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Abstract

Understanding the structural and functional properties of molecular interactions on
atomic-level is fundamental to elucidate biochemical phenomena such as protein
interactions, protein-ligand binding, and enzymatic activities. For this purpose,
molecular modeling provides a powerful toolkit allowing the observation of molec-
ular interactions in silico through an approximation of the physics of Nature. In
this work, we show how various methods of molecular modeling can be applied to
analyze and understand different biological systems.

Depending on the biological problem to be solved, molecular modeling was
performed either on static structures or by considering their dynamic properties.
The basis for modeling were atomically-accurate crystal structures; if necessary,
model generation was combined with homology modeling and molecular dynamics
to account for mutational and conformational changes. In order to derive valuable
insights from those models, their structural compositions were studied: By perform-
ing small-molecule docking, structure alignments, electrostatic surface calculations,
analyses of intermolecular cavities and visual inspection, biological problems were
studied qualitatively. The significance of our results was then substantiated through
quantifying binding energies, interaction energies, and the spatial distribution of
atoms.

A profound understanding of molecular interactions can be demonstrated via
protein engineering, i.e. the targeted modification or design of proteins. So far, most
computational protocols have used rigid structures for design which is a simplifica-
tion because a protein’s structure is more accurately specified by a conformational
ensemble. As part of this work, a framework for computational protein design was
developed that allows existing design protocols to make use of multiple design states,
e.g. structural ensembles. An in silico assessment simulating ligand-binding design
made clear that this new multi-state approach generates more reliably native-like
sequences than a single-state approach. As a proof-of-concept, de novo retro-aldolase
activity was introduced into a scaffold protein and nine variants were characterized
experimentally. All variants displayed measurable catalytic activity, testifying to a
high success rate for this novel concept of multi-state enzyme design.



Kurzfassung der Arbeit

Das Verständnis der strukturellen und funktionellen Eigenschaften moleku-
larer Wechselwirkungen auf atomarer Ebene ist von grundlegender Bedeu-
tung für die Aufklärung biochemischer Phänomene, wie beispielsweise Protein-
Wechselwirkungen, Protein-Ligand-Bindung und enzymatischer Aktivität. Zu
diesem Zweck ist die molekulare Modellierung ein leistungsfähiges Werkzeug,
das die Beobachtung von molekularen Wechselwirkungen in silico durch eine Sim-
ulation der physikalischen Naturgesetze ermöglicht. In dieser Arbeit zeigen wir
wie verschiedene Methoden der molekularen Modellierung angewendet werden
können, um unterschiedliche biologische Systeme zu analysieren und zu verstehen.

Abhängig von dem zu lösenden biologischen Problem wurde die molekulare
Modellierung entweder auf statischen Strukturen oder unter Berücksichtigung der
dynamischen Eigenschaften von Strukturen durchgeführt. Als Grundlage für die
Modellierung dienten Kristallstrukturen mit atomarer Auflösung; wenn nötig wurde
die Generierung von Modellen mit Homologiemodellierung und Moleküldynamik
kombiniert, um Mutations- und Konformationsänderungen zu berücksichtigen.
Um aus diesen Modellen wertvolle Erkenntnisse zu gewinnen, wurden ihre struk-
turellen Zusammensetzungen analysiert: Durch die Anwendung von molekularem
Docking, strukturellen Alignments, elektrostatischen Oberflächenberechnungen,
Analysen von intermolekularen Hohlräumen und visueller Inspektion wurden
biologische Probleme qualitativ untersucht. Die Signifikanz unserer Ergebnisse
wurde anschließend durch die Quantifizierung von Bindungsenergien, Wechsel-
wirkungsenergien und der räumlichen Verteilung von Atomen nachgewiesen.

Ein tiefgreifendes Verständnis der molekularen Wechselwirkungen kann durch
Protein-Engineering, d.h. die gezielte Modifikation oder das Design von Proteinen,
demonstriert werden. Bisher haben die meisten computergestützten Protokolle
starre Strukturen für das Design verwendet. Diese stellen eine Vereinfachung
dar, weil die Struktur eines Proteins genauer durch ein konformationelles En-
semble spezifiziert wird. Im Rahmen dieser Arbeit wurde ein Framework für
computergestütztes Proteindesign entwickelt. Dieses ermöglicht bestehenden De-
signprotokollen, mehrere Zustände während dem Design zu berücksichtigen, z.B.
strukturelle Ensembles. Eine in silico Bewertung von simulierter Ligandenbindung



verdeutlichte, dass dieser neuartige Multi-State-Ansatz zuverlässiger nativ-ähnliche
Sequenzen generiert, als ein Single-State-Ansatz. Als Proof-of-Concept wurde mit-
tels computergestütztem Design de novo Retro-Aldolase Aktivität in ein Gerüstpro-
tein eingeführt. Neun Varianten wurden experimentell charakterisiert. Dabei zeigten
alle Varianten messbare katalytische Aktivität, was für eine hohe Erfolgsquote dieses
neuen Konzepts des Multi-State-Enzymdesigns spricht.
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Chapter 1

Introduction

In a simplistic view, life can be described as a hierarchical organization of complex
biological structures and systems [Solomon et al., 2002, pages 9-10]: In the lowest
level are atoms that covalently bind to give molecules. Groups of molecules interact
with each other and form complexes. Functional groups of molecule complexes build
up organelles that, in their entirety, define a cell. The functional unit of life - the cell -
is further organized in multicellular organisms: Homogeneous cells form tissues that
join in structural units to compose an organ; a complete group of organs assembles
a higher order organism. This hierarchy can be extended to the system integrating
all living beings and their relationships, the biosphere. Intriguingly, changes in
the lower levels account for all effects on the higher lying levels. Theoretically, a
change in one of the lower levels, for example a specific molecular interaction has
the potential to change the entire biosphere.

It is thus one of the grand challenges of science to understand in detail the
underlying molecular processes of life. An alternative to the variety of experimental
methods available for this task is molecular modeling: It allows the researcher to
perform experiments in the computer instead of the real world by making use of
the vast amount of available experimental and theoretical data. This can save time,
money and allows deep insights into molecular relations when an approximate
model of the system of interest is available.

Essentially important for life are proteins, large macromolecules assembled from
chains of amino acids. Proteins are the workhorses of a cell that perform the tasks of
an organism that are specified by the information encoded in its genes [Lodish et al.,
2000, Section 1.2]. In order to perform their native biological tasks, proteins usually
fold into unique 3D structures allowing them to act as complex molecular machines
that transport, convert, and bind molecules. Thus, a protein’s native structure is the
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key to fully understand these processes. Fortunately, molecular modeling of proteins
is supported by a fast-growing database of experimentally-determined structures in
atomic resolution, the Protein Data Bank (PDB) [Berman et al., 2000].

1.1 Proteins

Proteins account for about 20% of a cell’s weight [Lodish et al., 2000, Section 1.2]
and are arguably the functionally most versatile macromolecules. Just to name a
few examples, motor proteins act as molecular motors that control a cell’s logistics,
structural proteins build up connective tissue, antibodies neutralize pathogens as
part of the immune system, and enzymes are powerful biocatalysts that accelerate
chemical reactions. To avoid waste of resources, protein production is tightly reg-
ulated by a number of processes [Kafri et al., 2016] and requires two major steps:
During transcription, the information stored in a gene’s DNA is transferred to an-
other molecule, RNA. During translation, this RNA interacts with a specialized
protein complex named ribosome. Ribosomes assemble the protein as a chain of
covalently-linked amino acids by reading the genetic information from the RNA
and recruiting transporter molecules providing the encoded amino acids.

1.1.1 Biochemistry

Proteins are polymeric structures that are usually built from a series of up to 20
different canonical L-α-amino acids referred to as amino acids in the following.
Amino acids are composed of a backbone (a carbon atom Cα bonded to a hydrogen,
an amino group, and a carboxyl group) and a side-chain part with an organic
substituent (see Fig. 1.1) which makes up their physico-chemical properties that
can be classified into four groups: Hydrophobic amino acids possess a non-polar
side-chain and hydrophilic amino acids a polar side-chain; other amino acids have
acidic or basic side-chains. The covalently-bonded chain of amino acids is named a
protein and ordered from N- to C-terminus. Here, the amino group of a protein’s first
amino acid is referred to as the N-terminus and the carboxyl group of a protein’s last
amino acid as the C-terminus. Depending on their physico-chemical properties and
thus on the information encoded in their genes, proteins adopt specific structures to
perform their native functions.
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1.1.2 Structure and function

Protein sequences were formed during evolution for hundreds of millions of years
to possess optimal function in their environment. As described before, a protein’s
native function is associated with its structure: Upon production, proteins fold into
complex 3D structures depending on their amino acid sequence and the environment.
Three main types of higher-ordered structures exist, the α-helix, the β-strand and
the turn (see Fig. 1.1). Those so-called secondary structure elements form up by
hydrogen-bonding, an important electrostatic attraction of backbone atoms between
oxygens and amide hydrogens [Hubbard and Kamran Haider, 2010]; α-helices
and β-strands are energetic favorable because all of their hydrogen bond donors
and acceptors are satisfied. A protein can consist of several domains, which are
structurally-conserved units that fold, evolve, and function independently of the
rest of the protein [Wetlaufer, 1973].

CαNH3

R

H

C

O

N ... ECα

...
...

G L P T

Amino group
Side -chain

Carboxyl group

Amino
acid

N-terminus

β-strand

α-helix

C-terminusTurn

+ H

...
...

Fig. 1.1 The structure of proteins. The basic element of a protein is the amino acid,
consisting of a central carbon (Cα) bonded to a hydrogen, an amino group, a carboxyl
group, and an organic substituent (side-chain, R). The sequence of amino acids folds
into higher order structure elements, such as α-helices, β-strands, and turns.

The rapid growth of structural data in the PDB has led to the development of
tools for semi-automatic [Fox et al., 2014; Sillitoe et al., 2015] or manual [Murzin et al.,
1995] structure annotation. By means of those tools, all experimentally-determined
protein domains are identified based on structure comparison and grouped into
so-called folds. A fold bundles all protein structures with the same major secondary
structure arrangement and topology. Depending on the database, estimations for
the total number of folds in Nature range from several hundred to several thousand
[Govindarajan et al., 1999]. It is fascinating that this small number of protein folds is
sufficient to manage the complexity of life. How is this possible?
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The answer is that a protein’s native state is not a single rigid structure but rather
a dynamic entity that carries out the protein’s broad spectrum of functions [Wei et al.,
2016]. It is now widely accepted that proteins in solution exist as conformational
ensembles with several populated substates [Ansari et al., 1985; Dill et al., 1997;
Ferreiro et al., 2014] and that X-ray structures usually do not capture these substates
[Fenwick et al., 2014]. The fluctuations observed for a protein ensemble are a
thermodynamic phenomenon but are optimized to perform its biological function.
Thus, some substates of a protein’s ensemble may be more populated and the native
states of proteins can move in a spectrum from being disordered and lacking a fixed
3D structure to a rather rigid 3D structure.

1.1.3 Enzymes

Dynamics are especially important for a certain class of proteins named enzymes
[Agarwal, 2006]. Enzymes speed up chemical reactions by lowering their free energy
of activation [Garcia-Viloca et al., 2004]; without enzymes, most biological processes
in living organisms would not occur fast enough. A typical catalysis takes place in a
buried pocket within an enzyme structure, referred to as active site. A model first
suggested by Linus Pauling [Pauling, 1946] provided the conceptual foundation:
An enzyme decreases the activation energy of a reaction by tightly binding the rate-
limiting transition state (TS) structure. For a reaction to occur, a substrate molecule
approaches the enzyme and binds to the active site. Next, TS-binding is facilitated
to form an enzyme/TS complex. The substrate is turned into a product over one or
more reactive intermediates. It is apparent that an enzyme’s dynamics are essential
to making this process efficient by providing the structural scaffold to bind the
substrate, facilitate the formation of a TS and one or more reaction intermediates,
and release the product. Two mechanisms have been proposed to play a role in
performing the dynamic adaption of proteins in order to achieve a tight fit between
the substrate and the enzyme - induced fit and conformational selection [D’Abramo
et al., 2012; Hammes et al., 2009]. During induced fit [Koshland, 1958], the active
site reshapes by interactions with the substrate until it is completely bound and in a
precise position for catalysis. During conformational selection [Burgen, 1981], active
and inactive enzyme conformations exist in equilibrium; when a substrate is present,
it binds only to the active conformations and shifts the equilibrium towards those.
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1.2 Molecular modeling of proteins

The award of the Nobel Prize in Chemistry 2013 to Martin Karplus, Michael Levitt,
and Arieh Warshel "for the development of multiscale models for complex chemical
systems", shows how molecular modeling has become an essential tool to com-
plement experimental approaches by simulating the system of interest. Molecular
modeling includes all methods that can be used to model, design, and understand
the behavior of molecules. This section gives a general introduction about the tools
for molecular modeling related to this thesis.

1.2.1 Protein structure models

To start modeling, a structure model is required. Evidently, the quality of in silico
modeling highly relies on the accuracy of the model that describes the process
to observe. For proteins and other macromolecules, the PDB provides essential
information to generate an atomic-resolution structure model of a target protein. If
this protein’s structure is not available but its amino acid sequence, a structure model
can be created by homology modeling (HM): HM exploits the fact that two proteins
which are evolutionary-related (homologous) share a similar structure. Here, as little
as 25% sequence identity suffice to assume the same fold but to build high quality
homology models with atomic-accuracy generally more than 70% sequence identity
is required. As mentioned in Subsection 1.1.2, the fold space of proteins is relatively
limited and well-covered by experimental data [Sadowski and Taylor, 2009], so there
is a high chance of finding template proteins homologous to the target protein and
successfully building a homology model.

HM begins with identifying one or more homologous template structures by
database search methods [Altschul et al., 1997; Söding et al., 2005]. Next, a selection
of identified template sequences is aligned with the target sequence to produce the
target-template alignment. In order to transform the gathered information into a
3D structure, a number of different model generation methods are available. HM
usually starts with fragment assembly; here, fragments from structure homologs
are treated as rigid-bodies and are combined to build the conserved structure core
where the model accuracy is rather certain [Greer, 1981]. For sequence-variable and
loop regions, where the structure accuracy based on the template protein is rather
uncertain, segment matching [Levitt, 1992] can be applied to search the PDB for
structures representing segments of the target sequence. Generally, several different
methods are combined to give the best results. For example, HM also makes use
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of methods for protein threading, which are usually applied to compute models
when no homology can be detected [Yang et al., 2015]. Here, the geometry and
arrangement of backbone and side-chain atoms is refined by profile comparison
[Bowie et al., 1991], statistical potentials [Shen and Sali, 2006] or other methods [Wu
and Zhang, 2008]. During HM, a multitude of models are generated. In order to
choose a good model, model assessment algorithms such as VERIFY3D [Eisenberg
et al., 1997] are utilized to determine a score for each model and select a final model.
Some programs for HM, such as YASARA [Krieger et al., 2009] further combine the
best parts of several models into a hybrid model.

