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Abstract. We give a non-perturbative construction of a distinguished state for
the quantized Dirac field in Minkowski space in the presence of a time-dependent
external field of the form of a plane electromagnetic wave. By explicit computation
of the fermionic signature operator, it is shown that the Dirac operator has the
strong mass oscillation property. We prove that the resulting fermionic projector
state is a Hadamard state.
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1. Introduction

In the canonical formulation of quantum field theory (QFT), the physical system
is described by a vector of the Fock space, which in turn is built up from a ground
state1 by applying the creation operators of the particle and anti-particle states. For
Dirac fermions in Minkowski space, a distinguished ground state is given by the vac-
uum state, whose construction involves a frequency splitting. In simple terms, one
decomposes the solution space of the Dirac equation into the subspaces of solutions
of positive and negative frequency (these subspaces can be described equivalently as
the positive and negative spectral subspaces of the Dirac Hamiltonian). After rein-
terpreting the annihilation operators of the negative-frequency solutions as creation
operators and vice versa, the vacuum state is defined as the unit vector which vanishes

1Here by “ground state” we mean any state taken as the starting point of the Fock space
construction.
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2 F. FINSTER AND M. REINTJES

when acted upon by the annihilation operators (for a formulation of this construction
in the language of algebraic QFT see Section 6 below).

In this paper, we are concerned with the basic problem that in the time-dependent
setting, there is no obvious choice for the ground state because frequency splitting can
no longer be used. More specifically, we consider a massive Dirac field in Minkowski
space in the presence of an external electromagnetic field of the form of a plane wave
(i.e. an electromagnetic potential depending only on t+ x). The physical situation we
have in mind is that of a laser beam whose amplitude and frequency may be arbitrarily
large. If one considers a short laser pulse, then the physical scenario can be described
as a scattering process, with a unique ground state (= the vacuum state) before and
after the interaction with the laser pulse takes place. However, in this setting of a
scattering process, it is unclear how the quantum state is to be described while the
interaction is present. The reason is that our system is strongly interacting, so that
notions like “perturbations of states on the mass shell” are questionable. The situation
becomes even more involved if, instead of a short laser pulse, one considers a laser beam
present for all times, possibly with the amplitude and frequency changing in time. It is
the main objective of this paper to show that even in such time-dependent situations
without a prescribed asymptotics for large times, there is a distinguished ground state
which is of Hadamard form.

We now give some more background on the problem and mention related works. The
basic problem that frequency splitting cannot be used to obtain a decomposition of the
Dirac solution space into two subspaces is sometimes referred to as the external field
problem (see for example [12, §2.1.2]). As a result, in the second-quantized description
with Fock spaces, it is not only unclear which ground state to choose, but even more
the ground state obtained from the negative spectral subspace of the Hamiltonian
at a fixed time is no longer a vector of the Fock space built up in the Minkowsi
vacuum or built up from the ground state at another time. This was first observed
by Klaus and Scharf [22, 23] in the presence of a static external potential, and was
later analyzed by Fierz in Scharf [9] in the time-dependent setting. This fact has severe
consequences for the time evolution in Fock spaces. The mathematical results of Shale-
Stinespring [28] and Ruijsenaars [25] show that a second-quantized time evolution
cannot be implemented on a fixed Fock space, unless the spatial components of the
electromagnetic potential are zero. A recent approach to tackle this problem is to work
with time-dependent Fock spaces [5, 6]. Generally speaking, the freedom in choosing
the ground state for the Fock space construction implies that the interpretation of the
physical state in terms of particles and anti-particles depends on the observer. Thus,
describing experiments involving particles or anti-particles, one must specify a physical
model of the detector.

An alternative approach, which has proved to be fruitful in algebraic QFT in curved
space-time, is provided by microlocal analysis. Here one makes use of the fact that for a
free Dirac field, the quantum state is uniquely characterized by its two-point function
(using Wick’s theorem), being a bi-distribution in space-time. Characterizing the
singularity structure of this two-point distribution with notions of microlocal analysis
gives rise to the Hadamard form (for details see Section 8). The expansion of the two-
point distribution in the different orders of the singularities on the light cone is called
Hadamard expansion. In the setting of Minkowski space to be considered here, the
Hadamard expansion agrees with the light-cone expansion (see [11] or the introduction
in the textbook [12, Section 2.2]). A quantum state whose two-point distribution
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is of Hadamard form is called Hadamard state. For Hadamard states, correlations
of powers of Wick-ordered products are well-defined, making it possible to build up
a perturbative QFT (see for example [8, 4] or the recent text book [24]). This is
why Hadamard states are generally accepted as a class of physically sensible quantum
states. Just as in the Fock space formalism, in the microlocal approach the particle
interpretation depends on the observer. This is reflected mathematically by the fact
that the Hadamard condition specifies the two-point distribution only up to smooth
contributions. For a good introduction to free quantum fields in curved space-time we
refer to [32, 19] or [2].

The fermionic signature operator introduced in [16, 17] (based on earlier perturba-
tive constructions in [10]) provides a distinguished fermionic ground state in space-
time, referred to as the fermionic projector (FP) state. Here by “distinguished” we
mean that the construction is covariant and gives rise to a unique state. In particular,
the construction does not involve the choice of coordinates, gauges or reference frames.
In an ultrastatic space-time of infinite lifetime, the FP state coincides with the ground
state obtained from the usual frequency splitting in the reference frame of observer at
rest (see [10, Section 5] and [17, Section 5]). In the time-dependent setting, however,
the FP state cannot be associated to a local observer. Instead, it depends on the global
geometry of space-time (for a more detailed account on the physical interpretation we
refer to [12, Section 2.1.2] or the discussion of a scattering process in [10, Section 5]).
In mathematical terms, the fermionic signature operator is a symmetric operator on
the solution space of the massive Dirac equation in globally hyperbolic space-times.
It encodes geometric information [13] and gives a new covariant method for obtaining
Hadamard states [14]. The abstract construction in space-times of finite and infinite
lifetime as given in [16, 17] opens up the research program to explore the fermionic
signature operator in various space-times and to verify if the resulting FP states are
Hadamard. So far, the fermionic signature operator has been studied in the examples
of closed FRW space-times [16], ultrastatic space-times of infinite lifetime and de Sitter
space-time [17], ultrastatic slab space-times [7] as well as for an external potential in
Minkowski space which decays at infinity [14]. Moreover, as the first example involving
a horizon, the Rindler space-time is considered in [15]. Finally, in [13] various two-
dimensional examples are analyzed. In the example of a space-time slab, it is shown
in [7] that the resulting FP state is in general not of Hadamard form, but that one
gets Hadamard states if the construction is “softened” by a smooth cutoff function in
time. On the other hand, in ultrastatic space-times of infinite lifetime [17, Section 5],
the two-dimensional Rindler space-time [15, Section 11] as well as for an external po-
tential in Minkowski space [14, Theorem 1.3], the resulting FP state is proven to be
of Hadamard form. These results lead to the conjecture that the FP state should be
of Hadamard form provided that space-time is “sufficiently smooth” on its boundaries
and at its asymptotic ends. In order to challenge and quantify this conjecture, one
needs to construct and analyze the fermionic signature operator in detail in different
space-times.

In the present paper, the fermionic signature operator is constructed for the first
time in the presence of an external potential which is neither static nor decays for
large time. After the necessary preliminaries (Section 2), the Dirac equation in the
presence of a plane electromagnetic wave is considered (Section 3). Clearly, using the
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separation ansatz

ψ(t, x, y, z) = e−ik2y−ik3z e−iu(t−x) χk2,k3,u(t+ x) , (1.1)

the Dirac equation can be reduced to a system of ODEs. Moreover, since t + x is
a lightlike direction, the resulting scalar ODE is of first order, making it possible to
solve the equation explicitly by integration. This structure suggests that one should
consider the Dirac equation as an evolution equation which maps initial data on the
null surface t+x = const1 to another such surface t+x = const2. In order to establish
such a formulation, one needs to show that the spatially compact solutions of the Dirac
equation have suitable decay properties when restricted to the surfaces t+ x = const.
This decay in null directions is derived in Section 4. The first step is to show that for
fixed k2 and k3, the Dirac equation in the tx-plane can be reduced to a two-dimensional
Klein-Gordon equation (without external potentials) by transforming to a suitable
curvilinear coordinate system (see (3.14)). This makes it possible to apply well-known
decay results for the massive Klein-Gordon equation in Minkowski space. We thus
obtain rapid decay in null directions (Lemma 4.1), and we can rewrite the scalar prod-
uct on the solution space in terms of integrals over the null surfaces t + x = const
(Lemma 4.2). In Section 5, it is shown that the Dirac equation has the strong mass
oscillation property and that the resulting fermionic signature operator simply is the
multiplication operator by the sign of the separation constant u in (1.1) (Theorem 5.5).
In Section 6, we review the construction of the fermionic projector and the FP state
(Theorem 6.1). The just-mentioned result of Theorem 5.5 can be understood immedi-
ately from the fact that without electromagnetic potential, the variable u is positive on
the upper mass shell and negative on the lower mass shell, giving agreement with the
fermionic signature operator as computed in [14, Section 3]. Moreover, the FP state
coincides with the state obtained by frequency splitting in the momentum variable u
in [18, Section 5.2]. One should keep in mind that, if an electromagnetic potential is
present, solutions for negative u may well have arbitrarily large positive frequencies (as
is illustrated in Figure 3). The delicate point of our analysis is to show that, despite
this effect, the FP state is a Hadamard state (Corollary 8.2). For the proof, we first
derive an integral representation of the fermionic projector (Section 7) and study it
with methods of microlocal analysis (Section 8). Our constructions and results are
illustrated in Section 9 in the explicit example of a harmonic plane electromagnetic
wave (9.1). It is a main advantage of our construction that it also applies in situations
without symmetries as obtained for example by adding an electromagnetic potential
with suitable decay properties at infinity. This is explained in Section 10.

