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2. Summary (German) 

Einleitung: Die stammzellreiche Stromal Vascular Fraction (SVF) kann aus 

Lipoaspirat oder Fettgewebe durch enzymatische Verdau und anschließender 

Zentrifugation gewonnen werden. Bisher hat sich jedoch weder ein einheitliches 

Extraktionsverfahren, noch eine gängige Methode zur Anwendung am Patienten 

durchgesetzt. Ein neues kommerziell erhältliches halbautomatisches System zur 

Herstellung von SVF verspricht Sterilität, konstante Ergebnisse und Anwendbarkeit 

im klinischen Alltag. Ziel dieser Arbeit war es die Menge und Qualität der SVF, 

welche mit diesem System gewonnen werden kann, mit einer etablierten manuellen 

Labormethode zu vergleichen. 

Material und Methodik: Die SVF wurde aus Lipoaspirat sowohl mit einem Prototyp 

der halbautomatischen UNiStation (NeoGenesis, Seoul, Korea) als auch mittels einer 

etablierten manuellen Labormethode extrahiert. Nach Lyse der verbliebenen 

Erythrozyten in der SVF erfolgte eine Messung mittels multiparametrischer 

Durchflusszytometrie (FACSCanto-II, BD Biosciences). Von Interesse war vorrangig 

die (Quantität) Gesamtzellzahl des gewonnenen Materials. Zusätzlich wurde die 

Qualität der SVF anhand des Stammzellmarkers CD34, dem Leukozytenmarker 

CD45 und dem Marker CD271 für hochproliferative Stammzellen untersucht. Des 

Weiteren wurden die prozentuale Verteilung dieser Marker in der SVF, doppelt 

positive Zellen und der stain index ermittelt. 

Ergebnisse: Aus Lipoaspirat von sechs Patienten wurde sowohl mit der Maschine (d 

für „device“) als auch der (manuellen) Labormethode (h für „hand preparation“) eine 

makroskopisch sichtbare SVF erzeugt. Mit der maschinellen Extraktion war die 

Zellausbeute pro ursprünglichem Gramm Lipoaspirat jedoch tendenziell geringer (d: 

1.1*105±1.1*105 vs. h: 2.0*105±1.7*105; p=0.06). Bei der Zusammensetzung der SVF 

zeigte sich der Anteil an CD34+ Zellen nach maschineller Extraktion signifikant 

reduziert (d: 57.3±23.8% vs. h: 74.1±13.4%; p=0.02). Im Gegensatz dazu lag der 

Anteil an CD45+ Leukozyten tendenziell höher (d: 20.7±15.8% vs. h: 9.8±7.1%; 

p=0.07). Die Fraktion hochproliferativer CD271+ Zellen zeigte unabhängig von der 

Extraktionsmethode vergleichbarer Ergebnisse ohne signifikanten Unterschied (M: 

13.4±11.6% vs. L: 12.9±9.6%; p=0.74). Es konnte kein Unterschied bzgl. des Anteils 

doppelt positiver Zellen für CD34+/CD45+ (d: 0.5±0.6% vs. h: 0.3±0.2%; p=0.21) 
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sowie CD34+/CD271+ (d: 1.9±2.3% vs. h: 2.4±2.0%; p=0.42) festgestellt werden. 

CD45+/CD271+ doppelt positive Zellen konnten in keiner Probe nachgewiesen 

werden. Außerdem gab es keinen signifikanten Unterschied bezüglich des Stain 

Index (p>0.12). 

Diskussion und Schlussfolgerung: Das halbautomatisierte System ermöglicht auf 

kleinstem Raum nennenswerte Mengen an SVF steril zu gewinnen. Diese SVF 

unterscheidet sich nur geringfügig in der Zusammensetzung gegenüber der 

manuellen SVF Extraktion. Insgesamt decken sich die Ergebnisse beider Methoden 

sehr gut mit den aus der Literatur bekannten Werten. Das halbautomatisierte System 

bietet die Möglichkeit, Forschung und Anwendung der SVF einen Schritt näher in die 

Klinik zu bringen. 
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3. Summary 

Introduction: The stem cell rich Stromal Vascular Fraction (SVF) can be obtained by 

enzymatic digestion with a collagenase followed by centrifugation from patients’ 

lipoaspirate or fat tissue. To date neither a standardized extraction method nor a 

generally accepted application procedure exists for common use on patient. A novel 

commercially available semi-automated device for the extraction of SVF promises 

sterility, consistent results and usability in the clinical routine. The aim of this work 

was to investigate the quantity and quality of the SVF obtained by a semi-automated 

process in comparison to an established manual laboratory method. 

Material and Methods: SVF was extracted from lipoaspirate by a prototype of the 

semi-automated UNiStation (NeoGenesis, Seoul, Korea) as well as by hand 

preparation with common laboratory equipment. The SVF was measured by multi-

parametric flow-cytometry (FACSCanto-II, BD Biosciences) following the lysis of the 

remaining erythrocytes. The primary interest was the total cell number (quantity) of 

the extracted cells. In addition, the quality of the SVFs was investigated using the 

stem cell marker CD34, the leucocyte marker CD45 and the marker CD271 for highly 

proliferative stem cells. Furthermore, the distribution of these markers, double 

positive cells and the stain index were investigated. 

Results: Lipoaspirate obtained from six patients was processed with both the novel 

device (d) as the hand preparation using laboratory equipment (h), always resulting 

in a macroscopically visible SVF. However, there was a tendency of a fewer cell yield 

per gram of used lipoaspirate with the device (d: 1.1*105±1.1*105 vs. h: 

2.0*105±1.7*105; p=0.06). Regarding the composition of the SVF, the percentage of 

CD34+ cells was significantly reduced with the device (d: 57.3±23.8% vs. h: 

74.1±13.4%; p=0.02). On the contrary there was a tendency to a higher percentage 

of CD45+ leukocytes (d: 20.7±15.8% vs. h: 9.8±7.1%; p=0.07). The percentage of 

highly proliferative CD271+ cells was comparable for both methods (d: 13.4±11.6% 

vs. h: 12.9±9.6%; p=0.74). No significant difference was identified regarding the 

double positive cell fraction for CD34+/CD45+ (d: 0.5±0.6% vs. h: 0.3±0.2%; p=0.21) 

and CD34+/CD271+ (d: 1.9±2.3% vs. h: 2.4±2.0%; p=0.42). Double positive cells for 

CD45+/CD271+ were not detected in any sample. The stain index did not show a 

significant difference between the two extraction methods (p>0.12). 
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Discussion: The semi-automated system was able to provide considerable amounts 

of sterile SVF without requiring much space. The SVF extracted by the semi-

automated process showed only little difference in its composition compared with the 

SVF obtained by the hand preparation. Taken together both methods showed 

comparable extraction results which are in accordance with the data from literature. 

This semi-automated system offers an opportunity to take research and application of 

the SVF one step further to the clinic. 
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4. Abbreviations 

AB Antibody 
APC Allophycocyanin 
ASCs Human adipose tissue-derived stem cells 
ATMP Advanced therapy medicinal products 
CV Crystal violet 
CAL Cell assisted lipotransfer 
DAPI 4′,6-Diamidin-2-phenylindol 
FBS Fetal bovine serum 
FSC Forwardscatter (Flow Cytometry) 
HGF Hepatocyte growth factor 
IDO  indoleamine 2,3-dioxygenase  
IGF1 Insulin-like growth factor 1 
IL10 Interleukin 10 
ISCT International Society for Cellular Therapy 
MEM Minimum eagle medium 
mg Milligram 
ml Milliliter 
µg Microgram 
µl Microliter 
P Passage 
PBS Phosphate buffered saline 
PE Phycoerythrin 
PE-Cy7 Phycoerythrin-Cy7 
PFA Paraformaldehyde 
PGE2 Prostaglandin E2 
rpm Rounds per minute 
SVF Stromal vascular fraction 
SSC Sidewardscatter (Flow Cytometry) 
TGFβ Tissue growth factor β 
U Unit 
V Volume 
VEGF Vascular endothelial growth factor 
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5. Introduction 

5.1.  Stem Cells 

A defining feature of stem cells is their self-renewal while maintaining the potential to 

differentiate into various cell types and lineages. However, the potential of stem cells 

depends on their origin and possible lineage specification during early stages of 

differentiation: Therefore, zygotes are referred as totipotent, capable of giving rise to 

any cell of an embryo including extra-embryonic tissue like the placenta. The 

potential of zygotes to differentiate during embryonic development becomes limited 

to one of the three germ layers (i.e. ectoderm, mesoderm, endoderm (1)) which is 

defined as pluri-potency. The multi-potent character of differentiation defines cells 

that are only able to differentiate into cell types of one germ layer. The following cells 

are only capable of creating a specific tissue which makes them progenitor cells. This 

leads to tri-, bi- and finally uni-potential cells which are the basis for mature tissue 

cells. By reaching the stage of a progenitor cell, they lose their telomerase activity 

and thus their potential for self-renewal. This restricts them to the Hayflick limit of 50-

70 population doublings before cell senescence and programmed cell death (2). 

However, a limited number of cells keep their properties of self-renewal and 

differentiation. They are required for continual maintenance and repair of tissues and 

organs throughout the organism's lifespan and are specified as adult stem cells (3). 

5.2.  Mesenchymal Stem Cells 

There is a hierarchy between adult stem cells, equal to the hierarchy during 

embryogenesis. Most of them are tissue specific precursor cells with low 

differentiation potential. They can differentiate into a few cell types only. Some other 

stem cells have a higher differentiation potential and can differentiate into a variety of 

cells types. Between the 1960s and 1970s one type of adult stem cells was identified 

as a subpopulation of bone marrow cells, however different from hematopoietic stem 

cells. They demonstrated a fibroblast like morphology, culture plastic adherence and 

osteogenic differentiation potential (4). In 1990, these cells were termed 
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"mesenchymal stem cells" (MSCs) for the first time by Caplan (5). In 2006, a concise 

definition was established by the International Society for Cellular Therapy (ISCT). 

Mesenchymal stem cells were defined as plastic adherent cells with a special 

phenotype (positive for CD105+, CD73+, CD90+ and negative for CD45-, CD34-, 

CD14- or CD11b-, CD79a- or CD19- and HLA-DR-) and with the ability to differentiate 

into osteoblasts, adipocytes and chondroblasts in vitro (6). Nowadays, it is known 

that MSCs exist in bone marrow and many other tissues, e.g. in adipose tissue, skin, 

muscle, kidney, dental pulp and the heart (7). Moreover, recent in vitro experiments 

consistently provided evidence that MSCs can not only differentiate into 

mesenchymal cell lineages (as the previously named osteoblasts, adipocytes, and 

chondrocytes) but also into non-mesenchymal cell lineages as skeletal muscle cells, 

hepatocytes, endothelial or neuronal cells under appropriate culture conditions (8). 

Growing evidence suggests that MSCs might have a close relation to pericytes 

(9,10). Their exact origin still remains unclear. However, the interest in MSCs for 

novel cellular therapies grew over the last decade, accompanied by an increasing 

number of scientific publications. 

5.3.  Sources of Mesenchymal Stem Cells 

MSCs can be found in various tissues (11) and have been investigated for their 

capacity of self-renewal and differentiation. For research purpose, and especially 

clinical application, a minimal invasive, easily accessible and abundant source of 

MSCs is required. Over the past decades MSCs were primarily isolated from bone 

marrow aspirates and are referred to as bone marrow mesenchymal stem cells 

(BMSCs). In 2002 Zuk et. al. (12) published the successful isolation of MSCs from 

adipose tissue for the first time, and provoked great interest in these cells and 

especially in their potential for clinical applications. The isolated heterogeneous cell 

mixture is commonly referred to as stromal vascular fraction (SVF) and the plastic 

adherent subpopulation as adipose tissue-derived stem cells (ASCs). 

There exist various methods and variants for harvesting fat tissue. Direct fat 

resection from the abdomen is reported to have the highest cell yield compared to 

axilla and flank adipose tissue (13). However, liposuction appears to be the more 

suitable extraction technique given the fact that this technique is less invasive for the 
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patient, along with higher and maintained viability of cells (14). Thus, adipose tissue 

represents a valuable source for mesenchymal stem cells irrespective of the 

extraction method. 

5.4.  MSCs from Bone Marrow and Adipose Tissue 

MSCs from bone marrow and adipose tissue share similar cell properties, but are not 

exactly identical. Therefore, direct comparison of published experimental outcomes is 

limited. On the one hand, BMSCs and ASCs demonstrate plastic adherence and 

spindle-like morphology (15), and are both able to differentiate into non-

mesenchymal cell lineages as skeletal muscle cells, heart muscle cells and neuronal 

cells in vitro (16). On the other hand, they show a similar, however not identical 

expression of surface proteins. For example CD36 and CD49d is expressed on ASCs 

only, while CD49f, CD104 and CD106 are only present on BMSCs (17). Moreover, 

another difference is the expression of CD34. While cells of fresh isolated SVF are 

highly positive for CD34, the resulting ASCs stop expressing this marker and tend to 

be negative for this surface protein (18), as reported for BMSCs. A new and distinct 

definition of the SVF and ASCs was established by the International Society for 

Cellular Therapy in 2013 based on these new insights (19): General markers for stem 

cells were defined in the SVF (positive for CD34+ and negative for CD31-, CD45-, 

CD235a-) and ASCs (positive for CD73+, CD90+ and negative for CD31-, CD45-). 

