AUSWIRKUNGEN DES AUFBEREITUNGSPROZESSES AUF
MIKROCHIRURGISCHE INSTRUMENTE

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Zahnmedizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Raphaela Berto

2016
AUSWIRKUNGEN DES AUFBEREITUNGSPROZESSES AUF MIKROCHIRURGISCHE INSTRUMENTE

Inaugural – Dissertation
zur Erlangung des Doktorgrades
der Zahnmedizin

der
Fakultät für Medizin
der Universität Regensburg

vorgelegt von
Raphaela Berto

2016
Dekan: Prof. Dr. Dr. Torsten E. Reichert
1. Berichterstatter: Prof. Dr. Jürgen Strutz
2. Berichterstatter: Prof. Dr. Herbert Jägle
Tag der mündl. Prüfung: 17.01.2017
Inhaltsverzeichnis

1. Einleitung .. 5
 1.1. Bedeutung der Aufbereitung von Medizinprodukten .. 5
 1.2. Definition Sterilisation ... 5
 1.3. Rechtliche Rahmenbedingungen ... 7
 1.4. Ablauf der Aufbereitung von Medizinprodukten .. 9
 1.4.1. Vorbereitung .. 9
 1.4.2. Reinigung und Desinfektion ... 10
 1.4.3. Spülung und Trocknung ... 12
 1.4.4. Pflege der Instrumente und Prüfung der technisch-funktionellen Sicherheit 13
 1.4.5. Verpackung ... 14
 1.4.6. Dampfsterilisation ... 14
 1.4.7. Kennzeichnung, Freigabe und Dokumentation .. 17
 1.5. Stapedotomie .. 18
 1.6. Ziel der Arbeit ... 19

2. Material und Methodik ... 21
 2.1. Versuchsanordnung ... 21
 2.1.1. Beschreibung der getesteten Medizinprodukte .. 22
 2.1.2. Beleuchtung .. 36
 2.1.3. Kamereinstellung ... 37
 2.1.4. Digitale Bildbearbeitung .. 38
 2.1.5. Auswertung der Fotodokumentation .. 41
 2.2. Mögliche Beschädigungen, Alterungen und Oberflächenveränderungen durch
 Aufbereitungsprozesse ... 42
 2.2.1. Oberflächenveränderungen - Beläge ... 42
 2.2.2. Korrosion ... 45
 2.2.3. Mechanische Beschädigungen ... 48

3. Ergebnisse .. 49
 3.1. Allgemeine Analyse ... 50
 3.2. Perforatoren .. 54
 3.3. Scherchen und Zängchen .. 77
 3.4. Häkchen .. 85
 3.5. Messinstrumente und Saugrohr .. 90
 3.6. Drahtschere nach Guildford-Wright, Uhrmacher-Pinzette und Sauggriff 97

4. Diskussion .. 101
 4.1. Diskussion von Material und Methodik ... 101
4.2. Diskussion der Aufbereitung .. 104
4.3. Diskussion der Herstellerangaben .. 108
4.4. Diskussion der Ergebnisse .. 110
5. Zusammenfassung .. 112
6. Literaturverzeichnis ... 115
7. Tabellenverzeichnis ... 120
8. Abbildungsverzeichnis .. 121

DANKSAGUNG ..

ERKLÄRUNG ...
1. **Einleitung**

1.1. **Bedeutung der Aufbereitung von Medizinprodukten**

1.2. **Definition Sterilisation**

Nach dem Begriff Sterilisation (lat.: sterilis = ertraglos; unfruchtbar) wird ein Gegenstand nach DIN EN 556 bzw. Ph.Eur.6.0 als steril definiert, „*wenn die Wahrschein-...*"
lichkeit für das Auftreten eines Mikroorganismus in einem Sterilisiergut kleiner oder gleich 10^{-6} ist" (Kramer et al. 2008), d.h. der theoretische Wert für das Auftreten eines Mikroorganismus in einem einzigen Sterilisiergut darf höchstens bei 10^{-6} sein. Dieser Wert wird auch als Sterilitätssicherheitswert (SAL = sterility assurance level) bezeichnet (McDonnell 2007).

Um diese Forderung sicher zu stellen, müssen bei der Festlegung der Sterilisationsparameter vor allem diejenigen Mikroorganismen beachtet werden, die gegenüber dem jeweiligen Verfahren die größte Resistenz besitzen. Nach der DIN EN 285 müssen folgende Parameter bei einer Dampfsterilisation zur Einhaltung der Mindestanforderung eingehalten werden (Kramer et al. 2008):

<table>
<thead>
<tr>
<th>Temperatur in °C</th>
<th>Mindesteinwirkungszeit (in min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>15</td>
</tr>
<tr>
<td>126</td>
<td>10</td>
</tr>
<tr>
<td>134</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 1: Parameter zur Einhaltung der Mindestanforderungen bei der Dampfsterilisation

Insgesamt werden folgende grundsätzliche Anforderungen an die Sterilisation gestellt (Kramer et al. 2008):

- Die Sterilisation darf die technische Sicherheit des medizinischen Produkts nicht herabsetzen.
- Das Sterilisationsagens muss physikalisch–chemisch nachweisbar wirksam gegenüber Viren, Bakterien, Pilzen, Sporenbildnern und Protozoen sein.
- Der „sterility assurance level“ (SAL) muss gemäß DIN EN 556 eingehalten werden.
- Der Sterilisationsprozess ist erst dann beendet, wenn alle vorgeschriebenen Parameter (Zeit, Temperatur, Konzentration) eingehalten sind.
1.3. Rechtliche Rahmenbedingungen

Durch den freien Warenverkehr innerhalb der EU hat die Europäische Union die Aufgabe, eine Angleichung des Rechts innerhalb aller einzelnen Mitgliedsstaaten vorzunehmen. Dadurch wird ermöglicht, dass Produkte innerhalb der gesamten EU vertrieben werden können, wenn sie im entsprechenden Mitgliedstaat nach den dort geltenden Richtlinien in den Verkehr gebracht wurden (Weller 2011). Die hygienischen Anforderungen an Medizinprodukte wurden erstmals durch die europäischen Richtlinien 90/385/EWG und 93/42/EWG definiert (Kremmel 2008).

In Deutschland ist bei der Verwendung und Pflege von Medizinprodukten das Medizinproduktegesetz (MPG) und die MedizinProdukteBetreiberVerordnung (MPBetreibV) zu beachten. Diese Gesetze und die auf deren Grundlage erstellten Rechtsverordnungen setzen also entsprechende europäische Richtlinien in deutsches Recht um (Jäkel 2008). Für den wissenschaftlich korrekten Inhalt sind in der Bundesrepublik als Bundesbehörden das Bundesinstitut für Arzneimittel (BfArM) und das Robert Koch-Institut zuständig (Kremmel 2008).

Das Medizinproduktegesetz (MPG) definiert nach § 1 seinen Zweck darin, „den Verkehr mit Medizinprodukten zu regeln und dadurch für die Sicherheit, Eignung und Leistung der Medizinprodukte sowie die Gesundheit und den erforderlichen Schutz der Patienten, Anwender und Dritter zu sorgen.“ (Bundesministerium der Justiz und für Verbraucherschutz 1994)

Die gesetzliche Kette wird schließlich mit der MedizinProdukteBetreiberVerordnung (MPVBetreibV) geschlossen, in der die rechtlichen Rahmenbedingungen für die Aufbereitung von Medizinprodukten festgelegt sind. In der Verordnung sind zum einen die Rahmenbedingungen für den Betrieb und die Anwendung festgehalten und zum anderen die Instandhaltung (und somit auch die Aufbereitung) der Medizinprodukte geregelt. Laut § 4 MPBetreibV gilt für die Aufbereitung Folgendes: „Die Aufbereitung von bestimmungsgemäß keimarm oder steril zur Anwendung kommenden Medizinprodukten ist unter Berücksichtigung der Angaben des Herstellers mit geeigneten validierten Verfahren so durchzuführen, dass der Erfolg dieser Verfahren nachvollziehbar gewährleistet ist und die Sicherheit und Gesundheit von Patienten, Anwendern oder Dritten nicht gefährdet wird. (…) Eine ordnungsgemäße Aufbereitung nach Absatz 1 Satz 1 wird vermutet, wenn die gemeinsame Empfehlung der Kommission

Die Verantwortung für die Umsetzung all dieser Forderungen ist ebenfalls im §3 MPBetreibV formuliert. Hier ist festgelegt, dass der jeweilige Betreiber für die Festlegung der Art und Durchführung der Aufbereitung verantwortlich ist und nur Einrichtungen und Personen für die Aufbereitung von Medizinprodukten beauftragen darf, welche die erforderliche Sachkenntnis und räumliche Voraussetzung besitzen. Der Betreiber ist ebenfalls unter Einbeziehung der Angaben des Herstellers gesetzlich für die korrekte Einstufung der Medizinprodukte verantwortlich (Bundesministerium der Justiz und für Verbraucherschutz 1998).

Hinsichtlich des Risikos kann folgende Einteilung vorgenommen werden (Kommission für Krankenhaushygiene und Infektionsprävention 2012):

- Unkritische Medizinprodukte: Medizinprodukte, die ausschließlich mit intakter Haut in Kontakt kommen,
- Semikritische Medizinprodukte: Medizinprodukte, die mit krankhaft veränderter Haut oder Schleimhaut in Berührung kommen,
- Kritische Medizinprodukte: Medizinprodukte, welche die Haut bzw. Schleimhaut durchdringen oder zur Anwendung von Blutprodukten oder sterilen Medizinprodukten kommen.
Die semikritischen und kritischen Medizinprodukte können dann noch weiter unterteilt werden in

- Gruppe A: ohne besondere Anforderungen
- Gruppe B: mit erhöhten Anforderungen

Erhöhte Anforderungen haben diejenigen Produkte, bei denen der Reinigungserfolg nicht unmittelbar beurteilbar ist oder bei denen das Medizinprodukt durch die Aufbereitung eventuell verändert wird.

Bei den kritischen Medizinprodukten wird außerdem noch die Gruppe C (besonders hohe Anforderungen) unterschieden. In diese Gruppe fallen alle Medizinprodukte, die thermolabil sind und aufgrund dessen nicht dampfsterilisiert werden können (Kommission für Krankenhaushygiene und Infektionsprävention 2012).

1.4. Ablauf der Aufbereitung von Medizinprodukten

In der Zentralsterilisation der Universität Regensburg werden alle Schritte der Aufbereitung mit vollentsalztem Wasser durchgeführt.

1.4.1. Vorbereitung

Vorbereitung für die Aufbereitung die Entfernung von groben und sichtbaren Verschmutzungen (Arbeitskreis Instrumenten-Aufbereitung 2012).

1.4.2. Reinigung und Desinfektion

diClean“ kann „der bei klassischen, alkalischen Reinigern erforderliche Neutralisationsschritt […] entfallen“ (Chemische Fabrik Dr. Weigert GmbH & Co KG 2015), sodass eine Nachspülung mit vollentsalztem Wasser ausreicht.

1.4.3. **Spülung und Trocknung**

1.4.4. Pflege der Instrumente und Prüfung der technisch-funktionellen Sicherheit

1.4.5. Verpackung

1.4.6. Dampfsterilisation

Bei der Wahl der Sterilisationsmethode ist darauf zu achten, dass alle inneren und äußeren Oberflächen des Medizinprodukts vom Sterilisationsmittel erreicht werden können und dass eine geeignete Methode angewendet wird (Kommission für Krankenhaushygiene und Infektionsprävention 2012). Das untersuchte Sieb wurde mittels Dampfsterilisation aufbereitet. Dazu werden die Instrumente 5 Minuten lang auf mindestens 134°C bei 3000 mbar erhitzt.