2. Preliminaries

Let M be Minkowski space, a four-dimensional real vector space endowed with
an inner product of signature (+ − − −). We let SM be the spinor bundle on M
and denote the smooth sections of the spinor bundle by C∞(M, SM). Similarly,
C∞0 (M, SM) denotes the smooth sections with compact support. The fibres SpM are
endowed with an inner product of signature (2, 2) which we denote by ≺.|.�p. An
external potential is a multiplication operator B(p) ∈ L(SpM), which we assume to be
smooth and symmetric with respect to the spin scalar product, i.e.

B ∈ C∞(M,L(SM)) with ≺Bφ|ψ�p = ≺φ|Bψ�p ∀φ, ψ ∈ SpM .
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The Dirac matrices γj , j = 0, ..., 3, are symmetric linear operators on ≺.|.�p which
satisfy the anti-commutation relations

{γi, γj} ≡ γiγj + γjγi = ηij 11SpM , (2.1)

where η = diag(1,−1,−1,−1) is the Minkowski metric. The Dirac operator is defined
by

D := iγj∂j + B : C∞(M, SM)→ C∞(M, SM) . (2.2)

For a given real parameter m > 0 (the “rest mass”), the Dirac equation reads

(D −m)ψm = 0 . (2.3)

In the Cauchy problem, one seeks for a solution of the Dirac equation with initial
data ψN prescribed on a given Cauchy surface N . Thus in the smooth setting,

(D−m)ψm = 0 , ψm|N = ψN ∈ C∞(N , SM) .

This Cauchy problem has a unique solution ψm ∈ C∞(M, SM). This can be seen by
considering energy estimates for symmetric hyperbolic systems or by constructing the
Green’s kernel (see for example [21] and [3]). These methods also show that the Dirac
equation is causal, meaning that the solution of the Cauchy problem only depends
on the initial data in the causal past or future. In particular, if ψN has compact
support, the solution ψm also has compact support on any other Cauchy hypersurface.
This leads us to consider solutions ψm in the class C∞sc (M, SM) of smooth sections
with spatially compact support. On solutions in this class, one introduces the scalar
product (.|.)N by

(ψm|φm)N = 2π

ˆ
N
≺ψm|γjνj φm�p dµN(p) , (2.4)

where ν is the future-directed normal. Due to current conservation, this scalar product
does not depend on the choice of the Cauchy surface N (for details see [16, Section 2]).
Therefore, we may omit the subscript N and simply denote the scalar product (2.4)
by (.|.). Forming the completion, we obtain the Hilbert space (Hm, (.|.)).

The retarded and advanced Green’s operators s∧m and s∨m are mappings (for details
see for example [3])

s∧m, s
∨
m : C∞0 (M, SM)→ C∞sc (M, SM) .

Their difference is the so-called causal fundamental solution km,

km :=
1

2πi

(
s∨m − s∧m

)
: C∞0 (M, SM)→ C∞sc (M, SM) ∩Hm . (2.5)

This operator can be represented as integral operators with a distributional kernel,

(kmφ)(x) =

ˆ
M
km(x, y)φ(y) d4y .

For the following construction, the mass parameter in the Dirac equation m will not
be fixed. Instead, it can vary in an open interval I := (mL,mR) with mL,mR > 0. We
denote the families of smooth wave functions with spatially compact support, which
are also compactly supported in I, by C∞sc,0(M×I, SM). The space of families of Dirac

solutions in the class C∞sc,0(M× I, SM) are denoted by H∞. On H∞ we introduce the
scalar product

(ψ|φ) =

ˆ
I
(ψm|φm)m dm ,
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where dm is the Lebesgue measure (and ψ = (ψm)m∈I and φ = (φm)m∈I are families
of Dirac solutions for a variable mass parameter). Forming the completion yields the
Hilbert space (H, (.|.)) with norm ‖.‖. Then H∞ can be regarded as the subspace

H∞ = C∞sc,0(M × I, SM) ∩H . (2.6)

Integrating ψm over m gives the operator

p : H∞ → C∞sc (M, SM) , pψ =

ˆ
I
ψm dm .

For clarity, we point out that pψ no longer satisfies a Dirac equation. Finally, on
Dirac wave functions (not solutions of the Dirac equation) we introduce the Lorentz
invariant inner product

<ψ|φ> =

ˆ
M
ψ(x)φ(x) d4x , (2.7)

whenever the integral on the right converges.
The following notion was introduced in [17], and we refer the reader to this paper

for more details.

Definition 2.1. The Dirac operator D has the strong mass oscillation property
in the interval I = (mL,mR) with domain H∞ if there is a constant c > 0 such that

|<pψ|pφ>| ≤ c
ˆ
I
‖φm‖m ‖ψm‖m dm for all ψ, φ ∈ H∞ . (2.8)

The following theorem is proved in [17, Theorem 4.2, Proposition 4.3 and Theorem 4.7].

Theorem 2.2. Assume that the Dirac operator D has the strong mass oscillation
property in the interval I = (mL,mR). Then there exists a family of linear operators
(Sm)m∈I with Sm ∈ L(Hm) which are uniformly bounded,

sup
m∈I
‖Sm‖ <∞ ,

such that

<pψ|pφ> =

ˆ
I
(ψm | Sm φm)m dm for all ψ, φ ∈ H∞ . (2.9)

The operator Sm is uniquely determined for every m ∈ I by demanding that for
all ψ, φ ∈ H∞, the functions (ψm|Smφm)m are continuous in m. Moreover, the
operator Sm is the same for all choices of I containing m. Finally, there is a bi-
distribution P ∈ D′(M ×M) such that the operator P defined by

P := −χ(−∞,0)(Sm) km : C∞0 (M, SM)→ Hm

has the representation

<φ|Pψ> = P(φ⊗ ψ) for all φ, ψ ∈ C∞0 (M, SM)

(where φ = φ†γ0 is the usual adjoint spinor).

The operator P is referred to as the fermionic projector. We also use the standard
notation with an integral kernel,

<φ|Pψ> =

¨
M×M

≺φ(x) | P(x, y)ψ(y)�x d4x d4y

(Pψ)(x) =

ˆ
M
P(x, y)ψ(y) d4y .
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3. The Dirac Equation in an Electromagnetic Wave and its Solution

In the presence of an external electromagnetic field, the potential B in the Dirac
operator (2.2) has the form B = γjAj , where Aj is the electromagnetic four-potential.
We assume that the electromagnetic potential satisfies the Maxwell equations in the
Lorenz gauge, i.e.

�Aj = 0 with ∂jA
j = 0 . (3.1)

Moreover, denoting the coordinates of Minkowski space by p = (t, x, y, z), we consider
the situation where the electromagnetic potential is a plane wave,

A = A(t+ x) . (3.2)

We point out that we do not assume the wave to be homogeneous or harmonic (i.e. it
is not of the form A = A0 sin(ω(t + x) + α)). In particular, our ansatz allows for a
description of a laser pulse as mentioned in the introduction. Clearly, the plane wave
ansatz satisfies the first equation in (3.1). The Lorenz gauge condition is

0 = ∂jAj(t+ x) = ∂tA0(t+ x)− ∂xA1(t+ x) =
(
A0 −A1)′(t+ x) ,

implying that A0−A1 =: c is a real constant. By a gauge transformation A→ A+∂Λ
with Λ = −ct, we can arrange that this constant is zero, so that A0 = A1 = f(t+ x).

