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The tissue inhibitors of metalloproteinases (TIMPs) play a crucial role in the physiological turnover of the 
extracellular matrix {ECM) by tightly regulating matrix metailoproteinase flvIMP) activities. Disturbances in 
the TIMP/MMP system have been implicated in many disease processes where loss of ECM integrity is a 
principal feature. More recently, we have shown that mutations in TIMP3 cause the autosomal dominant 
disorder Sorsby's fundus dystrophy (SFD}. This is a macular degeneration disorder with characteristic ECM 
irregularities in Bruch's membrane. To further facilitate mutational analysis and to provide a basis for 
functional studies, we now report the genomic organization of the human TIMP3 gene. 

Cell-cell contacts in multicellular organisms are 
media ted  th rough  the extracellular  matr ix  
(ECM), which consists of a highly complex aggre- 
gate of secreted proteins and carbohydrates. In 
response to normal developmental changes and 
tissue turnover, the components of the ECM are 
continously subjected to degradation and resyn- 
thesis. Disturbances in these dynamic processes 
may lead to loss of ECM integrity, which is 
thought  to play an important  role in many 
pathologic conditions (Docherty et al. 1992). 

The coordinated remodeling of the ECM re- 
quires the tightly controlled activity of a number 
of proteinases, including the family of matrix 
metalloproteinases (MMPs). These MMPs are able 
to degrade all components of the ECM and the 
basement membranes (Matrisian 1990). The reg- 
ulation of the MMPs occurs at many levels and 
includes the tissue inhibitors of metalloprotein- 
ases (TIMPs). To date, three members of the TIMP 
gene family have been identified: TIMP1 (Do- 
cherty et al. 1985), TIMP2 (Boone et al. 1990), 
and TIMP3 (Apte et al. 1994a; Silbiger et al. 1994). 

The implication of TIMP3 in the pathogene- 
sis of Sorsby's fundus dystrophy (SFD) (Weber et 
al. 1994) has emphasized further the importance 
of the inhibitors in ECM homeostasis. SFD is an 
adult onset macular degeneration characterized 
by complications arising from ECM disturbances 
in Bruch's membrane (Capon et al. 1989). How- 
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ever, the exact molecular mechanisms by which 
these mutations cause SFD are still unknown. To 
facilitate the mutational and functional analysis 
of TIMP3, we determined the genomic structure, 
identified the exon/intron sequences of the gene, 
and analyzed the putative promotor region by an 
interspecies comparison with the mouse Timp3 
promotor. 

RESULTS AND DISCUSSION 

Genomic Organization of the Human TIMP3 
Gene 

Overlapping retinal TIMP3 cDNA probes were 
used to screen two flow-sorted chromosome 22- 
specific cosmid libraries. Five independent ge- 
nomic cosmid clones (I-224, P-118, B11B11, 
A12G11, and D8H6) were isolated and assembled 
into a contig spanning -100 kb of genomic DNA 
(Fig. 1). To identify fragments containing exonic 
sequences, cDNA probes were hybridized to 
EcoRI- or PstI-restricted cosmid DNAs. Three pos- 
itive EcoRI fragments  (6.5 kb derived from 
B11B11; 1.4 kb and 2.5 kb, both derived from 
D8H6), as well as a 0.3- and a 5.0-kb PstI fragment 
(both derived from 1-224) were subcloned and 
partially sequenced. Subsequently, alignment of 
the genomic sequences to the published TIMP3 
cDNAs revealed the exon/intron organization of 
the human TIMP3 gene that is encoded by 5 ex- 
ons (Fig. 1) with the most likely assignments of 
donor and acceptor splice junctions following 
the S'-GT-AG-3' rule (Breathnach et al. 1978). 

Exon 1 contains the translation initiation 
start codon ATG as well as 280 bp of upstream 
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Figure 1 Structure of the human TIMP-3 gene. The genomic organization 
was deduced from five overlapping genomic clones (I-224, P-118, B11B11, 
A12G11, and D8H6) indicated by solid lines. EcoRI restriction sites within the 
genomic clones are shown as solid bars and the size of the contig is represented 
as a broken line above the restriction map. The relative positions of the 5 exons 
are based on their location in the respective EcoRI fragment and are shown 
below the cosmid contig. Coding exons are indicated by solid boxes, 5'- and 
3'-flanking regions by hatched boxes, and introns by solid lines. 

sequence corresponding to the most S'-extending 
cDNA isolated (Silbiger et al. 1994). This suggests 
that the S'-flanking region of the TIMP3 gene is 
not  in ter rupted  further  by in tervening  se- 
quences. Exons 2-4 are 84, 112, and 122 bp, re- 
spectively. The 2.S-kb EcoRI fragment  from 
cosmid clone D8H6 contains exon S with the 
translation stop codon TGA and an additional 
10S7 bp of 3'-untranslated region. An EcoRI re- 
striction site 10S7 bp downstream of the stop 
codon is also present in published TIMP3 cDNAs 
(Byrne et al. 199S). 

