diät schwächt über eine Zunahme der präglomerulären ET\textsubscript{B}-Rezeptoren eine afferente Vasokonstruktion ab (Kohan et al., 2011). Eine ET\textsubscript{A}-Blockade kann den ET-1-vermittelten Abfall von renalem Blutfluss und glomerulärer Filtrationsrate komplett unterbinden (Pollock and Opgenorth, 1993, 1994). Auf systemische oder intrarenale Infusion von Endothelin reagieren die Nieren einheitlich mit Vasokonstriktion. Untersuchungen von Saito et al. (1994) belegen eine stärkere präglomeruläre (Vas afferens) Vasokonstruktion als eine postglomeruläre (Vas efferens). Badr et al. (1989) wiesen nach, dass ET-1 den renalen Blutfluss an Rattenmieren reduzierte und den Widerstand der afferenten bzw. efferenten Arteriole um 65\% bzw. 82\% ansteigen ließ (Badr et al., 1989). Die Infusion des kombinierten ET\textsubscript{A}/ET\textsubscript{B}-Antagonisten Bosentan führt zu einer geringen Reduktion des Blutdrucks, einhergehend mit einer starken Abnahme des glomerulären Kapillardrucks (Qiu et al., 1995). Eine selektive ET\textsubscript{A}-Blockade zeigte unter gleichen Bedingungen keinen Einfluss auf den arteriellen Blutdruck oder die glomeruläre Hämodynamik. Dies suggeriert, dass endogenes ET-1 einen ET\textsubscript{B}-vermittelten vasodilatorischen Einfluss auf die renale Mikrozirkulation nimmt (Kohan et al., 2011). Die intrarenale Infusion von ET-1 reduziert über eine Aktivierung von ET\textsubscript{A}-Rezeptoren die glomeruläre Filtrationsrate und den renalen Blutfluss und erhöht zugleich den Widerstand an afferenter und efferenter Arteriole. Die renale Vaskonstriktion scheint dabei eine Kombination aus der direkten ET-1-Wirkung und indirekten Effekten über andere vasoaktive Mediatoren wie etwa Angiotensin II widerzuspiegeln (Heller et al., 1996; Kohan et al., 2011).

1.7.5.3 Glomerulus, Mesangiumzellen und Podozyten

Endothelin hat verschiedene Auswirkungen auf die glomerulären Zellen. Im Mesangium bewirkt ET-1 eine Kontraktion, Proliferation und Akkumulation von extrazellulärer Matrix (Vignon-Zellweger et al., 2012). Das Endothelin-System vermag die glomeruläre Filtrationsrate durch Modifikation der glomerulären Zellfunktion zu beeinflussen (Kohan et al., 2011), bei Bluthochdruck wurde eine Steigerung der mesangialen ET-1-Produktion beobachtet (Ikeda et al., 1995). Möglicherweise
führt die ET-1-vermittelte mesangiale Kontraktion zu einer reduzierten glomerulären Filtrationsrate, welche zu einer verminderten renalen Natrium-Ausscheidung beitragen könnte (Kohan et al., 2011).
Glomeruläre Podozyten exprimieren sowohl ET$_A$- als auch ET$_B$-Rezeptoren und sind in der Lage, Endotheline zu synthetisieren. Endotheline bewirken unter anderem eine Destabilisierung der Aktinfilamente von Podozyten und nehmen Einfluss auf die Zytoskelett-Remodellierung (Kohan et al., 2011; Vignon-Zellweger et al., 2012).

1.7.5.4 Tubulussystem

Wenn gleich in geringerer Menge als weiter distal gelegene Abschnitte des Tubulusystems, synthetisiert auch der proximale Tubulus ET-1 und exprimiert Endothelin-Rezeptoren – wahrscheinlich beide Rezeptortypen, ET$_A$ und ET$_B$. Die Aktivierung von ET$_B$-Rezeptoren am proximalen Tubulus vermag den Natrium-Transport sowohl zu stimulieren als auch zu inhibieren (Kohan et al., 2011). Eine Aktivierung der ET$_B$-Rezeptoren im proximalen Tubulus zieht eine Hemmung der Na$^+$/K$^+$-ATPase-Aktivität nach sich (Liu et al., 2009).

Der dünnere Schenkel der Henle-Schleife scheint an der endothelinvermittelten Regulation des extrazellulären Wasserhaushalts nicht beteiligt zu sein (Kohan et al., 2011). Der dicke aufsteigende Schenkel der Henle-Schleife synthetisiert Endotheline in größeren Mengen als der proximale Tubulus, allerdings weniger als das Sammelrohr. Zugleich werden Endothelin-Rezeptoren exprimiert, primär ET$_B$-Rezeptoren. Die Endothelin-Produktion im medullären dicken aufsteigenden Schenkel stellt eine natriuretische Antwort auf eine hohe Salzzufuhr dar: Eine hohe Salzzufuhr steigert die medulläre Tonizität, und mit einem Anstieg der Osmolalität geht eine Steigerung der ET-1-Expression einher. Das freigesetzte ET-1 bindet auf autokrinem Wege an ET$_B$-Rezeptoren und stimuliert die Bildung von NO, wodurch die Aktivität des Na$^+$/K$^+$/2Cl$^-$-Kotransporters (NKCC2) und damit die NaCl-Rückresorption im dicken aufsteigenden Schenkel gehemmt wird (Herrera et al., 2009; Plato et al., 2000). Die ET-1-vermittelte Hemmung des Chlorid-Transport kann durch Gabe eines ET$_B$-Rezeptor-Blockers verhindert werden, wohingegen die Verabreichung ei-
nes ET₉-Agonisten diesen Effekt verstärkt (Kohan et al., 2011).

1.7.5.5 Sammelrohr

ET₈-Rezeptoren werden im Sammelrohr nur in vergleichsweise geringer Zahl ex-

6Das Sammelrohr produziert mehr Endothelin als jeder andere Zelltyp der Niere und möglicherweise sogar des gesamten Körpers (Kohan et al., 2011).
primiert, hemmen aber ebenfalls die Natrium-Rückresorption. Damit reduzieren sowohl ET\textsubscript{B}- als auch ET\textsubscript{A}-Rezeptoren die Natrium-Rückresorption \cite{Vignon-Zellweger2012}. Möglicherweise reduzieren Vasopressin und Angiotensin II, welche die Natrium-Resorption im Nephron stimulieren, die Expression der Endothelin-Rezeptoren im IMCD, um den gegensätzlichen natriuretischen Effekt des Endothelinsystems zu limitieren \cite{Kohan2011,Vignon-Zellweger2012}. Der ET-1-vermittelte Transport von Natrium wird durch eine Vielzahl von Signalwegen reguliert, unter anderem ist NO in die Endothelin-vermittelte Inhibition der Natrium-Reabsorption im Sammelrohr involviert. Die NO-Produktion im Sammelrohr wird durch Endothelium stimuliert \cite{Kohan2011}.

Endothelins inhibieren dosisabhängig die Rückresorption von Wasser im Sammelrohr. Auf autokrinem Wege reguliert ET-1 die Vasopressin-Wirkung im Sammelrohr und fördert die Diurese, indem die durch Vasopressin gesteigerte Permeabilität für Wasser durch ET-1 reduziert wird \cite{Kohan2011,Ge2008}. Die diuretischen Effekte von ET-1 im Sammelrohr werden hauptsächlich von ET\textsubscript{B}-Rezeptoren vermittelt. Möglicherweise bewirken ET\textsubscript{A}-Rezeptoren einen antidiuretischen Effekt im Sammelrohr. Vasopressin und Angiotensin II, welche die Natrium-Resorption im Nephron stimulieren, könnten die Expression der ET-Rezeptoren im IMCD reduzieren, um den gegensätzlichen natriuretischen Effekt des Endothelinsystems zu beschränken \cite{Kohan2011,Vignon-Zellweger2012}.

\textbf{1.7.6 Endothelinwirkung auf humorale Systeme}

\textbf{1.7.6.1 Nebennierenrinde: Aldosteron}

In der Nebennierenrinde wird ET-1 gebildet, außerdem werden beide Endothelinreceptorsubtypen exprimiert, insbesondere in der Zona glomerulosa, in welcher ET-1 die Aldosteronproduktion stimuliert. Wenngleich der Effekt im Vergleich zu der von Angiotensin II vermittelten Wirkung gering ist, könnte ET-1 die Angiotensin-II-Wirkung auf die Nebenniere verstärken – die Blockade von Endothelin-Rezeptoren reduziert die Aldosteron-Konzentration im Plasma. ET-1 stimuliert sowohl auf autokrinem als auch auf parakrinem Wege Calcium-abhängig die adrenale Aldosteron-Produktion, die ET\textsubscript{A}- und ET\textsubscript{B}-vermittelte Freisetzung von Aldosteron
aus Zellen der Zona glomerulosa beruht teilweise auf der PKC. Unklar ist weiterhin die Rolle von ET-1 in der physiologischen Aldosteron-Produktion in Bezug auf Natrium-Haushalt und Blutdruckkontrolle (Kohan et al., 2011).

1.7.6.2 Renin-Angiotensin-System

In Anbetracht der Bedeutung von Endothelin und Renin für die Kontrolle des Blutdrucks könnte man eine direkte Interaktion beider Substanzen erwarten. In der Tat deuten Studien auf einen hemmenden Einfluss von ET-1 auf die Reninfreisetzung aus juxtaglomerulären Zellen infolge einer Erhöhung der intrazellulären Calzium-Konzentration hin. Diese inhibitorischen Einflüsse des Endothelins schließen auch die Hemmung stimulatorischer Faktoren auf die Renin-Freisetzung, wie etwa cAMP, ein (Takagi et al., 1989; Ritthaler et al., 1995, 1996). Da es Hinweise auf eine ETB-vermittelte Inhibition der Reninfreisetzung gibt (Ritthaler et al., 1995), wurde untersucht, ob der modulierende Einfluss von ET-1 auf die Reninfreisetzung von anderen endothelialen Faktoren, allen voran NO, abhängt. So kann endotheliales ET-1 die Reninfreisetzung zwar abschwächen, unabhängig aber von Prostaglandinen oder NO. Tharaux et al. (1997) zeigten, dass die Hemmung der NO-Synthase die Reninfreisetzung Calzium-abhängig reduziert. Folgeexperimente mit dem dualen Rezeptorantagonisten Bosentan ergaben, dass NO eine inhibitorische Wirkung auf den Einfluss von ET-1 auf die Reninfreisetzung besitzt (Tharaux et al., 1997).

Trotz großer Übereinstimmung, dass ET-1 die Freisetzung von Renin hemmt, ist die physiologische Bedeutung dieses Vorgangs unklar. Studien belegen, dass endogenes ET-1 die Blutdruck-abhängige Kontrolle der Reninfreisetzung moduliert. Möglicherweise fördert endogenes ET-1 die Natrium-Exkretion, indem es die Wirkung des renalen Barorezeptors, der für die Freisetzung von Renin verantwortlich ist, abschwächt. Es besteht Uneinigkeit darüber, welcher Endothelin-Rezeptor in vivo die größere Bedeutung für die Kontrolle der Renin-Exkretion besitzt. Da die Aktivierung des ETB-Rezeptors die NO-Produktion stimuliert und NO die Reninfreisetzung steigert, ist ungeklärt, auf welche Weise der ETB-Rezeptor die Freisetzung von Renin inhibiert (Kohan et al., 2011). Untersuchungen von Berthold
2 Fragestellung und Zielsetzung

Zusammenfassend besteht das Ziel der vorliegenden Arbeit in der Beantwortung der im Folgenden formulierten Fragestellungen: Wie stellt sich die Lokalisation der Endothelinrezeptoren im Gefäβ-, Tubulus- und Sammelrohrystensystem von Mäusenieren dar? Welche Auswirkungen besitzt die pharmakologische Blockade von Endothelinrezeptoren auf die Elektrolytkonzentration im Urin und die Urinosmolalität? Welchen Einfluss nehmen Endothelium auf die Reninexpression? Welche Bedeutung besitzt der ET$_A$-Rezeptor auf zellulärer Ebene für die Stimulation des Reninsystems?
3 Material und Methoden

3.1 Material

3.1.1 Geräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoklav</td>
<td>112, KSG Sterilisatoren GmbH, Olching</td>
</tr>
<tr>
<td>Computer</td>
<td>Precision 690, Dell, Frankfurt am Main</td>
</tr>
<tr>
<td>Eismaschine</td>
<td>Ziegra Eismaschinen, Isernhagen</td>
</tr>
<tr>
<td>Filtersets</td>
<td></td>
</tr>
<tr>
<td>Cy2-Filter:</td>
<td>Filter set 38, Zeiss, Jena</td>
</tr>
<tr>
<td></td>
<td>Anregung 450–490 nm</td>
</tr>
<tr>
<td></td>
<td>Emission 500–550 nm</td>
</tr>
<tr>
<td>Cy3-Filter (TRITC):</td>
<td>Filter set 43, Zeiss, Jena</td>
</tr>
<tr>
<td></td>
<td>Anregung 533–558 nm</td>
</tr>
<tr>
<td></td>
<td>Emission 570–640 nm</td>
</tr>
<tr>
<td>Cy5-Filter:</td>
<td>Filter set 50, Zeiss, Jena</td>
</tr>
<tr>
<td></td>
<td>Anregung 625–655 nm</td>
</tr>
<tr>
<td></td>
<td>Emission 665–715 nm</td>
</tr>
<tr>
<td>Flammenphotometer</td>
<td>PFP7, Jenway, Dunmow, Essex, UK</td>
</tr>
<tr>
<td>Fluoreszenzlampe</td>
<td>X-Cite 120, EXFO Life Sciences Industrial Division, Mississauga, Canada</td>
</tr>
<tr>
<td>Geräte</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gefrierpunktosmometer</td>
<td>Osmomat 030, Gonotec, Berlin</td>
</tr>
<tr>
<td>Grafikkarte</td>
<td>Quadro FX 4500, NVIDIA, Wurselen</td>
</tr>
<tr>
<td>Homogenisator</td>
<td>Ultra-Turrax T25, Janke und Kunkel, Staufen</td>
</tr>
<tr>
<td>Inkubationsschrank</td>
<td>Modell B6200, Heraeus, Hanau</td>
</tr>
<tr>
<td>Kühl- und Gefrierschränke</td>
<td>Santo Kühlshrank, AEG, Nürnberg</td>
</tr>
<tr>
<td></td>
<td>Comfortplus Gefrierschrank, Liebherr, Ochsenhausen</td>
</tr>
<tr>
<td></td>
<td>Ultra-low-freezer $-85^\circ C$, New Brunswick Scientific</td>
</tr>
<tr>
<td>Kamera</td>
<td>AxioCam MRm, Zeiss, Jena</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>MR80, Heidolph, Schwabach</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axiovert 200M, Zeiss, Jena</td>
</tr>
<tr>
<td>Mikrotom</td>
<td>Rotationsmikrotom RM2165, Leica, Wetzlar</td>
</tr>
<tr>
<td>Reinwasseranlage</td>
<td>MilliQ Plus PF, Millipore, Schwalbach</td>
</tr>
<tr>
<td>PCR-Geräte</td>
<td>Lightcycler LC480, Roche, Mannheim</td>
</tr>
<tr>
<td></td>
<td>Labcycler, Sensoquest, Göttingen</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>HI 2211, Hanna Instruments</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Pipetman P10, P20, P100, P200, P1000, P1000, Gilson, Middleton, USA</td>
</tr>
<tr>
<td>Scantisch</td>
<td>motorisierter Märzhäusertisch (MAC 5000 Controller), Ludl Electronic Products, München</td>
</tr>
<tr>
<td>Schüttler</td>
<td>SM25, Edmund Bühler, Hechtingen</td>
</tr>
<tr>
<td>Spannungsquellen</td>
<td>PowerPac Basic, Bio-Rad, München</td>
</tr>
<tr>
<td>UV-Spektrometer</td>
<td>BioPhotometer plus, Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Stoffwechselkäfige</td>
<td>Tecniplast, Hohenpeißenberg</td>
</tr>
<tr>
<td>Vortexgeräte</td>
<td>Vortex-Genie 2, Scientific Industries, New York USA REAX1, Heidolph, Schwabach</td>
</tr>
<tr>
<td>Waagen</td>
<td>Analysenwaage H-20T, Mettler, Gießen</td>
</tr>
<tr>
<td></td>
<td>Feinwaage P-1210, Mettler, Gießen</td>
</tr>
<tr>
<td></td>
<td>Feinwaage W13, Mettler, Gießen</td>
</tr>
</tbody>
</table>