Performing another gauge transformation with Λ(t + x) = −
´ t+x

f(τ) dτ being an
indefinite integral of f , we can arrange that A0 = A1 = 0 everywhere. Then the Dirac
equation (2.3) takes the form(

iγj∂j + γ2A2 + γ3A3 −m
)
ψm = 0. (3.3)

As first observed in [31], the Dirac equation (2.3) can be solved by separation and
integration. We now recall this construction in a form suitable for our purposes (for
an alternative method of solving the squared Dirac equation see [18, Section 5.2]). We
introduce the null coordinates

s = t+ x and l = t− x (3.4)

and employ the separation ansatz

ψm(t, x, y, z) = e−i(k2y+k3z) χ(s, l) for k2, k3 ∈ R . (3.5)

Then a direct computation using(
γ0∂t + γ1∂x

)
χ(s, l) =

(
2N+∂s + 2N−∂l

)
χ(s, l)

with N± :=
1

2

(
γ0 ± γ1

)
shows that the Dirac equation (3.3) becomes(

2iN+∂s + 2iN−∂l +
∑
j=2,3

γj
(
kj +Aj(s)

)
−m

)
χ(s, l) = 0 . (3.6)

By the anti-commutation relations (2.1), one sees that

N2
+ = 0 = N2

− and {N−, N+} = 11 , (3.7)

whereas the operators Π± defined by

Π− := N−N+ and Π+ := N+N− (3.8)
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are idempotent and satisfy the relation Π− + Π+ = {N−, N+} = 11. Thus multiplying
(3.6) by N+ from the left and using the anti-commutation relations yields the equation(

2iN+N−∂l −
∑
j=2,3

γj
(
kj +Aj(s)

)
N+ −N+m

)
χ(s, l) = 0 .

Multiplying by N− from the left and using that

N−N+N− = {N−, N+}N− = N−,

we write the previous equation as

− 2i
∂

∂l
N−χ(s, l) =

( ∑
j=2,3

γj
(
kj +Aj(s)

)
−m

)
Π−χ(s, l) . (3.9)

On the other hand, multiplying the Dirac equation (3.6) by N− gives

2i
∂

∂s
Π−χ(s, l) =

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)
N−χ(s, l) .

Differentiating with respect to l and using (3.9) gives the PDE

4
∂2

∂s ∂l
Π−χ(s, l) = −

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
Π−χ(s, l) . (3.10)

We now introduce the function ζ(s) by

ζ(s) =

ˆ s

0

( ∑
j=2,3

(
kj +Aj(s

′)
)2

+m2

)
ds′ .

Since

ζ ′(s) =
∑
j=2,3

(
kj +Aj(s)

)2
+m2 ≥ m2 > 0 , (3.11)

the function ζ is strictly monotone increasing and thus a diffeomorphism from R to R.
Therefore, we can take ζ as a new null coordinate. We denote the inverse transforma-
tion by s = ζ−1 : R→ R. Using the transformation

∂s =
∂ζ

∂s
∂ζ ,

in the new coordinates (ζ, l), the PDE (3.10) simplifies to

4∂ζ∂l Π−χ
(
s(ζ), l

)
= −Π−χ

(
s(ζ), l

)
. (3.12)

In analogy to (3.4), we now introduce variables T and X by

ζ = T +X and l = T −X .

Then

T =
ζ + l

2
, X =

ζ − l
2

(3.13)

∂ζ =
∂T

∂ζ
∂T +

∂X

∂ζ
∂X =

1

2

(
∂T + ∂X

)
∂l =

∂T

∂l
∂T +

∂X

∂l
∂X =

1

2

(
∂T − ∂X

)
.
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x

t

l = −m2s

s = s0

l = −ζ(s)

s = 0

l = 0

N

suppΠiχ

l

s

Figure 1. The support of Π−χ on the surface N = {l = −ζ(s)}.

As a consequence, rewriting the PDE (3.12) in the variables T and X, we obtain the
two-dimensional Klein-Gordon equation of mass one,(

∂2
T − ∂2

X + 1
)

Π−χ = 0 . (3.14)

4. Decay in Null Directions

In order to formulate the Dirac equation as an evolution equation in lightlike direc-
tions, we need suitable decay properties of solutions in lightlike directions. In the next
lemma, we show that solutions decay even rapidly.

Lemma 4.1. Let Π−χ(s, l) be a solution of the Dirac equation (3.10) for smooth,
compactly supported initial data at t = 0,

Π−χ|t=0, ∂tΠ−χ|t=0 ∈ C∞0 (R,C4) . (4.1)

Then the solution decays rapidly in l, uniformly in s, i.e. for all N > 0 there exists a
constant c such that

sup
l∈R
|l|N

∥∥Π−χ(s, l)
∥∥ < c for all s ∈ R

(where ‖.‖ is any norm on C4). The constant c can be chosen locally uniformly in the
separation constants k2 and k3.

Proof. Due to finite propagation speed, the solution of the Cauchy problem with initial
data (4.1) is in C∞sc (R1,1,C4). Let N be the surface {T = 0} (with T as in (3.13)). In
view of (3.13), this surface can be described as a graph over s,

l = −ζ(s) .

In particular, the surface is smooth. Moreover, the inequality (3.11) gives the bound
l′(s) ≤ −m2 for the slope of this graph (see Figure 1). Clearly, the straight line
l = −m2s is a Cauchy surface in R1,1. Therefore, the intersection of this straight line
with the support of Π−χ is compact and thus contained in the interval [−s0, s0] for
sufficiently large s0 > 0. Using that N lies below this straight line if s > 0 and lies
above this line if s < 0 (see again Figure 1), it follows that also the curve N does not
intersect the support of Π−χ for all s outside this interval, i.e.

N ∩ supp Π−χ ⊂
{(
s,−ζ(s)

)
with s ∈ [−s0, s0]

}
.



10 F. FINSTER AND M. REINTJES

x

t

suppψ

R
−l

Rl

C
−

C+

Cs

Cs

Ω1

Ω2

Figure 2. Current conservation in a domain with null boundaries.

We conclude that the wave function Π−χ has compact support on N ,

Π−χ|N , ∂TΠ−χ|N ∈ C∞0 (N ,C4) . (4.2)

We next regard Π−χ as the solution of the Cauchy problem of the Klein-Gordon
equation (3.14) with initial data (4.2). As shown in [20, Theorem 7.2.1], this so-
lution decays rapidly in null directions (see also the more detailed estimates in [30,
Section 4.4]), in the sense that for all N > 0 there exists a constant c such that

sup
l∈R
|l|N

∥∥Π−χ
(
s(ζ), l

)∥∥ < c for all ζ ∈ R .

This gives the desired estimate. This estimate is locally uniform in k2 and k3 because
the curve N as well as the subsequent estimates depend smoothly on these separation
constants. Thus for any compact K ⊂ R2, the constant c can be chosen uniformly for
all (k2, k3) ∈ K. �

Lemma 4.2. For all ψ, φ ∈ Hm and s ∈ R, the scalar product (2.4) can be expressed
as the following integral over the null hypersurface {s = const},

(ψ|φ) = 2π

ˆ
R3

≺Π−ψ|γ0 Π−φ�(s,l,y,z) dl dy dz . (4.3)

Proof. In view of the polarization identity, we may choose φ = ψ. Moreover, using
a denseness argument, it suffices to consider a solution ψ corresponding to Cauchy
data ψ0 = ψ|t=0 which is smooth and compactly supported in x, and whose Fourier
transform in y and z is also compactly supported, i.e.

ψ̂0(x, k2, k3) :=

ˆ
R2

ψ0(x, y, z) eik2y+ik3z dy dz ∈ C∞0 (R3,C4) .

Then the solution can be represented as

ψ(t, x, y, z) =

ˆ
K
e−ik2y−ik3z χk2,k3(s, l) dk2 dk3 ,

where the subset K ⊂ R2 is compact.
We choose an open interval J such that suppψ(0, ., y, z) ⊂ J for all y, z ∈ R. We

choose the sets Ω1 and Ω2 as in Figure 2. Then, due to Dirac current conservation,
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0 =

ˆ
Ω1

∂j≺ψ|γjψ� d4x−
ˆ

Ω2

∂j≺ψ|γjψ� d4x

=
1

2π
(ψ|ψ)−

ˆ
Cs

≺ψ|γiψ� dµiCs
−
ˆ
Rl

≺ψ|γiψ� dµiRl
+

ˆ
R−l

≺ψ|γiψ� dµiR−l
, (4.4)

where in the last line we applied the Gauss divergence theorem and made use of the fact
that ψ vanishes identically on the boundary components C− and C+. If the boundary
were space-like, the factors dµi could be written as the future-directed unit normal νi

times the volume measure on the boundary surface. In our setting of null boundaries,
the situation is a bit more involved because the normal is a null vector tangential to the
surface, which cannot be normalized. The correct expressions for the dµi are obtained
most easily using Fubini and the fundamental theorem of calculus. For example, the
boundary term on Cs is computed by

