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Abstract  

 

This thesis focuses on the application of magnetic nanoparticles (MNPs) in different 

catalytic reactions. In this research the main goal is to develop different catalysts based on 

MNPs and study the advantages and disadvantages of these catalytic materials. 

In the first part of the research, two new hybrid materials based on carrageenan and 

MNPs were developed and tested in the Michael addition of aldehydes to nitroalkenes. 

The first one, a combination of carrageenan and MNPs, showed good results in this 

reaction while the individual components were inactive. The second catalyst, which 

included an analogue of the Jørgensen-Hayashi catalyst also showed good activity and 

excellent enantioselectivity.  

In the second project, an analogue of the second generation MacMillan catalyst was 

immobilized onto Fe3O4 NPs and polystyrene. The resulting catalysts were applied to the 

asymmetric Friedel-Crafts alkylation of indoles with !,"-unsaturated aldehydes. In this 

study, the polystyrene-based catalyst showed higher stability and provided better 

stereoselectivity.  

In the last project, another kind of hybrid material was synthesized based on microporous 

organic polymers (MOPs) encapsulated with Pd nanoparticle and Co/C nanobeads. To 

build up the polymer, different substrates such as toluene, aniline and phenol were used. 

After synthesising Pd nanoparticle inside of the pores of polymer, these catalysts were 

applied to the hydrogenation and Suzuki cross-coupling reactions. Despite moderate to 

good yields that were obtained, these catalysts suffer from leaching of Pd, so further 

research for optimizing this catalyst system is required.  

 

 

 

 

 

 

 

 

 

 

 

 



Resumen 

 

Esta tesis se ha centrado en el uso de nanopartículas magnéticas (MNPs) en catálisis. 

Éstas permiten una fácil recuperación del catalizador después de la reacción, lo que las 

convierte en una herramienta interesante para ser utilizada en procesos a gran escala. 

Además, la modificación de la superficie de las nanopartículas con diferentes linkers nos 

dio la oportunidad de anclar una variedad de organocatalizadores, dando lugar a 

materiales catalíticos basados en MNPs. 

En el primer proyecto, dos nuevos materiales híbridos basados en carragenano y MNPs 

fueron desarrollados y probados en la adición de Michael de aldehídos a nitroalquenos. 

La primera, una combinación de carragenano y MNPs mostró buenos resultados en esta 

reacción pese a que los componentes individuales eran inactivos. El segundo catalizador, 

que incluye un análogo del catalizador de Jørgensen-Hayashi, también mostró buena 

actividad y dio excelentes ee’s. 

En el segundo proyecto, un análogo del catalizador de MacMillan de segunda generación 

fue inmovilizado sobre NPs de Fe3O4 y poliestireno. Los catalizadores resultantes se 

aplicaron a la alquilación asimétrica de Friedel-Crafts de indoles con aldehídos !,"-

insaturados. En este estudio, el catalizador basado en poliestireno mostró una mayor 

estabilidad, proporcionando mejores estereoselectividades. 

El último proyecto se ha centrado en el uso de nanopartículas magnéticas de cobalto 

revestidas de carbono (Co/CNP) en la catálisis. Por lo tanto, otro material híbrido fue 

desarrollado a base de polímeros orgánicos microporosos (MOPs) encapsulados con 

nanopartículas de Pd y Co/CNP. Para construir el polímero, se utilizaron diferentes 

sustratos tales como tolueno, anilina y fenol. Después de sintetizar nanopartículas de Pd 

dentro de los poros del polímero, estos catalizadores se aplicaron a reacciones de 

hidrogenación y acoplamiento cruzado de Suzuki. A pesar de dar rendimientos de buenos 

a moderados, estos catalizadores sufren de lixiviación de Pd, por lo que se requiere más 

investigación. 

 

 

 

 

 

 

 



Zusammenfassung  

 

Das Hauptthema dieser Doktorarbeit ist die Anwendung von magnetischen Nanopartikeln 

(MNP) in verschiedenen katalytischen Reaktionen. Das Hauptziel ist die Entwicklung 

neuer Katalysatoren auf Basis von MNP und die Bestimmung der Vor- und Nachteile 

dieser katalytischen Materialien. 

Im ersten Teil der Arbeit wurden zwei neue Hybridmaterialien auf Basis von Carrageenan 

und MNP entwickelt und in der Michael-Addition von Aldehyden an Nitroalkenen 

getestet. Der erste Katalysator, der aus Carrageenan und MNP entsteht, liefert gute 

Ausbeuten in dieser Reaktion, obwohl die einzelnen Komponenten nicht katalytisch aktiv 

sind. Das zweite Material auf der Basis des Jørgensen-Hayashi Katalysators zeigt 

ebenfalls sehr gute Aktivität und eine ausgezeichnete Enantioselektivität. 

Im zweiten Projekt wurde der MacMillan Katalysator der zweiten Generation auf Fe3O4-

Nanopartikeln und Polystyrol immobilisiert. Die entstehende Katalysatoren wurden für 

die asymmetrische Friedel-Crafts-Alkylierung von Indolen mit !,"-ungesättigten 

Aldehyden angewandt. Der auf Polystyrol basierende Katalysator liefert dabei eine 

höhere Stabilität und eine bessere Stereoselektivität. 

Im letzten Projekt wurde eine andere Art von Hybridmaterial synthetisiert, nämlich 

mikroporöse organische Polymere (MOPS) eingekapselt mit Pd-Nanopartikeln und Co/C 

Nanobeads. Verschiedene Substrate wie z. B. Toluol, Anilin und Phenol wurden für die 

Herstellung der Polymeren verwendet. Nachdem Pd-Nanopartikel im Inneren des porösen 

Polymers synthetisiert wurden, sind diese Materialen für die Hydrierung und Suzuki-

Kreuzkupplungsreaktionen verwendet. Obwohl die Katalysatoren mäßige bis gute 

Ausbeuten liefern, ist das Ausbluten von Pd ein wesentlicher Nachteil, weitere Forschung 

zur Optimierung dieses Katalysatorsystems erforderlich ist. 
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Thesis Overview 
 
Chapter I 
 
This chapter is a general introduction that deals with the application of MNPs in 

catalysis. It starts introducing the different kinds of nanoparticles and then a variety 

methods for synthesizing MNPs and how to protect and stabilize them are described. 

Afterward, the concept of organocatalyst and aminocatalyst is explained. At the end, 

some examples are mentioned based on the functionalization of NPs with copper 

catalyzed azide alkyne cycloaddition.  

 

 

 

 

Chapter II 

In chapter II the concept of hybrid material is 

defined and examples of their applications are 

given. Due to the importance of carrageenan in 

this chapter, some applications of this kind of 

sugar are also mentioned. Afterwards, a brief 

summary of enamine catalysis is outlined. Then 

some examples concerning heterogeneous 

catalysis are mentioned to make more 

comprehensible the advantages of this field of 

chemistry. At the end of chapter II can be found 

an article where two carrageenan-MNPs based 

hybrid materials are prepared and applied for 

Michael addition reaction.  
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Thesis Overview 

 

Chapter III 

Iminium catalysis is explained in more detail. 

In this chapter, first and second generation of 

MacMillan catalysts are described and 

examples of immobilized imidazolidinone 

organocatalysts are given. In the attached 

paper, an analogue of second generation 

MacMillan catalyst was immobilized into 

Fe3O4 NPs and polystyrene. The resulting 

catalysts were applied to the asymmetric 

Friedel-Crafts alkylation of indoles with !,"-

unsaturated aldehydes. In this project, the 

polystyrene-based catalyst showed higher 

stability and provided better stereoselectivities. 

 

 

 

Chapter IV 

In the last chapter, another kind of hybrid 

material was synthesized based on 

microporous organic polymers (MOPs) 

encapsulated with Pd nanoparticles and Co/C 

nanobeads. To build up the polymer, different 

substrates such as toluene, aniline and phenol 

were used. Afterwards, these catalysts were   

applied to the hydrogenation and Suzuki cross-

coupling reactions. Despite giving from good 

to moderate yields, these catalysts suffer from 

leaching of Pd, so further research is required. 
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General Introduction 

1. Introduction 

The present manuscript deals with the use of magnetic nanoparticles (MNPs) as a platform to 

support catalytic entities. Thus, the introduction will be divided in two main parts covering the 

multidisciplinar nature of the projects presented herein: the first section will introduce the field of 

nanoparticles whereas the second will focus on catalysis, with special emphasis on 

enantioselective organocatalysis.  

1.1. Introduction to Nanoparticles 

The term nanostructured material refers to every object which in at least one dimension has a 

length scale between 1 and 100 nm.1 Nanomaterials usually present properties different from their 

bulk solid or molecules, their size being ultimately responsible for their physical and chemical 

behavior.2 

For instance, optical properties like refractive index and absorbance of a bulk material are related 

to its mass or volume; however, in nanoparticles optical properties depend on the size and shape 

of that specific nanoparticle. This significant size dependent feature allows them to be used in a 

variety of applications such as information storage,3 magnetic refrigeration,4 as ferrofluids,5 toxic 

chemical adsorbents,6 gas storage7 or in drug delivery.8 

The high surface area to volume ratio in nanoparticles generates a fast diffusion even at lower 

temperature. Indeed, high surface area improves chemical and physical interactions of 

nanoparticles with solids, liquids or polymer matrixes as surrounding environments. Thanks to 

this property, nanoparticles can be used as nanocarriers in the human body.9 

For all these reasons nanoparticles hold enough potential to! revolutionize the life of human 

beings.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 a) Leslie-Pelecky, D. L.; Rieke, R. D. Chem. Mater. 1996, 8, 1770; b) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. 
Annu. Rev. Mater. Sci. 2000, 30, 545. 
2 Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Eur. J. 2002, 8, 29. 
3 Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. 
4 Shull, R. D. IEEE Trans. Magn. 1993, 29, 2614. 
5 a) Ziolo, R. F.; Giannelis, E. P.; Weinstein, B. A.; Ohoro, M. P.; Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; 
Huffman, D. R. Science 1992, 257, 219; b) Anton, I.; Desabata, I.; Vekas, L. J. Magn. Magn. Mater. 1990, 85, 219; c) 
Odenbach, S.!Adv. Colloid Interface Sci. 1993, 46, 263. 
6 Koper, O.; Lagadic, I.; Klabunde, K. J. Chem. Mater. 1997, 9, 838. 
7 Zandonella, C. Nature 2001,410, 734. 
8 Santini, J. T.; Cima, M. J.; Langer, R. Nature 1999, 397, 335. 
9 Kuchibhatla, S. V. N. T.; Karakoti, A. S.; Bera, D.; Seal, S. Prog. Mater. Sci. 2007, 52, 699. 
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1.1.1. Types of Metal Based Nanoparticles  

Nanoparticles can be divided in several categories. Herein we will try to summarize the ones 

which are most relevant to our work and introduce their main features.  

1.1.1.1. Plasmonic Nanoparticles  

Plasmonic nanoparticles are a class of nanoparticles which are highly efficient at absorbing and 

scattering light and typically contain gold and silver particles with diameters ranging from 10-150 

nm. In these particles the electron in the nanometal has interaction with the wavelength of light,10 

which depends on the size, shape and surface coating, and is responsible for the change in color 

of the nanoparticles. It is interesting to know that people already started to use this feature in art 

before understanding the fundamental and physical properties behind these particles. One 

example is the Lycurgus cup, which remains from roman smithery. Made from ruby glass, this 

cup looks green in daylight but when it is illuminated from inside it turns red because of the small 

gold and silver nanoparticles in the glass with a size of 50-100 nm.11  

 

 

 

 

 

 

 

 

 
 

Figure 1. The Lycurgus cup illuminated with ambient lighting (left) and illuminated from inside (right) (British 
Museum; AD fourth century). Picture taken from reference 11. 
 

Plasmonic nanoparticles have plenty of applications in Raman spectroscopy, sensing, catalysis 

and also biology.12 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 Shuwen, Z.; Xia, Y.; Wing-Cheung, L.; Yating. Z.; Rui, H.; Xuan-Quyen, D.; Ho-Pui, H.; Ken-Tye, Y. Sens. 
Actuator B-Chem. 2013, 176, 1128.  
11 Leonhardt, U. Nat. Photonics 2007, 1, 207.  
12 a) Al-Akraa, I.; Mohammad, A.; El-Deab, M.; El-Anadouli, B. Int. J. Electrochem. Sci. 2013, 8, 458; b) Dreaden, E. 
C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740; c) Eustis, S.; El-
Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209. 
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1.1.1.2. Quantum Dots 

Highly fluorescent semiconductor nanocrystals or quantum dots (QDs) are another relevant class 

of inorganic nanomaterials with dimensions between 1 and 10 nm. Quantum dots had been 

theorized in the 70's but were not made until the 80's.13  

Most of the QDs typically contain core/shell structures where the core part is covered with 

another semiconductor material to protect and enhance their optical properties. 

Early QDs involved a CdSe core with ZnS shell but afterwards they were developed using other 

alloy compositions because of the cytotoxicity of the cadmium ion. Thus, for making QDs more 

biocompatible, the synthetic pathway was changed to cadmium-free quantum dots (CFQDs). For 

instance silicon QDs (Si QDs), carbon dots (C-dots), graphene QDs (GQDs), Ag2Se, Ag2S, InP or 

CuInS2 /ZnS.14 

QDs have a lot of applications in biological imaging, and especially in drug delivery.15 Also in 

the industry they have found applications in LEDs, solid state lighting, displays and 

photovoltaic.16 

1.1.1.3. Magnetic Nanomaterials 

Magnetic nanoparticles are one class of nanomaterial which contains at least one magnetic 

element. They can be composed of a series of metals like cobalt and nickel, alloys like 

iron/platinum and metal oxides like iron oxides17 and ferrites.18 

These materials have applications in different forms, for example in solution as ferrofluids for 

audio speakers,19 as surface functionalized particles for biosensing applications,20 as particle 

arrays in magnetic storage media,3 or as contrasting agents in magnetic resonance imaging.21 

Such disparate applications are testimony to their unique properties. For instance, magnetic 

nanoparticles are able to remotely heat when exposed to an alternating magnetic field due to the 

absorption of energy from the magnetic field and conversion into heat, mainly Brownian 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 a) Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763; b) 
Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biomaterials 2007, 28, 4717. 
14 Zhu, J.-J.; Li, J.-J.; Huang, H.-P.; Cheng, F.-F. Quantum Dots for DNA Biosensing, Springer Science & Business 
Media, 2013, 91. 
15 Qi, L.; Gao, X. Expert Opin. Drug Deliv. 2008, 5, 263. 
16 a) Vahala, K. J. Nature 2003, 424, 839; b) Yoffe, A. D. Adv. Phys. 2001, 50, 1; c) Nirmal, M.; Brus, L. Acc. Chem. 
Res. 1999, 32, 407; d) Sargent, E. H. Nature Photon. 2012, 6, 133. 
17 Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Chem. Rev. 2008, 108, 2064. 
18 Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359.!
19 Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Int. Mater. Rev. 2004, 49, 125. 
20 a) Blanc-Beguin, F.; Nabily, S.; Gieraltowski, J.; Turzo, A.; Querellou, S.; Salaun, P. Y. J. Magn. Magn. Mater. 
2009, 321, 192; b) Cavalli, G.; Banu, S.; Ranasinghe, T.; Broder, G. R.; Martins, H. F. P.; Neylon, C.; Morgan, H.; 
Bradley, M.; Roach, P. L. J. Comb. Chem. 2007, 9, 462; c) Togawa, K.; Sanbonsugi, H.; Sandhu, A.; Abe, M.; 
Narimatsu, H.; Nishio, K.; Handa, H. Jpn. J. Appl. Phys. 2005, 44, 1494. 
21!a) Kooi, M. E.; Cappendijk, V. C.; Cleutjens, K.; Kessels, A. G. H.; Kitslaar, P.; Borgers, M.; Frederik, P. M.; 
Daemen, M.; van Engelshoven, J. M. A. Circulation 2003, 107, 2453; b) Trivedi, R. A.; U-King-Im, J. M.; Graves, 
M. J.; Cross, J. J.; Horsley, J.; Goddard, M. J.; Skepper, J. N.; Quartey, G.; Warburton, E.; Joubert, I.; Wang, L. Q.; 
Kirkpatrick, P. J.; Brown, J.; Gillard, J. H. Stroke 2004, 35, 1631. 
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relaxation and Neel relaxation.22 

1.1.2. Application of Magnetic Nanoparticles 

There is a growing interest to find new properties and applications for magnetic nanoparticles, 

with a very promising future for their use in life sciences.  

However, a common solution is not feasible, since each application of the magnetic nanoparticles 

requires different properties. For example,! for biomedical applications, they should display a 

superparamagnetic behavior at room temperature. Also in therapeutical, biological! and medical 

diagnosis applications, magnetic particles need to be stable in water at pH 7 and in a 

physiological environment.23 In data storage industry, it is required to have particles with stable 

and switchable magnetic moments to have bits of information that are not affected by 

temperature.24 Magnetic nanoparticles are also used in waste water treatment as a practical 

sorbent to separate contaminants from water. At the end, they are separated from water by an 

applied magnetic field.25 They can also be utilized as surface functionalized particles for 

biosensing applications26 or as particle arrays in magnetic storage media.3 

Indeed, in industry hematite and magnetite were utilized as catalysts for a number of important 

reactions, such as the desulfurization of natural gas, the synthesis of NH3, and the high-

temperature water-gas shift reaction. Some other reactions like the Fisher-Tropsch synthesis of 

hydrocarbons, the dehydrogenation of ethylbenzene to styrene, the oxidation of alcohols, and the 

large-scale synthesis of butadiene involve processing with magnetic nanoparticles.27 They also 

have applications in magnetic inks and magnetic memory devices.28  

In the case of biomedical applications of magnetic nanoparticles, they are classified as in vivo 

(inside the body) or in vitro (outside the body). The latter include diagnostic separation, selection, 

and magnetorelaxometry, whereas in vivo applications involve therapeutic applications such as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22 Kittel, C. Introduction to solid state physics. 8th ed. Hoboken, NJ: John Wiley & Sons; 2005. 
23 a) Garcell, L.; Morales, M. P.; Andres-Verges, M.; Tartaj, P.; Serna, C. J. J. Colloid Interface Sci. 1998, 205, 470; 
b) Ersoy, H.; Rybicki, F. J. J. Magn. Reson. Imaging 2007, 26, 1190. 
24 Akbarzadeh, A.; Samiei, M.; Davaran, S. Nanoscale Res. Lett. 2012, 7,144.!
25 Girginova, P. I.; Daniel-da-Silva, A. L.; Lopes, C. B.; Figueira, P.; Otero, M.; Amaral, V. S.; Pereira, E.; Trindade, 
T. J. Colloid Interface Sci. 2010, 345, 234. 
26 Miller,!M. M.; Prinz, G. A.; Cheng, S. F.; Bounnak, S. Appl. Phys. Lett. 2002, 81, 2211. 
27 a) Park, S. J.; Kim, S.;!Lee S.;!Khim Z. G.;!Char K.;!Hyeon, T.  J. Am. Chem. Soc, 2000, 122, 8581; b) Dumestre F.; 
Chaudret B.; Amiens C.; Fromen M. C.; Casanove M. J, Renaud, P.; Zurcher, P. Angew. Chem. Int. Ed. 2002, 41, 
4286; c) Dumestre, F.; Chaudret, B.; Amiens, C.; Renaud, P.; Fejes, P. Science 2004, 303, 821. 
28 a) Prozorov, T.; Mallapragada, S. K.; Narasimhan, B.; Wang, L.; Palo, P.; Nilsen-Hamilton, M.; Williams, T. J.; 
Bazylinski, D. A.; Prozorov, R.; Canfield, P. C. Adv. Funct. Mater. 2007, 17, 951; b) Jun, Y. W.;!Choi, J. S.;!Cheon, J. 
Angew. Chem. Int. Ed. 2006, 45, 3414; c) Nunez, N. O.;!Tartaj, P.;!Morales, M. P.;! Pozas, R.;!Ocana, M.; Serna, J. C. 
Chem. Mater. 2003, 15, 3558. 
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hyperthermia or drug-targeting and diagnostic applications such as nuclear magnetic resonance 

imaging (MRI).29 

This thesis will focus on the application of magnetic nanoparticles as a versatile support that can 

be used as a practical platform to anchor and magnetically recover catalysts. In the absence of an 

external magnetic field, the magnetic!nanoparticles are dispersed in the reaction media like any 

other nanoparticle. When a magnetic field is applied, the magnetic nanoparticles are attracted 

towards the magnet, so they can be removed from reaction media through convenient magnetic 

separation and reused. 30 

1.1.3. Synthesis of Magnetic Nanostructures 

The synthesis of nanoparticles can be done with two approaches: top-down and bottom-up. In 

top-down pathway, the synthesis begins from a bulk starting material, which is converted to the 

nanoparticles by means of physical or chemical synthesis. Top-down approach has some 

advantages such as low cost and high volume manufacturing capability. However it involves 

some issues making difficult the constant of size and shape.  

In contrast, in the bottom-up approach, the synthesis starts from atoms, then molecules and 

nanoparticles are formed by self-assembly.  

Several methods can be used to synthesize magnetic nanoparticles such as microemulsions,31 sol-

gel synthesis,32 sonochemical reactions,33 hydrothermal reactions,34 hydrolysis and thermolysis of 

precursors, 35flow injection syntheses 36and electrospray synthesis.37 

With such a wide choice, there are two main keys to find the best approach: the first one is to 

select a process that leads to monodispersed magnetic nanoparticles, whereas the second 

important point is to develop a reproducible method that can be industrialized without any 

complex purification procedure. Figure 2 summarizes the three most important pathways for the 

preparation of magnetic nanoparticles, chemical synthesis being the most common way. Some of 

these methods will be explained in more detail hereafter.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29 a) Piao, Y.; Kim, J.; Bin, N. H.; Kim, D.; Baek, J. S.; Ko, M. K.; Lee, J. H.;!Shokouhimehr, M.;!Hyeon, T. Nature 
Materials 2008, 7, 242; b) Liu, C.; Wu, X. W.; Klemmer, T.; Shukla, N.; Weller, D. Chem. Mater. 2005, 17, 620; c) 
Park, J. I.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5743. 
30 Baig, R. B. N.; Varma, R. S. Chem. Commun. 2013, 49, 752.!
31 Chin, A. B.; Yaacob, I. I. J. Mater. Proc. Technol. 2007, 191, 235.  
32 Albornoz, C.; Jacobo, S. E. J. Magn. Magn. Mater. 2006, 305, 12. 
33 Kim, E. H.; Lee, H. S.; Kwak, B. K.; Kim, B. K. J, Magn. Magn. Mater. 2005, 289, 328. 
34 Wan, J.; Chen, X.; Wang, Z.; Yang, X.; Qian, Y. J. Cryst. Growth. 2005, 276, 571. 
35 Kimata, M.; Nakagawa, D.; Hasegawa, M. Powder Technol. 2003, 132, 112. 
36 Alvarez, G. S.; Muhammed, M.; Zagorodni, A. A. Chem. Eng. Sci. 2006, 61, 4625. 
37 Basak, S.; Chen, D.-R.; Biswas, P. Chem. Eng. Sci. 2007, 62, 1263.!
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Figure 2. A comparison of published work on the synthesis of magnetic nanoparticles by three different routes.38 
 

1.1.3.1. Chemical Synthesis Method 

When trying to find the proper method for synthesizing magnetic nanoparticles, some parameters 

should be considered. There are some factors like phase purity and morphology of the particles 

that allow controlling the particle size, decreasing the aggregation of particles and achieving 

regular size distribution. For reliable reproducibility, it is essential to have enough knowledge 

about the most important factors for the formation of particles of the desired phase.  

In this part, the focus is on the chemical methods because of cost effectiveness of the bulk 

quantity production, control of the particle size and size distribution, morphology and 

agglomeration level. 

La Mer and Dinegar39 showed that the metal salt is reduced to zero valent metal atoms. These 

atoms collide in reaction media to produce stable ‘seed’ nucleus in an irreversible step. In order 

to start nucleation, the concentration of metal atoms in solution should be high enough to achieve 

a specific concentration called ‘supersaturation’.40  
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38 Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Adv. Drug Deliv. Rev. 2011, 63, 24. 
39 La Mer, V. K, Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. 
40 Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59. 
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Figure 3. (a) Description of the La Mer model: separate nucleation and growth for the synthesis of monodisperse 
nanoparticles; (b) a typical ‘‘hot-injection’’ set-up to achieve the burst nucleation in (a). Picture taken from reference 1b. 
 

The main methods of chemical synthesis of magnetic nanoparticles are the following: 

 

Coprecipitation 

The coprecipitation method is a simple and productive procedure. Iron oxide nanoparticles are 

produced by an ageing stoichiometric mixture of ferrous and ferric salts in aqueous media. The 

shape, size and composition of nanoparticles are determined by the Fe3+ and Fe2+ ratio, the pH of 

the solution, the temperature, and the ionic strength of the media. The special properties of 

coprecipitation method such as ease of implementation and lack of hazardous materials and 

procedures make it appropriate for biomedical applications.41 

 

Thermal Decomposition 

This method involves the chemical decomposition of the substance at the appropriate 

temperature. During this step, the breaking of the chemical bond will take place. This thermal 

decomposition pathway involves organometallic compounds such as iron (III) acetylacetonate in 

organic solvents (ethylenediamine or benzyl ether) with surfactants such as oleic acid, 

oleylamine, polyvinyl pyrrolidone (PVP), cetyltrimethyl ammonium bromide (CTAB) and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
41 a) Massart, R. IEEE Trans. Magn. 1981, 17, 1247; b) Zhao, Y.; Qiu,!Z.; Huang, J. Chin. J. Chem. Eng. 2008, 16, 
451; c) Indira,!T. K.; Lakshmi,!P. K. Int. J. Pharm. Sci. Nanotech. 2010, 3, 1035; d) Massart, R.; Cabuil, V. J. Chem. 
Phys. 1987, 84, 967; e) Sjogren,!C. E.; Briley-Saebo,!K.; Hanson,!M.; Johansson, C. Magn. Reson. Med. 1994, 31, 
268. 
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hexadecylamine. This approach has been used to control size distribution (4-45 nm) and 

morphology (spherical particles, cubes). 42  Sun, Zeng et al. presented the fabrication of 

monodisperse magnetite nanoparticles with size ranges of 2-20 nm by decomposition of iron (III) 

acetylacetonate at 260 °C in the presence of benzyl ether, oleic acid and oleylamine.43 

The thermal decomposition method was also used by Nogués et al. to prepare highly mono 

disperse cubic and spherical maghemite (Fe2O3) nanocrystals.44 They observed formation of 

monocrystals whose size and morphology could be controlled by the ratio of precursors and the 

decomposition time. Spherical nanoparticles resulted from short times (2-4 h) while particles with 

cubic morphology could be obtained in longer times (10-12 h). 

!
Figure 4. High resolution TEM images showing the mono disperse (a) nanosphere and (b) nanocubes achieved by the 

thermal decomposition method. Picture taken from reference 44. 

 

Hydrothermal Synthesis 

In this method, formation of particles is performed in aqueous media in reactors or autoclaves 

where the pressure can be more than 2000 psi and temperature can be above 200 °C. There are 

two main pathways for the formation of ferrites through hydrothermal conditions: hydrolysis and 

oxidation or neutralization of mixed metal hydroxides.45 Results showed that the size of Fe3O4 

particles increased with longer reaction times and higher water content caused the precipitation of 

larger Fe3O4 particles.46 Also, when the temperature is increased, the nucleation process gets 

faster than crystal growth, which gives rise to nanoparticles with the smallest size. On the other 

hand, longer reaction times lead to larger nanoparticles because crystal growth overcomes the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
42 a) Jana, N. R.; Chen, Y.; Peng, X. Chem. Mater. 2004. 16. 3931; b) Rockenberger, J.; Scher, E. C.; Alivisatos,!A. P. 
J. Am. Chem. Soc. 1999. 121, 11595. 
43 a) Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204; b) Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. 
M.; Wang, S. X.; Li, G. J. Am. Chem. Soc. 2004, 126, 273. 
44 Salazar-Alvarez, G.; Qin, J.; !epelák, V.; Bergmann, I.; Vasilakaki, M.; Trohidou, K. N.; Ardisson,  J. D.; Macedo, 
W. A. A.; Mikhaylova, M.; Muhammed, M.; Baró, M. D.; Nogués, J. J. Am. Chem. Soc. 2008, 130, 13234.! 
45 Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Encyclopedia of Nanoscience and 
Nanotechnology. Nalwa, H. S, Ed. American Scientific Publishers: Valencia, CA, 2004, 1, 815. 
46 a) Lu, A.-H.; Salabas, E.; Schüth, F. Angew. Chem. Int. Ed. 2007, 46, 1222; b) Faraji, M.; Yamini, Y.; Rezaee, M. J. 
Iran Chem. Soc. 2010, 7, 1. 
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nucleation process.47 

 

Synthesis of Magnetic Nanoparticles by Water-In-Oil Methods 

The microemulsion technique is another important procedure to synthesize MNPs. First water-in-

oil (w/o) microemulsions are formed by amphoteric surfactants. Normally, water creates a 

microdroplet surrounded by a monolayer of surfactant molecules organized with their polar heads 

toward the aqueous core, known as the water-pool, and the hydrophobic tails in contact with the 

bulk nonpolar solvent. With suitable surfactants, chemical composition and appropriate 

concentration of reactants, micellar cores can play a role as nanoreactors to form nanoparticles.48 

Different forms of nanoparticles can be generated in microemulsion systems. The water-in-oil 

microemulsion technique was used to synthesize iron nanoparticles, polymer coated magnetite 

nanoparticles and other nanoparticles such as gold, platinum or copper.49 

 

 
Figure 5. A reverse micelle (water in oil micelle) that encapsulates a nanoparticle within the aqueous core. 

