Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin-Guanylyl Cyclase from the Aquatic Fungus Blastocladiella emersonii

Alfons Penzkofer¹*, Ulrike Scheib², Peter Hegemann² and Katja Stehfest²

¹Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
²Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany

Abstract

A new class of rhodopsins covalently linked to an enzymatic domain was discovered recently. A member of this class of enzyme rhodopsins, the rhodopsin-guanylyl cyclase (RhGC) was identified in the aquatic fungus Blastocladiella emersonii (BE). Characterization of RhGC showed that the second-messenger molecule cGMP (cyclic guanylyl monophosphate) is produced upon green light illumination. Here, the rhodopsin domain Rh (BE) of the rhodopsin-guanylyl cyclase RhGC was studied by absorption and emission spectroscopic methods. It was found that fresh thawed Rh (BE) was composed of a mixture of retinal – protein conformations. These retinal conformations are likely all-trans protonated retinal Schiff base (Ret_1), 13-cis protonated retinal Schiff base with repositioned counter ion (Ret_2), all-trans protonated retinal Schiff base with repositioned counter ion (Ret_3), and deprotonated all-trans protonated retinal Schiff base (Ret_4). The Rh (BE) thermal denaturing was studied: An apparent protein melting temperature of θ_m ≈ 49 °C was determined; the apparent protein melting time at room temperature (≈ 21.9 °C) was t_m = 1.45 h. Thermal retinal conformation restructuring with irreversible conversion likely to deprotonated 13-cis retinal Schiff base (Ret_4) was observed. The photo-excitation of all-trans protonated retinal Schiff base (Ret_1) caused a primary photocycle dynamics involving excited-state picosecond all-trans – 13-cis isomerization (13-cis protonated retinal Schiff base Ret_5 formation) followed by ground-state sub-second intermediate retinal Schiff base formations (Ret_2, Ret_3, Ret_4) and sub-second to second recovery to the initial all-trans protonated retinal Schiff base (Ret_1). Long-time all-trans protonated retinal Schiff base photo-excitation caused irreversible (likely 13-cis) retinal Schiff base (Ret_4) formation.

Keywords: Rhodopsin Domain; Rhodopsin-Guanylyl Cyclase; Blastocladiella emersonii; Retinal Schiff Base

1. Introduction

The unicellular eukaryotic water mold Blastocladiella emersonii (common name: aquatic fungus) [1] belongs to the family of Blastocladiaceae [2]. Spores of fungi in the family Blastocladiaceae are phototactic [3,4] requiring cyclic guanosine monophosphate (cGMP) [5] and rhodopsin [6] for photo-orientation [3,4]. A microbial rhodopsin sequence (type-I rhodopsin) connected to a guanylyl cyclase domain through a 46-amino acid residue linker in Blastocladiella emersonii was revealed by genomic sequence analysis [4]. The optogenetic behavior of the rhodopsin-guanylyl cyclase (RhGC) of Blastocladiella emersonii was studied in [5,6]. Upon application of a short green light flash, recombinant RhGC converted with a time constant of 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered with a time constant of 93 ms at 22 °C [7]. When expressed in Xenopus oocytes [7,8], Chinese hamster ovary cells [7], human embryonic kidney cells [8], rat hippocampal neurons [7], muscle cells and sensory neurons of the nematode Caenorhabditis elegans [8], RhGC generated cGMP in response to green light in a light dose-dependent manner on a sub-second time scale.

The rhodopsin-guanylyl cyclase RhGC belongs to the class of enzyme rhodopsins a new subfamily of microbial rhodopsins which consist of a rhodopsin domain and an enzyme domain [9-13]. The light activation of the rhodopsin part triggers the action of the enzyme part for biological reaction. Light-gated enzymes belong to the toolkits of optogenetics [14-16].

In this paper the absorption and emission spectroscopic behavior of the thermal dynamics and the photo-dynamics of the rhodopsin domain Rh (BE) of the rhodopsin-guanylyl cyclase RhGC from Blastocladiella emersonii is studied in detail. It was found that fresh thawed Rh (BE) is composed of a mixture of retinal – protein conformations. In absorption spectroscopic analysis of protein heating the apparent protein melting temperature of Rh (BE) was determined; the apparent protein melting time at room temperature (≈ 21.9 °C) was t_m = 1.45 h. Thermal retinal conformation restructuring with irreversible conversion likely to deprotonated 13-cis retinal Schiff base (Ret_4) was observed. The photo-excitation of all-trans protonated retinal Schiff base (Ret_1) caused a primary photocycle dynamics involving excited-state picosecond all-trans – 13-cis isomerization (13-cis protonated retinal Schiff base Ret_5 formation) followed by ground-state sub-second intermediate retinal Schiff base formations (Ret_2, Ret_3, Ret_4) and sub-second to second recovery to the initial all-trans protonated retinal Schiff base (Ret_1). Long-time all-trans protonated retinal Schiff base photo-excitation caused irreversible (likely 13-cis) retinal Schiff base (Ret_4) formation.

*Corresponding author: Alfons Penzkofer, Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany, E-mail: alfons.penzkofer@physik.uni-regensburg.de

Rec Date: December 9, 2016, Acc Date: December 19, 2016, Pub Date: December 19, 2016.

Citation: Alfons Penzkofer, Ulrike Scheib, Peter Hegemann and Katja Stehfest (2016) Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Aquatic Fungus Blastocladiella emersonii. BAOJ Physics 2: 006.

Copyright: © 2016 Alfons Penzkofer, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
was determined. The apparent protein melting time of Rh (BE) was determined as a function of sample temperature. The photoexcitation of all-trans protonated retinal Schiff base caused a primary photo-cycle dynamics involving picoseconds excited-state all-trans – 13-cis isomerization, followed by 0.1 second protonated retinal Schiff base intermediate formations and the sub-second to second recovery to the initial all-trans protonated retinal Schiff base. Long-time protonated all-trans retinal Schiff base photoexcitation caused irreversible 13-cis deprotonated retinal Schiff base formation. A primary photo-cycle scheme and a secondary photo-conversion scheme for Rh (BE) is developed. The photo-physical behavior of Rh (BE) is compared with other microbial (type-I) rhodopsins.

2. Experimental

2.1. Sample Preparation

The recombinant synthesis of the rhodopsin domain Rh (BE) in methylotropic yeast *Pichia pastoris* was reported in the spectroscopic analysis of recombinant proteins section in [7]. Rh (BE) apoprotein consists of 396 amino acids (molar mass $M_{\text{apo}} = 43,071.2$ g mol$^{-1}$). It covalently binds the cofactor retinal. The amino acid sequence is displayed in Fig.S1 of the Supplementary material (section S1). The present 11 Trp (W), 15 Tyr (Y), and 22 Phe (F) are mainly responsible for the UV absorption. The structural formula of lysine coupled all-trans protonated retinal Schiff base PRSB$^+$, all-trans deprotonated retinal Schiff base RSB$^{\text{trans}}$, 13-cis protonated retinal Schiff base PRSB$^+$, and 13-cis deprotonated retinal Schiff base RSB$^{\text{cis}}$ are shown in Fig.S2 of the Supplementary material (section S2).

2.2. Spectroscopic Investigations

The Rh (BE) protein in pH 8.0 Tris buffer (20 mM tris (hydroxymethyl) aminomethane, 100 mM NaCl, 0.02% dodecylmaltoside (DDM), 0.1 mM phenylmethylsulfonyl fluoride (PMSF)) was stored at -80 °C. Before usage it was thawed and kept in the dark at about 4 °C. Absorption, fluorescence, short-time photo-cycle, and long-time photo-conversion measurements were carried out at room temperature, if not stated differently. The Rh (BE) solution was investigated in fused silica ultra-micro cells from Hellma Analytics, Müllheim, Germany (for absorption measurements cell inner size 1.5×3×5 mm3, for fluorescence measurements cell inner size 2×10×5 mm3).

Transmission measurements, $T(\lambda)$, were carried out with a spectrophotometer (Cary 50 from Varian). Attenuation coefficient spectra were calculated by the relation, $\alpha(\lambda) = \frac{-\ln T(\lambda)}{l}$, where l is the sample length. The attenuation coefficient α is composed of absorption, α_a, and scattering, α_s, contributions according to $\alpha(\lambda) = \alpha_a(\lambda) + \alpha_s(\lambda)$. In the transparency region only scattering attenuates the light in the sample passage. $\alpha_s(\lambda)$ is approximated by the empirical relation [17] $\alpha_s(\lambda) = \alpha_s(\lambda_0)(\lambda_0 / \lambda)^\gamma$ where λ_0 is selected in the transparency region and $\gamma \leq 4$ is fitted to the experimental attenuation in the transparency region ($\gamma = 4$ for small particles in the Rayleigh scattering regime, and $\gamma < 4$ for larger particle size in the Mie scattering regime). Absorption coefficient spectra $\alpha_a(\lambda)$ became available by subtracting the scattering contribution $\alpha_s(\lambda)$ from the measured attenuation spectra $\alpha(\lambda)$.

For fluorescence spectroscopic measurements a spectrophotometer (Cary Eclipse from Varian) was used (cell length in excitation direction 1 cm, cell width in detection direction 2 mm). Fluorescence quantum distributions $E_0(\lambda)$ were determined from fluorescence emission spectrum measurements at fixed excitation wavelengths [18-20]. The dye rhodamine 6G in methanol (fluorescence quantum yield $\Phi_{\text{r6g}} = 0.94$ [21]) was used as a reference standard for fluorescence quantum distribution calibration. The fluorescence quantum yield is given by $\Phi_F = \int_\lambda E_0(\lambda) d\lambda$ where the integration runs over the fluorescence emission wavelength region. The fluorescence spectra were deprived from scattering contributions by separate spectra measurements using a water solution of Ludox CL-X colloidal silica from DuPont with particle size of 21 nm diameter and appropriate scattering contribution subtraction.

For absorption spectroscopic photo-cycling and photo-conversion investigations, Rh (BE) samples were excited with a cw frequency doubled Nd:YAG laser (wavelength $\lambda_{\text{exc}} = 532$ nm). The sample solution in a 1.5×3×5 mm3 fused silica ultra-micro cell in the Cary 50 spectrophotometer for transmission measurements was irradiated with the laser transverse to the transmission detection path (exposed area 3×5 mm2, sample thickness along excitation path 1.5 mm, transmission detection path 3 mm). The excitation power P_{exc} was measured with a power meter (model PD 300-UV-SH photodiode detector head with NOVA power monitor from Ophir). The excitation intensity I_{exc} was calculated by the relation $I_{\text{exc}} = P_{\text{exc}} / A_{\text{cell}}$, with cell area $A_{\text{cell}} = 0.15$ cm2.

The thermal protein stability of Rh (BE) was investigated by apparent protein melting temperature and temperature dependent apparent melting time determination [22]. The apparent protein melting temperature of Rh (BE) was determined by stepwise sample heating up and then cooling down, whereby transmission spectra were measured and the rising light scattering with sample heating was analyzed [22]. The apparent protein melting times at fixed temperatures were determined by storing Rh (BE) samples at selected temperatures in the dark and measuring transmission spectra at certain time intervals whereby the temporal light scattering development was analyzed [22].