44
Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeblöcke</td>
<td>Thermostat 5230, Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>Thermomixer 5436, Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Wärmeplatte</td>
<td>Hi 1220, Leica, Wetzlar</td>
</tr>
<tr>
<td>Wärmeschrank</td>
<td>Modell 300, Memmert, Schwabach</td>
</tr>
<tr>
<td>Wärmetopf</td>
<td>PSI, HOT POT 1.411.80/1</td>
</tr>
<tr>
<td>Wasserbäder</td>
<td>Modell W13, Haake, Karlsruhe</td>
</tr>
<tr>
<td></td>
<td>1083, GFL, Burgwedel</td>
</tr>
<tr>
<td>Zentrifugen</td>
<td>Zentrifuge 5415C, Eppendorf, Hamburg</td>
</tr>
</tbody>
</table>

3.1.2 Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auslaufpipetten 5 ml, 10 ml, 25 ml</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>Deckgläschen</td>
<td>Labonord, Mönchengladbach</td>
</tr>
<tr>
<td>Filter</td>
<td>Schleicher & Schuell, Dassel</td>
</tr>
<tr>
<td>Gewebe-Einbettkassetten</td>
<td>Labonord, Mönchengladbach</td>
</tr>
<tr>
<td>Glaswaren</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td></td>
<td>Schott, Mainz</td>
</tr>
<tr>
<td>Handschuhe</td>
<td>Hartmann, Heidenheim</td>
</tr>
<tr>
<td>Hochsalzfutter 4 % NaCl</td>
<td>Ssniff, Soest</td>
</tr>
<tr>
<td>Light Cycler 480 Multiwell Platten 96</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Liquid Blocker</td>
<td>Labonord, Mönchengladbach</td>
</tr>
<tr>
<td>Niedrigsalzfutter 0.02 % NaCl</td>
<td>Ssniff, Soest</td>
</tr>
<tr>
<td>Normalsalzfutter 0.4 % NaCl</td>
<td>Ssniff, Soest</td>
</tr>
<tr>
<td>Objektträger, Superfrost Plus</td>
<td>Menzel-Gläser, Braunschweig</td>
</tr>
<tr>
<td>Parafilm</td>
<td>American National Can, Greenwich, USA</td>
</tr>
<tr>
<td>Pipettenspitzen</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>Präparatekästen</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Reagiergefäße Eppendorf</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>Produkt</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0.2 ml, 0.5 ml, 1.5 ml, 2.0 ml</td>
<td></td>
</tr>
<tr>
<td>Reagiergefäße Falcon 15 ml, 50 ml</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>Silikonkautschuk Gießformen</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Skalpellklingen</td>
<td>Feather, Köln</td>
</tr>
</tbody>
</table>

3.1.3 Chemikalien, Enzyme, Kits

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>Biozym, Oldendorf</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Diethylpyrocarbonat (DEPC)</td>
<td>Fluka, Neu-Ulm</td>
</tr>
<tr>
<td>DNA Längenstandard: 100 bp Plus</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethanol p.a.</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>First Strand Buffer, 5 ×</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Glycergel Mounting Medium</td>
<td>Dako Cytomation, Glostrup, Dänemark</td>
</tr>
<tr>
<td>GoTaq DNA Polymerase, 5 U/µl</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>GoTaq Reaction Buffer Green</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>HCl 1N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Heparin Liquemin® 25 000, 5 ml-Ampullen (5000 I. E./ml)</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Isoopropanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Isotone NaCl-Lösung 0.9 %</td>
<td>B. Braun, Melsungen</td>
</tr>
<tr>
<td>K$_2$HPO$_4$ × 3 H$_2$O</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>KH$_2$HPO$_4$</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ketamin</td>
<td>CP-Pharma, Burgdorf</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Bio-Rad, München</td>
</tr>
<tr>
<td>M-MLV Reverse Transcriptase, 200 U/µl</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>
3.1.4 Primer

Die für die quantitative PCR und die Genotypisierung verwendeten Primer wurden von der Firma Biomers.net aus Ulm in gewünschter Nukleotidabfolge synthetisiert und gefriergetrocknet geliefert. Durch Zugabe von nukleasefreiem Wasser wurde eine Konzentration von 100 pmol/µl eingestellt.

3.1.4.1 Quantitative PCR (qPCR)

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADPH s</td>
<td>5'-ATG CCA TCA CTG CCA CCC AGA AG-3'</td>
</tr>
<tr>
<td>GADPH as</td>
<td>5'-ACT TGG CAG GTT TCT CCA GGC GG-3'</td>
</tr>
<tr>
<td>Renin s</td>
<td>5'-ATG AAG GGG GTG TCT GTG GGG TC-3'</td>
</tr>
</tbody>
</table>
3.1.4.2 Genotypisierung

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renin as</td>
<td>5’-ATG CGG GGA GGG TGG GCA CCT G-3’</td>
</tr>
<tr>
<td>ET<sub>A</sub> s</td>
<td>5’-AGG AAC GGC AGC TTG CGG AT-3’</td>
</tr>
<tr>
<td>ET<sub>A</sub> as</td>
<td>5’-AGC AAC AGA GGC AGG ACT GA-3’</td>
</tr>
<tr>
<td>ET<sub>B</sub> s</td>
<td>5’-GAA GAG CGG TAT GCA GAT TG-3’</td>
</tr>
<tr>
<td>ET<sub>B</sub> as</td>
<td>5’-TAT TGC TGG ACC GGA AGT TG-3’</td>
</tr>
</tbody>
</table>

3.1.5 Antikörper

<table>
<thead>
<tr>
<th>Primärantikörper</th>
<th>Klonalität</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch-anti-Renin-IgG</td>
<td>polyklonal</td>
<td>Davids Biotech, Regensburg</td>
<td>1 : 400</td>
</tr>
<tr>
<td>rb-anti-ET_A-Rezeptor-IgG</td>
<td>polyklonal</td>
<td>Alomone Labs, Israel</td>
<td>1 : 100</td>
</tr>
<tr>
<td>ch-anti-Calbindin-IgG (anti-calbindin D-28k)</td>
<td>monoklonal</td>
<td>Swant, Schweiz</td>
<td>1 : 200</td>
</tr>
<tr>
<td>gt-anti-AQP2-IgG (c-17)</td>
<td>polyklonal</td>
<td>Santa Cruz Biotechnology, Texas</td>
<td>1 : 200</td>
</tr>
<tr>
<td>ms-anti-Glattmuskelniktin-IgG</td>
<td>monoklonal</td>
<td>Abcam, UK</td>
<td>1 : 600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sekundärantikörper</th>
<th>Konjugation</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>dk-anti-ms-IgG</td>
<td>Rhodamin-TRITC</td>
<td>Dianova, Hamburg</td>
<td>1 : 400</td>
</tr>
<tr>
<td>dk-anti-ms-IgG</td>
<td>Cy2</td>
<td>Dianova, Hamburg</td>
<td>1 : 400</td>
</tr>
<tr>
<td>dk-anti-rb-IgG</td>
<td>Cy2</td>
<td>Dianova, Hamburg</td>
<td>1 : 200</td>
</tr>
<tr>
<td>dk-anti-ms-IgG</td>
<td>Cy5</td>
<td>Dianova, Hamburg</td>
<td>1 : 400</td>
</tr>
<tr>
<td>dk-anti-ch-IgG</td>
<td>Rhodamin-TRITC</td>
<td>Dianova, Hamburg</td>
<td>1 : 400</td>
</tr>
<tr>
<td>dk-anti-ch-IgG</td>
<td>Cy5</td>
<td>Dianova, Hamburg</td>
<td>1 : 200</td>
</tr>
</tbody>
</table>

3.1.6 Puffer und Lösungen

Soweit nicht anders vermerkt, wurden die Chemikalien für sämtliche Puffer und Lösungen in H$_2$O$_{bidest}$ gelöst.

Immunhistochemie
Fixierlösung für Perfusion

| PBS (Phosphate Buffered Saline) | Paraformaldehyd 3 % |

Molekularbiologie

PBS-Puffer, pH 7,4

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>136 mM</td>
</tr>
<tr>
<td>KCl</td>
<td>2.7 mM</td>
</tr>
<tr>
<td>Na₂HPO₄ × 2 H₂O</td>
<td>10.1 mM</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1.8 mM</td>
</tr>
</tbody>
</table>

Nach einem ehemaligen Studenten namens Otto ist der folgende Puffer im Physiologischen Institut der Universität Regensburg benannt:

PBS-Otto-Puffer, pH 7,4

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH₂PO₄ × 3 H₂O</td>
<td>10 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>140 mM</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>10 mM</td>
</tr>
</tbody>
</table>

Waschpuffer

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS-Otto-Puffer</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Blockierlösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS-Otto-Puffer</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>1 %</td>
</tr>
<tr>
<td>HS</td>
<td>10 %</td>
</tr>
</tbody>
</table>
3.1.7 Software und Internetdienste

3.2 Methoden

3.2.1 Versuchstiere

Folgende Tierstämme fanden in den der vorliegenden Arbeit zugrundeliegenden Untersuchungen Verwendung:
<table>
<thead>
<tr>
<th>Tierstamm</th>
<th>genetischer Hintergrund</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>C57BL/6</td>
<td>Charles River, Sulzfeld</td>
</tr>
<tr>
<td>ET<sub>A</sub><sup>fl/fl</sup></td>
<td>Mischung: 129/S6, FVB/N und C57BL/6J</td>
<td>Prof. Dr. M. Yanagisawa, UT Southwestern, Medical Center, USA</td>
</tr>
<tr>
<td>Ren-1d<sup>++/Cre</sup></td>
<td>Mischung: 129J und C57BL/6</td>
<td>Prof. R. Gomez, University of Virginia, School of medicine, USA</td>
</tr>
<tr>
<td>Ren-1d<sup>++/Cre, ET<sub>A</sub><sup>fl/fl</sup></sup></td>
<td>bunt</td>
<td>Eigenzucht</td>
</tr>
</tbody>
</table>

Als „Floxing“ bezeichnet man das Flankieren eines DNA-Abschnitts mit zwei loxP-Sequenzen (loxP = locus of X-over P1, eine aus 34 bp bestehende DNA-Sequenz des Bakteriophagen P1). Eine Cre-Rekombinase (Cre = causes recombination) katalysiert die Rekombination (Deletion, Translokation, Inversion) der DNA-Sequenz zwischen beiden loxP-Abschnitten. Unter Nutzung dieses sogenannten Cre/loxP-Systems erfolgt der reninzellspezifische Knockout des gefloxten ET_A-Rezeptor-Gens unter Erhalt des Reningens.

ET_A^{fl/fl}-Mäuse werden der Einfachheit halber bisweilen auch als „Wildtyp“-Mäuse, Ren-1d^{++/Cre, ET_A^{fl/fl}}-Mäuse im Gegensatz dazu auch als „Knockout“-Mäuse bezeichnet. Zur deutlichen Unterscheidbarkeit tragen C57BL/6-Mäuse stets die Bezeichnung „C57BL/6“.

3.2.1.1 Stoffwechselkäfige

52

3.2.1.2 Verabreichung der Endothelin-Rezeptor-Antagonisten

Den Versuchstieren wurden nach einer Eingewöhnungsphase in die Stoffwechselkäfige über insgesamt zehn Tage die selektiven Endothelin-Rezeptor-Antagonisten BQ610 und BQ788 sowie der duale Antagonist Bosentan (jeweils 10 mg/kg KG i. p.) einmal täglich verabreicht.

3.2.1.3 Niedrigsalz-Enalapril-Behandlung

Zur Stimulation des Renin-Angiotensin-Aldosteron-Systems wurden die adulten Wildtyp- und Knockout-Mäuse sieben Tage lang ausschließlich mit Niedrigsalzfutter (0.02 % NaCl) ernährt. Anschließend wurde das Trinkwasser für drei Tage durch eine Lösung des ACE-Hemmers Enalapril (0.1 mg/ml, entsprechend 10 mg/kg KG pro Tag) ersetzt und bis zum Versuchsende beibehalten. Die Nahrung der jeweiligen Kontrollgruppe wies eine normale Salzkonzentration auf.

3.2.2 Atomemissionsspektrometrie

Atomemissionsspektrometrie wurde die Natrium- und Kalium-Konzentration des Mäuserurins bestimmt.

3.2.3 Osmometrie

Die Osmolarität (Molalität osmotisch aktiver Teilchen einer Lösung, SI-Einheit osmol/kg) wird mit Hilfe eines Osmometers bestimmt. Als Messprinzip dient die Messung der Gefrierpunktserniedrigung (Kryoskopie), worunter man ein Verfahren zur Bestimmung der molaren Masse von Substanzen durch Messung der Gefrierpunktserniedrigung versteht.

3.2.4 Histologische Methoden

Fixierung des Nierengewebes

Retrograde arterielle Perfusion

Die Mäuse werden mittels Ketamin (80 mg/kg KG i. p.) und Xylazin (12 mg/kg KG i. p.) anästhesiert. Nach Eröffnung des Abdomens wird die Aorta abdominalis dargestellt. Kaudal des Abgangs der Arteriae renales erfolgt das Abklemmen der Bauchaorta, sodass die Blutversorgung der Nieren weiterhin gewährleistet ist. Distal der Klemme wird anschließend der Perfusionskatheter eingeführt und mit einer Klammer fixiert. Durch einen Schnitt in die kaudale Vena cava wird ein Ablass für die Perfusionslösung zur Reduktion des intravasalen Drucks hergestellt. Die proximale Klemme wird entfernt; über den arteriellen Perfusionskatheter werden retrograd 10 ml einer isotonen NaCl-Lösung und 10 I.E. Heparin/ml perfundiert. Bei erfolgreicher Perfusion zeigt sich eine zügige Entfärbung der Abdominalorga-
ne. In diesem Falle erfolgt die anschließende Fixierung der Organe mit Hilfe einer frisch angesetzten 3%igen Paraformaldehyd-PBS-Lösung, von welcher bei konstantem Fluss über 3 Minuten insgesamt 40 ml infundiert werden. Im Anschluss erfolgt die Entnahme der perfundierten Organe und deren Aufbewahrung in 70%igem Methanol bei 4°C bis zur Einbettung in Paraffin.

Einbettung in Paraffin

Zur Vorbereitung auf die Paraffin-Einbettung erfolgt nach vorangegangener Fixierung eine schrittweise Dehydrierung des Nierengewebes in Gewebe-Einbettkassetten durch eine Alkoholreihe aufsteigender Konzentration:

- 1 x ü. N. 70% Methanol (bei RT)
- 1 x 30 min 70% Methanol (bei RT)
- 2 x 30 min 80% Methanol (bei RT)
- 2 x 30 min 90% Methanol (bei RT)
- 2 x 30 min 100% Methanol (bei RT)
- 2 x 30 min 100% Isopropanol (bei RT)
- 1 x 30 min 100% Isopropanol (bei 45°C)
- 1 x 30 min 1:1-Isopropanol-Paraffin-Gemisch (bei 55°C)

Anfertigung von Paraffinschnitten

Die angefertigten Paraffinblöcke werden mittels eines erhitzten Spatels zurechtgeformt und auf einem Holzblock angebracht. Nach Fixation des Holzblocs werden
mit Hilfe eines Rotationsmikrotoms vom Paraffinblock 5 µm dicke Serienschnitte (ca. 100–150 pro Präparat) angefertigt. Die einzelnen Schnitte werden in ein 40 °C warmes Wasserbad überführt, um sich dort zu entfalten und zu strecken. Anschließend werden die Schnitte auf einen Objektträger (superfrost plus) aufgezogen und über Nacht in einem Wärmeschrank bei 40 °C zum Trocknen belassen.