Tabelle 2: Grenzwerte für Wasserverunreinigungen bei Dampfsterilisation (Arbeitskreis Instrumenten-Aufbereitung 2012)

<table>
<thead>
<tr>
<th>Substanz/Eigenschaft</th>
<th>Speseewasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdampfrückstand</td>
<td>≤ 10 mg/l</td>
</tr>
<tr>
<td>Silikate (SiO₂)</td>
<td>≤ 1 mg/l</td>
</tr>
<tr>
<td>Eisen</td>
<td>≤ 0,2 mg/l</td>
</tr>
<tr>
<td>Cadmium</td>
<td>≤ 0,005 mg/l</td>
</tr>
<tr>
<td>Blei</td>
<td>≤ 0,05 mg/l</td>
</tr>
<tr>
<td>Schwermetallrückstände außer Eisen, Kadmium, Blei</td>
<td>≤ 0,1 mg/l</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>≤ 2 mg/l</td>
</tr>
<tr>
<td>Phosphate (P₂O₅)</td>
<td>≤ 0,5 mg/l</td>
</tr>
<tr>
<td>Leitfähigkeit (bei 25 °C)*</td>
<td>≤ 5 μS/cm</td>
</tr>
<tr>
<td>pH-Wert (Grad der Acidität)</td>
<td>5 bis 7,5</td>
</tr>
<tr>
<td>Aussehen</td>
<td>farblos, klar ohne Ablagerungen</td>
</tr>
<tr>
<td>Härte Σ (der Erdalkali-Ionen)</td>
<td>≤ 0,02 mmol/l</td>
</tr>
</tbody>
</table>

Die Betriebszeit eines Dampfsterilisators setzt sich aus folgenden Zeiten zusammen (Kramer et al. 2008):

- **Anheizzeit**: Zeit, die bis zum Erhitzen auf die vorgeschriebene Temperatur nötig ist.
- **Ausgleichszeit**: alle Bereiche des Sterilguts müssen gleichmäßig die vorgeschriebene Temperatur erreichen: Dazu muss die Luft bis auf eine Toleranzmenge von 10% aus dem Raum verdrängt werden.
- **Sterilisierzeit**: vorgeschriebene Zeit, die für ein Verfahren gemäß von Normen eingehalten werden muss. Die Temperaturschwankung darf während dieser Zeit maximal +/- 1 Kelvin betragen.
- **Abkühlzeit**: Zeit bis zur Entnahme des Sterilguts aus dem Autoklaven.

In den Angaben des Herstellers Karl Storz wird eine Dampfsterilisation mit 134-137°C bei 3,1 - 3,4bar für 5 Minuten empfohlen. Außerdem wird das Verfahren des fraktionierten Vorvakuum empfohlen, da hierbei durch die mehrfache Luftentfernung (Fraktionieren) die höchste Luftpenetration erfolgt und dieses Verfahren somit die höchste Sicherheit bietet (Karl Storz GmbH & Co. KG 2013b).

Abbildung 2: Zeitlicher Druck- und Temperaturverlauf eines fraktionierten Vorvakuumverfahrens (Karl Storz GmbH & Co. KG 2013b)

In der Gebrauchsanweisung des Herstellers MicroFrance SAS werden die geeigneten Sterilisationsprogramme in folgender Tabelle dargestellt:

<table>
<thead>
<tr>
<th>Zyklus</th>
<th>Gravitationsverfahren</th>
<th>Gravitationsverfahren</th>
<th>Prä-Vakuum</th>
<th>Prä-Vakuum (FR/WHO)</th>
<th>Prä-Vakuum (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>121 °C</td>
<td>132 °C</td>
<td>132 °C</td>
<td>134 °C</td>
<td>134 °C</td>
</tr>
<tr>
<td>Uhrzeit</td>
<td>30 Minuten</td>
<td>10 Minuten</td>
<td>4 Minuten</td>
<td>18 Minuten</td>
<td>3 Minuten</td>
</tr>
</tbody>
</table>

Tabelle 3: In den Produktinformationen von MicroFrance als geeignet ausgewiesene Sterilisationsprogramme (Integra MicroFrance SAS 2015)

1.4.7. **Kennzeichnung, Freigabe und Dokumentation**

Jedes gelagerte Sterilgut muss für die Freigabe genau gekennzeichnet sein. Folgende Angaben müssen am Sterilgut erkennbar sein (Kramer et al. 2008):

- Datum der Sterilisation und Verfallsdatum,
- Inhalt des verpackten Sterilguts,
- Sterilisationsverfahren und Bezeichnung des Sterilisators/Identifikation der verpackenden Stelle,
- Name oder Identifikationsnummer des Personals,
- Chargennummer,
- Zustand des Guts (steril).

1.5. Stapedotomie

In der Arbeit wurde die Aufbereitung der Instrumente eines Stapessiebs untersucht. Die im Stapessieb enthaltenen Instrumente werden an der Universitätsklinik Regensburg für die Stapesplastik verwendet, welche im Folgenden beschrieben wird:

1.6. Ziel der Arbeit

Ziel dieser experimentellen Arbeit ist es, die Auswirkungen der Aufbereitung auf die empfindlichen Instrumente eines Stapessiebs zu evaluieren. Anhand einer Fotodokumentation soll dargestellt und überprüft werden, ob es durch die Aufbereitung der Instrumente zu Beschädigungen oder anderen Veränderungen an den untersuchten Instrumenten kommt.
Folgende Aspekte sollen im Einzelnen betrachtet werden:

- Kommt es während der Versuchsreihe zum Verlust eines oder mehrerer Instrumente des Siebs?
- Werden bei den einzelnen Aufbereitungsdurchgängen die Schutzkappen entsprechend aufgesetzt?
- Sind mit bloßem Auge oder unter dem Mikroskop bei bis zu 80-facher Vergrößerung Verschmutzungen zu sehen?
- Sind alle Instrumente trocken?
- Verändert sich die Geometrie der Instrumentenkanten und –spitzen während des Experiments?
- Sind auf der Instrumentenoberfläche Flecken oder andere organische Rückstände oder Rückstände von Prozesschemikalien vorhanden und verbleiben diese dauerhaft auf der Oberfläche?
- Bekommen die Instrumente durch den Aufbereitungsprozess Kratzer auf der Instrumentenoberfläche?
- Kommt es zu Veränderungen in der Geometrie der Instrumentenschäfte?
- Sind Anzeichen von Korrosion erkennbar?

In der vorliegenden Arbeit soll nun mittels einer Fotodokumentation dargestellt werden, ob und welche Veränderungen an den Instrumenten zu sehen sind, wenn sie wie üblich in der normalen Routine einer Zentralsterilisation aufbereitet werden. Hierbei ist zu beachten, dass die Instrumente zu Beginn der Studie neu und unbe- nutzt waren und zwischen den 30 Sterilisations-Zyklen nicht benutzt wurden. Außer der Sterilisation waren die Instrumente also keiner Belastung ausgesetzt. Dieses
Test-Stapessieb wurde nicht gesondert markiert und erhielt deshalb keine besondere Behandlung.

2. Material und Methodik

2.1. Versuchsanordnung

Nach der Dokumentation des Anfangszustandes des Stapessiebs wurde das Sieb insgesamt 30mal einem Sterilisationsdurchgang unterzogen und nach jedem Durchgang wieder dokumentiert. Um möglichst realistische Bedingungen zu schaffen und um zu gewährleisten, dass das untersuchte Sieb bei der Sterilisation durch die Mitarbeiter genauso behandelt wird wie üblich, wurde das Instrumentarium vor der Abgabe im Abwurfsieb mit gebrauchten Tupfern aus dem OP beschmutzt. Dabei wurde darauf geachtet, dass mit allen Instrumenten sehr sorgfältig umgegangen wurde und die Instrumente bei keinem der Schritte mechanisch belastet wurden. Um eine Beschmutzung während der Untersuchung möglichst auszuschließen, wurden während der Dokumentation Latexhandschuhe getragen.

Abbildung 3: Versuchsanordnung im Labor. Mit dem Mikroskop Wild M10 mit PLANAPO 1.0x Objektiv der Firma Leica und der daran angeschlossenen digitalen Spiegelreflexkamera EOS 60D von Canon wurde die Fotodokumentation durchgeführt.

2.1.1. Beschreibung der getesteten Medizinprodukte

Moderne chirurgische Instrumente müssen aus Materialien bestehen, die hohen Qualitätsansprüchen entsprechen. Um alle Aufgaben des Einsatzgebietes zu erfüllen, muss ein korrosionsstabiles Material verwendet werden, das eine hohe Elastizität und Festigkeit besitzt, mechanisch stabil und verschleißbeständig ist, über eine gute Biokompatibilität verfügt und ein gutes Schneidverhalten besitzt. Die Korrosi-

Auf eine schriftliche Anfrage per e-mail am 08.09.2014 beim Hersteller Karl Storz bezüglich der verwendeten Materialien und der Herstellung der in dieser Arbeit untersuchten Instrumente wurde darauf hingewiesen, dass „Produktinformationen zu den Materialien unserer Instrumente (…) nicht rausgegeben“ werden können. Die Firma MicroFrance wollte ebenfalls auf telefonische Nachfrage hin keine Informationen zu den Materialien der untersuchten Instrumente geben.

Bei der Aufbereitung der Instrumente ist ein äußerst vorsichtiger Umgang bei der Reinigung und Pflege sehr wichtig, da es ansonsten sehr leicht zu Beschädigungen der feinen Spitzen und Häkchen kommt. Die Prüfung sollte mit geeigneten Vergrößerungshilfen stattfinden. Es ist darauf zu achten, dass Scheren und Zängchen exakt schließen und die Scharniere leichtgängig sind. Spitze Instrumente wie beispielswei-
se Perforatoren müssen spitz sein und es dürfen keine Instrumente verbogen sein. Die Saugrohre müssen sorgfältig gespült und getrocknet werden und auf Beschädigungen untersucht werden. Reinigungsmandrins dürfen nur vom Ansatz her vorsichtig in das Saugrohr eingeführt werden (Reiss and Reiss 2008).

Im Folgenden wird eine Übersicht über alle im Stapessieb des Universitätsklinikums Regensburg vorhandenen Instrumente gegeben. Bis auf zwei Instrumente kommen alle Instrumente vom Hersteller Karl Storz. Nur die beiden Instrumente MC025H und MC0656 werden vom französischen Hersteller MicroFrance hergestellt, der Vertrieb findet hier durch die Firma Integra statt.

- 222710: Scherchen n. FISCH (Instrumentennummer 222710) vom Hersteller Karl Storz, zur Crurotomie, rechts gebogen, Nutzlänge 7,5cm

![Image of Scherchen n. FISCH (Instrumentennummer 222710)]

- Scherchen n. FISCH (Instrumentennummer 222720) vom Hersteller Karl Storz, zur Crurotomie, links gebogen, Nutzlänge 7,5cm

![Image of Scherchen n. FISCH (Instrumentennummer 222720)]

Die Scherchen nach Fisch werden bei der Stapedotomie zur Durchtrennung der Steigbügelschenkel verwendet.
- Scherchen nach BELUCCI (Instrumentennummer 222600) vom Hersteller Karl Storz, zartes Standardmodell, Schnittlänge 8mm, Nutzlänge 8cm

Das Scherchen nach Belucci dient der Durchtrennung der Stapessehne bei der Entfernung des Stapesoberbaus.

- Ohrzängchen nach FISCH (Instrumentennummer 221200) vom Hersteller Karl Storz, extra zart, gerieft, 1x4,5mm. Nutzlänge 8cm
- Ohrzängchen nach FISCH (Instrumentennummer 221111) vom Hersteller Karl Storz, extra zart, glatt, 4x3,5mm, Nutzlänge 8cm

Mit den Ohrzängchen nach Fisch wird bei der Stapedotomie beispielsweise die Titanprothese gegriffen.

- Drahtschließ – Zängchen n. Fisch-McGee (Instrumentennummer 227401) vom Hersteller Karl Storz, gerade, Nutzlänge 8cm
- Drahtschließ – Zängchen nach McGee (Instrumentennummer 227400) vom Hersteller Karl Storz, gerade, Nutzlänge 8cm

Um den Loop der Prothese zu crimplen, werden die Drahtschließzängchen benötigt (Strutz and Mann 2009)

- Huttenbrink Metallic Piston Closing Forceps (Instrumentennummer MC025H) vom Hersteller MicroFrance, Arbeitslänge 70mm (Medtronic USA 2012)
Mit der bogenförmigen Spitze des Instruments kann der Loop der Stapesprothese geschlossen werden. Eine Besonderheit des Instruments ist die Haltefeder am Griff, welche einen passiven Öffnungsmechanismus ermöglicht.

- Perforator n. FISCH (Instrumentennummer 226600) vom Hersteller Karl Storz, Durchm.: 0,3mm, Länge 16cm

- Perforator n. FISCH (Instrumentennummer 226604) vom Hersteller Karl Storz, Durchm.: 0,4mm, Länge 16cm
- Perforator n. FISCH (Instrumentennummer 226605) vom Hersteller Karl Storz, Durchm.: 0,5mm, Länge 16cm,

- Perforator n. FISCH (Instrumentennummer 226606) vom Hersteller Karl Storz, Durchm.: 0,6mm, Länge 16cm
- Perforator n. FISCH (Instrumentennummer 226607) vom Hersteller Karl Storz, Durchm.: 0,7mm, Länge 16cm

Die Perforatoren dienen der Eröffnung und Erweiterung der Stapedotomie, um eine Öffnung für die Prothese zum Vestibulum zu schaffen (Strutz and Mann 2009). Dabei wird mit dem Perforator mit dem geringsten Durchmesser angefangen und dann mit aufsteigendem Durchmesser weiter eröffnet.