3. Results

3.1. Sample Absorption and Emission Behavior of Freshly Thawed Rh (BE)

3.1.1. Absorption Behavior

The attenuation coefficient spectrum $\alpha(\lambda)$ of a fresh Rh (BE) sample measured immediately after thawing and centrifugation at 4400 rpm for 15 min at 4 °C is displayed by the solid curve in Fig.1. The dotted curve shows the light scattering contribution $\alpha_s(\lambda)$ fitted by $\alpha_s(\lambda) = \alpha_s(\lambda_0)(\lambda_0 / \lambda)^\gamma$ with $\lambda_0 = 800$ nm, $\alpha_s(\lambda_0) = 0.02$ cm$^{-1}$ and $\gamma = 4$. This scattering strength agrees with a mean Rh (BE) aggregation size of $\beta_m = 790$ monomers per Rh (BE) cluster as analyzed in the Supplementary material section S3. The dashed curve shows the absorption coefficient contribution $\alpha_a(\lambda) = \alpha_a(\lambda) - \alpha_s(\lambda)$ of Rh (BE).
The absorption coefficient spectrum of Rh (BE) is composed of the retinal absorption in the wavelength region of \(\lambda > 330 \text{ nm} \), and the combined apoprotein and retinal absorption in the wavelength region \(\lambda < 330 \text{ nm} \) (see section S4 of the Supplementary material).

3.1.2. Fluorescence Behavior

In order to gain information on possibly existing retinal – protein conformations in Rh (BE) fluorescence spectra were measured on another fresh centrifuged Rh (BE) sample using fluorescence excitation wavelengths extending over the absorption spectrum region. The obtained fluorescence emission quantum distributions \(E_\lambda(\lambda) \) of fresh Rh (BE) at excitation wavelengths in the region from \(\lambda_{\text{exc}} = 530 \text{ nm} \) to 270 nm are displayed in Fig.2. The corresponding fluorescence quantum yield curve is shown in Fig.3.

The variation of the fluorescence quantum distribution with the fluorescence excitation wavelength indicates multi-component fluorescence emission from different species (for a single component an excitation-wavelength-independent \(S_1 \rightarrow S_0 \) emission of constant shape and quantum yield is expected [23,24]). The fluorescence emissions of the species with decreasing fluorescence excitation wavelength are mixed up i) because the absorption bands of the different species overlap and ii) because the species are in Rh (BE) clusters (aggregates, short distance between donor and acceptor) with efficient Förster-type energy transfer [18] from short-wavelength emitting species (donors) to long-wavelength emitting species (acceptors) [18,25].
Ret_4 and the apoprotein emission. Ret_1 causes the main Rh (BE) absorption band around 530 nm. It is likely protonated all-trans retinal Schiff base PRSB^+ (see below). Its fluorescence quantum yield is \(\phi_{\text{Ret,1}} = \phi_j(530 \text{ nm}) (1.7 \pm 0.3) \times 10^{-4} \).

The absorption spectrum contribution of Ret_2 is hidden below the first broad absorption band peaking around 530 nm. It is likely protonated 13-cis retinal Schiff base with repositioned counter ion PRSB^−(cis) (see below). Its first absorption peak is at \(\lambda_{\text{a,Ret,2}} = 440 \text{ nm} \) (see Fig.S3). Its absorption contribution \(k_{\text{abs,Ret,2}} = \kappa_{\text{abs,Ret,2,1}}(\lambda_{\text{a,Ret,2}})/\kappa_{\text{abs,Ret,2}} = (4 \pm 0.4) \times 10^{-4} \). The fluorescence spectrum of Ret_1 includes a well resolved vibronic structure with peaks at 587 nm and 638 nm (vibrionic wavenumber spacing \(\delta \nu = 1360 \text{ cm}^{-1} \)). The fluorescence emission of Ret_3 is quenched by Förster-type energy transfer from Ret_1 and Ret_2 within the Rh (BE) aggregates with small Ret_1 emission (emission band of Ret_2 overlaps with absorption band of Ret_1).

Ret_3 contributes to the absorption around 415 nm (see Fig.S3). It is likely protonated all-trans retinal Schiff base with repositioned counter ion PRSB^+ (trans,cirp) (see below). Its absorption contribution is estimated to be \(\kappa_{\text{abs,Ret,3}} = 0.5 \). The fluorescence quantum yield of Ret_3 is \(\phi_{\text{Ret,3}} = \phi_j(415 \text{ nm}) / \kappa_{\text{abs,Ret,3}} = (4 \pm 0.4) \times 10^{-4} \). The fluorescence spectrum of Ret_3 includes a well resolved vibronic structure with peaks at 587 nm and 638 nm (vibrionic wavenumber spacing \(\delta \nu = 1360 \text{ cm}^{-1} \)). The fluorescence emission of Ret_3 is quenched by Förster-type energy transfer from Ret_1 and Ret_2 within the Rh (BE) aggregates with small Ret_1 emission (emission band of Ret_3 overlaps with absorption band of Ret_1). Förster-type energy transfer from Ret_3 to Ret_1 is thought to be less efficient because the emission band of Ret_3 has only weak overlap with the absorption band of Ret_2.

Ret_4 contributes to the absorption around 360 nm (see Fig. S3). It is likely deprotonated all-trans retinal Schiff base RSB^− from Table 1 – besides other parameters - approximate and estimated values of peak absorption wavelengths \(\lambda_{A,i} \), mean fluorescence wavelengths \(\bar{\lambda}_{F,i} \), mean effective indices \(n_{r,i} \) and \(n_{\text{refr},i} \) absorption contributions \(\kappa_{\text{abs,Ret,1}} = 0.57 \) (see Eq.3 below). The S_0-S_1 absorption band cross-section strengths \(\bar{\sigma}_{r,i} \), radiative lifetimes \(\bar{\tau}_{r,i} \) and Strickler-Berg based fluorescence lifetimes \(\bar{\tau}_{\text{rad},i} \) of the species \(i \) are collected. The S_0-S_1 absorption band cross-section strength \(\sigma_{r,1} \) of the retinal species Ret_1 is \(\sigma_{r,1} = (3.3 \pm 0.3) \times 10^{-17} \text{ cm}^{-2} \). It was determined from Fig.S3 using \(\sigma_{r,1} = \int_{\lambda_1}^{\lambda_2} \sigma(\lambda)/\lambda d\lambda = \int_{\lambda_1}^{\lambda_2} \sigma(\lambda)/\lambda d\lambda \) with \(\kappa_{\text{ret,1}} = 0.57 \) (see Eq.3 below). The S_0-S_1 absorption band cross-section strengths of Ret_2, Ret_3, and Ret_4 are thought to be roughly the same as the S_0-S_1 absorption band cross-section of Ret_1 [13]. In the calculation of \(\kappa_{\text{rad}} \) (Eq.2) they are set equal to the value of Ret_1. The value of \(\sigma_{\text{apo}} \) was determined using the absorption cross-section spectrum of Trp, i.e. \(\sigma_{\text{apo}} = \sigma_{\text{apo}} = \int_{\lambda_{\text{Trp}}}^{\lambda_{\text{Max}}} \sigma(\lambda)/\lambda d\lambda \) (from [29], incoherent independent emission of each Trp residue in the protein).
Table 1: Spectroscopic parameters of retinals and apoprotein in fresh thawed Rh (BE).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ret_1</th>
<th>Ret_2</th>
<th>Ret_3</th>
<th>Ret_4</th>
<th>Apo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_i) (nm)</td>
<td>530</td>
<td>440</td>
<td>415</td>
<td>360</td>
<td>280</td>
</tr>
<tr>
<td>(n_a)</td>
<td>1.335</td>
<td>1.340</td>
<td>1.342</td>
<td>1.35</td>
<td>1.365</td>
</tr>
<tr>
<td>(\lambda_i) (nm)</td>
<td>673</td>
<td>580.7</td>
<td>606.5</td>
<td>457.4</td>
<td>344.9</td>
</tr>
<tr>
<td>(n_i)</td>
<td>1.330</td>
<td>1.333</td>
<td>1.333</td>
<td>1.338</td>
<td>1.350</td>
</tr>
<tr>
<td>(\alpha(\lambda_i)) (cm(^{-1}))</td>
<td>2.46</td>
<td>0.748</td>
<td>0.791</td>
<td>1.31</td>
<td>8.74</td>
</tr>
<tr>
<td>(\kappa_{\text{abs,ret}}(\lambda_i)) (cm(^{-1}))</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.87</td>
</tr>
<tr>
<td>(\alpha_{\text{ret,}\lambda_i}(\lambda_i)) (cm(^{-1}))</td>
<td>2.46</td>
<td>0.374</td>
<td>0.396</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>(\kappa_{\text{ret,}\lambda_i})</td>
<td>0.57</td>
<td>0.087</td>
<td>0.093</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(\nu_i) (cm(^{-1}))</td>
<td>0</td>
<td>384</td>
<td>373</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>(\phi_i)</td>
<td>(1.7(\pm)0.3)(\times)10(^{-4})</td>
<td>(2(\pm)0.2)(\times)10(^{-3})</td>
<td>(4(\pm)0.4)(\times)10(^{-3})</td>
<td>(6.3(\pm)1)(\times)10(^{-4})</td>
<td>0.033(\pm)0.004</td>
</tr>
<tr>
<td>(\sigma_i) (cm(^{-1}))</td>
<td>(3.3(\pm)0.3)(\times)10(^{-17})</td>
<td>(3.3(\pm)10(^{-17}))</td>
<td>(3.3(\pm)10(^{-17}))</td>
<td>(3.3(\pm)10(^{-17}))</td>
<td>(3.0(\pm)0.1)(\times)10(^{-18})</td>
</tr>
<tr>
<td>(\tau_{\text{rad,ret,}1}) (ns)</td>
<td>6.95</td>
<td>4.45</td>
<td>5.0</td>
<td>2.2</td>
<td>10.1</td>
</tr>
<tr>
<td>(\tau_{\text{rad,ret,}2}) (ns)</td>
<td>1.2</td>
<td>8.9</td>
<td>20</td>
<td>1.4</td>
<td>410</td>
</tr>
</tbody>
</table>

Abbreviations: \(\lambda_i\): peak \(S_0-S_1\) absorption wavelength. \(n_i\): mean refractive index in \(S_j-S_j\) absorption region. \(\lambda_i\): mean \(S_j-S_j\) fluorescence wavelength. \(n_j\): mean refractive index in \(S_j-S_j\) fluorescence region. \(\alpha(\lambda_i)\): absorption coefficient at wavelength \(\lambda_i\). \(\kappa_{\text{abs,ret}}(\lambda_j)\): absorption contribution of considered species at \(\lambda_j\). \(\alpha_{\text{ret,}\lambda_i}(\lambda_j)\): absorption coefficient of species Ret\(_i\) at wavelength \(\lambda_j\). \(\kappa_{\text{ret,}\lambda_i}\): fraction of retinal species \(i\). \(\nu_i\): ground-state energy difference between species Ret\(_i\) and Ret\(_1\) in wavenumbers. \(\phi_i\): fluorescence quantum yield of species \(i\). \(\sigma_i\): \(S_j-S_j\) absorption band cross-section strength of species \(i\). \(\tau_{\text{rad,ret,}i}\): radiative lifetime of species \(i\). \(\tau_{\text{rad,ap}}\): fluorescence lifetime of species \(i\). For Ret\(_1\) (likely protonated all-\textit{trans} retinal Schiff base PRSB\(^+\)) the fluorescence quantum yield is \(\phi_{\text{Ret,}1} = (1.7\pm0.3)\times10^{-4}\). The radiative lifetime is \(\tau_{\text{rad,ret,}1} = 6.95\) ns and the fluorescence lifetime is \(\tau_{\text{rad,ret,}1} = 1.2\pm0.3\) ps. This short fluorescence lifetime fits with barrier-less first excited state twist to a funnel position (conical intersection position [30]) where fast internal conversion from the excited state \(S_j\) potential energy surface to the \(S_j\) ground-state potential energy surface occurs (twisted internal conversion [31]) with partial transfer to a product (photo-isomer) and partial recovery to the initial educt conformation [13,30].