When the determination of a model is not possible with standard methods,
programs to fold protein structures based only on their amino acid sequence can be
used [Rohl et al., 2004; Xu and Zhang, 2012]. However, these methods only work
well for small proteins and provide rather poor accuracy. The field of structure
prediction is continuously evolving and recently, new methods have emerged that
combine protein folding with methods to predict residue-residue contacts [Marks
et al., 2012; Ovchinnikov et al., 2015] which has led to the discovery of several new
folds [Ovchinnikov et al., 2017].

1.2.2 Structure comparison

Comparing proteins by means of their structures has become a standard tool for
molecular modeling. Its importance for revealing evolutionary relationships be-
tween proteins, predicting protein structures and protein functions [Hasegawa and
Holm, 2009] has generated many different algorithms and procedures [Kufareva and
Abagyan, 2012]. Due to the continuously growing number of available structural
information, several methods for automated structure alignment methods exist, such
as CE [Shindyalov and Bourne, 1998], DALI [Holm and Sander, 1993] or TM-ALIGN

[Zhang and Skolnick, 2005] to search for structure homologs of a target protein in the
whole PDB. However, there is no single proper metric for measuring the distance
between protein structures. A simple and commonly used criterion to compare
the structural similarity of two sets of atoms is the Root-Mean-Square Deviation
(RMSD), defined as:

RMSD =

√√√√ 1
N

N

∑
i=1

δ2
i , (1.1)

where N is the number of amino acids and δ is the distance between the two atoms
in the i-th pair. A relatively simple but important problem is to find the optimal
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superposition of two sets of atoms, i.e. to minimize the RMSD. This problem can
be solved by the Kabsch-algorithm [Kabsch, 1976], which computes the optimal
rotation and translation of one set of atoms onto the other. However, the RMSD is
length-dependent and not suitable for more complex tasks like comparing differently
sized proteins. Here, other metrics such as the length-normalized TM-score [Zhang
and Skolnick, 2004a] are to be preferred.

1.2.3 Protein-ligand docking

Protein-ligand docking (PLD) is a widely used technique to predict bound confor-
mations of a small molecule (ligand) to a protein receptor. It is thus applied to study
protein-ligand interactions which is especially interesting for drug discovery and
pharmaceutical research where hundreds of thousands of candidates are virtually
screened for activity [Kitchen et al., 2004]. Typically, PLD is performed in two
steps, named sampling and scoring. During sampling, a number of protein-ligand
conformations are generated at the given binding site. Scoring then predicts the
binding energy of those conformations by physical and empirical energy functions.
Typically, the top scoring hits (bound conformations) are identified by ranking all
conformations and extracting those with the lowest binding energy.

Depending on the available computational resources and the problem size, pa-
rameters for sampling must be set adequately to achieve the best docking accuracy
[Sousa et al., 2006]. Four main factors determine accuracy: Receptor flexibility, lig-
and flexibility, ligand sampling, and most importantly the energy function used for
scoring. Receptor flexibility can be considered by i) allowing a certain amount of
side-chain or backbone flexibility ii) the explicit consideration of multiple protein
conformations as an ensemble iii) the subsequent structural refinement of docked
conformations. On the other hand, ligand flexibility is coupled to ligand sampling
to generate putative ligand conformations at the protein’s binding site using differ-
ent methods [Huang and Zou, 2010]: i) Shape matching is a quick method to find
matches of the surface of the ligand to complement the molecular surface of the
protein. ii) Systematic search algorithms explore a ligand’s degrees of freedom by
exhaustive searching, fragmentation or by considering an ensemble of ligand confor-
mations. iii) Stochastic algorithms sample ligand conformations by making random
steps in the conformational space and pursuing energetic favorable solutions.

Given a number of docked conformations of a ligand at a protein binding site,
the assessment of binding strength is done via scoring functions. Typically, scoring
functions for PLD are an empirically derived set of energy terms, including those for
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electrostatic energies, hydrogen bonding, entropy, hydrophobicity, and more; this
set of terms is weighted to reproduce experimentally measured binding affinities of
a training set. Depending on the method, scoring functions can be arbitrary complex
and computationally demanding, for example by considering charge polarization
[Cho et al., 2005] in the docking process.

1.2.4 Molecular dynamics simulation of proteins

Molecular dynamics (MD) simulation allows to study particle motions of biochem-
ical systems in full atomic detail as a function of time. The importance of directly
observing protein dynamics have made MD simulations an indispensable tool for
molecular modeling. This has contributed to replacing the early model of rigid pro-
tein structures with a dynamic model, in which intrinsic motions and conformational
changes play an essential functional role [Karplus and McCammon, 2002]. Modeling
a system of biomolecules requires to set two critical parameters: Simulation time
and accuracy, which are mutually dependent. For example, atomically-accurate
simulations with explicit water put severe constraints on the simulation timescale,
limiting the simulation time to microseconds - even on a supercomputer. Although
proceedings in the methodology and fast growth in computing power have led to
protein simulations reporting at the millisecond timescales [Lane et al., 2013], much
longer simulations are desirable. While local motions, such as atomic fluctuations,
side-chain, and loop motions are observable in the femto- to nanosecond scale,
larger motions like protein folding and unfolding require milliseconds up to minutes
[Kubelka et al., 2004].

Providing adequate timescales and accuracy, Molecular Mechanics (MM) force
fields are the method of choice for protein simulations. MM force fields rely on
classical mechanics for modeling: In all-atom simulations as used in this thesis, each
atom is a particle with a certain mass, which is assigned a van der Waals (vdW)
radius as well as a constant net charge. Covalent atoms are treated as springs with
equilibrium distances. Here, the parameters for different atom types and bonds are
usually derived from experiment or quantum-mechanical calculations. Given an
initial position as well as an initial velocity of all particles in the system, they are
allowed to interact for a fixed amount of time, typically in the f s scale; consequential
forces between particles and their potential energy are calculated by Newton’s laws
of motion [Newton, 1999] using the MM force field. The potential energy E of the
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system is computed as the sum of two terms

E = Ebonded + Enon_bonded , (1.2)

where Ebonded comprises three types of bonded interactions:

Ebonded = Ebond_stretch + Eangle_bend + Edihedrals (1.3)

Ebond_stretch and Eangle_bend approximate the bond stretching and angle bending
of covalently-bonded atoms by harmonic oscillators as a function of the bond length
and valence angle, respectively. Edihedrals represents the dihedral terms, which have
multiple minima and are typically approximated by a sum of cosine functions with
several multiplicities and amplitudes [Levitt et al., 1995].

Non-bonded interactions between all atoms are divided into two terms:

Enon_bonded = EvdW + Eelectrostatics (1.4)

EvdW approximates the vdW interactions that are typically modeled as a Lennard-
Jones 6-12 potential; Eelectrostatics describes the electrostatic interactions between fixed
point charges of particles, usually handled by the Coulomb potential (see Fig. 1.2).
Due to their large number, a cutoff radius for both interaction types is defined to
reduce computational costs.

After computing the forces between all atoms, atom positions and velocities can
be updated. Because the movement of particles in MD simulations is an n-body
problem which cannot be solved analytically, this step is performed by algorithms for
numerical integration, such as the most commonly used velocity-verlet integration
[Verlet, 1967]: Given all atom positions and randomly assigned initial velocities,
a cycle starts by computing the forces acting on each atom using the force field.
Based on the forces and masses of all atoms, their acceleration can be computed.
Next, a certain timestep is chosen to determine the change in velocities. After
updating the velocities, new atom positions can be determined, which in turn
allows the recalculation of forces, beginning a new cycle. In order to set up a
typical MD simulation many more parameters need to be defined, such as the
simulation type, temperature, thermostat, and boundary conditions. In this thesis,
NpT-ensembles were captured at room temperature by keeping the number of
particles N, the pressure p, and the temperature T constant in order to emulate the
given experimental conditions.
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The popularity and the broad applicability of MD has led to the implementation
of several software packages to model biomolecules. Just to name a few, CHARMM

[Brooks et al., 1983] originates from Martin Karplus’s group and is a historically
grown and popular software package; GROMACS [Hess et al., 2008] is a popular
software package known for its efficient implementation; YASARA [Krieger et al.,
2002] is a proprietary software package providing easy setup and a graphical user
interface. However, there is no single software package that performs well for
all simulation tasks and thus all software packages have individual strengths and
weaknesses.

Fig. 1.2 MD potentials and interactions
(Panel Lennard-Jones potential) vdW interactions are described by the Lennard-
Jones potential: PotLJ = 4 ϵ[( σ

rij
)12 − ( σ

rij
)6]. Here, the potential energy function

of two atoms i, j at distance rij/σij is defined by the depth of the energy well ϵij,
where rij is the distance between the two atoms and σij is the distance at which the
inter-particle potential is 0. (Panel Coulomb potential) Electrostatic interactions are
described by the Coulomb potential PotCoulomb =

q1q2
4 πϵ0

· 1
rij

, where q1 and q2 are two
charges, rij their distance, and ϵ0 the electric constant. (Right side) Interactions at
the active site of a protein computed by a force field and visualized with YASARA.
Green lines: hydrophobic contacts. Red lines: Pi-Pi-stacking. Blue line: Cation-Pi
stacking. Yellow dashed lines: Hydrogen bonds.
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1.2.5 Computational protein design

Since the 1990s computational protein design (CPD) evolved into a powerful tool
for protein engineering. For example, CPD has been successfully utilized to increase
thermostability of proteins [Dantas et al., 2003; Malakauskas and Mayo, 1998; Shah
et al., 2007] and to design new or altered binding specificities for metals [Marvin
and Hellinga, 2001], DNA [Ashworth et al., 2006] or other ligands [Allert et al., 2004;
Shifman and Mayo, 2003]. During the last decade, CPD was applied to even more
challenging tasks like the design of novel protein-protein interfaces [Fleishman et al.,
2011; Procko et al., 2014], de novo enzymes [Röthlisberger et al., 2008] or artificial
folds not found in Nature [Hill et al., 2000; Kuhlman et al., 2003].

CPD aims at predicting the sequence folding to a target structure which is known
as the inverse folding problem [Bowie et al., 1991]. The approach is built on Anfin-
sen’s dogma [Epstein et al., 1963], proposing that proteins fold into the lowest energy
conformation available to their sequences. In order to emulate the physical condi-
tions of proteins, physicochemical potentials, energy functions, and statistical terms
were developed specifically for protein design [Boas and Harbury, 2007]. Given
such a mathematical description of a protein model, CPD becomes an optimization
problem. However, its search space is unimaginably vast: For a small protein of
length 50, 2050 possible design sequences exist. Thus, scoring all design solutions is
not practical and CPD therefore relies on a multitude of algorithms to speed up the
optimization.

For this task, heuristic algorithms do not guarantee to find the sequence pro-
viding the global minimum energy conformation for a structure but offer adequate
solutions and fast computing times. Examples for heuristics in CPD include genetic
algorithms (GA) [Wernisch et al., 2000], Monte Carlo (MC) simulated annealing
[Kuhlman and Baker, 2000] and greedy algorithms [Nivón et al., 2014]. To solve the
inverse folding problem for a given protein structure, amino acid rotational isomers
(rotamers) are placed at each amino acid position in order to find an optimal set of
rotamers that minimizes the global energy. Each rotamer is one specific side-chain
conformation of a given amino acid picked from a large dataset of energetic favor-
able conformations, which further increases the dimensionality of the problem. In
the interest of reducing the search space, the protein model is simplified: Instead of
using a continuous model for rotamers, CPD relies on discretized rotamer libraries
like the Dunbrack library [Shapovalov and Dunbrack, 2011]. Typically, rotamers are
optimized using the MC method that combines statistical sampling with simulated
annealing: In brief, the optimization starts from a random distribution d1 of rotamers
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with different amino acid identities and computes the energy of this state E(d1).
Next, a number of rotamer changes are performed leading to d2. The energetic
change ∆E = E(d1)− E(d2) is calculated and the probability of accepting this state
paccept is computed by assessing the metropolis criterion:

paccept = min(1, e−
∆E
kT ) (1.5)

where T is the temperature and k is Boltzmann’s constant. When starting the
computation at a high temperature, most MC steps are accepted which allows
sampling of the energy landscape. Annealing forces the algorithm to accept rather
energetic favorable substitutions and reject most energetic unfavorable ones, leading
to convergence. Typically, the algorithm is started several times using different
random seeds to explore the energy landscape without running into local minima.

Having become a standard tool in computational biology, software for compu-
tational protein design is offered by several different academic groups. The most
flexible and widely used software suite for CPD is Rosetta [Leaver-Fay et al., 2011b].
It was implemented in a community approach and is maintained by a large user-
base. Rosetta bundles many protocols for computational design and macromolecular
modeling. However, several other software tools for CPD are actively developed:
OSPREY [Gainza et al., 2013] includes a number of powerful algorithms meant for
finding optimal solutions for CPD and aiming at further reducing the search space,
such as dead-end elimination [Desmet et al., 1992] or A* [Roberts et al., 2015]; FOLDX
is a protein design algorithm that makes use of an empirical force field. It is spe-
cialized in determining energetic effects of mutations and is a convenient tool to
compute interaction energies. Apart from these few examples, many more programs,
webservers, software suites, and scripts for CPD exist.

1.3 Aim of this thesis

Steadily growing computational resources and available experimental data have
made experiments in the computer more appealing than ever. Particularly important
are simulations, which offer an intuitive way of understanding Nature - by studying
the molecular context. In structural bioinformatics, special attention is paid to
proteins that perform a vast array of functions in living organisms.

The aim of this thesis was to explore the benefit of molecular modeling for
the understanding of protein function. Because protein function and dynamics
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are coupled, a particular focus was put on modeling the dynamic properties of
proteins. Depending on the research question, its complexity, and the feasibility of
the in silico approaches, the projects in this work were addressed by studying static
models (Section 3.1) and their dynamic properties via MD simulations (Section 3.2).
Logically, protein dynamics is important for another widely-used tool of protein
modeling - computational protein design: In Section 3.3, a novel algorithm for CPD
named MSF is illustrated. This algorithm allows the design of proteins considering
their inherent conformational dynamics via a discrete conformational ensemble. We
assess the performance of this algorithm on several benchmark datasets and show
that the consideration of dynamics improves the design performance. In order to
demonstrate the actual applicability of MSF, we developed a protocol for enzyme
design based on conformational ensembles. Using this protocol, MSF was applied to
computationally design de novo retro-aldolases based on a conformational ensemble
of a suitable scaffold protein.