- Fußplattenhäkchen (Instrumentennummer 224802) vom Hersteller Karl Storz, 0,2mm, Länge 16cm
- Hákchen (Instrumentennummer 225205) vom Hersteller Karl Storz, 90°, Größe 0,5mm, Länge 16cm

- Incudostapedial Joint Knife (Instrumentennummer MC0656) vom Hersteller MicroFrance, Länge 165mm, Arbeitslänge 60mm (Medtronic USA 2012)

Mit diesem Instrument wird häufig die ovale Nische von Schleimhaut befreit, wofür häufig das 45°-Hákchen verwendet wird. Außerdem kann das kleine Gelenk zwi-
schen Amboss und Steigbügel mit dem 45°-Häkchen gelöst werden. Auch die Durchtrennung der Stapesschenkel kann mit diesem Instrument erfolgen (Strutz and Mann 2009).

- Drahtschere n. GUILTFORD-WRIGHT (Instrumentennummer 227600) vom Hersteller Karl Storz, gezahnt, Länge 10 cm

- Messzyliner n. Fisch (Instrumentennummer 226504) vom Hersteller Karl Storz, Durchm. 0,4 mm, Markierung bei 10 mm, Länge 16 cm.

Leider war es beim Messzyliner n. Fisch zu Beginn der Versuchsreihe aufgrund unbekannter Lieferzeiten beim Hersteller nicht möglich, ein fabrikneues Instrument zu bekommen. Deshalb wurde in diesem Fall ein gebrauchtes Instrument verwendet.
- Längen-Messinstrument n. Fisch (Instrumentennummer 226500) vom Hersteller Karl Storz (Markierung bei 3,4 und 5mm, Länge 16cm)

Um die richtige Größe der Stapesprothese auszuwählen, wird mit dem Messinstrument der Abstand zwischen langem Ambosschenkel und der Stapesfußplatte ausgemessen (Strutz and Mann 2009)

- Sauggriff n. Fisch (Instrumentennummer 204200) vom Hersteller Karl Storz, mit Unterbrecherloch, LUER-Konus, Länge 5,5cm, zur Verwendung mit Saugrohren
- Saugrohr (Instrumentennummer 204305) vom Hersteller Karl Storz, gerade, Luer-Lock, biegsam, außen Durchm. 0,5mm, Länge 10cm). Im Saugrohr ist ein dünnes Drähtchen vorhanden, das der Reinigung des Saugrohrs dient.

Die Sauginstrumente dienen der Absaugung von Gewebsflüssigkeit während der Operation. Allerdings darf nach der Perforation der Fußplatte nicht mehr in direkter Umgebung des Stapes abgesaugt werden, um das Absaugen von Perilymphe zu verhindern. (Strutz and Mann 2009)

- Uhrmacher-Pinzette (Instrumentennummer 214500) vom Hersteller Karl Storz, fein, spitz, Länge 11cm
Die Pinzette wird zur Entfernung von Bindegewebe und Fett verwendet, mit dem das Vestibulum am Ende der Operation verschlossen wird.

2.1.2. Beleuchtung

Um eine gleichmäßige Beleuchtung aller Instrumente und Schneideflächen zu erlangen, wurde ein selbst gebauter Beleuchtungsring mit um das Mikroskopobjektiv angeordneten LEDs angeschlossen. Um das optimale Ergebnis zu erzielen, wurden zwei verschiedene Beleuchtungsringe ausgetestet. Bei dem ersten Ring wurden dabei 16 LEDs an einem Plexiglasring (Außendurchmesser 98mm, Innendurchmesser 66mm) verbaut, die in vier Segmenten ein- bzw. ausgeschaltet werden konnten. Allerdings stellte die segmentweise Beleuchtung von unterschiedlichen Seiten aus keinen nennenswerten Vorteil dar. Deswegen wurde ein zweiter Ring mit 34 LEDs ohne segmentierte Schaltung gebaut. Durch diesen Ring wurde eine gleichmäßige Auflichtbeleuchtung sichergestellt, mit der eine bestmögliche Dokumentation eventueller Beschädigungen und Oberflächenveränderungen möglich war.

Bei den LEDs fiel die Auswahl auf weiße LEDs mit einem Gehäusedurchmesser von 5mm, einem Abstrahlwinkel von 15° und einer sehr hohen Lichtstärke von 30000 mcd (Firma Conrad, Teilenummer LED-5-30000W). Die passenden Plexiglasringe wurden durch das Unternehmen AcrylFormen–Peer Bartel individuell nach unseren Maßangaben zugeschnitten.
Abbildung 5: Beleuchtungsring mit 32 LEDs, um eine gleichmäßige Auflichtbeleuchtung zu ermöglichen.

2.1.3. Kameraeinstellung

Alle Bilder wurden mit der Spiegelreflexkamera EOS 60D von Canon aufgenommen. Die Kamera ist aufgrund ihres geringen Gewichts, dem C-MOS Sensor mit 18 Megapixeln, einer Lichtempfindlichkeit zwischen ISO 100 bis ISO 6.400 gut für Aufnahmen für die Mikroskopie geeignet und kann über den passenden LM Digital Adapter der Firma MICRO TECH LAB (Graz, Österreich) an das Mikroskop angeschlossen werden (Micro Tech Lab 2013). Die Kameraeinstellungen wurden, wie folgt, gewählt:

ISO-Wert:
EOS Utility gesteuert, um das Verwackeln beim Drücken des Auslösers zu vermei-
den.
Belichtungskorrektur:
Durch das Verstellen der Belichtungskorrektur wird ein Bild heller oder dunkler (Esen
2011). Dieser Wert wurde bei jedem Bild individuell eingestellt, um ein bestmöglichstes
Ergebnis zu erzielen.
Auflösung und Dateiformat:
Alle Bilder wurden bei der höchstmöglichen Auflösung von 5184x3456 Pixel aufge-
genommen und es erfolgte eine Speicherung als JPEG-Bilder mit der höchsten Bildauf-
nahmequalität „fein“.
Weitere Kamereaeinstellungen:
Der Kontrast wurde bei allen Bildern höchstmöglich eingestellt. Die Farbskalen und
die Schärfe wurden jeweils beim voreingestellten Nullwert belassen.

2.1.4. Digitale Bildbearbeitung

Alle fotografierten Instrumente besitzen eine gewisse Tiefenausdehnung. Bei der Fotografiie des Objekts wird aber jeweils nur ein ebener Schnitt durch das Objekt
scharf auf dem CCD-Chip abgebildet. Alle Punkte, die vor oder hinter der Ebene lie-
gen, werden somit auch vor oder hinter der Ebene scharf abgebildet und erscheinen
deshalb auf dem Foto als unscharfe Zerstreuungskreise. Da der Abstand der Sehzel-
len auf der Netzhautmitte ca. 5µm beträgt, werden alle Zerstreuungskreise mit einem
Durchmesser ≤ 5µm vom menschlichen Auge als scharfe Punkte wahrgenommen. Alle
Zerstreuungskreise mit einem größeren Durchmesser erscheinen unscharf
(Ettemeyer 2008).
Um nun das gesamte Objekt mit einem einzigen Bild scharf abbilden zu können,
wurde bei sehr vielen Bildern die Methode des Stackings („Stapeln“) verwendet.
Beim Stacking werden von einem Objekt bei der gleichen Vergrößerung mehrere
Bilder gemacht, bei denen jeweils eine Schicht des Objekts scharf dargestellt ist. Je höher die Vergrößerung, desto mehr Bilder mussten gemacht werden, um das ge-
samte Objekt scharf abzubilden. In der Versuchsreihe konnten die meisten Objekte
bei 8-10-facher Vergrößerung mit nur einer Aufnahme scharf dargestellt werden. Bei
20-40-facher Vergrößerung waren durchschnittlich 3-4 Bilder notwendig; bei den

Unten stehende Bildreihe veranschaulicht den Prozess des Stackings am Beispiel der Bilder des Perforators 226604 bei 63–facher Vergrößerung:
Abbildung 6: Einzelaufnahmen des Perforators 226604 bei 63-facher Vergrößerung nach dem dreißigsten Aufbereitungsvorgang. Um alle Ebenen des Instruments scharf abbilden zu können, mussten sieben Einzelaufnahmen gemacht werden, die jeweils eine andere Ebene scharf darstellen. Nachem die Auflösung reduziert wurde, wurden die Bilder zu einem sogenannten

Abbildung 7: Mit Hilfe des Stackings aus den oben gezeigten Einzelaufnahmen errechnetes Gesamtbild des Perforators 226604.

2.1.5. Auswertung der Fotodokumentation

Für die Auswertung und zur Bewertung der Ergebnisse wurden die Instrumente in Gruppen entsprechend der Geometrie und dem Aufbau des Instruments eingeteilt:

- Perforatoren
- Scherchen und Zängchen
- Häkchen
- Messinstrumente und Saugrohr
- Drahtschere nach Guiltfort-Wright, Uhrmacher-Pinzette und Sauggriff
Alle Instrumente wurden nach jedem Durchgang hinsichtlich folgender Punkte beurteilt:

- Vollständigkeit der Instrumente,
- Vollständigkeit der Schutzhülsen,
- Mikroskopische Sichtkontrolle auf Sauberkeit,
- Mikroskopische Sichtkontrolle auf Feuchtigkeit,
- Flecken auf der Instrumentenoberfläche,
- Kratzer auf der Instrumentenoberfläche,
- Geometrie der Instrumentenkanten und –spitzen,
- Geometrie der Instrumentenschäfte.

2.2. Mögliche Beschädigungen, Alterungen und Oberflächenveränderungen durch Aufbereitungsprozesse

Ausgehend von chemischen, thermischen und physikalischen Einflüssen treten bei Medizinprodukten im Laufe der Zeit Oberflächenveränderungen, Beläge, Korrosionen, Alterung, Quellung oder Spannungsrisse auf. Die Ursachen für diesen Verschleiß liegen entweder im Gebrauch oder aber in der Aufbereitung. Um die Produktqualität auf Dauer sicher gewährleisten zu können, müssen die Ursachen von beobachteten Oberflächenveränderungen analysiert und falls möglich beseitigt werden (Reiss and Reiss 2008).

2.2.1. Oberflächenveränderungen - Beläge

2.2.1.1. Organische Rückstände (Arbeitskreis Instrumenten-Aufbereitung 2011b)

- Ursachen: Nach Operationen bleiben oft Rückstände von verwendeten Lösungen, Blut oder Geweben übrig. Wenn diese Rückstände nicht ausreichend durch entsprechende Reinigung mit geeigneten Reinigungslösungen entfernt werden oder die enthaltenen Proteine beispielsweise durch zu hohe Wassertemperaturen oder aldehydhaltige
Desinfektionsmittel fixiert werden, bleiben organische Rückstände auf dem Aufbereitungsgut zurück.

- **Beseitigung:** Zur Entfernung der Rückstände können die betroffenen Instrumente entweder für ca. 5 Minuten in eine 3%ige H₂O₂ Lösung eingelegt werden oder manuell bzw. mit Ultraschall nachgereinigt werden.

- **Maßnahmen zur Vermeidung:** Um organische Rückstände in Zukunft zu vermeiden, muss das OP-Personal darauf hingewiesen werden, dass grobe Verschmutzungen am Instrumentarium sofort beseitigt werden müssen. Der Zeitraum bis zur Aufbereitung sollte eine Dauer von 6h nicht überschreiten, um eine Antrocknung zu verhindern. Die Fixierung von Proteinen wird am besten vermieden, wenn die Instrumente zuerst mit kaltem Wasser vorgespült werden und keine alkohol- oder aldehydhaltigen Reinigungsmittel verwendet werden.

- **Risiken:** Die Rückstände bergen zum einen ein Infektionsrisiko für Patienten, zum anderen führen die enthaltenen Halogenide auch bei nichtrostendem Stahl zu Korrosion.

2.2.1.2. Rückstände von Prozesschemikalien (Arbeitskreis Instrumenten-Aufbereitung 2012)

- **Ursachen:** Wenn die Schluss- und Zwischenspülungen nicht gründlich genug durchgeführt werden, können Überreste von Prozesschemikalien bleiben. Diese können sich als hell- bis dunkelgraue fleckige Beläge zeigen.

- **Beseitigung:** Die Entfernung der Beläge kann entweder mit entsprechenden Spezialreinigern vom Hersteller oder mit einem fusselfreien Reinigungstuch erfolgen.

- **Maßnahmen zur Vermeidung:** Die Spülungen müssen mit geeignetem vollentsalztem Wasser in ausreichendem Umfang durchgeführt werden.