For Ret\(_2\) (likely protonated 13-\textit{cis} retinal Schiff base with repositioned counter ion PRSB\(^+\)\(_{\text{cis,cirp}}\)) the fluorescence quantum yield is \(\phi_{\text{Ret,}2} = (2\pm0.2)\times10^{-3}\). The radiative lifetime is \(\tau_{\text{rad,ret,}2} = 4.45\) ns and the fluorescence lifetime is \(\tau_{\text{rad,ret,}2} = 8.9\pm1\) ps. It is about a factor of 7.4 larger than the fluorescence lifetime of Ret\(_1\). This lifetime is shortened by Förster-type energy transfer from Ret\(_2\) to Ret\(_1\) within the Rh (BE) aggregates. The true intrinsic Ret\(_2\) fluorescence lifetime \(\tau_{\text{rad,ret,}2}\) may be in the hundred ps region. There seems to be a barrier between the locally excited \(S_j\) state position of Ret\(_2\) and the funnel \(S_j\) state position of Ret\(_2\) caused by the retinal surrounding amino acid conformation.

For Ret\(_3\) (likely protonated all-\textit{trans} retinal Schiff base with repositioned counter ion PRSB\(^+\)\(_{\text{trans,cirp}}\)) the fluorescence quantum yield is \(\phi_{\text{Ret,}3} = (4\pm0.4)\times10^{-3}\). The radiative lifetime is \(\tau_{\text{rad,ret,}3} = 5.03\) ns and the fluorescence lifetime is \(\tau_{\text{rad,ret,}3} = 20\pm2\) ps. It is shortened by Förster-type energy transfer from Ret\(_3\) to Ret\(_1\) within the Rh (BE) aggregates. The true intrinsic Ret\(_3\) fluorescence lifetime \(\tau_{\text{rad,ret,}3}\) may be in the hundred ps region indicating a barrier between the locally excited \(S_j\) position of Ret\(_3\) and the funnel \(S_j\) state position of Ret\(_3\). For Ret\(_4\) (likely deprotonated retinal Schiff base RSB in all-\textit{trans} conformation) the fluorescence quantum yield is \(\phi_{\text{Ret,}4} = (6.3\pm1)\times10^{-4}\), the radiative lifetime is \(\tau_{\text{rad,ret,}4} = 2.17\) ns, and the fluorescence lifetime is \(\tau_{\text{rad,ret,}4} = 1.4\pm0.2\) ps. This short fluorescence lifetime is due to efficient Förster-type energy transfer from Ret\(_4\) to Ret\(_3\), Ret\(_2\), and Ret\(_1\).

The apoprotein behavior is determined by Trp emission. Its fluorescence quantum yield is \(\phi_{\text{Ap,}o} = 0.033\), its radiative lifetime is \(\tau_{\text{rad,ap}} = 10.1\) ns, and its fluorescence lifetime \(\tau_{\text{Ap,}o} = 410\) ps. The apoprotein fluorescence emission is quenched by Förster-type energy transfer from apoprotein to retinal. The fluorescence quantum yield of Trp outside the protein in aqueous solution is \(\phi_{\text{Ap,}o} = 0.13\) [32-34].

3.1.3. Ground-State Retinal Conformations of Rh (BE)

A fresh thawed Rh (BE) sample contained several retinal species (see Fig.S3).

The approximate mole-fractions \(\kappa_{\text{ret,}i}\) of retinal species \(i\) of a fresh thawed sample are derived from the corresponding absorption fractions \(\kappa_{\text{abs,ret,}i}\) assuming equal absorption strengths of the various retinal species. Then it is

\[
\kappa_{\text{ret,}i} = \frac{\sum_j \alpha_{\text{ret,}j}(\lambda_{A,\text{ret,}j})}{\sum_j \sum_f \kappa_{\text{abs,ret,}j}(\lambda_{A,\text{ret,}j})} \frac{\alpha_{\text{ret,}i}(\lambda_{A,\text{ret,}i})}{\alpha_{\text{ret,}j}(\lambda_{A,\text{ret,}j})}
\]

(3)

The obtained approximate mole-fractions from Fig.1 and Fig.S3 are \(\kappa_{\text{ret,}1} = 0.57\), \(\kappa_{\text{ret,}2} = 0.087\), \(\kappa_{\text{ret,}3} = 0.093\), and \(\kappa_{\text{ret,}4} = 0.25\). (see Table 1).

The ground-state energy level positions \(E_{j,i}\) (\(j = 2,3,4\)) relative to
Ret_1 are obtained from the thermal equilibrium relation [35]

\[
\frac{\kappa_{\text{Ret}, j}}{\kappa_{\text{Ret}, 1}} = \exp \left(- \frac{E_{j, 1}}{k_B T} \right)
\]

giving

\[
E_{j, 1} = h c_0 \nu_{j, 1} = -k_B T \ln \left(\frac{\kappa_{\text{Ret}, j}}{\kappa_{\text{Ret}, 1}} \right).
\]

The obtained energy level positions relative to Ret_1 are (temperature \(T = 273.15 \) K + 21 K)

\[E_{2,1} = 7.63 \times 10^{-21} \text{ J} (\nu_{21} = 384 \text{ cm}^{-1}), E_{3,1} = 7.41 \times 10^{-21} \text{ J} (\nu_{31} = 373 \text{ cm}^{-1}), \text{ and } E_{4,1} = 3.46 \times 10^{-21} \text{ J} (\nu_{41} = 174 \text{ cm}^{-1}).\]

The energy level positions are depicted in the inset of Fig.S3.

3.2. Temperature Dependent Rh (BE) Development

The Rh (BE) apparent melting temperature and the temperature dependent apparent protein melting time were determined [22]. Protein melting is synonymous to protein denaturation [36]. The temporal retinal chromophore – opsin protein conformation development along with the protein denaturing was investigated. For this purpose the temporal absorption development of Rh (BE) in pH 8 Tris buffer was studied at the temperatures \(T = 1.65 \pm 0.3 \) °C and \(T = 21.9 \pm 0.3 \) °C.

3.2.1. Apparent Rh (BE) Melting Temperature Determination

In order to get information on the Rh (BE) protein melting temperature a Rh (BE) sample was stepwise heated up from room temperature to 59.9 °C, cooled down, and centrifuged (4400 rpm, 15 min, 4 °C). At the temperature steps attenuation coefficient spectra were measured (see section S5 of the Supplementary material). The apparent Rh (BE) melting temperature \(T_m \) was determined from the position of steep onset of light scattering in the transparency region of the protein (see left inset in Fig.S4a). A value of \(T_m = 48.8 \pm 2 \) °C was determined.

3.2.2. Temporal Absorption Development at 1.65 °C

The temporal absorption coefficient development of Rh (BE) at \(T = 1.65 \pm 0.3 \) °C is displayed in Fig.4a. Absorption coefficient spectra in the storage time range from \(t = 0 \) to 480 h are shown. The absorption of the 530 nm band decreases (Ret_1) and the absorption of the 370 nm band (Ret_4) increases with time. At \(\lambda = 435 \) nm the absorption is nearly time independent.

The inset in Fig.4a shows the temporal absorption coefficient development \(\alpha_a(\lambda_{pr}) \) at \(\lambda_{pr} = 529 \text{ nm} \) (peak Ret_1 absorption), \(\lambda_{pr} = 368 \text{ nm} \) (peak Ret_4 absorption), and \(\lambda_{pr} = 435 \text{ nm} \) (Ret_2 absorption with Ret_1, Ret_3 and Ret_4 contribution). During the first three days the absorption decrease at 529 nm is smaller than the absorption increase at 368 nm due to additional conversion of Ret_2 and Ret_3 to Ret_4. Then the absorption at 529 nm continues to decrease while the absorption around 368 nm increases only weakly. This behavior may be due to further Ret_1 to Ret_4 conversion overlapping with Rh (BE) sedimentation which decreases the integrated absorption strength in the supernatant.
should be noted that the apparent protein melting time is $t_m = 1.65$ °C = 195 h (see Supplementary material section S6), i.e. the retinal species conversion and restructuring occurs concurrent with the protein denaturing.

3.2.3. Temporal Absorption Development at 21.9 °C

The temporal absorption coefficient development of Rh (BE) at $\vartheta = 21.9 \pm 0.3$ °C is displayed in Fig.4b. Absorption coefficient spectra in the storage time range from $t = 5$ min to 26 h are shown. Initially the absorption of the 530 nm band decreased (Ret_4) and the absorption of the 370 nm band (Ret_4) increased with time. After 3 h, the absorption coefficient spectra decreased for $\lambda > 330$ nm because of Rh (BE) aggregate sedimentation decreasing the Rh (BE) amount in the supernatant. In the long-wavelength region, $\lambda > 620$ nm, absorption was building up with time peaking at ≈ 670 nm indicating some thermal conversion of Ret_1 to a further retinal species Ret_5 along with the protein denaturing. Ret_5 is likely 13-cis protonated retinal Schiff base PRSB$^+$, see below). It should be noted that the apparent Rh (BE) melting time at $\vartheta = 21.9$ °C is about 1.45 h (see section S6 of the Supplementary material).

In fluorescence emission studies of the Rh (BE) sample after 26 h of storage at 21.9 °C (data not shown) no fluorescence spectrum could be resolved above the noise level for Ret_5 excitation (fluorescence excitation wavelength $\lambda _{exc} = 680$ nm) indicating short fluorescence lifetime and fast photo-isomerization for this retinal species (photo-excitation of Ret_5 is thought to cause excited-state 13-cis \rightarrow all-trans isomerization to Ret_1 as does photo-excitation of Ret_1 cause excited-state all-trans \rightarrow 13-cis isomerization to Ret_5, see below and Fig.10b).

The inset in Fig.4b shows the absorption coefficient development with time at $\lambda _{529}$ nm (absorption peak of Ret_1) and $\lambda _{368}$ nm (absorption peak of Ret_4). In the time range of $t < 1.5$ h $\alpha _{529}$ nm increased and $\alpha _{368}$ nm. In the time range from 1.5 h to 5 h $\alpha _{529}$ nm decreased and $\alpha _{368}$ nm was approximately constant due to Ret_1 to Ret_4 conversion and concurrent Rh (BE) sedimentation. In the time range from 5 h to 12 h the absorption coefficients decreased with time due to Rh (BE) aggregate sedimentation giving decreasing Rh (BE) concentration in the supernatant. In the time range from 12 h to 26 h the absorption constants retained nearly constant (no further Rh (BE) sedimentation in the supernatant).