Entparaffinierung

Am darauffolgenden Tag werden die Schnitte mit Hilfe einer umgekehrten Alkoholreihe nach folgendem Schema entparaffiniert und rehydriert:

- 2 × 10 min 100 % Xylol (bei RT)
- 2 × 5 min 100 % Isopropanol (bei RT)
- 1 × 5 min 96 % Isopropanol (bei RT)
- 1 × 5 min 80 % Isopropanol (bei RT)
- 1 × 1 min 70 % Isopropanol (bei RT)

Immunhistochemische Färbung

Protokoll:

Tag 1

- Im Falle der ET$_A$-/ET$_B$-Färbung (andernfalls entfallen diese Schritte jeweils): kurzes Waschen mit H$_2$O.

- Im Falle der ET$_A$-/ET$_B$-Färbung: Kochen in TRIS/EDTA für 45 min bei 97°C im Wasserbad zur Demaskierung der Epitope.

- Waschen der Präparate in den dafür vorgesehenen Präparatekästen mit PBS-Otto-Puffer (3×5 min).

Blockieren

- Je Präparatkasten etwa 200 µl Blockierlösung auftragen und bei Raumtemperatur 20 min zur Blockierung unspezifischer Bindungen inkubieren (im Falle der ET$_A$-/ET$_B$-Färbung entfällt dieser Schritt).

- Im Falle der ET$_A$-/ET$_B$-Färbung: Blockieren mit Blockierlösung II zur Blockierung unspezifischer Bindungen für 30–45 min bei Raumtemperatur.

Primär-Antikörper

- Verdünnen der (lichtunempfindlichen) Primär-Antikörper in Blockierlösung (wie oben angegeben).

- Aufbringen von etwa 150 µl pro Objektträger.

- Inkubation bei 4°C über Nacht im Kühlschrank.

Tag 2

- Waschen der Präparate für 3×10 min mit Stammlösung (PBS-Otto/1 % BSA) (im Falle der ET$_A$-/ET$_B$-Färbung entfällt dieser Schritt).

- Im Falle der ET$_A$-/ET$_B$-Färbung: Inkubation mit Blockierlösung II bei Raumtemperatur für 30–45 min.
Sekundär-Antikörper

Aufgrund der Fluoreszenzeigenschaft der sekundären Antikörper und der damit einhergehenden Lichtempfindlichkeit erfolgen sämtliche weitere Arbeitsschritte soweit möglich unter Lichtausschluss.

- Verdünnen der (lichtempfindlichen) Sekundär-Antikörper in Blockierlösung (wie oben angegeben).
- Zentrifugation für 10 min bei 13 000 rpm.
- Inkubation bei Raumtemperatur im Dunklen über 90 min.
- Waschen der Präparate für 2×10 min mit jeweils 150µl der Stammlösung (PBS-Otto/1 % BSA) pro Objektträger im Dunklen.
- Waschen der Präparate für 10 min am Schüttler in einer mit Stammlösung befüllten Küvette im Dunklen.
- Eindeckeln der Objektträger mit Mounting Medium und anschließendes Aufbewahren unter Lichtausschluss in einer Mappe bei 4°C.

3.2.5 Dreidimensionale Rekonstruktion

Akquisition und Digitalisierung

Axio Vision/ ZEN

Für die weitere Bearbeitung ist eine Konvertierung der Datei auf acht Bit nötig. Um hierbei nicht an Bildqualität einzubüßen, findet das Grafikformat TIFF Verwendung. Dieser Vorgang lässt sich wie folgt realisieren:

- Öffnen einer Bilddatei
- Datei → Exportieren → *.tif
- Stapelverarbeitung Start
Datenaufbereitung mittels ImageJ

Bildstapelgenerierung Da durch das individuelle Stitching die Bilder nicht die gleiche Größe in Länge und Breite aufweisen, müssen sie auf eine einheitliche Größe überführt werden, um die Daten in die Rekonstruktionssoftware Amira importieren zu können. Zu diesem Zweck wird zunächst mit Photo Shop CS4 ein leeres Bild erzeugt, welches in Länge und Breite das größte Format aufweist, und zu den Serienbildern als TIFF-Datei gespeichert. Im folgenden Schritt werden sämtliche Bilder auf diese Größe angeglichen: Das Bild selbst wird dabei nicht verändert, es wird lediglich ein schwarzer Rand an das bestehende Bild angefügt. Durch das Bildanalyseprogramm ImageJ wird ein Bildstapel (Stack) erstellt. Dies geschieht auf folgende Weise:

- Öffnen aller Einzelbilder
- Plugins
- Stack
- Stack Builder

Im Anschluss wird das zuvor hinzugefügte leere Bild wieder entfernt und der erhaltene Stapel als Image Sequence abgespeichert.

3D-Rekonstruktion mit Amira

Zur weiteren Bearbeitung werden die Daten in die Amira Visualization-Software auf einer Graphik-Workstation importiert. Um eine korrekte Skalierung der Daten zu gewährleisten, wird die Pixelgröße in µm berücksichtigt: Sie ist ein Objektiv- und Kamera-abhängiger Wert (bei Verwendung eines 10 ×-Objektivs entspricht 1 Pixel = 1×1µm). Bezogen auf die maximalen Abmessungen des Bildstapels (Länge x und Breite y), die Gesamtzahl der Schnitte und die jeweilige Schnittdicke von 5 µm (Höhe z) wird die BOUNDINGBOX definiert, welche die maximalen Abmessungen des Datensatzes in jeder Ebene beschreibt. Da fortan mit dreidimensionalen Daten gearbeitet wird, wird das zweidimensionale Pixel durch das dreidimensionale Voxel
abgelöst, das der Geometrie des Raumes entsprechend eine quaderförmige Zelle darstellt. Ein Voxel in der vorliegenden Arbeit beträgt somit $1 \times 1 \times 5 \, \mu m$.

Farbkanaltrennung Im nächsten Schritt erfolgt die Auftrennung des RGB-Datensatzes in seine einzelnen monochromen Kanäle. Damit lassen sich die Fluoreszenzmarkierungen von Renin bzw. Aktin anhand der Grauwerte der Pixel eines jeden aufgenommenen Bildes separat erkennen. Zudem ermöglicht dies die Durchführung einer Datensegmentierung auf folgende Weise:

- COMPUTE
- CHANNEL WORKS
- INPUT CHANNEL 1 \rightarrow Abspeichern als Aktin-Stapel
- INPUT CHANNEL 2 \rightarrow Abspeichern als Renin-Stapel

Alignierung Da die Ausrichtung der histologischen Serienschnitte auf den Objektträgern nicht identisch ist, sondern geringfügig variiert, müssen der Aktin- und der Renin-Stapel aligniert, d.h. zur Deckung gebracht werden. Dies wird mittels Rotationen und Translationen erreicht, indem zwei jeweils aufeinanderfolgende Schnittbilder des Bildstapels so exakt wie möglich übereinander gelegt werden. Die Alignierung erfolgt anhand des Aktin-Bildstapels, da die zahlreichen und zusammenhängenden Immunreaktionen des Aktins ein besseres Ergebnis ermöglichen. Die Alignierung des gesamten Aktin-Bildstapels erzeugt eine vollständig ausgerichtete Niere. Auf diesen wird sich als Referenz zur Ausrichtung des Renin-Bildstapels bezogen. Hierdurch erreicht man Kongruenz der Renin-Färbungen und das spätere Zusammenfügen der Daten wird ermöglicht. Das genaue Vorgehen zur Alignierung der Daten erfolgt auf diese Weise:

- COMPUTE
- ALIGN SLICES
- EDIT
- Automatische Alignierung und manuelle Feinabstimmung
2. Material und Methoden

2.2.2.3 Rekonstruktion mittels Amira

Zur weiteren Bearbeitung wurden die Daten nun in die Amira 4.1 Visualization Software auf einer Grafik-Workstation importiert. Um eine korrekte Skalierung der Daten zu gewährleisten, muss zunächst das Verhältnis von Pixel zu µm berücksichtigt werden. Dies ist eine Objektiv und Kamera abhängige Größe (bei einer Verwendung des 5x Objektives: 1 Pixel = 2 x 2 µm).

Bezogen auf die maximalen Abmessungen des Bildstapels (Länge x und Breite y) und die Gesamtzahl der Schnitte und der Schnittdicke (z) wird die boundingbox definiert, die die maximalen Abmessungen des Datensatzes in jeder Ebene beschreibt. Da fortan mit dreidimensionalen Daten gearbeitet wurde, wird der Begriff Pixel durch den Begriff Voxel ersetzt, der der Geometrie des Raumes entspricht. Ein Voxel hat somit 2 x 2 x 5 µm.

Alignierung

Abb. 2.3 – Alignierung

RESAMPLE

Datensegmentierung

Bei der Datensegmentierung, auch als Labelling bezeichnet, handelt es sich um den zeit- und arbeitsintensivsten Teil der dreidimensionalen Rekonstruktion. Hierbei werden ausgewählte Stukturen durch verschiedene Verfahren markiert und einem definierten Material zugeordnet. Später kann aus der Gesamtheit der markierten Strukturen die Oberfläche dieses Objekts berechnet werden. Mit folgenden Programmfunctionen wird die Datensegmentierung eingeleitet:

- LABELLING
- LABEL FIELD

Für das Labeling der immunhistochemisch markierten Strukturen stehen verschiedene Segmentierungs tools zur Verfügung:

- BRUSH: Fluoreszenzsignale können im Freihandmodus umfahren werden.
- MAGIC WAND: Basierend auf der Verteilung der Grauwerte (0 = Schwarz, 255 = Weiß) können Immunfluoreszenzsignale durch Festlegen einer Grauwertschwelle markiert werden.
- FILL HOLES: Füllt vollständig mit Markierung umrandete Strukturen auf.
- REMOVE ISLANDS: Kleine Material-Inseln (Artefakte) werden automatisch entfernt.
SMOOTH LABELS: Zur Glättung der Ränder der Materialien.

INTERPOLATE: Eine fehlende Struktur lässt sich durch Markierung des vorangehenden und nachfolgenden Schnittes durch eine Interpolation berechnen und ergänzen.

WRAP: Durch Markierung von Anfang, Mitte und Ende einer Zielstruktur können die Zwischenschnitte zu einer annähernd kugeligen Gestalt ergänzt werden.

Oberflächengenerierung Mit Hilfe der erstellten Labels kann für jedes Material eine separate Oberfläche berechnet und im 3D-Modell räumlich dargestellt werden:

- SURFACE GEN
- SURFACE VIEW zur Darstellung der Oberfläche

Die dreidimensionalen Modelle können im Anschluss mit dem Befehl PROPERTIES bearbeitet und optimiert werden:

- SURFACE EDITOR dient der Entfernung überflüssiger Ausschnitte.
• SIMPLIFIER als Mittel zur Reduktion der Polygonzahl und damit der Datenmenge.

• PARAMETER EDITOR ermöglicht die Änderung der Farbeinstellung oder der Skalierung.

• Die Befehlsabfolge COMPUTE → SURFACE erlaubt eine Glättung der Oberfläche.

Es besteht die Möglichkeit, die erzeugten Objekte einzeln oder gemeinsam zu betrachten und zu bearbeiten. Die dreidimensionalen Objekte können rotiert und räumlich analysiert werden. Mit Hilfe des Befehls SURFACE VIEW kann die Darstellungsform geändert werden, um beispielsweise Objekte transparent erscheinen zu lassen. Man hat die Option, Strecken und Winkel zu messen und daraus Flächen und Volumina zu errechnen.

3.2.6 Molekularbiologische Methoden

Isolierung von Total-RNA aus Mäusenieren

Kurzprotokoll zur RNA-Isolation mit TRIzol-Reagenz

• Vorlegen von 1 ml TRIzol-Reagenz in Sarstedt-Tubes auf Eis für eine halbierte adulte Mausniere.
• Überführen der gekühlten Nieren aus flüssigem Stickstoff in das Röhrchen. Homogenisierung für ca. 30 s.

• Umfüllen des Gemisches in Eppendorf-Cups mit einem Fassungsvolumen von 2 ml. Zur Denaturierung der Proteine (diese lösen sich in Phenol) 5 min bei RT stehen lassen.

• Zugabe von 200 µl Chloroform. Schütteln, nicht vortexen.

• Zentrifugation für 20 min bei 4 °C und 12 000 rpm zur Auftrennung des Homogenisats in drei Phasen (wässriger Überstand, Interphase mit hydrophilen Proteinen, rote Phenolphase).

• Überführen von etwa 500 µl des wässrigen Überstandes (nicht der Interphase) in Eppendorf-Cups mit einem Fassungsvolumen von 1.5 ml.

• Mischen der wässrigen Phase mit 500 µl Isopropanol im Verhältnis 1:1. Kräftig schütteln.

• Ausfällen der RNA über 10 min bei RT.

• Zentrifugation für 10 min bei 4 °C und 12 000 rpm, Verwerfen des Überstands.

• Überführung des Pellets in 1 ml 75 %igen Ethanol.

• Zentrifugation für 5 min bei 4 °C und 7500 rpm. Verwerfen des Überstandes.

• Trocknen des Pellets für 10 min bei RT. Lösen des Pellets in Abhängigkeit der Größe in 50–300 µl RNase-freiem Wasser.

• Resuspension des Pellets im Schüttler bei 65 °C für maximal 2 min.

• Lagerung bei −80 °C.

Quantifizierung der RNA Die Konzentration der isolierten RNA wird mit Hilfe eines Photometers bei einer Wellenlänge von 260 nm und 280 nm bestimmt. Aus dem Quotienten der optischen Dichte bei 260 nm und 280 nm erfolgt die Bestimmung der Quantität und der Reinheit der isolierten RNA.
Reverse Transkription (cDNA-Synthese)

<table>
<thead>
<tr>
<th>10 µl</th>
<th>Reaktionsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µg</td>
<td>Gesamt-RNA</td>
</tr>
<tr>
<td>1 µl</td>
<td>Oligo-(dT)$_{15}$-Primer</td>
</tr>
<tr>
<td>add</td>
<td>DEPC-H$_2$O</td>
</tr>
</tbody>
</table>

Das Reaktionsgemisch (10 µl) wird für 5 min auf 65 °C erhitzt und anschließend auf Eis gestellt. Im Anschluss wird folgender Mix zugegeben:

<table>
<thead>
<tr>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µl</td>
</tr>
<tr>
<td>4 µl</td>
</tr>
<tr>
<td>4 µl</td>
</tr>
<tr>
<td>3 µl</td>
</tr>
</tbody>
</table>

Die cDNA-Synthese erfolgt im Anschluss über 1 h bei 37 °C. Zur Inaktivierung der Enzyme wird der Reaktionsansatz am Ende für 2 min auf 94 °C erhitzt. Für die quantitative PCR wird die synthetisierte cDNA mit 20 µl nukleasefreiem Wasser verdünnt und bei −20 °C gelagert.

Quantitative Polymerase-Kettenreaktion (Real-Time-PCR)

Die quantitative Polymerasekettenreaktion (qPCR) wurde mit dem Gerät Lightcy- cler 480 und dem SYBR Green Master PCR-Kit der Firma Roche durchgeführt. Bei der quantitativen Polymerasekettenreaktion wird die entstandene DNA-Menge
nach jedem PCR-Zyklus photometrisch ermittelt. Dies ermöglicht, den exponentiellen Verlauf der Reaktion in Echtzeit (real time) zu verfolgen. Die Bestimmung der Produktmenge erfolgt indirekt über die Messung des Fluoreszenzfarbstoffs SYBR Green. Dieser weist eine hohe Affinität zur doppelsträngigen DNA im Bereich der kleinen Furche auf. In diesem Abschnitt bindet er an die DNA und leuchtet 1000-fach stärker als ungebundenes SYBR Green. Die Intensität der Fluoreszenzsignale ist proportional zur Menge der entstehenden DNA.