However, similar beneficial potential have been reported for BMSCs and ASCs 

despite the differences in surface antigen expression. The beneficial effect of these 

cells has been explained not only by their differentiation potential but even more by 

the secretion of soluble factors. On the one hand, there are growth factors like 

insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor (VEGF), 

which are produced by BMSCs as well as by ASCs (20). On the other hand, there 

are immune-modulative and immune-regulative factors like indoleamine 2,3-

dioxygenase (IDO), tissue growth factor β (TGFβ), prostaglandin E2 (PGE2), 

hepatocyte growth factor (HGF) and interleukin 10 (IL10). These factors are capable 

to modulate the adaptive immune and innate immune system in various ways (21). 

Thus, BMSCs and ASCs alter the micro-environment by secreting bioactive proteins 
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which induce an anti-inflammatory response, and is currently investigated for 

regenerative therapies (3,22). 

A tremendous interest on a regenerative therapeutic strategy exists for example for 

ischemic diseases, like myocardial infarction. A myocardial infarction causes a 

cascade of inflammation, scarring and heart failure. MSCs have been reported to 

limit the extend of cardiac remodeling and improve the ejection fraction in vitro and in 

vivo, independent of MSCs origin (23). It has been shown, that only 1% of the 

injected cells are present at the injection site after 24h (24). Therefore, it is suggested 

that the positive effects are not mainly caused by differentiation of MSCs or 

contribution of contractile elements. The beneficial effect might be related to the 

MSCs' paracrine mechanisms that regulate the immune response and also to the 

secretion of IGF1 and VEGF preventing apoptosis of cardiomyocytes under hypoxia 

(25). 

5.5. Advantages of Stem Cells from Adipose Tissue 

Bone marrow is commonly obtained by punctuation of the iliac crest or vertebral 

bodies. Aspirations of high amounts up to more than one liter are possible (26). 

However, bone marrow is connected to the blood circulation and higher aspiration 

volumes cause dilution of the bone marrow with peripheral blood (27). This results in 

a lower concentration of nucleated cells while harvesting huge volumes of bone 

marrow. Therefore, it has been suggested, that bone marrow should be aspirated 

carefully in multiple small fractions of each 1ml to 4ml at every spot and level in the 

bone marrow (28). In addition, high volume aspirations require general anesthesia 

since the aspiration volume in local anesthesia is limited to about 40ml (16). Further 

aspiration is associated with high anxiety and pain of the patient (29). Bone marrow 

aspirates show a range of 1*107 to 5*107 nucleated cells/ml varying due to dilution 

(30,31). 

The liposuction procedure can be performed to obtain tissue amounts starting from 

50ml up to 3000ml whereas the amount of harvested tissue determines anesthesia 

(i.e. local or general anesthesia) (32). The lipoaspirate (or excised fat tissue) is 

digested with a collagenase, resulting in a heterogeneous cell mixture which is 
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referred as stromal vascular fraction (SVF). The concentration of nucleated cells per 

gram fat or milliliter lipoaspirate has been reported as 1*105 to 5*105 which is lower 

than reported yields in bone marrow (33–35). However, only 0,001%-0,002% of the 

nucleated cells in bone marrow represent MSCs, while the SVF contains 1-2% of 

MSCs (36). Thus, a total number of 100 to 1000 MSCs can be obtained from 1ml 

bone marrow aspirate but 1g fat tissue or 1ml lipoaspirate can yield 5000 MSCs (16). 

Taken together, the easy and safe access to fat tissue, the possibility of large-volume 

harvests and the higher concentration of MSCs underline the favorable usage of 

adipose tissue for regenerative therapies and tissue engineering. 

5.6.  SVF and ASCs for autologous therapy 

Mesenchymal stem cells based therapies originated from adipose tissue are currently 

under investigation in pre-clinical and clinical trials. Direct application of 

heterogeneous SVF after extraction is currently investigated but also ASCs which are 

selected as a subpopulation from the SVF by cell culture. The application of a 

selected subpopulation requires a second therapeutically intervention but enables 

preservation for later application and also in vitro tissue engineering purposes. 

However, cell culturing bears the risk of contamination and induces significant 

changes in the expression of surface proteins (18) and the cell phenotype (37). 

Furthermore, these changes are depending on cell culture supplements or cell 

culture plate, leading to a high variability between different culture protocols (38). The 

use of the SVF has become an even more attractive alternative for autologous cell-

based therapies since immediate application does not require cell culture 

procedures. 

The application of freshly isolated SVF in a rat model of a chronic myocardial 

infarction provided evidence that the left ventricular ejection fraction significantly 

improved from 26.46% (95% confidence interval: 17.48% - 32.02%) to 38.25% (95% 

confidence interval: 28.77% - 47,73%) three months after treatment. No significant 

results were documented for the control group in a three month follow up (39).  

An increased interest amongst orthopedic and trauma surgeons for ASCs was 

caused by the discovery of osteogenic differentiation potential of these cells. 
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Currently, bone autografts from the iliac crest are used for augmentation of damaged 

or lost bone. The iliac crest represents a limited source and therefore, alternative 

resources are under investigation. Different types of three dimensional ceramic and 

biodegradable scaffolds were combined with ASCs and tested in different animal 

models. An increased vascularization and a better distribution of applied cells within 

the scaffold has been reported. This effect was also apparent when the scaffolds 

were combined with freshly isolated SVF highlighting the advantages of SVF for 

future bone tissue engineering (40). 

A positive effect on hypertrophic scars has been shown for both SVF and cultured 

ASCs in a humanized skin graft model of nude mice. A significant reduction of the 

scar thickness and the amount of collagen was evident two weeks after the 

application of either SVF or ASCs compared to a control group. However, the 

beneficial effect was higher for ASCs due to the fact that the heterogeneous SVF 

contains cells that have an impact on the scar remodeling capacity of stem cells itself 

(41). 

In addition, freshly isolated SVF has been used for cell assisted lipotransfer (CAL) for 

soft tissue augmentation. The reason for this is mainly that solely re-injection of 

lipoaspirate is associated with an unpredictable loss of graft volume between 20% to 

90% due to a lack of vascularization accompanied with central necrosis and fibrosis 

(42). The SVF supported lipo-autograft has been reported with better graft survival, 

enhanced vascularization and low complication rate (43). Therapeutic options are 

currently tested for breast reconstruction, breast augmentation, facial lipoarthrophy 

and other aesthetic or reconstructive indications. Recently, Yoshimura et al. reported 

promising results concerning engraftment for the treatment of breast implant 

complications (44). However, further research has to be performed in order to 

determine reasonable clinical application with standardized protocols and safety 

guidelines, especially regarding CAL in patients with a tumor history (45). 
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5.7. Rationale for the use of a Medical Device 

SVF-based therapies for clinical use require standardized and predictable results in 

cell quality and quantity. In addition, extraction of the SVF has to be performed in an 

operating room with a sterile system preventing contamination (46).  

The aim of a medical device for SVF extraction is to provide well defined and even 

automated extraction steps. This assures that all procedures will be conducted in 

accordance with the laws for autologous tissue transplantation since National 

regulations and a European regulation (1394/2007/EC) on advanced therapy 

medicinal products (ATMPs) exist (45,47). But in every case it is necessary that the 

application has to be performed in the shortest possible time to reduce the time of the 

lipo-aspirate and the SVF cells outside the body. Finally, there is a financial aspect 

regarding the costs of the device and also the consumables that are needed for 

every single treatment. 

In summary, the following demands are required from a medical device: 

- Standardized protocol 

- Sterility and usage in the operating room 

- Fast application regarding patient's safety and law regulations 

- Reasonable price for the device and consumables 

5.8. Medical devices 

Various medical devices were launched during the past years to satisfy the 

requirements for a cell therapy, whereas every device is based on a different 

extraction strategy. Aronowitz et Ellenhorn (48) compared four commercially 

available systems for cell assisted lipotransfer (CAL): In particular, an open manual 

system including a biosafety hood (Multi Station, PNC), a closed semi-automated 

processing system (Cha-Station, CHA Biotech), a closed fully automated processing 

system (Celution, Cytori) and a closed manual processing system (Lipokit, Medi 

Khan) were compared with each other. While all systems were able to provide a 

SVF, the overall cell yield and the reproducibility of the results varied significantly 

between the systems. The best and most constant results (2,41*105 cells per gram 
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lipoaspirate) were achieved with the fully automated system. The variability of the 

extracted cell product can be minimized but requires the highest price for the device 

and the consumables. 

The medical device UniStation (NeoGenesis Co. Ltd, Seoul, Korea) which is a semi-

automated system for SVF extraction and CAL was characterized and evaluated in 

the present study. The Extraction results were compared to a common laboratory 

hand preparation method using identical samples of lipo-aspirate for direct reference 

purpose. Advantages of this new device are the compact design and the few and 

easy to handle consumables, which enable the application in every operating room or 

laboratory. Furthermore, a high amount of 800ml lipoaspirate can be processed at 

the same time which might be supportive for further research and a more 

standardized development of cell-based therapies. 

5.9. Molecular markers 

The main aim of this work was to characterize and compare the extracted SVF 

population between the novel medical device and a hand preparation method. The 

identification of stem cells was performed by multi-parametric flow cytometry using 

different fluorescent dye conjugated antibodies. As proposed by the ISCT (19), a 

combination of positive and negative molecular markers was chosen in order to 

obtain as much information as possible with a limited number of antibodies. 

Antibodies against CD34 and CD271 were chosen since these molecular markers 

are known to be expressed on mesenchymal stem cells in adipose tissue (49). 

Furthermore, CD45 was used as a negative control for mesenchymal stem cells 

since this leucocyte marker is not expressed on stem cells but on leucocytes (6). All 

applied molecular markers for characterization of extracted cells are described in 

detail in the following sections. 

5.9.1. CD34 

The surface protein CD34 is mainly expressed on hematopoietic stem cells and on 

several other cell lineages and precursor cells (50). 60-80% of the SVF cells are 

positive for CD34 and are reported to play an important role in vasculogenesis (51). 
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Interestingly, a CD34 down-regulated expression becomes apparent during in vitro 

cultivation of fresh isolated SVF (18). 

5.9.2. CD45 

The transmembrane phosphatase CD45 can be found on all mature blood cells, 

except erythrocytes and platelets (52) and therefore is often referred to as the 

leukocyte common antigen. This is why the CD45 antibody was used to identify 

leucocytes in the SVF but also to confirm no expression on CD34 positive MSCs as 

reported in various studies (6,53). Thus possible influences of the preparation 

method on the number of leukocytes could be investigated. 

5.9.3. CD271 

CD271, also known as LNGFR (low affinity nerve growth factor) or p75NTR 

(neutrophin receptor), is a surface protein expressed on MSCs with a high 

proliferative potential (54). This marker was proposed as suitable for the identification 

of MSCs originating from adipose tissue since CD271+ positive subpopulations were 

identified in the SVF (55). However, the number of CD271+ positive cells decreases 

in adipose tissue and consequently in the SVF with patients’ age (56). 
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6. Aim of the study 

The aim of the study was to investigate the influence of a new semi-automated 

process on the cell quality and quantity of stromal vascular fraction (SVF) and 

adipose tissue-derived stem cells (ASCs) from lipoaspirates. SVF was either isolated 

by a semi-automated process using a new medical device or by conventional hand 

preparation using laboratory equipment. The total number of cells was determined in 

the SVF extracted using both methods. In addition, cell populations of the extracted 

cells were investigated for three cell surface markers (i.e. CD34, CD45, CD271) by 

flow cytometry. Moreover, ASCs were cultured from both extraction techniques and 

characterized for their CFU capacity. 
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7. Material and methods 

7.1. Materials 

7.1.1. Cells and tissues 

Lipoaspirate Gained with informed consent from 
elective tumescent liposuction  

Stromal vascular fraction (SVF) Extracted from lipoaspirate 
(described in 7.2 Extraction of the 
stromal vascular fraction) 

Human adipose-tissue derived stem cells 
(ASCs) 

Defined as all cells of the SVF that 
adhere to cell culture plastic 

7.1.2. Culture media and supplements 

DMEM, Low Glucose, Pyruvate (Gibco®) Life technologies, Darmstadt, Germany 
Minimum Essential Medium Eagle Alpha 
Modification (α-MEM) 

Sigma-Aldrich, Taufkirchen, Germany 

Fetal bovine serum (FBS): 
South America Premium 

PAN Biotech, Aidenbach, Germany 

Penicillin (10000U/ml) Streptomycin 
(10mg/ml) 

Sigma-Aldrich, Taufkirchen, Germany 

GlutaMAX™ Supplement Life technologies, Darmstadt, Germany 

7.1.3. Fluids and other reagents 

Dulbecco's Phosphate Buffered Saline 
(PBS) 