3.2.4. Thermal Ground-State Retinal Conformation Restructuring of Rh (BE)

In the stepwise Rh (BE) sample heating for apparent protein melting temperature determination and in the temperature dependent protein melting time determination changes in the retinal species composition were observed (some changes of absorption positions, different amounts of the various species). In Fig.S4b and Table S1 the approximate wavelength positions and approximate amounts of the retinal species in denatured Rh (BE) are presented. Ret_1 is no longer the lowest energetic species. This role is taken over by deprotonated retinal Schiff base which may have changed its conformation from all-trans deprotonated retinal Schiff base (Ret_4) to 13-cis deprotonated retinal Schiff base (Ret_4) in the denatured protein. Ret_3 seems to be energetically slightly below Ret_1. The ground-state energy level of Ret_2 retains above Ret_1. Ret_5 (likely 13-cis protonated retinal Schiff base) in denatured Rh (BE) is energetically lower than in fresh thawed Rh (BE) (there the amount of Ret_5 could not be resolved in the long-wavelength absorption tail of Ret_1 indicating a high-energetic position), but remains the energetically highest lying species.

The estimated mole-fractions κ_{Ret_i} (Eq. 3) of retinal species in denatured Rh (BE) are listed in Table S1. They are $\kappa_{\text{Ret}_1} = 0.045$, $\kappa_{\text{Ret}_2} = 0.022$, $\kappa_{\text{Ret}_3} = 0.063$, $\kappa_{\text{Ret}_4} = 0.858$, and $\kappa_{\text{Ret}_5} = 0.012$.

The estimated ground-state energy level positions E_j (Eq.5 with $\vartheta = 21.9$ °C) ≈ 195 h (see Supplementary material section S6), i.e. the retinal species conversion and restructuring occurs concurrent with the protein denaturing.

The inset in Fig.4b shows the absorption coefficient development of Rh (BE) sedimentation in the supernatant. In the time range from 12 h to 26 h the absorption coefficients decreased with time due to Rh (BE) aggregate sedimentation giving decreasing Rh (BE) concentration in the supernatant. In the time range from 12 h to 26 h the absorption constants retained nearly constant (no further Rh (BE) sedimentation in the supernatant).

3.3. Photo-Excitation and Dark Recovery Absorption Dynamics of Rh (BE)

Two fresh thawed Rh (BE) samples were studied for investigation of the photo-cycle dynamics. Both samples were exposed at $\lambda _{exc} = 532$ nm (spatial expanded beam of the second harmonic of a cw Nd:YAG laser). The experiments were carried out at room temperature $\vartheta = 21.2 \pm 0.2$ °C. Sample size: $3 \times 5 \times 1.5$ mm3. Temperature $\vartheta = 21.2 \pm 0.2$ °C. Sample size: $3 \times 5 \times 1.5$ mm3. Exposure perpendicular to 3×5 mm3 surface (excitation path length 1.5 mm). Length of attenuation probing cell was 3 mm. The top part shows attenuation spectra for various times t_{exp} of sample exposure. The bottom part shows attenuation spectra for various times t_{exp} after excitation light switch-off. Excitation was switched off at $t_{\text{exp}} = 990$ s.
Fig. 6: Temporal development of the attenuance of Rh (BE) at certain wavelengths (top part: 600 nm, 440 nm, 415 nm, 365 nm, 310 nm; bottom part: 530 nm, 455 nm) before, during, and after light exposure. Excitation wavelength: $\lambda_{\text{exc}} = 532$ nm. Excitation intensity: $I_{\text{exc}} = 16$ mW cm$^{-2}$. Excitation period: $t = 0 – 990$ s. Data are taken from Fig. 5.

Fig. 7a: Temporal development of Rh (BE) attenuance at the probe wavelengths 600 nm, 590 nm, 530 nm, 500 nm, 460 nm and 450 nm before, during, and after light exposure. Duration of light exposure is 0.1 s (range from 0 s to 0.1 s). Excitation wavelength $\lambda_{\text{exc}} = 532$ nm. Excitation intensity: $I_{\text{exc}} = 22$ mW cm$^{-2}$. Temperature $\theta = 21.2 \pm 0.2$ °C.

Fig. 7b: Temporal development of Rh (BE) attenuance at the probe wavelengths 420 nm, 410 nm, 370 nm, 360 nm, 330 nm and 310 nm before, during, and after light exposure. Duration of light exposure is 0.1 s (range from 0 s to 0.1 s). Excitation wavelength $\lambda_{\text{exc}} = 532$ nm. Excitation intensity: $I_{\text{exc}} = 22$ mW cm$^{-2}$. Temperature $\theta = 21.2 \pm 0.2$ °C.

Fig. 8a: Temporal development of attenuance of Rh (BE) at $\lambda_{\text{pr}} = 440$ nm before, during, and after light exposure at $\lambda_{\text{pr}} = 532$ nm with $I_{\text{exc}} = 22$ mW cm$^{-2}$ for the durations of light exposure of $t_{\text{exp}} = 0.025$ s, 0.05 s, 0.075 s, 0.1 s, and 0.2 s.
During exposure (top part) and after exposure (bottom part), and Fig. 6 for some temporal attenuance developments at selected probe wavelengths). Sample two was used to study the attenuance kinetics for probe wavelengths in the range from 310 nm to 600 nm in steps of 10 nm in each case over a temporal range of 90 s whereby the light exposure time was set to $t_{\text{exp}} = 0.1$ s (Fig. 7a and 7b, exposure from 0 to 0.1 s, presented time range from -0.2 s to 1.1 s and 1.1 s to 31 s). After that the sample two was exposed in a series of time intervals from $t_{\text{exp}} = 0.025$ s to 5 s for probing the temporal attenuance development during and after exposure at $\lambda_p = 440$ nm (Fig. 8a-8c).

In Fig. 5 attenuance spectra of Rh (BE) before, during (top part) and after (bottom part) light exposure are shown. The thin solid curve in the top part belongs to $t_{\text{exp}} = 0$ (measured immediately before light exposure). The sample one was continuously exposed over a period of 990 s. In intervals of 2.171 s attenuance spectra were recorded (curves are shown for the repetition numbers $n = 1, 2, 10, 40, 80, 160, 320, 456$). The short-dashed spectrum in the top part for $t_{\text{exp}} = 0.1$ s was made up of single-wavelength kinetic measurements of sample two (data adapted from Fig. 7).

In the top part of Fig. 5 an initially steep and then slowed-down attenuance decrease of the 530 nm absorption band (species Ret_1), a steep rise to a nearly constant absorption around 415 nm (species Ret_3), an initially steep (formation of species Ret_4) and then slowed-down attenuance increase (conversion of species Ret_4 to species Ret_2; see below) of the 365 nm absorption band, and a complex initial absorption decrease followed by an absorption increase and subsequent absorption decrease around 440 nm (species Ret_2) is observed. The bottom part of Fig. 5 indicates a small partial – initially fast and then slowed-down – recovery of the 530 nm absorption band (Ret_1) concomitant with a slight absorption decrease of the 365 nm (Ret_4) and 415 nm (Ret_3) absorption bands after light switch-off.

The kinetics of the attenuance development at the onset (time resolution 0.1 s), during (time steps 2.171 s) and after (time steps 2.171 s) light exposure at selected probe wavelengths is depicted in Fig. 6 (data are taken from measurements belonging to Fig. 5, sample one, and Fig. 7, sample two). The dashed curve belonging to $\lambda_p = 530$ nm shows the absorption development of species Ret_1 (likely all-trans protonated retinal Schiff base PRSB$^{+}$trans). The attenuance decreased steeply due to photo-isomerization to Ret_5 absorbing around 600 nm (likely all-trans protonated retinal Schiff base PRSB$^{+}$trans isomerization to 13-cis protonated retinal Schiff base PRSB$^{+}$cis; see below) which converted to Ret_2 absorbing around 440 nm (likely 3-cis protonated retinal Schiff base with repositioned counter ion PRSB$^{+}$cis, see below), to Ret_3 absorbing around 415 nm (likely all-trans protonated retinal Schiff base with re-positioned counter ion PRSB$^{+}$trans,cis, see below), and to Ret_4 absorbing around 365 nm (likely all-trans deprotonated retinal Schiff base RSB$^{+}$trans,cis, see below). The decrease of attenuance at 530 nm was leveled off by the fast recovery of the photo-products Ret_2, Ret_3, and Ret_4 to Ret_1 (laser excitation intensity at 532 nm I_{exc} was lower than the saturation intensity I_{sat} necessary for 50 % Ret_1 conversion to photo-products [37-39], see discussion below.
The increment of length-integrated number density n_{conv} is given by:

$$\Delta n_{\text{conv}} = \frac{N_{\text{Ret}_1,0}}{A_{\text{pr},0}} \frac{\Delta A_{\text{pr}}}{A_{\text{pr},0}} \Delta t_{\text{exp}}.$$

(7)

where $N_{\text{Ret}_1,0}$ is the initial number density of Ret$_1$, l_{pr} is the sample length in excitation direction, ΔA_{pr} is the attenuation change at the probe wavelength λ_{pr} (here $\lambda_{\text{pr}} = 530$ nm) due to photon absorption $\Delta n_{\text{ph.abs}}$ and $A_{\text{pr},0}$ is the initial attenuation at λ_{pr}. The initial number density of Ret$_1$ is given by:

$$N_{\text{Ret}_1,0} = \frac{\sigma_{\text{Ret}_1}(530 \text{ nm})}{\sigma_{\text{Ret}_1}(530 \text{ nm})} A_{\text{pr}}(530 \text{ nm}) \ln(10) \frac{l_{\text{pr}}}{\sigma_{\text{Ret}_1}(530 \text{ nm})}$$

which is $1.41 \times 10^{16} \text{ cm}^{-1}$. The excitation length is $l_{\text{exc}} = 0.15 \text{ cm}$. For the $\lambda_{\text{pr}} = 530 \text{ nm}$ curve in Fig. 7a it is $\Delta A_{\text{pr}} = 0.0125 \pm 0.001$ for the time increment $\Delta t = 0.0125 \text{ s}$, and the increment of length-integrated number density n_{conv} becomes $n_{\text{conv}} = (6.9 \pm 0.7) \times 10^{13} \text{ cm}^{-2}$.

The increment of absorbed excitation photons $\Delta n_{\text{ph.abs}}$ in the time interval $\Delta t = 0.0125 \text{ s}$ is:

$$\Delta n_{\text{ph.abs}} = \frac{l_{\text{exc}} \Delta t}{h\nu_{\text{exc}}} \left[1 - \exp(\alpha_{\text{exc}}(\lambda_{\text{exc}})\Delta t_{\text{exp}}) \right].$$

(8)

Thereby is $l_{\text{exc}} = 0.022 \pm 0.002 \text{ W cm}^{-2}$, $\delta t = 0.0125 \text{ s}$, h is the Planck constant, $v_{\text{exc}} = c/\lambda_{\text{exc}} = 5.64 \times 10^{14} \text{ Hz}$ (c is the speed of light in vacuum), $\alpha(\lambda_{\text{exc}}) = \alpha(532 \text{ nm}) = (532 \text{ nm}) \ln(10) / 0.3 \text{ cm} = 0.292 \times \ln(10) / 0.3 \text{ cm} = 1.023 \text{ cm}^{-1}$, and $l_{\text{exc}} = 0.15 \text{ cm}$. The resulting increment of absorbed excitation photons is $\Delta n_{\text{ph.abs}} = (1.05 \pm 0.1) \times 10^{15} \text{ cm}^{-2}$.