 
Decomposition of Metal-Containing Compounds on Ultrasonic Treatment 

In this process metal carbonyls and their derivatives are used as precursors, albeit other 

organometallic compounds have also been used successfully. For example, Co nanoparticles were 

synthesized from solution of Co2(CO)8 in toluene by ultrasound-induced decomposition.50 

1.1.4. Coatings and Stabilization (Core-Shell) 

Surface modification plays an important role in the successful application of nanoparticles by 

improving stability, preventing agglomeration or improving biocompatibility. Moreover it 

provides additional functionalities, which allow anchoring a given catalyst, functionalization with 

different linkers or drug release strategies. In summary, core-shell strategy gives the chance to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
47 Zheng, Y. H.; Cheng, Y.; Bao, F.; Wang, Y. S. Mater. Res. Bull. 2006, 41, 525. 
48 a) Das, D.; Das, P. K. Langmuir 2003, 19, 9114; b) Deng, Y.; Wang, L.; Yang, W.; Fu, S.; Elaissari, A. J. Magn. 
Magn. Mater. 2003, 257, 69. 
49 Atkins, P.; Jones, L. Chemical Principles: The Quest for Insight, 2nd Ed. W. H. Freeman: 2001, 1024. 
50 Yin, J. S.; Wang, Z. L. Nanostruct. Mater. 1999, 10, 845. !
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merge multiple functionalities on a single nanoparticle. 

MNPs tend to aggregate because of the Brownian motion of bare nanoparticles putting them in 

close contact in combination through attractive Van der Waals and magnetic dipole-dipole 

interactions. As outcome, magnetic and nanoscale properties might be lost. If these particles are 

utilized in catalysis, agglomeration affects the catalytic activity because of the decreasing number 

of accessible reactive groups and diminished specific surface area.51 In addition, nanoparticles of 

some metals are known to be pyrophoric, so finding an appropriate route to protect them is an 

important task.52 

When it comes to in vivo application of MNPs one should take into account possible 

biodegradation when exposed to the biological system, as well as the formation of large 

aggregates. In this case, MNPs must be encapsulated with a biocompatible material.53 

In addition to coating magnetic nanoparticles with a material to improve colloidal stability and 

biocompatibility, an additional concern is preventing further oxidation of the magnetic core 

which would alter its physical properties. In terms of drug delivery, magnetic nanoparticles are 

potential candidates for drug tracking with magnetic resonance imaging and the thermal delivery 

of a therapeutic agent.54 

Surface coating provides magnetic nanomaterials with an outer shell, which can be of inorganic 

nature like silica, noble metals like gold or a biocompatible polymer. On the other hand, the 

choice of coating on NPs is based on the envisaged application. Organic molecules such as 

hydroxyl, carboxyl, amino or aldehyde introduce a functional group that allows for further 

functionalization. Polymers are interesting due to their biocompatibility and biodegradability. 

Coating by metals or metal oxides, in some cases, could increase the magnetic properties of 

NPs.55 

 

1.1.4.1. Silica Coating 

One of the most promising and important approaches in the development of core shell 

nanoparticles is the amorphous silica layer. The properties of silica are unique since it is 

nontoxic, biocompatible, optically transparent, chemically inert, thermally stable, allows 

regulation of the coating process, gives! controlled porosity and has a well-known surface 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
51 Majewski, P.; Thierry, B. Crit. Rev. Solid State Mater. Sci. 2007, 32, 203. 
52 Kitahara, H.; Oku, T.; Hirano, T.; Suganuma, K. Diamond Relat. Mater. 2001, 10, 1210. 
53 a) Muldoon, L. L.; Sandor, M.; Pinkston, K. E.; Neuwelt, E. A. Neurosurgery 2005, 57, 785; b) Moghimi, S. M.; 
Hunter, A. C.; Murray, J. C. Pharmacol. Rev. 2001, 53, 283; c) Sosnovik, D. E.; Nahrendorf, M.; Weissleder, R. 
Circulation 2007, 115, 2076. 
54 a) Sun, Y.; Duan, L.; Guo, Z.; DuanMu, Y.; Ma, M.; Xu, L.; Zhang, Y.; Gu, N. J. Magn. Magn. Mater. 2005, 285, 
65; b) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995. 
55 Wu, W.; He, Q.; Jiang, C. Nanoscale Res. Lett. 2008, 3, 397. 
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chemistry.56 

Indeed, surface modifications are easy because of the existence of plenty silanol groups on the 

silica layer. These silanol groups can be modified with different linkers or coupling agents to 

anchor ligands. Moreover, silica layers afford magnetic nanoparticles which are more compatible 

with biological systems.57  

Several methods have been reported for the preparation of silica coated magnetic core shell 

nanoparticles; the most common reported pathways consist in reverse microemulsion synthesis 

and the Stöber sol-gel process.58 

In reverse microemulsion method, non-ionic surfactants like Brij30 (non-ionic polyoxyethylated 

lauryl ether surfactant), Igepal CO-520 or Tritron-X are used in the formation of micelles. The 

micelles are used to control the extent of silica shell around the particles by hydrolysis and 

condensation of tetraethyl orthosilicate (TEOS).59 The thickness of silica shell can be controlled 

by the amount of TEOS or nanoparticles.  
 

 
 

 
 
Figure 6.!Procedure for coating of SiO2 on the surface of Fe3O4 NPs with reverse microemulsion method. Picture 
taken from reference 59d. 

 
The so-called Stöber method is the fastest and simplest method for synthesizing monodispersed 

spherical silica particles with the size between 20 nm and 2000 nm. In this pathway, a silica 

precursor such as TEOS is hydrolyzed and condensed in an ethanolic medium in the presence of 
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56 a)  Noh, M. S.; Jun, B. H.; Kim, S.; Kang, H.; Woo, M. A.; Minai-Tehrani A.; Kim, J. E.; Kim, J.; Park, J.; Lim, 
H.T. Biomaterials 2009, 30, 3915; b)!Zhao, W.; Gu, J.; Zhang, L.; Chen, H.; Shi, J. J. Am. Chem. Soc. 2005, 127, 
8916; c)!Nooney,!R. I.; Dhanasekaran,!T.; Chen, Y.; Josephs, R.; Ostafin, A. E. Adv. Mater. 2002, 14, 529.  
57 a) Philipse, A. P.; van Bruggen, M. P. B.; Pathmamanoharan, C. Langmuir 1994, 10, 92; b) Liu, Q.; Xu, Z.; Finch, 
J. A.; Egerton, R. Chem. Mater. 1998, 10, 3936; c) Liu,!X. Q.; Ma,!Z. Y.; Xing,!J. M.; Liu,!H. Z.;  J. Magn. Magn. 
Mater. 2004, 270, 1. 
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Magnetic Nanomaterials. Weinheim, Wiley-VCH, 2009, 259. 
59!a) Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Langmuir 2001. 17, 2900; b) Yan, 
S.; Yin, J.; Zhou, E. Colloids Surf. A. 2006, 287, 153; c) Zhang, M.; Cushing, B. L.; O’Connor, C. J. Nanotechnology 
2008, 19, 1; d) Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H. Chem. Mater. 2012, 24, 4572. 
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ammonia at room temperature.60 

 In the case of preparing silica shell nanoparticles based on the Stöber method, silica shell is 

formed by the hydrolysis and condensation of tetraethoxysilane on the surface of nanoparticles in 

an aqueous solution containing ethanol and ammonia.61 

 

1.1.4.2. Gold Coating 

Another inorganic coating commonly used as a shell around particles is gold, which improves 

their stability in aqueous dispersions. Also, gold-coated core shell nanoparticles have plenty of 

applications in sensors, drug delivery and biodetection technologies.62  

The main advantages of the gold shell are its high chemical stability, biocompatibility and the 

affinity for binding to amine and thiol terminal groups in organic molecules.63  

Despite these advantages one must bear in mind that gold nanoshells should be thin enough in 

order to keep the magnetic properties of the magnetite core. 

Dumbbell-like Fe3O4@Au nanoparticles were synthesized by decomposing iron pentacarbonyl, 

Fe(CO)5, in the presence of oleic acid and oleylamine on the surface of gold nanoparticles.64 The 

size of nanoparticles could be modulated by some factors like the temperature of injection of 

HAuCl4 (as precursor for synthesis of Au NPs), or the HAuCl4/oleylamine ratio.  

 

 
Scheme 1. Dumbbell-like Fe3O4@Au nanoparticles. 

 

1.1.4.3. Polymers 

Biocompatibility, or the ability of an engineered system to fulfill its intended application while 

minimizing undesirable interactions within the body, is a critical issue when using NPs in vivo.  

In the case of polymer functionalized nanoparticles, the biocompatibility will be increased since 

the polymer layer helps shielding them from unintended biological interactions.65 
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The polymeric coating of nanoparticles can be divided in two groups: synthetic polymers like 

poly(ethyleneglycol) (PEG),66 poly(vinyl alcohol) (PVA),67 poly(lactic acid) (PLA),68 alginate,69 

polymethylmethacrylate (PMMA),70 and natural polymers such as chitosan,33 gelatin, 71 starch72 

and dextran.73  

 

1.1.4.4. Functionalization with Silanes 

Bifunctional silanes are a class of molecules with a general chemical formula Y-(CH2)n-SiR3. Y 

is the headgroup functionality that can be anchored to other molecules such as organocatalysts, 

antibodies or immunoglobulins. On the other hand, (CH2)n is an alkyl chain acting as a spacer of 

tunable length and SiR3 the anchor group by which the silane will be grafted to the metal oxide 

surface. Silanes bind to the metal oxide surface through adsorptive bond or covalent bond. Their 

deposition on the surface of metal oxide nanoparticles takes place in two steps: (i) 

trimethoxysilane condenses to silane polymers in the presence of acid; (ii) the polymer forms a 

covalent bond with a hydroxy group on the surface of metal nanoparticles through a dehydration 

reaction, which leads to the formation of Si-O bonds.17 

 

 
 

Scheme 2. Chemical reactions of silane-coupling agents on magnetic particles. 
 

Perhaps one of their main advantages is the wide variety of commercially available choices, 

which include silanes with different functionalities such as amino, cyano, carboxylic acid, azide, 
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68 Chen, F.; Gao, Q.; Hong, G.; Ni, J. J. Magn. Magn. Mater. 2008, 320, 1921. 
69 Morales, M. A.; Finotelli, P. V.; Coaquira, J. A. H.; Rocha-Leão, M. H. M.; Diaz-Aguila C.; Baggio-Saitovitch, E. 
M.; Rossi, A. M. Mater. Sci. Eng. C. 2007, 28. 253. 
70 Zhu, D. M.; Wang, F.; Han, M.; Li, H. B.; Xu, Z.; Chin. J. Inorg. Chem. 2007, 23, 2128. 
71 Gaihre, B.; Aryal, S.; Khil, M. S.; Kim, H. Y. J. Microencapsul. 2008, 25, 21.  
72 Wang, W.; Zhang Z. K.; J. Dispersion Sci. Technol. 2007, 28, 557. 
73 Bautista, M. C.; Bomati-Miguel, O.; Morales, M. P.; Serna, C. J.; Veintemillas-Verdaguer S. J. Magn. Magn. 
Mater. 2005, 293, 20.!
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etc.74 Some of these bifunctional silanes are shown in Figure 7.  

 

 
 

Figure 7. Bifunctional silanes. 

1.1.4.5. Carbon 

Another alternative way for protecting magnetic nanoparticles is using carbon which prevents 

them from corrosion and oxidation. A wide variety of methodologies have been used for the 

synthesis of carbon coating: for instance, electric arc discharge, catalytic pyrolysis of organic 

compounds, and the hydrothermal methods most of which are in small scale.75 Stark et al.76 

developed a method to synthesize carbon-coated ferromagnetic cobalt nanoparticles (Co/C) 

in large scale. 

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
74 Palma, R. D.; Peeters, S.; Van Bael, M. J.; Van den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; M. 
Guido. Chem. Mater. 2007, 19, 1821. 
75 a) Saito, Y. Carbon 1995, 33, 979; b) Junichi, N.; Chie, O.; Osamu, O.; Nobuyuki, N. Carbon 2006, 44, 2943; c) 
Taylor, A.; Krupskaya, Y.; Costa, S.; Oswald, S.; Krämer, K.; Füssel, S.; Klingeler, R.; Büchner, B.; Borowiak-Palen, 
E.; Wirth, M. P. J. Nanopart. Res. 2010, 12, 513; d) Bonanni, A.; Ambrosi, A.; Pumera, M. Chem. Eur. J. 2012, 18, 
4541. 
76 Grass, R. N.; Athanassiou, E. K.; Stark, W. J. Angew. Chem. Int. Ed. 2007, 46, 4909.  
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1.2. Catalysis 

 A catalyst is a substance that can accelerate the rate of a chemical reaction by reducing its 

activation energy without being consumed itself during the reaction. They play an important role 

in our daily life, from producing wine or vinegar, to the revolutionary processes of Haber-Bosch 

and Ostwald to produce ammonia or nitric acid. Indeed nowadays more than 90% of produced 

chemical compounds, such as pharmaceuticals, basic materials and chemicals, processed food, 

etc. are obtained by the effects of catalysts, mainly in heterogeneous catalytic processes 

(multiphase catalysis).77 

 

 
 

Figure 8. Potential energy diagram of a catalytic reaction. 
 

1.2.1. Heterogeneous or Homogeneous 

There are two main types of catalysis: heterogeneous or homogeneous. In the former, the catalyst 

is in a different phase than the reactants, while in the homogeneous, they are in the same phase.78 

Both processes have their own benefits and drawbacks. The reactions with homogeneous 

catalysts tend to be fast and have good conversion rate per molecule of the catalyst. However, 

separating them from the reaction media or reusing the catalyst is a challenging task.79 In the 

heterogeneous case separation of catalyst from reaction media is simplified although the reaction 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
77 a)! Schüth, F. Chem. Unserer Zeit. 2006, 40, 92; b) Thomas, J. M.; Thomas, W. J. Principles and Practice of 
Heterogeneous Catalysis, Vol. 1, Wiley-VCH, Weinheim, 1996. 
78 Philipse, A. P. J. Chem. Educ. 2011, 88, 59. 
79 a) Cole-Hamilton, D. J. Science 2003, 299, 1702; b) Cornils, B.; Herrmann, W. A. J. Catal. 2003, 216, 23. 
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rate is usually limited due to their lower surface area. In addition the reaction can be performed in 

both gas and liquid phase.80  

 

1.2.2. Asymmetric Catalysis 

Chirality of molecules is an important parameter in nature. Many compounds related to! living 

entities such as DNA, enzymes and hormones are chiral. Nature is able to select one enantiomer 

from its energetically identical enantiomer to build up life. This selection could give scientists a 

message about the importance of preparation of enantiomerically enriched products.81 These 

compounds have a lot of applications in pharmaceutical, agricultural, organic synthesis, and 

natural product chemistry.  

Indeed, both enantiomers of the same biologically active compounds such as drugs and 

agrochemicals have different bioactivity depending on their absolute configuration.82  

Many natural products present interesting biological properties. However, it is not always easy to 

isolate them in practical amounts. Thus, the synthesis of natural products83 is still an active area 

of research that allows to have access to the target compounds, as well as to derivatives with 

improved biological profiles.  

Finding efficient methods to prepare enantiomerically pure compounds has been a challenge 

during years. In 2001, Knowles, 84  Noyori, 85  and Sharpless 86  received the Nobel prize for 

developing asymmetric catalytic oxidation and hydrogenation reactions.  

In this approach, complexes involving a variety of metals such as Rh, Ru, Ir, etc. and many 

different ligands have been used to transform a prochiral substrate into a chiral molecule in a 

stereodirected manner.  

More recently, asymmetric catalysis was expanded to include small organic molecules as 

catalysts in what is known as organocatalysis. This approach overcomes some issues of transition 

metals such as their toxicity and high cost.87 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
80 Sheldon, R. A.; Downing, R. S. Appl. Catal. A 1999, 189, 163. 
81 a) Eschenmoser, A. Tetrahedron 2007, 63, 12821; b) Hein, J. E.; Blackmond, D. G. Acc. Chem. Res. 2012, 45, 
2045. 
82 Ando, Y.; Fuse, E.; Figg, W. D. Clin. Cancer Res. 2002 , 8, 1964.!
83 a) Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584; b) Dounay, A. B.; Overman, L. E.  Chem. Rev. 2003, 
103, 2945; c) Gaunt, M. J.; Johansson, C. C. C.  Chem. Rev. 2007, 107, 5596. 
84 Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. 
85 Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008. 
86 Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2024.!
87 Erkkila, A.; Majander, I.; Pihko,!P. M. Chem. Rev. 2007, 107, 5416. 
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1.2.2.1. Asymmetric Organocatalysis 

The first report for an asymmetric organocatalyzed reaction dates back to the 1970s by Hajos, 

Parrish, Eder, Sauer and Wiechert, when a simple amino acid (proline) was used as an 

enantioselective catalyst for the intramolecular aldol cyclization of a triketone.88 Afterwards, in 

2000 with two outstanding reports on chiral secondary amine catalysis (one by List, Lerner and 

Barbas and the other by MacMillan and co-workers,89 dealing respectively with enamine and 

iminium ion catalysis) the underlying principles were rationalized and organocatalysis as a field 

started.  

The enormous advantages of the metal-free organocatalysts were!obvious: they are non-toxic and 

usually less expensive than organometallic catalysts. Also, organocatalysts are generally 

insensitive to oxygen and moisture in the atmosphere because of their purely organic nature. 

Therefore, the use of special conditions like dry solvents and reagents, using particular reaction 

vessels or storage containers is avoided. The main benefit of organocatalysis is its high 

reproducibility and operational simplicity. If bulk use is considered, organocatalysts offer the 

advantages of low cost and easy preparation in large quantities. After the two initial reports in 

2000, a worldwide development in this field took place. Nowadays, organocatalysis plays a 

significant role in the field of enantioselective catalysis due to its potential for saving cost, time 

and energy, the simplicity of experimental procedures involved and the reduction in chemical 

waste.90 

1.2.3. Two Typical Groups of Organocatalysts 

Given their structural diversity, organocatalysts admit multiple classifications. One of the most 

important is made on the basis of the catalyst-substrate interaction. According to this, 

organocatalysts can be divided between those that estabilish a covalent bond with the substrate 

and those that do not, which mainly act by hydrogen bonding or ion pairing. In this thesis we 

willl deal with organocatalysts that bond covalently with substrates, in particular 

aminocatalysts.91 

1.2.3.1. Aminocatalysts 

Once the field of organocatalysts was opened, the development of new organocatalysts and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
88 a) Hajos, Z. G.; Parrish, D. R. German Patent DE 2102623, 29 July, 1971; b) Eder. U.; Sauer,!G.; Wiechert, R.; 
German Patent DE 2014757, 7 October, 1971; c) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. 1971, 83, 492; d) 
Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. 
89 a) List,!B.; Lerner, R. A.; Barbas, C. F.J. Am. Chem. Soc. 2000, 122, 2395; b) Ahrendt, K. A.; Borths,!C. J.; 
MacMillan,!D. W. C.; J. Am. Chem. Soc. 2000, 122, 4243. 
90 MacMillan,!D. W. C. Nature!2008, 455, 304. 
91 Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. 
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activation modes became a very atractive area. One of the subgroup of organocatalysts is 

aminocatalysts that can be defined as secondary or primary chiral amines acting through the 

activation of carbonyl compounds such as aldehydes and ketones to construct chiral carbonyl 

compounds.  

Chiral imidazolines, pyrrolidines and their derivatives and! !-amino acids, to name a few, are 

known as efficient aminocatalysts.92, 90, 87 In Figure 9 several aminocatalysts are shown.93  

 

 
Figure 9. selected examples of aminocatalysts. 

 

Given the broad functional group compatibility, the use of organocatalysts has been merged with 

photoredox catalysis94 or metal catalysts,95 allowing the synthesis of very complex molecules in 

straightforward manner.  

This section will breifly adress the different activation modes of aminocatalysts: enamine 

catalysis, dienamine catalysis, iminium catalysis and SOMO catalysis.  
 

Enamine Catalysis 

Enamines are nucleophilic intermediates formed upon condensation between an amine and an 

enolizable carbonyl compound. Enamines have the ability to react with electrophiles to provide 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
92 Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471;  
93 a) Rogozi"ska-Szymczak, M.; Jacek Mlynarski, J. Eur. J. Org. Chem. 2015, 6047; b) Zhang, L.; Fu, N.; Luo, S. 
Acc. Chem. Res. 2015, 48, 986; c) Reddy, G. M.; Ko, C-T.; Hsieh, K-H.; Lee, C-J.; Das, U.; Lin, W. J. Org. Chem. 
2016, 81, 2420; d) Wende, R. C.; Schreiner, P. R. Green Chem. 2012, 14, 1821; e) Bertelsen, S.; Marigo, M.; 
Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973; f) Srivastava, V. Asymmetric Catal. 
2014, 1, 8. 
94 a) Hopkinson, M. N.; Sahoo, B.; Li, J. L.; Glorius, F. Chem. Eur. J. 2014, 20, 3874; b) Lang, X.; Zhao, J.; Chen, X. 
Chem. Soc. Rev. 2016, 45, 3026. 
95 a) Deng, Y.; Kumar, S.; Wang, H. Chem. Commun. 2014, 50, 4272; b) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 
1337.   
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the corresponding !-functionalized products.96, 92 

 

 
Scheme 3. Enamine catalyst. 

 

Actually, an intermolecular aldol addition catalyzed by proline had been reported in the early 

seventies and is known as the Hajos-Parrish-Eder-Sauer-Wiechert reaction.  

 

 

 
Scheme 4. The Hajos-Parrish-Eder-Sauer-Wiechert reaction. 

 

Despite these early successes, it took a long time for synthetic organic chemists to identify and 

appreciate the importance of asymmetric organocatalysis. 

As mentioned before, the breakthrough discovery of organocatalysis happened in 2000 with two 

papers which introduced two new modes of activation of carbonyl compounds.  

The first one was reported by List, Lerner and Barbas who used proline as an organocatalyst for 

the asymmetric intermolecular aldol reaction between ketones and unmodified aldehydes 

(Scheme 5).  

 
Scheme 5.!Proline-catalyzed intermolecular aldol reaction. 

 

Afterwards, proline and its derivatives presented significant potential to catalyse different 

reactions such as Mannich reactions, Michael addition reactions, !-aminations, !-aminoxylations, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
96 a) List, B. Acc. Chem. Res. 2004, 37, 548; b) Pihko,!P. M.; Majander,!I.; Erkkilä, A. Top. Curr. Chem. 2010, 291, 
29. 
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alkylations and chlorination reactions among many others. Enamine catalysis will be explained in 

more detail in Chapter 2. 

 

Dienamine Catalysis 

This concept was found by Jørgensen and co-workers unexpectedly when they studied the 

iminium ion intermediate A from the reaction between 2-pentenal and a chiral amine-based 

catalyst (Scheme 6).93e They found that around 50% of intermediate is in the form of electron-rich 

dienamine B. This discovery inspired them to study the nucleophilicity of the !-position instead 

of the "-position. In this manner, they developed the first enantioselective organocatalytic 

strategy that targets the !-position of an #,"-unsaturated aldehyde. 

  

 
Scheme 6. Dienamine catalysis. 

 

Iminium Ion Catalysis 

In iminium ion catalysis the addition of an aminocatalyst to an #,"-unsaturated carbonyl structure 

generates an iminium ion. This is more electrophilic than its carbonyl precursor, and thus the 

carbonyl component is activated towards nucleophilic attack (Scheme 7, A). As mentioned before 

MacMillan and co-workers developed chiral imidazolidinones as catalysts for iminium ion 

activation for the enantioselective Diels-Alder reaction for #,"-unsaturated aldehydes with dienes 

in a pioneering work published in 2000 (Scheme 7, B). 
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Scheme 7. (A) Iminium catalyst, (B) MacMillan organocatalytic Diels-Alder reaction. 

 

In this example, the condensation of the catalyst with an enal leads to the formation of an 

iminium ion, which reacts as a dienophile with the diene leading to a Diels-Alder adduct. 

Iminium ion catalysis will be explained in more detail in Chapter 3. 

 

 SOMO Catalysis 

In 2000, MacMillan et al. introduced another kind of organocatalytic activation mode, SOMO 

(singly occupied molecular orbital) catalysis, by generating a three-!-electron radical cation from 

an electron-rich enamine by one-electron oxidation step.97 The high activity of the single 

occupied molecular orbital (SOMO) of this intermediate allows it to react with different 

nucleophiles at the "-carbon of the enamine (Scheme 8). 

 
 

 
Scheme 8. The principle of SOMO catalysis. 

 
SOMO-catalysis has been applied to asymmetric "-enolation, "-allylation and "-arylation of 

aldehydes.98 

1.3. Magnetic Nanoparticle as Supports for Asymmetric Catalysts 

The role of magnetite nanoparticles in science and technology is getting more and more 

significant because of their unique properties such as ease of availability, chemical inertness, high 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
97 MacMillan, D. W. C. Nature 2008, 455, 304. 
98 a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582; b) Jang, 
H.-Y.; Hong, J.-B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004; c) Sibi, M. P.; Hasegawa, M. J. Am. 
Chem. Soc. 2007, 129, 4124; d) Mukherjee, S.; List, B. Nature 2007, 447, 152; e) Bertelsen, S.; Nielsen, M.; 
Jørgensen, K. A. Angew. Chem. Int. Ed. 2007, 46, 7356. 
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surface area-to-volume ratio and excellent thermal stability. Also, magnetic nanoparticles 

(MNPs) are easy to separate from the reaction mixture with an external magnet, which means 

there is no need to use filtration and centrifugation, which helps to save energy and also reduce 

catalyst loss.99 

 

1.3.1. Common Techniques for Immobilization of Homogeneous Asymmetric Catalysts 

The immobilization of catalytic species onto a variety supports is strategy that aims at facilitating 

their separation from the reaction media with the ultimate goal of being able to reuse these 

catalytic materials as many times as possible$!Several methods are used to anchor chiral catalysts 

to an insoluble support, each of them having their own advantages and drawbacks. !
The adsorption approach is a very facile method that relies in non-covalent interactions.  

However, catalysts anchored via adsorption tend to be unstable in the case only weak van der 

Waals interactions are in play. This causes catalyst leaching due to competing interactions with 

solvents and/or substrates (Figure 10a).  

Electrostatic interactions are another simple method, which can be applied to ionic catalytic 

species. In this case, the solid support can be either anionic or cationic, whatever is required for 

the catalyst to have ion-pairing interaction with support. Different supports like organic or 

inorganic ion-exchange resins, inorganic clays and zeolites can be used with this technique. 

However, there is a competition with other ionic species (either present in or produced during the 

reaction) in solution which eventually leads to catalyst instability and leaching. (Figure 10b) 

A third technique involves an entrapped catalytic complex inside of the pores of a solid support. 

In this case, the size of the metal complex is related to that of the window or tunnel of the porous 

solid. However this methodology is more complex than the two other ones (Figure 10c)  

Finally, we have covalent linkage strategy (Figure 10d), which is the strongest binding between 

linker or catalyst and a support. However, for covalent linkage, a complementary 

functionalization of the catalyst and the surface of support is required. On the other hand this 

modification gives rise to materials that are more stable than with any other technique.100 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
99 a) Shylesh, S.; Schnemann, V.; Thiel,!W. R. Angew. Chem. Int. Ed. 2010, 49, 3428; b) Polshettiwar, V.; Baruwati, 
B.; Varma,!R. S. Chem. Commun. 2009, 1837; c) Polshettiwar, V.; Varma,!R. S. Org. Biomol. Chem. 2009, 7, 37; d) 
Gawande,!M. B.; Branco, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 3371. 
100!Wang, Z.; Ding, K.; Uozumi, Y. Handbook of Asymmetric Heterogeneous Catalysis. Ding, K.; Y. Uozumi, Eds. 
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.!
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Figure 10. Strategies for immobilizing homogeneous chiral catalysts onto solid supports. 
 

1.3.1.1. The “Click Chemistry” 

To take inspiration on how to synthesize huge molecules one can turn to nature, which is able to 

make nucleic acids, proteins and polysaccharides based on carbon-heteroatom linkages. 

Following nature’s guidance, the term “click chemistry” was highlighted by Sharpless et al. 101 

and it refers to the development of powerful methods to build up organic molecules using blocks 

such as azides or alkynes. In addition, other reactions such as nucleophilic ring opening of 

aziridines and epoxides,!carbonyl chemistry, additions to carbon–carbon multiple bonds such as 

Michael additions and cycloaddition reactions such as Diels–Alder reaction could be mentioned 

in this area.102 However, among them the copper-catalyzed azide-alkyne cycloaddition (CuAAC) 

has attracted a lot of attention because of being very general, experimentally convenient, efficient 

and high-yielding. 

 
 

Scheme 9. Some examples of reactions based on the click chemistry concept. 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
101 Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. 
102 Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. 
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1.3.1.2. Azide-alkyne cycloaddition as “click reaction” 

The first examples of click chemistry, can be found in nature with numerous example of carbon-

heteroatom linkages, including nucleic acids, proteins, lipids and polysaccharides, which 

represent a simple way to generate large, diverse oligomers.  

In the lab, perhaps the most typical example of click chemistry is!$%&!copper(I)-catalyzed azide-

alkyne cycloaddition (CuAAC) developed independently by Meldal and Sharpless. CuAAC is a 

regioselective reaction through which an azide and a terminal alkyne form a 1,4-disubstituted-

1,2,3-triazole in the presence of a copper(I) catalyst and copper(I)-binding ligand, as shown in 

Scheme 10.103 

 

 

  
 

Scheme 10. CuAAC reaction. 