Sigma-Aldrich, Taufkirchen, Germany 

Paraformaldehyde (PFA) Powder Sigma-Aldrich, Taufkirchen, Germany 
Crystal Violet Powder Carl Roth, Karlsruhe, Germany 
Dimethylsulfoxide (DMSO) Sigma-Aldrich, Taufkirchen, Germany 
Ammonium chloride (NH2Cl) Sigma-Aldrich, Taufkirchen, Germany 
Potassium hydrogencarbonate (KHCO3) Sigma-Aldrich, Taufkirchen, Germany 
Ethylenediaminetetraacetic (EDTA) Sigma-Aldrich, Taufkirchen, Germany 

7.1.4. Cell Culture equipment 

Filtertop cell culture flask, 175cm², sterile Greiner Bio One, Frickenhausen, 
Germany 

Polystyrene Culture Dish 60X15mm BD Falcon, Heidelberg, Germany 
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Polystyrene Culture Dish 100X20mm BD Falcon, Heidelberg, Germany 
Cryogenic Vial self standig 2ml Simport Scientific, Beloeil, Canada 
CoolCell® Alcohol-Free Cell Freezing 
Containers 

PELOBiotech, Planegg, Germany 

Tubes, 15 or 50ml, PP, graduated, 
conical bottom, blue screw cap, sterile 

Greiner Bio One, Frickenhausen, 
Germany 

Serological pipette 5ml, 10ml or 20ml 
individually packed 

Greiner Bio One, Frickenhausen, 
Germany 

Eppendorf Easypet Eppendorf, Wesseling-Berzdorf, 
Germany 

Steriflip Filter Unit 50ml 100µm MERCK Millipore, Schwalbach, 
Deutschland 

7.1.5. Enzymes 

Trypsin (EC 3.4.21.4) PAN Biotech, Aidenbach, Germany 
Liberase MNP-S (EC 3.4.24.-) Roche, Mannheim, Germany 

7.1.6. Antibodies and Kits 

CD34 R-PE-conjugated mouse-anti-
human monoclonal Antibody (clone 563) 

BD Pharmingen, Heidelberg, Germany 

PE Mouse IgG1, κ Isotype Control BD Pharmingen, Heidelberg, Germany 
PE-Cy™7conjugated Mouse Anti-Human 
CD45 (clone HI30) 

BD Pharmingen, Heidelberg, Germany 

PE-Cy™7 conjugated Mouse IgG1 κ 
Isotype Control 

BD Pharmingen, Heidelberg, Germany 

CD271 (LNGFR) APC antibodies Human 
(clone ME20.4-1.H4) 

Miltenyi Biotec, Bergisch Gladbach, 
Germany 

IgG1 APC isotype control antibodies Miltenyi Biotec, Bergisch Gladbach, 
Germany 

AccuCheck Counting Beads Life technologies, Darmstadt, Germany 
5ml Polystyrene Round-Bottom Tube 
with Cell-Strainer Cap 

BD Bioscience, Heidelberg, Germany 

7.1.7. Equipment for preparation with a medical device 

UNiStation Neogenesis, Seoul, Korea 
UNiSyrige Neogenesis, Seoul, Korea 
Steel Cap for syringe Neogenesis, Seoul, Korea 
Steel transfer piece Neogenesis, Seoul, Korea 
Original-Perfusor Syringe 50ml (Luer 
Lock) 

B Braun, Melsungen, Germany 
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7.1.8. Software 

ScopePhoto (version: 3.0.12.792) ScopeTek 
BD FACSDiva (version: 7.0) BD Biosciences, Heidelberg, Germany 
Office 2007 Microsoft 
SPSS Statistics (version 20) IBM, Chicago, USA 
Graph Pad Prism (version 5.01) Graph Pad Software 

7.1.9. General Equipment 

Laminar Flow Fume Hood M18 Schulz, Sprockhövel, Germany 
Heracell™ 240i CO2 Incubator Thermo Scientific, Dreieich, Germany 
Inverse mikroscope “Wilovert S” with 8M 
Pixels camera 

Hund, Wetzlar, Germany 

BD FACSCanto II Flow Cytometer BD Biosciences, Heidelberg, Germany 
Water bath WB10 Memmert, Schwabach, Germany 
Tubes, 50ml, PP, graduated, conical 
bottom, blue screw cap, sterile 

Greiner Bio One, Frickenhausen, 
Germany 

Serological pipette 5ml, 10ml or 20ml 
individually packed 

Greiner Bio One, Frickenhausen, 
Germany 

Eppendorf Easypet Eppendorf, Wesseling-Berzdorf, 
Germany 

Steriflip Filter Unit 50ml 100µm MERCK Millipore, Schwalbach, 
Deutschland 

Shaker ("Schüttler") SM30 with Incubator 
("Inkubationshaube") TH 30 

Edmund Bühler, Hechingen, Germany 

Precicion scale EW 6200-2NM Kern, Balingen, Germany 
Multifuge 3s, table centrifuge Thermo Scientific, Dreieich, Germany 
Biofuge fresco, for 24x2ml Thermo Scientific, Dreieich, Germany 
Vortex Genie 2 Scientific Industries, Bohemia, New York, 

USA 
Neubauer improved, depth 0,1mm Marienfeld Superior, Lauda-Königshofen, 

Germany 
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7.2. Extraction of the Stromal Vascular Fraction 

Patients undergoing elective liposuction gave written consent for harvesting 

subcutaneous fat tissue which was in accordance with the guidelines of the 

Declaration of Helsinki for biomedical research and approved by the institutional 

ethics committee of the University Medical Center of Regensburg (Nr. 08/117). 

Lipoaspirate was obtained by tumescent infiltration followed by liposuction (Figure 1). 

 

Figure 1 Liposuction procedure after tumescent infiltration at the left outer thigh. The area of 
liposuction is marked prior to the operation in accordance with patients request for aesthetic 
outcome. The liposuction cannula is maintained parallel to the surface during the suction 
procedure while the left hand is providing direction guidance. 

The lipoaspirate contains rests of tumescent, debris, blood, oil and various cells 

integrated in fat tissue. These cells are released after tissue digestion with the MNP-

S Liberase (Roche). Washing and centrifugation of digested tissue provide an 

inhomogeneous cell product consisting of lymphocytes, progenitor cells, 

mesenchymal stem cells and erythrocytes which is referred to as stromal vascular 

fraction (SVF). 

The extraction was performed by "Hand preparation" with common laboratory 

equipment and by a "Preparation with a medical device" using the UniStation 
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(NeoGenesis Co. Ltd, Seoul, Korea), a prototype of a heatable centrifuge with a 

shake setting. Both will be described precisely in the following sections and are 

based on two crucial steps: 

1. Disintegration of the cells by digestion with a collagenase (MNP-S Liberase, 

Roche) 

2. Isolation of the cells by centrifugation 

SVF sample pairs were obtained since 80 ml lipoaspirate from each patient was 

extracted by both methods using 40 ml by each method. Flow cytometry was applied 

for all samples and pairs. The extraction methods were compared regarding overall 

cell number, the percentage of single positive cells, double positive cells and the 

stain index of the investigated markers (i.e. CD34, CD45, CD271 as described 

previously in 5.9 Molecular markers used in this work). In addition, SVF samples from 

both extraction procedures were cultured in order to obtain ASCs which were 

characterized by their CFU Capacity. 

The order of the methods and the outcome parameters used in this work are shown 

below in a flow diagram (Figure 2). 
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Figure 2 Flow diagram of the used methods and outcome parameters (marked bold). 
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7.2.1. Hand preparation 

7.2.1.1. Description 

Common laboratory equipment was used, in particular a sterile fume hood, a shaking 

incubator, a sterile filtering system, sterile serological pipettes and sterile 

centrifugation tubes. 

7.2.1.2. Protocol 

A total of 40ml lipoaspirate was processed and for better handling separated into 

20ml portions. Each of the 20 ml portions was placed into sterile centrifugation tubes 

of 50ml volume and equal volume of DMEM mixed with 2.5 mg to 5 mg of the MNP-S 

Liberase were added (i.e. 0.125mg-0.25mg MNP-S Liberase per 1 ml of lipoaspirate). 

Immediately after incubation, the sample was incubated on a shaker with 100rpm at 

37°C for 45min. The digested tissue was vigorously pipetted up and down ten times 

with a 25ml serological pipette to release remaining tissue bound cells. The 

suspension was filtered through a 100µm sterile filter system and centrifuged at 500g 

for 5min. The supernatant containing tumescent, debris and blood with an oil layer on 

top was carefully removed with a serological pipette without disturbing the cell pellet. 

The remaining pellet containing the SVF was re-suspended in 10ml of PBS. The 

steps of centrifugation, discarding of the supernatant and re-suspension in PBS were 

performed two more times until the SVF pellet was clean and neither oil nor tissue 

residue remained. 
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Figure 3 Hand preparation. 20ml of lipoaspirate (1) are mixed with equal volume of 20ml 
DMEM and 2.5-5mg of MNP-S Liberase (2). The tissue is digested after 45min of incubation 
at 37°C and shaking at 100rpm (3) and can be filtered through a sterile 100µm filter system 
(4). After the following centrifugation, the oily and fluid phase on the top can be clearly 
distinguished (5). After discarding of the supernatant and washing with PBS, the pellet 
representing the SVF is clearly visible on the bottom of the centrifuge tube (6). 

Afterwards, 5ml of culture medium (αMEM containing 20% FBS) were added to 

inhibit the activity of the MNP-S Liberase. The tube was centrifuged at 300g for 5 

minutes, and the supernatant was removed with a serological pipette. The resulting 

SVF pellet was immediately re-suspended in PBS for further experiments or in 

culture medium for in vitro experiments. After re-suspending in culture medium, the 

cell suspension was plated in a cell culture flask and handled as described in 7.4 Cell 

culture. Cells from the SVF which were able to adhere to cell culture plastic under 

cell culture conditions (7.4.1 Medium and culture conditions) were defined as ASCs. 

7.2.2. Preparation with a medical device 

The medical prototype device UniStation (NeoGenesis Co. Ltd, Seoul, Korea) for 

semi-automated extraction of the SVF was used in order to investigate consistent 

extraction results (i.e. cell count, cell composition, cell viability).  

7.2.2.1. Description of the used tools 

The medical device contains a heatable centrifuge (Figure 4) with a shaking plate 

that can be placed on top of the centrifuge (Figure 5). The sterile syringes used for 

processing provide a standard Luer Lock (ISO 594-1:1986) for connection with sterile 
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needles, sterile caps, and a sterile transfer piece to connect two syringes (Figure 6). 

Therefore, a closed sterile compartment can be established between the syringes 

and the transfer piece. A detachable handpiece can be connected to the plunge by a 

thread and is removed prior to centrifugation to fit into the centrifuge. 

A four sequence program was used for the extraction of the SVF and is specifid in 

detail in Table 1. The medical device is preheated to 37°C prior to extraction process 

and temperature is maintained at this level for all steps. 

 

Figure 4 The interior of the medical device shows the centrifuge with 16 slots for syringes. 
The heater is located behind the silver surroundings. 

 

 

Figure 5 Shaking plate placed on top of the centrifuge for the incubation step (program A2) 
offering space for eight syringes. No centrifugation steps can be performed when the shaker 
is installed. 
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Figure 6 Syringe and transfer system to establish a sterile compartment for the extraction of 
the SVF. The syringes are separately packed (a) and can be filled with up to 50ml (b). The 
plunge (e) can be unscrewed to save space in the centrifuge. The Caps (d) and the transfer 
piece (c) all have the standardized Luer Lock system. 

Table 1 Different programs / steps that are performed for the extraction of the SVF with short 
description of the action. 

Program / Step Action 

A1 - Fat washing Centrifugation at 700g for 5min 
A2 - Shaking incubation Shaking incubation: The shaking plate is added to 

the top of the centrifuge and is alternately turning at 
2g for 30min 

A3 - Separation of the SVF Centrifugation at 800g for 5min 
A4 - Washing the SVF Centrifugation at 800g for 3min 

7.2.2.2. Protocol 

40ml of lipoaspirate were transferred into a sterile syringe and closed with a cap. 

After the centrifugation (Program A1) the lower part containing blood and tumescent 

was discarded (Figure 7) whereas solid tissue and oil remained in the syringe. 5-

10mg of the MNP-S Liberase was dissolved in an extra syringe with as much DMEM 

was required to reach the syringe volume of 40ml after discarding the lower part. 

Thereafter, both syringes were connected with a transfer piece and the solution 

containing the MNP-S Liberase was added to the remaining tissue (Figure 8). 
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Figure 7 Discarding of tumescent solution and blood accumulated in the lower part of the 
syringe after the first centrifugation step of the lipoaspirate. Solid tissue and oil remained in 
the syringe for further processing. 

 

Figure 8 The collagenase was added to the centrifuged lipoaspirate: The upper syringe 
contains DMEM with 10mg of MNP-S Liberase with a volume that is required to obtain 40ml 
in the lower syinge containing the lipoaspirate after the first centrifugation step and removal 
of the lower part. Both are connected via the silver transfer piece and the MNP-S Liberase 
solution is added by applying slight pressure on the plunge of the upper syringe. 
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The shaking plate was installed to the centrifuge in order to start the digestion of the 

tissue with Program A2. Afterwards, the shaking plate was removed and the syringe 

was inserted into the centrifuge again (Program A3). After this centrifugation, the oil 

was separated from the layer of tumescent, blood and the SVF at the bottom (Figure 

9). 