Reaktionsansatz

<table>
<thead>
<tr>
<th>10 µl</th>
<th>Reaktionsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µl</td>
<td>Lightcycler 480® SYBR Green Master</td>
</tr>
<tr>
<td>0.5 µl</td>
<td>sense Primer (10 pmol/µl)</td>
</tr>
<tr>
<td>0.5 µl</td>
<td>antisense Primer (10 pmol/µl)</td>
</tr>
<tr>
<td>3 µl</td>
<td>ddH₂O</td>
</tr>
<tr>
<td>1 µl</td>
<td>cDNA</td>
</tr>
</tbody>
</table>

Amplifikationsprotokoll

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95°C</td>
<td>15 min</td>
<td>Aktivierung</td>
</tr>
<tr>
<td>40</td>
<td>95°C</td>
<td>15 s</td>
<td>Denaturierung</td>
</tr>
<tr>
<td></td>
<td>58°C</td>
<td>20 s</td>
<td>Annealing</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>20 s</td>
<td>Elongation</td>
</tr>
</tbody>
</table>

Primer

Am Ende eines jeden Zyklus erfolgt die Fluoreszenzmessung. Nach Ablauf des Amplifikationsprotokolls wird das Schmelzverhalten der amplifizierten DNA analysiert. Zu diesem Zweck wird die DNA langsam (0.1°C/s) von 60°C auf 95°C erhitzt und währenddessen die Fluoreszenz kontinuierlich gemessen. Als Housekeeper diente GADPH.
Genotypisierung

Protokoll der DNA-Extraktion

- Abschneiden von etwa 2 mm des distalen Endes des Mausschwanzes.
- Versetzen mit 100 µl NaOH (25 mM).
- Inkubation bei 96 °C für 1 h im Thermocycler.
- Vortexen zur Auflösung des Mausschwanzes unter Zugabe von 10 µl Tris–HCl, pH 8.
- Zentrifugation für 6 min bei 10 000 rpm.
- Einbringen von 2 µl des Überstands (gDNA) in die Genotypisierungs-PCR.

<table>
<thead>
<tr>
<th>20 µl</th>
<th>PCR-Reaktionsansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µl</td>
<td>sense-Primer (10 pmol/µl)</td>
</tr>
<tr>
<td>1 µl</td>
<td>antisense-Primer (10 pmol/µl)</td>
</tr>
<tr>
<td>2.5 µl</td>
<td>dNTPs (2.5 mM)</td>
</tr>
<tr>
<td>4 µl</td>
<td>Puffer (GoTaq buffer green)</td>
</tr>
<tr>
<td>0.3 µl</td>
<td>GoTaq</td>
</tr>
<tr>
<td>9.2 µl</td>
<td>ddH₂O</td>
</tr>
<tr>
<td>2 µl</td>
<td>gDNA</td>
</tr>
</tbody>
</table>
Amplifizierungsprotokolle

Amplifizierungsprotokoll für ET_A lox:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94 °C</td>
<td>5 min</td>
<td>Aktivierung</td>
</tr>
<tr>
<td></td>
<td>94 °C</td>
<td>30 s</td>
<td>Denaturierung</td>
</tr>
<tr>
<td>35</td>
<td>65 °C</td>
<td>30 s</td>
<td>Annealing</td>
</tr>
<tr>
<td></td>
<td>45 °C</td>
<td>45 s</td>
<td>Elongation</td>
</tr>
<tr>
<td>1</td>
<td>72 °C</td>
<td>5 min</td>
<td>Elongation</td>
</tr>
</tbody>
</table>

Amplifizierungsprotokoll für RenCre:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94 °C</td>
<td>5 min</td>
<td>Aktivierung</td>
</tr>
<tr>
<td></td>
<td>94 °C</td>
<td>30 s</td>
<td>Denaturierung</td>
</tr>
<tr>
<td>40</td>
<td>56 °C</td>
<td>60 s</td>
<td>Annealing</td>
</tr>
<tr>
<td></td>
<td>72 °C</td>
<td>50 s</td>
<td>Elongation</td>
</tr>
<tr>
<td>1</td>
<td>72 °C</td>
<td>5 min</td>
<td>Elongation</td>
</tr>
</tbody>
</table>

Die Polymerasekettenreaktion zur Genotypisierung wurde mit dem Gerät Lab-cycler der Firma Sensoquest durchgeführt. Die PCR-Ansätze wurden anschließend auf ein Agarosegel (2 %) aufgetragen, die DNA-Fragmente durch horizontale Gellektrophorese bei 120 V der Größe nach aufgetrennt. Anhand der auftretenden Banden lässt sich der vorliegende Genotyp bestimmen.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Banden Wildtyp</th>
<th>Banden modifiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET<sub>A</sub> lox</td>
<td>610</td>
<td>650</td>
</tr>
<tr>
<td>RenCre</td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>
3.2.7 Statistische Methoden

Untersuchungen hinsichtlich der Signifikanz erhobener Daten im Vergleich zur Kontrollgruppe wurden mit dem \(t \)-Test durchgeführt. Ausreißer wurden mit dem Test nach Grubbs detektiert und exkludiert. Das den statistischen Auswertungen zugrundeliegende Signifikanzniveau beträgt \(\alpha = 0.05 \) (signifikant). In Balkendiagrammen aufgetragene Graphen sind dargestellt als Mittelwert \(\pm \) SEM.
4 Ergebnisse

4.1 Lokalisation der Endothelinrezeptoren

4.1.1 Lokalisation der Endothelinrezeptoren im Gefäßsystem der Mausniere

4.1.2 Lokalisation der Endothelinrezeptoren im Tubulus- und Sammelrohrsyste

Abbildung 4.3 zeigt die Verteilung von ET\textsubscript{B}-Rezeptoren im Tubulussyste der Niere einer Wildtyp-Maus nach Stimulation mit Lowsalt-Diät und Enalapril. Der ET\textsubscript{B}-Rezeptor ist grün dargestellt, blau fluoreszierendes Calbindin fungiert als Marker für den distalen Tubulus. Daraus lässt sich auf die Expression des ET\textsubscript{B}-Rezeptors in einigen Abschnitten des distalen Tubulus schließen. Allerdings ist die Rezeptordichte im Tubulussyste deutlich geringer als im Sammelrohrsyste. Abbildung 4.4 zeigt die Lokalisation des ET\textsubscript{A}-Rezeptors im proximalen Tubulus der Niere einer Maus. Blaue Strukturen weisen auf den für den proximalen Tubulus charakteristischen Marker Megalin hin, grünlich imponierende Elemente im proximalen Tubulus lassen die ET\textsubscript{A}-Rezeptoren erkennen. Kolokalisationen beider Strukturen treten optisch deutlich hervor. Abbildung 4.4 belegt damit das Vorhandensein des ET\textsubscript{A}-Rezeptors im proximalen Tubulus einer Mäuseniere.

4.2 Elektrolyt- und Osmolalitätsmessungen

4.2.1 Elektrolyte

4.2.1.1 Kalium

Im Falle der BQ610-Versuchsgruppe zeigte sich eine erniedrigte Kalium-Konzentration im Urin der Tiere (369.7 (Mittelwert) ± 6.982 mmol/l (SEM)) im Vergleich zur Kontrollgruppe (434.9 ± 11.2 mmol/l), siehe Abbildung 4.5. Im durchgeführten t-Test ergab sich ein signifikanter Unterschied der beiden Werte ($P < 0.0001$). Die Urin-Kalium-Konzentration der BQ-788-Versuchsgruppe zeigte sich im Vergleich zum Vehikel nicht signifikant erniedrigt (446.7 ± 6.982 mmol/l gegenüber 477.6 ± 13.51 mmol/l). In der Bosentan-Versuchgruppe war die Kalium-Konzentration des Urins in der Versuchsgruppe nicht signifikant verändert (473.9 ± 22.12 mmol/l gegenüber 456.3 ± 10.21 mmol/l), wie Abbildung 4.5 zu entnehmen ist.
Abbildung 4.5: Graphische Gegenüberstellung der Kalium-Konzentrationen im Urin der C57BL/6-Mäuse nach Behandlung mit den Endothelin-Rezeptor-Antagonisten BQ610, BQ788 sowie Bosentan und des unbehandelten Wildtyps als Kontrollgruppe (Vehikel). ***: P < 0.0001 (signifikant).

4.2.1.2 Natrium

Bei der Untersuchung des Natriumgehalts ergab sich folgendes Bild: Im Falle der BQ610-Versuchsgruppe (Abbildung 4.6) imponiert eine signifikant erniedrigte Natrium-Konzentration (119.6 ± 4.892 mmol/l) im Urin der Tiere im Vergleich zur Kontrollgruppe (132.4 ± 5.284 mmol/l, P = 0.0141). Die Urin-Natrium-Konzentration der BQ788-Versuchsgruppe (119.8 ± 5.227 mmol/l) war im Vergleich zum Vehikel (135.5 ± 6.504 mmol/l) nicht signifikant erniedrigt. Die Natrium-Konzentration des Urins war im Falle der Bosentan-Versuchsgruppe deutlich reduziert.
Abbildung 4.6: Graphische Gegenüberstellung der Natrium-Konzentrationen im Urin der C57BL/6-Mäuse nach Behandlung mit den Endothelin-Rezeptor-Antagonisten BQ610, BQ788 sowie Bosentan und des unbehandelten Wildtyps als Kontrollgruppe (Vehikel). *: P = 0.0141 (signifikant); **: P = 0.009 (signifikant).

(131.2 ± 6.192 mmol/l gegenüber 150.6 ± 3.996 mmol/l), im t-Test konnte ein signifikanter Unterschied (P = 0.009) nachgewiesen werden (siehe Abbildung 4.6). Bei Blockade des ET$_A$-Receptors zeigt sich somit eine signifikante, wenngleich geringfügige Abnahme der Natrium-Konzentration.

4.2.2 Osmolalität

Bei der Untersuchung der Urin-Osmolalität ergibt sich ein inhomogeneres Bild: Während die Osmolalität im Falle der BQ-610-Versuchsgruppe (siehe Abbildung 4.7) signifikant erniedrigt ist (2.766 ± 0.073 mmol/l gegenüber 3.195 ± 0.101 mmol/l,
Abbildung 4.7: Graphische Gegenüberstellung der Urin-Osmolalität der C57BL/6-Mäuse nach Behandlung mit dem jeweiligen Endothelin-Rezeptor-Antagonisten und des unbehandelten Wildtyps als Kontrollgruppe (Vehikel). ***: \(P = 0.0008 \) (signifikant); *: \(P = 0.0444 \) (signifikant). P = 0.0008), zeigt sich im Falle der BQ-788-Versuchsgruppe (3.078 ± 0.089 mmol/l) kein Unterschied der Urinosmolalität im Vergleich zum Vehikel (3.151 ± 0.139 mmol/l). Im \(t \)-Test wurde die Nicht-Signifikanz des Ergebnisses bestätigt, wie in Abbildung 4.7 wiedergegeben ist. Hingegen präsentiert sich die Osmolalität im Falle der Bosentan-Versuchsgruppe (3.470 ± 0.141 mmol/l), verglichen mit dem Vehikel (3.117 ± 0.104 mmol/l), erhöht. Im \(t \)-Test zeigte sich eine signifikante Differenz der Messwerte (\(P = 0.0444 \)). Insgesamt zeigen sich geringe Veränderungen der Osmolalität.
4.3 Einfluss von Endothelin auf die Reninexpression – Qualitative und quantitative Analyse des Reninexpressionsmusters

Von zentraler Bedeutung in der vorliegenden Arbeit ist die Frage nach dem Einfluss von Endothelin auf die Reninexpression. Zur Beleuchtung dieses Aspekts erfolgt die Auswertung der Renin-mRNA-Level der pharmakologisch behandelten Mäuse nach Blockade der Endothelinrezeptoren im Vergleich zur Kontrollgruppe. Darüber hinaus erscheint es relevant, den Einfluss der Blockade der Endothelinrezeptoren direkt auf die Expression dieser Receptorsubtypen zu erforschen. Aus diesem Grund schließt sich die Analyse der mRNA-Abundanz von ET\textsubscript{A} und ET\textsubscript{B} an. Die erhobenen Ergebnisse bezüglich der pharmakologischen Blockade der Endothelinrezeptoren werden um Untersuchungen an ET\textsubscript{A}fl/fl- und genetisch veränderten Ren-1d\textsuperscript{+/-Cre-ET\textsubscript{A}fl/fl}-Mäusen ergänzt mit dem Ziel, Aussagen über die Einflussnahme des reninzellspezifischen ET\textsubscript{A}-Rezeptors auf die Steuerung des Reninsystems treffen zu können. Daran schließt sich die Analyse histologischer Aufnahmen von Nierenschnitten bezüglich des Reninexpressionsmusters der jeweiligen Versuchstiere an. Zur Vervollständigung dieses Abschnitts werden die Ergebnisse der dreidimensionalen Rekonstruktionen präsentiert. Um das Reninexpressionsmuster sowie das renale Gefäßsystem möglichst realitätsnah darzustellen, wurde mit Hilfe des 3D-Rekonstruktionsprogramms Amira eine räumliche Rekonstruktion der Renin- und Glattmuskelaktinimmunfluoreszenzsignale erstellt. Somit liegt der Fokus zugrundeliegender Untersuchungen sowohl auf einer quantitativen als auch qualitativen Analyse des Reninexpressionsmusters, um Aussagen über den Einfluss von Endothelinen auf die Reninexpression treffen zu können.

4.3.1 mRNA-Analyse

4.3.1.1 Renin-mRNA-Analyse

Bei der Auswertung der Renin-mRNA-Level der Versuchstiere nach pharmakologischer Blockade der Endothelin-Rezeptoren mit den hier verwendeten Substanzen
präsentiert sich folgendes Bild: Im Falle der BQ-610- und BQ-788-Versuchsgruppen ist die Renin-mRNA-Abundanz im Vergleich zum Vehikel nahezu unverändert (0.833 ± 0.179 mmol/l gegenüber 0.884 ± 0.203 mmol/l und 1.133 ± 0.078 mmol/l gegenüber 1.263 ± 0.076 mmol/l), siehe Abbildung 4.8. Dieses Verhältnis ist bei der Bosentan-Versuchsgruppe (1.089 ± 0.074 mmol/l) zum dazugehörigen Vehikel (0.878 ± 0.152 mmol/l) ebenfalls ohne signifikante Abweichung, wie Abbildung 4.8 zu entnehmen ist. Die statistische Untersuchung weist auf die Geringfügigkeit der jeweiligen Differenzen hin: Weder in der BQ-610-, noch in der BQ-788- oder in der Bosentan-Versuchsgruppe zeigten sich signifikante Unterschiede der Renin-mRNA-Expression im Vergleich zum jeweiligen Vehikel. Die Untersuchung des Renin-/GAPDH-mRNA-Verhältnisses zwischen ET_A^{fl/fl} und Ren-1d^{+}/Cre-ET_A^{fl/fl}-Mäusen weist ein nicht signifikant verändertes Verhältnis bei den Wildtyp-Mäusen auf (0.995 ± 0.143 mmol/l gegenüber 0.943 ± 0.064 mmol/l), siehe Abbildung 4.8.
Abbildung 4.9: Überblick über die ET₄-mRNA-Abundanz der oben dargelegten Versuchsanordnungen.

Eine Zusammenstellung der Renin-mRNA-Daten in einem gemeinsamen Balkendiagramm findet sich in Abbildung 4.8. Es sind keine signifikanten Unterschiede zu entnehmen, weder bei pharmakologischer Blockade noch bei genetischer Deletion.

4.3.1.2 ET₄-mRNA-Analyse

Die Untersuchung der ET₄-mRNA-Level förderte folgende Ergebnisse zu Tage: So- wohl in der BQ-610- als auch in der BQ-788-Versuchsgruppe war die ET₄-mRNA-Expression im Vergleich zum jeweiligen Vehikel nicht signifikant reduziert (1.084 ± 0.171 mmol/l gegenüber 1.116 ± 0.137 mmol/l und 0.974 ± 0.074 mmol/l gegenüber 1.058 ± 0.051 mmol/l), ein signifikanter Unterschied konnte im t-Test aber nicht nachgewiesen werden (Abbildung 4.9). Im Falle der Bosentan-Versuchsgruppe (1.019 ± 0.094 mmol/l) war die ET₄-mRNA-Abundanz, verglichen mit dem Vehikel (0.978 ± 0.025 mmol/l), ebenfalls nicht signifikant verändert (Abbildung

82
Abbildung 4.10: Überblick über die ET_B-mRNA-Abundanz der oben dargelegten Versuchsanordnungen.

4.9). Die Ren-1d^{+/Cre}-ET_A^{-/fl}-Mäuse zeigten keine Abweichung der ET_A-mRNA-Expression im Vergleich zu den Wildtyp-Mäusen (0.999 ± 0.065 mmol/l gegenüber 1.040 ± 0.053 mmol/l). Entsprechend war im t-Test kein signifikanter Unterschied feststellbar. Eine Zusammenschau der Balkendiagramme ist in Abbildung 4.9 auf Seite 82 dargestellt.