0 =

ˆ
{t+x≤s}

∂j≺ψ|γjψ� d4x =

ˆ
{t+x≤s}

(
∂t≺ψ|γ0ψ�+ ∂x≺ψ|γ1ψ�

)
d4x

=

ˆ ∞
−∞

dy

ˆ ∞
−∞

dz

ˆ ∞
−∞

dx

( ˆ s−x

−∞
∂t≺ψ|γ0ψ� dt

)
+

ˆ ∞
−∞

dy

ˆ ∞
−∞

dz

ˆ ∞
−∞

dt

(ˆ s−t

−∞
∂x≺ψ|γ1ψ� dx

)
=

ˆ
R3

≺ψ|γ0ψ�|t=s−x dx dy dz +

ˆ
R3

≺ψ|γ1ψ�|x=s−t dt dy dz

=

ˆ
R3

≺ψ|N+ψ� dl dy dz , (4.5)

showing that γi dµ
i
Cs

= N+ dl dy dz. The other boundary integrals can be computed
similarly. The boundary term in (4.5) can be rewritten as follows,

≺ψ |N+ψ� = ≺ψ |N+N−N+ψ� = ≺N+ψ |Π−ψ� = ≺N+ψ |N−N+Π−ψ�
= ≺N−N+ψ |N+Π−ψ� = ≺Π−ψ | γ0 Π−ψ� ,

(4.6)

where in the last step we used the identity N+Π− = (γ0 − N−)Π− = γ0 Π−. Using
this formula in (4.4), we obtain

1

2π
(ψ|ψ) =

ˆ
Cs

≺Π−ψ|γ0 Π−ψ�dldydz+

ˆ
Rl

≺ψ|γiψ�dµiRl
−
ˆ
R−l

≺ψ|γiψ�dµiR−l
. (4.7)

In view of Lemma 4.1, the solutions Π−χk2,k3 all decay rapidly in l, uniformly for
all (k2, k3) ∈ K. This shows that Π−ψ decays rapidly in l, uniformly in y and z.
Therefore, in the limit l → ∞ in (4.7), the integrals over R−l and Rl vanish, whereas
the integral over Cs goes over to the integral over the null hyperplane {s = const}.
This gives the result. �

5. The Fermionic Signature Operator

After these preparations, we are in the position to compute the fermionic signature
operator. It is most convenient to also separate the l-dependence with a plane-wave
ansatz, i.e.

ψ(t, x, y, z) =

ˆ
R3

e−ik2y−ik3z e−iul χk2,k3,u(s) du dk2 dk3 . (5.1)
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Comparing this ansatz with (3.5), one sees that χ(s, l) = e−iulχ(s). Using this formula
in (3.9) and (3.10), the Dirac equation reduces to one algebraic equation and one ODE,

2uN−χ(s, l) = −
( ∑
j=2,3

γj
(
kj +Aj(s)

)
−m

)
Π−χ(s, l) (5.2)

4iu
d

ds
Π−χk2,k3,u(s) =

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
Π−χk2,k3,u(s) . (5.3)

Integrating the last equation for initial data on the null surface N := {s = 0}, we
obtain the unique solution

Π−χk2,k3,u(s) = exp

(
− i

4u

ˆ s

0

( ∑
j=2,3

(
kj +Aj(s

′)
)2

+m2

)
ds′

)
Π−χk2,k3,u(0) . (5.4)

We next express the scalar product in terms of the spinor χk2,k3,u(s) in the separation
ansatz (5.1).

Lemma 5.1. For any s ∈ R, the scalar product can be written as

(ψ|φ) = (2π)4

ˆ
R3

≺Π−χk2,k3,u(s)|γ0 Π−χk2,k3,u(s)� du dk2 dk3 .

Proof. The formula follows immediately by substituting the ansatz (5.1) into (4.3) and
applying Plancherel’s theorem. �

The remaining task is to compute the space-time inner product in (2.7). To this
end, we need to consider families of Dirac solution (ψm)m∈I for a varying parameter in
an interval I = (mL,mR) with 0 < mL,mR. We again use the separation ansatz (5.1),
but now indicate the dependence on the mass parameter by a superscript m,

ψm(t, x, y, z) =

ˆ
R3

e−ik2y−ik3z e−iul χmk2,k3,u(s) du dk2 dk3 . (5.5)

Then, again using Plancherel’s theorem,

<pψ|pφ> =
1

2

ˆ
R4

≺pψ|pφ� ds dl dy dz

= 4π3

ˆ
R4

≺pχk2,k3,u(s) | pχk2,k3,u(s)� ds du dk2 dk3

= 4π3

ˆ
R4

( ˆ
I
dm

ˆ
I
dm′≺χmk2,k3,u(s) |χm′k2,k3,u(s)�

)
ds du dk2 dk3 , (5.6)

where

pχk2,k3,u(s) :=

ˆ
I
χmk2,k3,u(s) dm .

In the next lemma we rewrite the integrand in (5.6) in a more convenient form.

Lemma 5.2. The spinor χmk2,k3,u(s) in the separation ansatz (5.5) satisfies the rela-
tions

2u≺χmk2,k3,u(s) |χm′k2,k3,u(s)�

= (m+m′) e
i
4u

(
m2−m′2

)
s ≺Π−χ

m
k2,k3,u(0) | γ0 Π−χ

m′
k2,k3,u(0)� .
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We remark for clarity that for u = 0, this equation is trivially satisfied because the
spinors Π−χ

m
k2,k3,u

(0) and Π−χ
m′
k2,k3,u

(0) vanish in view of the algebraic equation (5.2),

noting that the matrix
∑

j=2,3 γ
j
(
kj +Aj(s)

)
−m is invertible (with its inverse being

a multiple of
∑

j=2,3 γ
j
(
kj +Aj(s)

)
+m; see the computation before (3.10)).

Proof of Lemma 5.2. For ease of notation, we omit the indices k2, k3, u as well as the
argument s. Then, similar as in (4.6), we obtain

≺χm|χm′� = ≺χm |Π−χm
′�+≺χm |Π+χ

m′�

= ≺Π+χ
m |Π−χm

′�+≺Π−χ
m |Π+χ

m′�

= ≺γ0N−χ
m|Π−χm

′�+≺Π−χ
m|γ0N−χ

m′� . (5.7)

Using the abbreviation A ≡
∑

j=2,3 γ
j(kj + Aj), the algebraic equation (5.2) can be

written as

2u N−χ
m = −

(
A−m

)
Π−χ

m .

Using this equation in (5.7) gives

2u≺χm|χm′� = −≺γ0
(
A−m

)
Π−χ

m |Π−χm
′�−≺Π−χ

m | γ0
(
A−m′

)
Π−χ

m′�

= (m+m′)≺Π−χ
m | γ0 Π−χ

m′� , (5.8)

where in the last line we used that A is symmetric with respect to the spin scalar
product and anti-commutes with γ0.

We next work out the s-dependence. Writing (5.4) in the shorter form

Π−χk2,k3,u(s) = e−
i
4u

´ s
0

(
−A2+m2

)
Π−χk2,k3,u(0) ,

we obtain

≺χmk2,k3,u(s) |χm′k2,k3,u(s)�

= e
i
4u

´ s
0

(
−A2+m2

)
e−

i
4u

´ s
0

(
−A2+m′2

)
≺χmk2,k3,u(0) |χm′k2,k3,u(0)�

= e
i
4u

(
m2−m′2

)
s ≺χmk2,k3,u(0) |χm′k2,k3,u(0)� .

Applying (5.8) gives the result. �

Using the formula of this lemma in (5.6) and formally exchanging the integrals, one
can carry out the s-integration using the distributional relation

ˆ ∞
−∞

e
i
4u

(
m2−m′2

)
s ds = 2π δ

(m2 −m′2

4u

)
.

In the next lemma we give a rigorous justification of this formal computation.

Lemma 5.3. For any test function η ∈ C∞0 (I × I),

ˆ ∞
−∞

ds

ˆ
I
dm

ˆ
I
dm′ (m+m′) e

i
4u

(
m2−m′2

)
s η
(
m,m′

)
= 8π |u|

ˆ
I
η(m,m) dm .
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Proof. We insert a convergence-generating factor e−εs
2
, interchange the integrals, and

carry out the s-integration by a Gaussian integral,ˆ ∞
−∞

ds

ˆ
I
dm

ˆ
I
dm′ (m+m′) e

i
4u

(
m2−m′2

)
s η
(
m,m′

)
= lim

ε↘0

ˆ ∞
−∞

e−εs
2
ds

ˆ
I
dm

ˆ
I
dm′ (m+m′) e

i
4u

(
m2−m′2

)
s η
(
m,m′

)
= (m+m′) lim

ε↘0

ˆ
I
dm

ˆ
I
dm′ η

(
m,m′

) ˆ ∞
−∞

e−εs
2
e

i
4u

(
m2−m′2

)
s ds

= (m+m′) lim
ε↘0

ˆ
I
dm

ˆ
I
dm′ η

(
m,m′

) √π

ε
exp

(
− (m2 −m′2)2

64u2ε

)
.