Chapter 2

Materials and Methods

This chapter describes the programs, algorithms, and methods used in this thesis.
For improved readability, programs, protocols, and their options are designated
as PROGRAM[:PROTOCOL[:OPTION]]. The first two sections describe methods,
in which molecular modeling was applied in a static way without taking protein
dynamics into account. Next, general parameters used for MD simulations are
defined, followed by methods that involved the consideration of protein dynamics
via MD. The last two sections outline the description of a novel method for multi-
state computational protein design, its benchmarking, and finally the procedure
applied to design de novo enzymes.

2.1 Homology modeling and electrostatic surface cal-
culations of six-bladed NHL domains

The experimental work performed in publication A) was supported with a compre-
hensive computational analysis from our side: Homology modeling and electrostatic
surface calculations were used to structurally characterize six-bladed NHL domains
and the phylogeny of the family was derived from a structure-based multiple se-
quence alignment.

At the time of analysis, only three crystal structures had been determined experi-
mentally: the peptidyl-α-hydroxyglycine α-amidating lyase from Rattus norvegicus
(rnPAL, PDB ID 3fw0), a serine/threonine-protein kinase from Mycobacterium tuber-
culosis (mtPknD, PDB ID 1rwi), and the brain tumor NHL domain from Drosophila
melanogaster (dmBrat, PDB ID 1q7f). To gain more insight into the structural differ-
ences of this protein family, comparative modeling was used. For this analysis, the
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sequences of 22 six-bladed NHL domains were downloaded, including all human,
fly, and worm proteins. Next, 15 homology models were built for each represen-
tative group by means of I-TASSER [Zhang, 2008] using default settings. In each
case, the model with the best confidence score (C-score) was chosen, resulting in a
mean C-score of 0.1 ± 1.1, which indicates a satisfactory structure quality for this
analysis. Subsequently, surface electrostatic calculations were performed on all 3D
structures with the Particle Mesh Ewald approach [Krieger et al., 2006] as imple-
mented in YASARA (version 13.4.21) [Krieger et al., 2004] and by employing the
YASARA:YAMBER3 force field in physiological pH. For the graphical representation
shown in Results (Fig. 3.1), the solvent accessible surface was color-coded represent-
ing the local electrostatic potential. The darkest blue color represents a positive and
the darkest red color a negative potential of 300 kJ/mol, respectively.

Next, the phylogeny was inspected: All 25 considered NHL domains possess a
six-bladed β-propeller fold; however sequence similarity of the selected proteins
is low, which makes a purely sequence-based derived phylogeny difficult. The
average pairwise sequence identity value was 21 ± 18% as determined by EM-
BOSS:NEEDLE [Rice et al., 2000]. This is why a structure-based algorithm was chosen
for constructing a multiple sequence alignment (MSA) needed for phylogenetic anal-
ysis. By means of CHIMERA (version 1.8.1) [Pettersen et al., 2004], all 18 structures
were superimposed on the model of hsTrim71 from Homo sapiens, which yielded
the lowest sum of RMSD values in an all against all superposition. Subsequently,
CHIMERA:MATCH→ALIGN [Meng et al., 2006] was utilized to generate a MSA based
on this superposition. Finally, the sequences of the seven remaining proteins with
unknown 3D structure were included by applying MAFFT:ADD [Katoh and Frith,
2012; Katoh and Standley, 2013] with default parameters. This MSA was the basis to
determine a neighbor-joining tree [Saitou and Nei, 1987] by means of SPLITSTREE4
[Huson and Bryant, 2008]; this analysis was performed by Prof. Dr. Rainer Merkl.

2.2 Docking of putative light-inducible inhibitors to β-
galactosidase

The following methods are part of a collaboration with the groups of Prof. Dr.
Burkhard König and Prof. Dr. Hans-Heiner Gorris to create photo-switchable
inhibitors for β-galactosidase (β-gal):
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In total, the 3D structures of 121 ligands were analyzed and docked, contain-
ing two substrates, a known inhibitor for β-gal, and 118 photoswitchable inhibitor
designs. Docking was performed with flexible binding site residues and the con-
sideration of multiple β-gal structures: Therefore, 55 crystal structures of β-gal
from Escherichia coli were downloaded from the PDB, superpositioned and pre-
pared for docking with YASARA (version 16.4.6). Next, the global search space for
docking was limited to a cell of size 20 Å

3
centered at the substrate binding site

of β-gal. The 13 residues closest to the substrate binding site, excluding residues
with rigid side-chains (Ala/Gly), were defined as flexible. Docking was performed
with YASARA:AUTODOCKVINA (version 1.1.2) [Trott and Olson, 2010] using all 121
ligands. Each ligand was docked in 24 individual runs on each of the 55 crystal
structures. Some ligands were explicitly designed as cis isomers. To prevent cis-trans
isomerism by the conformational sampling of the ligand performed during docking,
the corresponding torsion angles allowing isomerization were frozen. Finally, results
for each ligand were collected based on the best hit sorted by binding energy in any
of the 55 crystal structures.

2.3 General parameters for molecular dynamics simu-
lations

Here, an overview is given about the protocol used for MD simulations in the next
sections. All MD simulations were performed with YASARA employing either the
YAMBER3 or YASARA2 [Krieger et al., 2009] force field. Simulations were run at
298 K under periodic boundary conditions and with explicit water, using a multiple
time step of 1 fs for intramolecular and 2 fs for intermolecular forces. If multiple
individual simulations were performed, independent calculations were seeded by
slightly changing the temperature (±0.01 K) for the respective next runs which reas-
signs the initial atom velocities. Lennard-Jones forces and long-range electrostatic
interactions were treated with a 7.86 Å cutoff, the latter were calculated using the
Particle Mesh Ewald method [Essmann et al., 1995]. Temperature was adjusted
using a Berendsen thermostat based on the time-averaged temperature and sim-
ulations were carried out at constant pressure. For non-protein and non-nucleic
acid molecules, the parameterization was performed using the AM1BCC protocol
[Jakalian et al., 2002] that assigns atomic charges by applying additive bond charge
corrections to semi-empirical AM1 [Dewar et al., 1985] atomic charge calculations.
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MD simulations require the definition of a simulation cell that should be adequately
sized to prevent self-interaction through periodic boundaries. Simulation cells were
thus defined as 5 Å larger than the considered structure along each axis. Cells were
filled with water to a density of 0.997 g/ml and counterions were added to a final
concentration of 0.9% NaCl. Next, the protonation states of all molecules were
assigned accordingly [Krieger et al., 2006]. Before capturing production runs, an
equilibration run was performed unless otherwise noted to remove conformational
stress. Prior to energetic analysis of structural snapshots, an energy minimization
was done as follows: After removing conformational stress by a steepest descent
minimization, the procedure continued by simulated annealing (time step 2 fs, atom
velocities scaled down by 0.9 every 10th step) until convergence was reached, i.e.,
the energy improved by less than 0.05 kJ/mol per atom during 200 steps.

2.4 Refining small-molecule ligand-protein interac-
tions via molecular dynamics

In publication B), several photoswitchable inhibitors targeting the phosphoribosyl
isomerase A from Mycobacterium tuberculosis (mtPriA) were designed. However, the
structural basis of the different binding affinities of the receptors remained unclear
and thus, the experimental part was supported by a structural characterization of
the strongest switching inhibitor compound 6 via MD simulations.

Based on the crystal structure of mtPriA (PDB ID 3zs4), the original ligand PRFAR
was removed and manually replaced by compound 6 in the open and closed form.
A good fit was provided through superposition of the phosphate binding pockets.
Both the open and closed model were prepared for MD simulations with YASARA

(version 13.4.21) as described in Section 2.3. In order to remove conformational stress,
the equilibration was conducted in two phases: After a 100 ps equilibration with
fixed protein coordinates, the liganded structure was equilibrated for 1 ns. The two
equilibrated models of the open and closed form were subsequently used for the six
following (three for each conformer) production MD simulations. Trajectories were
sampled at intervals of 100 ps for a total of 10 ns for each model. Binding energies
were obtained for each energy-minimized snapshot using YASARA’S integrated
binding energy function that computes the energetic difference of the ligand at
bound state and at infinite distance from its binding site. Representative structure
models for each simulation were extracted and were based on the snapshots with
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the best binding energy after energy minimization. The ligand binding energies and
standard deviations given in Table 3.3 were calculated by using the full production
trajectory.

2.5 Comparing differences in binding affinities of nu-
cleosomal cores

Publication C) is a comparative study of human and Plasmodium falciparum nucleo-
somes. In this work, experimental findings suggested that the latter have a strongly
reduced ability to recognize sequence-dependent nucleosome positioning signals.
For a structural analysis, the DNA-protein interaction of both human and plasmodial
nucleosomes was modeled, simulated, and compared by means of MD simulations.

All modeling tasks were performed with YASARA (version 16.4.6). First, the
standard protocol of YASARA was used to create homology models of all histones
and the complete nucleosome consisting of an octamer that had 146 bp of DNA
wrapped around it. For each model of a nucleosomal complex, the input of YASARA

was a multiple FASTA file with two DNA and eight protein sequences. The DNA
sequences were two copies of the palindromic DNA fragment (146 bp long) from
human X-chromosome alpha satellite DNA as found in the dataset with PDB ID
3afa. The protein sequences originated from the histones of H. sapiens or P. falci-
parum, respectively. The GenBank accession numbers for the human histones were
AAA63191.1 (H2A), AAN59961.1 (H2B), NP_066403.2 (H3), NP_003539.1 (H4) and
for the plasmodial histones AAA29612.1 (H2A), XP_001347738.1 (H2B), AAO23910.1
(H3), AAP45785.1 (H4). Due to their flexibility, the N- and C-termini of histones
could not be resolved in X-ray structures and modeling the long flexible termini
would result in structural uncertainty; therefore, their 3D-orientation was unclear.
This is why the histone sequences were trimmed according to the resolved 3D
structure reported in PDB ID 3afa. In order to determine the homology models for
plasmodium, three rounds of PSI-BLAST [Altschul et al., 1997] restricted to PDB IDs
were conducted and YASARA selected PDB IDs 3afa, 5av6, 3tu4, 3x1t and 2nqb as
templates. These datasets represent the structures of nucleosomal core particles from
different eukaryotic species. For the human template (3afa), all of the 740 target
residues could be aligned to template residues; for these the sequence identity was
84%. After building models for each template, YASARA combined the best scoring
fragments of all models to deduce a hybrid homology model. The resulting hybrid
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model scored best and the internal quality assessment of YASARA determined an
overall Z-score of 0.056, which indicates a model quality 0.056 standard deviations
better than an average high-resolution X-ray structure. Note that model quality is
most reliable for globular proteins and can be misleading for other protein types.
Dihedrals and packing in 1D and 3D were rated as optimal by YASARA.

Next, the models were prepared for MD simulations with YASARA (see Section
2.3) and three simulations were run for each nucleosome complex. Both the human
and plasmodial datasets thus consist of three MD trajectories each comprising 200
snapshots that represent varying poses of a 50 ns interval. To assess the protein-DNA
interaction, FOLDX (version 4) [Guerois et al., 2002] was used to calculate a score
for the interaction energy between individual histone cores and the DNA: The 200
snapshots with a time period of 250 ps were stored in PDB format and contained the
complex plus all water molecules within a maximal distance of 3 Å to a protein or
DNA molecule. Then, the side-chain orientation of all snapshots was optimized with
FOLDX:REPAIRPDB to prepare the structures for the given force field. Subsequently,
mean interaction energies between histone and DNA as well as their standard de-
viations were deduced with the FOLDX:ANALYZECOMPLEX command. A further
analysis was carried out with the help of Samuel Schmitz to characterize the under-
lying protein-DNA interactions in detail: The 200 snapshots were used to deduce
mean values of scores assessing the following interactions, which were determined
in a residue-specific manner: π-π stacking, cation-π stacking, contacts, hydrophobic
interactions, and hydrogen bond networks. For the first four interactions, scores
were taken from the YASARA output. To score hydrogen bond networks, distances
were analyzed between residues, DNA, and water molecules in a snapshot-specific
manner. Thus, a graph was computed that consisted of nodes that represent puta-
tively interacting atoms on the surface of the considered molecules and of edges
modeling hydrogen bonds. An edge was inserted, if the distance between a donor
and an acceptor atom was not larger than 2.5 Å. Based on this network, a score was
computed for each path interconnecting a pair of atoms from DNA and a protein
according to:

Spath(atomk
i , atoml

j) = 1/(edges(atomk
i , atoml

j) · #path_ident_len) (2.1)

Here, edges(atomk
i , atoml

j) is the number of edges interconnecting an atom k of
residue i with atom l of nucleotide j and the normalization factor #path_ident_len
is the number of paths with the same length observed in the full dataset. Thus, the
score for a hydrogen-mediated interaction decreases with the number of involved
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water molecules and results in a higher score for a more direct one. The maximal
number of co-operative water molecules was limited to one and for each residue resj,
all Spath-values were summed up. For each of the averaged scores with noticeable
amplitude, the log2-value was plotted for corresponding residues of the histones
from H. sapiens and P. falciparum together with the sequences by means of a CIRCOS

graph [Krzywinski et al., 2009].

2.6 Analyzing molecular tunnels of chorismate-
utilizing enzymes by simulation

In publication D), biochemical studies showed that the primary metabolic enzyme
anthranilate synthase (AS, subunits TrpE:TrpG) can be converted into the secondary
metabolic enzyme isochorismate synthase (ICS) by introducing not more than two
mutations. In order to deduce a relationship between structure and function, the
structural characteristics of the wild-type and mutant proteins were analyzed in
silico. First, structure models of TrpE:TrpG variants were generated and studied in
MD simulations. Second, the MD trajectories were exploited to examine the putative
substrate channels of all variants.