The overall organization 
of the human TIMP3 gene 
seems very similar to that of 
the recently reported mu- 
fine homolog (Apte et al. 
199S). A comparison be- 
tween human and murine 
exon/intron splice junctions 
reveals that the coding re- 
gions in both species are in- 
terrupted by intervening se- 
quences at identical posi- 
tions within the respective 
triplet codons. In addition, a 
similar conservation of the 
relative locat ions of the 
exon/intron boundaries has 
also been reported for the 
murine Timp3 and Timpl 
genes (Apte et al. 199S). This 
suggests that the TIMP gene 
family might have evolved 
from a common ancestor 
and might have arisen by 
duplication of an ancient 
precursor TIMP locus. 

Comparison of the S'-flanking Regions of the 
Human and Mouse TIMP3 Genes 

Assuming very similar functions of the highly 
homologous TIMP3 genes in human and mouse 
(Silbiger et al. 1994; Leco et al. 1994), the regula- 
tion of TIMP3 expression should be subjected to 
strong evolutionary constraints for preservation 
of putative regulatory elements. Therefore, we 
compared -1200 bp of the S'-flanking region of 

Figure 2 Comparison between the 5' flanking regions of human and murine TIMP3 gene. (A) Schematic 
representation of the G + C content and frequency of CpG dinucleotides across the coding region of exon 1 and 
1184 bp of the 5'-flanking region of the human and murine TIMP3 genes. The G + C composition is indicated 
by a broken line; the observed versus expected frequency of CpG (obs/exp CpG) dinucleotides by a solid line 
along the sequence. Human and murine CpG islands that fulfill the criteria of moving averages of >50% G + C 
and a value of >0.6 for observed versus expected frequency of CpG dinucleotides (Gardiner-Garden and From- 
mer 1987) are shown by thick bars above the graphs. Below the plot, the relative position of the coding region 
of exon 1 is indicated as a solid box, indicating the translation start codon. The solid line represents 5'-flanking 
sequence, and the numbers below correspond to base pairs relative to the start codon ATG, with A being +1. (B) 
BESTFIT alignment of the nucleotide sequences of the putative promotor regions of human and murine TIMP3. 
Sequence data for the mouse gene are taken from Sun et al. (1995). The translation codon is marked by a solid 
box. The asterisks above the human and below the murine sequence denote the beginning of the longest isolated 
cDNA clones in the corresponding species (Leco et al. 1994; Byrne et al. 1995); the solid circle below the 
nucleotide adenine at position -316 indicates the major transcription start site of the mouse Timp3 gene (Sun 
et al. 1995). The G + C-rich cluster with significant sequence similarity between human and mouse as well as the 
conserved putative binding sites for SP1 and a possible TATA box are boxed. 
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human TIMP3 with published mouse Timp3 se- 
quences (Sun et al. 1995). 

G + C content  and observed versus expected 
frequency of CpG dinucleotides were determined 
along the entire 1184 bp of the S'-flanking region 
of mouse and human TIMP3 (Fig. 2A). The seg- 
ments  around nucleotides + 1 to -$80,  espe- 
cially, show high averages of > S0% G + C and 
values of > 0.6 for observed versus expected fre- 
quency of CpG dinucleotides, thus, fulfilling the 
criteria for the presence of true CpG islands in 
both species (Larsen et al. 1992) (Fig. 2A). Outside 
of this region, a round nucleot ides - I 1 8 4  to 
-$80, is a sharp decline in both the G + C content 
as well as in the observed versus expected CpG 
frequency similar to the observed suppression of 
CpGs in bulk genomic DNA (Fig. 2A). 

Alignment of the putative human and mouse 
TIMP3 promotor regions revealed an overall se- 
quence similarity of 75% (Fig. 2B). Significant se- 
quence similarities were found in the area around 
nucleot ides -$22  to -307.  In this stretch of 
DNA, we identified also three conserved putative 
Spl consensus binding sites at positions -452 to 
-447, -425 to -420, and -370 to -365 and a 
conserved TATA box at position -324 to -320 
(numbers are relative to the human TIMP3 start 
codon). The longest human TIMP3 cDNA clone 
isolated starts at nucleotide -283 (Byrne et al. 
1995), whereas the longest mouse cDNA begins 
at nucleotide -309 (Leco et al. 1994). A major 
transcription initiation site at position -316 has 
been defined for the mouse Timp3 gene (Sun et 
al. 1995) (Fig. 2B). Other putative transcription 
factor b inding sites (additional SP1 and AP1, 
PEA3, CTF/NF-1) were identified but did not ap- 
pear to be highly conserved between human and 
mouse populations. 