Insertion of Δn_{conv} and $\Delta n_{\text{ph.abs}}$ into Eq.6 gives $\phi_{1,5} = 0.66 \pm 0.15$. This quantum yield indicates that a fraction of 0.66 ± 0.15 of the excited Ret$_1$ confrontation is photo-converted to other rhodopsin conformations (Ret$_5$, and subsequently to Ret$_2$, Ret$_3$, and Ret$_4$) and a fraction of 0.34 ± 0.15 of the excited Ret$_1$ rhodopsin recovers in the excited-state isomerization back to its original confrontation.

The kinetics of the $\lambda_{\text{pr}} = 600 \text{ nm}$ trace (Ret$_5$ species) at the top part of Fig.7a indicates a direct photo-isomerization of Ret$_1$ to Ret$_5$ (rise of attenuation during the first 0.0125 s of light exposure, the true population time of Ret$_5$ due to Ret$_1$ to Ret$_5$ photo-isomerization is given by the Ret$_1$ fluorescence lifetime of $\tau_{\text{f}} = 1.2 \text{ ps}$). The Ret$_5$ population transfers during the light excitation process with a time constant of $\tau_{\text{f}} = 0.1 \text{ s}$ to Ret$_2$ absorbing around $\lambda_{\text{pr}} = 440 \text{ nm}$ (efficiency $\phi_{1,5}$), to Ret$_3$ absorbing around 415 nm (efficiency $\phi_{5,3}$), and to Ret$_4$ absorbing around 365 nm (efficiency $\phi_{5,4}$). The long-time increase of attenuation at $\lambda_{\text{pr}} = 600 \text{ nm}$ is determined by the absorption recovery of Ret$_1$ (the absorption band of Ret$_1$ extends out to $\lambda > 600 \text{ nm}$).

The initial attenuation decrease at $\lambda_{\text{pr}} = 600 \text{ nm}$ belongs to the attenuation decrease of the broad 530 nm Ret$_1$ absorption band. The following rise of attenuation is due to Ret$_5$ conversion to Ret$_2$. An attenuation plateau built up due to the continued filling of Ret$_2$ from Ret$_5$ and the depopulation of Ret$_2$ to Ret$_1$. The steep rise of attenuation at $\lambda_{\text{pr}} = 440 \text{ nm}$ at the moment of light switch-off followed the attenuation rise at $\lambda_{\text{pr}} = 530 \text{ nm}$ and belongs to the
broad Ret_1 absorption band dynamics (Ret_1 recovery from Ret_3 and Ret_4, see Fig.9). Finally the \(\lambda_{pr} = 400 \text{ nm} \) attenuation of (Ret_2) recovered after excitation switch-off bi-exponentially with the time constants \(\tau_{2,1} = 0.75 \text{ s} \) (fraction \(\chi_{2,1} = 0.8 \)) and \(\tau_{2,1,sl} = 11 \text{ s} \) (fraction \(\chi_{2,1,sl} = 0.2 \)) due to Ret_2 to Ret_1 conversion (relaxation from Ret_2 to Ret_1 via Ret_3 cannot be excluded).

After excitation light switch-off also Ret_3 and Ret_4 converted approximately bi-exponential to Ret_1 according to

\[
N_{\text{Ret}_i} \approx N_{\text{Ret}_{i,0}} \left[\chi_{i,1,f} \exp \left(-\frac{t}{\tau_{i,1,f}} \right) + \chi_{i,1,sl} \exp \left(-\frac{t}{\tau_{i,1,sl}} \right) \right]. \tag{9}
\]

Likely two different Rh (BE) protein conformations are present with fast and slow retinal relaxation dynamics. The determined relaxation parameters for Ret_3 are \(\tau_{3,1,f} = 0.15 \text{ s} \) \((\chi_{3,1,f} = 0.86) \) and \(\tau_{3,1,sl} = 1.3 \text{ s} \) \((\chi_{3,1,sl} = 0.14) \) (see the kinetic attenuance traces at \(\lambda_{pr} = 420 \text{ nm} \) and \(\lambda_{pr} = 410 \text{ nm} \) in Fig.7b). The determined relaxation parameters for Ret_4 are \(\tau_{4,1,f} = 0.15 \text{ s} \) \((\chi_{4,1,f} = 0.89) \) and \(\tau_{4,1,sl} = 1.35 \text{ s} \) \((\chi_{4,1,sl} = 0.11) \) (see the kinetic attenuance traces at \(\lambda_{pr} = 370 \text{ nm} \) and \(\lambda_{pr} = 360 \text{ nm} \) in Fig.7b). The parameters are collected in Table 2. The population of Ret_3 leaked out to irreversible Ret_4' formation.

The long-time secondary photo-excitation dynamics of Ret_1 (Fig.6) fits to a continuously slowed down attenuation decrease at \(\lambda_{pr} = 530 \text{ nm} \) (Ret_1 photo-conversion) and a continuously slowed down attenuation increase at \(\lambda_{pr} = 365 \text{ nm} \) (formation of irreversible Ret_4' from Ret_4). The attenuation development during exposure at \(\lambda_{pr} = 530 \text{ nm} \) and \(\lambda_{pr} = 365 \text{ nm} \) fits well to a three-term exponential dependence according to

\[
A_1(t_{\text{exp}}) = A_{1,0} + \delta A_1 \sum_{j=2}^{3} \kappa_{i,j} \left[1 - \exp \left(-\frac{t_{\text{exp}}}{\tau_{j,f}} \right) \right], \tag{10}
\]

with the parameters for \(\lambda_{pr} = 530 \text{ nm} \): \(A_{530nm,0} = 0.313, \Delta A_{530nm} = -0.254, \kappa_{530nm,i} = 0.34, \kappa_{530nm,2} = 0.14, \kappa_{530nm,3} = 0.52 \), the parameters for \(\lambda_{pr} = 365 \text{ nm} \): \(A_{365nm,0} = 0.223, \Delta A_{365nm} = 0.12, \kappa_{365nm,i} = 0.17, \kappa_{365nm,2} = 0.21, \kappa_{365nm,3} = 0.62 \), and the common time constants \(\tau_2 = 15 \text{ s} \), \(\tau_3 = 12 \text{ s} \), and \(\tau_4 = 280 \text{ s} \).

In the primary photo-cycle of Ret_1 \(\rightarrow \) Ret_5 \(\rightarrow \) Ret_2, Ret_3, Ret_4 \(\rightarrow \) Ret_1 a steady-state level population density (attenuance) of Ret_1, Ret_5, Ret_2, Ret_3, Ret_4 is built up. The steady-state equilibrium is disturbed by the leaking out of the Ret_4 population to Ret_4' which causes a secondary photo-dynamics with depopulation of Ret_1 and committing depopulation of Ret_5, Ret_2, Ret_3, Ret_4 (steady-state level population re-adjustment) and continued irreversible Ret_4' population density build-up.

The final attenuation situation of Ret_1 and Ret_4' is thought to be determined by thermal equilibrium population of the ground-state energy levels of Ret_4' and Ret_1. An approximate value of the photo-degraded energy level position of Ret_4' may be obtained from the attenuation ratio \(A(370 \text{ nm})/A(530 \text{ nm}) \) after long-time sample exposure of Fig.5. There it is \(\kappa_{\text{Ret}_4'/\text{Ret}_1} = A(370 \text{ nm}) / A(530 \text{ nm}) \) \(t_{\text{exp}} = 990 \text{ s} \) giving (Eq.5 with \(\vartheta = 21.2 \ ^\circ \text{C} \)) \(E_{4',1} = -7.1 \times 10^{-21} \text{ J} \) \(\left(V_{4',1} = 355 \text{ cm}^{-1} \right) \), i.e. Ret_4' is energetically located \(= 355 \text{ cm}^{-1} \) below the energetic level of Ret_1.

The relaxation times \(\tau_{2,1,f}, \tau_{2,1,sl}, \tau_{3,1,f}, \tau_{3,1,sl}, \tau_{4,1,f}, \tau_{4,1,sl}, \tau_{4,4',f}, \tau_{4,4',sl} \) indicate ground-state potential barriers between the species Ret_2, Ret_3, Ret_4, Ret_1 and Ret_4' as schematically illustrated in Fig.10a between states \(i \) and \(j \) (\(i = 2, 3, 4, j = 1, 4' \)). The relation between the relaxation times \(\tau_{i,j} \) (relaxation rates \(\kappa_{i,j} = \tau_{i,j}^{-1} \)) and the potential energy activation barrier \(E_{\gamma,i,j} = h c \vartheta \gamma_{i,j} \) is given by the Arrhenius relation [41]

Fig.10a: Schematic apparent ground-state potential energy surface between Ret_i and Ret_j. \(E_{\gamma,i,j} \): energy barrier between Ret_i and Ret_j.

Fig.10b: Schematic reaction coordinate diagram for photo-isomerization of Ret_1 to Ret_5 on a picosecond timescale, and sub-second conversion of Ret_5 to Ret_2, Ret_3, and Ret_4 followed by sub-second to second recovery of Ret_2, Ret_3, Ret_4 to Ret_1 (primary photo-cycle). LE: locally excited state on \(S_g \) potential energy surface. F: funnel (conical intersection position). TS: transition state of \(S_g \) potential energy surface.
Table 2: Photo-dynamics parameters of Rh (BE) in the case of Ret_1 photo-excitation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum yields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{1.5}$</td>
<td>0.66±0.15</td>
<td>Eqs.6-8</td>
</tr>
<tr>
<td>$\phi_{5.2}$</td>
<td>≈ 0.14</td>
<td></td>
</tr>
<tr>
<td>$\phi_{5.3}$</td>
<td>≈ 0.43</td>
<td></td>
</tr>
<tr>
<td>$\phi_{5.4}$</td>
<td>≈ 0.43</td>
<td></td>
</tr>
</tbody>
</table>