- **Risiken:** Falls bestimmte Grenzwerte an Rückständen überschritten werden, kann ein Risiko für einen Patienten nicht ausgeschlossen werden.
2.2.1.3. Wasserflecken (Arbeitskreis Instrumenten-Aufbereitung 2011a)

- Ursachen: Der Kalkgehalt des Reinigungswassers ist zu hoch. Dies äußert sich in grauen oder milchig weißen Flecken, die scharf begrenzt sind.
- Beseitigung: Die Entfernung der Beläge kann entweder mit entsprechenden Spezialreinigern vom Hersteller oder mit einem fusselfreien Reinigungstuch erfolgen.
- Maßnahmen zur Vermeidung: Die Spülungen müssen mit geeignetem enthärteten und vollentsalztem Wasser in ausreichendem Umfang durchgeführt werden.
- Risiken: Kalkflecken führen weder zu hygienischen Risiken für Patienten noch zu Korrosion. Sie sind damit vor allem ein kosmetisches Problem, können aber die visuelle Kontrolle der Instrumente deutlich erschweren.

2.2.1.4. Silikate (Arbeitskreis Instrumenten-Aufbereitung 2011c, 2012)

- Ursachen: Für die Herstellung von vollentsalztem Wasser werden meist Umkehrosmose–Wasseraufbereitungsanlagen oder Ionenaustauscher verwendet. Dabei kann Kieselsäure ins Spülwasser verschleppt werden. Eine andere Möglichkeit ist, dass bei unzureichenden Zwischen-
spülungen silikathaltige Rückstände von Reinigern bis in den letzten Spülgang verschleppt werden. Die silikathaltigen Rückstände erscheinen als gelbe bis blauviolette, teils schillernde Flecken.

- Beseitigung: Die Entfernung der Beläge kann mit entsprechenden Spezialreinigern vom Hersteller erfolgen.
- Maßnahmen zur Vermeidung: Die Schlussspülung muss mit geeignetem kieselsäurefreiem, vollentsalztem Wasser erfolgen.
- Risiken: Silikate führen weder zu hygienischen Risiken für Patienten noch zu Korrosion. Sie sind damit vor allem ein kosmetisches Problem, können aber die visuelle Kontrolle der Instrumente deutlich erschweren.

2.2.1.5. Verfärbung durch Oxidation (Arbeitskreis Instrumenten-Aufbereitung 2011d)

- Ursachen: Passivschichtbildende Faktoren, wie beispielsweise verschleppte Neutralisatoren, können zur Bildung einer Chromoxidpassivschicht führen, welche je nach Zusammensetzung transparent bis grauschwarz erscheint.
- Beseitigung: Die Chromoxidschicht erhöht die Korrosionsbeständigkeit der Instrumente. Deshalb ist eine Beseitigung nicht nötig und wird auch nicht empfohlen.
- Risiken: Oxidschichten sind ein kosmetisches Problem, welches allerdings die visuelle Kontrolle erschweren kann. Ein Hygienerisiko für den Patienten besteht nicht.

2.2.2. Korrosion

2.2.2.1. Lochkorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011f)

- Ursachen: Die schützende Chromoxidpassivschicht kann durch Halogenide (insbesondere Chloride) durchdrungen werden. Die Quelle für Halogenide liegt entweder in organischen Rückständen, wie Blut oder Gewebe oder in chlorhaltigen Flüssigkeiten.
- Beseitigung: Instrumente, die mit Halogeniden in Kontakt gekommen sind, müssen möglichst schnell gereinigt werden. Saure Spezialreiniger
des Herstellers können bereits vorhandene Korrosionsprodukte beseiti-
gen. Die bereits vorhandenen Beschädigungen können aber nur noch
durch Reparatur vom Hersteller beseitigt werden.

- Maßnahmen zur Vermeidung: Das verwendete Wasser muss soweit
wie möglich keine Chloride oder andere Halogenide enthalten.

- Risiken: Die Löcher in den Instrumenten stellen als Schlupfloch für Bak-
terien ein Hygienerisiko für Patienten dar. Stark beschädigte Instrumen-
te müssen ausgetauscht werden; der Wertverfall der Instrumente ist
durch die Lochkorrosion immens hoch.

2.2.2.2. Reibkorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011g)

- Ursachen: Wenn zwei Metallflächen beispielsweise von Scharnieren di-
rekt übereinander reiben, bildet sich feinster metallischer Abrieb, durch
den auch die schützende Chromoxidpassivschiicht verloren geht. Durch
diese mechanische Zerstörung entsteht in Zusammenspiel mit Wasser
Rost in Fugen und Gelenkspalten.

- Beseitigung: Geringe Schäden können abgeschliffen und professionell
repariert werden.

- Maßnahmen zur Vermeidung: Instrumente müssen vor der Pflege ab-
kühlen. Außerdem sollten geeignete paraffinhaltige Schmiermittel ver-
wendet werden, welche direkt in die Gelenke eingebracht werden müs-

- Risiken: Durch die Reibkorrosion werden Instrumente schwergängig
und letztlich unbrauchbar.

2.2.2.3. Spannungskorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011k)

- Ursachen: Spannungskorrosion entsteht, wenn stark beanspruchte In-
strumente bei überhöhter Temperatur oder mit korrosionsauslösenden
Mitteln behandelt werden. Besonders an konstruktionstechnisch be-
dingt instabilen oder mechanisch instabilen Stellen tritt die Spannungs-
korrosion auf. Das Längen-Messinstrument nach Fisch weist beispiels-
weise an den Verbindungsstellen der einzelnen Messzylinder eine konstruktionsbedingt Schwachstelle auf.

- Beseitigung: Eine Reparatur ist nicht möglich.

2.2.2.4. Flächenkorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011e)

- Ursachen: Bei Instrumenten aus nichtrostendem Stahl (NR-Stahl; Chromgehalt mind. 12%) kommt es entweder durch zu langen Einfluss von Feuchtigkeit oder durch chemische Einflüsse aufgrund von zu hohem Säuregehalt zu Rostbildung. Bei Instrumenten aus NR-Stahl äußert sich dies durch eine mattgraue und gleichmäßige Oberflächenscheinung.
- Beseitigung: die Flächenkorrosion kann bei NR-Instrumenten entweder durch mechanische Aufarbeitung oder durch Reinigung mit sauren Reinigern erfolgen.
- Maßnahmen zur Vermeidung: Der längere Einfluss von Feuchtigkeit und die Verwendung ungeeigneter Reiniger mit zu niedrigem pH-Wert muss vermieden werden.

2.2.2.5. Flug und Fremdrost (Arbeitskreis Instrumenten-Aufbereitung 2011h)

- Ursachen: Die Rostpartikel kommen nicht direkt von dem Instrument, sondern haben ihren Ursprung im Leitungssystem, in eisenhaltigem Wasser oder in korrosionsinstabilen Einmalartikeln.
- Beseitigung: Wenn das Auftreten nur oberflächlich ist, kann eine Entfernung durch Grundreiniger mit niedrigem pH-Wert erfolgen.
- Maßnahmen zur Vermeidung: Das Sterilisationssystem muss so konstruiert sein, dass keine Rostpartikel durch die Leitungen gelangen können. Außerdem dürfen keine Einmalartikel aufbereitet werden.
o Risiken: Durch die Einwirkung vom Fremdrost können ganze Siebe Folgeschäden erleiden. Dadurch kann ein enormer finanzieller Schaden entstehen.

2.2.2.6. Spaltkorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011j)

- Ursachen: Vor allem durch unzureichende Trocknung in Gelenkspalten kann die Passivschicht angegriffen werden. Der Schutz des Instruments ist damit nicht mehr gewährleistet und es bildet sich Rost.
- Beseitigung: Die beschädigten Instrumente müssen mechanisch aufbereitet werden.
- Risiken: Bei starkem Befall können Folgeschäden an anderen Instrumenten entstehen.

2.2.2.7. Kontaktkorrosion (Arbeitskreis Instrumenten-Aufbereitung 2011i)

- Beseitigung: Eine schützende Passivschicht kann durch entsprechende Neutralisationsmittel oft wieder hergestellt werden.
- Maßnahmen zur Vermeidung: Instrumente, bei denen sich die Schutzschicht abgelöst hat, müssen ausgesondert werden.

2.2.3. Mechanische Beschädigungen

Durch fehlende Sorgfalt bei der Aufbereitung kann es zu Beschädigungen kommen. Auch beim Transport können empfindliche mikrochirurgische Instrumente Schäden davontragen, wenn sie nicht durch entsprechende Schutzhülsen und in geeigneten
Racks oder Behältern mit Silikonoppennaflagen geschützt transportiert werden. (Arbeitskreis Instrumenten-Aufbereitung 2012)

3. Ergebnisse

Für die Auswertung der Versuchsreihe wurden nach jedem Durchgang zunächst ohne Vergrößerungshilfen das Sieb und die einzelnen Instrumente auf augenfällige Veränderungen begutachtet. Außerdem wurde das Stapessieb auf Vollständigkeit der Instrumente und Schutzhülsen überprüft. Anschließend wurden alle Instrumente unter dem Mikroskop zwischen 8–80 facher Vergrößerung hinsichtlich folgender Punkte beurteilt:

- Sichtkontrolle auf Sauberkeit und Flecken durch organische Rückstände oder Rückstände von Prozesschemikalien
- Vorhandensein von entsprechenden Schutzhülsen auf den Instrumenten
- Sichtkontrolle auf Reste von Flüssigkeiten oder Feuchtigkeit
- Anzeichen von Korrosion
- Kratzer auf der Instrumentenoberfläche
- Zustand der Gelenkflächen (falls vorhanden)
- Zustand der Instrumentenkanten, -spitzen und -schäfte

Nach einer ersten zusammenfassenden allgemeinen Analyse wurden die insgesamt 22 Instrumente nach entsprechenden Gemeinsamkeiten in ihrem Aufbau und ihrer Geometrie eingeteilt. Daraus ergaben sich fünf verschiedene Gruppen:

- Perforatoren (Instrumentennummern 226600, 226604, 226605, 226606, 226607)
- Scherchen und Zängchen (Instrumentennummern 222710, 222720, 222600, 221200, 221111, MC025H, 227401, 227400)
- Härchen (Instrumentennummern 224802, 225205, MC0656)
- Messinstrumente und Saugrohr (Instrumentennummern 226500, 204305, 226504)
3.1. Allgemeine Analyse

Um die feinen Spitzen der mikrochirurgischen Instrumente während des Transports und der Sterilisation zu schützen, sind entsprechende Schutzhülsen aus Metall oder Kunststoff vorgesehen, die über die Instrumentenschäfte gezogen werden und die Instrumente somit vor mechanischen Schäden schützen. In insgesamt 41 Fällen war diese Schutzhülse auf einem der Instrumente entweder nicht aufgesteckt und lose im Sieb vorhanden oder fehlte komplett. Dies entspricht einer Vorkommenshäufigkeit von 7%. Die festgestellten Fälle verteilen sich auf 24 der 30 Durchgänge und zeigten keine auffällige Verteilung innerhalb der Durchgänge.

Um Verschmutzungen und Manipulationen durch die Dokumentation möglichst zu verhindern, wurden die Instrumente nur mit Latex-Einmalhandschuhen angefasst. In insgesamt 52 Fällen konnten bei der mikroskopischen Sichtkontrolle Verschmutzungen an den Instrumentenspitzen erkannt werden, wobei hier besonders häufig die Gruppe der Scherchen und Zängchen betroffen war (21 von 52 Fällen). Insgesamt kam es zu einer Häufigkeit von Verschmutzungen von 8,1%. Auffällig ist die unregelmäßige Verteilung der Fälle: bei 14 von 30 Durchgängen wurden keine Auffällig-
keiten gefunden, d.h. alle 52 Fälle verteilen sich auf die übrigen 16 Aufbereitungszyklen.

![Diagramm 1: Verteilung der verschmutzten Instrumente innerhalb der Versuchsreihe](image)

Wie das unten stehende Diagramm zeigt, konnten keine Auffälligkeiten in der zeitlichen Verteilung der Durchgänge mit Verschmutzungen gefunden werden.
Diagramm 2: Zeitliche Verteilung der Durchgänge mit verschmutzten Instrumenten innerhalb der Versuchsreihe

3.2. Perforatoren

Während der dreißig Aufbereitungszyklen ging keiner der Perforatoren (Instrumentennummern 226607, 226606, 226605, 226604, 226600) verloren.

Schutzhülsen:
Bei der Kontrolle bezüglich der Vollständigkeit der Schutzhülsen fiel auf, dass in einigen Fällen die Instrumente ohne die vorgesehenen Schutzhüllen zurückkamen. Dabei waren die Schutzhülsen entweder gar nicht im Sieb vorhanden, oder aber zum Zeitpunkt des Öffnens nicht mehr aufgesteckt. Die Auswertung ergab, dass bei der Gruppe der Perforatoren die Schutzhülsen insgesamt in 17 Fällen nicht aufgesteckt waren. Bei fünf Instrumenten mit jeweils 30 Aufbereitungszyklen ergibt dies zusammenfassend, dass in gut 11% der Fälle die Schutzhülsen fehlten.