 

The 1,2,3-triazole heterocycle is useful in medicine and pharmaceutical applications due to its 

high chemical stability, strong dipole moment, aromatic character and hydrogen bond accepting 

capabilities.104 

Regarding to numerous drug compounds containing 1,2,3-triazoles, it can be said that click 

chemistry has sped up the process of drug discovery.!Examples of such drugs include tazobactam 

a,105 a penicillin derivative, resveratrol analogue b,106 and histone deacetylase inhibitor c (Figure 

11).107  

 

Figure 11. Some examples of drugs that contain 1,2,3-triazoles. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
103 a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057; b) Rostovtsev, V. V.; Green, L. G.; 
Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. 
104 Finn, M. G.; Fokin, V. V. Catal. Precious Met. 2010, 235.  
105 Bennett, I.; Broom, N. J.; Bruton, G.; Calvert, S.; Clarke, B. P.; Coleman, K.; Edmondson, R.; Edwards, P.; Jones, 
D.; Osborne, N. F. J. Antibiot. 1991, 44, 331. 
106 Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. Med. Chem. 2006, 
49, 467. 
107 Chen, Y.; Lopez-Sanchez, M.; Savoy, D. N.; Billadeau, D. D.; Dow, G. S.; Kozikowski, A. P. J. Med. Chem. 2008, 
51, 3437. 
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With a quick search one can realize that CuAAC has a very broad application in science 

including live cell labeling,108 peptide synthesis,109 bioconjugation,110 radiolabeling,111 synthesis 

and cross‐linking of polymers, dendrimers, hydrogels and microgels.112 

1.3.1.3. Functionalization of NPs and MNPs with CuAAC 

The CuAAC reaction has been successfully applied to a variety of scientific areas. Indeed its 

advantages have allowed application in materials chemistry, 113  dendrimer build-up, 114 

polymers,115 nanoparticle synthesis116 and interlocked molecules.117 

Due to its!high efficiency, mild reaction condition and versatile binding, the CuAAC has been 

used for modification of NPs surface and preparing active catalysts with high success. In this 

regard, some examples for modification of nanoparticles surface will be briefly mentioned.  

Au and Ag nanoparticles have been used in biology, medicine, and catalysis. Therefore. It would 

be interesting to functionalize them, and among all the methods to do so, CuAAC has proven 

very useful. In 2006, Fleming et al. described a method to functionalize the surface of Au NPs: 

first, the methyl-terminated chains in the surface of NPs were partially replaced with bromo-

functionalized thiol and afterwards the bromide was substituted by an azide. Then, several 

alkynes were anchored to the Au NPs via click chemistry. However for anchoring ethynyl 

compounds, the reaction requires longer times (24-96 h) and the yields reported for 1,2,3-

triazoles are between 5-54%.118 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
108 Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G. Bioconjugate Chem. 2010, 21, 1912. 
109 Lutz, J.‐F.; Zarafshani, Z. Adv. Drug Deliv. Rev. 60, 2008, 60, 958. 
110 a) Weckhuysen, B. M. Chem. Soc. Rev. 2010, 39, 4557; b) Trache, A.; Meininger, G. A. Total Internal Reflection 
Fluorescence (TIRF) Microscopy, in Curr. Protoc. Microbiol. 2A.2.1‐2A.2.22 (John Wiley & Sons, Inc., 2008). 
111 Sirion, U.; Kim, H. J.; Lee, J, H.; Seo, J, W.; Lee, B, S.; Lee, S. J.; Oh, S. J.; Chi, D. Y. Tetrahedron Lett. 2007, 48, 
3953. 
112 Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255, 2933. 
113 Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620. 
114 Franc, G.; Kakkar, A. Chem. Commun. 2008, 42, 5267. 
115 a) Dichtel, W. R.; Miljanic, O. S.; Spruell, J. M.; Heath, J. R.; Stoddart, J. F. J. Am. Chem. Soc. 2006, 128, 10388; 
b) Meldal, M. Macromol. Rapid Commun. 2008, 29, 1016. 
116 Boisselier, E.; Diallo, A. K.; Salmon, L.; Ruiz, J.; Astruc, D. Chem. Commun. 2008, 39, 4819. 
117 a) Megiatto, J. D., Jr.; Schuster, D. I. J. Am. Chem. Soc. 2008, 130, 12872; b) Megiatto, J. D., Jr.; Schuster, D. I. 
Chem. Eur. J. 2009, 15, 5444. 
118!Fleming, D. A.; Thode, C. J.; Williams. M. E. Chem. Mater. 2006, 18, 2327.!
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Scheme 11. “Click” functionalization of Au nanoparticle surfaces. 

 

In another report, Williams and coworkers first prepared 11-azidoundecane-1-thiol and then 

mixed alkyl thiol-protected gold nanoparticle with this linker to achieve azide-functionalized 

NPs.  

The CuAAC-based anchoring of the alkyne moiety was performed under microwave heating, 

which helped to keep reaction time under 10 minutes. The reported yield was between 78-100%, 

which is a big improvement for synthesizing modified Au NPs.119 
 
 

 

 
 

Scheme 12. Synthesis of the azide-functionalized gold nanoparticles. 

 
 
In another approach, alkyne-functionalized Ag NPs were obtained by reaction between silver 

nitrate and sodium borohydride in the presence of 4-(prop-2-ynyloxy)pyridine solution at room 

temperature. Then, azide-functionalized small molecules or polymers were added to the above 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
119 Sommer, W. J.; Weck, M. Langmuir 2007, 23, 11991. 
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alkyne-functionalized Ag NPs suspension for surface modification based on CuAAC reaction.120  

 

 
 

Scheme 13. Synthesis of alkyne-functionalized Ag NPs using in situ reduction of AgNO3. 
 
 
Surface modification of magnetic nanoparticles is also a big challenge due to their numerous 

applications in different fields such as biotechnology, medicine121 and catalysis.122 

Oleic-acid functionalized MNPs can undergo ligand exchange with phosphoric acid or carboxylic 

acid-containing ligands that introduce an azide group for further functionalization. Turro et al. 

reported that oleic acid on the surface of MNPs was replaced with phosphoric acid or a 5-

hexynoic acid ligand. TEM images did not show any aggregation. Afterwards, a CuAAC reaction 

was performed in the presence of CuSO4-sodium ascorbate to attach various functionalized 

molecules or polymers.123 

 
 

Scheme 14. Click reaction of magnetic nanoparticles. 

 

Click chemistry based on CuAAC was further extended and developed to control the assembly 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
120 Li, H.; Yao, Y.; Han, C.; Zhan, J. Chem. Commun. 2009, 4812. 
121 a) Gao, J.; Gu, H.; Xu, B. Acc. Chem. Res. 2009, 42, 1097;b) Fang, C.; Zhang, M. J. Mater. Chem. 2009, 19, 6258; 
c) Ali, I.; Uddin, R.; Salim, K.; Rajora, A. K.; Rather, M. A.; Wani, W. A.; Haque, A. Curr. Cancer Drug Targets 
2011, 11, 135; d) Oh, J. K.; Park, J. M. Prog. Polym. Sci. 2011, 36, 168–189. 
122 a) Tucker-Schwartz, A. K.; Garrell, R. L. Chem. Eur. J. 2010, 16, 12718; b) Gleeson, O.; Davies, G. L.; Peschiulli, 
A.; Tekoriute, R.; Gun’ko, Y. K.; Connon, S. J. Org. Biomol. Chem. 2011, 9, 7929; c) Yiu, H. H. P.; Keane, M. A. J. 
Chem. Technol. Biotechnol. 2012, 87, 583. 
123 White, M. A.; Johnson, J. A.; Koberstein, J, T.; Turro, N. J. J. Am. Chem. Soc. 2006, 128, 11356.!
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and organization of NPs into various multidimensional compounds. To this end, clickable MNPs 

were first prepared using alkyne and azide linkers and then they were assembled into stable 

magnetic colloidosomes by crosslinking NPs at water–oil interface using the CuAAC reaction 

under ambient conditions.  

This system is suitable for encapsulating and protecting sensitive molecules such as drugs and 

biomolecules. Unreacted azide and alkyne sites on the particles also provided attachment sites for 

further functionality.124 

 

 
Scheme 15.  Formation of magnetic colloidosomes through self-assembly at water–oil interface followed by interfacial 
crosslinking of NPs via CuAAC reaction. 
 

In another field of chemistry, CuAAC was applied to the construction of!dendrimers and also to 

the functionalization and introduction of multiple functionalities on their structure.125 

In summary, CuAAC is a remarkable reaction because of its mild conditions, which allows to run 

the reaction with low amounts of a cheap catalyst and affording the product in excellent yield and 

without byproducts. 126 

In our group and Prof. Reiser‘s group, the copper-catalyzed alkyne-azide cycloaddition has been 

successfully used for covalently anchoring plenty of organocatalysts onto different solid supports. 

These were tested in a variety of reactions such as aldol,127 Michael addition,128 !-aminoxylation 

of aldehydes and ketones, 129 Mannich,130!Friedel–Crafts alkylation131 or oxidation of alcohols132 

(Figure 12). 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
124 Samanta, B.; Patra, D.; Subramani, C.; Ofir, Y.; Yesilbag, G.; Sanyal, A.; Rotello, V. M. Small 2009, 5, 685. 
125 a) Joralemon, M. J.; O’Reilly, R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L. Macromolecules 
2005, 38, 5436; b) Ornelas, C.; Ruiz Aranzaes J.; Cloutet, E.; Alves, S.; Astruc, D. Angew. Chem. Int. Ed. 2007, 46, 
872; c) Goyal, P.; Yoon, K.; Weck, M. Chem. Eur. J. 2007, 13, 8801; d) Malkoch, M.; Schleicher, K.; Drockenmuller, 
E.; Hawker, C.J.; Russell, T.P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663. 
126 Zamboulis, A.; Moitra, N.; Moreau, J. J. E.; Cattoën, X.; Wong Chi Man, M. J. Mater. Chem. 2010, 20, 9322. 
127 Font, D.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2006, 8, 4653.  
128 a) Alza, E.; Cambeiro, X. C.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2007, 9, 3717; b) Keller, M.; Perrier, A.; 
Linhardt, R.; Travers, L.; Wittmann, S.; Caminade, A. M.; Majoral, J. P.; Reiser, O.; Ouali, A. Adv. Synth. Catal. 
2013, 355, 1748; c) Riente, P.; Mendoza, C.; Pericás, M. A. J. Mater. Chem. 2011, 21, 7350. 
129 Font, D.; Bastero, A.; Sayalero, S.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2007, 9, 1943. 
130 Sayalero, S.; Bastero, A.; Pericàs, M. A. Chem. Eur. J. 2009, 15, 10167. 
131 Riente, P.; Yadav, J.; Pericàs, M. A. Org. Lett. 2012, 14, 3668. 
132 Schätz, A.; Grass, R. N.; Stark, W. J.; Reiser, O. Chem. Eur. J. 2008, 14, 8262. !
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Figure 12. Supported organocatalysts with a triazole linker. 

 

1.4. Aims and objectives 

In the present thesis we aim to develop new functional materials based on magnetic nanoparticles 

and apply them in catalytic reactions. To that aim we will: 

1. Prepare hybrid materials based on magnetic nanoparticles, !-carrageenan and Jørgensen-

Hayashi catalysts. Then we will evaluate the activity of these catalysts for Michael 

addition of aldehydes to nitroalkenes (Chapter 2). 

2. Prepare an analogue of the second generation MacMillan catalyst and immobilize it onto 

Fe3O4 NPs and polystyrene. The result heterogeneous catalysts will be tested in the 

asymmetric Friedel-Crafts alkylation of indoles with ",#-unsaturated aldehydes (Chapter 

3). 

3. Prepare another hybrid material based on microporous organic polymers (MOPs) 

encapsulated with Pd nanoparticle and Co/C nanobeads. The activity of these catalysts 

will be evaluated in the hydrogenation and Suzuki cross-coupling reactions (Chapter 4). 
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2.1. Hybrid Materials 

Hybrid materials are a type of composites made of two substances or more combined in the 

molecular scale to give rise to a new material.1 This approach allows the preparation of materials 

with different properties with an increasing economical interest. Remarkably, even before 

humans started to use synthetic hybrid materials, a lot of examples could be found in nature such 

as carved structures found in radiolaria or diatoms, mollusc shells, bone or teeth tissues in 

vertebrates.2 And now, in the 21st century, there are broad applications such as photoactive 

coatings,3 hybrid organic–inorganic materials containing organic chromophores,4 biomaterials,5 

dental applications,6!bone tissue engineering,7 solar cells applications,8 or as sorbent for arsenic 

removal.9 Nowadays, hybrid materials constitute a research field on their own with a lot of 

potential for developing new materials. The number of publications from 1980s until 2013 

confirms the importance of this field and shows its fast-growing development (Figure 1). 

 

 

Figure 1. Diagram showing number of publications and patents in the field of inorganic-organic hybrid materials in 

the last decades. Source: SciFinder Scholar, Keywords: inorganic organic hybrid materials.10 

 
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
1 a) Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 1007; b) Nicole, L.; Rozes, L.; Sanchez, C. Adv. Mater. 2010, 22, 
3208. 
2 Sanchez, C.; Arribart, H.; Giraud-Guille, M. M. Nature Mater. 2005, 4, 277; b) Mann, S. in Biomimetic Materials 
Chemistry, ed. S. Mann, Wiley-VCH, Weinheim, 1997, p. 1.  
3 a) Boilot, J. P.; Chaput, F.; Gacoin, T.; Malier, L.; Canva, M.; Brun, A.; Lévy, Y.; Galaup, J. P. C. R. Acad. Sci. 
1996, 322, 27; b) Faloss, M.; Canva, M.; Georges, P.; Brun, A.; Chaput, F.; Boilot, J. P. Appl. Opt. 1997, 36, 6760. 
4 Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969. 
5 Shin, H.; Jo, S.; Mikos, A. G, Biomaterials 2003, 24, 4353. 
6 a) Wolter, H.; W. Storch, J. Sol–Gel Sci. Technol. 1994, 2, 93; b) Wolter, H.; Storch, W.; Ott, H, Mater. Res. Soc. 
Symp. Proc. 1994, 346, 143.  
7 Fragal, E. H.; Cellet, T. S. P.; Fragal, V. H.; Companhoni, M. V. P.; Ueda-Nakamura, T.; Muniz, E. C.; Silva. R.; 
Rubira, A. F. Carbohydr. Polym. 2016, 152, 734.  
8 Ginger, D. S.; Greenham, N. C. J. Appl. Phys. 2000, 87, 1361. 
9 Martínez-Cabanas, M.; López-García, M.; Barriada, J. L.; Herrero, R.; Sastre de Vicente, M. E. Chem. Eng. J. 2016, 
301, 83. 
10 Kickelbick, G. Hybrid Mater. 2014, 1, 39.  
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The fast development of technological applications increases the demand for greener materials 

which have to fulfil certain conditions in terms of energy consumption and sustainability profile. 

Thus, one of the biggest aims is to develop organic-inorganic hybrid materials to solve some of 

the issues posed by this situation. From the beginning of the industrial era, it was a big challenge 

to combine properties of organic and inorganic compounds to prepare new materials with 

improved features, characteristics and promising applications. 

2.2. Interactions in Hybrid Materials 

Organic-inorganic hybrid materials can be classified based on the interactions that hold together 

the organic and inorganic components. Several types of interaction can be considered such as 

hydrogen bond, van der Waals or ionic bonds (Figure 2). This kind of interactions can be found in 

a variety of hybrid materials like organic dyes, organic monomers inserted in sol-gel matrices or 

inorganic polymers fixed in a polymer.11 Another category involves inorganic and organic 

materials linked together by chemical bonds such as covalent or iono-covalent bonds.  

This group includes materials which starting building blocks have chloro- or alkoxy groups that 

can be hydrolyzed in the presence of water, forming a covalent bond.12  
 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
11 C. Sanchez, in Functional Hybrid Materials, Ed P. Gomez Romero, C. Sanchez, Wiley Interscience, 2003. b) 
Sanchez, C.; Julián, B.; Bellevile, P.; Poppall, M. J. Mater. Chem. 2005, 15, 3559. 
12 a) Zamboulis, A.; N. Moitra, N.; Moreau, J. J. E.; Cattoën, X.; Chi Man, M. W. J. Mater. Chem. 2010, 20, 9322; b) 
P. Judeinstein.; C. Sanchez. J. Mater. Chem. 1996, 6, 511. 
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Figure 2. Selected interactions typically present in hybrid materials. 

 

In this regard, Table 1 provides some information about chemical interactions within hybrid 

materials.13 
Table 1.  Different chemical interactions and their respective strength. 

Type of interaction Strength (kJ mol-1) Range Character 

Van der waals ca. 50 short 
nonselective, 

nondirectional 

H-bonding 5-65 short selective, directional 

coordination bonding 50-200 short directional 

ionic 50-250 long nonselective 

covalent 350 short 
predominantly 

irreversible 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
+,(a) Kickelbick, G. Hybrid Materials. Synthesis, Characterization, and Applications.; Wiley-VCH: Weinheim, 2007.(
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2.3. Advantages of Hybrid Organic-Inorganic Materials  

The main advantage of hybrid materials, is having one single material with the combined 

properties of the parent organic and inorganic precursors. This idea includes taking advantage of 

benefits of each material and even improve them.14 Indeed, mild reaction conditions can be used 

to prepare hybrid materials such as solution-based processing or low synthesis temperatures.15  

In this chapter, two new hybrid materials based on !-carrageenan, magnetic nanoparticles and an 

organocatalyst are described. The first one involves only the polysaccharide and the magnetic 

nanobeads whereas the second one also incorporates an analogue of the Jørgensen-Hayashi 

organocatalyst. Here, carrageenan is used as a sustainable platform for anchoring the catalyst 

while magnetic nanoparticles allow to recover and reuse the catalytic material from the reaction 

media through magnetic decantation. Interestingly, the first hybrid material showed catalytic 

activity while carrageenan and MNPs alone, do not have activity in the Michael addition. 

This hybrid material is a unique chance to produce new compounds that have inorganic, organic 

and magnetic properties (Figure 3). 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Combination of organic and inorganic materials and magnetic nanoparticles. 

2.4. Carrageenan 

Carrageenans are a family of sulphated polysaccharides, which are extracted from red seaweeds. 

The structure of carrageenan is made of repeating D-galactopyranose units as linear backbones 

which are linked together with "-1,3 and #-1,4 glycosidic linkages.16  

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
14 a) Mammeri, F.; Bourhis, E. L.; Rozes, L.; Sanchez, C. J. Mater. Chem, 2005, 15, 3787; b) Boucle, J.; Ravirajan, P.; 
Nelson, J. J. Mater. Chem. 2007, 17, 3141. 
15 Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559. 
16 a) Piculell, L. (2006). Gelling carrageenans. In A. M. Stephen et al. (Ed.), Food polysaccharides and their 
applications, Second Edition (p. 239-287). New York: Marcel Dekker; b) Bourriot, S.; Gamier, C.; Doublier, J. L. 
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They have widespread applications in food industry, where carrageenan can be used as natural 

thickener, formulation stabilizer, or gelling agent, especially in dairy products.17 In the non-food 

industry, carrageenan is used in cosmetics, pharmaceutical products, printing and textile 

formulations.18   

In industry, carrageenans are divided into three industrially categories based on the number of 

sulphate groups in each repeating unit, namely !-, "-, or #-carrageenan (Figure 4). 

Kappa and iota carrageenan contain one and two sulphate groups, per monomeric unit 

respectively and a 3,6-anhydro ring, whereas lambda carrageenan contains three such sulphate 

groups.19 

 

Figure 4. Schematic representation of the different repeating units of carrageenans, #, " and !-carrageenan. 

2.4.1. Application of Hybrid Carrageenan-Magnetic Nanoparticles 

Among these three kinds, #-carrageenan, is reported as an ecological compound because it is 

nontoxic, environmentally friendly, mucoadhesive, biodegradable and biocompatible. All of these 

significant features bring #-carrageenan to the center of attention to be used for in vivo 

applications such as drug delivery.20 Many efforts have been done in this area in the past decades, 

searching for an ideal method to transport sufficient dosage of medicine to the goal cells or 

tissues.21 Indeed, researchers did a lot of efforts to achieve controlled and sustained release of 

medicines.22 To this end, different systems with various types of polymers, a variety of functional 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
Carbohydr Polym. 1999, 40, 145. 
17 van de Velde, F.; Knutsen, S. H.; Usov, A. I.; Rollema, H. S.; Cerezo, A. S. Trends Food. Sci. Technol. 2002, 13, 
73. 
18 a) Imeson, A. P. 2000. Carrageenan. In: G. O. Phillips and P. A. Williams (Eds.), Handbook of Hydrocolloids. 
Woodhead Publishing Limited, Cambridge, England; b) De Ruiter, G. A.; Rudolph, B. Trends Food. Sci. Technol. 
1997, 8, 389. 
19 a) Yuguchi, Y.; Thuy, T. T. T.; Urakawa, H.; Kajiwara, K. Food Hydrocoll. 2002, 16, 515; b) Doyle, J.; Giannouli, 
P.; Philp, K.; Morris, E. R. Gums and Stabilizers in the Food Industry, 2002, 11, 158; c) Bixler, H. J. Brit. Food J. 
1994, 96, 12. 
20 a) Daniel-da-Silva, A. L.; Ferreira, L.; Gil, A. M.; Trindade, T. J. Colloid Interface Sci. 2010, 355, 512; b) Leong, 
K. H.; Chung, L. Y.; Noordin, M. I.; Mohamad, K.; Nishikawa, M.; Onuki, Y.; Morishita, M.; Takayama, K. 
Carbohydr. Polym. 2011, 83, 1507.  
21 a) Chertok, B., David, A. E.; Yang, V. C. J. Control. Release. 2011, 155, 393; b) Pradhan, P.; Giri, J.; Rieken, F.; 
Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. J. Control. Release 2010, 142, 108. 
22 Liu, X.; Kaminski, M. D.; Chen, H.; Torno, M.; Taylor, L. T.; Rosengart, A. J. J. Control. Release 2007, 119, 52.  
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groups or modified nanoparticles were investigated.23 Among them, modified magnetic 

nanoparticles showed significant results based on their biocompatibility.24 In the case of hybrid 

materials made from combination of magnetic nanoparticles and carrageenan, it is possible to 

take advantage of the magnetic properties of NPs to lead the materials inside of organs, thus using 

carrageenan as a biocarrier to lead medicines to the envisaged site, where they should act.  

Herein, we will summarize some examples of combinations of magnetic nanoparticles and 

carrageenan described in the literature.  

The first hybrid material we will highlight was prepared by dispersion of Fe3O4 nanoparticles in a 

!-carrageenan aqueous solution.25 Results showed that the new material swelled slightly faster 

than !-carrageenan because the degree of osmotic swelling is in proportion with the amount of 

charge and concentration of nanoparticles. Afterwards, methylene blue (MB) was selected as a 

model for drug delivery due to its solubility in water and the results could be observed by the 

colour change. Further studies stated that the release kinetics of MB depend on the Fe3O4 

nanoparticles loading and swelling factor.  

In another interesting report, three different kinds of hydrogel material with !-carrageenan were 

designed.26 First !-carrageenan(hydrogel particles, p(CRN) were prepared based on the water-in-

oil micro emulsion polymerization technique using divinyl sulfone (DVS) as chemical crosslinker 

in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) (Figure 5).  

 

 
Figure 5.(Crosslinking linear CRN polymers with DVS. 

 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
23 a) Grenha, A.; Gomes, M. E.; Rodrigues, M.; Santo, V. E.; Mano, J. F.; Neves, N. M.; Reis, R. L. J. Biomed. Mater. 
Res. A, 2010, 92A, 1265; b) Satarkar, N. S.; Hilt, J. Z. J. Control. Release 2008, 130, 246. 
24 Mejías, R.; Costo, R.; Roca, A. G.; Arias, C. F.; Veintemillas-Verdaguer, S.; González-Carreño, T.; del Puerto 
Morales, M.; Serna, C. J.; Mañes, S.; Barber, D. F. J. Control. Release 2008, 130, 168. 
 
25 Daniel-da-Silva, A. L.; Moreira, J.; Neto, R.; Estrada, A. C.; Gil, A, M.; Trindade, T. Carbohydr. Polym.  2012, 87, 
328.(
26 Sagbas, S.; Butun, S.; Sahiner, N. Carbohydr. Polym. 2012, 87, 2718. 
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Then, ferromagnetic materials were synthesized using magnetic nanoparticles and carrageenan 

(m-p(CRN)) to assemble the envisaged drug delivery system (Scheme 1). Another interesting 

idea involves the generation of a positive charge on the p(CRN) using a quaternization reaction 

with a 3-chloro-2-hydroxypropyl trimethyl ammonium chloride aqueous solution to produce(q-

p(CRN) (Scheme 2). 

 

 
Scheme 1. Synthetic pathway for p(CRN) and m-p(CRN) particles in AOT reverse micelles. Picture taken from 

reference 26. 

 

 

Scheme 2.(p(CRN) Modified with ammonium group. 

 

Afterwards, phenylephrine!HCl was selected as a medicine model to investigate a system for in 

vitro drug delivery. Results showed that loading the phenylephrine!HCl onto q-p(CRN) is more 

effective than two other particles and indeed q-p(CRN) is releasing the medicine at a faster rate 

due to the ammonium group.  

OH
NCl
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Apart from drug delivery and biomedical applications, the behaviour of modified !-carrageenan 

with magnetic nanoparticles for dye adsorption from aqueous solutions was studied.27 This 

material is well suited for absorption of cationic dyes (such as methylene blue) due to 

electrostatic interactions between the sulfonate moieties of carrageenan and the positive charge in 

methylene blue.  

2.5. Enamine Catalysis 

The rapid development of aminocatalysis may be attributed to the conceptualization of the main 

activation modes: both the HOMO activation or enamine pathway and the LUMO activation or 

iminium ion pathway are the key concepts that revolutionized the field.   

The basics of organocatalysis have been described in Chapter 1, so here we will focus on enamine 

catalysis, as it is closely related to this project. 

The condensation between an aldehyde or ketone with an amine generates an imine or iminium 

ion that, after losing a proton, produces the enamine (Scheme 3). 

 

 
Scheme 3. Enamine activation mode. 

 

The reversibility of this enamine formation has allowed to develop catalytic enantioselective 

protocols by using chiral amines in the absence of metal. Enamines as a nucleophile can react 

with an extensive variety of electrophiles, which can afford a lot of useful reactions in organic 

chemistry (Scheme 4).28 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
27 Salgueiro, A. M.; Daniel-da-Silva, A. L.; Girão, A. V.; Pinheiro, P. C.; Trindade, T. Chem. Eng. J. 2013, 229, 276. 
28 Pihko, P. M.; Majander, I.; Erkkila, A. Top. Curr. Chem. 2010, 291, 29. 
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Scheme 4. A range of transformations can be promoted by enamine catalysis. 

As it was mentioned in the first chapter, the initial idea of using proline as a catalyst was reported 

by the groups of Hajos and Parrish, and Eder, Sauer and Wiechert independently for the Robinson 

annulation to achieve Wieland-Miescher ketone (Scheme 5).29 

 

 

Scheme 5. Proline-catalyzed aldol reaction reported by Hajos, Parrish, Eder, Wiechert, and Sauer. 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
),((a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615; (b) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. 
Int. Ed. 1971, 10, 496. 
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However, it took 30 years to realize the importance of enamine catalysis. In 2000, Barbas, Lerner 

and List highlighted it again in an intermolecular proline-catalyzed aldol reaction of acetone with 

aldehydes to reach the desired aldol products in up to 99% ee (Scheme 6)30. 

 

Scheme 6. Asymmetric aldol reaction catalyzed by proline. 

In the mechanism they proposed for the reaction between proline and acetone, the sense of 

enantioinduction is explained by formation of a hydrogen bond between the carboxyl group and 

the aldehyde, reminiscent of the Zimmerman–Traxler type transition state31 (intermediate 2, that 

is the enantiodiscriminating step). Finally, with a simple hydrolysis the desired aldol product is 

released, leaving proline ready for the next catalytic cycle. 

 

 

Scheme 7. Mechanism for proline catalyzed asymmetric aldol reaction. 

 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
30 List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395. 
31 Zimmerman, H. E.; Traxler, M. D.  J. Am. Chem. Soc. 1957, 79, 1920. 
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In the same year, List reported the first direct, catalytic and asymmetric three-component 

Mannich reaction.32 In this process,( inexpensive proline was shown to catalyse the Mannich 

reaction between an aldehyde, p-anisidine and a ketone with high enantioselectivity (Scheme 8). 

 

 
Scheme 8.  Mannich reaction catalyzed by proline.  

 

These preliminary studies unveiled the potential of enamine catalysis and motivated scientists to 

dedicate special attention to this concept. 

In the search for other catalysts that could exploit this activation mode, the Jørgensen group 

developed a novel organocatalyst that was first applied in the enantioselective !-sulfenylation of 

aldehydes.33 

Transforming L-proline into a range of diarylprolinol derivatives and protecting the tertiary 

alcohol with the trimethylsilyl (TMS) group, they could achieve a more efficient catalyst. 

 

 

 

Scheme 9.  Catalysts tested in the organocatalytic enantioselective sulfenylation of isovaleraldehyde. 

 

The results for the !-sulfenylation reaction showed with L-proline is not effective catalyst for this 

reaction (only 16% yield, no ee). Also with unprotected !,!-diphenyl-L-prolinol no product was 

obtained.  

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
32 List, B. J. Am. Chem. Soc. 2000, 122, 9336. 
33 Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794. 
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Based on this observation, they proposed that the free hydroxyl group in !,!-diphenyl-L-prolinol  

and proline could form an unreactive hemiaminal species (11) (Scheme 10).  

However, with the trimethylsilyl-protected catalyst good enantioselectivities as well as yields 

were obtained. The Jørgensen group further improved the catalyst through the modification of the 

aryl substituents in the catalyst structure. The best result was observed with the fluorinated 

(catalyst 10) derivative which gave 90% yield and 98% ee. 

 

 
Scheme 10. Formation of hemiaminal species. 

 

In the same year, the Hayashi group also developed TMS-protected diarylprolinol-derived 

catalysts for the Michael addition of aldehydes to nitroolefins.34  

 

 
Scheme 11. First applications of the Jørgensen-Hayashi catalyst. 

 

To account for the high enantioselectivity observed with diarylprolinol silyl ether derivatives, the 

reaction intermediates were extensively studied. The results showed the most stable conformer is 

the E-anti enamine intermediate because the steric interactions between the bulky substituents on 

the pyrrolidine catalyst and the enamine double bond could be minimized. In this conformer, 

excellent shielding of the Si face of the enamine was achieved, leaving the Re face exposed 
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
34 Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212. 
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for the attacking electrophile.35 

 

 
Scheme 12. Rationalization of the stereochemical induction. 