4.3.1.3 ET_B-mRNA-Analyse

Bei der Auswertung der ET_B-mRNA-Level zeigt sich folgendes Bild: In der BQ-610-Versuchsgruppe präsentiert sich eine kaum nennenswerte Erhöhung der ET_B-mRNA-Expression zugunsten der Versuchsgruppe (0.920 ± 0.072 mmol/l gegenüber 0.901 ± 0.036 mmol/l). Eine statistische Überprüfung der zugrundeliegenden Daten ergibt folgerichtig einen nicht-signifikanten Unterschied (siehe Abbil-
Die ET_B-mRNA-Abundanz der BQ-788-Versuchsgruppe ($1.014 \pm 0.076 \text{ mmol/l}$) ist gegenüber der Kontrollgruppe ($1.108 \pm 0.020 \text{ mmol/l}$) nicht signifikant verringert (Abbildung 4.10). Im Falle der Bosentan-Versuchsgruppe ($1.120 \pm 0.090 \text{ mmol/l}$) zeigt sich nahezu keinerlei Unterschied der ET_B-mRNA-Expression im Vergleich zum Vehikel ($1.142 \pm 0.043 \text{ mmol/l}$). Der t-Test bestätigt die Nicht-Signifikanz, siehe Abbildung 4.10.

Eine deutlichere Differenz der ET_B-mRNA-Abundanz offenbart sich im Vergleich der $\text{ET}_A^{fl/fl}$-Mäuse ($2.037 \pm 0.312 \text{ mmol/l}$) mit den Ren-1d+/Cre-$\text{ET}_A^{fl/fl}$-Mäusen ($2.850 \pm 1.176 \text{ mmol/l}$). Nichtsdestoweniger ist dieser Unterschied nicht signifikant (siehe Abbildung 4.10). Ein vergleichender Überblick über die ET_B-mRNA-Expression ist in Abbildung 4.10 auf Seite 83 gegeben. Es zeigen sich keine Veränderungen der ET_B-Abundanz, im Falle der Knockout-Mäuse ist lediglich eine tendenzielle Erhöhung zu entnehmen.

4.3.2 Histologische Darstellung des Reninexpressionsmusters

Neben der rein statistischen Auswertung der Einflussnahme der Endothelinrezeptorblockade auf die Renin-, ET_A- und ET_B-mRNA-Level stellt sich auch die Frage, in welcher Hinsicht mögliche morphologische Veränderungen in den Nieren der pharmakologisch behandelten Tiere auf mikroskopischer Ebene zu erkennen sind.

Zu diesem Zweck wurden histologische Aufnahmen von Paraffinschnitten von Nieren der Versuchstiere angefertigt und immunhistochemisch auf Glattmuskelaktin und Renin gefärbt.

4.3.2.1 C57BL/6-Maus – unbehandelt

Die mikroskopischen Aufnahmen der Kontrollgruppe fungieren als Referenz zur Beurteilung der weiteren histologischen Aufnahmen im Hinblick auf das Reninexpressionsmuster. In der histologischen Aufnahme der Niere einer unbehandelten C57BL/6-Maus (siehe Abbildung 4.11) ist die typische Lokalisation und Quantität reninbildender Zellen zu erkennen. Letztere befinden sich vornehmlich juxtaglomerulär am Ende der afferenten Arteriole.
Abbildung 4.11: Immunfluoreszenzdoppelfärbung am Paraffinschnitt einer unbehandelten C57BL/6-Maus der Kontrollgruppe. Färbung der Immunreaktionen mit Glattmuskelaktin rot, Färbung der Immunreaktionen mit Renin grün. Typische juxtaglomeruläre Reninexpression im Bereich der afferenten Arteriole in unmittelbarer Nähe zum Glomerulus (G). 400fache Vergrößerung.

4.3.2.2 C57BL/6-Maus – BQ610-Behandlung

4.3.2.3 C57BL/6-Maus – BQ788-Behandlung

4.3.2.4 Ren-1d\(^+\)/Cre-ET\(_A^{fl/fl}\)-Maus – unbehandelt

4.3.3 Dreidimensionale Darstellung des Reninexpressionsmusters

4.3.3.1 C57BL/6-Maus – unbehandelt

Der rekonstruierte Gefäßbaum der unbehandelten C57BL/6-Maus (siehe Abbildung 4.15) dient als Referenz für die Beurteilung der weiteren Rekonstruktionen. Dieser Darstellung kann man die charakteristischerweise vorhandene Menge und Lokalisation reninbildender Zellen in der Niere entnehmen. Die reninproduzierenden Zellen befinden sich juxtaglomerulär am terminalen Abschnitt der afferenten Arteriole. An nahezu jedem Glomerulus findet Reninexpression statt. Im Bereich der Interlobulararterien sowie der arcuaten Seitenäste ist kein Renin lokalisiert.
Abbildung 4.15: Gefäßbaumabschnitt einer adulten unbehandelten C57BL/6-Maus. 3D-Rekonstruktion der Immunreaktivität von Renin (grün) und Glattmuskelaktin (rot), Glomeruli und Nierenkapsel (gelb). Maßstabsbalken 200 µm.
4.3.3.2 C57BL/6-Maus – BQ610-Behandlung

Abbildung 4.16: Gefäßbaumabschnitt einer adulten C57BL/6-Maus nach 10tägiger Behandlung mit dem ET\textsubscript{A}-Rezeptor-Antagonisten BQ610. 3D-Rekonstruktion der Immunreaktivität von Renin (grün) und Glattmuskelaktin (rot), Glomeruli und Nierenkapsel (gelb). Maßstabsbalken 200 µm.
4.3.3.3 C57BL/6-Maus – BQ788-Behandlung

Abbildung 4.17: Gefäßbaumabschnitt einer adulten C57BL/6-Maus nach 10tägiger Behandlung mit dem ET\textsubscript{B}-Rezeptor-Antagonisten BQ788. 3D-Rekonstruktion der Immunreaktivität von Renin (grün) und Glattmuskelaktin (rot), Glomeruli und Nierenkapsel (gelb). Maßstabsbalken 200 μm.
4.3.3.4 Ren-1d^{+/Cre}-ET_A^{fl/fl}-Maus – unbehandelt

Die dreidimensionale Rekonstruktion des arteriellen Gefäßbaums der Niere bestätigt im Falle der Ren-1d^{+/Cre}-ET_A^{fl/fl}-Mäuse mit reninzellspezifischem ET_A-Knockout eine regelrechte Lokalisation der reninbildenden Zellen in unmittelbarer Nähe zum Glomerulus am Ende der afferenten Arteriole.

Abbildung 4.18: Gefäßbaumabschnitt einer adulten Ren-1d^{+/Cre}-ET_A^{fl/fl}-Maus nach salzindifferenter Diät. 3D-Rekonstruktion der Immunreaktivität von Renin (grün) und Glattmuskelaktin (rot), Glomeruli und Nierenkapsel (gelb). Maßstabsbalken 200 µm.
4.4 Bedeutung des ET\textsubscript{A}-Rezeptors für die Stimulierbarkeit des Reninsystems

Die pharmakologische Blockade der Endothelinrezeptorsubtypen beleuchtet nur einen Aspekt in der Frage nach der Einflussnahme von Endothelinen auf die Expression von Renin in der Niere der Versuchstiere. Wie ändern sich die Ergebnisse, wenn wir nicht die Endothelinrezeptoren adulter Tiere durch Verabreichung von Pharmaka modulieren, sondern stattdessen einen Endothelinrezeptorsubtypen a priori auf genetischer Ebene via Knockout des in Reninzellen exprimierten Rezeptors ausschalten? Präziser formuliert: Welche Bedeutung besitzt der ET\textsubscript{A}-Rezeptor für die Stimulation des Reninsystems? Zur Klärung dieser Frage betrachten wir Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäuse. Als Kontrollgruppe fungieren in diesem Fall gewöhnliche ET\textsubscript{A}fl/fl-Mäuse mit intaktem ET\textsubscript{A}-Rezeptor. Dabei wollen wir uns in der vorliegenden Arbeit nicht allein auf die Gegenüberstellung von Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäusen mit solchen der Kontrollgruppe beschränken: Die Versuchsanordnung soll zudem um die Stimulation des RAAS dieser Tiere durch eine Niedrigsalzdüüdt und Enalapril-haltiges Trinkwasser ergänzt werden. Im Folgenden werden die Ergebnisse bezüglich der qualitativen sowie quantitativen Analyse des Reninexpressionsmusters im Hinblick auf den Einfluss von Endothelin auf die Reninexpression dargestellt. Zunächst erfolgt die Darstellung der Ergebnisse der Auswertung der mRNA-Analyse von Renin, des ET\textsubscript{A}- und des ET\textsubscript{B}-Rezeptors. Daran schließt sich die Analyse histologischer Aufnahmen von Nierenschnitten hinsichtlich des Reninexpressionsmusters an. Zur Vervollständigung dieses Abschnitts werden die Ergebnisse der dreidimensionalen Rekonstruktionen, wiederum unter dem Aspekt der Reninexpression, präsentiert.

4.4.1 mRNA-Analyse

4.4.1.1 Renin-mRNA-Analyse

Die Renin-mRNA-Expression ist bei salzindifferenter Ernährung bei ET\textsubscript{A}fl/fl-Mäusen im Vergleich zu den Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäusen nicht signifikant gesteigert.
Abbildung 4.19: Überblick über die Renin-mRNA-Expression der ETₐ⁺⁻/- und Ren-1d⁺⁻/Cre-ETₐ⁺⁻/-Mäuse unter Normalsalz-Ernährung und Stimulation.

(0.995 ± 0.143 mmol/l gegenüber 0.943 ± 0.060 mmol/l), vergleiche Abbildung 4.19. Auch im Falle stimulierter Tiere ist das Renin-/GAPDH-mRNA-Verhältnis der ETₐ⁺⁻/-Mäuse unverändert (13.21 ± 3.489 mmol/l gegenüber 12.60 ± 1.066 mmol/l), es besteht kein signifikanter Unterschied (Abbildung 4.19). Aus Abbildung 4.19 ist ersichtlich, dass die Renin-mRNA-Abundanz der stimulierten Tiere deutlich höher ist als das der Tiere mit Normalsalz-Diät. Der t-Test ergibt eine signifikante Abweichung sowohl im Falle der ETₐ⁺⁻/-Mäuse (P = 0.0232) als auch im Falle der Ren-1d⁺⁻/Cre-ETₐ⁺⁻/-Mäuse (P < 0.0001). Zwischen den Genotypen allerdings liegt keine signifikante Veränderung der Reninexpression vor.
4.4.1.2 \(\text{ET}_A \)-mRNA-Analyse

Wie aber stellt sich die \(\text{ET}_A \)-mRNA-Abundanz unter stimulierten Bedingungen dar? Wie aus Abbildung 4.20 hervorgeht, ist das \(\text{ET}_A \)-Verhältnis bei Ren-1d\(^{+/Cre}\)-\(\text{ET}_A \)^{fl/fl}\-Mäusen nahezu unverändert zu den \(\text{ET}_A \)^{fl/fl}\-Mäusen (0.999 ± 0.065 mmol/l gegenüber 1.040 ± 0.053 mmol/l). Unter stimulierten Bedingungen hingegen ergibt sich folgendes Bild: Die \(\text{ET}_A \)-mRNA-Expression liegt bei den stimulierten \(\text{ET}_A \)^{fl/fl}\-Mäusen (1.715 ± 0.264 mmol/l gegenüber 0.928 ± 0.113 mmol/l) signifikant höher als bei stimulierten Knockout-Mäusen \((P = 0.0205, \text{siehe Abbildung 4.20}) \). Allerdings besteht bezüglich der \(\text{ET}_A \)-mRNA-Abundanz kein signifikanter Unterschied hinsichtlich stimulierter und nicht-stimulierter Versuchstiere. Die Stimulation des
Wildtyps zieht einen Anstieg der ET\textsubscript{A}-mRNA-Abundanz nach sich, eine Stimulation der Knockout-Mäuse hingegen nicht (siehe Abbildung 4.20).

4.4.1.3 ET\textsubscript{B}-mRNA-Analyse

Die Auswertung der ET\textsubscript{B}-mRNA-Expression komplettiert den Abschnitt über die quantitative mRNA-Analyse. Das ET\textsubscript{B}/GAPDH-mRNA-Verhältnis ist unter Normalsalz-Bedingungen zugunsten der Ren-1d\textsuperscript{+/Cre-ET\textsubscript{A}^{fl/fl}}-Mäuse nicht signifikant erhöht (2.037 ± 0.312 mmol/l gegenüber 2.950 ± 1.176 mmol/l), wie Abbildung 4.21 zu entnehmen ist. Im Falle stimulierter Tiere ist dieser Unterschied zwar noch ausgeprägter (1.477 ± 0.464 mmol/l gegenüber 5.688 ± 3.305 mmol/l), siehe Abbildung 4.21, aber ebenfalls nicht signifikant. In der Zusammenschau der Diagramme besteht zwischen stimulierten und nicht-stimulierten Versuchstieren kein signifikanter Unterschied (siehe Abbildung 4.21 auf Seite 98).
Abbildung 4.21: Überblick über die ETB-mRNA-Expression der ET\textsubscript{A}fl/fl und Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäuse unter Normalsalzbehandlung und Stimulation.
4.4.2 Histologische Darstellung des Reninexpressionsmusters

Der Fokus des restlichen Kapitels liegt auf histologischen Aufnahmen und der dreidimensionalen Rekonstruktion. Zunächst seien die histologischen Aufnahmen nach immunhistochemischer Färbung der Strukturen Glattmuskelaktin und Renin dargestellt.

4.4.2.1 Wildtyp-Maus – unbehandelt

Auch hier dienen die mikroskopischen Aufnahmen der Kontrollgruppe als Referenz zur Beurteilung der weiteren histologischen Aufnahmen im Hinblick auf das Reninexpressionsmuster.

In der histologischen Aufnahme einer unbehandelten Wildtyp-Maus (siehe Abbildung 4.22) ist die typische Lokalisation reninbildender Zellen zu erkennen. Letztere befinden sich ausschließlich juxtaglomerulär am Ende der afferenten Arteriole. Die

Färbung der ET_A-Rezeptoren kann sowohl in den glatten Muskelzellen der afferenten Arteriola als auch in den juxtaglomerulären Reninzellen beobachtet werden.

4.4.2.2 Wildtyp-Maus – Lowsalt-Enalapril-Behandlung

Im Falle der stimulierten ET_A^{fl/fl}-Maus weicht das Bild deutlich vom nicht-stimulierten Wildtypen ab: Neben unmittelbar juxtaglomerulär lokalisiertem Renin finden sich über das gesamte Vas afferens die kubischen Reninzellen verstreut. Nach Stimulation des RAAS-Systems der Versuchstiere tritt eine retrograde Rekrutierung zutage (siehe Abbildung 4.23).
4.4.2.3 Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Maus – unbehandelt

Im Falle von Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäusen zeigen sich keine nennenswerten Abweichungen im Vergleich mit der Kontrollgruppe. Die immunhistochemische Färbung auf Renin zeigt das Vorhandensein von reninproduzierenden Zellen ausschließlich juxtaglomerulär in der terminalen afferenten Arteriole, siehe Abbildung 4.24. Wie das untere Bild in Abbildung 4.24 demonstriert, liegt ein reninzellspezifischer Knockout der ET\textsubscript{A}-Rezeptoren vor, während im Vas afferens noch ET\textsubscript{A}-Rezeptoren exprimiert werden. Dies bestätigt die Funktionstüchtigkeit des vorliegenden genetischen Modells.