<table>
<thead>
<tr>
<th>Perforator</th>
<th>Aufbereitungszyklus mit fehlender Schutzkappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>226600</td>
<td>4, 8, 18</td>
</tr>
<tr>
<td>226604</td>
<td>5, 7, 25</td>
</tr>
<tr>
<td>226605</td>
<td>3, 12, 29</td>
</tr>
<tr>
<td>226606</td>
<td>3, 5, 9, 19</td>
</tr>
<tr>
<td>226607</td>
<td>2, 9, 14, 22</td>
</tr>
</tbody>
</table>

Tabelle 4: Übersicht über Durchgänge mit fehlenden Schutzhüllen in der Instrumentengruppe der Perforatoren

Verschmutzung:
Mit bloßem Auge waren auf den Instrumenten keine Verunreinigungen zu erkennen. Bei mikroskopischer Sichtkontrolle unter 20x - 80x Vergrößerung fielen aber mehrmals Restverschmutzungen auf. Die Auswertung ergab, dass in 13 Fällen eine Verschmutzung erkennbar war. Über die Zusammensetzung und Herkunft der Verschmutzung kann aufgrund der alleinigen Sichtkontrolle und der sehr geringen Menge des Materials keine sichere Aussage getroffen werden.
<table>
<thead>
<tr>
<th>Instrumentennummer</th>
<th>Durchgänge mit dokumentierter Verschmutzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>226600</td>
<td>3, 15, 17, 22</td>
</tr>
<tr>
<td>226604</td>
<td>3</td>
</tr>
<tr>
<td>226605</td>
<td>15, 20</td>
</tr>
<tr>
<td>226606</td>
<td>9, 15, 18, 30</td>
</tr>
<tr>
<td>226607</td>
<td>2, 9</td>
</tr>
</tbody>
</table>

Tabelle 5: Übersicht über die Durchgänge mit dokumentierten Verschmutzungen in der Instrumentengruppe der Perforatoren

Abbildung 10: Perforator (226605) bei 63-facher Vergrößerung mit erkennbarem Feuchtigkeits-
tropfen an der Instrumentenspitze nach dem 24sten Aufbereitungszyklus

Oberflächenveränderungen und Kratzer

Die Oberflächenveränderungen an der Instrumentenspitze wurden am Anfang und immer nach jeweils zehn weiteren durchlaufenen Aufbereitungszyklen beschrieben. Insgesamt konnte man feststellen, dass alle Perforatoren während der Aufbereitungszyklen Kratzer und Abnutzungsspuren bekommen haben. Bei allen Perforatoren waren bereits im fabrikneuen Zustand kleine, oberflächliche Verkratzungen zu erkennen.
Abbildung 12: Oberflächliche Verkratzungen an der Instrumentenspitze am Perforator 226607 am fabrikneuen Instrument.

Auch auf Abbildung 30 sind kleine Beschädigungen an der Instrumentenspitze des fabrikneuen Perforators 226600 zu sehen.

Abbildung 14: Perforator 226604 nach dem 20sten Durchgang bei 63-facher Vergrößerung: im Vergleich zum 10ten Durchgang blieb der Zustand weitgehend konstant.

Abbildung 16: Perforator 226605 nach dem 10ten Aufbereitungszyklus bei 63-facher Vergrößerung: auf der Instrumentenoberfläche sind mehrere kurze Kratzer zu sehen.

Abbildung 17: Perforator 226605 nach dem 20ten Durchgang: Beschädigungen auf der Instrumentenspitze sind aufgrund der Verunreinigung nicht zu beurteilen.

Der Perforator 226606 zeigte nach dem 10ten Durchgang nur sehr wenige, oberflächliche Kratzer. Nach dem 20sten Durchgang konnte beobachtet werden, dass die Oberfläche der Instrumentenspitze großflächig bis zu 400µm langen Kratzern aufwies. In den darauf folgenden zehn Aufbereitungszyklen verschlechterte sich dieser Zustand noch weiter.
Abbildung 19: Perforator 226606 nach dem 10ten Aufbereitungszyklus bei 40-facher Vergrößerung: auf der Instrumentenoberfläche sind nur sehr wenige, oberflächliche Kratzer zu sehen.

Kanten und Spitzen

Bei Betrachtung der Kanten der Perforatorspitzen konnten vor Beginn der Aufbereitungszyklen keine Schäden oder Abnutzungen erkannt werden. Alle Kanten erschienen scharf und klar. Im Verlauf wurde festgestellt, dass alle Kanten nur durch den Aufbereitungsprozess abgenutzt wurden und abstumpften.

| Durchgang/Instrumen-
<table>
<thead>
<tr>
<th>tenummer</th>
<th>226600 \varnothing 0,3mm</th>
<th>226604 \varnothing 0,4mm</th>
<th>226605 \varnothing 0,5mm</th>
<th>226606 \varnothing 0,6mm</th>
<th>226607 \varnothing 0,7mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>0</td>
<td>16</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>13</td>
<td>58</td>
<td>148</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>16</td>
<td>58</td>
<td>154</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>80</td>
<td>59</td>
<td>168</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>75</td>
<td>60</td>
<td>169</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>76</td>
<td>190</td>
<td>59</td>
<td>168</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>123</td>
<td>200</td>
<td>61</td>
<td>171</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>195</td>
<td>60</td>
<td>170</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>198</td>
<td>65</td>
<td>171</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>120</td>
<td>204</td>
<td>67</td>
<td>176</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>119</td>
<td>200</td>
<td>68</td>
<td>178</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>118</td>
<td>201</td>
<td>70</td>
<td>194</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>125</td>
<td>196</td>
<td>69</td>
<td>191</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>130</td>
<td>197</td>
<td>70</td>
<td>194</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>132</td>
<td>199</td>
<td>75</td>
<td>193</td>
<td>33</td>
</tr>
<tr>
<td>17</td>
<td>163</td>
<td>198</td>
<td>75</td>
<td>207</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>186</td>
<td>196</td>
<td>76</td>
<td>197</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>189</td>
<td>204</td>
<td>76</td>
<td>246</td>
<td>34</td>
</tr>
<tr>
<td>20</td>
<td>196</td>
<td>211</td>
<td>77</td>
<td>255</td>
<td>34</td>
</tr>
<tr>
<td>21</td>
<td>194</td>
<td>201</td>
<td>79</td>
<td>250</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>195</td>
<td>195</td>
<td>77</td>
<td>280</td>
<td>46</td>
</tr>
<tr>
<td>23</td>
<td>198</td>
<td>197</td>
<td>76</td>
<td>283</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>197</td>
<td>195</td>
<td>77</td>
<td>280</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
<td>200</td>
<td>78</td>
<td>285</td>
<td>51</td>
</tr>
<tr>
<td>26</td>
<td>210</td>
<td>196</td>
<td>78</td>
<td>290</td>
<td>50</td>
</tr>
<tr>
<td>27</td>
<td>208</td>
<td>200</td>
<td>77</td>
<td>289</td>
<td>52</td>
</tr>
<tr>
<td>28</td>
<td>214</td>
<td>201</td>
<td>79</td>
<td>286</td>
<td>54</td>
</tr>
<tr>
<td>29</td>
<td>210</td>
<td>197</td>
<td>79</td>
<td>287</td>
<td>54</td>
</tr>
<tr>
<td>30</td>
<td>216</td>
<td>205</td>
<td>80</td>
<td>295</td>
<td>56</td>
</tr>
</tbody>
</table>

Tabelle 6: Kürzung der Instrumentenspitzen der Perforatoren in µm nach jedem Sterilisationsvorgang

Dies ergab folgendes Ergebnis:

Insgesamt wurden 22 Fälle mit „auffälliger Verschlechterung“ und 17 Fälle mit fehlender Schutzkappe beobachtet. In 16 Fällen ergab sich ein Zusammenhang zwischen fehlender Schutzkappe und einer auffälligen Verschlechterung. In einem Fall kam es auch ohne Schutzkappe zu keiner Verschlechterung und in 6 Fällen wurde eine Verschlechterung trotz Schutzkappe beobachtet.
Aufbereitungszyklus mit außerordentlichem Verschlechterung des Instrumentenzustands

<table>
<thead>
<tr>
<th>Perforator</th>
<th>Aufbereitungszyklus mit auffälliger Verschlechterung des Instrumentenzustands</th>
<th>Aufbereitungszyklus mit fehlender Schutzkappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>226600</td>
<td>2, 4, 8, 16, 18</td>
<td>4, 8, 18</td>
</tr>
<tr>
<td>226604</td>
<td>5, 7, 17, 19, 25</td>
<td>5, 7, 25</td>
</tr>
<tr>
<td>226605</td>
<td>3, 17, 29</td>
<td>3, 12, 29</td>
</tr>
<tr>
<td>226606</td>
<td>3, 5, 9, 19, 27</td>
<td>3, 5, 9, 19</td>
</tr>
<tr>
<td>226607</td>
<td>2, 9, 14, 22</td>
<td>2, 9, 14, 22</td>
</tr>
</tbody>
</table>

Tabelle 7: Zusammenhang zwischen fehlenden Schutzkappen und auffälliger Verschlechterung des Instrumentenzustandes. Die übereinstimmenden Instrumentenzyklen wurden rot markiert.

Wie die oben stehende Tabelle zeigt, ist in 16 von 17 Fällen das Fehlen der Schutzkappen mit einer auffälligen Verschlechterung des Zustandes des jeweiligen Instruments verbunden. Dies legt die Vermutung nahe, dass die Instrumentenspitzen bei der Aufbereitung und beim Transport nicht ausreichend geschützt waren und es dadurch zu Beschädigungen der empfindlichen Spitzen kam.

Das unten stehende Diagramm veranschaulicht noch einmal den Zusammenhang zwischen fehlenden Schutzkappen und zunehmendem Spitzenverlust der Instrumente.

auf der Fläche der Perforatorspitze mehrere vertikale Kratzer zu sehen. Auch die Spitze zeigt einen verschlechterten Zustand.

Abbildung 29: Perforator 226606 vor (links) und nach (rechts) dem neunten Aufbereitungs- durchgang (Datum 22.08.2013) bei 40-facher Vergrößerung ohne entsprechende Schutzhülse. Rechts ist deutlich die verbogene, aber noch nicht abgebrochene Arbeitsspitze zu erkennen.

Folgende Bildreihe zeigt beispielhaft den Verlauf des Zustandes des Perforators 226600 zu Beginn der Versuchsreihe und nach jedem weiteren fünften Aufbereitungszyklus:
Abbildung 30: Perforator 226600 vor Beginn der Versuchsreihe

Abbildung 31: Perforator 226600 nach dem fünften Aufbereitungszyklus
Abbildung 32: Perforator 226600 nach dem zehnten Aufbereitungszyklus

Abbildung 33: Perforator 226600 nach dem 15ten Aufbereitungszyklus
Abbildung 34: Perforator 226600 nach dem 20sten Aufbereitungszyklus

Abbildung 35: Perforator 226600 nach dem 25sten Aufbereitungszyklus
Zu Beginn der Versuchsreihe erschienen alle Instrumentenschäfte ohne Schäden und unverbogen. Nach dem 17ten Durchgang konnte beim Perforator 226604 eine leichte Krümmung am Instrumentenschaft beobachtet werden.

Nach dem 27ten Durchgang wurde am Instrument 226606 ein Knick im Instrumentenschaft dokumentiert.

Abbildung 38: Perforator 226606 bei 10-facher Vergrößerung: Knick des Instrumentenschafts nach dem 27ten Durchgang (Datum: 05.03.2014)

3.3. Scherchen und Zängchen

In der Gruppe der Scherchen und Zängchen wurden die Scherchen nach Fisch (rechts gebogen: 222710; links gebogen: 222720), das Scherchen nach Belucci (222600), die Ohrzängchen nach Fisch (gerieft: 221200; glatt: 221111), das Instrument MC025H sowie die beiden Drahtschließ−Zängchen n. Fisch-McGee (227401) und nach McGee (227400) zusammen gefasst. Allen diesen Instrumenten ist eine ähnliche Instrumentengeometrie gemeinsam, die sich in der Ähnlichkeit des Griffes, der Instrumentengröße und des Gelenks zeigt.