In Scheme 13 we have summarized two common pathways for enamine catalysis. In pathway A, 

the electrophile interacts through hydrogen bonds or electrostatic interactions. This strategy 

facilitates Re-face attack to achieve (R)-product. In pathway B, one side of pyrrolidine catalyst is 
sterically hindered, so the electrophile approach take place by the Si face to give (S)-product.36  

 

 

Scheme 13. Two different mechanisms for enamine catalysts. 

  
Thanks to these efforts, enamine catalysis has given rise to a very broad range of asymmetric 

chemical transformations with aldehydes and ketones such as !-amination,37 !-oxygenation,38 !-

halogenation,39 !-selenylation,40 intramolecular !-alkylation of aldehydes41 and Michael addition 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
35 a) Dinér, P.; Kjærsgaard, A.; Lie, M. A.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 122; b) Seebach, D.; Beck, A. 
K.; Badine, D. M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R.; Prikoszovich, W.; Linder, B.; 
Helv. Chim. Acta 2007, 90, 425. c) Gro"elj, U.; Seebach, D.; Badine, D. M.; Schweizer, W. B.; Beck, A. K. Helv. 
Chim. Acta 2009 , 92 , 1225. d) Seebach, D.; Gilmour, R.; Gro"elj, U.; Deniau, G.; Sparr, C.; Ebert, M.-O.; Beck, A. 
K.; McCusker, L. B.; #i"ak, D.; Uchimaru, T. Helv. Chim. Acta 2010, 93, 603. 
36 a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. b) Seebach, D.; Beck,(A. K.; 
Badine,(D. M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R. Helv. Chim. Acta 2007, 90, 425. 
37 a) List, B. J. Am. Chem. Soc. 2002, 124, 5656. 
b) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 6254. 
38 Merino, P.; Tejero, T. Angew. Chem. Int. Ed. 2004, 43, 2995. 
39 b) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjoersgaard, A.; Jøgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 
3703. b) Bertelsen, S.; Halland, N.; Bachmann, S.; Marigo, M.; Braunton, A.; Jørgensen, K. A. Chem. Commun. 2005, 
4821. c) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108. 
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reactions.42 

 
!-Amination 

 
 

!-Oxygenation 

 

 
 

!-Halogenation 

 

 

!-Selenylation 
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40 a) Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2007, 46, 
6882. b) Sundén, H.; Rios, R.; Córdova, A. Tetrahedron Lett. 2007, 48, 7865. 
41 Vignola, N.; List, B.; J. Am. Chem. Soc. 2004, 126, 450. 
42 Wang, W.; Wang, J.; Li, H. Angew. Chem. Int. Ed. 2005, 44, 1369.(
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Intermolecular !-alkylation of aldehydes 

 

 

 

Michael addition reactions 

 
Scheme 14. Some examples of enamine catalysis. 

 

Yamamoto, Ley and Arvidsson developed another versatile catalyst43 with the replacement of the 

carboxyl group in L-proline by the corresponding tetrazole. The most important advantage of this 

catalyst is better solubility than proline in common organic solvents. The catalyst has been 

applied in aldol reaction, synthesis of !-aminooxy carbonyl compounds and N-PMP-protected 

imino ethyl glyoxylate.  

 

Scheme 15. Different reactions with the pyrrolidine tetrazole catalyst. 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
43 a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem. 2004, 116, 2017. Angew. Chem. Int. 
Ed. 2004, 43, 1983. b) Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 
5374. c) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V.; Synlett 2004, 558. d) Hartikka, A.; Arvidsson, P. I. Tetrahedron: 
Asymmetry 2004, 15, 1831. e) A. Hartikka, A.; Arvidsson, P. I.; Eur. J. Org. Chem. 2005, 4287. 
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2.6. Immobilized Proline Catalyst 

Due to the efficiency of L-proline and the privileged Jørgensen-Hayashi catalyst, some authors 

have studied their immobilization onto a solid support. As discussed in Chapter 1, heterogeneous 

catalysts are more sustainable, environmentally friendly and easier to use in an industrial 

environment. Here we will briefly mention some examples about heterogenized L-proline and 

Jørgensen-Hayashi catalyst.  

Ma et al. grafted 4-hydroxyproline to MNPs surrounded by a silica shell using 

triethoxysilylpropanecarbamate as a linker (scheme 16). The reported yield and enantioselectivity 

in the aldol reaction were between 24–96% and 6–99% respectively with 20 mol% catalyst.44 

Increased steric hindrance on the aldehyde resulted in a decrease in enantioselectivity, whereas 

with increasing carbon numbers onto the cyclic ketone, the yield dropped. The recyclability of the 

catalyst was tested for 4-nitrobenzaldehyde and cyclohexanone until five runs and no significant 

decrease in yield and ee was observed.  

 

 

 

 

 

 

 

Scheme 16. Aldol reactions between aromatic aldehydes and ketones catalyzed by proline on MNPs. 

 

In another application, the surface of MNPs was modified with N-[3-(triethoxysilyl)-propyl]-4,5-

dihydroimidazole ionic liquid (IL) linker. Afterwards L-proline was immobilized on the surface 

with a covalent linkage. The advantage of using IL as linker is that it improves dispersibility of 

catalyst in water, making it more environmentally compatible.45 The reaction between 

cyclohexanone and 2-nitrobenzaldehyde in water was catalyzed with 10 mol% of 13, 14 and L-

proline in water (scheme 17). Only in the case of catalyst 13, good results were achieved (92% 

yield and 85% ee) which seems to indicate the importance of this linker. With catalyst 14 only 

10% yield was recorded, whereas with L-proline no reactivity was observed. 

Apart from compatibility of this catalyst, the polarity and ionic character make it a suitable 

catalyst for using in aqueous media in reactions which need to form stabilized enamine 

intermediates. 
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44 Yang, H.; Li, S.; Wang, X.; Zhang, F.; Zhong, X.; Dong, Z.; Ma, J. J. Mol. Catal. A: Chem. 2012, 363, 404. 
+*(Kong, Y.; Tan, R.; Zhaoa, L.; Yin, D. Green Chem. 2013, 15, 2422. 
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Scheme 17. Structure of proline-based catalysts 13 and 14. 

 

In another study, Fe3O4 MNPs were functionalized with phosphates or acrylic acids to give rise to 

functional magnetic Fe3O4 nanoparticles 15 and 16. Then, these were polymerized with acrylates 

and methacrylates and the resulting products were separated by magnetic decantation very 

easily.46 These four catalysts were tested in the asymmetric aldol reaction of benzaldehyde with 

ketones. It seems that the addition of benzoic acid as cocatalyst is necessary as it accelerates the 

reaction. The catalysts exhibited very good enantioselectivity with a wide range of substrates, and 

they could be easily isolated using an external magnet and reused more than 10 times without 

losing their activity (Scheme 18). 
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46 Yacob, Z.; Nan, A .; Liebscher, J. Adv. Synth. Catal. 2012, 354, 3259. 
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Scheme 18. Synthesis of magnetically modified proline polyacrylates. 

 

Jørgensen–Hayashi catalysts also represent a good option for developing heterogeneous catalysts. 

Wang et al. supported (S)-diarylprolinol trimethylsilyl ether onto the surface of Fe3O4@SiO2 to 

carry out Michael addition of several aldehydes to nitroalkenes.47 The reported size of particle 

after anchoring catalyst was 190±10 nm and yield and ee were between 53–96% and 75–90% ee 

with 20 mol% of catalyst.  

 

 

 
 

 
 
 

 
Scheme 19. Michael addition with (S)-!,!-diphenylprolinol trimethylsilyl ether supported onto MNPs. 
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47 Wang, B. G.; Ma, B. C.; Wang, Q.; Wang, W. Adv. Synth. Catal. 2010, 352, 2923.  
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In our group, plenty of efforts have been devoted to develop supported aminocatalysts to perform 

different kinds of reactions. (S)-Diphenylprolinol trimethylsilyl ether was supported onto 

Merrifield resin via a CuAAC reaction. This catalyst was applied to the Michael addition of 

aldehydes to nitroolefins,48 asymmetric addition of dialkyl malonates to !,"-unsaturated 

aldehydes or the Michael addition of nitromethane to !,"-unsaturated aldehydes (Scheme 20).49 

 

 
Scheme 20. (S)-Diphenylprolinol trimethylsilyl ether supported onto polystyrene: catalytic applications. 

 

 However this catalyst lost activity after prolonged recycling, probably due to silyl group 

cleavage. Indeed, after treatment with trimethylsilyl N,N-dimethylcarbamate to reprotect the 

hydroxy group, the catalyst could be used for 6 more runs with constant ee (Scheme 21). 

 

 

 

 

 
 

 
 

Scheme 21. Reactivation process for immobilized Jørgensen-Hayashi catalyst. 
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48 Alza, E.; Pericàs, M. A. Adv. Synth. Catal. 2009, 351, 3051. 
49 Alza, E.; Sayalero, S.; Kasaplar, P.; Alma#i, D.; Pericàs, M. A. Chem. Eur. J. 2011, 17, 11585. 
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Concerned about the deprotection of the OH group, our group designed some experiments to 

develop a new catalyst that could be more robust.50 Different groups such as TES (triethylsilyl), 

TBS (tert-butyldimethylsilyl) or TIPS (triisopropylsilyl) were examined instead of the TMS 

group.  

Among all of these, the TBS seemed to be the more promising according to the results obtained 

(Scheme 22).  
 

 

Scheme 22. Design and synthesis of a more robust catalyst with a TBS protecting group. 

Catalyst 22, featuring the TBS protecting group, was applied in the !-amination of aldehydes 

with high ee and yield (Scheme 23).  

 

Scheme 23. !-Amination of aldehydes catalyzed by TBS protected catalyst. 

In order to evaluate the robustness of this new design, the recyclability was checked for a mixture 

of propanal, AcOH and catalyst in CH2Cl2 with slow addition of DBAD to prevent(byproduct 

formation. Under these conditions, the catalyst could be used for six runs with the constant ee and 

yield.  

Use of MNPs to immobilize Jørgensen–Hayashi catalyst has also been studied in our group. To 
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
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this end, the surfaces of uncoated MNPs were functionalized with 3-azidopropyl units and then a 

functionalized diarylprolinol was anchored to the support through copper-catalyzed alkyne–azide 

cycloaddition.51 The size distribution for modified nanoparticles was between 4.8±0.8 nm and no 

agglomeration was observed in the TEM pictures. Michael addition of propanal to nitroolefins 

was used to evaluate the catalytic activity with only 10 mol% of catalyst. Furthermore, 

recyclability of catalyst was studied until four runs; although the ee did not have a significant 

change (97-92% ee), the yield dropped (89 to 57%), which can be attributed to hydrolysis of the 

silyl ether group (Scheme 24)  

 

 

 

 

 

 

 

Scheme 24. Immobilization of Jørgensen–Hayashi catalysts for Michael addition. 

2.7. Enamine-Catalyzed Asymmetric Michael Addition to Nitroalkenes 

The addition of nucleophiles to the !"position of #$!%unsaturated compounds is known as Michael 

addition reaction. It is an important process for carbon-carbon bond formation and it is widely 

used in organic synthesis.52 After developing chiral organocatalysts, chemists started to extend 

the concept to asymmetric conjugate addition of aldehydes or ketones to different Michael 

acceptors.53 List et al. pioneered the use of (S)-proline for enantioselective Michael addition of 

ketones to nitroolefins via an enamine pathway. Although they got 94% yield, the ee was not very 

promising, remaining as low as 23%. 
 

 

Scheme 25. First enantioselective Michael addition of ketones to nitroolefins catalyzed by (S)-proline. 
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51 Riente, P.; Mendoza, C.; Pericás, M. A.  J. Mater. Chem. 2011, 21, 7350. 
52 P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1992. 
53 List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.(
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However, this reaction was later improved by using a variety of catalysts and different conditions 

that allowed achieving better results. In Scheme 26 we have summarized the pioneering studies 

concerning Michael addition with different pyrrolidine-based catalysts.54( 

 

 

 

 

 

 

 

 

 

Scheme 26. Michael addition with different proline based catalysts. 

 

H-bond directing pyrrolidine sulfonamide was not only used for !-aminooxylation,55 Mannich,56 

!-sulfenylation57 or !-selenylation reactions,58 but also applied to Michael additions of aldehydes 

to nitroolefins.59  

 
 

 

 

 

 

 

Scheme 27. Michael addition with pyrrolidine-sulfonamide catalyst. 

Cheng et al. developed pyrrolidine–ionic liquid conjugates to catalyze Michael additions of 

ketones to nitroalkenes with excellent enantioselectivity and yield (Scheme 28). The ionic liquid 

moiety can act as phase tag to allow an easier recycling and also as an effective chiral induction 

(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((
54 a) Betancort, J. M.; Barbas III, C. F, Org. Lett. 2001, 3, 3737. b) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611.   
55 Wang, W.; Wang, J.; Li, H.; Liao, L. Tetrahedron Lett. 2004, 45, 7235.  
56 Wang, W.; Wang, J.; Li, H. Tetrahedron Lett. 2004, 45, 7243. 
57 Wang, W.; Li, H.; Wang, J.; Liao, L. Tetrahedron Lett. 2004, 45, 8229. 
58 Wang, W.; Wang, J.; Li, H, Org. Lett. 2004, 6, 2817. 
59 Wang, W.; Wang, J.; Li, H. Angew. Chem. Int. Ed. 2005, 117, 1393. 
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group to achieve high selectivity. 60 

 

 
 

 

 

Scheme 28. Michael addition with pyrrolidine-ionic liquid. 

 

Tang et al. applied a bifunctional catalyst based on pyrrolidine thiourea for Michael addition of 

cyclohexanone to aryl and alkyl nitroolefins (Scheme 29).61 High stereoselectivities were 

achieved due to the ability of the thiourea moiety catalyst to coordinate to the nitro group.  

 

 

 

 

Scheme 29. Michael addition with bifunctional catalyst. 

Our efforts to generate novel catalytic materials based on MNPs, polysaccharides and 

organocatalysts gave rise to one publication which is included hereafter.  
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2.8. Article 

This research has been done in collaboration with Carmen A. Mak. 
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a b s t r a c t

Two hybrid magnetic materials have been prepared from k-carrageenan and Fe3O4 nanoparticles and
tested as catalysts for the Michael addition of aldehydes to nitroalkenes. Remarkably, the material
prepared from unmodified k-carrageenan showed catalytic activity in the reaction of choice, while the
individual components were inactive. This points out to a synergistic effect between the MNPs and k-
carrageenan. The second catalyst, bearing a diphenylprolinol silyl ether moiety, was also shown to
promote the reaction, giving rise to the corresponding adducts in excellent ees. After the reaction is
complete, the catalysts can be conveniently retrieved by simple magnetic decantation.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Organiceinorganic hybrid nanomaterials have generated in-
creasing interest in recent years due to their optical and electrical
properties and potential biomedical applications.1 Particularly,
nanoparticle-based hybrid materials are very promising systems
for a wide range of biomedical applications, including drug
delivery.2

k-Carrageenan (1) is a natural sulfated polysaccharide extracted
from different species of edible red seaweed, which is mainly used
in the food industry as gelling agent. It is a commercially available
material that possesses interesting properties, being nontoxic,
mucoadhesive, biodegradable, and biocompatible. k-Carrageenan
has also been used as an immobilization support, mainly for bio-
catalysts in industrial processes.3

The combination of these polysaccharides with Fe3O4 magnetic
nanoparticles (MNPs) as inorganic supports opens up the possi-
bility of exploiting their properties in a synergistic manner, which
constitutes an appealing approach to generate new materials for
sustainable chemistry.4 Indeed, precedents of such hybrid nano-
structures have been described for various biomedical applica-
tionsdmainly as drug delivery systems5dor as detoxification

agents for the magnetically assisted removal of methylene blue
from aqueous solutions.6

However, to the best of our knowledge, the use of
polysaccharide-coated MNPs in catalysis has not been described.
Herein, we report the synthesis of such materials and their appli-
cation as either catalyst or support for a catalytically active species
in the Michael addition of aldehydes to nitroolefins.

2. Results and discussion

Before assessing the catalytic ability of the hybrid material we
started by establishing a reliable synthetic method that allowed the
anchoring of carrageenan onto MNP (2) in two simple steps. First,
the MNPs were generated by thermal decomposition of Fe(acac)3 in
the presence of oleylamine and oleic acid as surfactants, following
a reported procedure.7 The transmission electron microscopy
(TEM) images show that the MNPs obtained are spherical, mono-
dispersed, and small sized (4.8!0.9 nm; Fig. 1a).

The hybrid material was prepared in a very simple manner by
mixing k-carrageenan and the MNPs in the presence of glacial
acetic acid and ultrapure water in DMF at 110 "C (Scheme 1). In-
terestingly, the attachment of the polysaccharide did not lead to
any significant increase in the size of the MNPs (5.1!0.8 nm,
Fig. 1b). The functionalization level of k-carrageenan in the hybrid
nanomaterial, determined by elemental analysis of sulfur, was
found to be 0.80 mmol (S) g#1. The progress of formation of 2 was

* Corresponding author. E-mail address: mapericas@iciq.es (M.A. Peric!as).
y Tel.: þ34 977 920 243; fax: þ34 977 920 244.
z These authors contributed equally to this paper.
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http://dx.doi.org/10.1016/j.tet.2014.06.063
0040-4020/! 2014 Elsevier Ltd. All rights reserved.
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easily followed by IR spectroscopy (Fig. 2) through the appearance
of new bands at 845 cm!1 and 930 cm!1, corresponding to the
stretching vibrations of sulfate esters and 3,6-anhydro rings, re-
spectively, present in k-carrageenan.8

Scheme 1. Preparation of the hybrid material 2.

Alternatively, and considering the previous experience in our
group,9 we envisaged the use of this kind of hybrid magnetic
materials as mere supports for a chiral organocatalyst. The interest
of this approach lies in the fact that it would be a water-
dispersible magnetic material able to catalyze enantioselective
organic reactions. To this end, the free hydroxy groups in the hy-
brid material 2 were transformed into chlorides via Appel re-
action, and these were substituted with sodium azide to generate
3 (f¼1.09 mmol g!1) as a ready-to-click hybrid material. The in-
corporation of the azide group was confirmed by the appearance
of a band around 2040 cm!1 in the IR spectra, corresponding to
the stretching vibration of the azide group (Fig. 2). Finally,

a diphenylprolinol derivative bearing a propargyl group (4) was
chosen as the organocatalytic counterpart.10 This was anchored
onto 3 by means of copper-catalyzed azideealkyne cycloaddition11

(CuAAC), giving rise to 5 (f¼0.61 mmol g!1, Scheme 2). The
progress of this CuAAC reaction could be easily monitored by IR,
through the disappearance of the azide band and the appearance
of new bands at 850, 959, and 996 cm!1, attributed to the
diphenylprolinol (Fig. 2).

With the two hybrid materials in hand, the stage was set to
study their catalytic activity in the Michael addition of aldehydes to
nitroolefins.12 For this purpose, the reaction between prop-
analdehyde and b-nitrostyrene was chosen as a model reaction to
optimize reaction conditions (Table 1).

As expected, in most cases the control reactions run with 2 did
not give any reactivity, but under neat conditions we were sur-
prised to see full conversion in less than 16 h.

In the vast majority of cases, the catalytic a-functionalization of
aldehydes takes place via enamine activation. Thus, this result was
rather unexpected, given the lack of amino groups in 2. To gain
insight into the mechanistic details of the reaction we decided to
run blank reactions with only the MNPs, k-carrageenan and
a combination of both. Even more surprisingly, these reactions
failed to give any product, so we treated the polysaccharide under
the same conditions used for the preparation of 2. Again, this
proved inefficient to catalyze the reaction. Overall these results
seem to indicate that the hybrid material exerts some kind of

Fig. 1. (a) TEM micrography and size distribution plot for Fe3O4 MNPs; (b) TEM micrography and size distribution plot for the hybrid material 2; (c) TEM micrographies for 5.

C.A. Mak et al. / Tetrahedron 70 (2014) 6169e61736170
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Fig. 2. IR spectrum of MNPs, k-carrageenan (1), Fe3O4ek-carrageenan (2), azide-
functionalized magnetic material (3), and diphenylprolinol decorated material 5.
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Scheme 2. Preparation of the hybrid material 5.

Table 1
Solvent screening for 2

Entrya Solvent Conversion (%)

1 CH2Cl2 <5
2 Toluene d

3 THF d

4 Water d

5 Ethyl acetate <5
6 Neat 100b

a Nitroolefin (0.1 mmol), aldehyde (0.5 mmol), 2 (15 mol %) in solvent (0.5 mL) at
room temperature.

b dr 87:13; 7% ee.

Table 2
Michael addition of aldehydes to b-nitrostyrene catalyzed by 2a

Entry Product t (h) Conversionb (%) Yieldc (%) syn/antib

1 15 >99 80 87:13

2 25 >99 71 92:8

3 48 >99 68 88:12

4 28 >99 54 91:9

5 48 >99 59 93:7

6 48 0 d d

a Nitroolefin (0.1 mmol), aldehyde (0.5 mmol), and 2 (15 mol %) at room
temperature.

b Determined by 1H NMR.
c Isolated yield after column chromatography.

C.A. Mak et al. / Tetrahedron 70 (2014) 6169e6173 6171
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synergistic effect, which is the ultimate responsible for the cataly-
sis. At present, however, the exact mechanistic details remain
unclear.

With the aim of establishing the generality of this reaction,
several aldehydes were tested (Table 2). In most cases the corre-
sponding Michael adducts 6 were obtained with good yields and
diastereomeric ratios. The reaction seems to be tolerant to b-
branched aldehydes (Table 2, entry 5), which is in contrast with
what we reported for the case of polystyrene-supported diphe-
nylprolinol silyl ethers.13 However, a-branched aldehydes like iso-
butanal (Table 2, entry 6) did not give any product under the
reaction conditions. It is also worth mentioning that, despite the
fact that the polysaccharide provides a chiral environment for the
reaction, no enantioselectivity was recorded for any of the
substrates.

This lack of enantioselectivity prompted us to use an analogous
hybrid magnetic material as a mere support for a chiral amino-
catalyst. Thus, 5 was prepared as abovementioned and its catalytic
activity was tested using the same benchmark reaction. To our
delight, a set of Michael adducts was obtained in good yields and
excellent ees (Table 3), which confirms the utility of these hybrid
materials in enantioselective catalysis.

3. Conclusions

The preparation of a magnetic, organiceinorganic hybrid ma-
terial has been described. This can be used as a support for a chiral
aminocatalyst but, strikingly, it also displays catalytic activity in
the Michael addition of aldehydes to nitroolefins. Both materials
can be easily separated from the reaction mixture by magnetic
decantation. Attempts to recycle the magnetic materials 2 and 5
have proven fruitless so far. Studies to this end are currently
underway.

4. Experimental section

4.1. General

Unless otherwise stated, all commercial reagents were directly
used without any purification. All starting materials were com-
mercially available of the best grade and were used without further
purification. NMR spectra were registered in a Bruker Advance 400
Ultrashield spectrometer in CDCl3 at room temperature, operating
at 400 MHz or 500 MHz (1H) and 100 MHz or 125 MHz (13C). TMS
was used as internal standard for 1H NMR and CDCl3 for 13C NMR.
FTIR measurements were carried out on a Bruker Optics FTIR Alpha

spectrometer equipped with a DTGS detector. Ultrapure water was
obtained from an SGWater Ultra Clear system that provides water
with conductivity at 25 !C of 0.055 mS. Elemental analyses were
performed at the MEDAC Ltd. Laboratories (Madrid, Spain). High
performance liquid chromatography (HPLC) was performed on
Agilent Technologies Chromatographs (Series 1100 and 1200), us-
ing Chiralpak columns fitted with guard column. TEM images were
recorded using a JEOL JEM 1011 microscope equipped with a lan-
thanum hexaboride filament, operated at an acceleration voltage of
100 kV. The Michael adducts 6aej are known and their spectro-
scopic data matched with the reported in the literature.14

4.2. Preparation of 2

A suspension of 200mgof k-carrageenan (1) and 400mg ofMNPs
in glacial acetic acid (60 mL), ultrapure water (80 mL), and DMF
(15 mL) was stirred overnight at 110 !C. The resulting material was
isolated by washing with EtOAc and centrifugation ("3) and finally
dried under vacuum (f¼0.80 mmol g$1; see Fig. 2 for IR spectra).

4.3. Preparation of 5

Preparation of 3.15 The hybrid material 2 (600 mg), PPh3 (1.00 g,
3.8 mmol), and LiCl (0.60 g, 14.2 mmol) were added to 20 mL DMF
and stirred at room temperature for 3 h. Then, 4 mL of CCl4
(41.3 mmol) were added dropwise and the mixture was stirred for
24 h at 60 !C. After this time, NaN3 (1.00 g, 15.4 mmol) in 15 mL
DMSO was added and it was heated for 36 h at 80 !C. The material
was washed with EtOAc and dried (f¼1.09 mmol g$1; see Fig. 2 for
IR spectra).

Preparation of 5. The azide-functionalized hybrid material 3
(608 mg), (2S,4R)-4-(propargyloxy)diphenylprolinol tert-butyl-di-
methyl silyl ether 416 (400 mg, 0.95 mmol), CuI (30 mg, 0.16 mmol),
and DIPEA (0.8 mL, 4.54 mmol) were mixed in 15 mL DMF and
stirred for 48 h at 50 !C. The resulting material was isolated by
washing with EtOAc and centrifugation ("3) and finally dried un-
der vacuum (f¼0.61 mmol g$1; see Fig. 2 for IR spectra).

4.4. General procedure for the Michael reaction

The corresponding aldehyde (0.5 mmol for 2, 0.3 mL for 5), b-
nitrostyrene (0.1 mmol), and catalyst (15 mol % of 2, 20 mol % of 5)
were mixed and stirred at room temperature. The reaction was
monitored by TLC until the total consumption of the nitroalkene
was observed. Then, 2"1 mL of CHCl3 were added, the catalyst was
removed by magnetic decantation and the organic mixture was
concentrated and purified by column chromatography on silica gel,
eluting with hexanes/EtOAc, to give the desired Michael adduct.
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17, 11585.

14. Previously reported characterization data: (a) for the Michael adducts 6aec and
6e, see: Betancort, J. M.; Barbas, C. F., III. Org. Lett. 2001, 3, 3737; (b) for 6d, see:
Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369; (c) for 6g, see:
Wang, W.-H.; Wang, X.-B.; Kodama, K.; Hirose, T.; Zang, G.-Y. Tetrahedron 2010,
66, 4970; (d) for 6h,i, see: Luo, R.-S.; Weng, J.; Ai, H.-B.; Lu, G.; Chan, A. S. C. Adv.
Synth. Catal. 2009, 351, 2449; (e) for 6j, including HPLC conditions, see: Ref. 10b;
(f) for the HPLC conditions for 6a,gei, see Ref. 7.

15. Elchinger, P.-H.; Faugeras, P.-A.; Bo€ens, B.; Brouillette, F.; Montplaisir, D.; Zer-
rouki, R.; Lucas, R. Polymer 2011, 3, 1607 and references therein.

16. Fan, X.; Sayalero, S.; Peric!as, M. A. Adv. Synth. Catal. 2012, 354, 2971.

C.A. Mak et al. / Tetrahedron 70 (2014) 6169e6173 6173



!"#$%&'()(

(

( *+(

2.9. Summary and Outlook 

An interesting hybrid material with the combination of an organocatalyst molecule, an 

inorganic material and magnetic nanoparticles was developed. The chiral organocatalyst 

could be used as a powerful tool for asymmetric synthesis. The organic support, here is k-

carrageenan, which can be used as a versatile platform for carrying organocatalysts, whereas 

the magnetic nanoparticles can be used as an efficient tool for separating the organocatalyst 

from the reaction media.  

The main interest in this project is the novelty of the hybrid material, as well as the easy 

preparation and separation of the catalyst based on the magnetic decantation.  

We believe these materials have a lot of potential to work on and are still far from mature. In 

our research group, there are still ongoing projects that deal this material. 
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3.1. Introduction to Iminium Ion Catalysis 

Imines are the product of condensation of aldehydes or ketones with primary amines (Scheme 1). 

In 1864, Schiff was the first to identify this reaction, which is why in the old nomenclature imines 

are also called Schiff bases. Primary amine-derived imines show basic properties (pKa ca. 7),  and 

in acidic media they convert to iminium ions.1 

 

 

Scheme 1. Formation of iminium ions and imines. 

 

The formation of iminium ion species is a reversible reaction. In the case of !,"-unsaturated 

aldehydes, the energy of the lowest-unoccupied molecular orbital (LUMO) is decreased with 

respect to the starting materials. This feature has given rise to a catalytic strategy known as 

iminium activation, which mimics Lewis acid activation of !,"-unsaturated carbonyl compounds 

regarding to equilibrium dynamics and !-orbital electronics (Scheme 2).2 

 

Scheme 2. Concept of iminium ion activation (LOMO lowering). 

 

The first example of iminium ion activation mode was reported by MacMillan et al. at the 

beginning of the 21st century. This seminal example involved the first enantioselective Diels-

Alder reaction of !,"-unsaturated aldehydes using an imidazolidinone catalyst which acts through 

a covalent intermediate.3 Since then, imidazolidinone-based organocatalysts have evolved, 

mainly thanks to MacMillan et al., who expanded their scope and enhanced their catalytic activity 

and selectivity (Scheme 3).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 a) Layer, R. W. Chem. Rev. 1963, 63, 489; b) Schiff, H. Liebigs Ann. 1864, 131, 118. 
2 Ricci, A. ISRN Organic Chemistry. 2014, 2014, 29. 
3 Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243. 
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Scheme 3. MacMillan’s chiral benzyl imidazolidinone organocatalysts. 
 