4.4.2.4 Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Maus – Lowsalt-Enalapril-Behandlung

Folgende Ergebnisse resultieren aus der Stimulation der Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäuse mittels Niedrigsalz-Diät und Verabreichung von Enalapril: Hierunter zeigt sich zunächst die übliche Lokalisation kubischer, reninproduzierender Zellen im Bereich der terminalen afferenten Arteriole. Neben dieser juxtaglomerulären Lage ist eine deutliche retrograde Rekrutierung erkennbar. Diese ist einerseits im präterminalen Abschnitt der afferenten Arteriole zu finden, darüber hinaus auch in weiter proximal gelegenen Anteilen des Vas afferens. Die Intensität der Färbung im juxtaglomerulären Abschnitt imponiert verstärkt. In den Reninzellen können keine ET\textsubscript{A}-Rezeptoren nachgewiesen werden, es erscheinen keine Kolokalisationen. In der afferenten Arteriole allerdings sind ET\textsubscript{A}-Rezeptoren nachweisbar, woraus sich schließen lässt, dass das genetische Modell insofern funktioniert, als tatsächlich die reninzellspezifische Expression von ET\textsubscript{A}-Rezeptoren unterbunden wird (siehe Abbildung 4.25). Damit zeigt sich im Falle der Ren-1d+/Cre-ET\textsubscript{A}fl/fl-Mäuse dasselbe Rekrutierungsmuster wie im Wildtyp.
Abbildung 4.25: Immunfluoreszenzfärbung am Paraffinschnitt einer Ren-1d+/Cre-
4.4.3 Dreidimensionale Darstellung des Reninexpressionsmusters

4.4.3.1 Wildtyp-Maus – Lowsalt-Enalapril-Behandlung

Im Vergleich zur unbehandelten Kontrollgruppe zeigt sich bei Wildtyp-Mäusen nach Stimulation mit Enalapril und Niedrigsalzdiät ein verstärktes Vorliegen reninproduzierender Zellen. Die Lage dieser Zellen indes ist primär im Bereich der terminalen afferenten Arteriole angesiedelt. Es ist aber sowohl eine Rekrutierung reninbildender Zellen in afferenten Arteriolen zu erkennen als auch eine deutliche Zunahme der Reninnenge als solcher. Interlobulararterien und arcuater Seitenast weisen keine reninproduzierenden Zellen auf (siehe Abbildung 4.26).

4.4.3.2 Ren-1d+/Cre-ETₐ⁻⁻/⁻-Maus – Lowsalt-Enalapril-Behandlung

5 Diskussion

5.1 Lokalisation der Endothelinrezeptoren

Die Analyse der histologischen Aufnahmen zur Bestimmung der Lokalisation der Endothelin-Rezeptoren in einer Mäuseniere ergibt das folgende Bild: Über die gesamte Länge des Vas afferens wird der ET\textsubscript{A}-Rezeptor dicht in der Media exprimiert. Spangenartig flankieren die Rezeptoren das Lumen der zuführenden Arteriole, bis in den präterminalen juxtaglomerulären Abschnitt reninproduzierender Zellen hineinragend wird dieser Rezeptorsubtyp exprimiert. Dieses Ergebnis stimmt über ein mit den Erkenntnissen von [Wendel et al. (2006)](#) und [Davenport et al. (1994)](#), welche ebenfalls das Auftreten von ET\textsubscript{A}-Rezeptoren im Bereich der afferenten Arteriole beschreiben. Allerdings belegen die Ergebnisse von [Wendel et al. (2006)](#) auch das Vorliegen von ET\textsubscript{B}-Rezeptoren in afferenter sowie efferenter Arteriole. Die oben dargestellten Abbildungen an Mäusenieren können die Expression von ET\textsubscript{B}-Rezeptoren weder in der afferenten noch in der efferenten Arteriole bestätigen. In den Interlobulararterien konnten ebenfalls ET\textsubscript{A}-Rezeptoren nachgewiesen werden. ET\textsubscript{B}-Rezeptoren allerdings konnten in diesen Gefäßen nicht detektiert werden. Damit ist Übereinstimmung mit den Ergebnissen von [Wendel et al. (2006)](#) gegeben, wonach in diesen Gefäßkästen ausschließlich ET\textsubscript{A}-Rezeptoren nachgewiesen werden konnten. Auch [Davenport et al. (1994)](#) verzeichnen das Vorliegen von ET\textsubscript{A}-Rezeptoren in renalen Blutgefäßen, einschließlich der Aa. interlobares et arcuatae. [Davenport et al. (1994)](#) beschreiben die Lokalisation von ET\textsubscript{B}-Rezeptoren in Epithelzellen des proximalen Tubulus und dem Sammelrohr des inneren Marks, die Lokalisation von ET\textsubscript{A}-Rezeptoren dagegen im distalen Tubulus sowie in kortikalen Sammelrohrabschnitten. Die Bestimmung der Expression der ET\textsubscript{B}-Rezeptoren in der Mäuseniere indes weicht hinsichtlich dieses Aspekts partiell von der Rat tenniere ab: Während auch im Sammelrohr zahlreiche Kolokalisationen des ET\textsubscript{B}-Rezeptors mit dem für das Sammelrohr charakteristischen Marker Aquaporin 2 aufscheinen und damit das Vorhandensein des ET\textsubscript{B}-Rezeptors belegen, zeigt sich im distalen Tubulus der Mäuseniere nur die Expression des ET\textsubscript{B}-Rezeptors. In weit geringerer Ausprägung als im Sammelrohr ist der ET\textsubscript{B}-Rezeptor im distalen Tubulus vertreten, der ET\textsubscript{A}-Rezeptor wird nicht exprimiert. Dieser Befund weicht deutlich von der an Rattennieren beschriebenen Verteilung der Rezeptorsubtypen ab, wie von [Wendel et al. (2006)](#) dargestellt, welche eine Lokalisation von ET\textsubscript{A}-

5.2 Analyse der Elektrolyt- und Osmolalitätsmessungen

Die Kalium-Konzentration im Urin zeigt sich im Falle der selektiven ET$_A$-Rezeptor-Blockade signifikant verringert, im Falle der selektiven ET$_B$- sowie der dualen

dualen Rezeptorantagonismus gegeben wäre. Die fehlende Auswirkung einer se-
lektiven ET_B-Rezeptor-Blockade lässt sich damit jedoch nicht zufriedenstellend be-
gründen. Des Weiteren wird in der Literatur eine Endothelin-vermittelte Natriu-
ese beschrieben (Kohan et al., 2011), welche vermuten ließe, dass eine Blockade der
Endothelin-Rezeptoren eine verstärkte Natrium-Retention nach sich zöge. Die Er-
ggebnisse einiger Forscher jedoch vermitteln ein gegensätzliches Bild: So beschreiben
Clavell et al. (1995) an Hunden eine ET_A-vermittelte antinatriuretische Wirkung
im Bereich des proximalen Tubulus, wohingegen ET_B-Rezeptoren an der Natrium-
Exkretion nicht beteiligt zu sein scheinen. Dies liefert insofern Übereinstimmung
mit den dargestellten Ergebnissen, als dies eine Erklärung für den fehlenden Ein-
fluss des ET_B-Rezeptor-Antagonismus liefern könnte. Die reduzierte Natrium-Urin-
Konzentration bei Blockade der ET_A-Rezeptoren, welche nachweislich im proxima-
len Tubulus lokalisiert sind, steht indessen im Widerspruch zu den von Clavell
et al. (1995) dargelegten Untersuchungen. Ein spezifischer Knockout von ET_B-
Rezeptoren im Sammelrohr verursacht ebenso eine Natrium-Retention (Ge et al.,
2006) wie ein spezifischer Knockout von ET-1 im Sammelrohr (Ahn et al., 2004).
Ein spezifischer Knockout des ET_A-Rezeptors im Sammelrohr dahingegen lässt
die Natrium-Exkretion unverändert (Ge et al., 2005). Diese Ergebnisse ließen eine
ET_B-vermittelte Natriumretention im Sammelrohr plausibel erscheinen. Offenbar
besteht eine inverse Korrelation zwischen Endothelin-Konzentration und Natrium-
Exkretion: Cavero et al. (1990) belegen eine reduzierte Natrium-Exkretion nach
Verabreichung von Endothelinen, wohingegen niedrige Plasmakonzentrationen von
ET-1 die Natrium-Exkretion erhöhen (Cavero et al., 1990). Eine Reduktion der
Natrium-Exkretion unter dem Einfluss von Endothelinen findet in verschiedenen
Publikationen Erwähnung (Lerman et al., 1991; Goetz et al., 1988; Sandgaard and
Bie, 1996). Allerdings konnten etwa Freed et al. (1996) zeigen, dass ein Endothe-
lin-Antagonismus bei Menschen die Natrium-Exkretion im Urin nicht beeinflusst.
Mehrere Publikationen schreiben Endothelinen eine Natriuresefördernde Wirkung
zu (Harris et al., 1991; Hoffman et al., 2000; Schramek et al., 1992), führen diese
Beobachtungen aber auf eine renale Vasodilatation mit einhergehender Natriuresef
aufgrund eines reduzierten Natriumtransports in geringen Dosen zurück (Harris
et al., 1991) oder vertreten die Ansicht, Endothelin-assoziierte Diurese und Natriu-

Bei der Analyse der Ergebnisse hinsichtlich der Urinosmolarität ergibt sich folgendes Bild: Während eine Blockade der ET\textsubscript{A}-Rezeptoren mit BQ610 eine signifikante Verringerung der Osmolarität nach sich zieht, zeigt sich im Falle der ET\textsubscript{B}-Rezeptorblockade mit BQ 788 keine signifikante Veränderung. Ein dualer Rezeptorantagonismus mit Bosentan hingegen ergibt eine signifikante Zunahme der Urinosmolarität. Es stellt sich die Frage, was von diesen Ergebnissen mit Blick auf die Literatur zu halten ist. Wie Studien belegen, fördern Endotheline ETB-Rezeptor-vermittelt die Diurese (Clavell et al., 1995; Sandgaard and Bie, 1996). Bei einer Blockade der ET\textsubscript{A}-Rezeptoren ist von einer verstärkten Bindung des vorhandenen Endothelins an die nicht-blockierten ET\textsubscript{B}-Rezeptoren auszugehen. Damit ist eine gesteigerte Diurese mit assoziiertem Reduktion der Urinosmolarität plausibel erkläbar. Dies ist konkordant mit Untersuchungen von Yukimura et al. (1994), welche eine Reduk-
tion der Urinosmolalität nach Stimulation des ET\textsubscript{B}-Rezeptors postulieren. Auch für den signifikanten Anstieg der Urinosmolalität im Falle eines dualen Rezeptorr antagonistismus lassen sich in der Literatur Belege finden: Durch die Blockade der ET\textsubscript{B}-Rezeptoren entfällt die auf diese Weise vermittelte Stimulation der Diurese, woraus ein Anstieg der Urinosmolalität resultiert. Zahlreiche Autoren belegen eine diuretische Wirkung von Endothelinen (Yamashita et al., 1991; Schnermann et al., 1992; Goetz et al., 1988; Clavell et al., 1995; Ge et al., 2008). Entsprechend ist dies mit einer Zunahme der Urinosmolalität bei Blockade der Endothelinnzepptoren kompatibel. Wie Yukimura et al. (1994) spezifizierten, führt eine Stimulation des ET\textsubscript{B}-Rezeptors – unabhängig von der Bildung von NO oder Prostaglandinen – in der Niere zu einer signifikanten Verringerung der Urinosmolalität. Aus den zitierten Studien erklärt sich der fehlende Einfluss einer selektiven ET\textsubscript{B}-Rezeptor-Blockade auf die Urinosmolalität zwar nicht, möglicherweise erfolgt hierbei aber ein kompensatorischer Effekt über näher zu bestimmende Mechanismen: Wie Yamashita et al. (1991) eruierten, fungiert ET-3 über eine Stimulation der NO- und Prostaglandinsynthese als renaler Vasodilatator mit diuretischer Wirkung (Yamashita et al., 1991). So steht zumindest die Vermutung im Raum, dass NO und Prostaglandine die fehlende diuretische Wirkung des ET\textsubscript{B}-Rezeptors kompensieren, womöglich auf einer verstärkten Stimulation der ET\textsubscript{A}-Rezeptoren beruhend. Damit decken sich die dargestellten Ergebnisse hinsichtlich der Osmolalität weitgehend mit der Literatur.

Eine direkte Einflussnahme der Endothelinrezeptorblockade kann weder auf die Regulation des Kalium-Haushalts noch auf die Kontrolle der Natrium-Homöostase gefolgt werden. Die Ergebnisse hinsichtlich der Osmolalität stimmen weitgehend mit der Literatur überein und erzeugen das Bild einer ET\textsubscript{B}-Rezeptor-vermittelten Stimulation der Diurese. Möglicherweise nehmen NO oder Prostaglandine zusätzlichen kompensatorischen Einfluss auf die Urinosmolalität.
5.3 Einfluss von Endothelin auf die Reninexpression – Qualitative und quantitative Analyse des Reninexpressionsmusters

All diese Publikationen zeigen, dass Endotheline einen erheblichen regulatorischen Einfluss auf das Reninsystem nehmen können. Gerade im Hinblick auf die dichte Verteilung von ET_A-Rezeptoren im Vas afferens stellt sich die Frage, inwieweit ein Eingriff in das Endothelinsystem Auswirkungen auf das RAAS, insbesondere auf die Reninexpression, besitzt.

Unter Berücksichtigung der obigen Erkenntnisse erscheinen die im Rahmen dieser Arbeit erhobenen Ergebnisse insofern geradezu überraschend, als weder der reninzellspezifische Knockout des ET_A-Rezeptors noch ein selektiver oder gar ein dualer pharmakologischer Antagonismus der Endothelinrezeptoren keinerlei Auswirkungen zu besitzen scheinen: Weder die Blockade der Endothelin-Rezeptoren mit BQ610, BQ788 oder Bosentan noch der ET_A-Knockout ziehen einen signifikanten Einfluss auf die Renin-, die ET_A- oder die ET_B-mRNA-Produktion nach sich. Ebenso zeigen sich keine nennenswerten histologischen Veränderungen an immunhistochemisch gefärbten Nierenschnitten. Mit Ausnahme der BQ610-behandelten Mäuse stellen sich auch in der 3D-Rekonstruktion keine Abweichungen vom Normalbefund dar. Eine von der Regel abweichende Lokalisation reninhaltiger Zellen ist bei der pharmakologischen Behandlung der Versuchstiere mit BQ610 nicht nachzuweisen. Auch in diesem Falle ist somit keine relevante Auswirkung des Rezeptorantagonismus auf die Reninexpression assoziiert. Es wäre nicht zwangsläufig zu erwarten, dass eine temporäre Blockade des ET_A-Rezeptors die gleichen Auswirkungen nach sich zöge wie ein angeborenes reninzellspezifisches Fehlen des ET_A-Rezeptors im
Falle der Knockout-Mäuse. Im ersteren Fall erfordert dieses vergleichsweise aku-
te Ereignis eine kurzfristige Reaktion des Organismus, wohingegen im letzteren
Falle von der Embryonalzeit der Versuchstiere an auf Kompensationsmechanis-
men ausgewichen werden kann. So könnten kompensatorisch etwa das RAAS oder
das sympathische Nervensystem zur Aufrechterhaltung eines ausreichend hohen
Blutdrucks beitragen. Nichtsdestominder: Jedweder durchgeführte Eingriff in das
Endothelinsystem war mit keinerlei essentiellen Veränderungen des Reninsystems
assoziert. Es stellt sich die Frage, was man anhand obiger Forschungsergebnisse
hätte erwarten können und wie sich dieses scheinbar überraschende Resultat er-
klärt. Die inhibitorische Wirkung von Endothelinen auf die renalen juxtaglomeru-
lären Zellen erfolgt über eine selektive Hemmung des cAMP-aktivierten Signalwegs
\cite{Ackermann1995, Ritthaler1995}. Es gibt allerdings Hinweise darauf,
dass dieser Vorgang über ET\textsubscript{B}-Rezeptoren vermittelt zu werden scheint \cite{Ritthaler1995}. Möglicherweise ist hierin eine Erklärung dafür zu suchen, dass weder
der Knockout des ET\textsubscript{A}-Rezeptors noch dessen Antagonismus signifikante Unter-
schiede zutage fördert. Worin aber ist die Ursache für fehlende Veränderungen bei
selektivem ET\textsubscript{B}- sowie dualem ET\textsubscript{A}/ET\textsubscript{B}-Antagonismus zu suchen? Wie erklärt
sich die fehlende Einflussnahme in diesem Kontext? \cite{Ritthaler1995} führ-
ten ihre Untersuchungen an isolierten juxtaglomerulären Zellen aus Mäusenieren
durch – in vivo können sich aber durchaus widersprüchliche Ergebnisse dazu er-
geben, wie \cite{Rossi1999} einräumen. Insofern stehen die von \cite{Ritthaler1995}
(1995) in vitro erhobenen Befunde nicht zwangsläufig im Widerspruch mit den
an lebenden Versuchsmäusen erhobenen Daten. Wenn das Endothelinsystem in vi-
tro starke Auswirkungen auf das Reninsystem besitzt, eine Einflussnahme auf das
Endothelinsystem in vivo aber keine substantiellen Unterschiede hervorruft, stellt
sich offenkundig die Frage nach suffizienten Kompensationsmechanismen. In der
Literatur finden sich darauf zahlreiche Hinweise: \cite{Ryan2002} kommen zu
dem Schluss, dass das Gefäßendothel der präglomerulären Arteriole eine entschei-
dende Rolle in der Regulation von Renin spielt, da sowohl ET-1 als auch NO in die
Reninregulation involviert sind. Aufgrund der Vermittlung des Einflusses von Endo-
thelinen auf die Reninexpression über ET\textsubscript{B}-Rezeptoren könnte präglomerulär – in
der Arteriola afferens sind nachweislich überwiegend ET\textsubscript{A}-Rezeptoren lokalisiert –
5.4 Bedeutung des ET\textsubscript{A}-Rezeptors für die Stimmulbarkeit des Reninsystems