 

Figure 9 Digested tissue before (a) and after centrifugation (b). The content is separated into 
an upper oil layer, a layer of tumescent, blood and a small SVF pellet at the bottom. 

Thereafter, the syringe was uncapped without disturbing the separated layers. The 

plunge was pulled up 1mm to prevent cell loss in the syringe cap while uncapping as 

described in the manual and demonstrated in an instructional video by the 

manufacturer (57). The syringe was carefully connected to the transfer piece with a 

second empty syringe. The lower 5ml containing the SVF were transferred to the new 

syringe and the primary syringe was removed with the transfer piece from the 

secondary syringe. The remaining tissue in the primary syringe was discarded. 35ml 

of PBS were added to the secondary syringe, containing the SVF. The final volume 

reached 40ml and the syringe was centrifuged for the last time (Program A4). 

After centrifugation, the SVF was apparent in the lower 5ml of the syringe and was 

transferred to a sterile 50ml centrifugation tube (Figure 10). The MNP-S Liberase 

activity was inhibited by adding 5ml of culture medium (αMEM containing 20% FBS). 

The tube was centrifuged at 300g for 5minutes, and the supernatant was removed 
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with a serological pipette. The resulting SVF pellet was immediately re-suspended in 

PBS for further experiments or in culture medium for cultivation purpose as described 

in 7.4 Cell culture. Cells from the SVF that were able to adhere to cell culture plastic 

under cell culture conditions (7.4.1 Medium and culture conditions) were defined as 

ASCs. 

 

Figure 10 Transferring the SVF into a 50ml centrifugation tube. The SVF is evident as a 
small red pellet at the bottom of the syringe and is released with the lower 5ml of PBS. 
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7.3. Flow Cytometry of the SVF 

7.3.1. Technique of Flow Cytometry 

The cell pellet is resuspended and the cell suspension is pumped through a steadily 

reducing cannula to a diameter where all cells are tightly connected. A laser beam of 

defined wavelength is adjusted to the cannula and deflected by passing cells. 

Different detectors are able to measure the resulting light or fluorescence. One 

detector, directed along with the laser beam, called forward scatter (FSC), and 

another detector, directed perpendicular to the laser beam, called sideward scatter 

(SSC). Moreover, fluorescence detectors are included into the system to detect 

different wavelengths (multi-parameter flow cytometry). While the FSC signal 

correlates mainly with the volume, the SSC signal correlates with the granularity of 

the passing cells. The fluorescence detectors can provide further information about 

the cell, when fluorescent substances or antibody markers are used. All detector 

information, gained from a single passing cell, is combined and described as an 

event. The result is an accumulation of events corresponding to the cells in the 

suspension. 

7.3.2. Experimental setting 

Three antibody markers were used to determine the different surface proteins 

expressed by cells of the SVF. In particular, CD34, CD45 and CD271 were examined 

and are summarized in Table 2. Each marker was conjugated to a different 

fluorescent dye. R-Phycoerythrin (PE) Phycoerythrin-Cy7 (PE-Cy7) and 

Allophycocyanin (APC) were used because of their different emission spectrum. The 

combinations of antibodies with the corresponding fluorescence and the excitation 

and emission wavelengths are listed in Table 2. 
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Table 2 Short description of the examined surface proteins and specifications of the 
fluorescents conjugated to the used antibodies. 

Surface 
protein 

Short description of the 
surface protein 

Fluorescent 
conjugated to the 
surface protein 
antibody 

Excitation 
wavelength 
(nm) 

Emission 
wavelength 
(nm) 

CD 34 Expressed mainly by 
hematopoietic progenitor 
cells but also different 
kinds of mesenchymal 
stem cells. 

R-Phycoerythrin 
(PE) 

480, 565, 
743 

767 

CD 45 Called the "leucocyte 
common antigen" (LCA) 
and is expressed an all 
human leukocytes. 

Phycoerythrin-Cy7 
(PE-Cy7) 

480, 565 578 

CD 271 Also known as LNGFR 
(low-affinity nerve growth 
factor receptor) it can be 
found on mesenchymal 
stem cells with high 
proliferative potential 

Allophycocyanin 
(APC) 

650 660 

 

Counting beads were added since the concentration of cells in the SVF was of 

interest and the flow cytometer only counts events. Counting beads have a special 

FSC and SSC signal that made bead-events clearly distinguishable from cell-events. 

Two different types of beads with different FSC and SSC signals were used in a 1:1 

ratio. To calculate the cell concentration (Ccells), the number of cell-events (Ncells), the 

number of bead-events (NBeads) and the known concentration of beads in the 

suspension (CBeads) are required according to the following formula: 

(1)  Ccells = Ncells*CBeads/NBead 

Cell concentration per gram original lipoaspirate (Ccells/gram lipo) was of interest for 

better comparability given the fact that the cell concentration varies by the processed 

amount of lipoaspirate. Thus, the volume of PBS in which the SVF was re-suspended 

(VPBS) and the initial mass of the lipoaspirate (mlipo) was recorded besides the 

previously identified cell concentration (Ccells). In case only a part of the SVF was 

used, the partition of the SVF used for the experiment (p) was also taken into 
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account. In case the whole SVF was used the variable p equals 1. The cells per gram 

lipoaspirate were calculated using the following equation: 

(2) Ccells/gram lipo = Ccells*VPBS/p*mlipo 

By applying formula (1) into formula (2) the final equation is obtained and further 

used in 7.3.6.1 Cell concentration of single positive cells: 

Ccells/gram lipo = Ncells*CBeads*VPBS/NBead*p*mlipo 

7.3.3. Preparation of the samples 

The SVF was extracted for each sample of lipoaspirate with two methods using a 

hand preparation or medical device. In this work, six pairs of corresponding SVFs 

were obtained and treated equally as described in the following: 

The freshly isolated SVF was re-suspended in PBS. The cell suspension was 

centrifuged for 5min at 500g and the supernatant was discarded to remove residual 

red blood cells. The remaining cell pellet was re-suspended in 15ml of erythrocyte 

lysis buffer, containing 168 mM Ammoniumchloride (NH2Cl), 10 mM 

Potassiumhydrogencarbonate (KHCO3), 1 mM Ethylenediaminetetraacetic acid 

(EDTA lysed at pH 8.0) and 0.5 μg/mL 4’,6-diamidino-2-phenylindole (DAPI). The 

suspension was kept at room temperature for 15min and afterwards centrifuged for 

10min at 300g. The color of the SVF pellet changed from red to white when 

erythrocytes were appropriate lysed (Figure 11). The supernatant containing the 

lysed erythrocytes was discarded. 

The erythrocyte free pellet was re-suspended in PBS and divided to the required 

sample size in 2ml Eppendorf cups. The cells were stored in PBS at 4°C up to a 

maximum of 24h when not immediately processed for flow cytometry. 
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Figure 11 Deep red color of the SVF pellet in PBS after isolation (1). Re-suspended pellet in 
erythrocyte lysis buffer (2). The white SVF pellet is barely visible after erythrocyte lysis in 
PBS (3). 

7.3.4. Labeling 

For every flow cytometric analysis, different samples from one SVF were required. 

Hence the SVF was split into four 2ml Eppendorf cups. The following procedure was 

applied for both SVF preparation methods. 

Three isotype control samples with antibodies of no specific binding were prepared to 

detect background-events. In addition, one test sample containing all three 

antibodies and counting beads was used to gather the desired information about the 

SVF. Samples with single antibody controls and unstained controls were measured 

first to calibrate and adjust gate settings of the flow cytometer. 

Every 2ml Eppendorf cup contained a defined part of the SVF re-suspended in PBS 

after erythrocyte lysis. All cups were centrifuged at 300g for 5 minutes, the 

supernatant was discarded and the pellets were re-suspended in 100µl PBS. The 

antibodies were added in the dark as shown in Table 3 and incubated for 30min at 

room temperature. 
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Table 3 Description of the samples and volume of antibody solution added. 

Name of the sample 
(pellet re-suspended in 
100µl PBS) 

Antibodies added Volume 

Control Isotype PE PE isotype control 
(BD Pharmingen) 

5µl 

Control Isotype PE-Cy7 PE-Cy7 isotype control 
(BD Pharmingen) 

5µl 

Control Isotype APC APC isotype control 
(Miltenyi Biotec) 

10µl 

Sample with all Antibodies Anti-human CD34 R-PE 
conjugated 
(BD Pharmingen) 

20µl 

Anti-human CD45 PE-Cy7 
conjugated 
(BD Pharmingen) 

5µl 

Anti-human CD 271 APC 
conjugated 
(Miltenyi Biotec) 

10µl 

 

All steps after the incubation were performed in dark environment. 1.5ml PBS were 

added to each cup, and mixed gently by pipetting up and down. Thereafter, each cup 

was centrifuged for 5min at 300g. The supernatant with non-bound antibodies was 

discarded and the cell pellets of the isotype control samples were re-suspended in 

800µl PBS. The test sample with the three antibodies was re-suspended in 700µl of 

PBS and 100µl of the counting bead solution was added. Each sample was loaded 

with a total volume of 800µl. 

All samples were transferred into polystyrene round-bottom tubes through a cell-

strainer cap retaining all particles which were too large to pass through the flow 

cytometer. All samples were stored on ice in the dark until the measurement with the 

flow cytometer. 

7.3.5. Measurement 

Each sample was vortexed for 10 seconds prior to flow cytometry, to ensure the 

homogeneity of its suspension. The measurement was finished when at least 30.000 

events of the three isotype control samples and at least 250.000 events of the test 
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sample were recorded. The pressure was adjusted, so that the flow rate never 

exceeded 3000 events per second to ensure precise measurement. 

7.3.6. Gating strategy 

All recorded events were depicted in a dot plot diagram whereas the forwardscatter 

(FSC) signal represents the X-axis and the sidewardscatter (SSC) signal displays the 

Y-axis. The counting beads for determination of the cell concentration can easily be 

distinguished on the plot as they have a defined FSC-SSC pattern. This pattern can 

be clearly separated from the remaining events. These remaining events showed an 

inhomogeneous distribution and the amount of populations varied between the 

samples. While starting the evaluation by investigating the cell concentration for 

single positive cells (7.3.6.1 Cell concentration of single positive cells) the distribution 

of the events became more apparent. A main population was detected with positive 

signals for both stem cell markers (i.e. CD34 and CD271) (7.3.6.2 Definition of the 

main population) which was used for the investigation of single and double positive 

cells. 

7.3.6.1. Cell concentration of single positive cells 

The gating started with analyzing the number of cells per gram lipoaspirate which 

were positive for the investigated markers. First the counting beads were gated 

(Figure 12, number 1) resulting in the number of beads (NBead). Secondly the 

remaining population was gated and thereafter shown in a histogram for the three 

markers. Positive events were gated due to the equal isotype controls of every one of 

the three markers (Figure 12, number 2a, 3a and 4a). This procedure ensured that 

only events with sufficient fluorescence intensity were taken into consideration and 

counted as positive. The positive events for CD34+, CD45+ and CD271+ were plotted 

in three further FSC-SSC dot plots. Thereby the subpopulations were identified and 

finally gated (Figure 12, number 2b, 3b and 4b) resulting in the number of cells for 

each marker (Ncells). Finally, the concentration of cells per gram lipoaspirate was 

calculated by the formula previously explained in 7.3.2 Experimental setting using 

obtained results of Nbeads and Ncells. 

Ccells/gram lipo = Ncells*CBeads*VPBS/NBead*p*mlipo 
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The sum of all cells positive for the three markers was calculated to estimate the 

overall cell number as well the overall cell concentration. 

 

Figure 12 Gating strategy to obtain the cell concentration of the cells positive for one marker 
in the lipoaspirate. The complete SVF is shown in a FSC-SSC dot plot (1). All events are 
gated and shown in histograms for CD34 (2a), CD45 (3a) and CD271 (4a). All positive cells 
are drawn back to a FSC-SSC dot plot (2b, 3b, 4b) and gated for the cell population. The 
concentration could be calculated with the help of counting beads (marked blue in 1). 

7.3.6.2. Definition of the main population 

The main population was gated based on two principles: Firstly, cells’ physical 

appearance in the FSC-SSC dot plots indicating viability. Secondly, the population 

was defined when the criteria for stem cells were fulfilled (19). Thus, the population of 

interest included cells which were positive for CD34+ and negative for CD45-. 

Furthermore high proliferative cells positive for CD271+ (54) were included. The 

different markers were gated separately and shown in a FSC-SSC dot plot in the 

process of finding the cell concentration. Thereby the CD34+ and CD271+ positive 

events representing the stem cells arranged in one population in the same area of 
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the dot plots. On the other hand the CD45+ positive events representing the 

lymphocytes were located in different subpopulations. Based on these finding, a new 

gate was created in the initial dot plot containing viable mesenchymal stem cells and 

were termed main population and used for the analyses described in the following. 

7.3.6.3. Percentage of single positive cells 

The composition of the stem cells in the SVF was determined by investigating the 

percentage of single positive cells for the markers within the previously defined main 

population. Histograms for each marker were created for this specific cell population. 