Relaxation times $\tau_{i,j}$ and activation barriers $\nu_{i,j}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{1.5}$ (ps)</td>
<td>≈ 1.2</td>
<td>$\tau_{i,j} = \tau_{ret,1}$</td>
</tr>
<tr>
<td>τ_{5} (s)</td>
<td>≈ 0.1</td>
<td>Fit to Fig.7 curves</td>
</tr>
<tr>
<td>$\chi_{3,3,f}$</td>
<td>≈ 0.8</td>
<td>Fit to Fig.7b, 420 nm and 410 nm curves</td>
</tr>
<tr>
<td>$\tau_{3,1,f}$ (s), $[\tilde{\nu}_{3,1,f}]$ (cm$^{-1}$)</td>
<td>≈ 0.15, [5632]</td>
<td>Fit to Fig.7b, 420 nm and 410 nm curves</td>
</tr>
<tr>
<td>$\chi_{3,3,sl}$</td>
<td>≈ 0.14</td>
<td>Fit to Fig.7b, 420 nm and 410 nm curves</td>
</tr>
<tr>
<td>$\tau_{3,1,sl}$ (s), $[\tilde{\nu}_{3,1,sl}]$ (cm$^{-1}$)</td>
<td>≈ 1.3, [6073]</td>
<td>Fit to Fig.7b, 420 nm and 410 nm curves</td>
</tr>
<tr>
<td>$\tau_{4,1,f}$ (s), $[\tilde{\nu}_{4,1,f}]$ (cm$^{-1}$)</td>
<td>≈ 0.15, [= 5632]</td>
<td>Fit to Fig.7b, 370 nm and 360 nm curves</td>
</tr>
<tr>
<td>$\chi_{4,1,sl}$</td>
<td>≈ 0.11</td>
<td>Fit to Fig.7b, 370 nm and 360 nm curves</td>
</tr>
<tr>
<td>$\tau_{4,1,sl}$ (s), $[\tilde{\nu}_{4,1,sl}]$ (cm$^{-1}$)</td>
<td>≈ 1.35, [= 6081]</td>
<td>Fit to Fig.7b, 370 nm and 360 nm curves</td>
</tr>
<tr>
<td>$\tau_{4,1}$ (s)</td>
<td>≈ 0.166</td>
<td>$\tau_{4,1,f} = \chi_{4,1,f}^{-1} + \chi_{4,1,sl}^{-1}$</td>
</tr>
<tr>
<td>$\chi_{4,1,f}$</td>
<td>≈ 0.21</td>
<td>Fit to Fig.6, 365 nm curve</td>
</tr>
<tr>
<td>$\tau_{4,1,sl}$ (s), $[\tilde{\nu}_{4,1,sl}]$ (cm$^{-1}$)</td>
<td>≈ 12, [6528]</td>
<td>Fit to Fig.6, 365 nm curve</td>
</tr>
<tr>
<td>$\tau_{4,1,f}$</td>
<td>≈ 0.79</td>
<td>Fit to Fig.6, 365 nm curve</td>
</tr>
<tr>
<td>$\tau_{4,1,sl}$ (s), $[\tilde{\nu}_{4,1,sl}]$ (cm$^{-1}$)</td>
<td>≈ 280, [7172]</td>
<td>Fit to Fig.6, 365 nm curve</td>
</tr>
<tr>
<td>$\chi_{rec,1}$</td>
<td>≈ 0.82</td>
<td>Fit to Fig.7a, 530 nm curve</td>
</tr>
<tr>
<td>$\tau_{rec,1}$ (s)</td>
<td>≈ 0.16</td>
<td>Fit to Fig.7a, 530 nm curve</td>
</tr>
</tbody>
</table>
\[k_{i,j} = \tau_{i,j}^{-1} = v_0 \exp \left(-E_{A,i,j} \frac{k_B}{k_B} \right) = v_0 \exp \left(-\frac{\hbar c}{k_B} \tilde{v}_{A,i,j} \right) \] \quad (11a)

where \(v_0 = \frac{k_B}{\hbar} \) is the attempt frequency of barrier crossing \([22,36]\), \(\hbar \) is the Planck constant, \(k_B \) is the Boltzmann constant, and \(\tilde{v} \) is the temperature in Kelvin (here \(\tilde{v} = 294.35 \text{ K} = 21.2 \text{ °C} \) for Figs.5-8 giving \(v_0 = 6.13 \times 10^{12} \text{ s}^{-1} \)). Solving Eq.11a for activation barrier wavenumber \(\tilde{v}_{A,i,j} \) gives

\[\tilde{v}_{A,i,j} = -\frac{k_B}{\hbar c_0} \ln \left(\tau_{i,j} v_0 \right) = \frac{v_0}{c_0} \ln \left(\tau_{i,j} v_0 \right) \] \quad (11b)

For the determined \(\tau_{i,j} \) values listed in Table 2 the corresponding activation barrier wavenumbers \(\tilde{v}_{A,i,j} \) are calculated by use of Eq.11b. The obtained values are included in Table 2.

4. Discussion
Absorption and fluorescence studies of fresh thawed samples, thermal degradation studies, absorption spectroscopic primary photo-cycle dynamics and long-time light exposure secondary photo-conversion dynamics investigations have been carried out. They revealed i) a composition of several retinal species, ii) a thermal species re-composition, iii) a photo-induced cyclic rhodopsin re-structuring, and iv) a long-time photo-induced irreversible deprotonation of initially protonated retinal Schiff base of Rh (BE).

Rhodopsin species (retinal species in opsin protein environment) resolved in the absorption, fluorescence and photo-dynamics studies with proposed retinal structures are listed in Table 3. The photo-cycle dynamics of Rh (BE) was only studied for the retinal species Ret_1 (likely all-trans protonated retinal Schiff base). The time resolution of this photo-cycle dynamics study was 0.0125 s. The absorption and fluorescence spectral shapes of retinals in rhodopsins depend on the retinal protonation stage and the charge distribution in the amino acid environment around the retinal in the rhodopsin protein [10,11,42-47].

<table>
<thead>
<tr>
<th>Species name</th>
<th>Proposed structure</th>
<th>Peak absorption wavelength (\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ret_1</td>
<td>All-trans protonated retinal Schiff base PRSB\text{trans}</td>
<td>Fresh: 530, Denatured: 530</td>
</tr>
<tr>
<td>Ret_2</td>
<td>13-cis protonated retinal Schiff base with counter ion repositioned PRSB\text{trans,crp}</td>
<td>Fresh: 440, Denatured: 480</td>
</tr>
<tr>
<td>Ret_3</td>
<td>All-trans protonated retinal Schiff base with counter ion repositioned PRSB\text{trans,crp}</td>
<td>Fresh: 415, Denatured: 450</td>
</tr>
<tr>
<td>Ret_4</td>
<td>Retinal Schiff base RSB (unexposed, and primary photopoduct) (likely all-trans)</td>
<td>360</td>
</tr>
<tr>
<td>Ret_4'</td>
<td>Retinal Schiff base RSB (denatured, and secondary photopoduct) (likely 13-cis)</td>
<td>368</td>
</tr>
<tr>
<td>Ret_5</td>
<td>13-cis protonated retinal Schiff base PRSB\text{trans}</td>
<td>Fresh: 600, Denatured: 670</td>
</tr>
</tbody>
</table>

Table 3: Resolved retinal species in Rh (BE)
The presence of dark-adapted ground-state rhodopsin isomers with thermal equilibration between all-trans retinal and 13-cis retinal is a common feature of microbial rhodopsins [48-50] for bacteriorhodopsin, [51] for proteorhodopsin, [52] for halorhodopsin, [53] for Anabaena sensory rhodopsin, [13] for histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii. Here for Rh (BE) four retinal species were resolved in freshly thawed samples (Ret_1, Ret_2, Ret_3, Ret_4) and a temperature-dependent gradual partial conversion of protonated retinal Schiff bases Ret_1, Ret_2, Ret_3 and deprotonated retinal Schiff base Ret_4 to deprotonated retinal Schiff base Ret_4' was observed.

4.1. Ultrafast Photo-Dynamics of Rh (BE)

Fluorescence excitation wavelength dependent recording of fluorescence quantum distributions of Rh (BE) revealed the presence of at least four retinal species (Ret_1, Ret_2, Ret_3, Ret_4) in fresh thawed Rh (BE) samples.

For Ret_1 (likely all-trans protonated retinal Schiff base) the determined Strickler-Berg based fluorescence lifetime of \(\tau = 1.2 \) ps indicates barrier-less relaxation of the excited retinal species in the surrounding protein conformation from the locally excited state (LE) along the excited-state reaction coordinate (twist angle) leading to a funnel (F, conical intersection [30], seam of intersection [54]). There efficient internal conversion from the excited state of the species (F) to the ground state potential energy surface of the species (transition state TS) takes place with partial recovery of the initial configuration (educt state) and partial relaxation to an isomer configuration (intermediate product state, see illustrations of Fig.9 and Fig.10b) [11]. Here the photo-isomerization is thought to be all-trans protonated retinal Schiff base PRSB + (Ret_1) to 13-cis protonated retinal Schiff base PRSB - (Ret_5) isomerization. Such barrier-less relaxation of excited retinal in rhodopsin was observed in most animal (type-II) rhodopsins [55] and microbial (type-I) rhodopsins (proteorhodopsin [56], bacteriorhodopsin [57], halorhodopsin [58], sensory rhodopsin SR II [59], channelrhodopsin-2 [60], Anabaena sensory rhodopsin [61]).

For Ret_2 (likely 13-cis protonated retinal Schiff base with re-positioned counter ion), Ret_3 (likely all-trans protonated retinal Schiff base with re-positioned counter ion) and Ret_4 (likely deprotonated all-trans retinal Schiff base) Strickler-Berg based fluorescence lifetimes of \(\tau_{\text{Ret}_2} = 8.9 \) ps, \(\tau_{\text{Ret}_3} = 20 \) ps, and \(\tau_{\text{Ret}_4} = 1.4 \) ps were determined. These fluorescence lifetimes were shortened by Förster-type energy transfer (see above, intrinsic fluorescence lifetimes without Förster-type energy transfer, \(\tau_{\text{fo,Ret}_2}, \tau_{\text{fo,Ret}_3}, \) and \(\tau_{\text{fo,Ret}_4} \) are expected to be in the hundred picosecond range). The long excited-state lifetimes indicate excited state relaxation to funnels for S₁-S₀ internal conversion via potential barriers [13,31]. Such excited-state potential barrier slowed-down relaxation of excited retinals in rhodopsins was previously observed for sensory rhodopsin SR I from Halobacter salarium [59] and histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii [12,13].

The excitation wavelength dependent fluorescence emission studies in the short-wavelength region (\(\lambda_{\text{exc}} < 330 \) nm) indicated dominant Trp fluorescence emission of the apoprotein (Apo, fluorescence peak around \(\lambda = 330 \) nm). The observed Strickler-Berg based fluorescence lifetime of \(\tau_{\text{Apo}} \approx 410 \) ps indicates a Förster-type fluorescence quenching [18] (resonance energy transfer by long-range dipole-dipole Coulomb interaction [25]). The Trp fluorescence quantum yield in neutral aqueous solution is \(\phi = 0.13 \) [32-34] and the fluorescence decay in neutral aqueous solution is bi-exponential with a small component of lifetime of 0.5 ns and dominant component of lifetime of 2.78 ns [62].

4.2. Photo-Cycling and Photo-Conversion Dynamics of Rh (BE) in the Case of Ret_1 Excitation

The photo-dynamics of Rh (BE) in the case of excitation at \(\lambda_{\text{exc}} = 532 \) nm, where Ret_1 is absorbing, was presented above (Figs.5-8) with time resolution of 0.0125 s. The relaxation dynamics after photo-excitation is illustrated in Fig.9 and Fig.10b. From the local excited state LE of Ret_1 it occurs fast barrier-less relaxation to the S₁-state funnel position F with internal conversion to the S₂ transition-state position TS₂ (relaxation time \(\tau_{\text{S₂,Ret}_1} = 1.2 \) ps).