Now the limit ε→ 0 can be carried out in the distributional sense to obtain

= (m+m′)

ˆ
I
dm

ˆ
I
dm′ η

(
m,m′

)
2π δ

(m2 −m′2

4u

)
= (m+m′)

ˆ
I
dm

ˆ
I
dm′ η

(
m,m′

)
2π

4|u|
m+m′

δ
(
m−m′

)
.

This concludes the proof. �

Using Lemmas 5.2 and 5.3 in (5.6) immediately gives the following result.

Corollary 5.4. For all ψ, φ ∈ C∞sc,0(M × I, SM),

<pψ|pφ> = (2π)4

ˆ
I

(ˆ
R3

ε(u) ≺Π−χ
m
k2,k3,u(0) | γ0 Π−χ

m
k2,k3,u(0)� du dk2 dk3

)
dm .

Comparing the formulas in Corollary 5.4 and Lemma 5.1, one can read off the
fermionic signature operators Sm in (2.9). This gives rise to the following result.

Theorem 5.5. The Dirac operator (2.2) in the presence of a smooth plane electro-
magnetic wave (i.e. with B = /A and A according to (3.1) and (3.2)) has the strong
mass oscillation property (2.8). The resulting fermionic signature operators (Sm)m∈I
simply act on Hm by multiplication with the sign of the separation constant u in (5.5),
i.e.

(Smψm)(t, x, y, z) =

ˆ
R3

e−ik2y−ik3z e−iul ε(u) χmk2,k3,u(s) du dk2 dk3 .

Proof. For families of solutions ψ, φ ∈ C∞sc,0(M × I, SM), one sees immediately that

the relation (2.9) holds for Sm being the multiplication operators

Sm χ
m
k2,k3,u = ε(u) χmk2,k3,u . (5.9)

Since the operators Sm are obviously bounded by one, it follows that for all ψ, φ ∈
C∞sc,0(M × I, SM) the inequality∣∣<pψ|pφ>∣∣ ≤ ˆ

I
‖ψm‖ ‖φm‖ dm

holds. This establishes the strong mass oscillation property for H∞ as in (2.6). Ap-
plying Theorem 2.2, we obtain the existence of a unique family of bounded opera-
tors (Sm)m∈I satisfying (2.9). Using a denseness argument, one sees that these opera-
tors are again given by (5.9). This concludes the proof. �
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6. The Fermionic Projector and Quantum States

Exactly as explained in [16, Section 3], the fermionic projector P is introduced as
the operator

P = −χ(−∞,0)(Sm) km : C∞0 (M, SM)→ Hm , (6.1)

where S is the fermionic signature operator, and km is the causal fundamental solution
defined as the difference of the advanced and retarded Green’s operators,

km :=
1

2πi

(
s∨m − s∧m

)
: C∞0 (M, SM)→ C∞sc (M, SM) ∩Hm .

The fermionic projector P can be represented by a distribution, referred to as the
kernel of the fermionic projector. Namely, just as in [16, Section 3.5], one shows that
there is a unique distribution P ∈ D′(M ×M,C4×4) such that

<φ|Pψ> = P
(
φ⊗ ψ

)
for all φ, ψ ∈ C∞0 (M, SM) . (6.2)

Moreover, applying Araki’s construction in [1] to the projection operator χ(−∞,0)(Sm)
gives rise to a distinguished quasi-free ground state of the second-quantized Dirac field
with the property that the two-point distribution coincides with the kernel of the
fermionic projector. In the language of algebraic QFT, this result is stated as follows:

Theorem 6.1. There is an algebra of smeared fields generated by Ψ(g), Ψ∗(f) together
with a pure quasi-free state ω with the following properties:

(a) The canonical anti-commutation relations hold:

{Ψ(g),Ψ∗(f)} = <g∗ | km f> , {Ψ(g),Ψ(g′)} = 0 = {Ψ∗(f),Ψ∗(f ′)} .

(b) The two-point distribution of the state is given by

ω
(
Ψ(g) Ψ∗(f)

)
= −

¨
M×M

g(x)P(x, y)f(y) d4x d4y .

The state ω is sometimes referred to as the FP state [7]. The proof of Theorem 6.1
is exactly the same as the proof of [14, Theorem 1.4] as given in [14, Section 6].

7. Integral Representation of the Fermionic Projector

In the next lemma, the causal Green’s function is separated and expressed in terms of
an ODE in the null coordinate s. We denote points in Minkowski space by q = (s, l, y, z)
(and similarly with a tilde).

Lemma 7.1. For the Dirac equation (3.3) in the presence of an electromagnetic po-
tential of the form (3.2), the Green’s function can be written as

sm
(
q, q̃
)

=

ˆ
R3

e−ik2(y−ỹ)−ik3(z−z̃) e−iu(l−l̃) sk2,k3,u
(
s, s̃
)
du dk2 dk3 , (7.1)

where the distribution sk2,k3,u(s, s̃) is of the form

sk2,k3,u
(
s, s̃
)

= N− a+ Π− b+
2

(2π)3

1

2u
N+ δ

(
s− s̃

)
(7.2)

+
1

2u

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)(
N+ b+ Π+ a

)
, (7.3)
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and a and b are solutions of the ODEs

4iu
da

ds
=

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
a+

4u

(2π)3
δ
(
s− s̃

)
(7.4)

4iu
db

ds
=

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
b

+

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)
2

(2π)3
δ
(
s− s̃

)
. (7.5)

Proof. Taking (7.1) similar to (5.1) as a separation ansatz, the distribution sk2,k3,u
must satisfy the Dirac equation (3.6) with a δ-distribution as a source term, i.e.(

2iN+∂s + 2uN− +
∑
j=2,3

γj
(
kj +Aj(s)

)
−m

)
sk2,k3,u

(
s, s̃
)

=
2

(2π)3
δ
(
s− s̃

)
(7.6)

(the factor of two comes about because δ(t− t̃) δ(x− x̃) = 2 δ(s− s̃) δ(l − l̃)).
We now proceed similar as in Section 3: Multiplying the Dirac equation (7.6) by Π−

and using the relations (3.7) and (3.8), we obtain the algebraic equation

2uN−sk2,k3,u
(
s, s̃
)

= −
( ∑
j=2,3

γj
(
kj +Aj(s)

)
−m

)
Π−sk2,k3,u

(
s, s̃
)

+
2

(2π)3
Π− δ

(
s− s̃

)
. (7.7)

Similarly, multiplying (7.6) by N− gives the differential equation

2i
d

ds
Π−sk2,k3,u

(
s, s̃
)

=

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)
N−sk2,k3,u

(
s, s̃
)

+
2

(2π)3
N− δ

(
s− s̃

)
.

Multiplying by 2u and using (7.7), we obtain the ODE

4iu
d

ds
Π−sk2,k3,u

(
s, s̃
)

=

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
Π−sk2,k3,u

(
s, s̃
)

+

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)
2

(2π)3
Π− δ

(
s− s̃

)
+

4u

(2π)3
N− δ

(
s− s̃

)
. (7.8)

In (7.2) and (7.3), the components involving N± and Π± are written separately (note
that the Dirac matrices γ2 and γ3 anti-commute with N± and commute with Π±).
The ODE (7.8) poses conditions for the components involving N− and Π−. By direct
computation, one sees that this ODE is equivalent to (7.4) and (7.5). Moreover,
as is verified by a direct computation, the algebraic equation (7.7) determines the
components involving N+ and Π+ in (7.2) and (7.3). This gives the result. �

We point out that the homogeneous part of the ODEs (7.4) and (7.5) is the ODE (5.3),
which can be solved by integration (5.4). The ODEs (7.4) and (7.5) can be solved sim-
ilarly using the method of variation of constants. For the retarded Green’s functions,
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one obtains

a
(
s, s̃
)

=
4u

(2π)3
Θ
(
s− s̃

)
e−

i
4u

´ s
s̃

(∑
j=2,3(kj+Aj)2+m2

)
b
(
s, s̃
)

=
2

(2π)3
Θ
(
s− s̃

) ( ∑
j=2,3

γj
(
kj +Aj(s̃)

)
+m

)
e−

i
4u

´ s
s̃

(∑
j=2,3(kj+Aj)2+m2

)
,

and similarly for the advanced Green’s function. Taking the difference of these Green’s
functions, we obtain a corresponding representation of km (see (2.5)). Using that,
according to Theorem 5.5, the factor χ(−∞,0)(S) in (6.1) amounts to a factor Θ(−u),
we obtain the following integral representation.