The presence of a potential  TATA box in 
TIMP3 is interesting in light of the fact that in the 
other two family members--murine  Timpl (Ed- 
wards et al. 1992) and human TIMP2 (DeClerck 
et al. 1994)--no such canonical TATA box has 
been identified. It has been suggested that  TIMP1 
and TIMP2 belong to the TATA box-deficient, 
G + C-rich promotor group (Edwards et al. 1992; 
DeClerck et al. 1994), which previously has been 
found to direct transcription of housekeeping 
genes (Dynan 1986), al though in some cases tis- 
sue-specific transcription may be possible also 
(Oliva et al. 1991). TIMP3 expression appears to 
be different from TIMP1 and TIMP2 in that it has 
been detected in many organs but seems to be 
restricted to certain tissue components,  for exam- 
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pie, the epithelial cells (Apte et al. 1994b). Thus, 
TIMP3 may be considered an intermediate be- 
tween constitutively expressed genes and tissue- 
or cell-specific expressed genes. 

Taken together,  we have determined the 
gene structure of human TIMP3 and have shown 
that the S exons of this gene span -SS kb of ge- 
nomic DNA. We have provided sequence infor- 
mation on all exon/intron boundaries that will 
great ly facil i tate the m u t a t i o n a l  analysis  of 
TIMP3 in human genetic diseases. Besides its in- 
volvement in SFD, TIMP3 might also play a crit- 
ical role in other human retinopathies 0ones et 
al. 1994), as well as in some debilitating disorders 
where loss of ECM integrity is a principal feature 
(Docherty et al. 1992). In addition, we have se- 
quenced 1200 bp of the 5'-flanking region of the 
human TIMP3 gene and, by sequence alignment 
to the homologous region in mouse (Sun et al. 
1995), have identified several highly conserved 
putative regulatory elements. Although these 
sites will have to be confirmed by binding assays 
and functional studies, those predictions may 
greatly facilitate the further characterization of 
the TIMP3 promotor region. 

NETHODS 
For library screening TIMP3 cDNA probes were obtained 
by RT-PCR amplification of total human retinal RNA with 
three primer pairs designed according to published TIMP3 
cDNA sequences (Silbiger et al. 1994). Primers used were 
S'TIMP (S'-TTCTCCTCCTCCTCTTGC-3')/1FF (S'- 
ACGATGTCGGAGTTGCA-3'), 1F (S'-TGGAGCCTGGGG- 
GACTGG-3')/1R (S'- CTGGGAGAGGGTGAGCTGG-3'), 
and 2F (S'- CAACTTCGTGGAGAGGTGGG-3')/2R (S'- 
AGGGTCTGGCGCTCAGGG-3'). High-density gridded fil- 
ters of chromosome 22-specific cosmid libraries were 
kindly provided by the Reference Library Data Base of the 
Imperial Cancer Research Fund, London, UK (constructed 
in Lawrist 4) and by Peter Scambler and Sara C.M. Daw, 
Institute of Child Health, London, UK (constructed in 
Lawrist 16 by the Lawrence Livermore National Laborato- 
ries, Livermore, CA). 

Overlaps between positive clones were detected by 
Southern blot hybridizations of T3-, SP6-, and T7-endclone 
fragments to EcoRI-restricted digests of the cosmid DNAs. 
Exon-containing cosmid fragments were subcloned into 
the plasmid vector pBluescript SK(-) (Stratagene). Double- 
stranded sequencing was carried out using the dideoxy 
chain termination method with vector-specific T3 and T7 
primers as well as internal exon-specific primers S'TIMP, 
1FF, 1F, 1R, 2F, and 2R. Exon/intron boundaries were iden- 
tified by alignment of the genomic sequence with the pub- 
lished TIMP3 cDNA (Silbiger et al. 1994) using MacVector 
sequence analysis software (release 4.0). The identified 
splice sequences were in excellent agreement with pub- 
lished consensus sequences. The distribution of G/C con- 
tent and observed versus expected frequency of CpG di- 
nucleotides along the human and mouse S' flanking se- 
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quence was plotted using the Wisconsin GCG package 
(version 8, 1994). For a window size of 200 bp the criteria 
for a CpG island are C + G > 50% and observed versus ex- 
pected CpG > 0.6. Optimal alignment of the putative hu- 
man and mouse promotor regions were achieved by using 
the GCG program BESTFIT. 
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