3.2. First Generation MacMillan Catalyst 

The first report involving iminium ion activation is the asymmetric Diels-Alder reaction of enals 

and dienes promoted by 1 (Scheme 4). The reaction afforded bicyclic products with moderate 

exo-endo selectivities but with good enantioselectivity (83-96% ee).3 

 
Scheme 4. Diels-Alder reaction with the first generation MacMillan catalyst. 

 

After preliminary experimental findings, the mechanistic details were studied by computational 

methods. The results showed that the catalyst and the aldehyde condense to form an iminium ion 

in the E form to avoid repulsive interactions between the hydrogen atom in the ! position and the 

gem-dimethyl substituents of the catalyst. This geometry leaves the Re face of the iminium 

intermediate exposed for addition of dienes, while the Si face is shielded by the benzene group 

(Scheme 5). This mechanistic study explains the high enantioselectivities observed with 

imidazolidinone-based catalysts.4 

 

 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 a) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874; b) Holland, M. C.; Paul, S.; 
Schweizer, W. B.;  Bergander, K.; Lichtenfeld, C. M.; Lakhdar, S.; Mayr, H.; Gilmour, R. Angew. Chem. Int. Ed. 
2013, 52, 7967. 
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Scheme 5. Stereochemical model for the enantioselective Diels-Alder reaction. 

 

The electrophilicity parameters (E) of some iminium ions were defined by kinetic measurements 

using secondary amines as nucleophiles and cinnamaldehyde.5 The results confirmed that 

imidazolidinone-derived and diarylprolinol-derived iminium ions present higher electrophilicity 

than the common cyclic amine-derived iminium ions (Scheme 6). In conclusion, the first 

generation MacMillan organocatalyst turned out to be perfectly suited for the LUMO-lowering 

iminium ion activation mode using weak nucleophiles.   

 

 

Scheme 6. Relative eletrophilicity E of selected iminium ions 

 

3.2.1. Enantioselective Friedel-Crafts Reactions 

One year later, MacMillan et al. applied the same catalyst to the Friedel-Crafts alkylation of 

pyrroles with !,"-unsaturated aldehydes (Scheme 7).6 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Lakhdar, S.; Tokuyasu, T.; Mayr, H.  Angew. Chem. Int. Ed. 2008, 47, 8723. 
6 Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370. 
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Scheme 7. Friedel-Crafts alkylation of pyrroles. 

 

In this work, the results showed a pyrrole preference for pathway b (Scheme 8, 1,4-addition) 

because of the lower steric hindrance. This nucleophilic addition afforded the products with high 

enantiomeric excess.  

 

 

 

 

 

 

 

Scheme 8. Possible pathways for pyrrole addition. 

 

A simplified mechanism of iminium ion activation is described in Scheme 9. The condensation 

between the first generation MacMillan catalyst and the !,"-unsaturated aldehyde generates an 

iminium ion intermediate which is in equilibrium between the E and Z form (A). Normally, the 

major product is in the E configuration to minimize the repulsive interaction between hydrogen 

and methyl groups (as explained in the Diels-Alder reaction mechanism).7 Afterwards, the 

addition of the nucleophile to the "-carbon of the iminium ion produces the "-functionalized 

enamine (B). At the end, the hydrolysis of the enamine gives the "-functionalized aldehyde and 

releases the catalyst (D). 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 a) Seebach, D.; Gilmour, R.; Gro#elj, U.; Deniau, G.; Sparr, C.; Ebert, M. O.; Beck, A. K. Helv. Chim. Acta 2010, 
93, 603. b) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 
2011, 47, 632.  
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Scheme 9. Catalytic cycle for iminium ion activation mode. 

 

In conclusion, in reactions mediated by the first generation Macmillan catalyst, the methyl group 

in the imidazolidinone controls the iminium geometry whereas the addition of the nucleophile is 

controlled by the benzyl group (Scheme 10). 

 

 

Scheme 10. Stereocontrolling elements of the first generation imidazolidinone organocatalyst. 

3.3. Second Generation MacMillan Catalyst 

With this success in pyrrole addition, the Friedel-Crafts reaction was developed for indoles. The 

reaction between (E)-crotonaldehyde and indole using this imidazolidinone catalyst generated a 

product with poor enantioselectivity (56% ee) and also the reaction was slow (83% yield after 48 

h). A closer study based on theoretical calculations of the first generation MacMillan catalyst 

illustrated that there are two steps which are crucial in this reaction: formation of iminium ion and 
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carbon-carbon bond formation. In the first generation MacMillan organocatalyst there is an 

interaction between the nitrogen and the CH3 group. In addition, there are some interactions 

between one of the methyl substituents and the phenyl ring of the benzyl group in indole. Due to 

these difficulties, the structure of first generation of MacMillan was evolved and a modified 

catalyst was designed. In the new catalyst structure, the position of nitrogen ione pair is away 

from steric hindrance and thus more exposed. As a result the formation of iminium ion will be 

faster and more convenient (Scheme 11).  

 

 
Scheme 11. Comparison between first and second generation MacMillan catalyst. 

 

On these grounds, the second generation MacMillan organocatalyst was developed, where the 

gem-dimethyl group had been replaced by a tert-butyl substituent (moiety 3). This novel catalyst 

was successfully applied to the enantioselective Friedel-Crafts alkylation of indole. A range of 

aromatic and aliphatic unsaturated aldehydes with different indole substrates was applied to this 

reaction (Scheme 12).8 

 
Scheme 12. Friedel-Crafts alkylation with second generation MacMillan catalyst. 

 
 
In 2002, another imidazolidinone catalyst was developed for the asymmetric Diels-Alder reaction 

of conjugate ketones. This reaction was first tested with catalysts 4 and 5. The yield was 20% and 

27% respectively and the reaction proceeded without any enantioselectivity. However, 

introducing a (5-methyl) furyl group on the imidazolidinone (6, Scheme 13), the reaction between 

cyclopentadiene and different ketones afforded the desired products with good yields and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 Austin, J. F.;MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. 
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selectivities (Scheme 14).9 

 

 
 

Scheme 13.  Different kinds of imidazolidinone catalyst. 
 
 
 
 

 

Scheme 14. Diels-Alder reaction with MacMillan catalyst 6. 

 

This reaction was also tested for a variety of cyclic ketones. The results showed the 

enantioselectivity was good with larger rings because the diene in these cyclic systems had the S-

cis conformation locked (Scheme 15). 

 

 

Scheme15. Diels-Alder cycloaddition between cyclic enones and cyclopentadiene catalyzed by 6. 
 

 

3.4. Other Catalytic Reactions with MacMillan Imidazolidinone 

The iminium ion concept and MacMillan catalysts have been used in different reactions such as 

Mukaiyama Michael addition,10 1,3-dipolar cyclization,4a organocatalyzed transfer hydrogenation 
11 or reductive Michael cyclization12 (Scheme 16). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.!
10 Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 1192. 
11 Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32. 
12 Yang, J. W.; Hechavarria Fonseca, M. T.; List, B.  J. Am. Chem. Soc. 2005, 127, 15036. 
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Mukaiyama-Michael addition 

 

1,3-Dipolar cycloaddition 

 

 

Organocatalyzed transfer hydrogenation 

 

 

Reductive Michael cyclization 

 

 

Scheme 16. Some examples of imidazolidinone-catalyzed reactions. 

 

3.5. Immobilized Imidazolidinone Organocatalysts 

Considering the efficient results obtained with homogeneous catalysts, several authors have 

studied their immobilization and recycling.  

Imidazolidin-4-one was anchored on siliceous mesocellular foam (MCF) and polymer-coated 

MCF with different linker groups (Scheme 17). However, the silanol groups in MCF can interact 

with the catalyst and have an effect on its efficiency. To avoid this problem, silanol groups in 
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MCF are covered with polymer, so they do not interfere with the catalyst. These immobilized 

imidazolidinones have been applied to the Friedel–Crafts alkylation with yields similar to the 

homogeneous system. However, stereoselectivities depended on the surface of the support and 

the linker. Within siliceous mesocellular foam (MCF) strong interactions exist between silanol 

groups in the surface of the inorganic material and the catalyst; for this reason, a drop was 

observed in ee. In the case of polymer-coated catalysts ee was constant until the second run, so it 

was proposed that this catalyst is more efficient in recyclability.13 

 

 
 

 
Scheme 17. Heterogenized first generation MacMillan catalyst for conjugate addition of pyrroles to enals. 

 

The Wang group developed a method to take advantage of the activity of homogeneous and 

recyclability of heterogeneous catalyst at the same time. They developed an imidazolidinone-

bridged chiral organosilica polymer, which could be dissolved in CH3CN/H2O and THF/H2O. 

However it was insoluble in H2O, CH2Cl2, or Et2O, which enabled its recovery (Scheme 18). This 

catalyst was used for Diels-Alder reaction with excellent enatioselectivities.14 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y. Adv. Synth. Catal. 2006, 348, 2027. 
14 Wang, C. A.; Zhang, Y.; Shi, J, Y.; Wang, W. Chem. Asian J. 2013, 8, 1110. 
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Scheme 18.  A self-supported polymeric MacMillan catalyst. 

 

In another work by Puglisi and Benaglia, four different imidazolidinone-based catalysts were 

synthesized.15 All of them were tested in the Diels-Alder cycloaddition between cyclopentadiene 

and different aldehydes. Among them, catalyst 10 showed better results than its analogues. 

However, the recyclability, studied for the Diels-Alder reaction between cyclopentadiene and 

cinnamaldehyde, results showed the yield was decreasing from 91% to 63% and 41%. 

Enantiomeric excesses also decreased from 92% to 87% and 72% for the endo isomer in the 

second and third runs, respectively. The authors mention this limitation could be due to partial 

degradation of the imidazolidinone moiety and the silica network. 

 

 
Scheme 19. Silica-supported imidazolidinones. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 Puglisi, A.; Benaglia, M.; Annunziata, R.; Chiroli, V.; Porta, R.; Gervasini, A. J. Org. Chem. 2013, 78, 11326. 
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In our group, the first generation MacMillan imidazolidin-4-one catalyst was immobilized onto a 

Merrifield resin as well as magnetic nanoparticles (Fe3O4) exploiting the copper-catalyzed alkyne 

azide cycloaddition (CuAAC) strategy. This immobilized catalyst was applied to the Friedel-

Crafts reactions of N-substituted pyrroles with !,"-unsaturated aldehydes, the results being very 

satisfactory (Scheme 19). The study showed that, whereas PS-supported imidazolidinone gave 

better results, MNP-supported ones displayed better stability during the recycling process. In 

addition, the magnetic properties allowed a facile separation of the catalyst from the reaction 

media.16!!

!

 
Scheme 19. Immobilization of first generation MacMillan organocatalyst on polystyrene and magnetic nanoparticles. 

 

According to the abovementioned, we reasoned that an immobilized second generation 

MacMillan catalyst would give an interesting new range of reactions that were not available 

with 12 or 13. This heterogenization study gave rise to the paper attached hereafter.  
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ABSTRACT: Heterogenized versions of the second-gener-
ation MacMillan imidazolidin-4-one are described for the first
time. This versatile organocatalyst has been supported on 1%
DVB Merrifield resin and Fe3O4 magnetic nanoparticles
through a copper-catalyzed alkyne−azide cycloaddition
(CuAAC) reaction. The resulting catalytic materials have
been successfully applied to the asymmetric Friedel−Crafts
alkylation of indoles with α,β-unsaturated aldehydes. While
both catalytic systems can be easily recovered and admit
repeated recycling, the polystyrene-based catalyst shows higher
stability and provides better stereoselectivities.

In the year 2000, MacMillan and co-workers introduced
iminium ion catalysis as a new activation concept in a seminal

paper that opened the organocatalysis field.1 For this novel mode
of activation, they developed a chiral secondary amine integrated
in an imidazolidin-4-one framework (the first-generation
MacMillan catalyst), whose efficiency was demonstrated in a
variety of asymmetric processes involving enals.1,2 Among them,
the first highly enantioselective Friedel−Crafts (FC) alkylation
of pyrroles with α,β-unsaturated aldehydes was developed.2b

However, when the same strategy was attempted with less
electron-rich heteroaromatics, such as indoles, poor results were
achieved. Efforts directed to the solution of this problem led to
the development of the so-called second-generation MacMillan
catalyst, a more active and versatile imidazolidin-4-one featuring
an additional stereocenter.3 This type of organocatalyst has been
successfully applied to a large variety of important trans-
formations, including cycloadditions,4 hydrogenations,5 and
conjugate additions.6

However, some drawbacks arise in connection with its
preparation when compared to the facile synthesis of the first-
generation imidazolidin-4-one. For instance, synthesis of the
second-generation cis-imidazolidin-4-one (cis-2) requires con-
densation of the phenylalanine amide derivative (1) with an
excess of pivalaldehyde using iron(III) chloride as the Lewis acid
(Scheme 1). This transformation yields a mixture of diaster-
eoisomers with the undesired trans-2 as themajor product. Given
themanifold applications of this organocatalyst and the problems
associated with its preparation, development of a modified

version that could allow for its easy recovery and multiple reuse
becomes highly desirable.
Recycling of organocatalysts has been tackled from different

perspectives.7 Among them, covalent immobilization onto
insoluble supports furnishes an excellent platform to simplify
catalyst separation from the reaction medium. In fact, the
heterogenization of the first-generation MacMillan catalyst onto
a variety of solid supports such as organic polymers,8 magnetic
nanoparticles,8d and mesoporous materials9 has been reported in
the literature.
The use of a copper-catalyzed alkyne−azide cycloaddition

reaction (CuAAC) as a tool to anchor different organocatalysts
onto polymers8d,10 and magnetic nanoparticles8d,11 has been
explored in detail, with excellent results in our laboratory. We
envisioned that such a late-stage immobilization would be ideal
to support the versatile second-generation MacMillan catalyst
(the target cis diastereomer could be previously separated). This
would only require a simple modification in the starting amino
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Scheme 1. Reported Synthesis of 2
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acid to provide an anchoring point remote from the catalyst
active site.
We report the covalent immobilization of the second-

generation imidazolidin-4-one organocatalyst onto 1% DVB
Merrifield resin (PS) and iron oxide magnetic nanoparticles
(MNPs) according to these principles and the use of the resulting
recyclable catalysts in the enantioselective FC alkylation of
indoles with α,β-unsaturated aldehydes. In contrast to what one
might expect, the employed support has a significant effect not
only on the recyclability of the catalyst but also on its
enantioselectivity.
Monomeric species 5was prepared as shown in Scheme 2. The

sequence started with the amidation of the commercially

available L-tyrosine methyl ester hydrochloride (3). As
mentioned above, the para-hydroxy substituent in the aryl
group of this amino acid will be instrumental for the
immobilization process. Next, condensation of the resulting
amide with pivalaldehyde in the presence of FeCl3 gave
imidazolidin-4-one 4 as a 1:2.4 mixture of cis/trans diaster-
eoisomers, with the desired cis-4 being isolated in 17% yield after
separation by column chromatography. Final propargylation led
to the ready-to-anchor cis-imidazolidin-4-one 5 in 64% yield.
To prepare PS-supported second-generation imidazolidin-4-

one (catalyst A), commercially available Merrifield resin (1%
DVB, f = 0.6 mmol·g−1) was converted to azidomethylpolystyr-
ene by treatment with sodium azide, and the resulting PS-azide ( f
= 0.54 mmol·g−1) was conjugated with 5. To prepare catalyst B,
Fe3O4 MNPs (5.7 ± 1.3 nm) prepared by thermal decom-
position12 were functionalized with azide groups by ligand
exchange with 3-(azidopropyltriethoxy)silane to give 3-azido-
propyl-MNPs ( f = 0.72 mmol·g−1). In both cases, imidazolidi-
none 5 was immobilized using a CuAAC reaction. Functionaliza-
tion of both materials was followed by infrared spectroscopy (see
Supporting Information). Also, the size distribution and
morphology of the MNPs were monitored by transmission
electron microscopy (TEM) after each step. This allowed us to
rule out any agglomeration phenomena during the preparation of
the immobilized catalyst (Figure 1; see Supporting Information
for details).
Next, we investigated the activity of catalysts A and B on the

enantioselective FC alkylation of indoles with α,β-unsaturated
aldehydes.13 The reaction between N-methylindole (6a) and
cinnamaldehyde (7a) was chosen to optimize the reaction
conditions. The effects of solvent and temperature were studied

with polystyrene-based catalyst A. As shown in Table 1, good
results were obtained when the reaction was carried out in

CH2Cl2, tetrahydrofuran, or toluene (entries 1, 3, and 4). While
no conversion was observed in isopropyl alcohol alone (entry 2),
the best result was observed in a CH2Cl2/i-PrOHmixture at−20
°C (entry 5). Good yields and enantioselectivities of FC adduct
8a were also recorded with the same solvent mixture at room
temperature or at 0 °C (entries 6 and 7).
The asymmetric FC reaction was next studied with

representative combinations of α,β-unsaturated aldehydes and
indoles or N-methylindoles under the optimized reaction
conditions, using catalysts A and B (Scheme 3). Both systems
displayed good tolerance toward the reaction of β-alkyl- and β-
aryl-substituted enals (Z = Pr, Et, Ph, 4-ClC6H4, 4-NO2C6H4),
with N-methylindole and indole giving the corresponding
adducts with good yields and enantioselectivities. On the other
hand, incorporation of a halogenated group on the C6 position of
the indole moiety had a deleterious effect on the activity and
enantioselectivity of catalysts A and B (products 8g and 8h).
Comparison seems to favor the polystyrene-based catalystA in

all cases. Thus, this catalyst leads to higher enantioselectivities
and similar or better yields in shorter reaction times (24 h) than
MNP-based catalyst B (48 h). A tentative explanation to this
behavior can be found on the differential efficiency of interphase
mass transfer with both types of material. MNPs, despite their
inherently high specific surface, do not normally exhibit perfect
dispersibility in organic solvents.14 The agglomerates formed in
these conditions only allow for limited accessibility of the
reagents to the catalytic sites, leading to TOFs well below its
theoretical maximum. On the contrary, when polystyrene-based
catalysts operate in reaction media that lead to perfect swelling

Scheme 2. (a) Synthesis of Second-Generation Imidazolidin-
4-one Derivative 5 and (b) General Methodology To Prepare
PS-Supported Imidazolidinone (Catalyst A) and MNPs-
Supported Imidazolidinone (Catalyst B)

Figure 1. TEM images of MNPs before (left) and after (right)
functionalization with 5.

Table 1. Optimization of the Reaction Conditions for the FC
Alkylation of Indoles with Enals Mediated by Catalyst Aa

entry temp (°C) solvent yield (%)b ee (%)c

1 −20 CH2Cl2 64 60
2 −20 i-PrOH − −
3 −20 THF 51 59
4 −20 toluene 52 69
5 −20 CH2Cl2/i-PrOH

d 71 84
6 rt CH2Cl2/i-PrOH

d 76 69
7 0 CH2Cl2/i-PrOH

d 73 75
aReaction conditions: N-methylindole (0.3 mmol), trans-cinnamalde-
hyde (0.9 mmol), catalyst A (20 mol %), TFA (0.5 M, 20 mol %),
solvent (1 mL). bIsolated yield. cEnantioselectivity determined by
chiral HPLC. d85:15 ratio.
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(as is the case for catalyst A in dichloromethane), mass transfer
limitations are effectively overcome, so that reaction rate can
approach its theoretical maximum. As far as enantioselectivity is
concerned, it is well-known that the surface of metal oxide
nanoparticles is covered with a layer of hydroxy groups.15 A
complete capping of these groups during the functionalization of
the nanoparticles is virtually impossible. These residual OH
groups might interact with the organocatalyst and/or the
substrates by hydrogen bonding or by protonation, thus entailing
a decrease in the enantioselectivity of the process.16 In this
respect, it is worth noting that no background reaction was
observed using nonfunctionalized MNPs (alone or in the
presence of TFA).
As discussed above, the most important purpose of catalyst

immobilization is to facilitate recycling and reuse. In the present
case, the polystyrene-based catalyst A could be easily recovered
by filtration, while catalyst B was separated by simple magnetic
decantation. This being secured, the robustness of catalystsA and
B upon reuse was studied. Reaction between trans-cinnamalde-
hyde andN-methylindole was selected as a model (Table 2). For
each run, equimolar amounts of TFA were added to recondition
the catalysts.
Following the protocol detailed in the Supporting Informa-

tion, catalysts A and B could be reused for five consecutive runs.
A slight decline in catalytic activity was observed in both cases as
the recycling progressed. For enantioselectivity, the reactions
involving the MNP-supported catalyst exhibited a slight but
continuous decrease. With the PS-based catalystA, in turn, the ee
recorded in the fifth run was still fully comparable with the initial
one.
Possible explanations for the lower stability of B under the

recycling conditions could be the occurrence of reversible
agglomeration phenomena in the reaction media that could lead
to a decrease of the effective surface area of the MNPs or the
sensitivity toward trifluoroacetic acid of the silicon−oxygen

bonds involved in catalyst immobilization that could provoke a
progressive decrease in functionalization.
In conclusion, we have developed an efficient way to support

the second-generation MacMillan organocatalyst onto slightly
cross-linked polystyrene (catalyst A) and iron oxide MNPs
(catalyst B). The catalytic efficiency of these functional materials
has been demonstrated in the enantioselective FC alkylation of
indoles with α,β-unsaturated aldehydes. Both catalysts could be
easily recovered and reused for five consecutive runs. When the
suitability of both supports is critically assessed, the polystyrene-
based catalyst proves to be much more active and selective than
the magnetic iron oxide based one. It seems that the polymeric
nature of the support in the PS-based catalyst might offer a
beneficial microenvironment to the active sites, resulting in
better reactivity and stereoselectivity compared to that of the iron
oxide MNP-based catalyst. It is suggested that magnetic
nanoparticles lacking excess hydroxy functionalization on their
surfaces and that do not show a tendency to agglomerate, like
cobalt nanoparticles coated with graphitic carbon,17 could
overcome this limitation.
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3.7. Conclusions 

This chapter describes the first immobilization of second-generation MacMillan imidazolidin-4-

one onto magnetic nanoparticles and polystyrene. The organocatalyst was anchored onto both 

solid supports through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The 

resulting catalytic materials were applied to the asymmetric Friedel-Crafts alkylation of indoles with 

!,"-unsaturated aldehydes. With PS-catalyst the role of solvent and temperature was explored, 

afterwards with optimized condition, the asymmetric Friedel-Crafts alkylation of indoles with 

!,"-unsaturated aldehydes for both catalyst and the scope of the reaction were studied. To 

evaluate activity of catalyst for reusing, the recyclability of MNPs and polystyrene catalysts was 

investigate for five consecutive runs. In both catalysts a slight decline in catalytic activity was 

observed. In this study, the polystyrene-based catalyst showed higher stability and provided 

better stereoselectivities. 
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-#.!2'68$,#0!2'#&(-#(&!;!E!,#!PR9!P,0)C*%&'$6(,'#!1-&&!&8%2(*-!;PHG<E!+%*%!*%2'*.%.!'#!-!U-(%*&!V>S!0-&!

2)*'1-('0*-8)!2'68$%.!(,1%C'7C7$,0)(!1-&&!&8%2(*'1%(%*! ;V>WG<CSX:E!+,()!%$%2(*'#! ,'#,R-(,'#!;YZE9!ASH!

&8%2(*-!+%*%! *%2'*.%.! '#! L*6M%*! X8(,2&! :SZH! A$8)-! &8%2(*'1%(%*! %[6,88%.!+,()! -! =SV<! .%(%2('*9! Y$%C

1%#(-$! -#-$3&%&! ;>\! P\! FE! +%*%! 8%*7'*1%.! ,#! ]Y>X! >PF<! ^JI! 1,2*'-#-$3&%&! -(! ()%! "#,4%*&,.-.! >'1C

8$6(%#&%! .%! G-.*,./! <8-,#9! H-2%1,2! &(-#.-*.! 8*'.62(&! +%*%! 8*%8-*%.! 6&,#0! NC5%#R3$CIC;"#$"C56(3$ECJC

56(3$,1,.-R'$,.,#CBC'#%! -&! 2-(-$3&(! ,#! '*.%*! ('! %&(-5$,&)! 2),*-$! P_]>! 2'#.,(,'#&9! <8%2,7,2! '8(,2-$! *'(-(,'#!

1%-&6*%1%#(&!+%*%!2-**,%.!'6(!'#!-!`-&2'!_CO@J@!1'.%$!8'$-*,1%(%*!%[6,88%.!+,()!-!_GS!.%(%2('*!6&,#0!

()%!<'.,61!$,#%!-(!Na^!#19!SYG!,1-0%&!+%*%!*%2'*.%.!6&,#0!`YX]!`YG!O@OO!1,2*'&2'8%!%[6,88%.!+,()!

$-#()-#61!)%b-5'*,.%!7,$-1%#(/!'8%*-(%.!-(!-#!-22%$%*-(,'#!4'$(-0%!'7!O@@!Mc/!-(!G,2*'&2'83!"#,(&/!"#,C

4%*&,(-(!H'4,*-!,!c,*0,$,/!S-**-0'#-/!<8-,#9!A!.*'8!'7!()%!1-0#%(,2!#-#'8-*(,2$%&!&6&8%#&,'#!+-&!-..%.!('!-!

)'$%3C2-*5'#!2'-(%.!I@@!1%&)!2'88%*!0*,.!-$$'+,#0!()%!&'$4%#(!('!%4-8'*-(%!5%7'*%!5%,#0!,#(*'.62%.!,#('!

()%!1,2*'&2'8%9!A$$!8*'.62(&!()-(!-*%!M#'+#!+%*%!2)-*-2(%*,R%.!53!2'18-*,&'#!'7!()%,*!8)3&,2-$!-#.!&8%2C

(*'&2'8,2!8*'8%*(,%&!+,()!()'&%!.%&2*,5%.!,#!()%!$,(%*-(6*%9!

!

!

!
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S3 

 
!"#$%&'()*+*#,-#.!!/0!12!2."#$"234'%5126234'%5202.72.89,82!2%&2:2%5,;%13)&<%51+=+>?<,25+>+&272,&)#.01#

HO

CO2H SOCl2

MeOH
0 °C, rt

NH2·HClHO

CO2Me

NH2

3, 77% yield

(1) n-Butylamine
24 h, rt

(79% yield)

(2) FeCl3, t-BuCHO
THF, 36 h, rt

HO HN
N

O

n-Bu

HO
HN

N

O

n-Bu+

cis-4
17% yield

trans-4
41% yield

Br K2CO3, DMF
0 ºC to rt
Overnight

O HN
N

O

n-Bu

5, cis-isomer
64% yield

L-Tyrosine

#
!":"#.!12@%9,*+&)#=)'(%5#)*')9#(%>9,A(5,9+>)#.61"!#

"#$%&'()%*#%+#,!-./01%$)*2#,3454#67#89:58#;;%&-# )*#<10#;2(=>*%&#,344#;?-#'*<21#

>16%*#>(;%$@=212#A>$#B%%&2<#(%#4#CD#>*<#(=)%*0&#B=&%1)<2#,345E#;?7#:FF#;;%&-#

A>$# ><<2<# <1%@A)$2# (=1%'6=# >*# ><<)()%*# +'**2&5# "+(21# (=2# ><<)()%*# A>$# B%;.

@&2(27#(=2#B%%&)*6#G>(=#A>$#12;%H2<#>*<#$()11)*6#A>$#B%*()*'2<#>(#1%%;#(2;@21>('12#%H21*)6=(5#/=2#12>B.

()%*#;)I('12#A>$#B%*B2*(1>(2<#'*<21#H>B'';#>*<#(=2#$%&)<#12$)<'2#A>$#$()112<#A)(=#>B2(%*2#,8#I#834#;?-#

+%1#%*2#=%'15#/=2*#)(#A>$#B%*B2*(1>(2<#)*#H>B'';7#>*<#(=2#@1%B2$$#A>$#12@2>(2<#,<)$$%&H2#)*#>B2(%*27#$()1#

+%1#!#=#>*<#2H>@%1>(2-5#/=2#$%&)<#A>$#+)&(212<#%++#>*<#A>$=2<#A)(=#>B2(%*2#,J#I#!44#;?-5#/=2#$2@>1>(2<#

$%&)<#A>$#<1)2<#'*<21#H>B'';#(%#>++%1<#,!-.(01%$)*2#;2(=0&#2$(21#=0<1%B=&%1)<2#,6-#>$#>#A=)(2#$%&)<#,385J#67#

99K#0)2&<-5#
:B#CDE# ,J44#LMN7#<:.OLPQ-R# #S#F5T3#,G1#$7#!M-7#E53T#,G1#$7#JM-7#9544#,<7#"#U#E58#MN7#8M-7#:59!#,<7#8M7#"#U#

E58-7#T584VT5!8#,G1#(7#"#U#:5TT#MN7#!M-7#J5::#,$7#JM-7#J543#,<<7#"#U#!T587#35F#MN7#!M-7#85FE#,<<7#"#U#!T587#954#MN7#

!M-5#:6F#CDE#,93#LMN7#<:.OLPQ-R#S#!:F537#!3:597#!J45T#,W8-7#!8T5T7#!!353#,W8-7#3J537#385:7#J3585##

#

!"!"#.!!/0!12!2."#$"2G4'%5126234'%5202.72(%>9,;%3)&<%51+=+>?<,5+>+&272,&)#.%&'271"#

#,!-./01%$)*2#;2(=0&#2$(21#=0<1%B=&%1)<2#,6-#,!E#67#9959#;;%&-#A>$#(12>(2<#A)(=#

#.G'(0&>;)*2#,:4#;?7#:4E#;;%&-#>*<#(=2#12$'&()*6#;)I('12#A>$#$()112<#>(#1%%;#

(2;@21>('12#+%1#8T#=%'1$5#/=2#2IB2$$##.G'(0&>;)*2#A>$#12;%H2<#G0#B%*B2*(1>.