The crystal structure of TrpE in complex with TrpG from Salmonella typhimurium
(stTrpE:stTrpG, PDB ID 1i1q) represents an unliganded, open, inactive T-state form
[Morollo and Eck, 2001]. Therefore an stTrpE:stTrpG homology model was generated
based on the crystal structure of the TrpE:TrpG complex from Serratia marcescens
(PDB ID 1i7q), which resembles a ligand-bound form with a closed active site
[Spraggon et al., 2001]. Modeling was performed with YASARA (version 14.7.17).
The high similarity of target and template sequences argues in favor of a good
3D model: Sequence identity values determined by EMBOSS:NEEDLE were 71.3%
(TrpE) and 79.8% (TrpG). Moreover, YASARA’S Z-scores were -0.462 (TrpE) and
-0.352 (TrpG), indicating high model quality. Chorismate (CH) was placed in the
active site of the stTrpE model, substituting the benzoate and pyruvate ligands
present in 1I7Q; the RMSD for all matching atoms was 0.713 Å. Structures of mutant
stTrpE variants were generated by in silico mutating residue positions 263 (Lys), 364
(Ala, Ile, Leu, Met), and 365 (Leu, Val, Ser, Ala) of the stTrpE homology model (see
Fig. 3.8). Mutated residues were rotamer-optimized employing YASARA:SCWALL

[Canutescu et al., 2003]. To remove conformational stress, all homology models were
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equilibrated by means of a 100 ps simulation, resulting in equilibrated homology
models (EHMs).

To identify the most likely paths of ammonia in wild-type stTrpE:stTrpG and of
the nucleophile in complexes with mutated stTrpE variants, the respective EHMs
were subjected to MD simulations and nucleophile channels were computed as
follows: EHMs of wild-type stTrpE and of each stTrpE variant were simulated in
three production MD runs (see Section 2.3). Trajectories were sampled at intervals
of 10 ps for a total of 2 ns, resulting in 600 snapshots for each stTrpE variant. These
structures were further energy-minimized prior to the computation of channels.
Moreover, for visual inspection, average 3D models were generated for each MD
trajectory as follows: An EHM served as a reference structure and average positions
for all atoms were deduced after superimposing the protein structures from all
snapshots. Nucleophile channels were computed utilizing MOLE (version 2.13.9.6)
[Sehnal et al., 2013]. Default values were used except a probe radius of 2.14 Å,
which is the size of ammonia in the given force field. The starting point was the
all-atom centroid of the ligand glutamine and Cys87 in stTrpG that approximates
the location where nascent ammonia is generated. The endpoint was the all-atom
centroid of the ligand CH and Ala327 in stTrpE that approximates the location of
the CH-C2 atom where the initial nucleophilic attack in the AS reaction occurs. For
each of the 600 resulting channels per variant, the channels centerlines served to
specify a putative nucleophile trajectory (PNT). As the MD simulations induced
small translational and rotational movements of the stTrpE:stTrpG complexes, a
direct comparison of related PNTs was not possible. To compensate for this effect, all
PNTs were superimposed on the respective EHM [Kabsch, 1976] and the resulting
PNT-bundles were analyzed further.

Visual inspection of PNT-bundles by means of PYMOL [DeLano, 2008] in the
region near the CH ligand indicated a preference for two major paths (Fig. 3.8); one
proceeding alongside Val265 and the other one alongside residues 365 and 425 (see
Fig. 2.1). Due to their prevalence in Leu365 and Ala365 variants, these paths were
termed L-path and A-path, respectively. The spatial distribution of PNTs observed
in a variant was determined by counting the number of PNTs that proceed along the
L-path or the A-path, as follows: First, for each PNT j, the segment with a distance
of 3 to 7 Å from CH-C2 was identified. Due to the complexity of the local curvature
of individual PNTs, these segments were represented by a different number of 3D
coordinates. Thus, the coordinates coordi,j

k were binned in 16 shells i (thickness 1/4 Å,

centered on CH-C2) and the vector pvi,j
k was computed that starts at coordi,j

k and ends
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in CH-C2. Then, a plane Pj (with normal vector nvj) was defined by CH-C2 and the

Cα atoms of the PNT-lining residues Met364 and Thr425. Each pvi,j
k was multiplied

with the normal vector nvj; the sign of the scalar product (+,−) si,j
k indicates the

position of coordi,j
k relative to Pj. For each shell i and PNT j, the mean was computed

as:

si,j = 1/ l
l

∑
k=1

si,j
k , (2.2)

where l is the number of coordinates coordi,j
k . Next, si,j was normalized to [0,1]; a

value of 0 indicates that all PNT coordinates are located on the L-path side of Pj and
a mean of 1 shows that all coordinates are on the A-path side of Pj. The shell-wise
computed mean was computed as:

si = 1/m
m

∑
j=1

si,j , (2.3)

where m is the number of PNTs in this shell. si was then used to determine

s = 1/n
n

∑
i=1

si , (2.4)

where n is the number of shells, which is the percentage of all PNTs along the
A-path in the 3 to 7 Å shell around CH-C2. For a graphical overview, compare Fig.
2.1. The fraction s was considered indicative for the prevalent localization of PNTs
and proposes the overall putative nucleophile path of each variant (see Fig. 3.7 C)
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Fig. 2.1 Principles used to quantify the spatial distribution of
PNTs. Graphical representation of L- and A-path (cyan and ma-
genta, respectively) as well as of the plane Pj and its normal vector
nvj used for quantifying the spatial distribution of PNTs. Pj was
specified by CH-C2 and the Cα atoms of residues 364 and 425 (yel-
low circles). For binning of PNT coordinates, sixteen 1/4 Å shells
(black circles) spanning a segment of 3 to 7 Å from CH-C2 were
defined. This figure was reused and modified based on [Plach et al.,
2015] with permission from John Wiley and Sons.
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2.7 ROSETTA:MSF: a modular framework for multi-
state protein design

In publication E), a novel framework for multi-state design (MSD) of proteins named
ROSETTA:MSF was implemented. In contrary to single-state design (SSD), MSD
allows to simultaneously consider multiple states for design, e.g. an ensemble.
The compilation of benchmark datasets and assessment of design performance are
outlined in this section and the procedure of applying this framework to design de
novo retro-aldolases is delineated in the next section.

ROSETTA:MSF was implemented as part of Samuel Schmitz’s master project
and provides multi-state functionality for enzyme (MSF:GA:ENZDES) and protein-
protein interface design (MSF:GA:ANCHORED). It has been integrated as an addi-
tional protocol into Rosetta and is purely written in C++98; development, testing,
and benchmarking was done for Rosetta weekly release 2015.19.57819. During
benchmarking, the performance of the default single-state protocols of Rosetta for
enzyme design (ENZDES) and protein-protein interface design (ANCHORED) was
compared to the performance using the multi-state protocols of ROSETTA:MSF.

2.7.1 Compilation of benchmark datasets

In total, four benchmark datasets were compiled: hIFABP and BR_EnzBench
were used to compare SSD with MSD performance for protein-ligand binding;
MD_EnzBench serves to test an alternative sampling method for the use in protein-
ligand binding design. BR_IfaceBench was generated to analyze the SSD and MSD
performance for protein-protein interface design.

Compilation of benchmark datasets for ligand-binding design

Dataset hIFABP with PDB ID 2mji contains ten conformers of human intestinal fatty
acid binding protein (hIFABP) and the bound ligand ketorolac; this ensemble has
been deduced by means of solution NMR [Patil et al., 2014]. The set was downloaded
from PDB and the ligand was parameterized using ROSETTA:MOLFILE-TO-PARAMS

[Davis and Baker, 2009]. Subsequently, each of the ten conformations was energy-
minimized via ROSETTA:FASTRELAX with backbone constraints. To obtain consistent
design and repack shells, the shells determined by ROSETTA:ENZDES:AUTODETECT

for each conformation were merged.
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Two subsets of the scientific sequence recovery benchmark of Rosetta [Nivón et al.,
2014] were generated that contain 20 specifically prepared conformations of 16 pro-
teins prot(k) with bound ligand. In order to exclude an erroneous conformational
sampling, missing residues were reconstructed by using YASARA:LOOP_MODELING

[Canutescu and Dunbrack, 2003] and the respective native sequences. For conve-
nience, all proteins were renumbered so that the first residue starts with a residue
number of one. Additionally, all ligands were removed prior to the conformational
sampling of the resulting apoproteins. The dataset BR_EnzBench was created by
using the BACKRUBENSEMBLE method of the BACKRUB server [Lauck et al., 2010]
to compute a conformational ensemble of 20 structures for each apoprotein. The
second benchmark dataset MD_EnzBench was deduced from MD simulations of
length 10 ns generated with YASARA (version 14.7.17) and the YAMBER3 force field
which had been parameterized to produce crystal structure-like protein coordi-
nates [Krieger et al., 2004]. For each of the 16 apoproteins, 1000 conformations
were sampled at an interval of 10 ps. After sampling, the native ligands were re-
introduced in all conformations of both subsets by means of PYMOL:SUPERPOSE

and the respective apoproteins. For the corresponding holoproteins of BR_EnzBench
and MD_EnzBench, the same design and repack shells were utilized. These were
determined protein-wise for each of the BR_EnzBench conformations by means of
ROSETTA:ENZDES:AUTODETECT and merged. In all conformations, design shell
residues were replaced with alanine and prior to design, all conformations were
energy-minimized by means of ROSETTA:FASTRELAX with backbone constraints.
Parameters for MD simulations are specified in Section 2.3; the protocol for energy-
minimization (see Section B.1) and the composition of the design and repack shell
for the hIFABP and EnzBench datasets (see Subsection B.2) are listed in Appendix B.

Compilation of a benchmark dataset for anchored protein interface design

The benchmark dataset BR_IfaceBench consisting of 16 protein complexes was gen-
erated based on the original dataset used to benchmark ANCHORED [Lewis and
Kuhlman, 2011]. To avoid erroneous conformational sampling, residues missing in
the crystal structures were reconstructed using YASARA:LOOP_MODELING with the
corresponding native sequences. For convenience, all complexes were renumbered
so that the first residue starts with a residue number of one. Next, a conformational
ensemble of 20 conformations was generated by applying the BACKRUBENSEMBLE

method of the backrub server on each protein complex. The design and repack
shell residues were adopted from the original benchmark dataset and are listed in
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Subsection B.2. Prior to design, all design shell residues were mutated to alanine and
all conformations were energy-minimized with backbone constraints (see Section
B.1).

2.7.2 Assessing design performance

As defined in this section, the design performance on the four benchmark datasets
was assessed by the total score (ts) given in Rosetta Energy Units (REU), the native
sequence recovery (nsr), and the native sequence similarity recovery (nssr).

The native sequence similarity recovery

The nssr is defined analogously to the nsr but considers amino acid similarities
instead of identities. Thus, for a given pair of residues aa1, aa2 the nssr value was
deduced from the scores of the BLOSUM62-matrix [Henikoff and Henikoff, 1992]
according to:

nssr(aa1, aa2) = { 1, if BLOSUM62(aa1, aa2) > 0
0, else

(2.5)

For a given pair of sequences seq1, seq2 of length n, the nssr value was determined
as a mean value deduced for residue pairs seq1[i], seq2[i]:

nssr(seq1, seq2) =
1
n

n

∑
i=1

nssr(seq1[i], seq2[i]) (2.6)

For a given set of designed sequences ds = {seq1, ..., seqn} and a native sequence
seqnat, the value nssr(ds, seqnat) was computed according to:

nssr(ds, seqnat) =
1
n

n

∑
i=1

nssr(seqi, seqnat) (2.7)

Computing scores for single-state performance assessment

Single-state ENZDES and ANCHORED were applied to each initial conformation
l of a protein k part of their corresponding Benchmark dataset, where K is the
number of proteins and L the number of conformations per protein. Using the
default MC optimization, sequences seqk,l(i) were generated by means of i randomly
seeded runsk,l(i). In order to control the convergence of the design process and for
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performance comparison, the seq∗k,l(i) with the best total score (ts) were chosen from
seqk,l(1, ..., i) for each k,l, and each i. Finally, the mean of the K · L ts values was
determined as a measure of design quality tsBenchmark

SSD (i) reached in i SSD runs:

tsBenchmark
SSD (i) =

1
K · L

K

∑
k=1

L

∑
l=1

ts(seq∗k,l(i)) (2.8)

Here, i is the number of runs, K is the number of proteins in dataset Benchmark,
and L is the number of conformations. Design performance in terms of recovery
was determined by comparing the protein-specific native sequence seqk

nat with the
designed sequences and computing the value of score ∈ {nsr,nssr}:

scoreBenchmark
SSD (i) =

1
K · L

K

∑
k=1

L

∑
l=1

score(seq∗k,l(i), seqk
nat) (2.9)

Computing scores for multi-state performance assessment

To realize the MSD approach, Rosetta’s genetic algorithm was adapted for use in
MSF: Briefly, the GA imitates the process of natural selection by maintaining a
population of design sequences that are evolved for a number of generations, while
the selection pressure of a fitness function eliminates less optimal solutions. The first
generation consists of a given seed sequence and a user-defined number of mutants
each with a randomly introduced single point mutation. During each generation
cycle j, half of the population was replaced with sequences seq(j) generated by
means of single point mutations and recombination. The replaced sequences were
those with worst fitness values f itness(seq(j)) which were computed according to:

f itness(seq(j)) =
1
N

N

∑
n=1

tsn(seq(j)) (2.10)

Here, N is the number of states (e.g. conformations of a given protein or
protein-protein complex) and tsn(seq(j)) is the application-specific Rosetta total
score for a sequence seq(j) given a state n. For MSD using MSF:GA:ENZDES or
MSF:GA:ANCHORED, ensembles are required and thus, all conformations were
divided into M ensembles which were taken as states for multi-state design. To
consider the same number of sequences for performance comparison with SSD,
T top scoring sequences were selected for each ensemble from the population of
MSD sequences so that L = M · T. Design performance in terms of energy was then



2.7 ROSETTA:MSF: a modular framework for multi-state protein design 29

computed as

tsBenchmark
MSD (j) =

1
K · M · T

K

∑
k=1

M

∑
m=1

T

∑
t=1

f itness(seqk,m,t(j)) , (2.11)

Design quality measured as sequence recovery was computed as the value of
score ∈ {nsr,nssr}:

scoreBenchmark
MSD (j) =

1
K · M · T

K

∑
k=1

M

∑
m=1

T

∑
t=1

score(seqk,m,t(j), seqk
nat), (2.12)

Protein-ligand binding benchmark hIFABP

For SSD, ENZDES was applied to each of the ten initial conformations con f (l)(1 ≤
l ≤ 10). Using the parameter set ps_enzdes (see Subsection B.3), sequences seql(i)
were generated by means of 1000 randomly seeded runsl(i)(1 ≤ i ≤ 1000). Finally,
tshIFABP

SSD (i) (Equation (2.8)) and nsr/nssrhIFABP
SSD (i) (Equation (2.9)) were determined

as measures of design quality reached in i SSD runs.
For MSD, all N = 10 conformations were considered as states of one ensemble

(M = 1) and MSF:GA:ENZDES was executed for 800 generations j (i.e. design cycles)
on a population consisting of 210 sequences with parameter set ps_msf_enzdes (see
Subsection B.3). The initial population was seeded with the native sequence of 2mji.
The sequences representing a generation j were ranked with respect to ts values and
the T = 10 top scoring sequences seqt

m(j)(1 ≤ t ≤ 10) were stored in order to allow
for the subsequent performance comparison. Finally, tshIFABP

MSD (j) (Equation (2.11))
and nsr/nssrhIFABP

MSD (j) (Equation (2.12)) were determined as measures of design
quality achieved after j generations.