Leider war es aufgrund von Lieferschwierigkeiten beim Hersteller Karl Storz mit unbekannter Dauer nicht möglich, das Drahtschließe−Zängchen nach McGee neu zu bestellen. Deshalb wurde in diesem Fall ein bereits gebrauchtes Instrument verwendet. Während des vierten Aufbereitungszyklus (Datum 09.08.2013) ging das nach rechts gebogene Scherchen nach Fisch (Instrumentennummer 222710) verloren. Trotz Meldung bei der Zentralsterilisation am 12.08.2013 konnte der Verbleib des Instru-

Schutzhülsen:
Alle Scherchen und Zängchen sind für den Transport und die Aufbewahrung mit einer weißen Schutzhülle aus Kunststoff versehen, um die feinen Instrumentenspitzen vor mechanischen Schäden zu schützen. In der Gruppe der Scherchen und Zängchen wurde während der Untersuchungsreihe in acht Fällen ein Fehlen der Schutzhülle bemerkt. Dabei war das Instrument MC025H dreimal betroffen, das geriefte Ohrzängchen nach Fisch (Nr.: 221200) zweimal und das Drahtschließzängchen (Nr.: 227400), das nach links gebogene Scherchen nach Fisch (Nr.: 222720) sowie das glatte Ohrzängchen nach Fisch (Nr. 221111) je in einem Durchgang betroffen.

Verschmutzungen:
<table>
<thead>
<tr>
<th>Instrumentennummer</th>
<th>Durchgang mit dokumentierten Verschmutzungen an der Instrumentenspitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>221200</td>
<td>26, 28</td>
</tr>
<tr>
<td>227400</td>
<td>2, 28</td>
</tr>
<tr>
<td>227401</td>
<td>17</td>
</tr>
<tr>
<td>221111</td>
<td>18, 26</td>
</tr>
<tr>
<td>222710</td>
<td>1, 22, 23, 28</td>
</tr>
<tr>
<td>222720</td>
<td>12, 15, 18, 22, 23, 24, 26, 30</td>
</tr>
<tr>
<td>MC025H</td>
<td>15, 18</td>
</tr>
</tbody>
</table>

Tabelle 8: Übersicht über die Aufbereitungszyklen mit dokumentierten Verschmutzungen in der Instrumentengruppe der Scherchen und Zängchen

Flecken:
In dieser Instrumentenuntergruppe wurde nur ein Fall gefunden, bei dem auf der Instrumentenoberfläche Flecken erkennbar waren. Dieser Fall betraf das glatte Ohrzängchen nach Fisch (Nr. 221111).
Kratzer, mechanische Beschädigung:
Bei allen Scherchen und Zängchen konnten im Laufe der Untersuchungsreihe zunehmend Kratzer festgestellt werden, die allerdings aufgrund der relativ stabilen Instrumentengeometrie und –größe sich weniger auffällig zeigten, wie in der Gruppe der Perforatoren.
Feuchtigkeit

Abbildung 41: Instrument 221111 mit sichtbaren Verkratzungen nach dem dreißigsten Sterilisationsschritt (Datum: 14.03.2014)
Abbildung 42: Ohrzängchen nach Fisch (gerieft; Nr. 221200) nach dem zweiten Sterilisationszyklus (Datum 05.08.2013) bei 20-facher Vergrößerung mit sichtbarem Feuchtigkeitsfilm auf der gerieften Instrumentenoberfläche

3.4. Häkchen

In die Gruppe der Häkchen wurden das Fußplattenhäkchen Nr. 224802, das 90°-Häkchen Nr. 225205 sowie das Instrument MC0656 zusammengefasst. Während der Versuchsreihe ging keines der Instrumente verloren.

Ein Fehlen der Schutzkappen wurde in insgesamt acht Fällen dokumentiert, dabei fielen je zwei Fälle auf das Fußplattenhäkchen (Instrumentennummer 224802) und das Instrument MC0656 und vier Fälle auf das 90°-Häkchen. Insgesamt entspricht dies einer Vorkommenshäufigkeit von knapp 10%.

Abbildung 46: 90°-Häkchen Nr. 225205 nach dem dritten Aufbereitungszyklus (Datum: 08.08.2013) bei 20-facher Vergrößerung mit sichtbaren Verschmutzungen an der Instrumenten spitze
Die mikroskopische Sichtkontrolle bezüglich Feuchtigkeit auf den Instrumenten ergab keine Auffälligkeiten. Ebenso konnten keine Flecken auf der Oberfläche festgestellt werden.

In der Instrumentengruppe der Haken wurde genauso wie bei den Perforatoren dokumentiert, bei welchen Sterilisationsdurchgängen es zu auffälligen Verschlechte-
rungen des Instrumentenzustands kam. Anschließend wurde verglichen, bei welchen Durchgängen die Schutzhülse der Instrumente nicht aufgesteckt war. Die Auswertung ergab folgendes Ergebnis:

In elf Fällen wurde eine auffällige Verschlechterung und in acht Fällen eine fehlende Schutzkappe festgestellt. Dabei ergab sich eine Koinzidenz in sieben Durchgängen. Bei einem Durchgang mit fehlender Schutzkappe wurde keine Verschlechterung beobachtet, in vier Durchgängen ergab sich eine Verschlechterung trotz Schutzkappe.

<table>
<thead>
<tr>
<th>Häkchen</th>
<th>Aufbereitungszyklus mit auffälliger Verschlechterung des Instrumentenzustands</th>
<th>Aufbereitungszyklus mit fehlender Schutzkappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>224802</td>
<td>4, 8, 18</td>
<td>4, 8</td>
</tr>
<tr>
<td>225205</td>
<td>10, 16, 18, 30</td>
<td>10, 16, 26, 30</td>
</tr>
<tr>
<td>MC0656</td>
<td>6, 9, 25, 29</td>
<td>6, 29</td>
</tr>
</tbody>
</table>

Folgendes Diagramm veranschaulicht die Verschlechterung des Instrumentenzustands im Verlauf der Versuchsreihe. Die Pfeile markieren die Aufbereitungszyklen, bei denen die Schutzkappe beim entsprechenden Instrument gefehlt hat. Das Diagramm zeigt, dass eine Verschlechterung häufig mit dem Fehlen der Schutzkappe zusammen fällt.
Zusammenhang zwischen fehlenden Schutzkappen und auffälliger Verschlechterung des Instrumentenzustands

Diagramm 5: Zusammenhang zwischen fehlenden Schutzkappen und auffälliger Verschlechterung des Zustands des Fußplattenhälchens, 90°-Häkchens und 45°-Häkchens

Folgende Bilder zeigen beispielhaft Instrumente nach Aufbereitungszyklen mit fehlender Schutzhülse, bei denen eine auffällige Verschlechterung des Instrumentenzustands dokumentiert wurde.

Abbildung 50: Fußplattenhäkchen Nr. 224802 bei 63-facher Vergrößerung vor (Bild links) und nach (Bild rechts) dem vierten Aufbereitungszyklus (Datum: 09. 08. 2013) ohne entsprechende Schutzhülle. Auf dem rechten Bild ist der leicht nach oben verbogene Instrumentenschaft zu sehen.
Abbildung 51: 90°-Häkchen (Instrumentennummer 225205) bei 63-facher Vergrößerung vor (Bild links) und nach (Bild rechts) dem sechzehnten Aufbereitungszyklus (Datum 24.09.2013) ohne entsprechende Schutzhülse. Auf dem rechten Bild ist deutlich das verbogene Häkchen zu sehen.

Abbildung 52: Instrument MC0656 vor (Bild links) und nach (Bild rechts) dem 29sten Aufbereitungszyklus (Datum: 05. 03. 2014) ohne entsprechende Schutzhülsen bei 40-facher Vergrößerung. Auf dem rechten Bild ist im unteren Drittel der Arbeitskante eine deutliche Kerbe zu sehen.

3.5. Messinstrumente und Saugrohr

In dieser Gruppe wurden alle Instrumente zusammengefasst, bei denen ein dünner, gerader Zylinder zur Instrumentengeometrie gehört. Diese Eigenschaft weisen das Längen-Messinstrument nach Fisch (Instrumentennummer 226500), das gerade Saugrohr (Instrumentennummer 204305) sowie der Messzylinder nach Fisch (Instrumentennummer 226504) auf. Da es beim Hersteller Karl Storz zu Beginn der Versuchsreihe im Juni 2013 zu Lieferenschwierigkeiten beim Messzylinder nach Fisch kam, wurde aufgrund unbekannter

Mittlerweile war die Lieferung eines neuen Messinstruments wieder möglich, sodass ab dem 21sten Durchgang ein fabrikneues Instrument verwendet werden konnte. Innerhalb der Versuchsreihe kam es ansonsten zu keinem Verlust von Instrumenten aus dieser Gruppe.

Die Kontrolle auf Feuchtigkeit ergab keine Auffälligkeiten.

In jeweils einem Fall wurden beim Messzylinder nach Fisch (23ster Durchgang, vgl. Abbildung 54) und beim Messinstrument nach Fisch (27ster Durchgang) eine Verschmutzung festgestellt.

Abbildung 55: Messinstrument nach Fisch bei 80-facher Vergrößerung nach dem 18ten Durchgang (Datum: 30.09.2013): gelb-blau schillernde Fleckenbildung an der Instrumentenspitze

Abbildung 56: Messinstrument nach Fisch bei 80-facher Vergrößerung nach dem 30sten Aufbereitungsprozess (Datum: 14.03.2014): Riss in der Verbindungsnaht zum vordersten Messhähchen

Die Auswertung ergab folgendes Ergebnis

<table>
<thead>
<tr>
<th>Instrumentennummer</th>
<th>Aufbereitungszyklus mit auffälliger Verschlechterung des Instrumentenzustands</th>
<th>Aufbereitungszyklus mit fehlender Schutzkappe</th>
</tr>
</thead>
<tbody>
<tr>
<td>226500</td>
<td>4, 23</td>
<td>23</td>
</tr>
<tr>
<td>226504</td>
<td>7, 20, 26</td>
<td>7, 20</td>
</tr>
</tbody>
</table>

Folgendes Diagramm veranschaulicht die Verschlechterung des Instrumentenzustands im Verlauf der Versuchsreihe. Die Pfeile markieren die Aufbereitungszyklen, bei denen die Schutzkappe beim entsprechenden Instrument gefehlt hat. Die Korrelation zwischen dem Fehlen der Schutzkappe und der Verschlechterung ist offensichtlich.
Zusammenhang zwischen fehlenden Schutzkappen und auffälliger Verschlechterung des Instrumentenzustands

Diagramm 6: Zusammenhang zwischen fehlenden Schutzkappen und auffälliger Verschlechterung des Zustands des Messzylinders und Messinstruments nach Fisch

Abbildung 59: Messzylinder vor (Bild links) und nach (Bild rechts) dem 26. Aufbereitungs-
durchgang (Datum: 03.03.2014) ohne entsprechende Schutzhülle bei 8-facher Vergrößerung.
Auf dem rechten Bild ist deutlich der Knick im mittleren Abschnitt des Instrumentes zu sehen.

Das Saugrohr nach Fisch war im fabrikneuen Zustand mit entsprechendem innen
laufendem Drähtchen zur Reinigung des Lumens versehen. Dieses Drähtchen kam
nach dem ersten Aufbereitungszyklus nicht zurück. Vor Beginn der Versuchsreihe
waren am Saugrohr keine Beschädigungen, Kratzer oder Verbiegungen festgestellt
worden. Am Ende der Versuchsreihe waren am Schaft des Saugrohrs leichte Kratzer
sichtbar. Außerdem war das Saugrohr in mehreren Raumrichtungen verbogen und
wies einen mittigen Knick auf.

Abbildung 60: Links: Saugrohr mit innenliegendem Draht vor Beginn der Versuchsreihe bei 10-
facher Vergrößerung. Rechts: Knick im mittleren Segment des Saugrohr am Ende des Experi-
3.6. **Drahtschere nach Guildford-Wright, Uhrmacher-Pinzette und Sauggriff**

In diese Instrumentengruppe wurden alle Instrumente des Stapessiebs zusammengefasst, die sich in ihrem Aufbau durch eine relativ hohe Stabilität und geringere Grazilität von den anderen Instrumenten unterscheiden: die Uhrmacher-Pinzette (Nummer 214500), die Drahtschere nach Guilford-Wright (Nummer 227600) sowie der Sauggriff nach Fisch (Nummer 204200).

![Abbildung 61: Mikroskopisch sichtbare Verschmutzung auf dem Sauggriff nach Fisch bei 8-facher Vergrößerung nach dem zweiten Aufbereitungszyklus (Datum: 08.08.2013)](image)

Bei der Kontrolle bezüglich sichtbarer Feuchtigkeitsspuren gab es keine Auffälligkeiten.
Bei der Uhrmacher Pinzette kam es in insgesamt fünf Fällen zur Beobachtung von milchigen – grauen Flecken auf der Instrumentenoberfläche. Die beobachteten Flecken waren in Größe und Form unregelmäßig, aber scharf begrenzt und insbesondere auf den glatten Flächen der Pinzette sichtbar. Bei den anderen beiden Instrumenten der Gruppe konnte kein Fall festgestellt werden.