A gate was set in every histogram which symbolize positive cells for each marker 

(Figure 13) and were adjusted in reference to the isotype control samples. Finally, 

the percentage of events shown as positive in the matching isotype control was 

subtracted from the percentage of positive cells in the sample in order to reduce 

background noise. In case of a negative difference, no positive cells were assumed 

and the percentage was set to zero. 
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Figure 13 Gating strategy for the percentage of single positive cells within the defined main 
cell population. The FSC-SSC dot plot shows a main cell population circled red and two 
smaller populations on the left upper side that are the two different counting beads (1). The 
histograms on the right show the fluorescence of PE associated with CD34 (2), PE-Cy7 
associated with CD45 (3) and APC associated with CD271 (4). The gates for positive cells 
were set in reference to the isotype controls, so that almost no events of the isotype control 
could be found in this gate. 

7.3.6.4. Percentage of double positive cells 

Following the gating of the percentage of single positive cells in the defined main 

population cells were investigated for the remaining other two markers. Thus all cells 

gated for a particular marker were depicted in a dot plot whereas each axis was 

labelled with the two other markers (e.g. all CD34+ cells were shown in a CD45 and 

CD271 dot plot). The plot was split up into four different gates: One gate representing 

only single positive (Figure 14, 3c), two containing double positive (Figure 14, 3a and 

3d), and the last triple positive cells (Figure 14, 3b) for the investigated markers. The 

gates were set according to the isotype controls. The percentage of double positive 

cells in the single positive cell population was analyzed.  
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While the percentage of double positive cells in the main population was investigated 

two values resulted for every marker combination, sample and preparation method 

due to the gating procedure. For example, one marker was gated and further 

investigated for the other two markers. The same procedure was performed two 

times starting with a different marker (e.g. the percentage of CD34+/CD271+ double 

positive cell can be obtained by first gating for CD34 and then CD271 or the other 

way around). 

 

Figure 14 Example for gating double positive cells. The events gated as cells in the FSC-
SSC dot plot (1) are further gated in a histogram to obtain the CD34 positive cells (2). Those 
are shown in a dot plot with the two axes defined by the two other markers: CD45 and 
CD271 (3). The cross divides the plot defining four new gates. The cells of interest lay in gate 
3a and 3d. They show CD34+ and CD271+ cells (3a) and CD34+ and CD271+ cells (3d). Just 
CD34 single positive cells can be found in gate 3c, while cells positive for all three markers 
lay in gate 3b. 

7.3.6.5. Stain index 

Autofluorescence, background noise and the dyes used for the multiparameter flow 

cytometry can influence the results. A different approach to the comparison of the 

main population of the SVF samples was the stain index (58). The stain index is a 

normalization of the fluorescence signals and gives information about the 

fluorescence intensity. 
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The stain index uses three values per sample (Figure 15) all resulting from the gate 

set around the samples main population: The mean fluorescence intensity of the 

sample (MFIsample). And two values origin from the matching isotype control: The 

mean fluorescence intensity of the isotype control (MFIisotype) and its width 

represented by its standard deviation (SDisotype). With these three values the stain 

index is calculated for every single marker as shown below: 

Stain Index = (MFIsample - MFIisotype) / 2* SDisotype 

 

Figure 15 Obtaining the stain index: The mean fluorescence intensity (MFIIsotype) and its 
standard deviation (SDisotype) are taken from the istoype control of one marker (1). From the 
same marker the mean fluorescence intensity of the sample (MFISample) is obtained (2). The 
stain index is calculated: Stain Index = (MFIsample - MFIisotype) / 2* SDisotype (58). 
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7.4. Cell culture 

7.4.1. Medium and Culture Conditions 

Plastic adherent cells from the SVF, termed ASCs, were expanded in filter top cell 

culture flasks at 37°C containing 5% carbon dioxide (CO2). Cell culture medium α-

MEM was supplemented with 20% Fetal Bovine Serum (FBS), 1% GlutaMAX and 

100U/ml of Penicillin and 0.1mg/ml Streptomycin and changed every 3-4 days. 

7.4.2. Trypsination and Splitting 

The cells were split before reaching confluence. The cells were washed twice with 

PBS to remove all residuals of FBS and incubated with a trypsine solution for 5 

minutes. Afterwards, the cells were released from the culture plastic by gently 

tapping the culture flask. Their detachment was verified under the microscope. When 

adherent cells were remaining, the incubation time was prolonged for some minutes 

until all cells were finally detached. The cells were re-suspended in fresh culture 

medium containing FBS which stopped the trypsination process. The detached cells 

were counted, and used for further experiments or split into new culture flasks at a 

ratio of 1:3. With every trypsination and splitting, the passage number of the cells 

increased by one digit. 

7.4.3. Counting 

A small volume of the suspension of non-adherent cells (e.g. after trypsination) was 

counted in a Neubauer chamber. It offers a defined depth of 0.1mm between two 

parallel glass plates and a counting grid with a big square in each corner covering a 

space of 1mm². All visible cells found in the four big edge squares were counted. 

The volume over a square results from its measurements and represents 0.1mm³ = 

0.1µl = 10-4ml. Since four squares were counted, the cell concentration was obtained 

as following: 

Cell concentration = Number of counted cells / 4*10-4 ml 

7.4.4. Freezing 

Cells were preserved in a freezing medium, slowly and continually frozen and finally 

stored in a liquid nitrogen tank for further experiments at about -160°C. 
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The adherent cells were detached from the cell culture flasks by trypsination (7.4.2 

Trypsination and Splitting). The overall number of cells was determined with a 

Neubauer Chamber (7.4.3 Counting). The cell suspension was transferred into a 

centrifugation tube and centrifuged for 5min at 500g. The supernatant was removed, 

while the cell pellet was re-suspended in freezing media containing 90% FBS and 

10% DMSO. The volume of the freezing media was adapted to the cell number in 

order to create a concentration of 2.5*106 cells/ml. 200µl of this suspension (equals 

5*105 cells) were used per cryogenic vial to enable fast freezing and thawing. In 

between of 5 minutes the cryogenic vials were inserted into a cell freezing container 

with a controlled freezing rate of -1°C/min and stored at -80°C. This procedure 

prevents cell damage by the freezing process or freezing media. After 24 hours, the 

frozen vials were transferred to the liquid nitrogen tank. 

7.4.5. Thawing 

At the beginning, a new culture flask was filled with ASCs culture medium and pre-

warmed for 15min in the incubator at 37°C for equilibration. Thereafter, the selected 

cryogenic vial was taken from the nitrogen tank and transferred into a water bath with 

a controlled temperature of 37°C. After thawing, the cell suspension in the cryogenic 

vial was re-suspended with 1ml of the pre-warmed media and transferred to the 

remaining pre-warmed media in the culture flask. This process did not last longer 

than 5 minutes to prevent cell damage by the freezing media. After 24 hours the 

medium was changed, to remove residuals of the DMSO and non-vital cells. 
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7.5. Colony Forming Unit (CFU) Assay 

The CFU assay determines the cell number required to generate a cell colony with 

more than 50 cells and is calculated as a ratio between counted colonies and seeded 

cells. Cells were seeded at a low density on culture plastic tissue in order to prevent 

initial contact between cells. After a cultivation period of 14 days, cells were stained 

to expose colonies (Figure 16). Thereafter, the colonies were counted. The CFU 

capacities of ASCs were compared between the hand preparation and the medical 

device procedure. 

 

Figure 16 A model colony of ASCs stained with 0.05% crystal violet. Further expansion of 
the cells can be seen at the border of the colony. 

The SVF was extracted out of lipoaspirate with the use of the novel medical device 

and by hand preparation. Thereafter, the SVF was cultured in cell culture medium 

(described in 7.4.1 Medium and culture conditions). The resulting ASCs were all 

cultured to passage P2 and frozen in 90% FBS and 10% DMSO (described in 7.4.4 

Freezing and 7.4.5 Thawing). 

After thawing, the cells were incubated for two days without further manipulation. To 

detach the cells, they were trypsinated and the reaction inhibited by re-suspending 

the cell suspension in α-MEM culture medium. Cells were counted in a Neubauer 

chamber and seeded with defined densities of 5, 10, 15, 20, 25 and 30 cells/cm² onto 

polystyrene culture dishes with 100mm diameter. All experiments were repeated 
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three times for both preparation techniques. The dishes were incubated in culture 

medium at 37°C with an atmosphere containing 5% CO2 for 14 days. The medium 

was changed every third day. On day 15, the cells were fixed for 5 min with a 4% 

Paraformaldehyde (PFA) solution and stained for 30 min with a 0.05% Crystal Violet 

solution (CV). Excess stain solution was removed by washing the culture dishes 

twice with distilled water. Finally, the dishes were air-dried in inverted position at 

room temperature under non-sterile conditions. 

All visible colonies were counted (Figure 17) and marked with a pen to prevent 

miscounts of colonies. Consequently, the CFU capacities were calculated. 

 

Figure 17 Example CFU Assay ready for counting, after two weeks of incubation, fixation 
with 4% PFA and staining with 0.05% crystal violet. 
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7.6. Statistical analysis 

All tests were carried out using IBM SPSS Statistics 20 (IBM, Chicago, USA). Normal 

distribution was tested using the Kolmogorov-Smirnov Test. 

The results are shown as means with standard deviation (SD). All samples of 

lipoaspirate were processed by the hand preparation (h) or using the medical device 

(d). Therefore, paired samples were created and tested using the paired t-test. 

Unpaired data was compared with unpaired t-test. Differences between all samples 

processed by the hand preparation (h) or using the medical device (d) were tested by 

the one-way analysis of variance (one way ANOVA). P-Values <0.05 were 

considered statistically significant, p-Values 0.05<p<0.08 were considered as 

tendency. Linear correlations are described with the Pearson’s r. 
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8. Results 

8.1. Flow Cytometry of the SVF 

8.1.1. SVF 

The SVF was extracted from lipoaspirate of six patients. Each sample was prepared 

by hand preparation (h) and with the use of the medical device (d). Finally, six 

sample pairs were obtained and analyzed by muliparameter flow cytometry using 

fluorescent antibodies against the cell surface markers CD34, CD45 and CD271 and 

counting beads. 

8.1.2. Cell concentration 

The counting beads were properly distinguishable from the rest of the SVF events in 

the FSC-SSC plot. With their established concentration, the cell number was 

calculated as described in the methods part (7.3.2 Experiment setting and 7.3.6.1 

Cell concentration of single positive cells). The overall cell number, originating from a 

gram of lipoaspirate did not show a significant difference between hand preparation 

(2.0±1.7*105) and the medical device procedure (1.1±1.1*105) (p=0.0623, data shown 

in Table 4 and Figure 18). Furthermore, the concentration of cells positive for the 

different markers was determined (Table 4 and  

Figure 19) and demonstrated no significant difference between both preparation 

methods but a slight tendency towards less CD34+ positive cells extracted with the 

medical device (p>0.0596). 
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Table 4 Cell concentration of the SVF shown for the hand preparation and the preparation 
with a medical device. The overall value is shown and also the cell concentration of the 
different markers. The results of both methods were compared with a paired two tailed T-
Test. 

Cell concentration in cells/gram lipoaspirate 

Marker Hand preparation Medical device paired two tailed T-Test 
(p value) 

Overall / Sum 2.0*105 (±1.7*105) 1.1*105 (±1.1*105) 0.0623 

CD34+ 1.3*105 (±1,1*105) 5.7*104 (±6.0*104) 0.0596 

CD45+ 3.3*104 (±2.5*104) 3.1*104 (±3.6*104) 0.8244 

CD271+ 3.4*104 (±4.0*104) 1.7*104 (±2.2*104) 0.1143 

 

Figure 18 Overall cell number of the SVF per gram of lipoaspirate for both preparation 
methods. The hand preparation resulted in 2.04±1.88 *105 and the preparation with the use 
of the medical device in 1.07±1.0 *105 cells/gram lipoaspirate. No significant difference was 
found (p=0.0623). 
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Figure 19 Cell concentration per gram lipoaspirate of the investigated markers CD 34, CD 45 
and CD 271 in the SVF for hand preparation (h) and preparation with the use of the medical 
device (d). Both preparation methods demonstrated no significant difference in the 
expression of the investigated markers, but a slight difference with the marker CD34 
(p=0.0596). 

8.1.3. Single positive Cells 

The main cell population was identified in the FSC-SSC plot based on the distribution 

and the pattern of the events (7.3.6.2 Definition of the main population). The 

percentage of single positive cells for each of the markers was investigated. The 

novel medical device demonstrated a significantly lower percentage of CD34+ 

positive cells (57.3±23.8%) compared to the hand preparation (74.1±13.4%) 

(p=0.0185). The percentage of CD45+ positive cells was similar in both preparation 

methods with a tendency towards a higher percentage in the samples created with 

the medical device (h: 9.8±7.1% vs. d: 20.7±15.8%, p=0.0742). Moreover, the 

percentage of CD271+ cells demonstrated no significant difference device 

preparation (12.9±9.6%) and hand preparation (13.4±11.6%) (p=0.7408). The results 

are depicted in Table 5 and Figure 20. 
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Table 5 Percentage of positive cells in the previously defined main cell population for hand 
preparation and preparation with the use of the medical device. The results of both methods 
were compared with a paired two tailed T-Test. 