Theorem 7.2. For the Dirac equation (3.3) in the presence of an electromagnetic
potential of the form (3.2), the kernel of the fermionic projector (6.2) has the repre-
sentation

P
(
q, q̃
)

=

ˆ 0

−∞
du

ˆ
R2

dk2 dk3 e
−ik2(y−ỹ)−ik3(z−z̃) e−iu(l−l̃) Pk2,k3,u

(
s, s̃
)
,

where the distribution Pk2,k3,u(s, s̃) is of the form

Pk2,k3,u
(
s, s̃
)

= N− a
(
s, s̃
)

+ Π− b
(
s, s̃
)

+
1

2u

( ∑
j=2,3

γj
(
kj +Aj(s)

)
+m

)(
N+ b

(
s, s̃
)

+ Π+ a
(
s, s̃
))
,

(7.9)

and the functions a(s, s̃) and b(s, s̃) are given by

a
(
s, s̃
)

=
iu

4π4
e−

i
4u

´ s
s̃

(∑
j=2,3(kj+Aj(s′))2+m2

)
ds′ (7.10)

b
(
s, s̃
)

=
i

8π4

( ∑
j=2,3

γj
(
kj +Aj(s̃)

)
+m

)
e−

i
4u

´ s
s̃

(∑
j=2,3(kj+Aj(s′))2+m2

)
ds′ . (7.11)

We remark that the FP state coincides with the ground state constructed in [18,
Section 5.2.2] using a “frequency splitting” in the null momentum variable u.

8. Hadamard Form of the Fermionic Projector

Recall that the wave front set WFP of a distribution P ∈ D′(Rn,CN ) is defined as
the complement of the points (x, ξ) ∈ Rn×(Rn\{0}) with the following property: There
exists a test function f ∈ C∞0 (Rn) with f(x) = 1 and a conical neighborhood Γ ⊂ Rn
of ξ such that

sup
ζ∈Γ

(
1 + |ζ|)q

∥∥f̂ P(ζ)
∥∥
CN <∞ for all q ∈ N0 . (8.1)

A bi-distribution P ∈ D′(M ×M,C4×4) is called of Hadamard form if its wave front
set is given by2

WFP =
{

(x, ξ, y,−ξ) ∈M × R4 ×M × R4

with ξ2 = 0 , ξ0 < 0 and y − x ∼ ξ
}
,

(8.2)

2Working in a fixed reference frame, we here identify the co-tangent space T ∗M with M × R4.
Moreover, we implicitly identify tangent and co-tangent vectors using the Minkowski metric.
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where ξ0 denotes the time component of ξ in a given reference frame. Here the nota-
tion y− x ∼ ξ means that y− x is a multiple of the lightlike vector ξ (more generally,
in curved space-time this notation means that there is a lightlike geodesic from x to y
whose velocity co-vector equals ξ). In non-technical terms, the Hadamard form means
that the singularities of P(x, y) lie on the light cone and are formed only of negative
frequencies.

This is our main result:

Theorem 8.1. For the Dirac equation (3.3) in the presence of a smooth electromag-
netic potential of the form (3.2), the kernel of the fermionic projector P, (6.2), is of
Hadamard form.

For the FP state ω of Theorem 6.1, this result can be stated as follows:

Corollary 8.2. The fermionic projector state is a Hadamard state.

The remainder of this section is devoted to the proof of Theorem 8.1. Before be-
ginning, we point out that the methods used in [11, Section 3] or [12, Section 2.2]
for computing the light-cone expansion of the fermionic projector do not apply in our
setting because they rely crucially on decay assumptions on the potential at infinity
(see [12, Lemma 2.1.2]). In preparation, we write (8.2) independent of a reference
frame as

WFP =
{

(x, ξ, y,−ξ)
∣∣ ξ2 = 0 , 〈n, ξ〉 ≤ 0 and y − x ∼ ξ

}
, (8.3)

where n is any future-directed timelike vector of M (and 〈n, ξ〉 is the Minkowski inner
product). In our setting, the plane electromagnetic wave distinguishes a lightlike
direction. Namely, writing the plane wave (3.2) for q ∈M as

A(q) = A
(
〈n, q〉

)
= A(s) with n = (1,−1, 0, 0) = 2∂l ,

the vector n describes the direction of the propagation of the electromagnetic wave. It
is future-directed and lightlike, and it is unique up to multiplication by an irrelevant
positive constant. Having this distinguished lightlike direction to our disposal, it is
natural to consider the limiting case that the timelike vector in (8.3) goes over to
the null vector n. In this limiting case, the intersection of the light cone with the
hypersurface 〈n, ξ〉 = 0 changes from one point to a whole lightlike line,{

ξ
∣∣ ξ2 = 0

}
∩
{
ξ
∣∣ 〈n, ξ〉 = 0

}
=
{
λn
∣∣ λ ∈ R

}
.

In particular, the set in (8.3) contains additional vectors ξ which point to the future,
but which are all collinear to n. The delicate point will be to show that these additional
vectors do not lie in the wave front set of P.

For clarity, we always denote points in Minkowski space by latin letters p, q, r,
whereas momenta are denoted by Greek letters ξ, η, ζ. We begin with a preparatory
lemma.

Lemma 8.3. For any test function f ∈ C∞0 (M ×M),(
f̂ P
)
(ζ, η) =

¨
M×M

P(p, q) f(p, q) e−iζp−iηq d4p d4q (8.4)

= Θ
(
− ζs

)¨
M×M

km(p, q) f(p, q) e−iζp−iηq d4p d4q (8.5)

+
i

2π

¨
M×M

km(p, q) ĝp,q

(ζs
2

)
e−iζp−iηq d4p d4q , (8.6)
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where, setting p = (s, l, y, z), ĝp,q is the smooth function

ĝp,q(u) =

ˆ ∞
−∞

dl̃

ˆ 1

0
dτ

∂

∂l
f
(
(s, l + τ l̃, y, z), q

)
e−iul̃ . (8.7)

Proof. Using the result of Theorem 5.5 in (6.1), we obtain

P(p, q) =

ˆ
M

(
χ−∞,0(Sm)

)
(p, r) km(r, q) d4r

=
i

2π
lim
ε↘0

ˆ ∞
−∞

dl′

l − l′ + iε
km
(
(s, l′, y, z), q

)
,

where χ−∞,0(Sm)
(
p, r) is the integral kernel of the operator χ−∞,0(Sm), and the coor-

dinates of p and r are denoted by

p = (s, l, y, z) and r = (s, l′, y, z) .

We consider the Fourier integral (8.4). Using the above relation for P(p, q) gives

2πi

¨
M×M

P(p, q) f(p, q) e−iζp−iηq d4p d4q

= lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl′

l − l′ + iε
km
(
(s, l′, y, z), q

)
f(p, q) e−iζp−iηq d4p d4q (8.8)

= lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl′

l − l′ + iε
km(r, q) f(r, q) e−iζp−iηq d4p d4q (8.9)

+ lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl′

l − l′ + iε
km(r, q)

(
f(p, q)− f(r, q)

)
e−iζp−iηq d4p d4q . (8.10)

In (8.9) we combine the integral over l′ with the integrations over s, y, z to an integral
over r, and write the l-integral separately,

(8.9) = lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl

l − l′ + iε
km
(
r, q
)
f(r, q) e−iζp−iηq d4r d4q .

Now the l-integration can be carried out using the relations

i

2π
lim
ε↘0

ˆ ∞
−∞

dl

l − l′ + iε
eiul = Θ(−u) eiul

′

ζ = ζs∂s + ζ l∂l + ζy∂y + ζz∂z

ζp =
1

2
ζ ls+

1

2
ζsl − ζyy − ζzz

i

2π
lim
ε↘0

(8.9) = Θ
(
− ζs

)¨
M×M

km(r, q) f(r, q) e−iζr−iηq d4r d4q .

In (8.10), on the other hand, we use the relation

f(p, q)− f(r, q) =

ˆ 1

0

d

dτ
f
(
τp+ (1− τ)r, q

)
dτ

=

ˆ 1

0

∂

∂l̃
f
(
(s, l̃, y, z), q

)∣∣
l̃=τl+(1−τ)l′

(l − l′) dτ ,

which we write as

f(p, q)− f(r, q) = gr,q(l − l′) (l − l′)
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for

gr,q(l − l′) :=

ˆ 1

0

∂

∂l̃
f
(
(s, l̃, y, z), q

)∣∣
l̃=τl+(1−τ)l′

dτ .

This makes it possible to take the limit ε↘ 0 to obtain

lim
ε↘0

(8.10) =

¨
M×M

ˆ ∞
−∞

dl′ km(r, q) gr,q(l − l′) e−iζp−iηq d4p d4q

=

¨
M×M

ˆ ∞
−∞

dl km(r, q) gr,q(l − l′) e−iζp−iηq d4r d4q .