Abbildung 62: Uhrmacher Pinzette (Nummer 214500) bei 8-facher Vergrößerung mit milchig-grauen, scharf begrenzten Flecken nach dem 28sten Aufbereitungszyklus (Datum: 07.03.2014)

Abbildung 63: mechanische Schäden am Sauggriff nach Fisch bei Teilbildern mit 8-facher Vergrößerung nach dem 30sten Aufbereitungszyklus (Datum: 14.03.2014)

Als Anfangsstatus wurden bei der Drahtschere nach Guildfort-Wright scharfe, gerade schließende Spitzen und eine unbeschädigte Instrumentenoberfläche aufgenommen. Während der Versuchsreihe kam es zum leichten Abstumpfen der Instrumentenspitzen und es wurden mehrere bis zu 1,5mm lange Kratzer dokumentiert. Die Funktionsstüchigkeit des Instruments ist trotzdem als weiterhin uneingeschränkt zu bewerten.

4. Diskussion

4.1. Diskussion von Material und Methodik

Des Weiteren ergaben sich bei der Fotodokumentation folgende Schwierigkeiten: in der mikroskopischen Fotographie ist nur die scharfe Darstellung einer sehr schmalen Bildebene möglich und somit müssen mehrere Bilder unterschiedlicher Ebenen digi-

Eine Überprüfung der Reinigungsleistung oder eine mikrobiologische Überprüfung der Aufbereitung war nicht Teil der Aufgabenstellung.

4.2. Diskussion der Aufbereitung

Das untersuchte Stapessieb wurde in der Zentralsterilisation der Universitätsklinik Regensburg mit dem Verfahren der Dampfsterilisation aufbereitet. Draeger und Prüter (1990) beschreiben die Problematik der Dampfsterilisation bei mikrochirurgischen

empfohlene Haltezeit von 5 min wird in der Tabelle des Herstellers nicht angezeigt. In der Herstellerinformation von Karl Storz wird für Deutschland eine Dampfsterilisation bei 134°C - 137°C für 5 Minuten bei 3,1 - 3,4bar empfohlen (Karl Storz GmbH & Co. KG 2013b).

4.3. Diskussion der Herstellerangaben

Das Bundesministerium für Gesundheit schreibt von seinem Erfahrungsbericht zur Aufbereitung von Medizinprodukten am 04. 04. 2008, dass die Vorgaben für die Aufbereitung von kritischen Medizinprodukten künftig konkreter sein sollten. Außerdem wurde festgestellt, dass die Überwachungsbehörden personell unterbesetzt sind (Bundesministerium für Gesundheit 2008). Wenn die Aufbereitung von Instrumenten von externen Dienstleistern übernommen wird, müssen die Verantwortungsbereiche
4.4. Diskussion der Ergebnisse

Schutzhülsen. Im online-Katalog zu Hygiene, Pflege, Sterilisation und Lagerungstechnik von Karl Storz wird beispielweise folgender Rahmen zur Lagerung angeboten:

5. Zusammenfassung

In der vorliegenden Arbeit wurde untersucht, ob und welche Auswirkungen die Aufbereitung auf die im Stapessieb der Universitätsklinik Regensburg enthaltenen Instrumente hat. Dazu wurden die fabrikneuen Instrumente eines Stapessiebs dreißig Mal einem Aufbereitungsprozess unterzogen, ohne dass sie zwischenzeitlich im OP
verwendet wurden. Sie blieben also stets unbenutzt. Nach jedem Durchgang wurden die Instrumente mikroskopisch überprüft und die Ergebnisse wurden mittels einer Fotodokumentation dargestellt und ausgewertet.

kappen zusammen. Allerdings ist zu beachten, dass eine Beschädigung der Instrumente auch durch das Aufstecken der Schutzhülsen erfolgen könnte.

6. Literaturverzeichnis

AK Qualität, Empfehlungen der AK "Qualität: Herstellerangaben zur Aufbereitung. Zentralsterilisation, 2006a, 14, 401–402

AK Qualität, Empfehlungen des AK „Qualität“: Verwendung von Prüfkörpern zur Überprüfung der Reinigungsleistung bei der Validierung von Reinigungs-Desinfektions-Prozessen. Zentralsterilisation, 2006b, 14, 69–70

AK Qualität, Problem-Instrumente in der Aufbereitung (Teil 1). Zentralsterilisation, 2011, 19, 61–62

Arbeitskreis Instrumenten-Aufbereitung, Versuchsreihen und Stellungnahmen: Test series and statements, 1999, 1. Auflage

Crawford M, *How Clean is Clean: Chemistry can damage medical equipment in the quest to meet stringent guidelines*. Biomedical instrumentation & technology, 2014, 25, 260–263

Esen J, Digitale Fotografie: Grundlagen und Fotopraxis, 2011, 1. Aufl, Bonn, Vierfarben

Integra MicroFrance SAS, Produktinformationen und Gebrauchsanweisung, 2015

Karl Storz GmbH & Co. KG, Hygiene: Pflege, Sterilisation, Lagerungstechnik, 2013a, 2nd edn., Tuttlingen

Karl Storz GmbH & Co. KG, Reinigung, Desinfektion, Pflege und Sterilisation von KARL STORZ Instrumenten, 2013b, 1st edn.

Koczorek M, Aufbereitung von Medizinprodukten: Expertengruppe "smdr" will Qualität erhöhen und Misstände aufdecken. AINS - Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie, 2008, 43, 562–564

Kremmel M, Aufbereitung von Medizinprodukten: Handlungshilfe für Anwender und Behörden ; Antworten und Lösungsansätze rund um die Themen Reinigung, Desinfektion und Sterilisation von chirurgischen Instrumenten, Endoskopen, zahnärztlichen und ärztlichen Instrumenten ., 2008, 2., überarb. Aufl, Norderstedt, Books on Demand

Medtronic USA I, ENT Product & Instrument Catalog 2012-2013, 2012

Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen und Robert Koch-Institut, Definitionen nosokomialer Infektionen (CDC-Definitionen), 2011, 7. Auflage, Berlin, Mercedes-Druck

Sabljic D, Anfrage über KARL STORZ, 2014, e-mail

Statistisches Bundesamt, Statistisches Jahrbuch 2015, 2015, Wiesbaden

Technisches Komitee CEN/TC 204, Sterilisation von Medizinprodukten - Vom Hersteller bereitzustellende Informationen für die Aufbereitung von resterilisierbaren Medizinprodukten (17664), 2004

Technisches Komitee CEN/TC 204, Verpackung für in der Endverpackung zu sterilisierenden Medizinprodukten (11607), 2006

Valsalva A, The Human Ear (Latin). Bononiae: C. Pisarri, 1704

7. Tabellenverzeichnis

TABELLE 1: PARAMETER ZUR EINHALTUNG DER MINDESTANFORDERUNGEN BEI DER DAMPFSTERILISATION ___ 6
TABELLE 2: GRENZWERTE FÜR WASSERVERUNREINIGUNGEN BEI DAMPFSTERILISATION ________ 16
TABELLE 3: IN DEN PRODUKTINFORMATIONEN VON MICROFRANCE ALS GEEIGNET AUSGEWIEßENE STERILISATIONSPROGRAMME _______________________________ 17
TABELLE 4: ÜBERSICHT ÜBER DURCHGÄNGE MIT FEHLENDEN SCHUTZHÜLLEN IN DER INSTRUMENTENGRUPPE DER PERFORATOREN ___ 54
TABELLE 5: ÜBERSICHT ÜBER DIE DURCHGÄNGE MIT DOKUMENTIERTEN VERSCHMUTZUNGEN IN DER INSTRUMENTENGRUPPE DER PERFORATOREN ___ 55
TABELLE 6: KÜRZUNG DER INSTRUMENTENSPITZEN DER PERFORATOREN IN µM NACH JEDEM STERILISATIONSVORGANG ___ 67
TABELLE 7: ZUSAMMENHANG ZWISCHEN FEHLENDEN SCHUTZKAPPIEN UND AUFFÄLLIGER VERSCHLECHTERUNG DES INSTRUMENTENZUSTANDES. ___ 69
TABELLE 8: ÜBERSICHT ÜBER DIE AUFBEREITUNGSZYKLEN MIT DOKUMENTIERTEN VERSCHMUTZUNGEN IN DER INSTRUMENTENGRUPPE DER SCHERCHEN UND ZÄNGCHEN __ 79
TABELLE 9: ZUSAMMENHANG ZWISCHEN FEHLENDEN SCHUTZKAPPIEN UND AUFFÄLLIGER VERSCHLECHTERUNG DES INSTRUMENTENZUSTANDES. ___ 88
TABELLE 10: ZUSAMMENHANG ZWISCHEN FEHLENDEN SCHUTZKAPPIEN UND AUFFÄLLIGER VERSCHLECHTERUNG DES INSTRUMENTENZUSTANDES. ___ 94
8. Abbildungsverzeichnis