From there occurs back-transfer to the original educt state Ret_1 (quantum efficiency \(\phi_{5,1} = 0.34 \)) and transfer to the isomer Ret_5 (quantum efficiency \(\phi_{5,5} = 0.66 \)). The species Ret_5 has a lifetime of \(\tau = 0.1 \) s. It converts to Ret₂ (conversion efficiency \(\phi_{5,2} = 0.14 \)), Ret_3 (\(\phi_{5,3} = 0.43 \)), and Ret_4 (\(\phi_{5,4} = 0.43 \)). Ret_2, Ret_3, and Ret_4 recovered bi-exponentially back to Ret_1 with the time constants and fractions \(\tau_{1,2} = 0.74 \) s (\(\chi_{1,2} = 0.8 \)), \(\tau_{1,3} = 11 \) s (\(\chi_{1,3} = 0.2 \)), \(\tau_{1,4} = 0.15 \) s (\(\chi_{1,4} = 0.86 \)), \(\tau_{3,1} = 1.3 \) s (\(\chi_{3,1} = 0.14 \)), \(\tau_{4,1} = 0.15 \) s (\(\chi_{4,1} = 0.89 \)), and \(\tau_{4,5} = 1.35 \) s (\(\chi_{4,5} = 0.11 \)). This described dynamics is the primary photo-cycling of Rh (BE) in the case of Ret_1 excitation. This primary photo-cycling does not occur in a fully closed cycle since Ret_4 leaks out to the formation of irreversible Ret_4'. This leaking out of Ret_4 to Ret_4' during long-time sample exposure with the time constants of \(\tau_{4,4} = 12 \) s (\(\chi_{4,4} = 0.21 \)) and \(\tau_{4,5} = 280 \) s (\(\chi_{4,5} = 0.79 \)) destroys the excitation intensity dependent steady-state Ret_1, Ret_2, Ret_3, Ret_4 species mole-fraction distribution of the primary photo-cycle towards continuous Ret_1, Ret_2, Ret_3, Ret_4 mole-fraction reduction and continued Ret_4' (quantum efficiency \(\phi_{5,5} = 0.66 \)) mole-fraction increase in a secondary photo-excitation dynamics. An energy level scheme of the primary photo-cyclic dynamics is shown in Fig.9 and Fig.10b, and the secondary photo-excitation dynamics due to Ret_4 → Ret_4' conversion is included in Fig.9.

The branching quantum efficiencies of conversion of Ret_5 to Ret_2 (\(\phi_{5,2} \)), Ret_3 (\(\phi_{5,3} \)), and Ret_4 (\(\phi_{5,4} \)) may be approximately determined from the initial attenuation changes \(\delta A \) at the probe wavelengths \(\lambda = 440 \) nm (Ret_2), 415 nm (Ret_3), and 365 nm (Ret_4) according to

\[
\phi_{5,2} \approx \frac{\delta A_{440\text{nm,ini}}}{\delta A_{440\text{nm,ini}} + \delta A_{415\text{nm,ini}} + \delta A_{365\text{nm,ini}}}
\]
Aquatic Fungus Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the

Citation: Alfons Penzkofer, Ulrike Scheib, Peter Hegemann and Katja Stehfest (2016) Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Aquatic Fungus Blastocladiella emersonii. BAOJ Physics 2: 006.

\[\phi_{5,3} \approx \frac{\delta A_{415\text{nm},\text{ini}}}{\delta A_{440\text{nm},\text{ini}} + \delta A_{415\text{nm},\text{ini}} + \delta A_{365\text{nm},\text{ini}}}\]

\[\phi_{5,4} \approx \frac{\delta A_{365\text{nm},\text{ini}}}{\delta A_{440\text{nm},\text{ini}} + \delta A_{415\text{nm},\text{ini}} + \delta A_{365\text{nm},\text{ini}}}\]

The obtained conversion efficiencies are \(\phi_{5,3} = 0.14\), \(\phi_{5,4} = 0.43\), and \(\phi_{4,4} = 0.43\). These parameters are collected in Table 2.

The primary photo-cycling turnover \(\kappa_{\text{pc}}\) (ratio of attenuation decrease at 530 nm within \(t_{\text{exp}} = 3\times\tau_{\text{rec,1,sl}}\)) is limited by the applied excitation light intensity \(I_{\text{exc}}\) compared to the saturation intensity \(I_{\text{sat}}\) according to (see appendix of [39])

\[\kappa_{\text{pc}} = \frac{\delta A_{530\text{nm},\text{ini}}}{A_{530\text{nm},\text{ini}}} \approx \frac{I_{\text{exc}}}{1 + I_{\text{exc}}/I_{\text{sat}}}\]

where the saturation intensity is given by

\[I_{\text{sat}} = \frac{h\nu_{\text{exc}}}{\sigma_{\text{a,exc}}\tau_{\text{rec,1,sl}}\phi_{\text{conv}}}\]

with

\[\tau_{\text{rec,1}}^{-1} \approx \chi_{\text{rec,1,f}}^{-1} + \chi_{\text{rec,1,i}}^{-1}\]

A value of \(I_{\text{sat}} = 18\text{ mW cm}^{-2}\) is determined using \(\sigma_{\text{a,exc}} = 1.66\times10^{-16}\text{ cm}^{2}\), \(\tau_{\text{rec,1}} = 0.19\text{ s}\), and \(\phi_{\text{conv}} = 0.66\).

The photo-cycling dynamics of Ret_1 of Rh (BE) (Fig.9, Fig.10b) is similar complex as observed in other microbial rhodopsins where the photo-excitation results in photo-cycles involving intermediate states and performing biochemical actions like ion pumping [63-67], channel opening [10,68-70], sensing [53,71], and photo-switching [12,13,53,61,72,73].

5. Conclusions

The rhodopsin part Rh (BE) of the rhodopsin-guanylyl cyclase RhGC of the aquatic fungus Blastocladiella emersonii was studied by absorption and emission spectroscopic methods. It was found that fresh thawed Rh (BE) was composed of a mixture of retinal – protein conformations. The resolved retinal conformations are likely all-trans protonated retinal Schiff base PRSB^+_cis, process: cis-trans isomerization and de-protonation), Ret_3 (likely all-trans protonated retinal Schiff base with repositioned counter ion PRSB^+_trans,cirp, process: cis-trans isomerization with charge redistribution), and to Ret_4 (likely deprotonated all-trans retinal Schiff base RSB_trans, process: cis-trans isomerization and de-protonation). The generated photo-excitation products, Ret_5, Ret_2, Ret_3, and Ret_4, recovered back to Ret_1 establishing the primary Ret_1 \(\rightarrow\) Ret_5 \(\rightarrow\) Ret_2, Ret_3, Ret_4 \(\rightarrow\) Ret_1 photo-cycle dynamics. Two protein conformations were resolved: one with fast photo-cycling period of \(\tau_{\text{rec,1,f}} = 0.16\text{ s}\) (fraction = 0.82) and one with slow photo-cycling period of \(\tau_{\text{rec,1,i}} = 1.3\text{ s}\) (fraction = 0.18).

In long-time Ret_1 photo-excitation the photo-generated Ret_4 (likely all-trans retinal Schiff base RSB_trans) converted irreversibly to Ret_4*, (likely 13-cis retinal Schiff base RSB_cirp) in a ground-state transition – cis isomerization process causing the above described secondary Ret_1 photo-excitation dynamics.

In the photo-activated guanylyl cyclase activity studies using the rhodopsin-guanylyl cyclase RhGC of Blastocladiella emersonii [7] the photo-generated deprotonated chromophore P380 (here named Ret_4) was thought to be the rhodopsin signaling state of RhGC driving the guanylyl cyclase activity of converting guanosine triphosphate (GTP) to 3’ ,5’-cyclic guanosine monophosphate (cGMP). Considering the complex primary photo-cycle (Fig.9, Fig.10b) and secondary photo-conversion dynamics (included in Fig.9) of Rh (BE) no predestinated role of Ret_4 is seen. It seems likely that the non-radiative local excitation energy release in Rh (BE) (mainly in the photo-isomerization of Ret_1 to Ret_5) drives the guanylyl cyclase activity in RhGC. A likely mechanism of regulation of the guanylyl cyclase activity involves a light-induced reorientation of Rh (BE) that abolishes steric cyclase blockade in the homodimer [74-76]. Such domain realignment would not require the presence of a signaling state per se. A further indication for the concept of regulation by reorientation is that isolated cyclase domains are constitutively active (Katja Stehfest, personal communication).

Acknowledgements

We thank Christina Schnick, Humboldt Universität zu Berlin, for excellent technical assistance. A. P. thanks Prof. F. J. Gießibl, University of Regensburg, for his kind hospitality. The work was supported by the ERC (project MERA to P.H.).
S1. Amino acid sequence of the rhodopsin part Rh (BE) of the rhodopsin-guanylyl cyclase of *Blastocladiella emersonii*

The amino acid sequence of the here investigated recombinant synthesized rhodopsin part Rh (BE) is displayed in Fig.S1.

S2. Structural Formulae of Lysine Coupled Retinal Schiff Bases

The structural formulae of lysine coupled all-trans protonated retinal Schiff base, all-trans deprotonated retinal Schiff base, 13-cis protonated retinal Schiff base, and 13-cis deprotonated retinal Schiff base are shown in Fig.S2.
S3. Nano-Cluster Size of Fresh Centrifuged Rh (BE)

The nano-cluster size of fresh Rh (BE) is determined analogous to the description in [77]. The scattering cross-section σ_s is obtained from the scattering coefficient α_s by $\sigma_s = \alpha_s / N_{m\text{apo}}$. For the sample used in Fig. 1, at $\lambda = 632.8$ nm it is $\alpha_s(\lambda) = \alpha_s(\lambda_0)(\lambda_0 / \lambda)\upsilon$. The average aggregate radius is

$$rA = 21nm$$

and the average aggregate radius is $\alpha_{a,m} = \beta_m\alpha_{a,p} = 21nm$ (for this size Rayleigh scattering applies and $\tilde{M} = 1[17]$).

S4. Approximate Absorption Cross-Section Analysis for Rh (BE)

The apparent absorption cross-section spectrum $\sigma_{a,Rh\ (BE)}(\lambda)$ of Rh (BE) (solid curve in Fig.S3) is equal to the absorption coefficient shape $\alpha(\lambda) = 2.02 \times 10^{-18} cm^2 (N_{m\text{apo}} = \alpha_{a,p}(280 nm)/\sigma_{apo}(280 nm) = 0.2 \times 10^{-18} cm^2)$. The total absorption cross-section of Rh (BE) is determined by setting the absorption cross-section of Rh (BE) at $\lambda = 280$ nm equal to the absorption cross-section spectrum $\sigma_{apo}(280 nm) = 1.412 g cm^{-3}$ [78]). The apparent absorption cross-section is given by [77]

$$\sigma_{a,Rh\ (BE)}(\lambda) = \sigma_{apo}(280 nm) / \sigma_{apo}(280 nm)$$

where $\alpha_{a,p}$ is the degree of aggregation (average number of protein molecules per cluster particle), \tilde{M} is the total Mie scattering function ($\tilde{M} \leq 1$ decreasing with increasing aggregate size [17]), and σ_{apo} is the monomer Rayleigh scattering cross-section. The monomer Rayleigh scattering cross-section is given by [17]

$$\sigma_{apo}(\lambda) = 8 \pi 4 \pi n^2 3 / \lambda^2 \left(n_m^2 - n_s^2 \right)^2$$

where n_m is the refractive index of the protein at wavelength λ, n_s is the refractive index of the solvent (water buffer) at wavelength λ, and υ is the volume of one protein molecule, M_m is the molar mass of the protein monomer ($M_m = 43071.2 g mol^{-1}$ for Rh (BE) apoprotein), $N_A = 6.022142 \times 10^{23} mol^{-1}$ is the Avogadro constant, and ρ_{pr} is the mass density of the protein (typical value for proteins is $\rho_{pr} = 1.412 g cm^{-3}$ [78]). The numbers give a protein monomer volume of $V_m = 50.65 nm^3$ and a protein monomer radius of $\alpha_{a,m} = [3V_m (4\pi)/3]^{1/3} = 2.30 nm$. At $\lambda = 632.8$ nm there is $n_{pr} = 1$, and $n_{pr} = 1$ giving $\sigma_{apo}(280 nm) = 2.545 \times 10^{-18} cm^2$. Insertion into σ_{apo} gives $\sigma_{apo}(280 nm) = 2.02 \times 10^{-18} cm^2$.
Fig. S4b: Absorption coefficient spectrum of heat-denatured Rh (BE) sample after centrifugation at 4 °C (4400 rpm, 15 min). Vertical bars: approximate absorption coefficients of the retinal species and the apoprotein at the selected wavelength positions. Inset: ground-state energy level positions of retinal species in heat-denatured Rh (BE). The involved absorption cross-section spectra of Phe, Tyr, and Trp were taken from [29].