Percentage of positive cells  

Marker Hand preparation Medical device paired two tailed T-Test 
(p value) 

CD34+ 74.1 (±13.4) 57.3 (±23.8) 0.0185 

CD45+ 9.8 (±7.1) 20.7 (±15.8) 0.0742 

CD271+ 13.4 (±11.6) 12.9 (±9.6) 0.7408 

 

Figure 20 Percentage of single positive cells for the investigated markers in the previously 
defined main cell population in the FSC-SCC plot of the SVF. A significant difference 
between the hand preparation (h) and the preparation with the medical device (d) was found 
only for the marker CD34 (p=0.0185) and a tendency for the marker CD45 (p=0.0742). 
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8.1.4. Double positive Cells 

Single positive cells were further investigated with flow cytometry to identify double 

positive cells. The percentages of single positive cells further positive for another 

marker are shown in Table 6. No significant differences were found. CD45+ positive 

cells were not positive for CD271+ or the other way round. 

No significant difference between both methods was for CD34+/CD45+ double 

positive cells (h: 0.3±0.2% vs. d: 0.5±0.6%; p=0.2701) and CD34+/CD271+ (h: 

2.4±2.0% vs. d: 1.9±2.3%; p=0.4150). The results for the main population are shown 

in Table 7 and Figure 21. 

Table 6 The percentage of cells being positive for two markers in the population of single 
positive cells, for hand preparation and preparation with the medical device. The percentages 
of single positive cells are not shown here and marked with a star (*) and can be seen in 
8.1.3 Single positive Cells. Cells double positive for CD45+ and CD271+ did not exist and are 
not shown in this table. 

Percentage of single positive cells being positive for a second marker 

Marker Hand preparation Medical device paired two tailed T-Test 

(p value) 

CD34+ * * * 

CD45+ 1.67 (±1.11) 5.9 (±5.9) 0.130 

CD271+ 14.2 (±8.46) 24.1 (±12.0) 0.070 

CD 45+ * * * 

CD34+ 15.0 (±11.7) 15.9 (±7.5) 0.889 

CD271+ * * * 

CD34+ 76.4 (±20.2) 83.8 (±11.4) 0.131 
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Table 7 Percentage of double positive cells in the previously defined main cell population for 
hand preparation and preparation with the use of the medical device. The results of both 
methods were compared with a paired two tailed T-Test. Because no CD45+ / CD271+ 
double positive cells existed in both preparation methods no T-Test could be performed (#). 
They show the same result. 

Percentage of double positive cells in the main population  

Marker Hand preparation Medical device paired two tailed T-Test 
(p value) 

CD34+/CD45+ 0.3 (±0.2) 0.5 (±0.6) 0.2071 

CD34+/CD271+ 2.4 (±2.0) 1.9 (±2.3) 0.4150 

CD45+/CD271+ 0 0 # 

 

Figure 21 Percentage of double positive cells for the investigated markers in the previously 
defined main cell population in the FSC-SCC plot of the SVF. Based on the gating method, 
the number of values for double positive cells (n=12) is double of the number of samples 
(n=6). No significant difference between the hand preparation (h) and the preparation with 
the use of the medical device (d) was observed. In particular, for the marker combinations 
CD34+/CD45+ (p=0.2071) and CD34+/CD271+ (p=0.4150). No CD45+/CD271+ double positive 
cells were detected and therefore, no statistical analysis could be performed (#). 
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8.1.5. Stain index 

The stain index was determined of the main population in the SVF in order to reduce 

the background noise and to investigate the fluorescence intensity of the events. No 

significant difference was apparent when comparing both methods (p>0.1210). The 

marker CD34 had the highest stain indices (h: 63.3±38.3 vs. d: 111.0±72.5; 

p=0.1210), while CD271 had the lowest (h: 16.5±10.5 vs. d: 15.5±7.1; p=0.6207). 

The stain index for CD45 was 22.2±9.2 for the hand preparation method and 

28.5±19.3 when extracted with the device (p=0.3336). The results are also depicted 

in Table 8 and Figure 22. 

Table 8 Stain Index in the main population of the SVF for the three markers for hand 
preparation and preparation with the use of the medical device. The results of both methods 
were compared with a paired two tailed T-Test.  

Stain Index 

Marker Hand preparation Medical device paired two tailed T-Test 
(p value) 

CD34+ 63.3 (±38.3) 111.0 (±72.5) 0.1210 

CD45+ 22.2 (±9.2) 28.5 (±19.3) 0.3336 

CD271+ 16.5 (±10.5) 15.5 (±7.1) 0.6207 
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Figure 22 The stain index of the complete SVF regarding the investigated surface markers 
for the hand preparation (h) and the preparation with the use of the medical device (d). Both 
methods demonstrated no significant difference in their stain index for CD34 (p=0.1210), 
CD45 (p=0.3336) and CD271 (p=0.6207). 

8.2. Colony Forming Unit (CFU) Assay 

CDU assays were performed for ASCs derived from the lipoaspirate of three different 

donors extracted with both preparation methods. They were stained and counted 

after two weeks as described in the method section (7.5 CFU Assay). The number of 

visible colonies increased with the cell density of the initially seeded concentration 

(Figure 23). Overlapping colonies limited the accuracy of discrimination of different 

colonies. 
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Figure 23 CFU Assays with ASCs of different concentration after two weeks of incubation, 
fixation and staining with crystal violet. The seeding concentration was 5 cells/cm² (1), 10 
cells/cm² (2), 15 cells/cm² (3), 20 cells/cm² (4), 25cells/cm² and 30 cells/cm² (6). Different 
colonies could be separated best when initially seeded at lower concentrations (1-3), while 
when seeded at higher concentrations the colonies were overlapping a lot (5 and 6). 

The lowest seeding concentration of 5 cells/cm² yielded the least amount of colonies, 

in particular 0.63±0.45 colonies/cm² for hand preparation and 0.60±0.35 colonies/cm² 

for preparation with a medical device. The resulting colony densities differ according 

to the initial seeding concentrations for both methods (p<0.003) and correlated with a 

rising tendency with a Spearman’s correlation of r=0.855 for the hand preparation 

and r=0.939 for the preparation with a medical device. 

The CFU capacity (colonies per initial seeded cells) was independent of the seeding 

concentration (h: p=0.931 and d: p=0.503), but was associated with a slight linear 

Spearman’s correlation of r=-0.287 for the hand preparation and r=-0.341 for 

preparation with a medical device. The overall CFU capacity was 10.4±4.71 % for 

hand prepared cells and 12.45±3.70 % for the cells extracted with the use of the 

medical device. The overall CFU capacity showed no significant difference between 

both preparation methods (p=0.147). All results are shown in Table 8, Figure 24 and 

Figure 25. 
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Table 9 Colony density after two weeks and the resulting CFU capacity for hand preparation 
and the preparation with the use of the medical device resulting from the initial seeding 
concentration. Because colony density and CFU capacity can be transformed into each other 
the p values are the same and are shown in the right column. No significant difference could 
be detected. 

Results of the CFU Assays 

Seeding 
concentration 
(cells/cm²) 

Colony density after two 
weeks (colonies/cm²) 

CFU capacity (in %) T-Test 
(p value) 

hand 
preparation 

medical 
device 

hand 
preparation 

medical 
device 

5 0.63 ± 0.45 0.60 ± 0.35 12.6 ± 8.92 11.9 ± 6.94 0.667 

10 1.19 ± 0.43 1.58 ± 0.26 11.9 ± 4.32 15.8 ± 2.58 0.312 

15 1.47 ± 0.37 2.10 ± 0.09 9.8 ± 2.51 14.0 ± 0.57 0.095 

20 1.96 ± 0.50 2.35 ± 0.10 9.8 ± 2.51 11.7 ± 0.50 0.313 

25 2.24 ± 0.22 2.77 ± 0.20) 9.0 ± 0.86 11.1 ± 0.79 0.137 

30 2.70 ± 0.42 3.05 ± 0.09 9.0 ± 1.41 10.2 ± 0.29 0.300 

One way 
ANOVA 
(p value) 

0.003 <0.001 0.931 0.503  

Spearman’s 
correlation 
 

0.855 0.939 -0.287 -0.341  

Middle 
 
 

  10.4 ± 4.71 12.45 ± 
3.70 

0.147 
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Figure 24 Seeding concentration and correlating colony density of both hand preparation 
and the medical device. A rising tendency can be seen with a Spearman’s correlation of 
r=0.855 for hand preparation and r=0.939 for preparation with the medical device. 

 

Figure 25 Seeding concentration and the CFU capacity of both hand preparation and 
preparation with a medical device. No significant difference between the CFU capacities of 
each method could be found (p>0.503). 
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9. Discussion 

In the present study, the stromal vascular fraction (SVF) extracted from lipoaspirate 

by two different extraction methods was investigated regarding cell quantity and cell 

quality. The first method was performed with common laboratory equipment and is 

referred to as hand preparation in this work. The second method used a novel 

medical device consisting of a heatable centrifuge with a shaking option and a sterile 

system created with syringes and a transfer piece. Both preparation methods were 

able to create a visible amount of SVF and showed no significant difference in the 

cell number extracted (p=0.0623), although there is an indication for preparation 

failures caused by a technical issue with the syringe cap of the novel medical device, 

which are discussed in the paragraph 9.1. Cell concentration varies between both 

methods. 

The composition of the cells in the SVF was investigated in the main population for 

the markers CD34, CD45 and CD271. There was a significant difference between 

both methods regarding the percentage CD34+ single positive cells, while there was 

none for the other single and double positive cells as well for the stain index. 

Finally the ASCs resulting from the SVF extracted by both methods were compared 

by CFU-Assays revealing a similar CFU capacity (p=0.147). 

9.1. Cell concentration varies between both methods 

The cell numbers per gram of lipoaspirate for the SVF reported in the literature varies 

due to different extraction methods and the biological variability of lipoaspirate. The 

typical range is from 1*105 to 5*105 cells per gram lipoaspirate, as shown in detail in 

Table 10. In the present study, a number of 2,03±1,88 *105 cells per gram 

lipoaspirate was extracted by hand preparation and 1,07±1,23 *105 per gram 

lipoaspirate using the novel medical device. Both values are in the range with those 

reported in the literature (Table 10 and Figure 26). No significant difference, but a 

tendency, for the overall cell number could be found comparing both methods in the 

present study (p=0.0623). Moreover, no significant difference was apparent regarding 
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the number of single positive cells for the different markers, but a slight tendency for 

the marker CD34 (p=0.0596) as shown in Figure 27 on the upper graph (a). 

Taking a closer look at the cell number, it can be observed that three of the six 

preparations with the use of the medical device have a very low cell yield as marked 

red in Figure 26 (a) for the overall cell number and Figure 27 (a) divided for the three 

different markers. Because of this very low SVF cell yield, these three preparations 

with the use of the medical device can be considered preparation failures. Comparing 

these three preparation failures with the three successful preparations all performed 

by the use of the medical device, a significant difference in the cell concentration of 

the SVF could be observed with 1.7±1.9*103 vs. 2.12±0.71*105 cells per gram 

lipoaspirate (p=0.007). 

After removing the preparation failures from the statistical analysis, the overall cell 

number of the successful three samples increased to 2.12±0.71*105 cells per gram 

lipoaspirate. Consequently, the mean values observed from both preparation 

methods were comparable, without a significant difference (p=0.940), as shown in 

Figure 26 (b). In addition, this finding could be confirmed for the single positive cells: 

For CD34 (p=0.78), CD271 (p=0.97) and CD45 (p=0.22) no significant difference 

between both preparation methods could be found, as shown in Figure 27 (b). 
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Table 10 SVF cell numbers reported in the literature compared to the results in this study. 
Preparation methods and repeats are shown. # = manual preparations with laboratory 
equipment use different protocols, § = only valid preparations taken into consideration 

Cell number 
(cells per gram 
lipoaspirate) 

Repeats 
(n) 

Preparation method Source 

6.24*105 5 Lipokit 
(Medi-Khan) 

Aronowitz et al., 2016 
(46) 

5.35*105 5 Multi Station 
(PNC) 

Aronowitz et al., 2016 
(46) 

4.04±2.06*105 18 Laboratory Equipment# 
 

Aust et al., 2004 (59) 

3.6±1.8*105 31 Celution System 
(Cytori) 

Fraser et. al., 2014 
(60) 

3.08±1.40*105 44 Laboratory Equipment# 
 

Mitchell et al., 2006 
(61) 

2.84*105 5 GID SVF-2 
(The GID Group) 

Aronowitz et al., 2016 
(46) 

2.6±1.2*105 11 Sepax device 
(Biosafe SA) 

Güven et. al., 2012 
(62) 

2.41*105 5 Celution System 
(Cytori) 

Aronowitz & Ellenhorn, 
2013 (63) 

1.6±0.9*105 11 Laboratory Equipment# 
 

Güven et. al., 2012 
(62) 

1.17±0.5*105 11 Automated System 
(patent pending) 

SundarRaj et al., 2015 
(64) 

1.15±0.3*105 11 Laboratory Equipment# SundarRaj et al., 2015 
(64) 

1.07*105 5 Multi Station 
(PNC) 

Aronowitz & Ellenhorn, 
2013 (63) 

1.01*105 5 Cytori Stem Source 900/MB 
(Cytori) 

Aronowitz et al., 2016 
(46) 

0.35*105 5 Lipokit 
(Medi-Khan) 

Aronowitz & Ellenhorn, 
2013 (63) 

0.05*105 5 Cha-Station 
(CHA Biotech) 

Aronowitz & Ellenhorn, 
2013 (63) 

2.03±1.88*105 6 “hand preparation” (equals 
laboratory equipment#) 

/ 

1.07±1.23*105 6 UNiStation 
(Neogenesis) 

/ 

2.12±0.71*105§ 3§ UNiStation§ 
(Neogenesis) 

/ 
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Figure 26 Cell concentration of the SVF obtained by the hand preparation and with the use 
of the medical device in cells per gram lipoaspirate. On the upper (a) all values are shown. 
The preparations that produced almost no cells are circled red and marked. On the lower (b) 
all invalid preparation failures were removed.  
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Figure 27 Cell concentration of the SVF for the markers CD34, CD45 and CD271 obtained 
by hand preparation (h) and preparation with the use of the medical device (d). On the upper 
(a) all values are shown. The preparations that produced almost no cells are circled red and 
marked. On the lower (b) all invalid preparation failures were removed. This results in an 
increase of all middles and an approximation of the results of both preparation methods. 
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9.1.1. Explanation of the Preparation Failures 

We performed a detailed inspection of all consumables needed for the novel medical 

device. Thereafter, we traced the preparation failures back to the cap of the syringes 

used in the extraction with the medical device. During the preparation process, the 

SVF is centrifuged to the bottom of the syringes and hereby into the syringe cap, 

which is attached to the bottom of the syringes. The cap has to be removed for the 

final isolation of the SVF. During this process, a slightly negative pressure is created 

and the small SVF can be vacuumed into the syringe cap as shown in Figure 28 (b). 