ABBILDUNG 1: PROZESSABLAF DER MASCHINELLEN REINIGUNG MIT THERMISCHER DESINFEKTION ... 12
ABBILDUNG 2: ZEITLICHER DRUCK- UND TEMPERATURVERLAUF EINES FRAKTIONIERTEN VORVAKUUMVERFAHRENS .. 17
ABBILDUNG 3: VERSUCHSANORDNUNG IM LABOR. .. 22
ABBILDUNG 4: UNTERSUCHTES STAPESSIEB IM ZUSTAND NACH DER AUFBEREITUNG. ... 24
ABBILDUNG 5: BELEUCHTUNGSRING MIT 32 LEDS .. 37
ABBILDUNG 6: EINZELAUFNAHMEN DES PERFORATORS 226604 BEI 63-FACHER VERGRÖßerUNG NACH DEM DREIßIGSTEN AUFBEREITUNGSVORGANG. .. 40
ABBILDUNG 7: MIT HILFE DES STACKINGS AUS DEN OBEN GEZEIGTEN EINZELAUFNAHMEN ERRECHNETES GESAMTBILD DES PERFORATORS 226604. ... 41
ABBILDUNG 8: SICHTBARE RÜCKSTÄNDE VON PROZESSCHEMIKALIEN ... 44
ABBILDUNG 9: PERFORATOR 226605 NACH DEM 13. AUFBEREITUNGSDURCHGANG. .. 53
ABBILDUNG 10: PERFORATOR (226605) BEI 63-FACHER VERGRÖßerUNG MIT ERKENNBarem FEUCHTIGKEITSTROPPEN AN DER INSTRUMENTENSPIEZE NACH DEM 24STEN AUFBEREITUNGSZYKLUS .. 56
ABBILDUNG 11: LINKS: AUFWAHME DES PERFORATORS 226604 NACH DEM 8TEN AUFBEREITUNGSZYKLUS BEI 80-FACHER VERGRÖßerUNG. RECHTS: AUFWAHME DES PERFORATORS 226604 NACH DEM 24STEN AUFBEREITUNGSZYKLUS BEI 80-FACHER VERGRÖßerUNG. .. 57
ABBILDUNG 12: OBERFLÄCHLICHE VERKRATZUNGEN AN DER INSTRUMENTENSPIEZE AM PERFORATOR 226607 AM FABRIKNEUEN INSTRUMENT. ... 58
ABBILDUNG 13: PERFORATOR 226604 NACH DEM 10TEN AUFBEREITUNGSZYKLUS BEI 63-FACHER VERGRÖßerUNG ... 59
ABBILDUNG 14: PERFORATOR 226604 NACH DEM 20STEN DURCHGANG BEI 63-FACHER VERGRÖßerUNG ... 59
ABBILDUNG 15: INSTRUMENT 226604 AM ENDE DES EXPERIMENTS BEI 63-FACHER VERGRÖßerUNG ... 60
ABBILDUNG 16: PERFORATOR 226605 NACH DEM 10TEN AUFBEREITUNGSZYKLUS BEI 63-FACHER VERGRÖßerUNG ... 61
ABBILDUNG 17: PERFORATOR 226605 NACH DEM 20STEN DURCHGANG .. 61
ABBILDUNG 18: INSTRUMENT 226605 NACH DEM 30STEN DURCHGANG BEI 63-FACHER VERGRÖßerUNG ... 62
ABBILDUNG 19: PERFORATOR 226606 NACH DEM 10TEN AUFBEREITUNGSZYKLUS BEI 40-FACHER VERGRÖßerUNG ... 63
ABBILDUNG 20: INSTRUMENT 226606 NACH DEM 20STEN DURCHGANG BEI 40-FACHER VERGRÖßerUNG. ... 63
ABBILDUNG 21: PERFORATOR 226606 AM ENDE DES EXPERIMENTS BEI 40-FACHER VERGRÖBERUNG ___________________________ 64
ABBILDUNG 22: PERFORATOR 226607 NACH DEM 10TEN AUFBEREITUNGSDURCHGANG BEI 40-FACHER VERGRÖBERUNG ___________________________ 65
ABBILDUNG 23: INSTRUMENT 226607 NACH DEM 20STEN DURCHGANG BEI 40-FACHER VERGRÖBERUNG ___________________________ 65
ABBILDUNG 24: PERFORATOR 226607 AM ENDE DER VERSUCHSREIHE BEI 40-FACHER VERGRÖBERUNG ___________________________ 66
ABBILDUNG 25: INSTRUMENT 226600 VOR (LINKS) UND NACH (RECHTS) DEM VIERTEN AUFBEREITUNGSDURCHGANG (DATUM: 09.08.2013) OHNE ENTSPRECHENDE SCHUTZHÜLSE BEI 63-FACHER VERGRÖBERUNG ___________________________ 71
ABBILDUNG 26: INSTRUMENT 226604 VOR (LINKS) UND NACH (RECHTS) DEM VIERTEN AUFBEREITUNGSDURCHGANG (09.08.2013) MIT ENTSPRECHENDER SCHUTZHÜLSE BEI 40-FACHER VERGRÖBERUNG ___________________________ 71
ABBILDUNG 27: INSTRUMENT 226600 BEI 63-FACHER VERGRÖBERUNG VOR (LINKS) UND NACH (RECHTS) DEM 18. AUFBEREITUNGSVORGANG (DATUM 30.09.2013) OHNE ENTSPRECHENDE SCHUTZHÜLSE ___________________________ 71
ABBILDUNG 28: INSTRUMENT 226604 BEI 63-FACHER VERGRÖBERUNG VOR (LINKS) UND NACH (RECHTS) DEM 5. AUFBEREITUNGSVORGANG (DATUM 12.08.2013) OHNE ENTSPRECHENDE SCHUTZHÜLSE ___________________________ 72
ABBILDUNG 29: PERFORATOR 226606 VOR (LINKS) UND NACH (RECHTS) DEM NEUNTEN AUFBEREITUNGSDURCHGANG (DATUM 22.08.2013) BEI 40-FACHER VERGRÖBERUNG OHNE ENTSPRECHENDE SCHUTZHÜLSE ___________________________ 72
ABBILDUNG 30: PERFORATOR 226600 VOR BEGINN DER VERSUCHSREIHE ___________________________ 73
ABBILDUNG 31: PERFORATOR 226600 NACH DEM FÜNFTEN AUFBEREITUNGSZYKLUS ___________________________ 73
ABBILDUNG 32: PERFORATOR 226600 NACH DEM ZEHN TEN AUFBEREITUNGSZYKLUS ___________________________ 74
ABBILDUNG 33: PERFORATOR 226600 NACH DEM 15TEN AUFBEREITUNGSZYKLUS ___________________________ 74
ABBILDUNG 34: PERFORATOR 226600 NACH DEM 20STEN AUFBEREITUNGSZYKLUS ___________________________ 75
ABBILDUNG 35: PERFORATOR 226600 NACH DEM 25STEN AUFBEREITUNGSZYKLUS ___________________________ 75
ABBILDUNG 36: PERFORATOR 226600 NACH DEM 30STEN AUFBEREITUNGSZYKLUS ___________________________ 76
ABBILDUNG 37: PERFORATOR 226604 BEI 10-FACHER VERGRÖBERUNG ___________________________ 76
ABBILDUNG 38: PERFORATOR 226606 BEI 10-FACHER VERGRÖBERUNG: KNICK DES INSTRUMENTENSCHAFTS NACH DEM 27TEN DURCHGANG (DATUM: 05.03.2014) ___________________________ 77
ABBILDUNG 39: INSTRUMENT 222720 IN GESCHLOSSENEM (BILD LINKS) UND GEÖFFNETEM (BILD RECHTS) ZUSTAND BEI 20-FACHER VERGRÖBERUNG NACH DEM 15. AUFBEREITUNGSZYKLUS (DATUM: 23.09.2013) ___________________________ 79
ABBILDUNG 40: FLECKEN AM INSTRUMENTENGRIFFS DES ZÄNGCHENS NR. 221111 NACH DEM 27TEN AUFBEREITUNGSZYKLUS (DATUM: 05.03.2014) BEI 10-FACHER VERGRÖBERUNG ___________________________ 80
ABBILDUNG 41: INSTRUMENT 221111 MIT SICHTBAREN VERKRATZUNGEN NACH DEM DREIßIGSTEN STERILISATIONSDURCHGANG (DATUM: 14.03.2014) ___________________________ 81
ABBILDUNG 42: OHRZÄNCHEN NACH FISCH (GERIEFT; NR. 221200) NACH DEM ZWEI TEN STERILISATION (DATUM 05.08.2013) BEI 20-FACHER VERGRÖBERUNG MIT SICHTBarem FEUCHTIGKEITSFILM AUF DER GERIEFten INSTRUMENTENOBERFLÄCHE

ABBILDUNG 43: INSTRUMENT 222710 NACH DEM DREIßIGSTEN AUFBEREITUNGS (DATUM: 14.03.2014) BEI 10-FACHER VERGRÖBERUNG MIT LEICHTEN SPUREN VON METALLISchem ABRIEB IM BEREICH DES GELENKS

ABBILDUNG 44: INSTRUMENT MC025H NACH DEM 30STEN AUFBEREITUNGSDURCHGANG (DATUM: 14.03.2014) BEI 40-FACHER VERGRÖBERUNG

ABBILDUNG 45: 90°-HÄKCHEN NACH DEM 20STEN DURCHGANG (DATUM 08.08.2013) BEI 20-FACHER VERGRÖBERUNG

ABBILDUNG 46: 90°-HÄKCHEN NACH DEM DREIßIGSTEN AUFBEREITUNGSDURCHGANG (DATUM: 08.08.2013) BEI 20-FACHER VERGRÖBERUNG

ABBILDUNG 47: LINKS: 90°-HÄKCHEN (INSTRUMENTENNUMMER 225205) VOR BEGINN DER VERSuchsREIHE AM 01.08.2013 MIT KLAREN, BEGRENZTEN KANTEN UND OBERFLÄCHEN UND GERADEM SCHAFT. RECHTS: FUßPLATTENHÄKCHEN MIT VERBogens INSTRUMENTENSCHUTZHÜLSE UND ABGEBROCHENEM INSTRUMENTENSPITZE AM ENDE DER VERSuchsREIHE NACH DEM 30STEN AUFBEREITUNGS (DATUM: 14.03.2014) BEI 40-FACHER VERGRÖBERUNG

ABBILDUNG 48: LINKS: INSTRUMENTENNUMMER 224802 VOR BEGINN DES EXPERIMENTS (DATUM: 01.08.2013) BEI 40-FACHER VERGRÖBERUNG. AN DER KANTE UND DER SPITZE DES INSTRUMENTS SIND METALLISCHE SPÄNE ZU SEHEN. RECHTS: INSTRUMENT MC0656 NACH DEM DREIßIGSTEN AUFBEREITUNGS (DATUM 14.03.2014) BEI 40-FACHER VERGRÖBERUNG

ABBILDUNG 49: LINKS: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG. NACH DEM 20STEN AUFBEREITUNGS DURCHGANG (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG

ABBILDUNG 50: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG NACH DEM 20STEN AUFBEREITUNGS (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG

ABBILDUNG 51: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG NACH DEM 20STEN AUFBEREITUNGS (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG

ABBILDUNG 52: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG NACH DEM 20STEN AUFBEREITUNGS (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG

ABBILDUNG 53: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG. NACH DEM 20STEN AUFBEREITUNGS (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG

ABBILDUNG 54: MESSZYLINDER NACH FISCH BEI 10-FACHER VERGRÖBERUNG NACH DEM 23STEN AUFBEREITUNGS (DATUM: 02.10.2013) WAR DAS MESSINSTRUMENT AN DER SPITZE ABGEBROCHEN. RECHTS: ABBRUCHSTELLE BEI 80-FACHER VERGRÖBERUNG
ABBILDUNG 55: MESSINSTRUMENT NACH FISCH BEI 80-FACHER VERGRÖßERUNG NACH DEM 18TEN DURCHGANG (DATUM: 30.09.2013): GELB-BLAU SCHILLERnde FLECKENBILDUNG AN DER INSTRUMENTENSPIRZE _______________________________ 92

ABBILDUNG 56: MESSINSTRUMENT NACH FISCH BEI 80-FACHER VERGRÖßERUNG NACH DEM 30STEN AUFBEREITUNGSPROZESS (DATUM: 14.03.2014): RISS IN DER VERBINDUNGSNAHT ZUM VORDERSTEN MESSHÄKCHEN _______________________________ 93

ABBILDUNG 57: LINKS: FABRIKNEUES INSTRUMENT 226504 VOR DEM EINUNDZWANZIGSTEN DURCHGANG BEI 8-FACHER VERGRÖßERUNG. (DATUM: 07.10.2013) RECHTS: MESSZYLINDER NACH FISCH AM ENDE DER VERSUCHSREIHE NACH 10 AUFBEREITUNGSZYKLKEN MIT SICHTBAR VERBOGENEM ARBEITSENDEN (DATUM: 14.03.2014) _______________________________ 94

ABBILDUNG 58: MESSINSTRUMENT NACH FISCH VOR (BILD LINKS) UND NACH (BILD RECHTS) DEM 23. AUFBEREITUNGSDURCHGANG OHNE ENTSPRECHENDE SCHUTZHÜLLE BEI 10-FACHER VERGRÖßERUNG. _______________________________ 95

ABBILDUNG 59: MESSZYLINDER VOR (BILD LINKS) UND NACH (BILD RECHTS) DEM 26. AUFBEREITUNGSDURCHGANG (DATUM: 03.03.2014) OHNE ENTSPRECHENDE SCHUTZHÜLLE BEI 8-FACHER VERGRÖßERUNG. _______________________________ 96

ABBILDUNG 60: LINKS: SAUGROHR MIT INNENLEGENDEM DRAHT VOR BEGINN DER VERSUCHSREIHE BEI 10-FACHER VERGRÖßERUNG. RECHTS: KNIK IM MITTLEREN SEKTOR DES SAUGROHR AM ENDE DES EXPERIMENTS NACH DEM 30. AUFBEREITUNGSZYKLUS (DATUM: 14.03.2014) BEI 10-FACHER VERGRÖßERUNG _______________________________ 96

ABBILDUNG 61: MIKROSKOPISCH SICHTBARE VERSCHMUTZUNG AUF DEM SAUGGRIFF NACH FISCH BEI 8-FACHER VERGRÖßERUNG NACH DEM ZWEITEN AUFBEREITUNGSZYKLUS (DATUM: 08.08.2013) _______________________________ 97

ABBILDUNG 62: UHRMACHER PINZETTE (NUMMER 214500) BEI 8-FACHER VERGRÖßERUNG MIT MILCHIG-GRAUEN, SCHARF BEGRENZTEN FLECKEN NACH DEM 28STEN AUFBEREITUNGSZYKLUS (DATUM: 07.03.2014) _______________________________ 98

ABBILDUNG 63: MECHANISCHE SCHÄDEN AM SAUGGRIFF NACH FISCH BEI TEILBILDERN MIT 8-FACHER VERGRÖßERUNG NACH DEM 30STEN AUFBEREITUNGSZYKLUS (DATUM: 14.03.2014) _______________________________ 99

ABBILDUNG 64: LINKS: UHRMACHER-PINZETTE BEI 8-FACHER VERGRÖßERUNG VOR BEGINN DER AUFBEREITUNGSZYKLEN MIT GERADEN UND EXAKT SCHLEIBENDEN BACKEN UND UNBESCHÄDIGTER OBERFLÄCHE. RECHTS: SCHÄDEN AN DEN ABGEMEISPTEN INSTRUMENTENSPIRZEN UND KRATZER AN DER INSTRUMENTENOBERVERFLÄCHE AM ENDE DES EXPERIMENTS BEI 8-FACHER VERGRÖßERUNG _______________________________ 100

ABBILDUNG 65: LINKS: DRAHTSCHERE NACH GUILDFORT-WRIGHT VOR BEGINN DES EXPERIMENTS AM 01.08.2013 MIT SPITZ ZULAUFENDEN ENDEN BEI 8-FACHER VERGRÖßERUNG. RECHTS: ZUSTAND DES INSTRUMENTS AM ENDE DER VERSUCHSREIHE AUFGENOMMEN BEI 8-FACHER VERGRÖßERUNG MIT LEICHTER ABSTUMPUNG DER INSTRUMENTENSPIRZEN _______________________________ 100

ABBILDUNG 66: VOM HERSTELLER KARL STORZ EMPFOHLER RAHMEN ZUR GESICHTERTEN LAGERUNG UND REINIGUNG VON OHMIKRO-ACHTKANT INSTRUMENTE _______________________________ 112
DANKSAGUNG

__
__
(Ort, Datum) (Unterschrift)