Protein-ligand binding benchmark BR_EnzBench

For SSD, ENZDES was applied to each of the L = 20 initial conformations con f (l)(1 ≤
l ≤ 20) of each prot(k)(1 ≤ k ≤ 16) from BR_EnzBench. Using default MC opti-
mization and parameter set ps_enzdes (see Subsection B.3), sequences seqk,l(i) were
generated by means of 1000 randomly seeded runsk,l(i)(1 ≤ i ≤ 1000). Then, mean
performance reached in i SSD runs was determined as tsBR_EB

SSD (i) (Equation (2.8))
and nsr/nssrBR_EB

SSD (i) (Equation (2.9)). For a protein-specific comparison, final scores
were determined for each prot(k) from runs i = 1000.
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To assess the performance of MSD, each of the L = 20 conformations of a prot(k)
was assigned to an ensemble ensk

m(1 ≤ m ≤ 4) consisting of N = 5 conformations
each. These five conformations were considered as states and MSF:GA:ENZDES

was executed for 600 generations on a population consisting of 210 sequences with
parameter set ps_msf_enzdes (see Subsection B.3). The initial population was seeded
with an all-alanine sequence. The sequences representing a generation j were ranked
with respect to ts values and the T = 5 top scoring sequences seqk,m,t(j)(1 ≤ t ≤ 5)
were stored in order to allow for the subsequent performance comparison. Mean
performance values achieved after j MSD generations were determined as tsBR_EB

MSD (j)
based on Equation (2.11) and nsr/nssrBR_EB

MSD (j) using Equation (2.12). To score MSD
performance reached for one prot(k), the score values were taken from the final
generation j = 600.

Protein-ligand binding benchmark MD_EnzBench

ENZDES was applied to each of the L = 1000 conformations con f (l)(1 ≤ l ≤ 1000) of
each prot(k)(1 ≤ k ≤ 16) from MD_EnzBench. Using default MC optimization and
parameter set ps_enzdes (see Subsection B.3), sequences seqk,l(1) were generated by
means of one randomly seeded runk,l for each protein k and conformation l. The
mean performance nssrMD_EB

SSD (1) was computed using Equation (2.9).

Protein-protein interface design benchmark BR_IfaceBench

For SSD, ANCHORED was applied to each of the L = 20 initial conformations
con f (l)(1 ≤ l ≤ 20) of each protein complex(k)(1 ≤ k ≤ 16) from BR_IfaceBench.
Sequence optimization was performed with the default MC protocol utilizing param-
eter set ps_anchored (see Subsection B.3) and generating sequences seqk,l(i) by means
of eight randomly seeded runsk,l(i)(1 ≤ i ≤ 8). The mean performance reached
in i SSD runs was determined as tsBR_IB

SSD (i) (Equation (2.8)) and nsr/nssrBR_IB
SSD (i)

(Equation (2.9)). For a complex-specific comparison, final scores were determined
for each complex(k) after i = 8 runs.

To assess the performance of MSD, each of the L = 20 conformations of a
complex(k) was assigned to an ensemble ensk

m(1 ≤ m ≤ 4) consisting of N = 5
conformations considered as states. MSF:GA:ANCHORED was executed for 1000
generations on a population consisting of 50 sequences using parameter set
ps_msf_anchored_perturb (see Subsection B.3). For this set of parameters, a coarse
optimization was performed; the initial population was seeded with an all-alanine
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sequence and the final generation served to seed the population for a refinement run.
Afterwards, refinement was done by executing MSF:GA:ANCHORED for 500 gener-
ations on a population of 50 sequences using parameter set ps_msf_anchored_refine
(see Subsection B.3). The sequences representing a generation j were ranked with
respect to ts values and the five top scoring sequences seqk,m,t(j)(1 ≤ t ≤ 5) were
stored in order to allow for the subsequent performance comparison. Mean per-
formance values achieved after j MSD generations were determined as tsBR_EB

MSD (j)
using Equation (2.11) and nsr/nssrBR_EB

MSD (j) using Equation (2.12). To score the final
MSD performance reached for one complex(k), score values were taken from the last
generation j = 500 of the refinement run.

2.7.3 Characterization of ligand-binding design

The performance differences of the MSD implementation MSF:GA:ENZDES and the
default SSD implementation of ENZDES for benchmark dataset BR_EnzBench were
characterized in more detail. For this analysis, the results were regrouped and the
amino acid composition of the designed sequences was studied.

Grouping ensembles on MSD performance

The 20 conformations of a given prot(k) from BR_EnzBench belong to one of four
ensembles ensk

1 − ensk
4. The performance values nssrMSD(ensk

m) were determined
for each ensemble m and each prot(k) according to:

nssrMSD(ensk
m) =

1
5

5

∑
t=1

nssr(seqt
k,m(600), seqk

nat) (2.13)

Here, seqk
nat is the native sequence of prot(k). The values nssrMSD(ensk

m) were
used for a ranking ensk

rank=u(1 ≤ u ≤ 4) of the four ensembles such that ensk
rank=1 is

the one with the lowest nssrMSD(ensk
m) value and ensk

rank=4 possesses the largest one.
Having ranked the ensembles of all prot(k), sets of ensembles were created such that

the set ES1 =
16⋃

k=1
ensk

rank=1 contained the worst performing ensembles and ES4 =

16⋃
k=1

ensk
rank=4 those that performed best; the intermediates with rank = 2 and rank = 3

performed accordingly. For these four sets ESi, boxplots of the corresponding
nssrSSD and nssrMSD values were determined.



32 Materials and Methods

Choosing sequences for the analysis of the sequence differences

In order to assess the amino acid composition of the ENZDES outcome, the 42
seqk,l(1, ...,1000) with optimal ts values were identified for each of the 20 conforma-
tions of all prot(k) ∈ BR_EnzBench. For these 16 × 840 sequences seqk

SSD, the values
nssr(seqk

SSD[i], seqk
nat[i]) were determined (Equation (2.5)) by comparing all designed

and respective native (nat) residues of the design shell. The distribution nssrSSD(aaj)

represents for all amino acids aaj their recovered similarity at all design shell posi-
tions. To assess the amino acid composition for the MSF:GA:ENZDES outcome, the
16× 4× 210 sequences seqk

MSD of the final populations (i.e. all seqk,m(600)) generated
for the four ensemble groups of each prot(k) ∈ MD_EnzBench were used to deter-
mine the values nssr(seqk

MSD[i], seqk
nat[i]). The distribution nssrMSD(aaj) represents

for all amino acids aaj their recovered similarity at all design shell positions.

2.8 Multi-state design of retroaldolases

As a proof of concept, ROSETTA:MSF was applied to de novo design retro-aldolases
in a multi-state manner. The following section describes the sampling of the scaffold
protein to obtain structural ensembles which were subsequently used for design.
After evaluating all design solutions, nine variants were chosen for biochemical char-
acterization. Most variants showed weak solubility levels but could be solubilized
with the help of stabilizing mutations predicted in silico. Described methods are
supplemented by a protocol with additional details in Appendix C.

2.8.1 Scaffold sampling and multi-state design

The scaffold protein indole-3-glycerol phosphate synthase from Sulfolobus solfataricus
(ssIGPS, PDB ID 1a53) was downloaded from PDB and the ligand IGPS was removed.
To generate a structural ensemble, three MD simulations were performed with the
apoprotein for 10 ns by means of YASARA (version 14.7.17) and the YAMBER3 force
field. Using DURANDAL:SMART-MODE:SEMI-AUTO [0.03..0.20], the snapshots of
each trajectory were clustered individually and four conformations were chosen
from the largest cluster. These 12 conformations and the crystal structure of 1a53
were used for matching the transition state and grafting the theozyme of the retroal-
dol reaction [Bjelic et al., 2014] by means of ROSETTA:MATCH [Zanghellini et al.,
2006]. Each of the resulting matched transition states (mTS) consisted of a catalytic
triad Lysi-[Asp, Glu]j-[Ser, Thr]k at three residue positions i, j,k that occurs in one of
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the 13 conformations. Ensembles ensmTS of mTS used as input for MSF:GA:ENZDES

were generated as follows: First, mTS were discarded that were classified as weak
TS binder or TS destabilizer. For example, matches with catalytic residues near
the protein surface were eliminated. Second, mTS were grouped according to the
composition and localization of their catalytic triad. Those ensembles were selected
that contained the largest number of the 13 conformations. Third, ensmTS were
assessed with respect to the structural similarity of the superposed theozymes. In
total, 23 ensembles ensmTS containing four up to 13 conformations were chosen.
For each ensmTS, the design and repack shells were defined by merging the out-
come of ROSETTA:ENZDES:AUTODETECT for all corresponding conformations and
MSF:GA:ENZDES was executed on a population of 210 sequences that were seeded
with the native sequence of ssIGPS. At convergence, the design process was stopped,
which was the case after 97 to 710 generations. Parameters of MD simulations,
parameters of ROSETTA:MATCH, the specification of TS, and the content of all ensmTS

are listed in Appendix C.

2.8.2 Evaluation of design solutions

After MSD of retro-aldolases, the designs were filtered by ts values and active-site
geometry. The best 100 designs were selected for 10 ns MD simulations in water and
for one conformation of each design ensemble, 100 snapshots were generated. Two
simulations were performed; the first one was based on the enzyme/TS complex.
As a control, the second MD was based on the enzyme/substrate complex and the
substrate methodol was created by deleting the lysine-substrate bond of the TS.
For each trajectory, catalytic distances, angles and torsion angles were plotted as
boxplots and analyzed (see Appendix C).

2.8.3 In silico stabilization

Variant RA_MSD2 was chosen for solubilization experiments and all six conforma-
tions con f (l) of the corresponding ensemble were submitted to the PROSS server
[Goldenzweig et al., 2016], which was used with default settings allowing mutations
at all positions. For each input con f (l), PROSS provided seven mutated sequences
mut_seql(i)(1 ≤ i ≤ 7) containing an increasing number of putatively stabilizing
mutations. For each i (degree of stabilization), a MSA that contained all sequences
mut_seql(i) computed for all con f (l) was generated and WEBLOGO [Crooks et al.,
2004] was utilized to determine a sequence logo. Finally, consensus residues de-
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duced from the sequence logos were accepted as mutations at sites that did not
interfere with the catalytic center. All sequence logos are listed in Appendix C, Fig.
C.3.

2.8.4 Cloning, gene expression, protein purification, and activity
assay

Biochemical experiments were performed by Philipp Bittner, Katharina Satzinger
and Franziska Funke under supervision of Enrico Hupfeld. Synthesis of S-methodol
used for activity assays was done by Paul Gehrtz and Ivana Fleischer. Here, only a
brief description of the biochemical procedure is given, while the full details will
be published: genes for the designed retro-aldolases were optimized for codon
usage and ordered as synthetic gene strings from Life Technologies. Next, genes
were cloned into pET28a and pMalC5T plasmids; both vectors fuse an N-terminal
his6-tag to the target protein, while pMalC5T also adds maltose-binding protein
(MBP). Cells were grown in Luria broth and at a cell density of OD600 = 0.5, pro-
tein production was induced by adding isopropyl-β-thiogalactopyranoside. After
growing over night at 20 ◦C, cells were harvested by centrifugation, cell pellets were
resuspended in Tris/HCl buffer (pH 7.5), and lysed by sonication. Soluble protein
was purified by nickel chelate affinity chromatography and eluted with Tris/HCl
(pH 7.5) using an imidazole gradient. Fractions containing sufficiently pure protein
were pooled and excess imidazole was removed by dialysis against a Tris/HCl
buffer containing NaCl. Protein concentrations were determined by absorbance
spectroscopy using extinction coefficients determined by the EXPASY:PROTPARAM

web-tool. Retro-aldolase activity of the designs was measured at 25 ◦C in Tris/HCl
(pH 7.5) containing NaCl and dimethyl sulfoxide by following the formation of the
fluorescent product 6-methoxy-2-naphthaldehyde from non-fluorescent S-methodol
(70% ee). Fluorescence was measured in a plate reader in black 96 well micro plates
and the product concentrations were determined with the help of a calibration curve.
To determine conversion rates, each measurement was repeated four times and for
the determination of the kcat/KM value, points were measured as triplicates. ssIGPS
and the solubility tag MBP served as negative controls and showed no detectable
activity.



Chapter 3

Results and Discussion

The aim of this thesis was to solve different problems in structural biology by means
of molecular modeling. Depending on the complexity of the problem and the
available resources, molecular modeling was either performed on static structures
(Section 3.1) or applied in combination with MD simulations to consider conforma-
tional dynamics (Section 3.2). The most computationally demanding application
studied here is computational protein design based on structural information from
conformational ensembles: In Section 3.3, the implementation, benchmarking, and
characterization of a novel algorithm is outlined; this method allows a protein
designer to mimic conformational flexibility, which increased the design perfor-
mance in in silico benchmark datasets. As a proof of concept, the algorithm was
applied to computationally design de novo retro-aldolases (see Section 3.4) based on
a conformational ensemble of the scaffold protein.

3.1 Molecular modeling based on static structures

The Nobel Prize discovery of the double-helix structure of DNA by James Watson
and Francis Crick in 1953 was based on an image taken by Raymond Gosling and
Rosalind Franklin showing the X-ray diffraction pattern of DNA. Providing key
information for the anti-parallel helical nature, the image helped Watson and Crick
to calculate the 3D model of DNA [Watson and Crick, 1953]. Although their resulting
model was completely static and did not reflect the molecular dynamics of DNA
interactions with water, ions, proteins, and RNA in living cells, it provided important
information to explain many in vivo functions of DNA. Today, molecular modeling
using static structures is still extremely important because it is easy to perform,
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consumes considerably less computational resources and relies on a continuously
growing structural database. In this section, the contributions to two projects based
on analyses of static structures will be illustrated.