Schneider et al. (2007) kommen in einer Studie zu dem Ergebnis, dass während einer Hochsalzdäit die vasokonstriktorische Antwort der afferenten Arteriole reduziert ist. Dieser Sachverhalt beruht auf einer gesteigerten vasodilatorischen Funktion des endothelialen ET\textsubscript{B}-Rezeptors. Unter Aufrechterhaltung des renalen Blutflusses kann dies einen wichtigen Mechanismus darstellen, einen ausgeglichenen Natrium-Haushalt unter einer Hochsalzdäit wiederherzustellen. Während die Expression von ET\textsubscript{B}-Rezeptoren unter einer Hochsalzdäit zunimmt, bleibt die ET\textsubscript{A}-Rezeptor-Expression unverändert (Schneider et al., 2007).

Wie wir im Abschnitt über die Lokalisation der Endothelinrezeptoren gesehen haben, wurde in den zuführenden Arteriolen von Ratten neben ET\textsubscript{A}-Rezeptoren auch das Vorkommen von ET\textsubscript{B}-Rezeptoren nachgewiesen (Wendel et al., 2006), wohingegen in der afferenten Arteriole von Mäusen nahezu ausschließlich ET\textsubscript{A}-Rezeptoren exprimiert werden. Damit stellt sich gerade im Hinblick auf die von Schneider et al. (2007) an Ratten erzielten Erkenntnisse die Frage, welchen Einfluss der ET\textsubscript{A}-Rezeptor auf die Regulation des Reninsystems nimmt und welche Veränderungen eine Hochsalzdäit im Sinne einer RAAS-Suppression auf die Expression des ET\textsubscript{A}-Rezeptors nach sich zieht. Aus der bisherigen Diskussion liegt die Vermutung nahe, dass ein Fehlen von Endothelin-Rezeptoren in vivo keine Auswirkungen auf die basale Reninexpression besitzt. Ändert sich dieser Sachverhalt unter Stimulation des Reninsystems?

Im Vergleich zum Wildtyp ergeben sich beim ET\textsubscript{A}-Knockout unter Normalsalzbedingungen weder hinsichtlich der Renin-, noch der ET\textsubscript{A}- oder der ET\textsubscript{B}-mRNA-Produktion signifikante Veränderungen. Auch in der Histologie zeigen sich unter Normalsalzbedingungen keine qualitativen oder quantitativen Veränderungen der Reninnenge, in der 3D-Rekonstruktion ist eine allenfalls geringfügige Zunahme der Reninnenge zu beobachten, retrograd gelegene Reninzellen aber werden nicht vorgefunden. Die reninhaltigen Zellen befinden sich, wie in der Literatur beschrieben, juxtaglomerulär in der Wand der afferenten Arteriole (Barajas, 1979). Eine

auf das RAAS auszuüben.

Die funktionalen oder faktischen reninzellspezifischen Abwesenheit des ET\textsubscript{A}-Rezeptors zieht somit keine signifikanten Veränderungen nach sich, eine zelluläre Einflussnahme auf das Reninsystem unter Stimulation muss negiert werden.

5.5 Schlussfolgerungen

Aus den oben dargeliegten Ergebnissen lassen sich nachstehende Schlussfolgerungen ziehen:

- Die Lokalisation der renalen Endothelinrezeptoren bei Mäusen mit Hilfe immunhistochemischer Analysen stimmt im Wesentlichen mit der in der Literatur beschriebenen Lokalisation dieser Rezeptoren bei Ratten überein. Es lassen sich anhand obiger Darstellungen folgende Differenzen konstatieren: Keine Expression von ET\textsubscript{B}-Rezeptoren im Vas afferens, im distalen Tubulus und im Sammelrohr, fehlende Expression von ET\textsubscript{A}-Rezeptoren im distalen Tubulus von Mäusenieren.
• Fehlende Nachweisbarkeit eines signifikanten Einflusses von Endothelinen auf die Elektrolythemöostase. Weitgehende Bestätigung des in der Literatur dargestellten Einflusses von Endothelin auf die Urinosmolalität.

• Der reninzellspezifische Knockout des ET\textsubscript{A}-Rezeptors bedingt keine signifikanten Veränderungen des Reninsystems. Mögliche Einflüsse von Endothelinen auf das Reninsystem werden mutmaßlich von anderen Mechanismen kompensiert.

• Eine Einflussnahme des ET\textsubscript{A}-Rezeptors auf die Regulation des Reninsystems kann ebenfalls nicht geschlussfolgert werden.

• In Anbetracht der zahlreich in der Niere vertretenen Endothelinrezeptoren stellen diese Schlussfolgerungen ein erstaunliches Resultat dar. Obgleich Endothelins durchaus zahlreiche Einflüsse auf die Regulation der Nierenfunktion sowie der Reninfreisetzung besitzen, resultieren bei funktioneller oder faktischer Abwesenheit der vermittelnden Endothelinrezeptoren keine signifikanten Auswirkungen auf die Nierenfunktion. Vermutlich liegt diese Tatsache in der Vielzahl effizienter regulatorischer Systeme auf das RAAS begründet.

5.6 Ausblick

Die dargelegten Ergebnisse bilden somit den Ausgangspunkt für darauf aufbauende Untersuchungen, um dem komplexen Einfluss des Endothelinsystems auf das Reninsystem weiter auf den Grund zu gehen. Von vorrangiger Bedeutung erscheinen folgende Fragestellungen:

• In der Literatur finden sich Hinweise auf ein komplexes Zusammenspiel von Endothelinen, Prostaglandinen und NO. Könnte über Signalwege dieser Art die fehlende Einflussnahme des Endothelinsystems kompensiert werden?

• Beeinflusst die Einschränkung des renalen Blutflusses über einen indirekten Effekt das Endothelinsystem?

• Welche Rolle spielt der ET\textsubscript{B}-Rezeptor in der Regulation des Reninsystems? Welche Bedeutung kommt den Endothelinsubtypen ET\textsubscript{2} und ET\textsubscript{3} zu?
• Besteht eine Interaktion des Endothelinsystems mit weiteren vasokonstriktorischen Systemen der Niere, wie etwa dem Angiotensin-II- oder dem Vasopressinsystem?
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Chemische und biologische Größen und Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
</tr>
<tr>
<td>Da</td>
</tr>
<tr>
<td>I. E.</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physikalische Größen und Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>min</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dezimale Vielfache von Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
</tr>
</tbody>
</table>

\(^1\)Siehe auch Mortimer and Müller (2010).
Dezimale Vielfache von Einheiten

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>milli</td>
<td>(1 \times 10^{-3})</td>
</tr>
<tr>
<td>µ</td>
<td>mikro</td>
<td>(1 \times 10^{-6})</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>(1 \times 10^{-9})</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>(1 \times 10^{-12})</td>
</tr>
</tbody>
</table>

Sonstige Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>dreidimensional</td>
</tr>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>α-SMA</td>
<td>α-Glattmuskelaktin (α-smooth muscle actin)</td>
</tr>
<tr>
<td>A.</td>
<td>Arteria</td>
</tr>
<tr>
<td>Aa.</td>
<td>Arteriae</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Abk.</td>
<td>Abkürzung</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ADH</td>
<td>Antidiuretisches Hormon (=Vasopressin)</td>
</tr>
<tr>
<td>ANG I</td>
<td>Angiotensin I</td>
</tr>
<tr>
<td>ANG II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>AT(_1)</td>
<td>Angiotensin-II-Rezeptor, Subtyp 1</td>
</tr>
<tr>
<td>AT(_2)</td>
<td>Angiotensin-II-Rezeptor, Subtyp 2</td>
</tr>
<tr>
<td>Anm.</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>A. U.</td>
<td>arbitrary unit (willkürliche Einheit)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumine (bovines Serum-Albumin)</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>(ionisiertes) Calzium</td>
</tr>
<tr>
<td>cAMP</td>
<td>zyklisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy deoxyribonucleic acid</td>
</tr>
<tr>
<td>cGMP</td>
<td>zyklisches Guanosinmonophosphat</td>
</tr>
<tr>
<td>CD</td>
<td>collecting duct (Sammelrohr)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ch</td>
<td>chicken</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>Cy2</td>
<td>Cyanin</td>
</tr>
<tr>
<td>Cy3</td>
<td>Indocarbocyanin</td>
</tr>
<tr>
<td>Cy3</td>
<td>Indodicarbocyanin</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>dk</td>
<td>donkey</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphosphat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>eNOS</td>
<td>endotheliale NO-Synthase</td>
</tr>
<tr>
<td>ET</td>
<td>Endothelin</td>
</tr>
<tr>
<td>ET<sub>A</sub></td>
<td>Endothelin A</td>
</tr>
<tr>
<td>ET<sub>B</sub></td>
<td>Endothelin B</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii (und andere)</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyd-3-Phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>GFR</td>
<td>glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>gt</td>
<td>goat</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>bdest</sub></td>
<td>zweifach entionisiertes Wasser</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>Wasserstoffperoxid</td>
</tr>
<tr>
<td>HS</td>
<td>Pferdeserum (horse serum)</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IMCD</td>
<td>Inner medullary collecting duct</td>
</tr>
<tr>
<td>i. p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol-1,4,5-triphosphat</td>
</tr>
<tr>
<td>JGA</td>
<td>Juxtaglomerulärer Apparat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Kaliumdihydrogenphosphat</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
<tr>
<td>L-NAME</td>
<td>L-N⁶-Nitroargininmethylester</td>
</tr>
<tr>
<td>LS</td>
<td>Lowsalt (Niedrigsalzdiät)</td>
</tr>
<tr>
<td>MD</td>
<td>Macula Densa</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>ms</td>
<td>mouse</td>
</tr>
<tr>
<td>N₂</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>Na₂HPO</td>
<td>di-Natriumhydrogenphosphat</td>
</tr>
<tr>
<td>n.s.</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>NS</td>
<td>Normalsalt (Normalsalzdiät)</td>
</tr>
<tr>
<td>NOS</td>
<td>NO-Synthase</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion (polymerase chain reaction)</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E₂</td>
</tr>
<tr>
<td>PGI₂</td>
<td>Prostaglandin I₂</td>
</tr>
<tr>
<td>PIP₂</td>
<td>Phosphatidyl-Inositolbisphosphat</td>
</tr>
<tr>
<td>PKC</td>
<td>Proteinkinase C</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathormon (engl. parathyroid hormon)</td>
</tr>
<tr>
<td>RAAS</td>
<td>Renin-Angiotensin-Aldosteron-System</td>
</tr>
<tr>
<td>rb</td>
<td>rabbit</td>
</tr>
<tr>
<td>RBF</td>
<td>renaler Blutfluss</td>
</tr>
<tr>
<td>resp.</td>
<td>respektive</td>
</tr>
<tr>
<td>RGB</td>
<td>Rot-Grün-Blau</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
</tbody>
</table>

128
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute (Umdrehungen pro Minute)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transkriptase</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean (Standardfehler des Mittelwerts)<sup>2</sup></td>
</tr>
<tr>
<td>SI</td>
<td>Système international d’unités (Internationales Einheitensystem)</td>
</tr>
<tr>
<td>s. u.</td>
<td>siehe unten</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethylrhodaminisothiocyanat</td>
</tr>
<tr>
<td>ü. N.</td>
<td>über Nacht</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>Vv.</td>
<td>Venae</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>

²Der Standardfehler des arithmetischen Mittelwerts ist gegeben als

\[
\sigma(\bar{X}) = \frac{\sigma}{\sqrt{n}},
\]

wobei \(\sigma\) die Standardabweichung einer einzelnen Messung und \(n\) die Anzahl der Stichproben bezeichnet.
Abbildungsverzeichnis

1.1 Schematische Darstellung eines Glomerulus. Abbildung nach Junqueira et al. (2005). .. 6
1.3 Schematische Darstellung des juxtaglomerulären Apparates. Abbildung nach Davis and Freeman (1976). .. 11
1.4 Schematische Darstellung der Signalkaskade des Renin-Angiotensin-Aldosteron-Systems. .. 14
1.5 Schematische Darstellung der Reninsynthese und -sekretion. Abbildung nach Schweda et al. (2007). .. 17
1.6 Schematische Darstellung der intrazellulären Signalwege. Abbildung nach Castrop et al. (2010). .. 23
1.7 Schematische Darstellung der Endothelinsynthese. Abbildung nach Kohan et al. (2011). .. 28
1.8 Schematische Darstellung der ET-1-Expression nach Kohan et al. (2011). .. 31
1.9 Schematische Darstellung der Verteilung der renalen Endothelin-Rezeptoren. Abbildung nach Kohan et al. (2011). .. 33
4.1 Lokalisation von ET_A-Rezeptoren in der afferen ten Arteriole der Niere einer Wildtyp-Maus. .. 72
4.2 Lokalisation von ET_B-Rezeptoren im Sammelrohrsystem der Niere einer Wildtyp-Maus. .. 74
4.3 Lokalisation von ET_B-Rezeptoren im Tubulussystem der Niere einer Wildtyp-Maus .. 74
4.4 Lokalisation von ET_A-Rezeptoren im Sammelrohrsystem der Niere einer Wildtyp-Maus .. 75
4.5 Graphische Gegenüberstellung der Kalium-Konzentrationen ... 77
4.6 Graphische Gegenüberstellung der Natrium-Konzentrationen ... 78
4.7 Graphische Gegenüberstellung der Urinosmolalität ... 79
4.8 Überblick über die Renin-mRNA-Abundanz der oben dargelegten Versuchsanordnungen .. 81
4.9 Überblick über die ET_A-mRNA-Abundanz der oben dargelegten Versuchsanordnungen .. 82
4.10 Überblick über die ET_B-mRNA-Abundanz der oben dargelegten Versuchsanordnungen .. 83
4.11 Immunfluoreszenzdoppelfärbung am Paraffinschnitt einer unbehandelten C57BL/6-Maus der Kontrollgruppe ... 85
4.12 Immunfluoreszenzfärbung am Paraffinschnitt einer C57BL/6-Maus nach Behandlung mit dem ET_A-Rezeptor-Antagonisten BQ 610 .. 86
4.13 Immunfluoreszenzfärbung am Paraffinschnitt einer C57BL/6-Maus nach Behandlung mit dem ET_B-Rezeptor-Antagonisten BQ 788 .. 87
4.14 Immunfluoreszenzfärbung am Paraffinschnitt einer unbehandelten Ren-1d^{-/-}/Cre-ET_A^{fl/fl}-Maus ... 88
4.15 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskelaaktin in einem repräsentativen Gefäßbaumabschnitt einer adulten unbehandelten C57BL/6-Maus ... 90
4.16 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskelaaktin in einem repräsentativen Gefäßbaumabschnitt einer adulten C57BL/6-Maus nach Behandlung mit BQ 610 ... 91
4.17 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskelaaktin in einem repräsentativen Gefäßbaumabschnitt einer adulten C57BL/6-Maus nach Behandlung mit BQ 788 ... 92
4.18 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskulatur in einem repräsentativen Gefäßabschnitt einer adulten Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Maus nach Normalsalz-Diät. 93

4.19 Renin-mRNA-Expression der ET\textsubscript{A}^{fl/fl} und Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Mäuse unter Normalsalz-Ernährung und Stimulation. 95

4.20 ET\textsubscript{A}-mRNA-Expression der ET\textsubscript{A}^{fl/fl} und Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Mäuse unter Normalsalz-Ernährung und Stimulation. 96

4.21 ET\textsubscript{B}-mRNA-Expression der ET\textsubscript{A}^{fl/fl} und Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Mäuse unter Normalsalzbehandlung und Stimulation. 98

4.22 Immunfluoreszenzfärbung am Paraffinschnitt einer unbehandelten Wildtyp-Maus. 99

4.23 Immunfluoreszenzfärbung am Paraffinschnitt einer Wildtyp-Maus nach Stimulation mit Lowsalt-Diät und Enalapril. 100

4.24 Immunfluoreszenzfärbung am Paraffinschnitt einer unbehandelten Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Maus. 102

4.25 Immunfluoreszenzfärbung am Paraffinschnitt einer Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Maus nach Stimulation durch Niedrigsalzdiät und Enalapril. 103

4.26 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskulatur in einem repräsentativen Gefäßabschnitt einer adulten Wildtyp-Maus nach Stimulation mit Niedrigsalzdiät und Enalapril. 104

4.27 3D-Rekonstruktion der Immunreaktivität von Renin und Glattmuskulatur in einem repräsentativen Gefäßabschnitt einer adulten Ren-1d+/Cre-ET\textsubscript{A}^{fl/fl}-Maus nach Stimulation mit Niedrigsalzdiät und Enalapril. 105

Ackermann, M., T. Ritthaler, G. Riegger, A. Kurtz, and B. K. Krämer

Antonipillai, I. and R. Horton

Bader, M. and D. Ganten

Badr, K., J. Murray, M. Breyer, K. Takahashi, T. Inagami, and R. Harris
Barajas, L.