()%*#)*#H>B'%7#A>$=)*6#A)(=#/MX#>*<#B%*B2*(1>()*6#>6>)*#$2H21>&#();2$#'*()&#(=2#

$.G'(0&#>;)<2#@1%<'B(#A>$#%G(>)*2<#>$#>#A=)(2#$%&)<5#/=)$#A>$#<1)2<#'*<21#H>B'';#%H21*)6=(#,!953#67#9FK#

0)2&<-#>*<#(=2#@1%<'B(#A>$#<)12B(&0#'$2<#+%1#(=2#*2I(#$(2@#A)(=%'(#+'1(=21#@'1)+)B>()%*5##

                                                

 
!#Y)2*(27#Z5[#\><>H7#]5[#Z21)B^$7#L5#"5#%&'()*+,,5#!H:!7#-.7#J::E5#

NH2·HClHO

CO2Me

3

HO HN
N

O

n-Bu

cis-4
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S4 

!"#$%&'(#$)!*+,+-./01+"+2'345+6+)7+"4(&1849"#045*9&19-0-./(#$)6:;$<=$>6:?$..15*=$@$<$1A$-%3/B-3#($7$C$

DE$-0($-0"4(&1'F$G#H56$)?:@$<=$,:;$..15*$I#&#$F'F9#0(#($/0$(&4$!JG$)6?$.K*$'0(#&$-&<10$-3.1F9"#&#:$

!"#0=$9/B-5-5(#"4(#$)>:L$.K=$>7:6$..15*$I-F$-((#($-0($3"#$&#-%3/10$./83'&#$I-F$F3/&&#($-3$&11.$3#.9#&+

-3'&#$A1&$6;$"1'&F:$MA3#&$3"#$F3-&3/0<$.-3#&/-5$I-F$%10F'.#(=$,?$.K$1A$J,N$I#&#$-((#(:$!"#0=$3"#$&#-%+

3/10$./83'&#$I-F$A/53#&#($1AA$-0($3"#$F15/($&#F/('#$I-F$I-F"#($I/3"$HJ,H5,$)6$O$>??$.5*:$!"#$A/53&-3#$I-F$

3&-0FA#&&#($ 31$-$@??$.K$#83&-%3/10$ A'00#5$-0($ 3"#$-P'#1'F$ 5-4#&$I-F$F#9-&-3#(:$!"#$1&<-0/%$9"-F#$I-F$

I-F"#($I/3"$@?$.K$1A$J,N$-0($/3$I-F$(&/#($1B#&$D<EN7:$!"#$F15B#03$I-F$#B-91&-3#($'0(#&$&#('%#($9&#F+

F'&#$-0($3"#$&#F/('#$I-F$9'&/A/#($24$F/5/%-$<#5$%"&1.-31<&-9"4$)%4%51"#8-0#QR3NM%$;?S7?*$31$A'&0/F"$#$%+!$

-F$-$4#551I$1/5$);T?$.<=$>TU$4/#5(*:$

"#$%&'$()**$&#+,$-.-/012$V$T:?T$)(=$&'W$L:6$JX=$,J*=$;:T,$)(=$&'W$L:6$JX=$,J*=$7:,7$)(=$&'W$>:@$JX=$>J*=$6:TL$

)(((=$&'W$T:?=$Y:@=$>7:?$JX=$>J*=$6:;7$)(((=$&'W$>:@=$7:6=$;:>$JX=$>J*=$,:YYZ6:>,$).=$,J*=$,:Y,$)((=$&'W$;:Y=$>7:?$

JX=$>J*=$>:;7Z>:T;$)2&$F=$>J*=$>:@6Z>:;6$).=$>J*=$>:76Z>:@?$).=$>J*=$>:,>Z>:6@$).=$,J*=$?:Y,$)3=$&'W$T:7$JX=$

6J*=$?:L7$)F=$YJ*:$$

"0-$%&'$)>,;$DJX=$H[H56*S$V$>T@:L=$>@@:6=$>6?:T$)O,*=$>,L:7=$>>@:T$)O,*=$TY:T=$@Y:7=$7,:7=$6;:;=$6@:>=$,Y:?=$

,@:@$)O6*=$,?:?=$>6:T:$

#'&3$)RE\]*S$%-5%'5-3#($A1&$H>LJ,Y^,N,$_D]J`]S$6?@:,,,7=$A1'0($6?@:,,>7:$$

4'$)M!a*S$b$6,LL=$,Y;@=$,Y6>=$,LY6=$>;;@=$>;>7=$>@Y7=$>@>@=$>77@=$>6;@=$>6>?=$>,6Y=$>>T>=$>>?L=$Y66=$LY7=$

L,7=$T,,=$;>L=$@,L=$76,$%.!>:$

 

5606$(5!,)"1757(#$%#789:;/1707<9:;/7)7(!7(=>?=757;@7"7;/?A;1<B@+;/1CDCEF+?/CEC@7!7?@B$()16$

$),!=@!*+,+)()*(+c'345*+6+2'345+@+)7+"4(&1842#0X45*/./(-X15/+(/0+7+10#$ )#$%+

!*$ )YT?$.<=$ 6:>L$..15*$I-F$ -((#($ 31$ -$ F'F9#0F/10$ 1A$ d,HN6$ )>:6$ <=$ Y:@$

..15*$-0($9&19-&<45$2&1./(#$)L?U$IQI$F15'3/10$/0$315'#0#=$6:L$..15=$?:;$

.K*$/0$(&4$[DG$),?$.K*$-3$?$eH$'0(#&$-&<10$-3.1F9"#&#:$!"#$&#F'53/0<$./8+

3'&#$I-F$F3/&&#($-3$&11.$3#.9#&-3'&#$1B#&0/<"3:$MA3#&$%1.95#3#$%10F'.93/10$1A$3"#$F3-&3/0<$.-3#&/-5=$@?$

.K$1A$F-3:$-P:$^J7H5$I#&#$-((#($31$3"#$&#-%3/10$./83'&#:$!"#0=$>??$.K$1A$R3NM%$I#&#$-((#($-0($3"#$./8+

3'&#$I-F$F3/&&#($A1&$6?$./0'3#F:$!"#$1&<-0/%$5-4#&$I-F$F#9-&-3#($-0($3"#$-P'#1'F$5-4#&$I-F$-<-/0$#83&-%3+

#($I/3"$#3"45$-%#3-3#$)@?$.K*:$!"#$%1.2/0#($1&<-0/%$5-4#&F$(&/#($1B#&$^-,EN7:$!"#$F15B#03$I-F$#B-91&-3#($

'0(#&$ &#('%#($ 9&#FF'&#$ -0($ 3"#$ &#F/('#$I-F$ 9'&/A/#($ 24$ F/5/%-$ <#5$ %"&1.-31<&-9"4$ )%4%51"#8-0#QR3NM%$

;?S7?*$31$123-/0$)$$-F$4#551I$1/5$)LY?$.<=$,:;$..15=$L,U$4/#5(*:$$

"#$%&'$)@??$DJX=$H[H56*S$V$T:>L$)(=$&$W$L:;$JX=$,J*=$;:Y?$)(=$&$W$L:;$JX=$,J*=$7:;@$)(=$&'W$,:7$JX=$,J*=$7:,>$)(=$

&'W$>:@$JX=$>J*=$6:TL$)(((=$&'W$T:>=$Y:;=$>7:?$JX=$>J*=$6:;7$)(((=$&'W$>:@=$7:?=$T:7$JX=$>J*=$6:??Z6:>,$).=$,J*=$

,:LY$)((=$&$W$T:7=$>7:?$JX=$>J*=$,:7L$)3=$&'W$,:7$JX=$>J*=$>:;;Z>:TL$)2&$F=$>J*=$>:@,Z>:;6$).=$>J*=$>:7?Z>:@>$

).=$>J*=$>:,@Z>:67$).=$,J*=$?:Y6$)3=$&'W$T:7$JX=$6J*=$?:L7$)F=$YJ*:$$

O HN
N

O

n-Bu

5, cis-isomer
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S5 

!"#$%&'$!"#$%&'()%*+*,-./%0%"123-)%"2$34)%"-"35)%"-53$%!6#.)%""23"%!6#.)%173$)%1831)%123-)%2734)%2237)%4#3-)%

-13#)%-23-)%#735)%#232%!6-.)%#53")%"-313%%

('&)$!9:;<./%=>,=?,>@AB%CDE%*#"'-"F#G#%H&<'I</%-4-3#-85%CD?JB%-4-3#-173%%

*'$ !KLM./$N%--51)%#7$23%#7-")%#8$")%"$81)%"$"5)%"285)%"2"5)%"41$)%"4--)%"-7#)%"--7)%"-51)%"#72)%"#--)%

""17)% ""#5)% "5#7)% 7$-)% 7-2)% 87$)% 8#4)% 854)% 188)% 1-4)% $$#)% $-2)% $"1)% 282)% 221)% 2#")% 471)% 4#8$ =O!"3
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S6 

 

!"#$%&'()*+*#,-#'()#.,/%*'%0)&)123*)4#53'3/%*'#653'3/%*'#78#

+
NaN3, DMF

60 ºC, 18 h

ClPS N3PS

CuI, DIPEA

DMF/THF, 50 ºC

5
O HN

N

O

n-Bu

HN
N n-Bu

O

Catalyst A

N N
N

O

PS

#

!"9"#:0).303'+,&#,-#3;+4,<)'(%/.,/%*'%0)&)#

!"#$#%&%'()%*")#"+#,(--*+*(./# -(%*)# 01223422#5(%67#8"9$:*";6(57# !#<#2=>#55".#?317#@=2#?7#4#

55".A#*)#/-B#C,D#0@2#5EA#F$%#$//(/#%"/*&5#$G*/(#01=H#?7#42#55".A=#!6(#5*IJ&-(#F$%#%6$K()#

0"-:*J$.#%6$K(-A#$J#L2#MN#"9(-)*?6J7#;"".(/#J"#-""5#J(5'(-$J&-(#$)/#+*.J(-(/=#!6(#-(%*)#F$%#F$%6(/#%&;;(%3

%*9(.B#F*J6#122#5E#9".&5(%#"+#O4P7#$#1Q1#5*IJ&-(#"+#O4PR,(PO7#,(PO7#$#1Q1#5*IJ&-(#"+#!ODR,(PO7#!OD7#

$)/#CN,7#$)/#/-*(/#&)/(-#9$;&&5#$J#@2#MN#+"-#@S#6=#!6(#+&);J*")$.*G$J*")#F$%#;$.;&.$J(/#")#J6(#:$%*%#"+#

)*J-"?()#(.(5()J$.#$)$.B%*%=#D"&)/#0TAQ#8Q#4=4U7#OQ#U=@U7#NQ#SV=U@W#!"X#2=>@#55".Y?31=#

=>#0Z![AQ#\#H24@7#4V1V7#4S@@7#42VL7#1>VU7#1@V47#1@>17#12LS7#124L7#V2>7#S@17#U@>7#LVV7#>@2#;5!1=##

 

!"?"#$@..,0'+&A#'()#3/B%&)1-@&5'+,&3/+;)4#+<+43;,/+4+&1C1,&)#'(0,@A(#5/+5B#5()<+*'0%#653'3/%*'#78"#

!"#$#%&%'()%*")#"+#$G*/"5(J6B.'".B%JB-()(#0!#<#2=@S#55".#?317#L22#

5?7# 2=H4#55".A# *)# $#5*IJ&-(# "+# 12#5E# "+# /-B# !ODRC,D# 01Q1A#F$%#

$//(/# 04#7>#A3430$%&$3:&JB.A3H3:&JB.3>30@30'-"'343B)313B."IBA:()3

GB.A*5*/$G".*/*)3@3")(# 0DA# 02=1H# ?7# 2=HV#55".A#C]^_Z# 02=U>#5E7# @=4#

55".A#$)/#N&]#014=@#5?7#2=2L#55".A=#!6(#5*IJ&-(#F$%#%6$K()#0"-:*J$.#%6$K(-A#$J#@2#MN#+"-#1>#6=#!6(#;"53

'.(J*")#"+#J6(#-($;J*")#F$%#`&/?(/#:B#J6(#$:%();(#"+#J6(#;6$-$;J(-*%J*;#$G*/(#'($K#*)#J6(#][#0$-"&)/#4122#

;5a1A=# !6()7# J6(# -($;J*")#5*IJ&-(#F$%# $.."F(/# J"# ;"".# J"# -""5# J(5'(-$J&-(7# +*.J(-(/# $)/# J6(# %".*/#F$%#

F$%6(/#F*J6#>22#5E#"+#O4P#$)/#>22#5E#,(PO=#])#"-/(-#J"#-(5"9(#J6(#-(5$*)*)?#N&]7#J6(#-(%*)#F$%#J$K()#

*)#$#12235E#-"&)/#:"JJ"5#+.$%K#$)/#H2#5E#"+#!OD#$)/#1#5E#"+#(J6B.()(/*$5*)(#F(-(#$//(/=#!6(#5*IJ&-(#

F$%#%6$K()#0"-:*J$.#%6$K(-A#$J#-""5#J(5'(-$J&-(#+"-#42#5*)#$)/#J6()#*J#F$%#+*.J(-(/#"++#$)/#F$%6(/#F*J6#

>2#5E#"+#!OD#$)/#>2#5E#"+#,(PO=#!6(%(#%J('%#F(-(#-('($J(/#+"-#JF"#5"-(#J*5(%=#D*)$..B7#J6(#%".*/#F$%#

F$%6(/#F*J6#>22#5E#9".&5(%#"+#O4P7#$#1Q1#5*IJ&-(#"+#O4PR,(PO7#,(PO7#$#1Q1#5*IJ&-(#"+#!ODR,(PO7#

!OD7#$)/#CN,#$)/#/-*(/#&)/(-#9$;&&5#$J#@2#MN=#!6(#+&);J*")$.*G$J*")#F$%#;$.;&.$J(/#")#J6(#:$%*%#"+#)*J-"3

?()#(.(5()J$.#$)$.B%*%=#D"&)/#0TAQ#8#H=HV7#O#U=>U7#N#S@=VLW#!#X#2=@S#55".#?31=##

N3PS

HN
N n-Bu

O

Catalyst A

N N
N

O

PS
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S7 

!"# !"#$%&'('))*+,'-./0,'-.-1,'-2/*,'3/20,'3/*.,'301/,'30*0,'3+)+,'3).-,'3)+-,'3--2,'331),'3330,'3*-/,'

2.1,'2-0,'1)1,'/3/,'012,'03+'45!36'

78#9&':;<<=>=?@'AB@4C=D'E<'4B@BFGD@'$'HBI='IB>G;?H'<J?4@;E?BF;KB@;E?'F=I=FD6'#C='=LB4@'<J?4@;E?BF;KB@;E?'E<'

@C='4B@BFGD@'JD=:';?'=B4C'=LB5MF='N;FF'A=';?:;4B@=:';?'@C='=LM=>;5=?@BF'M>E4=:J>=6'

#

O$' DM=4@>J5'E<' !B%' D=4E?:'H=?=>B@;E?' ;5;:BKEF;:;?P+PE?=':=>;IB@;I=' !%%,' !A%' D=4E?:'H=?=>B@;E?' ;5;:BKEF;P
:;?P+PE?=':=>;IB@;I='DJMME>@=:'E?@E'QR'!4B@BFGD@'$%'B?:'!4%'BK;:=P<J?4@;E?BF;K=:'QR'!QRP7)%6#



!"#$%&'()(
!

!

!

"#!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

 

 

S8 

!
"#!$%&'()*+*!,-!./0&)'+1!&/&,2/3'+14)*56/*)7!1/'/4%*'!81/'/4%*'!9:!

MNPs
(EtO)3Si N3

CH3CO2H, H2O
Toluene, 105 ºC

24 h

Si N3
O
O
O

MNPs

CuI,
DIPEA
DMF/THF, 60 ºC

= Surfactants

O HN
N

O

n-Bu

5

HN
N n-Bu

O

Catalyst B

N N
N

O

MNPs

!

"#;#!$%&'()*+*!,-!/<+7,!-=&1'+,&/4+<)7!./0&)'+1!&/&,2/3'+14)*;>?!

!"#!$!%&%'()%*#)!#+!$%,'-('$-(.!/01%
2
!34567859!):;!852!<=!*)!.(<$%%(.!.->!?#@&()(!

32A!:B=;!&).(-!$-<#);!C$%!$..(.!9,3$D*.#'-#'>@=?-*(?E#F>%*@$)(
9
!385A!<;!G5AG!::#@=;!

<@$H*$@!$H(?*H!$H*.!38AI!JB;!85K!::#@=!$).!&@?-$'&-(!C$?(-!389L!JB;!65L!::#@=5!"E(!-($H?*#)!:*F?&-(!C$%!

%?*--(.!$?!8A4!MN!+#-!2G!E!$).!?E()!H##@(.!?#!-##:!?(:'(-$?&-(5!"E(!-(%&@?$)?!/01%!C(-(!H#@@(H?(.!&%*)<!

$)!(F?(-)$@!:$<)(?*H! +*(@.! 3)(#.>:*&:!:$<)(?=;!C$%E(.!%(O(-$@! ?*:(%!C*?E!:(?E$)#@;!E(F$)(;!$H(?#)(!

$).!.-*(.!&).(-!O$H&&:!#O(-)*<E?!$?!GA!°N5!"E(!+&)H?*#)$@*D$?*#)!C$%!H$@H&@$?(.!#)!?E(!P$%*%!#+!)*?-#<()!

(@(:()?$@!$)$@>%*%5!Q#&).!3R=S!0!95A9;!T!859L;!N!L5K6;!U!A5A4V!!!W!A562!::#@!<
,8
5!!!

@A!3X"Y=S!Z!2K2G;!2I48;!2AK9;!86A9;!842G;!8G24;!89LA;!828G;!8A2L!H:,8
5!!

!

/*H-#<-$'E! 3@(+?=! $).! %*D(! .*%?-*P&?*#)! 3-*<E?=! #+! $D*.(,+&)H?*#)$@*D(.!/01%! #P?$*)(.! P>! "[/5! "E(! %*D(%!

C(-(!.(?(-:*)(.!+#-!8A8!$D*.(,+&)H?*#)$@*D(.!/01%!%(@(H?(.!$?!-$).#:5!

                                                

 
2
!Y*()?(;!15V!/().#D$;!N5V!1(-*H\%;!/5!X"#$"#%&'()"#*+(,5!?B;;;!-.;!694A5!

9
!]E$)<;!^5V!U&;!T5V!B&#;!_5V!`(*;!a5!*&'&/"#012"#3(1+45/5!?B;C;!6;!2945 

Si N3
O
O
O

MNPs
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!"#"$%&''()*+,-$*./$0123,/45&,6*+(,01+7/8$+9+807(1+8+,4!4(,/$(,*($:;<=$*.)(&-.$>&??>$@60*013=*$AB$

!"#! $! %#&'()#*! #+! ,,-!./!01-1,"#$"12'(3&01412'(3&1/1,51,67#61-13*181

3&#9302:*;3&0)<)=$;#&)=)*151#*:! ,C0! ,8>-! <?.! @A/B! <<#&0! )*! =73!

CDEF"GE! ,8H80.! ,5@!<&0!I$%! $==:=! $;)=:1+'*J()#*$&);:=!DKL%! ,%! M!

@AN-!<<#&!?18.!B>5!<?.!@A/@!<<#&0.!O'P! ,8B!<?.!@A@Q5!<<#&0!$*=!

CPLRS!,@AN!<T.!/A5B!<<#&0.!'*=:7!$7?#*A!"U:!<)9('7:!I$%!%()77:=!$(!/@!VO!+#7!5Q!UA!"U:!7:$J()#*!I$%!<#*)1

(#7:=! 23! PW! ,S"W0! '*()&! (U:! =)%$66:$7$*J:! #+! (U:! $;)=:! 2$*=! $(! &'A! -8@@! J<18A! "U:! +'*J()#*$&);:=!DKL%!

I:7:!7:<#X:=!'%)*?!$*!:9(:7*$&!<$?*:()J!+):&=!,*:#=3<)'<!<$?*:(0.!I$%U:=!%:X:7$&!()<:%!I)(U!<:(U$1

*#&!$*=!$J:(#*:!$*=!=7):=!'*=:7!X$J''<!#X:7*)?U(!$(!5@!°OA!"U:!+'*J()#*$&);$()#*!I$%!J$&J'&$(:=!#*!(U:!

2$%)%!#+!*)(7#?:*!:&:<:*($&!$*$&3%)%A!E#'*=!,Y0H$K!4A/4.!G!-A4/.!O!8BA4-.!Z!@A@5[!%!M!@A/@!<<#&!?18A!

DE$,S"W0H!\!8@@B.!888@.!88N4.!8-4B.!8488.!85-@.!8/@/.!8/>B.!8BB/.!-Q/>.!->8>!J<18A!

!

D)J7#?7$6U!,&:+(0!$*=!%);:!=)%(7)2'()#*!,7)?U(0.!#2($)*:=!23!"RD.!+#7!$&]3*:1+'*J()#*$&);:=!)<)=$;#&)=)*151
#*:!#*(#!DKL%A!"U:!%);:%!I:7:!=:(:7<)*:=!+#7!8@5!+'*J()#*$&);:=!DKL%!%:&:J(:=!$(!7$*=#<A!

!

PW! %6:J(7'<! #+! ,$0! %:J#*=! ?:*:7$()#*! )<)=$;#&)=)*151#*:! =:7)X$()X:! %'66#7(:=! #*(#! DKL%.! ,20! $;)=:1
+'*J()#*$&);:=!DKL%!$*=!!,J0!DKL%A!

!"# 

!$# 

!%# 

HN
N n-Bu

O

Catalyst B

N N
N

O

MNPs
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!

"#$%&'%()*+!,-./01!(23!+#4.!3#+0%#560#&2!,%#'*017!&50(#2.3!58!9:"7!/&%!(-;82.</62$0#&2(-#4.3!#=#3(4&-#3#2<><
&2.!&20&!"?@+!(/0.%! 0*.! /#/0*! %62A!9*.! +#4.+!B.%.!3.0.%=#2.3! /&%!CDE! /62$0#&2(-#4.3!"?@+! +.-.$0.3!(0!
%(23&=A!

!
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!
"#!$%&%'()!%*+%',-%&.()!+'/0%12'%3!

"#4#!$%&%'()!+'/0%12'%!5/'!.6%!7',%1%)89'(5.3!():;)(.,/&!/5!,&1/)%3!<,.6!=>?82&3(.2'(.%1!()1%6;1%3!

!" #$%&" '$()" %" *%+,-($." /($0" 1%0" .2,(%$,$,+" .%(%&3/(" @" 20" A! 456" *2&78! '%/" .)%0+-9" '$()" :" *;" 2<" %"

=>5=&5?$/2@02@%,2&"*$A(B0-" 4CDE:D8" %,9" @B0-" FG!" 4:HDI" J&K" 56"*2&78" %,9"'%/" /($00-9" <20" :6"*$,B(-/" %("

022*"(-*@-0%(B0-"B,9-0",$(02+-,H"F)-,"()-"#$%&"'%/"@&%.-9" $,"%"1%()"%(" ()-" $,9$.%(-9"(-*@-0%(B0-"%,9"

()-"/2&B($2,"'%/"/($00-9"<20"%"<B0()-0":6"*$,B(-/H"!<(-0"()%(K"()-"LKMNB,/%(B0%(-9"%&9-)39-"4O"-PB$#H8"'%/"

%99-9"%,9"$("'%/"/($00-9"<20"D"*$,B(-/"1-<20-"()-"$,92&-"/B1/(0%(-"4:"-PB$#H8"'%/"%99-9H"F)-"0-%.($2,"'%/"

*2,$(20-9"13"F;="B,($&"()-"$,92&-"'%/".2,/B*-9H"F)-"QRS/N/B@@20(-9".%(%&3/("'%/"0-*2#-9"13"*%+,-($."

9-.%,(%($2,"')-0-%/" ()-" @2&3/(30-,-" /B@@20(-9" 2,-"'%/" 0-*2#-9" 13" <$&(0%($2,H" F)-" .%(%&3($."*%(-0$%&/"

'-0-"'%/)-9" /-#-0%&" ($*-/"'$()" =>5=&5H" !<(-0" ()%(K"'%(-0"'%/" %99-9" (2" ()-" &$PB$9"*$A(B0-" 21(%$,-9K" $,"

12()" .%/-/K" %,9" ()-"20+%,$."@)%/-"'%/"-A(0%.(-9" ()0--" ($*-/"'$()"=>5=&5" %,9"'%/)-9"'$()"10$,-H"!<(-0"

.2,.-,(0%($2,"()-".0B9-"0-%.($2,"'%/"@B0$<$-9"13"/$&$.%"+-&".)02*%(2+0%@)3"4.3.&2)-A%,-?T(U!."*$A(B0-8H""

"

"#B#!$%&%'()!+'/0%12'%!5/'!'%0;0),&C!%*+%',-%&.3!

!"/B/@-,/$2,"2<"()-".%(%&3/("@"20"A"456"*2&78"$,":"*;"2<"%"=>5=&5?$/2@02@%,2&"*$A(B0-"4CDE":D8"%,9"@B0-"

FG!"4:HDI"J&K"56"*2&78"%,9"'%/"/($00-9"<20":6"*$,B(-/"%("022*"(-*@-0%(B0-"B,9-0",$(02+-,H"F)-,K"()-"#$%&"

'%/"@&%.-9"$,"%"1%()"%("()-"$,9$.%(-9"(-*@-0%(B0-"%,9"()-"/2&B($2,"'%/"/($00-9"<20"%"<B0()-0":6"*$,B(-/H"

!<(-0" ()%(K" ()-"LKMNB,/%(B0%(-9" %&9-)39-" 4O" -PB$#H8"'%/" %99-9" %,9" $("'%/" /($00-9" D"*$,B(-/" 1-<20-" ()-"

$,92&-"/B1/(0%(-"4:"-PB$#H8"'%/"%99-9H"F)-"0-%.($2,"'%/"*2,$(20-9"13"F;="B,($&"()-"$,92&-"'%/".2,/B*-9H"

F)-"QRSN/B@@20(-9".%(%&3/("'%/"0-*2#-9"13"*%+,-($."9-.%,(%($2,"')-0-%/"()-"@2&3/(30-,-N/B@@20(-9"

2,-"'%/"0-*2#-9"13"<$&(0%($2,H"V2()".%(%&3/(/"'-0-"'%/)-9"/-#-0%&"($*-/"'$()"T(U!."1-<20-"()-",-A("@20N

($2,"2<"0-%.(%,(/"'%/"%99-9H"

"
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!
"#!$%&'&()*'+,&)+-.!/&)&!0-'!)%*!1'+*/*23$'&0)4!&2562&)+-.!7'-/8()4!

9!:3;39<3=*)%623<"3+./-23;362:3;37%*.627'-7&.&2!9>&:?!

"#$%&#$'!&(()#'*+,!-)!-.$!,$+$#&/!%#)($'0#$!1#)2!!"#$%3(*++&2&/'$.4'$!5678!9:;!7<=7!

22)/>;!632$-.4/36&3*+')/$!58=!9:;!7<87!22)/>;!?@A!5B<C7!9:;!7<7C!22)/>;!(&-&/4D-!@!5'(

E!7<BF!22)/G,;!6HI!2,;!H7!2)/J;!7<7C!22)/>!*+!KLHK/H!5H<II!2:>!&+'!*D)%#)%&+)/!57<BI!

2:>! &-! MH7! NK! 1)#! HB! .<! ?.$! -*-/$! ()2%)0+'! O&D! *D)/&-$'! &1-$#! D*/*(&! ,$/! (.#)2&-),#&%.4! 5(4(/).$P3

&+$GQ-RA(!=ISI!-)!T7S87>!*+!T6J!4*$/'!5IC<F!2,;!7<H6!22)/>!&+'!FBJ!$$<!

<A!B=C!5I77!ULV;!KWK/8>S!X!=<TF!5-;!)(E!6<F;!H<T!LV;!6L>;!T<8=!5'-;!)(E!7<=;!F<6!LV;!6L>;!T<H6YT<8I!52;!IL>;!

T<6BYT<HH!52;!HL>;!T<7H!5''';!)(E!6<7;!C<=;!F<7!LV;!6L>;!C<F!5';!)(E!7<=!LV;!6L>;!B<T!5-;!)(E!T<T!LV;!6L>;!8<TB!5D;!

8L>;!8<6=!5''';!)(E!H<T;!F<8;!6C<I!LV;!6L>;!8<7F!5''';!)(E!6<F;!T<H;!6C<I!LV;!6L><!!
<;$!B=C!56HC!ULV;!KWK/8>S!X!H7H<6;!6B8<T;!68T<I;!6HF<F!5ZH>;!6HT<F!5ZH>;!6HT<7;!6HC<T;!6HC<I;!6HH<6;!66=<I;!

66=<H;!66C<F;!67=<B;!I7<7;!8T<B;!8H<=<!!

ADE$! 5&1-$#! #$'0(-*)+! -)! -.$! ()##$D%)+'*+,! &/().)/!O*-.![&\LB! *+!U$RL>S! K.*#&/($/! A]3L! ()/02+! 5.$P3

&+$G*3"#RL!=7S67;!1/)O!#&-$!6<7!2/G2*+;!HIB!+2>^!!#!E!66<F!2*+!52*+)#>;!!#!E!6B<8!2*+!52&_)#><!

 

9!:3;39<3=*)%623<"3+./-23;362:3;39?3.+)'-7%*.62:7'-7&.&2!9>F:#!

"#$%&#$'! &(()#'*+,! -)! -.$! ,$+$#&/! %#)($'0#$! 1#)2!B3+*-#)(*++&2&/'$.4'$! 56C8!2/;!

7<=!22)/>;!632$-.4/36L3*+')/$!58=!9:;!7<87!22)/>;!?@A!5B<C!9:;!7<7C!22)/>!&+'!(&-&3

/4D-!@!5'!E!7<BB!22)/G,;!68C!2,;!7<7C!22)/>!*+!KLHK/H!5H<II!2:>!&+'!*D)%#)%&+)/!57<BI!