3.1.1 Modeling six-bladed NHL domains predicts putative RNA
binding

The family of TRIpartite Motif (TRIM) proteins is found in all multi-cellular organ-
isms. It is known to be functional diverse, fulfilling tasks such as transcriptional
regulation and controlling a broad range of biological processes associated with
innate immunity. A prominent member is the brain tumor (Brat) protein of D.
melanogaster which plays a central role in repressing hunchback mRNA, a transcrip-
tion factor controlling thorax development, during early embryonic stages [Sonoda
and Wharton, 2001]. Brat consists of a N-terminal TRIM domain and a C-terminal
NHL domain. Complete lack of Brat function was shown to cause tumor growth in
the larval brain induced by the failure of neuronal progenitor cells to exit prolifera-
tion [Arama et al., 2000]. The NHL domain of Brat is of critical importance: Flies
with deletions or single point mutations in this domain are characterized by diverse
mutant phenotypes, for example abdominal segmentation defects. The crystal struc-
ture of Brat-NHL was solved and revealed a six-bladed β-propeller [Edwards et al.,
2003]. Mutagenesis studies showed that the top surface of Brat-NHL interacts with
Pumilio (Pum), which is an important mediation factor for the recruitment of Brat to
hunchback mRNA. Interestingly, mutations preventing the interaction of Brat with
Pum are also the cause of the brain tumor phenotype. Previous studies suggested
that the RNA-dependent interaction between Brat-NHL and the RNA-binding do-
main of Pum is the nature of a protein-protein interaction between RNA-bound Pum
and Brat [Edwards et al., 2003; Sonoda and Wharton, 2001].

Publication A) provided the basis for a different model: Through various bio-
chemical methods, it was shown that Brat and Pum contact RNA independent of
each other and translational repression by Brat can occur independent of Pum. To
consolidate the hypothesis, the data was supported by a computational analysis
of the TRIM-NHL protein family from our side. Typically, RNA-binding proteins
bind RNA via positive electrostatic surfaces that complement the negatively charged
phosphate groups of RNA. To give an overview about the RNA binding potential
of NHL domains, we analyzed the electrostatic surface potential of Brat-homologs:
First, homology models of known six-bladed NHL domains were built as described
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in Section 2.1. These models were the basis for electrostatic surface calculations to
estimate the degree of putative RNA binding. Next, the phylogeny was studied:
Due to the low sequence identity of all homologs, a structure-based algorithm was
utilized to determine a neighbor-joining tree. Finally, the data was visualized as an
unrooted tree, where the leafs of representative proteins show the corresponding
color-coded surface charges on the structure (see Fig. 3.1). The philogenetic tree
splits into several groups, while two bigger groups are well separated: Putative
RNA binders and enzymes split with bootstrap values of 85 and 100, respectively.
In this figure, putative RNA binders are marked as those associated with RNA
interactions in the literature [Loedige et al., 2014]. These proteins possess at least
patches of positively charged top surfaces. On the other hand and as expected,
the group of NHLs with known enzymatic activity display an overall negatively
charged surface suggesting no RNA binding. The analysis also highlighted putative
novel RNA-binding proteins, such as hsTRIM32 and hsTRIM56. Taken together,
the data indicates that RNA binding is a common feature of TRIM-NHL proteins
and their functional diversity suggests that they have a distinct set of RNA-binding
partners.
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Fig. 3.1 Phylogeny and surface electrostatics of six-bladed NHL domains. The
neighbor-joining tree was derived from a structure-based multiple sequence align-
ment as described in Section 2.1. Characteristic proteins are represented by their
known 3D structure (name in red) or by homology models (name in bold and black).
The subfamilies of putative RNA binders and of enzymes are separated from the
rest by a bootstrap value of 85% or 100%, respectively. For each structure, Particle
Mesh Ewald long-range electrostatic calculations were performed in YASARA and
used to color-code the solvent-accessible surface: A negative charge is indicated
by a red surface and a positive charge is indicated by a blue surface. Abbrevia-
tions for protein names and species are given next to the Uniprot ID. (bb) Borrelia
burgdorferi; (ce) Caenorhabditis elegans; (dm) Drosophila melanogaster; (hs) Homo sapiens;
(mt) Mycobacterium tuberculosis; (rn) Rattus norvegicus; (tp) Treponema pallidum. The
length of the horizontal bar corresponds to 0.1 substitutions per site. This figure
was reused and modified based on [Loedige et al., 2014] with permission from Cold
Spring Harbor Laboratory Press.
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3.1.2 Docking of putative light-inducible inhibitors to β-
galactosidase

Isolating single enzyme molecules in femtoliter-sized reaction chambers is an ex-
citing technique for basic research of enzyme kinetics [Liebherr and Gorris, 2014].
By combining this method with light-switchable inhibitors, the on- and off-states of
single molecule reactions can be monitored. This project is part of a collaboration
with Nadja Simeth and Karin Rustler from the group of Prof. Dr. Burkhard König as
well as Matthias Mickert from the group of Prof. Dr. Hans-Heiner Gorris to create
photo-switchable inhibitors of β-galactosidase (β-gal) for use in single molecule reac-
tions. For photoswitching, azobenzene- and dithienylethene-derived photoswitches
were considered [Brieke et al., 2012]: Azobenzene-derivatives share two phenyl
rings linked by an N-N double bond; photoisomerization from the trans-isomer
to the cis-isomer is triggered by ultraviolet light (see Fig. 3.2). Dithienylethene-
derivatives have aromatic groups bonded to each end of a C-C double bond; the
molecular structure can be switched between ring-open and ring-closed isomers by
ultraviolet light (see Fig. 3.2). If an isomer has inhibitory activity, the conformational
changes induced by switching to the other isomer may modulate this activity and
the compound can act as a light-switchable inhibitor.

N
N

N
N

trans cis

Azobenzene

UV

visible light
/ heat

open closed

Dithienylethene
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SS RR
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Fig. 3.2 Photoswitching of azobenzenes and diarylethenes. (Azobenzene) Photoi-
somerization of the trans-isomer is triggered by exposure with ultraviolet light;
the cis-isomer can thermally or by exposure with blue light relax back to the trans-
isomer. (Dithienylethene) The molecular structure can be switched from ring-open
to ring-closed isomers by exposure with ultraviolet light , and vice versa by exposure
with visible light.

The 3D structures of 121 ligands were provided for an analysis via docking
that served as a preselection for later biochemical characterization. This dataset
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contained substrates of β-gal, a known inhibitor for β-gal, and 118 inhibitor designs.
Most inhibitor designs were based on a new class of potent β-gal inhibitors [Greul
et al., 2001; Kleban et al., 2001], but also potentially poor candidates (decoys, non-
photoswitchable) were considered to test the confidence of the docking algorithm.
The small number of targets allowed docking with flexible binding site residues and
the consideration of multiple β-gal structures: In total, 55 crystal structures of β-gal
from E. coli were downloaded from the PDB and prepared for docking. Residues
in the substrate binding site were held flexible and docking was performed using
AUTODOCKVINA as described in Section 2.2.

After docking, the results for each single ligand were extracted based on the best
hit sorted by binding energy from all 24 respective docking runs on all 55 crystal
structures. Table 3.1 lists the three ligands with the highest and lowest binding
energy after docking. For reference, AUTODOCKVINA defines the binding energy
(given in kcal/mol, more negative means stronger binding) as the Gibbs-free energy by
computing a conformation-dependent score of intra- and intermolecular energies;
the standard error is 2.85 kcal/mol as assessed on a benchmark dataset [Trott and Olson,
2010]. The binding energy of Resorufin-β-D-galactopyranoside (= positive control),
which is a substrate of β-gal, was -11.23 kcal/mol. In comparison, decoys having no
assumed inhibitory activity showed binding energies in a range of -6.434 kcal/mol to
-12.233 kcal/mol (mean -8.473 kcal/mol). As -11.23 kcal/mol lies still within the mean decoy
± standard error (-8.473-2.85 kcal/mol), the accuracy of docking is rather uncertain.
The range of binding energies in the full dataset was -6.639 kcal/mol to -13.067 kcal/mol

(mean -10.6493 kcal/mol ), indicating that there are binders as well as non-binders for
β-gal in this dataset of ligands, when compared to the above values.

Fig. 3.3 illustrates the docked poses of ligands with highest and lowest binding
energies. ns_switch16_closed (Fig. 3.3 A), the closed-isomer of a dithienylethene-
derivative, tightly binds to β-gal by form-complementarity and several hydrogen
bonds. On the other hand, ns_cmpd2_ki8µM (Fig. 3.3 B), a decoy, also seems to
be fairly stabilized at the correct binding site by hydrogen bonds. However, the
form-complementarity is low and the desolvation penalties are high. In contrary
to ns_switch16_closed, the poor binding energy is also reflected in the docking
trajectory of ns_cmpd2_ki8µM, where diverse modes of binding occur at different
locations in the binding site (data not shown).

Certainly, the total binding energy is no means for the actual switching capability.
The perfect candidate for a putative switching inhibitor would possess an inhibitory
isomer with a binding energy lower than the positive control and its non-inhibitory
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Table 3.1 The three ligands with the high-
est and lowest binding energy. Row col-
oring serves visual guidance.

name binding energy
[kcal/mol]

ns_switch16_closed -13.067
ns_switch5_closed -12.996
ns_switch15_open -12.95

... ...
ns_false1_trans -7.958

ns_cmpd3_ki4-5µM -6.847
ns_cmpd2_ki8µM -6.639

isomer a preferably high binding energy. Hence, all variants were sorted by their
switching capability (see Table 3.2 for the top three compounds), resulting in the
ordered list of variants preselected for biochemical characterization. Although
several variants exist with a predicted binding energy in the range of the positive
control, switching to the respective isomer does not increase the binding energy
above the level of the standard error (2.85 kcal/mol), see Table 3.2. In conclusion,
the in silico analysis predicts that binders with inhibitory activity are available in
this dataset but their switching capability is relatively uncertain and can only be
determined experimentally, which is ongoing work at the time of writing. The
preselection thus serves to differentiate between non-binders and putative inhibitors
and increases the chance of finding a switchable one. An analysis that increased the
accuracy was not feasible for this particular problem size. Methods that consider
solvation, protein backbone flexibility and more sophisticated force fields rely on
rescoring docked poses [Bienstock, 2015] and are computationally too expensive for
a dataset of this size.

The software used for this project, AUTODOCKVINA, is one of the most frequently
used state-of-the-art tools for fast protein-ligand docking. Computing time however
was not negligible: With the given parameters for this docking experiment, one
ligand required about 300 core hours when docked on all of the 55 crystal structures
using one node1 of the HPC cluster of Regensburg. All 121 ligands thus required
around 36000 core hours, which testifies to a computing time of approximately four
years for a modern workstation computer. Methods that increase the accuracy by

18 cores of an Intel Xeon Processor E5-2650 v2
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A B

Fig. 3.3 Protein-ligand complexes of the two ligands with the lowest and highest
binding energy. Conformation of ns_switch16_closed (A) and ns_cmpd2_ki8µM (B)
docked into the binding pocket of an ensemble of 55 structures of β-galactosidases.
The ligand conformer with the best binding energy after docking 24 times on an
ensemble of 55 structures is shown. Hydrogen bonds are depicted as yellow dashed
lines.

Table 3.2 Top three dithienylethene- and
azobenzene-derivatives. Compounds were
sorted by their highest difference in binding
energy (|∆|=switching capability) of the two
respective switching modes.

name binding energy [kcal/mol]

closed open |∆|

ns_switch14 -12.668 -10.307 2.361
ns_switch5 -12.996 -11.003 1.993

dl_structure7 -12.019 -10.169 1.85

trans cis |∆|

ns_switch11 -10.635 -9.026 1.609
kr_switch7 -11.338 -9.845 1.493

ns_switch24 -10.508 -9.248 1.26
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considering explicit solvation and backbone flexibility require a computing time
several times higher. In the next section, a method that uses a sophisticated force
field and explicit solvation will be applied, e.g. to understand the binding modes of
a single known light-controllable enzyme inhibitor (Subsection 3.2.1).

3.2 Molecular modeling considering structural dynam-
ics

In contrast to the traditional rigid perception of visualized protein 3D models, pro-
teins in solution exist as conformational ensembles [Wei et al., 2016]. The native state
of a protein is consequently a distribution of conformations on the energy landscape
determined by statistical thermodynamics. However, those conformational states
are optimized by evolution to perform a protein’s native biological functions. When
modeling a protein, it is thus of utmost importance to capture the dynamic native
state as close as possible.

To understand biochemical processes, methods for molecular modeling rely on
experimentally determined structure databases such as the PDB. At the time of writ-
ing, 89% of all structures in the PDB are solved by X-ray crystallography. Structures
determined this way provide static but high-resolution structural information based
on artificially generated protein crystals. An alternative way to capture dynamic
properties is to obtain 3D structures from proteins in solution: For this purpose,
either NMR structure determination (9% of the PDB) or electron microscopy (1%
of the PDB) is used; However, NMR is limited in the overall protein size while the
resolution of EM structures - although improving - is still relatively low. For this
reason, high-resolution structures are usually static snapshots from protein crystals
while NMR and electron microscopy offer lower-resolution approximations of the
native conformational ensemble.

Although the determination of a 3D model is an essential step to solve a problem
in structural biology, a molecular model is much more than a simple representation of
a static structure. If structure models are available, physics-based methods like MD
simulations can be used to gather information about the time-dependent behavior
of molecules on atomic level. However, the drawback of MD simulations is the
computational cost: Depending on the system-size, atomically accurate simulations
in explicit water require a day of computing time for few nanoseconds of simulation
time on a single modern workstation. In this period of time, the observation of local
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motions such as atomic fluctuations as well as side-chains and loop dynamics are
possible. Extracting this information can be critical to solve biological questions in
an intuitive way - by studying the molecular context; three examples are presented
in this section: MD simulations were used to refine structure models (Subsection
3.2.1), increase the information value of a static model (Subsection 3.2.2) and observe
structural changes upon modifying a model (Subsection 3.2.3).

3.2.1 Differences in binding modes of light-controllable enzyme
inhibitors elucidated by molecular dynamics

As described in Subsection 3.1.2, light-mediated regulation of proteins is an
exciting tool to understand and control biological processes. In publication
B), several light-switchable inhibitors targeting the phosphoribosyl isomerase A
from M. tuberculosis (mtPriA) were designed. mtPriA is part of the amino acid
synthesis pathway and catalyzes two sugar isomerization reactions in trypto-
phane and histidine biosynthesis. In the latter pathway, the aminoaldose N’-[(5’-
phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (Pro-
FAR) is converted to the aminoketose N’-[(5’-phosphoribulosyl)formimino]-5-amino-
imidazole-4-carboxamide ribonucleotide (PRFAR). The fold of mtPriA is a (βα)8-
barrel which is characterized by a twofold-symmetry. The substrate ProFAR binds
to two phosphate binding sites that are located opposite each other.