Barton, M., C. C. Haudenschild, L. V. d’Uscio, S. Shaw, K. Münter, and T. F. Lüscher

Beavo, J. A. et al.

Beierwaltes, W. H.

Beierwaltes, W. H. and O. A. Carretero

Berthold, H., K. Münter, A. Just, H. R. Kirchheim, and H. Ehmke

Bremnes, T., J. D. Paasche, A. Mehlum, C. Sandberg, B. Bremnes, and H. Attramadal
Calo, G., J.-P. Gratton, S. Telemaque, P. D’Orléans-Juste, and D. Regoli
1996. Pharmacology of endothelins: vascular preparations for studying eta and

1993. Role of endothelin and prostaglandins in radiocontrast-induced renal artery

Carey, R. M., H. E. McGrath, E. S. Pentz, R. A. Gomez, and P. Q. Barrett
tigation*, 100(6):1566.

Casellas, D., M. Dupont, N. Bouriquet, L. C. Moore, A. Artuso, and A. Mimran
1994. Anatomic pairing of afferent arterioles and renin cell distribution in rat

Castellani, S., A. Ungar, G. L. Cava, C. Cantini, C. Stefanile, A. Camaiti, G. Mes-
seri, M. Coppo, B. Vallotti, C. Di Serio, et al.
1997. Renal adaptation to stress: a possible role of endothelin release and pros-
taglandin modulation in the human subject. *Journal of Laboratory and Clinical

Castrop, H., K. Höcherl, A. Kurtz, F. Schweda, V. Todorov, and C. Wagner

Cavero, P. G., W. L. Miller, D. M. Heublein, K. Margulies, and J. Burnett
1990. Endothelin in experimental congestive heart failure in the anesthetized

Chao, H., A. Waheed, R. Pohlmann, A. Hille, and K. Von Figura
The EMBO journal, 9(11):3507.

Chen, L., S. M. Kim, M. Oppermann, R. Faulhaber-Walter, Y. Huang, D. Mizel,
2007. Regulation of renin in mice with cre recombinase-mediated deletion of

Chomczynski, P. and N. Sacchi

Chou, S., A. Dahhan, and J. G. Porush

Chow, L., S. Subramanian, G. J. Nuovo, F. Miller, and E. P. Nord

Churchill, P.

Churchill, P. C., M. C. Churchill, and F. D. McDonald

Claria, J., W. Jimenez, G. Villa, M. Asbert, A. Castro, J. Llibre, V. Arroyo, and F. Rivera

Clavell, A. L., A. J. Stingo, K. B. Margulies, R. Brandt, and J. Burnett

Clozel, M. and J.-P. Clozel

DiBona, G. F.

Dickinson, D. P., K. W. Gross, N. Piccini, and C. M. Wilson

D’Orleans-Juste, P., M. Plante, J. Honore, E. Carrier, and J. Labonte

Dzau, V. J., D. W. Burt, and R. E. Pratt

Edwards, R. M. and W. Trizna

Emoto, N. and M. Yanagisawa

Evans, N. J. and J. W. Walker

Evans, R. G., A. C. Madden, J. J. Oliver, and T. V. Lewis
2001. Effects of eta-and etb-receptor antagonists on regional kidney blood flow,

Faust, P. L., J. M. Chirgwin, and S. Kornfeld

Fray, J.

Freed, M., K. Thompson, D. Wilson, R. Etheredge, and D. Jorkasky

Friis, U. G., B. L. Jensen, S. Sethi, D. Andreasen, P. B. Hansen, and O. Skøtt

Fuchs, S., S. Germain, J. Philippe, P. Corvol, and F. Pinet

Greenberg, S. G., X. He, J. B. Schnermann, and J. P. Briggs
1995. Effect of nitric oxide on renin secretion. i. studies in isolated juxta-
glomerular granular cells. *American Journal of Physiology-Renal Physiology*,
268(5):F948–F952.

Grünberger, C., B. Obermayer, J. Klar, A. Kurtz, and F. Schweda
2006. The calcium paradoxon of renin release calcium suppresses renin exocytosis
by inhibition of calcium-dependent adenylate cyclases ac5 and ac6. *Circulation

Guo, X. and T. Yang
2006. Endothelin b receptor antagonism in the rat renal medulla reduces urine
1005.

Hackenthal, E., M. Paul, D. Ganten, and R. Taugner
1990. Morphology, physiology, and molecular biology of renin secretion. *Physiol

Hano, T., M. Shiotani, A. Baba, Y. Nakamura, Y. Tomobuchi, I. Nishio, Y. Masu-
yama, et al.
1990. Contribution of calmodulin and protein kinase c to renin release in sponta-
209S.

Harris, P., J. Zhuo, F. Mendelsohn, and S. Skinner
1991. Haemodynamic and renal tubular effects of low doses of endothelin in

He, X.-R., S. Greenberg, J. Briggs, and J. Schnermann
1995. Effect of nitric oxide on renin secretion. ii. studies in the perfused

Hees, H. and F. Sinowatz

Heller, J., H. J. Kramer, and V. Horacek

Herrera, M. and J. L. Garvin

Herrera, M., N. J. Hong, P. A. Ortiz, and J. L. Garvin

Hirose, S., S.-J. Kim, H. Miyazaki, Y.-s. Park, and K. Murakami

Hodsman, G., J. Zabludowski, C. Zoccali, R. Fraser, J. Morton, G. Murray, and J. Robertson

Hoffman, A., Z. A. Abassi, S. Brodsky, R. Ramadan, and J. Winaver

Holm, I., R. Ollo, J. Panthier, and F. Rougeon

Ikeda, M., M. Kohno, and T. Takeda

Ishikawa, K., M. Ihara, K. Noguchi, T. Mase, N. Mino, T. Saeki, T. Fukuroda,
T. Fukami, S. Ozaki, and T. Nagase

Jensen, B. L., C. Schmid, and A. Kurtz

Johnström, P., T. D. Fryer, H. K. Richards, N. G. Harris, O. Barret, J. C. Clark, J. D. Pickard, and A. P. Davenport

Junqueira, L., J. Carneiro, and M. Gratzl

Kageyama, S. and J. Brown

Karet, F. E., R. E. Kuc, and A. P. Davenport

Keeton, T. K. and W. B. Campbell

Kitamura, K., T. Tanaka, J. Kato, T. Eto, and K. Tanaka
Klar, J., P. Sandner, M. W. Müller, and A. Kurtz

Klinke, R., H.-C. Pape, and S. Silbernagl

Kohan, D. E., A. K. Hughes, and S. L. Perkins

Kohan, D. E. and E. Padilla

Kohan, D. E., N. F. Rossi, E. W. Inscho, and D. M. Pollock

Kon, Y.

Kono, T., F. Ikeda, F. Oseko, H. Imura, and J. Endo

Krämer, B. K., K. Schricker, H. Scholz, M. Clozel, G. A. Riegger, and A. Kurtz

Kurtz, A.

Kurtz, A., R. Della Bruna, J. Pfeilschifter, R. Taugner, and C. Bauer

Kurtz, A. and R. Penner

Kurtz, A. and C. Wagner

Law, R. and R. J. Summers

Leonhardt, H.
Lerman, A., F. Hildebrand, L. L. Aarhus, and J. Burnett
1991. Endothelin has biological actions at pathophysiological concentrations.

Linas, S. L. and D. Dickmann
1982. Mechanism of the decreased renal blood flow in the potassium-depleted

Liu, A. and B. J. Ballermann
1998. Tgf-β2 receptor in rat renal vascular development: Localization

Liu, Y., J. Yang, H. Ren, D. He, A. Pascua, M. I. Armando, C. Yang, L. Zhou,
R. A. Felder, P. A. Jose, et al.
2009. Inhibitory effect of etb receptor on na+-k+ atpase activity by extracellular
ca2+ entry and ca2+ release from the endoplasmic reticulum in renal proximal
tubule cells. *Hypertension research: official journal of the Japanese Society of

Lüllmann-Rauch, R.

Machura, K.
PhD thesis.

Matsumura, Y., K. Hisaki, T. Ohyama, K. Hayashi, and S. Morimoto
1989a. Effects of endothelin on renal function and renin secretion in anesthetized

Matsumura, Y., K. Nakase, R. Ikekawa, K. Hayashi, T. Ohyama, and S. Morimoto
1989b. The endothelium-derived vasoconstrictor peptide endothelin inhibits re-

Matsuura, T., K. Miura, T. Ebara, T. Yukimura, S. Yamanaka, S. Kim, and H. Iwao
1997. Renal vascular effects of the selective endothelin receptor antagonists in
Means, A. R. and J. R. Dedman

Mercure, C., D. Ramla, R. Garcia, G. Thibault, C. F. Deschepper, and T. L. Reudelhuber

Miller, W. L., M. M. Redfield, and J. C. Burnett Jr

Moe, O., A. Tejedor, W. B. Campbell, R. J. Alpern, and W. Henrich

Morris, B. J.

Mortimer, C. E. and U. Müller

Mulisch, M. and U. Welsch

Naess, P., G. Christensen, and F. Kiil

Pan, L., T. A. Black, Q. Shi, C. A. Jones, N. Petrovic, J. Loudon, C. Kane, C. D. Sigmund, and K. W. Gross 2001. Critical roles of a cyclic amp responsive element and an e-box in regulation...

Paul, M., A. P. Mehr, and R. Kreutz

Pernow, J. and A. Modin

Peters, J. and S. Clausmeyer

Petrovic, N., C. M. Kane, C. D. Sigmund, and K. W. Gross

Pfeilschifter, J., A. Kurtz, and C. Bauer

Plato, C. F., D. M. Pollock, and J. L. Garvin

Pollock, D. M. and T. J. Opgenorth

Pollock, D. M. and T. J. Opgenorth

Prié, S., D. J. Stewart, and J. Dupuis

Qiu, C., L. Samsell, and C. Baylis
Rakugi, H., M. Nakamaru, H. Saito, J. Higaki, and T. Ogihara

Reddi, V., A. Zaglul, E. Pentz, and R. Gomez

Ritthaler, T., R. Della Bruna, B. K. Krämer, and A. Kurtz

Rossi, G. P., A. Sacchetto, M. Cesari, and A. C. Pessina

Ryan, M. J., T. A. Black, S. L. Millard, K. W. Gross, and G. Hajduczok

Ryan, M. J., K. W. Gross, and G. Hajduczok

Saito, M., S. Homma, I. Yamatsu, M. Sato, and N. Ohshima

Sandgaard, N. and P. Bie

Sandner, P., M. Kornfeld, X. Ruan, W. J. Arendshorst, and A. Kurtz

Sauter, A., K. Machura, B. Neubauer, A. Kurtz, and C. Wagner

Schneider, M. P., E. W. Inscho, and D. M. Pollock

Schmermann, J.

Schmermann, J., J. N. Lorenz, J. P. Briggs, and J. A. Keiser

Scholz, H., M. Hamann, K.-H. Götz, and A. Kurtz
Scholz, H., B. Krämer, M. Hamann, K.-H. Götz, and A. Kurtz

Schramek, H., C. Willinger, G. Gstraunthaler, and W. Pfaller

Schricker, K. and A. Kurtz

Schricker, K., H. Scholz, M. Hamann, M. Clozel, B. K. Krämer, and A. Kurtz

Schulz, E., F. Ruschitzka, S. Lueders, R. Heydenbluth, J. Schrader, and G. A. Müller

Schunkert, H., J. R. Ingelfinger, H. Jacob, B. Jackson, B. Bouyounes, and V. J. Dzau

Schweda, F., U. Friis, C. Wagner, O. Skott, and A. Kurtz

Schünke, M., E. Schulte, and U. Schumacher
Sealey, J., S. Atlas, and J. Laragh

Sequeira-Lopez, M. L., E. S. Pentz, B. Robert, D. R. Abrahamson, and R. A. Gomez

Simonson, M. S. and M. J. Dunn

Skinner, S. L., J. W. McCubbin, and I. H. Page

Skøtt, O.

Skøtt, O. and J. P. Briggs

Smith, H. W.
1951. *The kidney: structure and function in health and disease*. Oxford University Press, USA.

Speckmann, E.-J., J. Hescheler, and R. Köhling

Steckelings, U.

156
Tobian, L., M. Braden, and J. Maney

Todorov, V., M. Müller, F. Schweda, and A. Kurtz

Uzuner, K. and R. Banks

Vander, A. J.

Vandongen, R., W. S. Peart, and G. W. Boyd

Vignon-Zellweger, N., S. Heiden, T. Miyauchi, and N. Emoto

Vuurmans, J. T., P. Boer, and H. A. Koomans
Wagner, C., M. Hinder, B. K. Krämer, and A. Kurtz

Wagner, C., B. L. Jensen, B. K. Krämer, and A. Kurtz

Wagner, C. and A. Kurtz

Watts, S. W.

Wehner, R., W. Gehring, and W. J. Gehring

Weisert, J.

Welsch, U.

Wendel, M., L. Knels, W. Kummer, and T. Koch

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der letzten Jahre unterstützt und auf diese Weise zum Gelingen dieser Arbeit beigetragen haben:

Mein Dank gilt in erster Linie Frau Prof. Dr. Charlotte Wagner für die Vergabe des Themas sowie für die Anleitung während der gesamten Bearbeitungszeit.

Ganz besonders möchte ich mich bei Dr. Björn Neubauer für seine ausdauernde und unkomplizierte Unterstützung während des Verfassens dieser Arbeit bedanken.

Weiterhin gilt mein Dank Dr. Katharina Machura, Dr. Dominik Steppan sowie Thomas Neder, die mir stets mit Rat zur Seite standen.

Eigenständigkeitserklärung

Die vorliegende Arbeit wurde von Frau Prof. Dr. Charlotte Wagner angeregt und unter Ihrer Überwachung ausgearbeitet.

Regensburg, den 07. November 2016

Christoph Langer