2:>! &-! MH7! NK! 1)#! HB! .! ?.$! -*-/$! ()2%)0+'!O&D! *D)/&-$'! &1-$#! D*/*(&! ,$/! (.#)2&-),3

#&%.4!5(4(/).$P&+$GQ-RA(!=ISI!-)!T7S87>!*+!CCJ!4*$/'!5C7<T!2,;!7<H6!22)/>!&+'!=8J!

$$<!
<A!B=C!5I77!ULV;!KWK/8>S!X!=<TF!5'';!)(E!6<B;!H<H!LV;!6L>;!F<6HYF<6I!52;!HL>;!T<IYT<C!52;!HL>;!T<87!5''-;!)(E!

6<7;!H<H;!F<I!LV;!HL>;!T<HH!5''';!)(E!6<6;!C<T;!F<8!LV;!6L>;!T<78!5''';!)(E!6<7;!T<7;!F<7!LV;!6L>;!C<=7!5';!)(E!7<F!

LV;!6L>;!B<=F!5-;!)(E!T<C!LV;!6L>;!8<TF!5D;!8L>;!8<HF!5''';!)(E!H<H;!F<7;!6T<7!LV;!6L>;!8<6I!5''';!)(E!6<B;!T<H;!6T<7!

LV;!6L><!!
<;$!B=C!56HC!ULV;!KWK/8>S!X!H77<H;!6I6<B;!6BC<T;!68T<B;!6HF<C!5ZH>;!6HC<B!5ZH>;!6H8<=!5ZH>;!6HH<8;!66=<B;!

66=<7;!66I<6;!67=<C;!B=<C;!8T<7;!88<7<!!

GC!5A?`>S!87II;!H=86;!HFHI;!HTHT;!6T6=;!6I=I;!6I6H;!6BT8;!68B6;!6HBB;!66IC;!667=;!67T=;!67BT;!676H;!=7T;!

FIT;!FHI;!T8=;!T77;!II8;!BHT!(236<!

                                                

 
B!A0D-*+;!a<!@<^!U&(U*//&+;!W<!b<!K<!)+(,-+(./0-+(123<!HIIH;!456;!66TH<!!

N
O

H

Ph

N

H

O2N

O
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!"#$%&'$()*+%!"#!$#"%&'()*+(,-./-0121"34(5671"8
7
9(44-:-;<4=()*$>'(44-:-;<<:%

,-./%0(72?:.(@!(;:?A=(,/2,#2B:(

!123% @")%&+( +&'$!%C*>( %*( %D&( !*++&EF*>'C>G("#!*D*#(HC%D(1"I/J( C>(6&3/B9(,DC+"#!&#(KLM/( !*#$N>( @D&OM

">&P"MQ+3/(A;9-;=()#*H(+"%&(-:;(N#PNC>=(2-;(>NBR(#+(S(2?:0(NC>(@NC>*+B=(#+(S(4?:0(NC>(@N"T*+B:(

 

&!*454&643789:9;7<=>8*454&?4@<A7>84?"4B=C98454>8*;:9;D=D8%&EF*G%%

Q+&F"+&'("!!*+'C>G( %*( %D&(G&>&+"#(F+*!&'$+&( )+*N(JM!D#*+*!C>>"N"#'&DU'&( @-<0(NG=(

;:A(NN*#B=(-MN&%DU#M-/MC>'*#&(@J;(VW=(;:4;(NN*#B=(XYK(@J:0(VW=(;:;0(NN*#B(">'(!"%"M

#UE%(H(@$(S(;:JJ(NN*#PG=(-40(NG=(2;(N*#Z=(;:;0(NN*#B(C>(,/2,#2(@2:<<(NWB(">'(CE*F+*M

F">*#( @;:J<( NWB( "%( [2;( \,( )*+( 2J( D( XD&( %C%#&( !*NF*$>'( H"E( CE*#"%&'( ")%&+( EC#C!"( G&#(

!D+*N"%*G+"FDU(@!U!#*D&O">&P]%3K!(A<9<(%*(?;94;B(C>(?4Z(UC&#'(@0J:?(NG=(;:2-(NN*#B(

">'(..Z(&&:(

?!%I#"(@<;;(6/^=(,L,#4B9(_(A:?0(@''=(%&S(-:?=(2:0(/^=(-/B=(?:44`?:J;(@N=(-/B=(?:4;(@'%=(%&S(-:;=(.:4(/^=(-/B=(

?:-A`?:2.(@N=(</B=(?:;<(@''%=(%&S(-:-=(?:;=(.:-(/^=(-/B=(0:.?(@'=(%&S(-:-=(-/B=(J:.0(@%=(%&S(?:0(/^=(-/B=(4:??(@E=(

4/B=(4:2-(@'''=(%&S(2:0=(.:-=(-0:?(/^=(-/B=(4:;.(@'''=(%&S(-:?=(?:4=(-0:?(/^=(-/B:(
?53%I#"(@-20(6/^=(,L,#4B9(_(2;-:4=(-J2:-=(-4?:J=(-42:2=(-2A:;(@a2B=(-2.:?(@a2B=(-20:0=(-20:J=(-22:-=(--A:4=(

--A:4=(--0:-=(-;A:J=(JA:.=(40:0=(42:.:((
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4.1. Introduction!
This chapter deals with the research carried out in the laboratory of Prof. Reiser in Regensburg 

(Germany) between July 2015-March 2016.  

Here, another hybrid material was synthesized based on the microporous aryl polymer networks 

encapsulated with palladium nanoparticles and carbon-coated cobalt (Co/C) nanoparticles. 

Afterwards, this catalyst was applied in the Suzuki cross-coupling and hydrogenation reactions. 

Herein, we will summarize the results achieved in these transformations.  

4.1.1. Importance of Pd Nanoparticles (Pd NPs) in Catalysis 

The importance of nanomaterials, a breakthrough of modern science, was mentioned in Chapter 

one. The novel techniques associated with them have enabled to form nanodimensional 

materials (in the 1-100 nm size domain) from bulky ones.  

It is of interest to develop new catalysts that are environmentally benign and effective and one 

possible solution is using nanoparticles. Application of nanoparticles as catalysts is increasing 

because of their high surface-to-volume ratio and high activity of surface atoms compared to 

bulk catalysts, which allows achieving high turnover numbers. Due to this high activity, no 

ligands are required to prepare the catalyst. Indeed, using nanoparticles as catalysts could allow 

decreasing the amount of metal loaded in organic reactions, which is an important point in green 

chemistry.1 

In this field, one of the most successful NPs in catalysis is palladium derived ones, which have 

been broadly used in oxidations,2 carbon-carbon bond forming cross-coupling reactions (Suzuki, 

Heck, Stille and Sonogashira reactions)3, hydrogenations4 and electrochemical reactions in fuel 

cells.5 In addition, palladium showed promising capacity in hydrogen absorption6 and palladium 

nanoparticle thin films have been applied as microsensors for hydrogen detection.7 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Linhardt, R.; Kainz, Q. M.; Grass, R. N.; Stark, W. J.; Reiser, O. RSC Adv. 2014, 4, 8541.!
2 a) Dimitratos, N.; Porta, F.; Prati, L. Appl. Catal. A: Gen. 2005, 291, 210; b) Hou, Z.; Theyssen, N.; Brinkmann, 
A.; Leitner, W. Angew. Chem. Int. Ed. 2005, 44, 1346. 
3 a) Beller, M.; Fischer, H.; Kühlein, K.; Reisinger, C.-P.; Herrmann, W. A.; J. Organomet. Chem. 1996, 520, 257; 
b) Narayanan, R.; El-Sayed, M. A. J. Catal. 2005, 234, 348; c) Stille, J. K.; Tanaka, M. J. Am. Chem. Soc. 1987, 
109, 3785; d) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979; e)!Miyaura, N.; Suzuki, A. J. Chem. Soc. 
Chem. Commun. 1979, 866. 
4 a) Semagina, N.; Renken, A.; Kiwi-Minsker, L. J. Phys. Chem. C. 2007, 111, 13933; b) Wilson, O. M.; Knecht, M. 
R.; Garcia-Martinez, J. C.; Crooks, R. M. J. Am. Chem. Soc. 2006, 128, 4510. 
5 Cheong, S.; Watt, J. D.; Tilley, R. D.  Nanoscale 2010, 2, 2045. 
6 Adams, B. D.; Chen, A. Mater. Today 2011, 14, 282.  
7 Jeon, K. J.; Lee, J. M.; Lee, E.; Lee, W, Nanotechnology 2009, 20, 135502.!



!"#$%&'()(
!

!

!

"#$!

 

 
 

Scheme 1. Most representative Pd-catalyzed carbon-carbon bond-forming cross-coupling reactions (where X = Cl, 

Br, or I). 

 

In this chapter we will briefly summarize the literature concerning the application of Pd NPs in 

Suzuki cross-coupling and hydrogenation and then we will describe our results in these two 

reactions. 

4.1.2. Suzuki Cross-Coupling and Application of Pd NPs as Catalysts 

The Suzuki cross-coupling reaction is a powerful method for the synthesis of C-C bonds. 

Normally it is used for the synthesis of biphenyls and styrenes and the reaction happens 

between a boronic acid and an aryl halide in the presence of palladium catalyst and base 

(Scheme 2).8  

Besides applications in synthesis,9 its use has become popular even in biology,10 synthesis of 

polymers, agrochemicals and advanced materials.11 The mild reaction conditions required and 

the commercial availability of the starting materials make the reaction very attractive. 

Owing to the importance of these reactions, Suzuki received the 2010 Nobel Prize in Chemistry, 

along with Richard F. Heck and Ei-ichi Negishi for their contribution to palladium catalyzed 

cross-couplings in organic synthesis. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 a) Vaccaro, A. L.; Lanari, D. Marrocchi, A.; Strappaveccia, G. Green Chem. 2014, 16, 3680; b) Miyaura, N.; 
Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437. 
9 Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F.-G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. Rev. 
1998, 98, 1515.!
10 Suzuki, A, J. Organomet. Chem. 1999, 576, 147. 
11  a) Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed. de Meijere, A., Diederich, F., Eds.; Wiley-VCH: 
Weinheim, 2004; b) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027. 
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Scheme 2. Suzuki cross-coupling. 

 

Pd(0) or Pd(II) derivatives associated with suitable phosphine-based ligands have been 

traditionally used for the Suzuki cross-coupling. Figure 1 shows some examples of phosphine 

ligands that have been employed in this transformation.12 

 

 
Figure 1. A variety of monodentate and bidentate ligands have been used in conjunction with palladium. 

 

 Whereas Pd complexes show excellent catalytic activity, this reaction has some drawbacks such 

as air sensitivity of these ligands or cost of the palladium complexes.13 Alternatively, one can 

think of running phosphine-free Suzuki reactions, using for instance carbene complexes 

coordinated with palladium. The activity of the catalyst is then affected by the substituents of 

the carbene ligands.!However, preparing larger analogues of these systems can involve a lot of 

steps.14  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609.  
13 a) Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69, 3173; b) Marion, N.; Nolan, S. P. Acc. 
Chem. Res. 2008, 41, 1440; c) Li, J. H.; Liu, W. J. Org. Lett. 2004, 6, 2809; d) Costa, D. P.; Nobre, S. M.  
Tetrahedron Lett. 2013, 54, 4582. 
14 a) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane. M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027; b) Peh, G.-R.; 
Kantchev, E. A. B.; Er, J.-C.; Ying, J. Y. Chem. Eur. J. 2010, 14, 4010; c) Li, S.; Lin, Y.; Cao, J.; Zhang, S. J. Org. 
Chem. 2007, 72, 4067; d) Rahimi, A.; Schmidt, A.; Synlett 2010, 1327; e)!Bermejo, A.; Ros, A.; Fernández, R.; 
Lassaletta, J. M. J. Am. Chem. Soc. 2008, 130, 15798. 
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Figure 2. Phosphine-free palladium complexes and ligands. 

 

In this respect, development of Pd NPs in cross-coupling reactions15 can be advantageous due to 

their cost effectiveness, allowing ligand free synthesis, simplifying workup procedures and 

separation final products. However, in most cases the synthesis of Pd NPs requires special 

conditions like high temperature, stabilizer or sonication.16 Therefore, preparing Pd NPs under 

mild conditions is an interesting goal on its own. 

In general, homogeneous catalysts are more active and present higher activity and selectivity 

than heterogeneous ones because of their solubility in the reaction media and uniformity at the 

molecular level. However, in large scale it is technically difficult and expensive to separate 

catalysts from the reaction media. 17  In contrast, heterogeneous catalysts provide many 

advantages that cannot be exploited with homogeneous species such as easy separation from the 

reaction mixture, recyclability and the possibility to use them in continuous flow processes.18 

Besides aggregation, the main issue of metal nanoparticles is leaching. This term refers to the 

process by which the active metal species goes to the liquid phase, causing irreversible 

deactivation.19 In pharmaceutical substances there is a strict limit to the amount of heavy metal 

they can contain.20 Thus, to improve the greenness of chemical processes, it is important to 

develop a catalyst which minimizes the leaching of metals. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15!a) Perez-Lorenzo, M. J. Phys. Chem. Lett. 2012, 3, 167; b) Das, S. K.; Parandhaman, T.; Pentela, N.; Maidul 
Islam, A. K. M.; Mandal, A. B.; Mukherjee, M. J. Phys. Chem. C. 2014, 118, 24623. 
16 a) Baruwati, B.; Guin, D.; Manorama, S. V. Org. Lett. 2007, 9, 5377; b) Xuan, S.; Zhou, Y.; Xu, H.; Jiang, W.; 
Leung, K. C.; Gong, X. J. Mater. Chem. 2011, 21, 1539; c) Li, Z.; Liu, J.; Huang, Z.; Yang, Y.; Xia, C.; Li, F. ACS 
Catal. 2013, 3, 839. 
17 Budarin, V. L.; Shuttleworth, P. S.; Clark, J. H.; Luque, R. Curr. Org. Synth. 2010, 7, 614. 
18 a) Zielinska, A.; Skulski, L. Tetrahedron Lett. 2004, 45, 1087; b) Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. J. 
Phys. Chem. B 2005, 109, 692; c) Huang, W.; Kuhn, J. N.; Tsung, C.-K.; Zhang, Y.; Habas, S. E.; Yang, P.; 
Somorjai, G. A.  Nano Lett. 2008, 8, 2027.  
19 Keav, S.; Barbier, J.; Duprez, D.; Catal. Sci. Technol. 2011, 1, 342. 
20 Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.  
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To solve these issues, metal nanoparticles can be stabilized on solid supports such as zeolites,21 

silica,
22  ionic liquid and ionic polymer, 23  carbon, 24  carbon nanotubes 25  and carbon-coated 

nanoparticles.26 

In this regard, we will mention some examples of application of catalytic Pd NPs in Suzuki 

cross-coupling.  

Khinast et al. investigated Pd leaching in Pd/C catalyzed Suzuki coupling. They realized 

oxidative addition of aryl bromides is the main reason behind Pd leaching. Indeed the oxidative 

addition of aryl borates is another step which causes the Pd leaching.27 

El-Sayed et al. have studied Suzuki cross-coupling reaction regarding to the concentration and 

the size of Pd nanoparticles. In their initial publication, palladium nanoparticles were stabilized 

by poly(N-vinyl-2-pyrrolidone) (PVP). 28  The Suzuki coupling of aryl iodides with 

phenylboronic acid in aqueous media was studied to evaluate their catalytic activity. 

Fluorescence intensity of the biphenyl product was followed during the reaction and the initial 

reaction rate was found to depend linearly on the concentration of Pd catalyst.  

In the second paper by the same authors, PVP-stabilized Pd NPs with different sizes were 

prepared and evaluated in the Suzuki reaction between phenyl boronic acid and iodobenzene.29  

The study of the initial rate of the reaction showed the activity of the catalyst decreased when 

the size of nanoparticle increased with one exception for smallest nanoparticles (activity of the 

catalyst: Pd (3.9 nm) > Pd (3.0 nm) ! Pd (5.2 nm) > Pd (6.6 nm)). As expected, when the 

particles size decreases, the surface area increases, consequently improving the activity of 

catalyst. In the case of the smallest nanoparticles, catalyst poisoning could be taking place. 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 a) Yang, H.; Wang, Y.; Qin, Y.; Chong, Y.; Yang, Q.; Li, G.; Zhang, L.; Li. W. Green Chem. 2011, 13, 1352; b) 
Yang, H.; Han, X.; Ma, Z.; Wang, R.; Liu, J.; Ji, X. Green Chem. 2010, 12, 441; c) Yang, H.; Han, X.; Li, G.; Wang, 
Y. Green Chem. 2009, 11, 1184.  
22 a) Kume, Y.; Qiao, K.; Tomida, D.; Yokoyama, C. Catal. Commun. 2008, 9, 369; b) Karimi, B.; Elhamifar, D.; 
Clark, J. H.; Hunt, A. J. Org. Biomol. Chem. 2011, 9, 7420; c) Gruttadauria, M.; Liotta, L. F.; Salvo, A. M. P.; 
Giacalone, F.; La Parola, V.; Aprile, C.; Noto, R. Adv. Synth. Catal. 2011, 353, 2119. 
23 a) Zhao, D.; Fei, Z.; Ang, W. H.; Dyson, P. J. Small 2006, 2, 879; b) Yang, X.; Fei, Z.; Zhao, D.; Ang, W. H.; Li, 
Y.; Dyson, P. J. Inorg. Chem. 2008, 47, 3292; c) Zeng, Y.; Wang, Y.; Xu, Y.; Song, Y.; Jiang, J.; Jin, Z. Catal. Lett. 
2013, 143, 200; d) Zhu, W.; Yu, Y.; Yang, H.; Hua, L.; Qiao, Y.; Zhao, X.; Hou, Z. Chem. Eur. J. 2013, 19, 2059. 
24 Yang, J.; Tan, X.; Wang, Y.; Wang, X. J. Porous Mater. 2013, 20, 501.  
25 Chun, Y. S.; Shin, J. Y.; Song, C. E.; S.-G. Lee, Chem. Commun. 2008, 8, 942. 
26 Kainz, Q. M.; Linhardt, R.; Grass, R. N.; G, Vilé.; Pérez-Ramírez, J.; Stark, W. J.; Reiser, O. Adv. Funct. Mater. 
2014, 24, 2020. 
27 Chen, J-S.; Vasiliev, A. N.; Panarello, A. P.; Khinast, J. G. Appl. Cat. A: General 2007, 325, 76. 
28 Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Org. Lett. 2000, 2, 2385. 
29 Li, Y.; Boone, E.; El-Sayed, M. A. Langmuir 2002, 18, 4921. 
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Scheme 3. Suzuki reaction of phenylboronic acid and iodobenzene. 

 
Another efficient catalyst for Suzuki cross-coupling was developed by Diao et al.30 First, 

magnetic Fe3O4@C (MFC) composites were prepared by carbonization of glucose in the 

presence of Fe3O4 nanoparticles. Then Pd nanoparticles were immobilized onto the Fe3O4@C 

composites. (Scheme 4). This catalyst was tested for the Suzuki reaction of aryl halides and 

phenylboronic acid. From a practical point of view, the catalyst was recovered with an external 

magnet and reused again until 5 runs without loss of activity. After the fifth cycle, they report 

0.2% in Pd loss according to ICP measurements.  

 

 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
 

 
 

 
Scheme 4. Synthesis and application of the Pd/MFC catalyst in the Suzuki coupling reaction. 

 

In a different approach, Fe3O4 nanoparticles were functionalized with dopamine (DA), then PdII 

and Pd0 were stabilized on Fe3O4/DA based on the metal adsorption and reduction procedure 

(Scheme 5).31 According to the authors the covalent bond between Pd and amine group in 

dopamine on the surface of Fe3O4 nanoparticles avoids Pd leaching. Indeed, dopamine increases 

the! dispersibility of NPs in aromatic solvents. These two catalysts were applied in Suzuki 

reaction to compare their activity. As an outcome, the catalyst with PdII showed better results 

than its Pd0 counterpart. Agglomeration of Pd0 was considered a possible explanation for the 

decrease in activity.  

 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Zhu, M.; Diao, G. J. Phys. Chem. C. 2011, 115, 24743. 
31 Long, Y.; Liang, K.; Niu, J.; Tong, X.; Yuan, B.; Ma, J. New J. Chem. 2015, 39, 2988. 
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Scheme 5. Synthesis of Fe3O4/DA-PdII and Fe3O4/DA-Pd0 catalysts and application in the Suzuki carbonylative 
cross-coupling reaction. 
 

Li et al. prepared Fe@Pd core-shell nanoparticles on activated carbon as a versatile catalyst 

for the Suzuki cross-coupling reaction.32 They synthesized the catalyst by a two step 

process: first formation of Fe NPs on activated carbon, followed by formation of Pd NPs by 

adding PdCl2 to Fe/C containing solution and using outer-layer of the Fe core to reduce Pd2+ 

to Pd0. The catalyst was used for Suzuki-Miyaura coupling of aryl halides with 

phenylboronic acid (13 examples, 20-100% yield). Also the catalyst was reused for 5 times 

without a significant decrease in the activity.  

4.1.3. Catalytic Hydrogenation 

The reduction of unsaturated compounds is a crucial step in the synthesis of many organic 

molecules. This transformation is thus very important in total synthesis, industrial production 

and pharmaceutical applications (Scheme 6).33 For instance, it could be mentioned that 25% of 

all chemicals produced in industry contain a catalytic hydrogenation in at least one step.34  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32 Tang, W.; Li, J.; Jin, X.; Sun, J.; Huang, J.; Li, R. Catal. Commun. 2014, 43, 75. 
33 Tran, A. T.; Huynh, V. A.; Friz, E. M.; Whitney, S. K.; Cordes, D. B. Tetrahedron Lett. 2009, 50, 1817. 
34 Vilé, G.; Albani, D.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. ChemCatChem 2016, 8, 21. 
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Scheme 6. Catalytic hydrogenation. 

 

Lately, different magnetically recoverable metal nanocatalysts have been investigated for the 

hydrogenation of alkynes. Fe-based nanocatalysts perform well, albeit they have low selectivity 

for the alkene product.35  

Pd nanoparticles supported on MNPs modified with ionic liquids showed high activity and 

selectivity for the (Z)-alkene in the hydrogenation of diphenylacetylene under harsh 

conditions.36 Scott et al. stabilized Pd NPs with tetraalkylphosphonium halide ionic-liquid (IL) 

solvents and applied them in the hydrogenation of olefinic alcohols, aromatic nitro compounds, 

!,"-unsaturated carbonyls and alkynes. The Pd NPs showed good activity but in the case of 

cinnamaldehyde they had low selectivity for the alkene.37 Later, investigation in catalytic 

hydrogenation moved towards the application of another support such as C, polymer or Co/C 

nanobeads (NBs) to make the catalyst more efficient.  

Wai et al. used carbon nanotubes as a support for Pd nanoparticles.38 They deposited Pd 

nanoparticles onto the surface of multiwall carbon nanotubes (MWCNT) by hydrogen reduction 

of Pd(II)-"-diketone precursor. The resulting catalyst was applied in the hydrogenation of trans-

stilbene in liquid CO2. 1,2-Diphenylethane was achieved as product with 96% conversion after 

10 minutes. 

Wang et al. synthesized two different 1,2,3-triazolyl-containing porous organic polymers. In one 

case the synthesis was based on the click reaction (CPP-C), and the other one on the Yamamoto 

coupling reaction (CPP-Y).39 Ultrafine palladium nanoparticles were immobilized inside the 

pores using Pd(OAc)2 solution and the reduction with a stream of H2 /N2. Both of them have a 

good catalytic activity in hydrogenation of olefins, however they showed different behavior in!
recyclability. n-Hexane was used for! recyclability test and Pd@CPP-C reached 87% yield in 

second run and 64% in the fourth one. However, for Pd@CPP-Y the catalyst did not have a 

significant decrease in activity until the seventh run. After the evaluation of TEM images for 

both catalysts, some agglomeration was observed. In the case of Pd@CPP-Y, the catalyst 

showed more prevention against agglomeration because of higher surface area and larger pore 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35!a)!Rangheard, C.; Fernandez, C. de Julian.; Phua, P.-H.; Hoorn, J.; Lefort, L.; de Vries, J. G. Dalton Trans. 2010, 
39, 8464; b) Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B. Adv. Synth. Catal. 2011, 353, 523. 
36!Abu-Reziq, R.; Wang, D.; Post, M.; Alper, H. Adv. Synth. Catal. 2007, 349, 2145. 
37!Banerjee, A.; Theron, R.; Scott, R. W. J. ChemSusChem. 2012, 5, 109. 
38 Ye, X, R.; Linb, Y.; Wai, C. M. Chem. Commun. 2003, 642. 
39 Li, L.; Zhao, H.; Wang, R. ACS Catal. 2015, 5, 948. 
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Scheme 7. Synthesis of Pd@CPP-C and Pd@CPP-Y. 

 

In the group of Prof. Reiser, Pd nanoparticles have been immobilized on the surface of Co/C 

nanobeads using Pd2(dba)3!CHCl3 by microwave irradiation (Scheme 8). The resulting catalyst 

was used in the hydrogenation of alkenes. Results showed that the catalyst is more efficient than 

Pd/C or Pd@CNT. It is worth highlighting that the catalyst could be prepared very easily from 

commercially available Co/C nanoparticles and Pd2(dba)3!CHCl3. Indeed, the catalyst separation 

was simplified using magnetic decantation.26  

 
 

 

 

Scheme 8. Synthesis of Pd@Co/C nanocomposites. 

4.1.4. Microporous Organic Polymers 

Microporous organic polymers (MOPs) are a new category of porous material, which consists of 

C, H, N, and O with nanoscale porosity.40 They have special advantages like large surface area, 

low skeletal density and high chemical stability,41 which make them useful in light harvesting,42 

gas separation, storage43 and catalysis.44At the end of the 1990s, Davankov resins45 were 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40!Jiang, X.; Zhao, W.; Wang, W.; Zhang, F.; Zhuang, X.; Han, S.; Feng, X. Polym. Chem. 2015, 6, 6351.!
41 Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. Macromolecules 2011, 44, 2410. 
42 Sun, L.; Liang, Z.; Yu, J .; Xu, R. Polym. Chem. 2013, 4, 1932. 
43 a) Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I. Energy Environ. Sci. 2011, 4, 4239; b) Song, 
W. C.; Xu, X. K.; Chen, Q.; Zhuang, Z. Z.; Bu, X. H. Polym. Chem. 2013, 4, 4690. 
44 a) Kaur, P.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2011, 1, 819; b) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 
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developed based on hypercrosslinking of linear polystyrene via Friedel-Crafts alkylation 

(Scheme 9). These materials contain mostly small pores, the production of hydrogen halide as 

byproduct being their main disadvantage. 46 

 
Scheme 9. Synthesis of hypercrosslinked styrenic polymer from poly-(vinylbenzyl chloride) gel-type resin precursor. 
 
Afterwards, different kinds of MOPs have been investigated such as porous aromatic 

frameworks47 (PAFs), produced by various cross-coupling reactions of aromatic compounds, 

polymers of intrinsic microporosity48 (PIMs) with a dioxane unit or covalent triazine-based 

frameworks49 (CTFs). With the synthesis of these polymers, the authors attempted to prepare 

more environmentally friendly materials with potential in catalysis or gas storage. 

Tan et al. have developed an efficient strategy to synthesize MOPs,41 based on simple one-step 

Friedel-Crafts reactions using a low cost cross-linker with ordinary aromatic compounds and the 

only byproduct is methanol (scheme 10). 

 
Scheme 10. Synthesis of microporous organic polymer. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2012, 41, 2083. 
45 Davankov, V. A.; Rogozhin, S. V.; Tsyurupa, M. P. 3,729,457, 1971. 
46 Lee, J-Y.; Wood, C. D.; Bradshaw, D.; Rosseinsky, M. J.; Cooper, A. I. Chem. Commun. 2006, 2670. 
47 Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J.; Qiu, S.; Zhu, G. 
Angew. Chem. Int. Ed. 2009, 48, 9457. 
48 McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; 
Langmi, H. W.; Walton, A. Angew. Chem. Int. Ed. 2006, 118, 1836.  
49 a) Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319; b) Zhu, X.; Tian, C.; Mahurin, S. M.; 
Chai, S.-H.; Wang, C.; Brown, S.; Veith, G. M.; Luo, H.; Liu,  H.; Dai, S. J. Am. Chem. Soc. 2012, 134, 10478. 
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4.1.5. Aim of the Project 

The main advantage of using magnetic nanoparticles as support is that the recovery of Pd NPs 

can be simply done by magnetic decantation. However, the catalytic activity of this material is 

compromised by the agglomeration of Pd NPs in the surface of the carbon-coated NPs.  

Therefore, the merging of porous materials and NP technology has been an impressive area of 

interdisciplinary research.50 Porous materials with high surface area afford a confined limited 

space for formation of NPs. In this way, they prevent NPs from agglomeration and their 

channels can assist mass transfer for an efficient catalysis.51 

In this project, a new hybrid material will be presented based on the Co/C nanobeads, polymer 

and Pd nanoparticles.  

To this aim, microporous aryl polymer networks with encapsulated palladium nanoparticles 

catalysts and commercially available Co/C nanobeads are synthesized through a low cost and 

facile strategy, resulting in a hybrid material that kills three birds with one stone: (1) forming a 

highly porous and hydrophobic environment for organic synthesis using toluene as building 

block; (2) stabilizing Pd catalysts in front of aggregation and/or leaching via their confinement 

within chemically stable polymers; (3) allowing efficient recyclability thanks to their magnetic 

properties. 

Even if a large number of research studies on hydrogenation and Suzuki coupling reactions have 

been conducted, there is still a lot of interest to identify Pd catalysts that are cost effective, 

reusable and recoverable.  

Present investigations are mainly focused on the development of an efficient way to synthesize 

microporous polymers which encapsulate Co/C and Pd nanoparticles.  