In total, 13 C2-symmetric photoswitches based on 1,2-dithienylethene (DTE)
with terminal phosphate anchors were designed. Five out of 13 compounds acted
as photoswitches as tested in UV light absorption experiments for several ring-
closing/ring-opening cycles. Next, the inhibitory effect of those five compounds
was analyzed in steady-state enzyme kinetics: All variants showed inhibitory effects
comparable to the natural substrate ProFAR. The strongest difference in switching
capability was found for compound 6; here the reaction rate could be enhanced by
about threefold when switching from the open to the ring-closed isomer. However,
the molecular basis of the different binding affinities for the open and closed state
remained unclear. Thus, we structurally characterized the interaction of the strongest
switching inhibitor with mtPriA via MD simulations.

First, the protein-inhibitor complexes for the open and closed conformer were
modeled (see Section 2.4). Second, we performed three 10 ns simulations for each
conformer and computed binding energies of the inhibitors for all snapshots of the
MD trajectory. During MD simulation, the open and closed form of compound 6 are
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strongly fixed at the phosphate binding sites (Fig. 3.4 A,C). However, striking differ-
ences can be observed in their structural cores: The open isomer displays similar,
C2-symmetric conformers in three independent calculations (Fig. 3.4 B), while in the
ring-closed isomer a terminal phenyl ring is twisted to facilitate phosphate group
coordination (Fig 3.4 D). The experimentally determined difference in inhibition
activity could be confirmed by the binding energies determined during simulation,
which concordantly show that the open form is more favorable (Table 3.3). We
concluded, that the increased flexibility of the open form allows a better structural
adaption to the binding site which overcompensates the loss in conformational
entropy upon binding.

A

B

C

D

Fig. 3.4 MD simulations of mtPriA and bound meta-phosphate 6. For each iso-
mer, three independent calculations were performed and representative enzyme
structures for the open (A) and closed (C) form are shown. A superposition of the
energetically most favorable conformer of each of the three simulations is depicted
for the open conformation (B) and the closed conformation (D). This figure was
reused and modified based on [Reisinger et al., 2014] with permission from John
Wiley and Sons.
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Table 3.3 Ligand binding energies derived
from MD simulations of mtPriA and com-
pound 6 in its open and closed form

run interaction energy [kJ/mol]
open form closed form

1 -2171 ±55 -2062±64
2 -2162 ± 59 -1919±71
3 -2122 ± 77 -2049±60

3.2.2 Nucleosomal cores of human and plasmodial histones show
similar binding affinities in MD simulations

Cellular DNA usually does not occur loosely but is condensed into a dense structure
named chromatin [Cutter and Hayes, 2015]. From a functional point of view, this
packaging allows a clear separation of chromosomes during mitosis, prevents DNA
damage, and regulates gene expression as well as DNA replication. The basic
elements of chromatin are nucleosomes, which are protein-DNA complexes that
wrap DNA and are positioned on it like beads-on-a-string interconnected by sections
of linker DNA. Approximately 146 base-pairs of DNA are wrapped around a single
nucleosome, that consists of 2×4 subunits (Histone proteins H2A, H2B, H3, and H4).
Besides a compact core that directly interacts with DNA, histones possess long tail
domains with high intrinsic flexibility that are not suggested to contribute to complex
stability [Luger et al., 1997]. Acting as general DNA-packers, nucleosomes are
thought to bind DNA non-specifically. However, they are engineered by Nature to
be meta-stable which facilitates assembly and disassembly [Workman and Kingston,
1992]. By affecting the accessibility of the genome, nucleosomes regulate the gene
expression which is proposed to be governed by sequence preferences that control
nucleosomes-positioning on the DNA.

The parasite of malaria, P. falciparum, has a complex life cycle involving trans-
mission from a mosquito vector to a human host and several sexual and asexual
development stages [Bousema et al., 2014]. Its chromatin structure is distinct from
those of other eukaryotes, featuring high-accessibility and poorly positioned nucleo-
somes. This difference is suggested to be anchored in its genome: The genome-wide
AT-content of H. sapiens is around 60% [Cohen et al., 2005], while that of P. falciparum
is around 80% [Gardner et al., 2002] resulting in one of the most skewed eukaryotic
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base pair compositions [Hamilton et al., 2016]. Given that also plasmodial nucleo-
some sequences are highly divergent from those of other eukaryotes, an adaption
of nucleosomes to their AT-rich genome is assumed. In publication C), human and
plasmodial nucleosomes were analyzed and their binding to GC- and AT-rich DNA
was studied via in vitro experiments: Interestingly, the sequence differences observed
in plasmodial nucleosomes did not improve binding to AT-rich DNA. Moreover,
for P. falciparum, reduced thermal and salt stabilities were measured, indicating
that nucleosomes were also less stable on GC-rich DNA. In order to understand
the structural differences of human and plasmodial nucleosomes, we performed a
comparative analysis in silico.

To begin with, a homology model for the plasmodial nucleosome was built
based on the human nucleosome structure (PDB ID 3afa). The fact that 84% of all
amino acid residues in the human nucleosome are identical ensures a high quality
3D-model of the plasmodial nucleosome. Due to their flexibility, histone tails are
structurally not determined in the crystal structure and hence, modeling was done
without considering histone tails: Compared to the full-length sequence, the first 15
and last 13 residues of H2A and the first 27 of H2B, 42 of H3, and 23 residues of H4
were missing. For both the human and plasmodial model, 50 ns MD simulations
were performed and DNA-protein interactions were scored for individual residues
as well as for the full complex. For the residue-wise comparison, we assessed π-π
stacking, cation-π stacking, vdW contacts, hydrophobic interactions, and hydrogen
bond networks based on all snapshots of the MD trajectory.

The residue-wise comparison revealed that π-π stacking did not contribute
noticeable to DNA-protein interactions and the comparison of all other residue-
specific scores did not indicate striking differences (compare Fig. 3.5). Regarding the
location of amino acid differences, there are no sequence differences in H3 and H4 at
sites of direct histone-DNA interaction. On the other hand, H2A and H2B possess
most amino acid differences in their N-terminal tails and in the H2A C-terminal tail,
which are not covered by simulation data (see red squares in the "Tail regions" of
Fig. 3.5).

For an overall energetic assessment, the histone- and species-specific differences
in binding energy were determined by subtracting for each snapshot the score of
the plasmodial DNA-histone interaction from the median score calculated for the
human DNA-histone interaction by means of FOLDX (see Fig. 3.6). Only H2A#1
showed a slightly stronger DNA binding in human histones, which we did not
consider significant for the following reasons: The reported accuracy of FOLDX
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is 0.46 kcal/mol, which is the standard deviation of the difference between ∆∆G
calculated by FOLDX and the experimental values. Human H2A sequences differ
from plasmodial H2A sequences by 24 residues in the modeled core region, while
14 interacted with DNA in our analysis (compare Fig. 3.5). The median difference
in H2A#1 energies was 2.03 kcal/mol. Consequently, the mean contribution of each
mutation was 2.03 kcal/mol

14 =0.15 kcal/mol, which was below the reported accuracy. The
mean contributions of each mutation were even smaller for the other histones and
were therefore considered as a neutral effect. Based on the computational analysis,
we suggested similar DNA binding for the core regions of all corresponding human
and plasmodial histones, both in total and on a per residue basis.

Summing up, the results are controversial: The biochemical data showed clear
differences in binding and nucleosome stability, while our in silico results proposed
no difference. However, as an analysis of histone tails had not been possible, the
computational analysis was blind for their contribution to binding energy. In ad-
dition, most sequence differences are found in tail regions of histones. Hence, this
analysis suggested that mutations in the flexible histone tails and not in the histone
cores of P. falciparum decrease nucleosome stability and DNA binding strength. Al-
though histone tails had not been suggested to contribute to complex stability in the
literature, this study suggested a crucial contribution which is a hypothesis to be
tested in future studies.
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Fig. 3.5 A scoring of interaction-differences for nucleosomal residues. The outer-
most circle is an alignment of the residues from the four histones H2A, H2B, H3, and
H4 from H. sapiens (outer sequence) and P. falciparum (inner sequence). Positions
occupied by different residues are printed in red and additionally highlighted by a
red rectangle in the innermost circle. The in-between circles consist of color-coded
score values that indicate a higher score, if the color is dark (see Section 2.5). The
order of the interactions is, if listed from the outer to the inner circles: hydrogen bond
networks, hydrophobic interactions, vdW contacts, and cation-π stacking. Circle six
summarizes the differences as stacked bars. Black boxes mark residues that possess
at least one score belonging to the 10% most extreme values. No scores are given for
the trimmed N- and C-termini (Tail regions) not considered during modeling. This
figure was reused based on [Silberhorn et al., 2016] with permission according to the
Creative Commons Attribution license.
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Fig. 3.6 Differences in FoldX for the histone-DNA interaction. For the H. sapiens
histone cores, the available crystal structure (PDB ID 3afa), and for P. falciparum mod-
els of the histone cores were used; see Section 2.5. Energy differences were analyzed
for each of the eight individual histones; individual histone copies are indicated by
#1 or #2 respectively. Each dot of a scatter plot represents the difference between the
median human interaction energy and a snapshot-specific plasmodial energy value.
Interactions were further characterized by means of box plots. Whiskers indicate
the lowest and the highest datum still within the 1.5 interquartile. This figure was
reused based on [Silberhorn et al., 2016] with permission according to the Creative
Commons Attribution license.
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3.2.3 The substrate specificity of chorismate-utilizing enzymes
correlates with a change in putative nucleophile channels

An organism’s primary metabolism governs the processes that allow growth, de-
velopment, and reproduction. In contrast, the secondary metabolism contributes to
the fitness and the survival of the organism in its environment, for example by pro-
ducing competitive weapons like antibiotics. It is still unclear, where the secondary
metabolism evolved from, but the primary metabolism is debated to be a general
predecessor.

In publication D), it was shown that the primary-metabolic enzyme anthranilate
synthase (AS) from S. typhimurium (stAS, subunits TrpE:TrpG) can be converted
into a bifunctional variant adopting the function of the secondary-metabolic iso-
chorismate synthase by few mutations. The conversion from AS to ICS changes
the nucleophile specificity from ammonia to water, which is transported via an
intermolecular channel from the active site of subunit TrpG to the active site of
subunit TrpE.

Due to the peculiarity of nucleophile-switching, the intermolecular channels were
studied. First, stAS was analyzed using MOLE, a program to characterize channels,
tunnels, and pores in molecular structures. MOLE found a 30 Å-long channel that
connects the two active sites of stAS (see Fig. 3.7 A). This putative nucleophile
channel near the chorismate ligand (CH) is lined by mainly three residues: Gln263,
Met364, and Leu365. Based on data from a multiple sequence alignment of AS,
ICS, and other homologous enzymes, 16 stAS variants were generated that carry
mutations at these three channel-lining positions. Variants with the substitution
Gln263Lys formed the product isochorismate (IC, originally produced by ICS) in
the absence of an ammonia source when combined with a mutation at position 365.
Interestingly, a striking increase in IC formation was observed for variations of the
amino acid (Leu/Val/Ser/Ala) at this position.

The nucleophile-switching was suspected to be induced by structural rearrange-
ments of the substrate channel. To gain further insight, we simulated all 16 variants
via MD as described in Methods (Section 2.6); for each variant, 600 snapshots were
generated over a total simulation time of 6 ns. Based on each MD snapshot and using
MOLE, putative nucleophile trajectories (PNTs) were generated, where a PNT is de-
fined by the centerline of the corresponding MOLE channel; for details, see Methods.
Strikingly, a reduction of the size of the amino acid at position 365 corresponds to an
increase in CH to IC conversion and is related to a shift in PNT trajectories which
was quantified in a statistical analysis: First, all PNTs were classified as following
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one of two paths (A- or L-path) traveling along its substrate tunnel (see equations
(2.2),(2.3),(2.4) and Fig. 2.1). Next, the fraction of PNTs approaching CH along the
A-path was computed and compared to the conversion rate of CH to IC (see Fig. 3.7
C). The localization of PNTs undergoes a notable shift when decreasing the size of
residue position 365 (Leu>Val>Ser>Ala) from the L-Path to the A-Path while the
percentage conversion of CH to IC changes in the same way. The PNTs confirming
those findings were visualized in Fig. 3.8.

Intriguingly, few mutations suffice to establish secondary metabolic ICS activity
based on the primary metabolic stAS. Moreover, all variants were bifunctional, as
they were still able to form their natural product anthranilate. This conversion
provides a cost effective evolutionary path from a primary to a secondary metabolic
enzyme that does not require gene duplications by exploiting bifunctionality and
thus supports the hypothesis that the secondary metabolism can evolve from the
primary metabolism [Firn and Jones, 2000; Vining, 1992].

D

A B C

Fig. 3.7 Visualization and quantitative analysis of PNTs in wild-type and mutant
stTrpE variants. (A) Nucleophile channel connecting the active sites of stTrpG (blue;
represented by Cys87 and a glutamine ligand) and stTrpE (pale blue; represented
by CH and a Mg2+ ion) in stAS (model based on PDB ID 1i7q). The channel-lining
residues of stTrpE that had been mutated in experiments are shown as stick models.
(B) The L-path (cyan) and A-path (magenta) reflect the majority of PNTs in variants
with Leu365 and Ala365, respectively, and therefore show the boundaries of the PNT
shift. The directions from which the two paths approach CH can be separated by a
plane specified by CH-C2 and the Cα-atoms of Met364 and Thr425 (for details see
Section 2.6 and Fig. 2.1). (C) Comparison of the average CH-to-IC conversion by all
stTrpE variants with Lys263 and the fraction of PNTs proceeding along the A-path
in these variants. This figure was reused and modified based on [Plach et al., 2015]
with permission from John Wiley and Sons.
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Fig. 3.8 Comparison of PNTs in 16 stTrpE variants containing Lys263. PNT local-
ization is almost exclusively determined by residue 365. To a great extent, PNTs of
Leu365-variants proceed along Val265, i.e. along the L-path (Fig. 2.1). In variants
with Val365, approximately half of the PNTs proceed along the L-path; in the KAV
variant this distribution is less pronounced. In variants with Ser365, PNTs further
shift towards the A-path (Fig. 2.1). This effect is most pronounced in the KIS variant.
In the Ala365-variants, nearly all PNTs follow the A-path. Diameters of the PNT
associated channels can be deduced from the red-grey-green color scale. This figure
was reused and modified based on [Plach et al., 2015] with permission from John
Wiley and Sons.
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3.3 ROSETTA:MSF: a modular framework for multi-
state design

So far, computational protein design had mostly been carried out by optimizing
sequences based on single conformations (i.e. design states) known as single-state
design. However, as described in Section 3.2 a protein’s structure is more accurately
specified by a conformational ensemble. CPD on ensembles requires a multi-state
design algorithm to simultaneously assess multiple conformations. Such an algo-
rithm enables the protein designer to approach other challenging CPD objectives
like multi-specificity design or the concurrent consideration of positive and negative
design goals.