Carrying out the l-integration byˆ ∞
−∞

dl gr,q(l − l′) e−
i
2
ζs(l−l′) = ĝr,q

(ζs
2

)
,

we obtain

lim
ε↘0

(8.10) =

¨
M×M

km(r, q) ĝr,q

(ζs
2

)
e−iζr−iηq d4r d4q .

This concludes the proof. �

This lemma makes it possible to prove Theorem 8.1 provided that the momenta are
not collinear to n:

Lemma 8.4. The wave front set of the kernel of the fermionic projector has the
properties

WFP ⊃
{

(x, ξ, y,−ξ)
∣∣ ξ2 = 0 , 〈n, ξ〉 < 0 and y − x ∼ ξ

}
WFP ⊂

{
(x, ξ, y,−ξ)

∣∣ ξ2 = 0 , 〈n, ξ〉 < 0 and y − x ∼ ξ
}

∪
{

(x, ξ, y, η)
∣∣ ξ ∼ n and η ∼ n

}
.

Proof. Since P satisfies the Dirac equation, the theorem on the propagation of sin-
gularities [26, Theorem 5.5] implies that the momenta in the wave front set must be
characteristic, i.e.

WFP ⊂
{

(x, ξ, y, η) | ξ2 = η2 = 0
}
.

Moreover, the wave front set of the fundamental solution is given by

WF km =
{

(x, ξ, y,−ξ)
∣∣ ξ2 = 0 and y − x ∼ ξ

}
. (8.11)

This can be seen in various ways: One method is to adapt the methods in [2, Section 4]
to the vector-valued situation; see also [26]. Alternatively, the light-cone expansion
(see [11, Section 2] or the textbook [12, §2.2.2]) gives a method of determining the
singularity structure of km(x, y) explicitly. This analysis shows that km(x, y) is smooth
away from the light cone (i.e. if (y − x)2 6= 0), and has singularities on the light cone
which give rise precisely to the wave front set (8.11).

In view of the symmetry of the kernel of the fermionic projector P(p, q)∗ = P(q, p),
it suffices to consider the case that ξ is not collinear to n, i.e.

ξs ≡ 〈ξ, n〉 6= 0 .

Being the Fourier transform of a smooth function, the function ĝp,q(u) in (8.7) decays

rapidly in u. As a consequence, the summand (8.6) decays rapidly for all ζ̃ in a cone
around ξ, uniformly in η. Therefore, the summand (8.6) does not contribute to the
wave front set. The remaining summand (8.5) shows that the point (x, ξ, y, η) is in
the wave front set of P if and only if it is in the wave front set of km and ξs < 0. This
concludes the proof. �
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In view of this lemma, it remains to consider the case that ξ ∼ n and η ∼ n. In this
case, the representation of Lemma 8.3 is not useful, mainly because the function ĝp,q
in (8.6) is not compactly supported in p and q as required the definition of the wave
front set (8.1). We proceed in several steps:

Lemma 8.5. Assume that the vector y − x is not collinear to n. Then (x, ξ, y, η) is
not in the wave front set of P for all ξ, η ∈ R4 \ {0}.

Proof. We choose a function Θ ∈ C∞(R) with

Θ(l) =
1

l
for all l ∈ R \ [−1, 1] .

Then, setting again r = (s, l′, y, z), we may rewrite (8.8) as

2πi

¨
M×M

P(p, q) f(p, q) e−iζp−iηq d4p d4q

= lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl

l − l′ + iε
km(r, q) f(p, q) e−iζp−iηq d4r d4q

= lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl

(
1

l − l′ + iε
−Θ(l − l′)

)
km(r, q)f(p, q) e−iζp−iηq d4r d4q (8.12)

+ lim
ε↘0

¨
M×M

ˆ ∞
−∞

dl Θ(l − l′) km(r, q) f(p, q) e−iζp−iηq d4r d4q . (8.13)

Note that in (8.12) the integrand vanishes if |l− l′| > 1. Moreover, since f has compact
support, the integrand vanishes if |l| > L for some sufficiently large L > 0 (uniformly
in p and q). Therefore, the integrand vanishes if |l′| > L+ 1. Thus, choosing a cutoff
function χL ∈ C∞0 (R) with χL|[−L−1,L+1] ≡ 1,

(8.12) = lim
ε↘0

¨
M2

ˆ ∞
−∞

dl

(
1

l − l′ + iε
−Θ(l−l′)

)
χL(l′)km(r, q)f(p, q)e−iζp−iηqd4r d4q.

Next, we expand the function f in the integrand as a Taylor polynomial in l around l′,
i.e.

f(p, q) =

K∑
k=0

∂k

∂l′k
f(r, q) (l − l′)k +RK(p, q, l − l′) ,

where the error term RK is of the order o((l − l′)K), is smooth in p and q and has
compact support in q. For the Taylor polynomial, we can carry out the l-integrals
term by term,

lim
ε↘0

ˆ ∞
−∞

dl

(
1

l − l′ + iε
−Θ(l − l′)

)
eiul

∂k

∂l′k
f(r, q) (l − l′)k = gk(u) eiul

′ ∂kf(r, q)

∂l′k
,

where the function

gk(u) := lim
ε↘0

ˆ ∞
−∞

1

(l + iε)1−k eiul dl
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is obviously smooth and bounded. We thus obtain¨
M×M

P(p, q) f(p, q) e−iζp−iηq d4p d4q

=
K∑
k=0

gk(u)

¨
M×M

km(r, q)
∂kf(r, q)

∂l′k
χL(l′) e−iζr−iηq d4r d4q (8.14)

+

¨
M×M

ˆ L+1

−L−1
dl′
(

1

l − l′ + iε
−Θ(l − l′)

)
× RK(p, q, l − l′) χL(l′) km

(
(s, l′, y, z), q

)
e−iζp−iηq d4p d4q (8.15)

+

¨
M×M

ˆ ∞
−∞

dl′ Θ(l − l′) km
(
(s, l′, y, z), q

)
f(p, q) e−iζp−iηq d4p d4q . (8.16)

Now we can argue as follows: Since (x, ξ, y, η) is not in the wave front set of km,
the contribution (8.14) clearly does not contribute to the wave front set. Next, as the
vector y − x is not collinear to n, the straight line {(s, l′, y, z) | l′ ∈ R} intersects the
light cone transversely. As a consequence, the convolution in (8.16)ˆ ∞

−∞
dl′ Θ(l − l′) km

(
(s, l′, y, z), q

)
gives rise to a smooth function in p and q, implying that its Fourier transform decays
rapidly in ζ and η. Hence (8.16) does not contribute to the wave front set.

Finally, the term (8.15) again involves a convolution,ˆ L+1

−L−1
dl′
(

1

l − l′ + iε
−Θ(l − l′)

)
RK(p, q, l − l′) χL(l′) km

(
(s, l′, y, z), q

)
. (8.17)

Since RK vanishes at l = l′, this factor compensates the pole of the first factor in the
integrand. Even more, by choosing K sufficiently large, we can make the convolution
kernel arbitrarily smooth. More precisely,(

1

·+ iε
−Θ(·)

)
RK(p, q, ·) ∈ CK−2(R) .

As worked out in detail in [11], the leading singularities of km on the light cone are
of the form ∼ /ξ δ′((y − x)2) and ∼ PP/((y − x)4). As a consequence, the convolution
integral (8.17) has the regularity CK−4 in p and q. Since K is arbitrary, the Fourier
transform of (8.17) decays rapidly in ζ and η. This concludes the proof. �

Lemma 8.6. Assume that ξ, η̃ ∈ R4 \ {0} and η̃ 6= −ξ. Then the point (x, ξ, y, η̃) is
not in the wave front set of P for all x, y ∈M.

Proof. We choose a conical set Γ around (ξ, η̂) such that η 6= −ζ for all (ζ, η) ∈ Γ. We
choose an index j such that ηj 6= −ζj . Then(

− i(ηj + ζj)
)K¨

M×M
P(p, q) f(p, q) e−iζp−iηq d4p d4q

=

¨
M×M

P(p, q) f(p, q)

(( ∂

∂pj
+

∂

∂qj

)K
e−iζp−iηq

)
d4p d4q

= (−1)K
¨

M×M

(( ∂

∂pj
+

∂

∂qj

)K
P(p, q) f(p, q)

)
e−iζp−iηq d4p d4q . (8.18)
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As is obvious from the formulas of the light cone expansion in [11], the singular terms
in the light cone expansion depend only on the difference vector p − q. Thus their
derivatives cancel in the combination ∂p+∂q. Hence in (8.18) only the electromagnetic
potential in the light cone expansion is differentiated. As a consequence, the derivatives
in (8.18) do not increase the order of the singularities on the light cone. Therefore,
(8.18) shows that the Fourier integral in (8.4) decays rapidly in ζ and η. This concludes
the proof. �

Lemma 8.7. Assume that ξ ∼ n, ξ0 > 0 and x − y ∼ ξ. Then the point (x, ξ, y,−ξ)
is not in the wave front set of P for all x, y ∈ M. Conversely, if ξ ∼ n, ξ0 < 0
and x− y ∼ ξ, then the point (x, ξ, y,−ξ) lies in the wave front set of P.