This problem is known to the manufacturer as it is described in the an instructional 

video by the manufacturer (57). Their proposed solution is to pull up the plunge of the 

syringe about 1mm while removing the syringe cap, which was also tried during the 

extractions in this work (described in 7.2.2.2 Protocol). During the experiments for 

this work it was difficult to apply the right amount of negative pressure to the plunge 

or moving it exactly 1mm. In case of too much negative pressure air was sucked into 

the syringe while removing the cap. This caused an air bubble wandering through the 

syringe, taking the SVF up and away from its wanted low position and mixing the 

layers. If this happened the centrifugation had to be repeated again. In the other case 

of too low or no negative pressure the SVF cannot be removed properly and a large 

amount of cells is lost as shown in Figure 28 (c). This would offer an explanation for 

the lower cell numbers that were found in three of the SVF isolations with the use of 

the medical device. Thus, this sensitive step during the extraction of the SVF is not 

applicable for the daily routine in the operating room. Therefore, a more technical 

solution for high and constant cell yields is suggested in the following section. 



 

67 
 

 

Figure 28 Explanation of the preparation failures with the medical device. The bottom of the 
syringe with the SVF is illustrated (a). When the cap is removed a slightly negative pressure 
is created (b) and this can be enough to vacuum off a great part of the SVF into the cap (c). 
This part of the SVF is lost and cannot be used further. 

9.1.2. Suggestion for solution 

The novel medical device could be improved by using a different syringe cap. A 

counterpart for the lumen of the syringe should be added as it is shown in Figure 29. 

Thereby the SVF could not be centrifuged into the cap. During the removal of the 

improved cap, a vacuum would be still created. However, because of the counterpart 

there would be no space for the SVF to get vacuumed into the cap. Thus the whole 

SVF should stay in the syringe even applying any negative pressure to the plunge 

making the handling much easier. This might be a solution to increase the cell yield 

and create a consistent extraction results with the medical device. 

 

Figure 29 The currently used syringe cap (a) and a suggestion for an improved syringe cap 
(b) with a counterpart for the syringe shown in green. 
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9.2. Percentage of single and double positive cells 

While the number of the cells within the SVF varies between samples and extraction 

methods, the composition of the SVF should remain similar, independent of the 

amount of SVF that was prepared. Therefore, the smaller amounts of SVF generated 

during the preparation failures of the novel medical device can also be taken into 

consideration for the surface marker characterization. Consequently, the defined 

main SVF cell population was investigated for the percentage of cells positive and 

double positive for the three different markers (i.e. CD34, CD45 and CD271). 

The percentage of CD34+ positive cells showed a significant difference between both 

extraction methods (p=0.0185) and for the percentage of CD45+ positive cells a 

tendency was apparent (p= p=0.0742). For both the percentage of CD271+ and the 

double positive cells, which were overall low and not exceeding 5%. No significant 

differences were detected (p>0.2071). All of that is discussed in the following 

paragraphs. 

9.2.1. CD34 

Despite the fact, that CD34 was not defined as a marker for MSCs (65), it can be 

commonly found on freshly isolated SVF cells (19). CD34+ cells were reported to 

have haematopoetic (50) and vasculogenetic potential (66) which might offer new 

thearapies for example for vascular diseases (67). 30 to 80% of freshly isolated SVF 

cells are referred to as CD34+ positive (66,68). This is in line with the findings of this 

study, both for the SVF preparation by hand (74.1±13.4%), and with the use of the 

novel medical device (57.3±23.8%). However, using the medical device resulted in a 

significantly lower percentage of CD34+ cells (p=0.0185). This indicates a lower yield 

of endothelial progenitor cells in the SVF created by the medical device, but is still 

sufficient for further research and potential therapies. 

9.2.2. CD45 

In contrast to the lower percentage of CD34+ positive cells extracted with the medical 

device, the number of extracted CD45+ positive cells is increased (20.7±15.8%) 

compared with the preparation by hand (9.8±7.1%). This tendency could be observed 

without reaching statistical significance (p=0.0742). However, the results for both 
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preparation methods are comparable to the values known from literature (68). And 

although, the leukocyte common antigen (CD45) was used to identify leukocytes on 

the one hand and on the other hand as a negative control for adipose tissue-derived 

stem cells (19), a pro angiogenetic effect and a higher formation of neo-vessels was 

found in SVF containing CD45+ cells compared to CD45 deprived SVF (68). 

9.2.3. CD271 

The marker CD271 was described as suitable for identification of a highly 

proliferative subpopulation in MSCs (55) with high differentiation potential (69) and 

immunomodulative abilities (70). Bone marrow MSCs selected as CD271+ positive 

were reported to have a higher CFU capacity and a higher in vitro wound healing 

capacity than cells selected by plastic adherence (71). Ishimura et al. reported that 

23.6±6.8% of the SVFs cells are positive for CD271+ (72). This is in accordance with 

the results of the hand preparation and the medical device, as both had the same 

partition of CD271+ positive cells in the main population, respectively 13.4±11.6% 

and 12.9±9.6% (p=0.7408). Therefore, the medical device is also able to create a 

reasonable amount of those cells which are currently in the focus of regenerative 

medicine.  

9.2.4. CD34/CD45 double positive cells 

In this work the marker CD34 was used as positive control and the marker CD45 as 

negative control for MSC, as proposed by the ISCT (19). But a small amount of cells 

being double positive for those both markers were though found in the SVF’s main 

population. In particular, 2.4%±2.0% for hand preparation and 1.9%±2.3% for 

preparation with the medical device were CD34+/CD45+ double positive cells. The 

preparation method had no influence on those results (p=0.2071). Such cells are 

known to be found in peripheral blood (73), being hematopoietic stem cells with the 

ability to create endothelial structures such as blood vessels (74). Navarro et al. (68) 

reported that such cells can be found in the SVF and that 29%±13% of CD45+ 

positive cells were further positive for CD34+. This shows a similarity with our 

findings, which were lower but still in the same range: In particular, 15.0%±11.7% for 

hand preparation and 15.9±7.5% for preparation with the medical device, showing no 

difference between both methods (p=0.889). In summary, this shows that this 

subpopulation of CD34+/CD45+ cells is extracted in the same amount by the novel 
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medical device as hand preparation. Those cells might contribute to the SVFs 

beneficial effects. 

9.2.5. CD34/CD271 double positive cells 

There were no significant differences regarding both preparation methods for the 

CD34+/CD271+ double positive cells in the main population (p=0.4150). The effect of 

those double positive cells is not researched yet. However, it is described that the 

plastic adherent hASCs lose the marker CD34 in cell culture while CD271 is 

preserved, leaving only 3.33±1.94% C271+ positive cells coexpressing CD34 hASCs 

after three to four days of in vitro cultivation (69). Thus CD271 might play greater role 

in the beneficial potential of cultured hASCs than CD34. 

Quirici et al. (49) used a different approach by separating the cells expressing CD34 

and CD271 prior to flow cytometry, showing that 78.0%±10.6% of the CD271+ 

positive cells were positive for CD34+. In this work the direct flow cytometric 

approach showed similar results for SVFs prepared by hand preparation 

(76.4±20.2%) and preparation with the medical device (83.8±11.4%), with no 

significant difference between the methods (p=0.131). However, there was a 

tendency (p=0.070) towards more CD34+ cells being further positive for CD271+ for 

the preparation with the medical device (24.1±12.0%) compared to the hand 

preparation (14.2±8.46%). Apart from this tendency, both values are in concordance 

with the value of 28.0±37.4% given also by Quirici et al. (49). 

9.2.6. CD45/CD271 double positive cells 

No CD45+/CD271+ double positive cells were detected in the samples of both 

preparation methods. As CD271+ positive cells were reported to be negative for 

CD45- in 99.6% (56), this leaves almost no room for cells being double positive for 

the markers concerned. This is in accordance with the initial idea that CD271 is a 

positive marker for stem cells, while CD45 is a negative marker, as previously 

described in 5.9 Molecular markers. 
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9.3. Stain index 

The stain index is used to quantitate the brightness of an fluorescent dye over the 

background (58). In this work it was used as a different approach to compare the 

samples created by hand preparation and preparation with a medical device. The 

stain index was investigated for the main population of the SVF and determined for 

all three markers used. No significant differences between both preparation methods 

could be found for all three markers (CD34: p=0.19; CD45: p=0.48; CD271: p=0.84). 

This leads to the conclusion that the brightness of the cells over the background in 

the flow cytometer is similar due to the amount of bonded antibodies binding to them. 

This is another aspect where both methods are creating SVF of similar quality. 

9.4. Colony Forming Unit (CFU) Assay 

CFU assays were performed with ASCs derived from three samples of lipoaspirate 

using both extraction methods. The preparation method had no influence on the CFU 

capacity of the cultured SVF cells, resulting in 10.40±4.71% for hand prepared ASCs 

and 12.45±3.70% for ASCs extracted with the use of the medical device (p=0.147). 

This goes along with the CFU capacity of >5% for ASCs (19) reported in literature 

and indicates that neither of the two tested preparation methods has an influence on 

the proliferation of the resulting ASCs. 

9.5. Application of the novel device for cell assisted 

lipotransfer (CAL) 

For CAL application an ideal dose of SVF cells per reinjected milliliter of lipoaspirate 

has not been established yet, but one- to four-fold better engraftments were found 

with concentrations differing from 105 to 107 cells (75). Yoshimura et al. (44) 

proposed a one to one ratio of lipoaspirate for reinjection and lipoaspirate for SVF 

extraction. This is also implemented in the novel medical device where a maximum of 

800ml lipoaspirate can be processed at the same time: While one half of this 

centrifuged lipoaspirate is saved for reinjection the other half (i.e. up to 400ml) can be 

used to create SVF. Adding the SVF to the saved lipoaspirate results in a maximum 
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of roughly 400ml SVF augmented lipoaspirate for reinjection. Consequently, if just 

the SVF is needed for treatments it can be extracted out of a maximum of 400ml 

lipoaspirate at the same time. 

If the beneficial effects of the SVF of better graft retention and less scarring in CAL 

treatment (75) can be attributed to solely to their differentiation potential is currently 

under discussion. Because recently their paracrine secretion which inhibits 

inflammatory response at first and promotes tissue repair afterwards is coming more 

into the focus of research (76,77). Furthermore, there is growing evidence that the 

SVF is superior to selected subpopulations like ASCs, as higher paracrine secretion 

was found in the whole SVF rather than in selected subpopulations of the SVF (78). 

This leads to the assumption that the absolute number of SVF cells is of lesser 

importance than the concentration of their produced cytokines. 

9.6. Limitations of this work and outlook 

Six tissue samples were obtained from different patients in order to have sufficient 

number of replications for statistical calculation. Three preparation failures with the 

medical device led to lesser repetitions regarding the devices cells number. More 

repetitions would be beneficial; especially ones using the proposed syringe cap 

(9.1.2 Suggestion for solution). Thereby could be tested, if its usage leads to better 

results. However, such a modified syringe cap was not provided during the formation 

of this work. 

Releasing the cells from the adipose tissue was acquired by the use of the MNP-S 

Liberase, which is for research purpose only and not suitable for a clinical setting. A 

GMP approved collagenase is needed for clinical application. Furthermore the 

collagenases activity was inhibited with FBS. For clinical application FBS has to be 

replaced by patients’ blood serum, as described in the manufacturers instructional 

video (57). Furthermore, the rest activity of the remaining collagenase has to be 

explored for patients’ safety as also the sterility of the final product (46). 