4.2. Preparation of the Catalytic Material 
In 2007, Stark et al. reported the preparation of novel ferromagnetic carbon-coated cobalt 

nanobeads (denoted as Co/C NBs), which are synthesized via reducing flame-spray pyrolysis on 

large scale.52 These particles have been successfully used in a variety of applications such as 

purification of blood,53 extraction of vitamins and contaminants from aqueous solutions54 or 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
50 Gascon, J.; Aktay, U.; Hernandezalonso, M.; Vanklink, G.; Kapteijn, F. J. Catal. 2009, 261, 75. 
51a) Cárdenas-Lizana, F.; Berguerand, C.; Yuranov, I.; Kiwi-Minsker, L. J. Catal. 2013, 301, 103; b) Li, X.-H.; 
Antonietti, M. Chem. Soc. Rev. 2013, 42, 6593. 
52 Grass, R. N.; Athanassiou, E. K.; Stark, W. J. Angew. Chem. Int. Ed. 2007, 46, 4909. 
53 a) Herrmann, I. K.; Urner, M.; Koehler, F. M.; Hasler, M.; Roth-Z’Graggen, B.; Grass, R. N.; Ziegler, U.; Beck-
Schimmer, B.; Stark, W. J. Small 2010, 6, 1388; b) Herrmann, I. K.; Bernabei, R. E.; Urner, M.; Grass, R. N.; Beck-
Schimmer, B.; Stark, W. J. Nephr. Dial. Transpl. 2011, 26, 2948. 
54 a) Rossier, M.; Koehler, F. M.; Athanassiou, E. K.; Grass, R. N.; Aeschlimann, B.; Günther, D.; Stark, W. J. J. 
Mater. Chem. 2009, 19, 8239; b) Rossier, M.; Schaetz, A.; Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Chem. Eng. 
J. 2011, 175, 244; c) Fuhrer, R.; Herrmann, I. K.; Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Langmuir 2011, 27, 
1924; d) Rossier, M.; Schreier, M.; Krebs, U.; Aeschlimann, B.; Fuhrer, R.; Zeltner, M.; Grass, R. N.; Günther, D.; 
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mercury extraction from water,55 as well as catalytic applications.56!Co/C NBs have several 

graphene layers which protect metal core from oxidation (Figure 3). These particles can be 

functionalized with different linkers using diazonium chemistry.  

 

 

 
 

 

 

 

 

 

 

Figure 3. Carbon-coated NPs and TEM pictures. Picture taken from reference 52. 

 

4.2.1 Synthesis of Aromatic Microporous Polymers Encapsulated with Co/C 

Nanobeads and Pd(0) Nanoparticles 

In order to prepare highly magnetic MOPs of polymer-Pd-Co/C composites, the surface of Co/C 

nanobeads is covalently functionalized with phenylmethane by thermal decomposition of the 

diazonium salt derived from 4-aminotoluene. This strategy introduces phenyl moieties on the 

surface of 1 as a starting point for growing a bakelite type polymer on the nanoparticle graphene 

layer. 

 

 
Scheme 11. Grafting of the diazonium salt of 4-aminotoluene onto carbon-coated cobalt particles. 

 

Thus, the functionalized nanoparticles 2 are used as a substrate to knit aromatic toluene building 

blocks into microporous polymers 3, employing formaldehyde dimethyl acetal (FDA) as an 

external cross-linker.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Stark, W. J.  Sep. Purif. Technol. 2012, 96, 68; e) Kainz, Q. M.; Späth, A.; Weiss, S.; Michl, T. D.; Schätz, A.; Stark, 
W. J.; König, B.; Reiser. O. ChemistryOpen 2012, 1, 125. 
55 Fernandes, S.; Eichenseer, C. M.; Kreitmeier, P.; Rewitzer, J.; Zlateski, V.; Grass, R. N.; Stark, W. J.; Reiser, O. 
RSC Adv. 2015, 5, 46430. 
56 Schätz, A.; Grass, R. N.; Stark, W. J.; Reiser, O.!Chem. Eur. J. 2008, 14, 8262.!
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Scheme 12. Synthesis of Co/C MOP. 

 

Owing to the super hydrophobic nature of the resulting aromatic polymer, catalyst precursors 

such as Pd2(dba)3!CHCl3 in toluene solution can be swallowed into the polymer network. Pd 

nanoparticles were synthesized inside the pores of the polymer using microwave irradiation in 2 

minutes. 

 

 
Scheme 13. Microwave-synthesis of Pd@Co/C MOP. 

 

4.2.2. Characterization of the Hybrid Materials 

Judging from transmission electron microscopy (TEM) images, it is observed that carbon-coated 

cobalt nanoparticles and Pd nanoparticles are surrounded with polymer; however, there is no 

agglomeration of Pd nanoparticles (Figure 4).  
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Figure 4.  TEM Images of catalyst 4. 

Energy Dispersive X-Ray Analysis (EDX) in Figure 5 confirmed the presence of Co and Pd as 

expected. 

 
Figure 5. EDX analysis of catalyst 4. 

 

In addition this hybrid material was characterized with thermal gravimetric analysis (TGA). It is 

mainly noticeable that the polymer is stable until 200 ºC and cobalt carbon-coated nanoparticles 

are stable until 500 °C (Figure 6). This will be useful considering the conditions that will be used 

later for hydrogenation and Suzuki cross-coupling reaction. 
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Figure 6. TGA weight loss curves for hybrid material 4. 

 

The hybrid material is also separated in a few seconds with an external magnet. Thus, the 

polymerization does not have any negative effect on magnetization.  

 

 
Figure 7.  Separation of hybrid material with an external magnet. 

4.3. Application of Pd@Co/C MOP in the Hydrogenation of trans-Stilbene 

The hybrid material 4 was tested in the hydrogenation of alkenes to evaluate its catalytic activity 

(Figure 8). First, some screening was carried out to select the appropriate solvent. trans-Stilbene 

was selected as a substrate and it was hydrogenated with 0.1 mol% of catalyst.  

In a polar solvent like MeOH, the hybrid material did not have a good dispersibility; the results 

showed the conversion in iPrOH is better than in some apolar solvents like CHCl3 and toluene. 

 

 

 

 

200 400 600 800 1000
80

85

90

95

100

 

 

!
 m

 / 
%

T / °C

!
10 S 



!"#$%&'()(
!

!

!

"#$!

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8. Hydrogenation system for stilbene. 

 

 

Table 1. Hydrogenation of trans-stilbene using Pd@Co/C MOP with different solvents. 

 

entry solvent conversion [%]a) 

1 MeOH 3 

2 toluene 12 

3 CHCl3 2 

4 DCM 14 

5 iPrOH 38 

trans-Stilbene (0.2 mmol) in 4 ml solvent was hydrogenated by 

0.2 µmol Pd cat. (0.1 mol% Pd) adding dodecane as internal 

standard a) Conversion determined by GC analysis using internal 

standard.  

 

Afterwards, a series of experiments were performed to determine the optimal reaction time and 

catalyst loading (Table 2). After 60 min with 0.2 mol% catalyst full conversions were achieved. 

For the sake of comparison, a background reaction was studied without using any Pd catalyst 

and no conversion was observed.  

 

 

Pd@Co/C MOP, H2 (1 atm)

20 min
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Table 2. Hydrogenation of trans-stilbene using Pd@Co/C MOP at different times and catalyst loadings. 

 

entry Pd [mol%] time [min] conversion [%]a) 

1 0.1 20 38 

2 0.1 40 59 

3 0.1 80 >99 

4 0.2 40 69 

6 0.2 60 >99 

trans-Stilbene (0.2 mmol) in 4 ml solvent was hydrogenated by Pd 
cat. adding dodecane as internal standard a) Conversion determined 
by GC analysis using internal standard.   

 

4.3.1. Evaluation of the Hydrogenation Substrate Scope 

In order to evaluate the catalytic activity of this hybrid material with other substrates, various 

olefins and a nitro compound were hydrogenated under the same conditions.  

Phenylacetylene (Table 3, entries 2, 3) reacted in shorter times because of the effect of the 

aromatic ring. The reaction can be stopped at the alkene or brought to ethylbenzene with full 

conversion in 50 minutes.  

Benzalacetone (Table 3, entry 4) was hydrogenated at slower rate than stilbene, probably due to 

the presence of a conjugated ketone that stabilizes the system.  

In the case of 1-methylcyclohexene (Table 3, entry 6) hydrogenation is more difficult than with 

other substrates because of the donor alkyl group. 
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Table 3. Hydrogenation of olefins and a nitroarene compound by Pd@Co/C MOP 

entry substrate product t [min] conversion [%]a) 

1 
 

 

100 100 

2 
 

 

10 100 

3 
 

 

50 100 

4 
  

150 100 

5 
  

150 100 

6 
  

150 48 

7   20 100 

Substrates (0.2 mmol) were hydrogenated with 0.2 mol% Pd@Co/C MOP in 4 mL iPrOH. 
a)Conversion determined by GC analysis using internal standard. 

 

4.3.2. Recycling and Leaching Tests in the Hydrogenation 

After examining the activity of the catalyst for different substrates, the most important aspect for 

a heterogeneous catalyst is the recyclability, which is crucial for practical applications. 

In order to check this parameter, the hydrogenation experiment was done in a large scale with 

0.2 mol% catalyst. All reactions were checked after 100 min and also evaluated to establish the 

time required to reach full conversion.  

The separation was done with an external magnet which was placed next to the reaction flask for 

a few seconds, then the product solution was transferred to another flask and the catalyst was 

used for the next run. Clearly, this method is much more convenient than separation of other 

classic support such as SiO2, zeolites or CNTs due to easy magnetic separation.  
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Table 4. Recyclability for hydrogenation of trans-stilbene by Pd@Co/C MOP 

 

run 
conversion after 100 

min [%]a 

TOF 

[h-1] 

time to full 

conversion [min] 

Pd leaching 

[ppm]b 

Co leaching  

[ppm]b 

1 100 300 100 11 18 

2 100 300 100 9 26 

3 74 223 220 18 25 

4 53 160 260 15 36 

5 53 160 340 13 33 

6 28 83 400 20 33 

Repetitive hydrogenation of trans-stilbene (0.5 mmol) using 0.2 mol% Pd-catalyst. a) Conversion 
determined by GC analysis using internal standard. b) Determined by ICP measurement. 

 

4.4. Suzuki Cross-Coupling with Pd@Co/C MOP 

In a first attempt to classify the catalytic activity, the new hybrid material was tested for Suzuki 

coupling between iodobenzene and phenylboronic acid. It was observed that increasing the 

catalyst loading, the yield increased to reach 89%. 

 
Table 5. Suzuki cross-coupling with different catalyst loadings. 

 

entry Pd [mol%] t [h] yield [%]a) 

1 0.3 3 65 

2 0.5 3 89 

K3PO4 0.25 mmol, iodobenzene 0.1 mmol, phenylboronic 
acid 0.15 mmol. a) Determined by 1H NMR analysis using 
an internal standard. 

 

With 4-methoxy-substituted halogenated benzenes the reaction was faster because of the 

electron donating effect of methoxy group which facilitates the oxidative addition step. In the 

case of 4-iodoanisole the reaction is faster than with 4-bromoanisole as expected. 

 

Pd@Co/C MOP, H2 (1 atm)

0.2 mol% catalyst

B(OH)2 I
+

Pd@Co/C MOP, EtOH/H2O

MW, 110 ºC
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Table 6. Suzuki cross-coupling with different 4-methoxy haloarenes.  

 

entry X Pd [mol%] t [min] Yield [%]a) 

1 I 0.5 10 93 

2 Br 0.5 120 54 

 
K3PO4 0.25 mmol, 4-methoxy haloarene 0.1 mmol, phenylboronic acid 
0.15mmol. a) Determined by 1H NMR analysis using an internal standard 
(CHBr3). 

 

The well established lower reactivity of bromide is due to the stronger C-Br bond (bond 

dissociation energies for Ph-X: Br: 81 kcal mol-1; I: 65 kcal mol-1) which is reflected in slower 

oxidative addition. 

To evaluate the recyclability of the new hybrid material for Suzuki cross-coupling reaction, the 

reaction between 4-iodoanisole and phenylboronic acid was chosen as a model.  For the first 

five runs, the reaction had a constant yield around 90%; however in the sixth run, the yield 

dropped to 77%.  
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Table 7. Recyclability for Suzuki cross-coupling. 

 

Run TOF [h-1] Yield[%]a 
Pd leaching  

[ppm]b 

Co leaching  

[ppm]b 

1 1116 93 35 12 

2 1092 91 23 83 

3 1032 89 19 9 

4 1032 89 13 2 

5 1125 90 17 124 

6 963 77 15 20 

Catalyst 0.5 mol%, K3PO4 0.75 mmol, 4-iodoanisole 0.3 mmol, phenylboronic acid 
0.45 mmol a) determined by 1H NMR analysis using an internal standard. b) 
Determined by ICP measurement. 

 

Due to the interest in applying Suzuki cross-couplings in the pharmaceutical industry, 

minimizing the amount of Pd in the product is getting more important. Further research focused 

then on the preparation of different supports to decrease the amount of Pd leaching. Thus, we 

decided to undertake the study of the influence of the polymer structure in the amount of Pd 

leaching. 

4.5. Synthesis of Microporous Organic Polymers with Phenol and Aniline 

The study focused on one main aspect: preparing an efficient polymer which minimized the Pd 

leaching. In particular, we wanted to study what would happen if we introduced a heteroatom, 

such as O or N in the structure of the polymer. 

Therefore, this time, after synthesizing material 2, aniline was used instead of toluene, which 

gave rise to polymer 5. (15.65 C%, 1.12 N%, 0.69 H% determined by elemental analysis). 

 

 

B(OH)2 I

MeO
+

Pd@Co/C MOP, EtOH/H2O

MW, 110 ºC
MeO



!"#$%&'()(
!

!

!

"#$!

 
Scheme 14. Synthesis of the hybrid material with aniline. 

 

The next step consisted in synthesizing Pd nanoparticles using microwave irradiation (15.42 

C%, 1.08 N%, 0.75 H% determined by elemental analysis, 0.48 wt% Pd determined by ICP). 

The results obtained by elemental analysis for materials 5 and 6, seemed to indicate that the 

polymer had formed around the particles.  

 

 
Scheme 15. Synthesis of PdNPs inside the pores of catalyst 6. 

 

In TEM and EDX images, polymer, Pd and Co NPs were observed. Indeed, it looks like the 

polymer could work as a network to prevent Pd NPs from agglomerating (Figure 9). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. TEM analysis of catalyst 6. 
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Figure 10. EDX image catalyst 6. 

 

With the new material synthesized (i.e. aniline@MOPs), we decided to study its behavior in 

catalytic applications. To this end, the Suzuki coupling between 4-iodoanisole and 

phenylboronic acid was chosen as a model reaction. In order to gain some preliminary 

information on the recyclibility of the catalyst, we decided to run two consecutive runs of this 

reaction (Table 8). 

 

Table 8. Suzuki cross-coupling with catalyst 6. 

 

entry Yield [%]a Pd leaching [ppm]b Co Leaching [ppm]b 

1 91 29 10 

2 90 35 15 

Catalyst (0.5 mol%), K3PO4 (0.25 mmol), 4-iodoanisole (0.1 mmol), 
phenylboronic acid (0.15 mmol). a) Determined by 1H NMR analysis using 
an internal standard (CHBr3). b) Determined by ICP measurement. 
 

No significant change was observed in the amount of leaching. Therefore, we decided to prepare 

the analogous material derived from phenol, which would introduce more electronegative 

oxygen atoms in the polymer backbone. Using the strategy previuosly described, polymer 7 was 

obtained (16.72 C%, 0!N%, 0.69 %H determined by elemental analysis). 

B(OH)2 I

MeO
+

Pd(0), EtOH/H2O

MW, 110 ºC
MeO
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Scheme 16. Synthesis of phenol@MOPs. 

 

Afterwards, using the same procedure, Pd NPs were synthesized inside the pores of 

phenol@MOPs 7 to generate the catalytic material 8 (16.21 C%, 0!N%, 0.68 H% determine by 

elemental analysis). 

 

 

 
Scheme 17. Synthesis of PdNPs inside the pores of phenol@MOPs. 

 

Elemental analysis was used to determine the extent of polymer formation (16.21 C%, 0!N%, 

0.68 H% determined by elemental analysis, 0.47 wt% Pd determined by ICP). Moreover, in 

TEM images the polymer layer around the Co/C NPs and Pd NPs could be detected.  
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Figure 11. TEM images of catalyst 8. 

 

 
Figure 12. EDX analysis of catalyst 8. 

 

The reaction of 4-iodoanisole and phenylboronic acid was tested with the new hybrid material 8 

under the previously reported conditions. The reaction yield was as good as in the previous 

cases, but no significant change was observed in terms of Pd leaching (Table 9). 
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Table 9. Suzuki cross-coupling with catalyst 8. 

 

entry Yield [%]a Leaching Pd [ppm]b Leaching Co [ppm]b 

1 93 35 9 

2 91 29 16 

Catalyst (0.5 mol%), K3PO4 (0.25 mmol), 4-iodoanisole (0.1 mmol), 
phenylboronic acid (0.15 mmol). a) Determined by 1H NMR analysis using CHBr3 
as the internal standard. b) Determined by ICP measurement. 

4.6. Summary and Outlook 

This research project, which was started in Regensburg, is not finished. We think that this 

microporous polymer developed in Germany has a lot of potential for future work. We have 

tested toluene, phenol and aniline in the structure of polymer but we could not completely 

suppress Pd leaching. Thus, we will substitute toluene for imidazole substrate and study the 

same reactions and Pd leaching. We would also like to replace Pd with other metal nanoparticles 

like Ni, Ru and Fe and characterize these new polymers. 
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4.7. Experimental Section  

Materials and Methods 

Carbon-Coated Cobalt Nanobeads (1): (Co/C NBs, 20.5 m2/g, mean particle size ! 25 nm) 

were obtained from Turbobeads Llc, Switzerland. Before use, they were washed five times for 

24 h in a concentrated HCl (Merck, puriss) / deionized water (Millipore) mixture (1:1). Acid  

residues were removed by washing with millipore water ("5) and the particles were dried under 

vacuume.  

Magnetic nanobeads were dispersed using an ultrasound bath (Sonorex RK 255 H-R, Bandelin) 

and recovered with the aid of a neodymium based magnet (side length 12 mm). They were 

characterized by transmission electron microscopy (CM30 ST-Philips, LaB6 cathode, operated 

at 300 kV point resolution ! 4 Å), and inductively coupled plasma optical emission 

spectrometry (Spectro Analytical Instruments ICP Modula EOP, # = 340 nm). 
1H NMR (300 MHz) spectra were recorded on a Bruker AC 300 spectrometer with CHCl3 (7.26 

ppm) as a standard. Gas chromatography was performed on a Fisons Instruments GC8000 

equipped with a capillary (30 m"250 µm"0.25 µm) and flame ionization detector. 

 

Phenylmethanol Functionalized Carbon-Coated Cobalt Nanobeads (2): The as-prepared 

carbon-coated cobalt nanobeads 1 (0.1 g, 4.71 wt% C) were suspended in H2O (5 mL) by the 

use of an ultrasonic bath (Sonorex RK 255 H-R, Bandelin). 4-Aminotoluene was transformed in 

the corresponding diazonium salt in situ by adding a cooled solution of sodium nitrite (2.3 

mmol, 0.16 g in 12 mL H2O) to a mixture of the 4-aminotoluene (1.5 mmol, 0.160 g), HCl (0.6 

mL, concentrated) and H2O (20 mL) in an ice bath. After addition of the carbon-coated 

nanobeads, the reaction mixture was sonicated for 30 min. The nanobeads were recovered from 

the reaction mixture with the aid of a neodymium based magnet (N48, W-12-N, Webcraft 

GmbH, side length 12 mm) and washed with water (3"5 mL) and acetone (6"5 mL). Each 

washing step consisted of suspending the particles in the solvent, ultrasonication (5 min) and 

retrieving the particles from the solvent by the aid of the magnet. After the last washing step and 

drying in vacuume 0.131 g of 2 were obtained (5.30 wt% C, 0.1 wt% H). 

 

General Procedure for the Aromatic Microporous Polymers Encapsulated with Co/C 

Nanobeads: FeCl3 (anhydrous, 0.163 g, 1 mmol) was added to a solution of 2 (0.1 g), aromatic 

compound (0.5 mmol) and Formaldehyde dimethyl acetal (FDA) (88 µL, 1 mmol) in 3 mL DCE 

and put in the ultrasonic bath for 10 minutes. Afterwards, the resulting mixture was stirred at 

room temperature to ensure good mixing, and then it was stirred at 45 °C for 5 h to form original 

network. After that it was heated at 80 °C for 19 h to complete the reaction. The resulting 
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precipitate was separated by an external magnet, washed three times with ethanol, then washed 

with methanol in a Soxhlet for 24 h, and finally dried under reduced pressure at 60 °C for 24 h.  

3 was prepared according to the general procedure from methylbenzene (53 µL, 0.5 mmol), 168 

mg of product was obtained (15.88 wt% C, 0.84 wt% H). 

5 was prepared according to the general procedure from  aniline (44 µL, 0.5 mmol), 157 mg of 

product was obtained (15.65 C%, 1.12 N%, 0.69 %H determined by elemental analysis). 

7 was prepared according to the general procedure from phenol (48 mg, 0.5 mmol) 171 mg of 

product was obtained (16.72 C%, 0!N%, 0.69 %H determine byelemental analysis). 

Aromatic Microporous Polymers Encapsulated with Co/C Nanobeads and Pd(0) 

Nanoparticles (4) (0.43 wt% Pd): 1 ml toluene solution containing 2 mg Pd2(dba)3"CHCl3  

(0.0019 mmol) was added onto 5 ml toluene, and 0.1 g of 3 was added to the mixture. The 

solution was transferred to a microwave vial under nitrogen atmosphere. The reaction mixture 

was sonicated in an ultrasonic bath for 10 min and then heated in a microwave reactor to 110 °C 

for 2 min. The magnetic catalyst was recovered by an external magnet, the solution decanted, 

and the particles washed with DCM in a Soxhlet for 5 h to remove the Pd species adsorbed on 

the outer surface of 3. After drying under vacuum a Pd loading of 0.43 wt% was determined by 

ICP-AES. (16.67 wt% C, 0.94 wt% H) 

 

General Procedures for Hydrogenation 

Pd@Co/C nanoparticles 4 (0.1 mol% Pd, 0.2µmol), substrate (0.2 mmol) and iPrOH (5 mL) 

were introduced in a schlenk tube. Dodecane (0.2 mmol) was added as internal standard and the 

slurry was sonicated in an ultrasonic bath for 10 min. The tube was evaporated and flushed with 

H2 several times followed by vigorous stirring under 1 atm H2 (balloon). The progress of the 

reaction was monitored by GC separating the magnetic material by an external magnet before 

sampling.  

 

Catalyst Recycle and Reusing in the Hydrogenation 

The reaction was performed under the conditions described above, employing trans-stilbene as 

substrate. Each time, the catalyst was isolated from the reaction mixture at the end of the 

reaction by an external magnet, washed with EtOAC, and then dried at 40 °C under vacuum. 

The dried catalyst was then reused in the next run. 

The liquid pahse in each cycle was filtered using a HPLC filter. After collecting all the liquids 

of six cycles, ICP-AES measurements were done to determine the Pd contamination in the final 

product for each of the six performed cycles  
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General Procedure for the Suzuki Coupling 

 A Suspension of Pd@Co/C nanoparticles 4 (0.5 mol% Pd, 0.5µmol), K3PO4 (0.75 mmol), 4-

iodoanisole (0.3 mmol), phenylboronic acid (0.45 mmol) in 12 ml ethanol and water (ratio 1:1) 

was prepared in a microwave vial. The reaction mixture was sonicated in an ultrasonic bath for 

10 min and then heated in a microwave reactor to 120 °C for 10 min. The catalyst was recovered 

by a magnet and the solution was washed 3 times with DCM. Then, 0.28 mmol CHBr3 (25 µL) 

were added to the product as internal standard and the conversion was determined by 1H NMR.  

 

Catalyst Recycling and Reuse for Suzuki Cross-Coupling 

The reaction was performed under the conditiones described above, employing 4-iodoanisole as 

substrate. Each time, the catalyst was isolated from the reaction mixture at the end of the 

reaction by an external magnet, washed with DCM, and then dried at 40 °C under vacuum. The 

dried catalyst was then reused in the next run. 

The liquid phase in each cycle was dried under vacuum and stored in a vial after filtration using 

a HPLC filter. After collecting all the liquids of six cycles, ICP-AES measurement was 

performed to determine the total Pd leaching during six cycles. 

 

GC conditions: 

Aniline:  3 min at 50 °C, 16 °C/min to 250; Retention time: ethylbenzene (5.90 min), aniline 

(8.04 min), nitrobenzol (9.98 min). 

 

Methylcyclohexane: 3 min at 50 °C, 10 °C/min to 200 °C. methylcyclohexane (3.26 

min), methylcyclohexene (4.10 min), Dodecane (12.52 min).  

 

1,2-Diphenylethane: 3 min at 140 °C, 16 °C/min, to 300 °C, dodecane (3.76 min), bibenzyl 

(6.97 min), trans-stilbene (8.65 min). 

 

4-Phenylbutan-2-one: 1min at 80 °C, 20 °C/ min to 220 °C; retention time: dodecane (5.69 

min), 4-phenylbutan-2-one (5.84 min), (E)-4-phenylbut-3-en-2-one (6.72 min). 

 

Styrene: 1 min at 50 °C, 1 °C/min to 75 °C (0 min), 20 °C/min to 250 °C; ethylbenzene (7.16 

min), ethynylbenzene (7.68 min), styrene (8.45 min), dodecane (29.86 min).  
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Ethylbenzene: 1 min at 50 °C, 1 °C/min to 75 °C (0 min), 20 °C/min to 250 °C; ethylbenzene 

(7.16 min), ethynylbenzene (7.68 min), styrene (8.45 min), dodecane (29.86 min). 
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Conclusion 
 

This thesis focuses on the application of magnetic nanoparticles (MNPs) in different 

catalytic reactions. In this research the main goal is to develop different catalysts 

based on MNPs and study the advantages and limitations of these catalytic materials. 

In the first project, two new hybrid materials based on carrageenan and MNPs were 

developed. First, the MNPs were synthesized using thermal decomposition of 

Fe(acac)3 in the presence of oleylamine and oleic acid as surfactants. Afterwards, the 

first hybrid material was prepared by mixing !-carrageenan and the MNPs in the 

presence of glacial acetic acid and ultrapure water in DMF at 110 ºC. This catalyst 

was tested in the Michael addition of aldehydes to nitroalkenes; five examples were 

reported with different aldehyde substrates with yields in the range 54-80% and 

diastereoselectivities between 87:13 and 93:7. Interestingly, the individual 

components were inactive in the same reaction. 

As for the second hybrid material, it involved modification to introduce an 

organocatalyst in order to apply in an enantioselective reaction. First, the free hydroxy 

groups in the hybrid material were substituted by an azide group, then an analog of 

the Jørgensen-Hayashi catalyst was anchored to the hybrid material using a copper-

catalyzed azide-alkyne cycloaddition (CuAAC) strategy. This catalyst was also 

applied in the Michael addition and good yields and excellent ee’s were achieved (5 

examples, yield: 57-83%, 86-93% ee) 

In the second project, an analog of the second generation MacMillan catalyst was 

immobilized onto Fe3O4 NPs and polystyrene through a copper-catalyzed alkyne-

azide cycloaddition reaction (CuAAC). The resulting catalytic materials were applied 

to the asymmetric Friedel-Crafts alkylation of indoles with ",#-unsaturated aldehydes. 

With the MNPs based catalyst yields and ee were between 41-76%, 35-85% and in 

the case of polystyrene derivative yields and ee are found to be between 64-79% and 

70-93% respectively.  

Then, the recyclability of MNPs and polystyrene catalysts was studied for five 

consecutive runs. In both catalysts a slight decline in catalytic activity was observed. 

Concerning the enantioselectivity, the results with the PS-based catalyst were more 

constant in these five runs. As a general conclusion of this study, the polystyrene-

based catalyst showed higher stability and provided better stereoselectivities.  
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In the last project, another kind of hybrid material was synthesized based on 

microporous organic polymers (MOPs) encapsulated with Pd nanoparticles and Co/C 

nanobeads. Recently, microporous organic polymers (MOPs) have attracted particular 

attention due to their unique properties such as large surface area, low skeletal 

density, and high chemical stability. In this respect, metal catalysts loaded on MOPs 

have been studied for several heterogeneous catalytic reactions. For the preparation of 

polymer-Pd-Co/C composites, the surface of Co/C nanobeads is covalently 

functionalized with phenylmethane by thermal decomposition of the diazonium salt 

derived from 4-aminotoluene. This allows introducing phenyl moieties on the surface 

of Co/C nanobeads as a starting point for growing a bakelite type polymer on the 

nanoparticle graphene layer. Afterwards, using toluene, aniline and phenol as building 

blocks, microporous polymers were formed with employing formaldehyde dimethyl 

acetal (FDA) as an external cross-linker. In the last step, Pd NPs were formed by 

microwave irradiation inside the pores of the polymer using Pd2dba3!CHCl3 as the Pd 

source. These catalysts were applied in hydrogenation and Suzuki cross-coupling 

reactions to evaluate the catalytic ability of the new hybrid material. Despite giving 

from good to moderate yields, these materials suffer from leaching of Pd, so further 

research is required.  

In conclusion, in this thesis we have tried to develop new catalysts based on magnetic 

nanoparticles. In the first two chapters, MNPs were modified with an organocatalyst 

as powerful tools to promise asymmetric reactions. The first study involved the use of 

k-carregenan as a versatile platform to carry the organocatalyst while magnetic 

nanoparticles were used as an efficient tool for separating the material. In the second 

project, MNPs and polystyrene were modified with the second generation MacMillan 

catalyst using CuAAC strategy as a versatile method to functionalize particles. In this 

case, both catalysts could be separated from the reaction media easily, albeit 

polystyrene showed better results.  

In the last project, new hybrid materials have been developed using micropours 

polymer and Co/C nanobeads. Research is still ongoing to develop a method that can 

minimize the amount of Pd leaching from the catalyst.  