Proof. We write the kernel Pk2,k3,u in (7.9) as

Pk2,k3,u
(
s, s̃
)

= gk2,k3,u(s) e−
i
4u

´ s
s̃

(∑
j=2,3(kj+Aj(s′))2+m2

)
ds′ ,

where gk2,k3,u(s) is a smooth function in all variables k2, k3, u and s. We now set s̃ = 0,
multiply by a non-trivial test function f(s) and compute the Fourier transform,

Fk2,k3,u(v) :=

ˆ ∞
−∞

f(s) gk2,k3,u(s) e−
i
4u

´ s
0

(∑
j=2,3(kj+Aj(s′))2+m2

)
ds′ eivs ds . (8.19)

We first consider the case

v >
m2

8u
. (8.20)

Then the function h(s) defined by

h(s) = vs− 1

4u

ˆ s

0

( ∑
j=2,3

(kj +Aj(s
′))2 +m2

)
ds′

is strictly increasing, because

h′(s) = v − 1

4u

( ∑
j=2,3

(kj +Aj(s))
2 +m2

)
> −m

2

8u
> 0 .

Therefore, we can introduce h as a new integration variable to obtain

Fk2,k3,u(v) =

ˆ ∞
−∞

η
(
s(h)

)
eih

dh

h′(s)
=

ˆ ∞
−∞

η
(
s(h)

)
h′(s)

eih dh ,

where we used the abbreviation η = f gk2,k3,u. Now one can integrate by parts,

Fk2,k3,u(v) =

ˆ ∞
−∞

η
(
s(h)

)
h′(s)

(
− i d

dh
eih
)
dh = i

ˆ ∞
−∞

( d
dh

η
(
s(h)

)
h′(s)

)
eih dh

= i

ˆ ∞
−∞

(η′(s(h)
)
− h′′(s) η

(
s(h)

)
h′(s)2

)
eih dh . (8.21)

Iteration shows that Fk2,k3,u(v) decays rapidly as v →∞ (note that h′(s) grows linearly
in v, whereas h′′(s) and η(s) are independent of v). As this estimate is uniform for k2, k3

and v in a conical neighborhood pointing to the future, it follows that (x, ξ, y,−ξ) is
not in the wave front set if ξ ∼ n and ξ0 > 0.

In order to prove that the point (x, ξ, y,−ξ) is in the wave front set if ξ ∼ n and ξ0 <
0, we proceed indirectly and assume that this point is not in the wave front set.
Then the function Fk2,k3,u(v) decays rapidly as v → −∞, locally uniformly in u, k2
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and k3. On the other hand, the integration-by-parts method (8.21) gives upper bounds
for Fk2,k3,u in the range (8.20). Combining these results, we conclude that

lim
u↗0

Fk2,k3,u = 0 in L2(R)

for all k2 and k3. On the other hand, applying Plancherel’s theorem to (8.19), we
obtain ∥∥Fk2,k3,u∥∥2

L2(R)
= 2π

ˆ ∞
−∞

∣∣f(s) gk2,k3,u(s)
∣∣2 ds ,

which is bounded away from zero as u tends to zero (note that gk2,k3,u is non-zero in
this limit in view of the explicit representation in (7.9)). This is a contradiction. Hence
the point (x, ξ, y,−ξ) must be in the wave front set. This concludes the proof. �

Theorem 8.1 follows immediately by combining the results of Lemmas 8.4–8.7.

9. Example: A Harmonic Plane Electromagnetic Wave

In this section we compute and discuss the kernel of the fermionic projector in closed
form for a harmonic plane electromagnetic wave. Thus we choose the electromagnetic
potential A in (3.2) and (3.3) as

A2 = λ cos
(
Ω (t+ x)

)
, A3 = 0 (9.1)

for real parameters Ω 6= 0 and λ. For this potential, the integrals in (7.10) and (7.11)
can be carried out to obtainˆ s

s̃

( ∑
j=2,3

(
kj +Aj(s

′)
)2

+m2

)
ds′

=

ˆ s

s̃

((
k2 + 2 + λ cos(Ωs′)

)2
+ k2

3 +m2

)
ds′

=

ˆ s

s̃

(
k2

2 + 2k2 λ cos(Ωs′) + λ2 cos2(Ωs′) + k2
3 +m2

)
ds′

=
(
k2

2 + k2
3 +m2

)
s′ +

2k2 λ

Ω
sin(Ωs′) +

λ2s′

2
+
λ2

4Ω
sin(2Ωs′)

∣∣∣s′=s
s′=s̃

=
(
k2

2 + k2
3 +

λ

2
+m2

) (
s− s̃

)
+

2k2 λ

Ω

(
sin(Ωs)− sin(Ωs̃)

)
+
λ2

4Ω

(
sin(2Ωs)− sin(2Ωs̃)

)
.

Hence the exponentials in (7.10) and (7.11) become

exp

(
− i

4u

ˆ s

s̃

( ∑
j=2,3

(
kj +Aj(s)

)2
+m2

)
ds

)

= exp

(
− i

4u

(
k2

2 + k2
3 +

λ2

2
+m2

) (
s− s̃

))
(9.2)

×
( ∞∑
n=0

1

n!

(
− ik2 λ

2Ωu

(
sin(Ωs)− sin(Ωs̃)

))n)
(9.3)

×
( ∞∑
n′=0

1

n′!

(
− iλ2

16Ωu

(
sin(2Ωs)− sin(2Ωs̃)

))n′)
. (9.4)
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k1

ω

n

uv

4uv = k22 + k23 +
λ2

2
+m2

Γ

Ω

Figure 3. The Fourier transform of P(., q̃) for a harmonic plane elec-
tromagnetic wave.

Let us explain what these formulas mean. To this end, we fix q̃ and take the
Fourier transform of km(q, q̃) in the variable q. We again denote the momenta corre-
sponding to l, y and z by u, k2, and k3, respectively. Then, according to (5.9), the
factor χ−(∞,0)(Sm) in (6.1) simply gives rise to a factor −Θ(−u). Moreover, we denote
the momentum corresponding to s by v, so that

u =
1

2

(
ω + k1

)
, v =

1

2

(
ω − k1

)
.

Expanding the trigonometric functions in (9.3) and (9.4) into plane waves, one sees
that the momenta v take the discrete values

v ∈ 1

4u

(
k2

2 + k2
3 +

λ2

2
+m2

)
+ ΩZ . (9.5)

In the case λ = 0 when the amplitude of the electromagnetic wave is zero, the first
summand gives the usual dispersion relation 4uv = k2

2 + k2
3 + m2 of the plane-wave

solutions of the Dirac equation. This dispersion relation is modified by the plane
wave, effectively changing the mass. More importantly, in (9.5) one gets additional
momenta where v is modified by multiples of Ω. These additional contributions can
be understood from the fact that the plane wave mixes different momenta.

The resulting situation is depicted in Figure 3. One sees that P does involve con-
tributions of arbitrarily large positive frequency. However, due to the factorials n!
and n′! in (9.3) and (9.4), these contributions decay rapidly for large v. This is the
reason why the bi-distribution P(q, q̃) is of Hadamard form.

We finally remark that the sums in (9.3) and (9.4) can be understood as perturbation
expansions in the amplitude λ of the harmonic plane wave. Linearly in λ, we recover
the usual vacuum polarization as described by Schwinger in [27]. The higher orders in λ
in (9.3) and (9.4) can be understood as processes involving multiple photon absorptions
and/or emissions.

10. Outlook

This is the first paper where the mass oscillation property is proved for a time-
dependent external potential in Minkowski space without decay assumptions at infinity.
Our methods make essential use of the fact that the external field propagates with the
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speed of light in a preferred direction. It seems likely that our methods also apply to pp-
space-times (see [29, Section 24.5]) or other space-times involving plane gravitational
and electromagnetic waves.

Another possible extension is to include an additional potential ∆B which does
not need to have any symmetries, but which is not too large and has suitable decay
properties at infinity. In order to treat such a potential, one takes the fermionic
signature operator of Theorem 5.5 as the starting point and treats ∆B as a finite
perturbation. Indeed, since the fermionic signature operator of Theorem 5.5 has a
spectral gap, one could adapt the methods developed in [14] for an external potential in
Minkowski space. We expect that the resulting FP state should be again of Hadamard
form.
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