Fluorescence-excitation-wavelength dependent fluorescence quantum distribution measurements indicate the presence of different retinal and apoprotein species in Rh (BE) (see Fig.2). Their absorption wavelength positions and approximate absorption cross-section contributions are indicated by the bars in Fig.S3.

S5. Protein Heat Denaturing

The thermal protein stability of Rh (BE) was studied by stepwise sample heating up to 59.9 °C, then cooling down, thereby measuring the attenuation coefficient spectra development. The apparent Rh (BE) protein melting temperature was derived from the onset of steep attenuation rise in the transparency spectral region of Rh (BE).

Table S1: Spectroscopic parameters of retinals and apoprotein in a denatured Rh (BE) sample

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ret_1</th>
<th>Ret_2</th>
<th>Ret_3</th>
<th>Ret_4</th>
<th>Ret_5</th>
<th>Apo</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_0 (nm)</td>
<td>530</td>
<td>≈ 480</td>
<td>≈ 450</td>
<td>380</td>
<td>≈ 670</td>
<td>280</td>
</tr>
<tr>
<td>$\alpha_L(\lambda)$ (cm$^{-1}$)</td>
<td>0.0303</td>
<td>0.0301</td>
<td>0.0845</td>
<td>0.642</td>
<td>0.0082</td>
<td>0.991</td>
</tr>
<tr>
<td>κ_{abs}</td>
<td>1</td>
<td>≈ 0.5</td>
<td>≈ 0.5</td>
<td>≈ 0.9</td>
<td>1</td>
<td>≈ 0.93</td>
</tr>
<tr>
<td>$\alpha_{ret,i}(\lambda)$ (cm$^{-1}$)</td>
<td>0.0303</td>
<td>0.015</td>
<td>0.0423</td>
<td>0.578</td>
<td>0.0082</td>
<td></td>
</tr>
<tr>
<td>$\kappa_{ret,i}$</td>
<td>≈ 0.045</td>
<td>≈ 0.022</td>
<td>≈ 0.063</td>
<td>≈ 0.858</td>
<td>≈ 0.012</td>
<td></td>
</tr>
<tr>
<td>$\nu_{i,1}$ (cm$^{-1}$)</td>
<td>0</td>
<td>≈ 146</td>
<td>≈ -68.7</td>
<td>≈ -602</td>
<td>≈ 270</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: λ_0: peak S_0-S_1 absorption wavelength of species i. $\alpha_L(\lambda)$: absorption coefficient at wavelength λ. κ_{abs}: absorption contribution of considered species i at λ. $\alpha_{ret,i}(\lambda)$: absorption coefficient of Ret-i at wavelength λ. $\kappa_{ret,i}$: mole-fraction of retinal species i. $\nu_{i,1}$: energy level positions of Ret-i relative to Ret-1 in wavenumbers.
onset of strong increase of light scattering with temperature is used to define an apparent melting temperature \(\vartheta_m \) of the protein (the protein begins to unfold increasing its size and to cluster together to larger aggregates [22]). The crossing point of the linearized curves below the attenuation rise and above the attenuation rise is used to determine the apparent melting temperature \(\vartheta_m \). A value of \(\vartheta_m = 48.8 \pm 2 \, ^\circ C \) is obtained.

The absorption coefficient spectrum \(\alpha_a \) of Rh (BE) deprived from scattering contributions after sample cooling and centrifugation is displayed in Fig. S4b. The Rh (BE) sample absorption is strongly reduced compared to the situation before the sample heating-cooling cycle. In the centrifugation process the heat-denatured protein sedimented to the bottom of the sample cell. The covalently bound retinal did not release from the rhodopsin protein in the heating process, but sedimented with the aggregated protein. The shape of the retinal spectrum in the supernatant after the heating-cooling cycle is strongly different from the shape of the retinal spectrum of fresh untreated Rh (BE). The proposed all-trans protonated retinal Schiff base component Ret_1 decreased strongly compared to the proposed unprotonated retinal Schiff base component Ret_4 (or Ret_4'). The separation and position localization of Ret_2 and Ret_3 is aggravated by the dominant presence of deprotonated retinal Schiff base Ret_4' (Ret_4). The wavelength position of maximum absorption of the combined Ret_3 and Ret_4' (Ret_4) band changed from 368 nm before heat treatment to 380 nm after heat-denaturing indicating some change in the retinal–surrounding amino acid interaction. A small absorption band with maximum around 670 nm was resolved which is attributed to protonated 13-cis retinal Schiff base (PRSB\(^{cis} \), Ret_5) absorption in denatured Rh (BE).

In Table S1 some spectroscopic parameters of the retinal species and the apoprotein are collected. The peak absorption wavelength positions \(\lambda_{a,i} \) were appointed by using the absorption spectrum of Fig.S4b. The absorption coefficients \(\alpha (\lambda_{a,i}) \) are taken from Fig.S4b. The absorption contributions \(\kappa_{a,i} = \alpha (\lambda_{a,i})/\alpha(\lambda_{m}) \) are obtained from Fig.S4b (bars and curve). The mole-fractions of species Ret_i, \(\kappa_{ret,i} \) were calculated using Eq.3. The energy level positions were calculated using Eqs.4 and 5.

S6. Protein Melting Time Investigations

S6.1. Temporal Attenuation Coefficient Development at 1.65 °C

The temporal attenuation coefficient development at 1.65±0.3 °C over a time range of 480 h is displayed in Fig.S5. In the transparency region of Rh (BE) (\(\lambda > 620 \) nm) the attenuation coefficient increases continuously with time indicating continued aggregate size growth due to the action of protein unfolding (protein melting). Only for the first absorption band around 530 nm (supposed protonated all-trans retinal Schiff base Ret_1) the attenuation coefficient decreased with time for the first 320 h because of thermal Ret_1 conversion to other retinal species. Then the light scattering dominated and the attenuation coefficient increased with time also in this spectral region.

The inset in Fig.S5 shows the temporal dependence of the attenuation coefficient \(\alpha(\lambda_{pr}) \) at \(\lambda_{pr} = 700 \) nm in the transparency region of Rh (BE). For \(t > 300 \) h the attenuation coefficient rises

Fig.S6: Attenuation coefficient spectra of Rh (BE) for various sample storage times at temperature \(\vartheta = 21.9 \) °C. The inset shows the temporal attenuation coefficient development at \(\lambda_{a} = 700 \) nm. The inset in the inset shows an expanded region. The crossing point of the dash-dotted lines gives the apparent Rh (BE) protein melting time \(t_m(21.9 \) °C) = 1.45±0.15 h.

Fig.S7: Temporal dependence of apparent protein melting time \(t_m \) of Rh (BE) in pH 8 Tris buffer. Curve is calculated using Eq.S3 with \(\Delta H_{uf} = 125 \) kJ mol\(^{-1}\) (29.9 kcal mol\(^{-1}\)) and \(\Delta S_{uf} = 143 \) J K\(^{-1}\) mol\(^{-1}\) (34.18 cal K\(^{-1}\) mol\(^{-1}\)).
more steeply than before indicating enhanced protein aggregation. The crossing point of the two dash-dotted lines representing the initial attenuation coefficient and the linearized attenuation coefficient above \(t = 300 \) h is used to determine the apparent Rh (BE) melting time \(t_m \). A value of \(t_m(1.65 \degree C) = 195\pm5 \) h is obtained.

S6.2. Temporal Attenuation Coefficient Development at 21.9 \degree C

The temporal attenuation coefficient development at 21.9±0.3 \degree C over a time range of 26 h is displayed in Fig S6. In the transparency region of Rh (BE) (\(\lambda > 620 \) nm) the attenuation coefficient increased continuously with time for the first 6 h and then it decreased. It is thought that the Rh (BE) aggregate size continuously increased reaching a size where sedimentation set in and the scattering particles in the supernatant reduced. For the first absorption band around 530 nm the attenuation coefficient decreased with time for the first 1 h (Ret_1 conversion to other retinal species), then it increased with time until \(t = 6 \) h due to increasing light scattering. For longer times it decreased because of aggregate sedimentation.

The main inset in Fig S6 shows the temporal dependence of the attenuation coefficient \(\alpha(\lambda_{pr}) \) at \(\lambda_{pr} = 700 \) nm in the transparency region of Rh (BE). For \(\varphi < 6 \) h the attenuation coefficient increased with time. For longer times \(\alpha(\lambda_{pr}) = 700 \) nm decreased and leveled off (particle sedimentation). The inset in the inset shows an expansion of the temporal attenuation coefficient development over the first 3 h. The crossing point of the two dash-dotted lines representing the initial attenuation coefficient and the linearized attenuation coefficient above \(t = 2 \) h is used to determine the apparent Rh (BE) melting time \(t_m \). A value of \(t_m(21.9 \degree C) = 1.45\pm0.15 \) h is obtained.

S6.3. Temperature Dependence of Apparent Rh (BE) Melting Time

The protein melting time \(t_m \) at temperature \(\varphi \) is the time interval it takes at \(\varphi \) that the protein is denatured. Here the time positions of onset of severe light scattering have been used to determine the apparent protein melting times.

In Fig S7 the obtained apparent protein melting time \(t_m \) versus sample temperature \(\varphi \) is plotted. For the protein melting time at the apparent protein melting temperature \(\varphi_m \) a time value of \(t_m = 5 \) min was used according to the stepwise sample heating procedure for the melting temperature determination.

The dynamics of irreversible protein unfolding was discussed in [22]. There the protein melting time was related to the Gibbs free energy of irreversible protein unfolding, \(\Delta G_{ul} = \Delta H_{ul} - T \Delta S_{ul} \), where \(\Delta H_{ul} \) is the enthalpy and \(\Delta S_{ul} \) is the entropy of irreversible protein unfolding, by the following equation

\[
\frac{1}{t_m} \approx \frac{h \ln(2)}{k_B \varphi} \exp \left(\frac{\Delta G_{ul}}{N_A k_B \varphi} \right) = \frac{h \ln(2)}{k_B \varphi} \exp \left(\frac{\Delta H_{ul} - T \Delta S_{ul}}{N_A k_B \varphi} \right)
\]

(S3)

where \(h \) is the Planck constant, \(k_B \) is the Boltzmann constant, \(N_A \) is the Avogadro constant, and \(\varphi \) is the temperature in Kelvin. The best fitting enthalpy and entropy values to the temperature dependence of the melting time in Fig S7 are \(\Delta H_{ul} = 125 \) kJ mol\(^{-1}\) (29.9 kcal mol\(^{-1}\)) and \(\Delta S_{ul} = 143 \) J K\(^{-1}\) mol\(^{-1}\) (34.18 cal K\(^{-1}\) mol\(^{-1}\)).

References

Aquatic Fungus Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Aquatic Fungus Blastocladiella emersonii. BAOJ Physics 2: 006.

29. Lindsey JPhotochemCAD spectra by Category.