Each sample of lipoaspirate was prepared at the same time with both preparation 

methods. A measurement of preparation time was not possible since extraction steps 

overlapped. In addition, only small amounts of lipoaspirate (40-80ml) were processed 
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that suited into one or two syringes. The novel medical device offers the opportunity 

of processing 800ml of lipoaspirate in one session, needing a handling of 16 

syringes, which result in a longer processing time than in this work. 

During the flow cytometric analysis the physical appearance in the FSC-SSC dot plot 

was used to determine vital cells. A more precise method would have been the a 

viability staining using 4′,6-Diamidin-2-phenylindol (DAPI) or another appropriate kit. 

9.7. Conclusion 

The present study characterized the SVF and ASCs obtained with the use of a novel 

medical device (UniStaion, Neogenesis), and compared it to the common laboratory 

SVF preparation by hand. The obtained results reveal that the novel medical device 

offers a considerable amount of SVF, comparable to the common laboratory 

preparation, when handled correctly. A suggestion for a new syringe cap, offering 

better handling, was made to avoid preparation failures using the novel medical 

device. 

The composition of the SVF extracted by the novel device slightly has a smaller 

number in CD34+ positive cells, however tends to a larger number in CD45+ positive 

leukocytes than the hand preparation. However, the number of CD34+ positive 

progenitor cells is still very high. There is no indication for any differences comparing 

the percentage of double positive cells and the fluorescence intensity measured with 

the stain index. Moreover, the common laboratory preparation shows no difference 

with regard to the CFU capacity of the cultured ASCs, thereby indicating a 

comparable proliferation potential. 

To conclude, the novel medical device (UNiStaion, Neogenesis) can be a useful tool 

in the extraction of the SVF and ASCs, both in a research, and a clinical setting. It 

offers a SVF comparable in quantity and quality to the results by preparation with 

common laboratory equipment and values known from literature. Besides, the semi-

automated process needs little space and is applicable to an operating theater. Most 

important, due to a closed syringe and transfer system, the novel medical device 

contributes to ensuring sterility in a clinical setting for future cell therapies in patient 

care.  
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13. Addendum 

13.1. Figures 

Figure 1 Liposuction procedure after tumescent infiltration at the left outer thigh. The area of 

liposuction is marked prior to the operation in accordance with patients request for aesthetic 

outcome. The liposuction cannula is maintained parallel to the surface during the suction 

procedure while the left hand is providing direction guidance. ...................................................... 24 

Figure 2 Flow diagram of the used methods and outcome parameters (marked bold)........................ 26 

Figure 3 Hand preparation. 20ml of lipoaspirate (1) are mixed with equal volume of 20ml DMEM and 

2.5-5mg of MNP-S Liberase (2). The tissue is digested after 45min of incubation at 37°C and 

shaking at 100rpm (3) and can be filtered through a sterile 100µm filter system (4). After the 

following centrifugation, the oily and fluid phase on the top can be clearly distinguished (5). After 

discarding of the supernatant and washing with PBS, the pellet representing the SVF is clearly 

visible on the bottom of the centrifuge tube (6). ............................................................................ 28 

Figure 4 The interior of the medical device shows the centrifuge with 16 slots for syringes. The heater 

is located behind the silver surroundings. ..................................................................................... 29 

Figure 5 Shaking plate placed on top of the centrifuge for the incubation step (program A2) offering 

space for eight syringes. No centrifugation steps can be performed when the shaker is installed.

 ....................................................................................................................................................... 29 

Figure 6 Syringe and transfer system to establish a sterile compartment for the extraction of the SVF. 

The syringes are separately packed (a) and can be filled with up to 50ml (b). The plunge (e) can 

be unscrewed to save space in the centrifuge. The Caps (d) and the transfer piece (c) all have 

the standardized Luer Lock system. .............................................................................................. 30 

Figure 7 Discarding of tumescent solution and blood accumulated in the lower part of the syringe after 

the first centrifugation step of the lipoaspirate. Solid tissue and oil remained in the syringe for 

further processing. ......................................................................................................................... 31 

Figure 8 The collagenase was added to the centrifuged lipoaspirate: The upper syringe contains 

DMEM with 10mg of MNP-S Liberase with a volume that is required to obtain 40ml in the lower 

syinge containing the lipoaspirate after the first centrifugation step and removal of the lower part. 

Both are connected via the silver transfer piece and the MNP-S Liberase solution is added by 

applying slight pressure on the plunge of the upper syringe. ........................................................ 31 

Figure 9 Digested tissue before (a) and after centrifugation (b). The content is separated into an upper 

oil layer, a layer of tumescent, blood and a small SVF pellet at the bottom. ................................ 32 

Figure 10 Transferring the SVF into a 50ml centrifugation tube. The SVF is evident as a small red 

pellet at the bottom of the syringe and is released with the lower 5ml of PBS. ............................ 33 
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Figure 11 Deep red color of the SVF pellet in PBS after isolation (1). Re-suspended pellet in 

erythrocyte lysis buffer (2). The white SVF pellet is barely visible after erythrocyte lysis in PBS 

(3). ................................................................................................................................................. 37 

Figure 12 Gating strategy to obtain the cell concentration of the cells positive for one marker in the 

lipoaspirate. The complete SVF is shown in a FSC-SSC dot plot (1). All events are gated and 

shown in histograms for CD34 (2a), CD45 (3a) and CD271 (4a). All positive cells are drawn back 

to a FSC-SSC dot plot (2b, 3b, 4b) and gated for the cell population. The concentration could be 

calculated with the help of counting beads (marked blue in 1). .................................................... 40 

Figure 13 Gating strategy for the percentage of single positive cells within the defined main cell 

population. The FSC-SSC dot plot shows a main cell population circled red and two smaller 

populations on the left upper side that are the two different counting beads (1). The histograms 

on the right show the fluorescence of PE associated with CD34 (2), PE-Cy7 associated with 

CD45 (3) and APC associated with CD271 (4). The gates for positive cells were set in reference 

to the isotype controls, so that almost no events of the isotype control could be found in this gate.

 ....................................................................................................................................................... 42 

Figure 14 Example for gating double positive cells. The events gated as cells in the FSC-SSC dot plot 

(1) are further gated in a histogram to obtain the CD34 positive cells (2). Those are shown in a 

dot plot with the two axes defined by the two other markers: CD45 and CD271 (3). The cross 

divides the plot defining four new gates. The cells of interest lay in gate 3a and 3d. They show 

CD34+ and CD271+ cells (3a) and CD34+ and CD271+ cells (3d). Just CD34 single positive cells 

can be found in gate 3c, while cells positive for all three markers lay in gate 3b. ......................... 43 

Figure 15 Obtaining the stain index: The mean fluorescence intensity (MFIIsotype) and its standard 

deviation (SDisotype) are taken from the istoype control of one marker (1). From the same marker 

the mean fluorescence intensity of the sample (MFISample) is obtained (2). The stain index is 

calculated: Stain Index = (MFIsample - MFIisotype) / 2* SDisotype (58). .................................................. 44 

Figure 16 A model colony of ASCs stained with 0.05% crystal violet. Further expansion of the cells 

can be seen at the border of the colony. ....................................................................................... 47 

Figure 17 Example CFU Assay ready for counting, after two weeks of incubation, fixation with 4% 

PFA and staining with 0.05% crystal violet. ................................................................................... 48 

Figure 18 Overall cell number of the SVF per gram of lipoaspirate for both preparation methods. The 

hand preparation resulted in 2.04±1.88 *105 and the preparation with the use of the medical 

device in 1.07±1.0 *105 cells/gram lipoaspirate. No significant difference was found (p=0.0623). 51 

Figure 19 Cell concentration per gram lipoaspirate of the investigated markers CD 34, CD 45 and CD 

271 in the SVF for hand preparation (h) and preparation with the use of the medical device (d). 

Both preparation methods demonstrated no significant difference in the expression of the 

investigated markers, but a slight difference with the marker CD34 (p=0.0596). ......................... 52 

Figure 20 Percentage of single positive cells for the investigated markers in the previously defined 

main cell population in the FSC-SCC plot of the SVF. A significant difference between the hand 

preparation (h) and the preparation with the medical device (d) was found only for the marker 

CD34 (p=0.0185) and a tendency for the marker CD45 (p=0.0742). ............................................ 53 
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Figure 21 Percentage of double positive cells for the investigated markers in the previously defined 

main cell population in the FSC-SCC plot of the SVF. Based on the gating method, the number of 

values for double positive cells (n=12) is double of the number of samples (n=6). No significant 

difference between the hand preparation (h) and the preparation with the use of the medical 

device (d) was observed. In particular, for the marker combinations CD34+/CD45+ (p=0.2071) and 

CD34+/CD271+ (p=0.4150). No CD45+/CD271+ double positive cells were detected and therefore, 

no statistical analysis could be performed (#). .............................................................................. 55 

Figure 22 The stain index of the complete SVF regarding the investigated surface markers for the 

hand preparation (h) and the preparation with the use of the medical device (d). Both methods 

demonstrated no significant difference in their stain index for CD34 (p=0.1210), CD45 (p=0.3336) 

and CD271 (p=0.6207). ................................................................................................................. 57 

Figure 23 CFU Assays with ASCs of different concentration after two weeks of incubation, fixation and 

staining with crystal violet. The seeding concentration was 5 cells/cm² (1), 10 cells/cm² (2), 15 

cells/cm² (3), 20 cells/cm² (4), 25cells/cm² and 30 cells/cm² (6). Different colonies could be 

separated best when initially seeded at lower concentrations (1-3), while when seeded at higher 

concentrations the colonies were overlapping a lot (5 and 6). ...................................................... 58 

Figure 24 Seeding concentration and correlating colony density of both hand preparation and the 

medical device. A rising tendency can be seen with a Spearman’s correlation of r=0.855 for hand 

preparation and r=0.939 for preparation with the medical device. ................................................ 60 

Figure 25 Seeding concentration and the CFU capacity of both hand preparation and preparation with 

a medical device. No significant difference between the CFU capacities of each method could be 

found (p>0.503). ............................................................................................................................ 60 

Figure 26 Cell concentration of the SVF obtained by the hand preparation and with the use of the 

medical device in cells per gram lipoaspirate. On the upper (a) all values are shown. The 

preparations that produced almost no cells are circled red and marked. On the lower (b) all invalid 

preparation failures were removed. ............................................................................................... 64 

Figure 27 Cell concentration of the SVF for the markers CD34, CD45 and CD271 obtained by hand 

preparation (h) and preparation with the use of the medical device (d). On the upper (a) all values 

are shown. The preparations that produced almost no cells are circled red and marked. On the 

lower (b) all invalid preparation failures were removed. This results in an increase of all middles 

and an approximation of the results of both preparation methods. ............................................... 65 

Figure 28 Explanation of the preparation failures with the medical device. The bottom of the syringe 

with the SVF is illustrated (a). When the cap is removed a slightly negative pressure is created (b) 

and this can be enough to vacuum off a great part of the SVF into the cap (c). This part of the 

SVF is lost and cannot be used further. ........................................................................................ 67 

Figure 29 The currently used syringe cap (a) and a suggestion for an improved syringe cap (b) with a 

counterpart for the syringe shown in green. .................................................................................. 67 
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13.2. Tables 

Table 1 Different programs / steps that are performed for the extraction of the SVF with short 

description of the action. ................................................................................................................ 30 

Table 2 Short description of the examined surface proteins and specifications of the fluorescents 

conjugated to the used antibodies. ................................................................................................ 35 

Table 3 Description of the samples and volume of antibody solution added. ....................................... 38 

Table 4 Cell concentration of the SVF shown for the hand preparation and the preparation with a 

medical device. The overall value is shown and also the cell concentration of the different 

markers. The results of both methods were compared with a paired two tailed T-Test. ............... 51 

Table 5 Percentage of positive cells in the previously defined main cell population for hand 

preparation and preparation with the use of the medical device. The results of both methods were 

compared with a paired two tailed T-Test. .................................................................................... 53 

Table 6 The percentage of cells being positive for two markers in the population of single positive 

cells, for hand preparation and preparation with the medical device. The percentages of single 

positive cells are not shown here and marked with a star (*) and can be seen in 8.1.3 Single 

positive Cells. Cells double positive for CD45+ and CD271+ did not exist and are not shown in this 

table. .............................................................................................................................................. 54 

Table 7 Percentage of double positive cells in the previously defined main cell population for hand 

preparation and preparation with the use of the medical device. The results of both methods were 

compared with a paired two tailed T-Test. Because no CD45+ / CD271+ double positive cells 

existed in both preparation methods no T-Test could be performed (#). They show the same 

result. ............................................................................................................................................. 55 

Table 8 Stain Index in the main population of the SVF for the three markers for hand preparation and 

preparation with the use of the medical device. The results of both methods were compared with 
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Table 9 Colony density after two weeks and the resulting CFU capacity for hand preparation and the 

preparation with the use of the medical device resulting from the initial seeding concentration. 

Because colony density and CFU capacity can be transformed into each other the p values are 

the same and are shown in the right column. No significant difference could be detected. ......... 59 

Table 10 SVF cell numbers reported in the literature compared to the results in this study. Preparation 

methods and repeats are shown. # = manual preparations with laboratory equipment use different 

protocols, § = only valid preparations taken into consideration ..................................................... 63 
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