Rosetta [Leaver-Fay et al., 2011b] is a popular software suite to study and design
proteins. Rosetta’s protocols consist of specific procedures and a fine-tuned set of
parameters to carry out a given task. However, most protocols were implemented
for SSD. Thus, in the scope of this thesis, the framework MSF was developed that
allows the user to apply existing Rosetta protocols in a multi-state environment. In
the following, the implementation, architecture, and availability of MSF is described
(Subsection 3.3.1). In Subsection 3.3.2, the performance of MSF is assessed on
several benchmark datasets based on conformational ensembles. Finally, the enzyme
design functionality of MSF is characterized and compared to the standard protocol
(Subsection 3.3.3). The implementation of MSF together with the multi-state enzyme
design of retro-aldolases described in Section 3.4 were submitted as publication E).

3.3.1 Implementation and architecture

As part of MSF, we implemented a multi-state design logic based on Rosetta’s genetic
algorithm to explore the sequence space. As described in Subsection 2.7.2, the GA
maintains a population of design sequences that are evolved for a number of gener-
ations. The fitness of an individual sequence results from the application-specific
design protocol and a user-defined fitness function. For the initial implementation of
MSF, two widely used Rosetta protocols were integrated: ENZDES provides ligand
binding and enzyme design functionality by repacking and redesigning residues
around the binding/active site and by optimizing catalytic contacts [Richter et al.,
2011]. ANCHORED redesigns a protein-interface by using information from a known
interaction at the same interface of one partner [Lewis and Kuhlman, 2011]. The
resulting applications were validated and expose all options of the two protocols and
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of the GA to the user. To accommodate the multi-state design approach, sequences
are evaluated in the application specific design protocols for all given states. A com-
bined score (=fitness) is calculated according to a so-called "dynamic aggregation
function" (DAF, introduced by MPI_MSD [Leaver-Fay et al., 2011a]) that may weight
different states individually and supports positive and negative design as well.

The framework MSF was integrated as an additional protocol into Rosetta and is
purely written in C++98. It aims at significantly reducing the development effort of
equipping arbitrary Rosetta protocols with multi-state design capability. Therefore,
MSF bundles a number of classes responsible for distributing tasks to available
computational resources, by establishing MPI [Gropp et al., 1996] based communi-
cation and task synchronization, as well as initialization and execution of Rosetta
protocols. The software architecture is as follows for all protocols: One process is
responsible for the logic of the GA and a user-defined number of additional pro-
cesses are grafting and scoring, which guarantees high scalability. Every aspect of
MSF was designed with the highest possible flexibility in mind. This allows the
modification of superficial aspects of the algorithm as well as easy access to core
elements due to a global allocation system managing the instantiation of polymor-
phic key classes. Simply put, most important functions of the multi-state design
pipeline are exposed to the application and may be modified for each application
individually without breaking compatibility to existing applications. Due to the
modularity of the implementation, it is easier to extend single-state Rosetta protocols
with multi-state design capability in contrast to already existing multi-state applica-
tions. In the following, ROSETTA:ENZDES (or for the sake of brevity ENZDES) and
ROSETTA:MSF:GA:ENZDES (MSF:GA:ENZDES) are the names of the SSD and MSD
implementations for enzyme design; ANCHORED and MSF:GA:ANCHORED are the
SSD and MSD implementations for anchored protein-protein interface design.

Comparison to existing MSD approaches in ROSETTA

This is not the first implementation of multi-state design in Rosetta. MSD methodol-
ogy extends the application spectrum and thus, Rosetta offers several multi-state
applications; noteworthy are MPI_MSD [Leaver-Fay et al., 2011a] and RECON [Sevy
et al., 2015]. MPI_MSD provides a generic multi-state design implementation based
on a genetic algorithm that optimizes a single sequence on multiple states given a fit-
ness function. RECON starts by individually optimizing one sequence for each state;
subsequently the computation of a consensus sequence is promoted by incremen-
tally increasing convergence restraints. However, the current implementations of
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both methods are limited to certain design tasks and cannot make use of fine-tuned
protocols, e.g. those required for enzyme design (ENZDES) or anchored design of
protein-protein interfaces (ANCHOREDDESIGN). In order to overcome this limita-
tion, MSF was developed and the integration of MSF into Rosetta enables the use of
already proven single-state protocols in a MSD environment.

MSF relates to MPI_MSD as a progression, relying on the same GA protocol
and DAF accounting for the different states. In MPI_MSD the maximal number of
processes that can be used efficiently is limited by the number of design states, while
MSF is highly scalable by being able to utilize up to states×population processes.
Also, MSF was written from scratch and designed with high maintainability and
flexibility in mind, allowing any developer to extend existing Rosetta protocols with
multi-state design capability. We thus present MSF as a third option for multi-state
design in Rosetta which may especially be considered in cases where generic design
algorithms cannot be applied or produce unsatisfactory results. MPI_MSD relies
on the standard packing procedure which grafts sequences onto a pose in a generic
way and does not support specialized tasks like enzyme or interface design out of
the box. At the time of writing, it was also not possible to utilize RECON in the same
manner, since it does not support the strict separation of processes required by the
GA to synchronize the design processes during the transition of a generation.

Availability, installation, and command line options

The integration of MSF into Rosetta’s master branch is current work of Samuel
Schmitz at the time of writing and aims at providing MSF-support for upcoming
ROSETTA releases. However, MSF is available via a git-branch based on version
2015.19.57819, which contains the final version of MSF used for benchmarking and
retro-aldolase designs. The branch with the name SamuelSchmitz/msf_2015.19.57819
contains the two applications enzyme design (application msf_ga_enzdes) and an-
chored interface design (msf_ga_anchored) and can be accessed only from Roset-
taCommons developers by cloning https://github.com/RosettaCommons/main/
tree/SamuelSchmitz/msf_2015.19.57819 via git [Torvalds and Hamano, 2010]. It
is required to compile Rosetta with MPI support, e.g. ./scons.py mode=release ex-
tras=mpi msf_ga_enzdes msf_ga_anchored. The list of available command line
options and an example command to run MSF are listed in Appendix A.

https://github.com/RosettaCommons/main/tree/SamuelSchmitz/msf_2015.19.57819
https://github.com/RosettaCommons/main/tree/SamuelSchmitz/msf_2015.19.57819
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3.3.2 Comparing multi-state and single-state protein design per-
formance via conformational ensembles

Compared to SSD, MSD approaches offer a broader functionality, allowing the inte-
gration of multi-specificity design, negative design, and mimicking conformational
flexibility. A direct comparison between SSD and MSD approaches is thus not al-
ways possible. However, this thesis focuses on assessing the design performance of
SSD and MSD methods based on conformational ensembles. This allows an easy
comparison of the designed sequences by performing MSD on a conformational
ensemble and SSD on all single rigid states of the ensemble. For SSD, the standard
applications of Rosetta were applied that utilize Monte Carlo optimization; results
of the computation were averaged over all conformations. For MSD, MSF:GA was
utilized and results were computed ensemble-wise. Scores were computed by as-
sessing the fitness according to Equation (2.10) based on the Rosetta total score (ts)
averaged over all states of the ensemble.

MSD performs better than SSD in recapitulating a ligand binding site of an
NMR ensemble

The most obvious usage of MSD is its application on an ensemble representing the
native conformations of one protein. In solution, a protein’s structure is varying and
nuclear magnetic resonance (NMR) offers an experimentally determined estimation
of its variability. Interestingly, in previous analyses SSD protocols performed better
on crystal structures than on NMR templates [Allen et al., 2010; Schneider et al., 2009].
We speculated that this performance loss could be compensated, if MSD is applied
to a whole ensemble and we decided to assess a ligand-binding design. Hence, for a
first performance comparison of the SSD algorithm ENZDES, and the MSD algorithm
MSF:GA:ENZDES, we chose an NMR ensemble of the human intestinal fatty acid
binding protein (hIFABP) with bound ketorolac (PDB ID 2mji).

This ensemble, consisting of ten conformations, was prepared for ligand-binding
design (see Subsection 2.7.1) and the design shell contained 21 residues in the
vicinity of the ligand. Our protocol allowed Rosetta to find a low energy sequence
by arbitrarily choosing any residues for all positions of the design shell, which is a
predefined set of residues surrounding the ligand. 1000 randomly seeded runsl(i)
of ENZDES (SSD) were started for each of the individual conformations con f (l) and
the design quality was monitored by computing for each number of runs i the score
tshIFABP

SSD (i). This is the mean total score deduced from corresponding conformations



58 Results and Discussion

(Equation (2.8)) and it is given in Rosetta Energy Units (REU). MSF:GA:ENZDES

(MSD) was applied to the full ensemble and the GA was executed for 800 generations.
Analogously, the mean total score tshIFAB

MSD (j) was computed for each generation
j (Equation (2.11)). As a second measure of design quality, we determined the
native sequence similarity recovery (nssr). Commonly, the performance of design
algorithms is assessed by means of the native sequence recovery (nsr) [Havranek
et al., 2004; Hu and Kuhlman, 2006; Humphris and Kortemme, 2007], which is
the fraction of identical residues at corresponding positions of the native and the
designed sequence. The concept of nsr is blind for a more specific comparison of
residues beyond identity, which may impede a detailed assessment. In contrast, for
the computation of nssr, all residue pairs with a BLOSUM62 score > 0 are considered
similar and contribute to the nssr value (equations (2.6) and (2.7)).

The plots shown in Fig. 3.9 indicate that the SSD and the MSD algorithm con-
verged, both with respect to sequence recovery and the ts values of the chosen
sequences. In summary, MSF:GA:ENZDES performed better than ENZDES; the mean
nssr values after convergence were 46.66% and 41.90%, respectively. Moreover, only
two of the ten ENZDES designs reached an nssr value (47.62% and 61.90%, respec-
tively) that was higher than the mean nssr of MSF:GA:ENZDES. These findings
suggest to prefer MSD, if sequences have to be designed for an ensemble. Regarding
energies, the SSD solutions score on average better than those of the MSD solutions,
with a difference of 7.11 REU. However, a comparison of ts scores is no proper
means to compare SSD and MSD performance: In MSD, a sequence is a compromise
that has to satisfy the constraints associated with all conformations in an acceptable
manner. Contrariwise, in SSD the algorithm can select for each conformation a
highly customized (low energy) sequence. Thus, it is no surprise that the mean ts
values of SSD sequences are superior to those of the MSD results. On the other hand,
due to these specific adaptations based on single, less-native conformations, the
SSD sequences are receding from the native ones, which are considered as close to
optimal [Kuhlman and Baker, 2000]. This undesired effect is less pronounced for
MSD sequences computed on the whole native ensemble. Thus, the nsr and nssr
scores are more suitable than ts values for a comparative benchmarking of SSD and
MSD approaches.
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Fig. 3.9 Performance of SSD and MSD on the NMR ensemble hIFABP. ENZDES
(results in blue lines) was executed for 1000 runs i for each of the ten conformations
in the ensemble. For each number of runs i, the tshIFABP

SSD (i) value (dotted line) is
the mean of the ten lowest-energy sequences (Equation (2.8)). The corresponding
nssrhIFABP

SSD (i) value (solid line) is the mean recovery value deduced from the same
sequences (equations (2.7) and (2.9)). MSF:GA:ENZDES (results in orange lines) was
carried out for 800 generations j on the whole ensemble using a population of 210
sequences. For each generation j, the tshIFABP

MSD (j) value (dotted line) is the mean of the
ten lowest-energy sequences of the corresponding population (Equation (2.11)). The
corresponding nssrhIFABP

MSD (j) value (solid line) is the mean recovery value deduced
from the same sequences (equations (2.7) and (2.12)).
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A novel benchmark dataset for ligand-binding based on conformational sam-
pling

A standard dataset for the assessment of ligand-binding and enzyme design is
Rosetta’s scientific sequence recovery benchmark. It consists of 51 representative proteins
in which the ligand is bound with an affinity of 10 µM or lower [Nivón et al.,
2014]. During benchmarking, it is the task of a given CPD algorithm to redesign
residues of the design shell enclosing these ligands. The ability of the algorithm
to recapitulate for the native backbone the native sequence (nsr and nssr values)
is taken as performance measure. However, for an assessment of de novo design
algorithms, this approach may be misleading, because the required remodeling of
a chosen protein is more demanding than the recapitulation of its native binding
pocket. This is why we created a novel dataset that is devoid of a perfect backbone
and rotamer preorganization and is thus more suitable for the assessment of de novo
design algorithms. For feasibility reasons, we randomly selected 16 prot(k) of the
above proteins. The corresponding ligands were removed and for each of the 16
apoproteins, an ensemble of 20 conformations was created by means of the BACKRUB

server [Lauck et al., 2010], which is known to generate near-native conformational
ensembles [Davis et al., 2006; Lauck et al., 2010]. Next, by superposition of each
conformation with the corresponding crystal structure, the ligands were transferred
to the binding pockets. Thus, the resulting dataset BR_EnzBench features for each of
the 16 proteins 20 backbone conformations that are near to native but lack the implicit
preorganization induced by a bound ligand in a crystal structure. A graphical
overview of the benchmark setup is given in Fig. 3.10.

MSD performs better than SSD on a benchmark dataset mimicking de novo
ligand-binding design applications

We used BR_EnzBench to compare the performance of SSD and MSD for de novo
ligand-binding design. To begin with, all design shell residues were mutated to
alanine and the conformations were energy-minimized to further increase the diffi-
culty for CPD algorithms to recover the native sequence. To prevent a hydrophobic
collapse of the alanine-only design shells, the energy minimization was performed
with backbone constraints (see Appendix B.1). Thus, the CPD problem to be solved
within the scope of this benchmark was to design a binding pocket by sequence
optimization of the all-alanine design shells.
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Native crystal structure

Conformational sampling
of the apoprotein

Energy minimization and design

Measure recovery to native
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native ligands

Redesigned protein

Mutate design
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Fig. 3.10 The compilation of novel benchmarks for de novo computational ligand-
binding design. (1) 16 PDB structures were taken from Rosetta’s scientific sequence
recovery benchmark. For each structure, the ligand was removed and the protein struc-
ture was conformationally sampled with either Backrub (BR_EnzBench) or molecular
dynamics (MD_EnzBench). (2) For each protein conformation, the respective native
ligands were reintroduced by means of PYMOL. To delete the native preorganiza-
tion and increase the difficulty for the design algorithm, all design shell residues
were mutated to alanine. (3) All conformations were relaxed with backbone con-
straints to adapt structures for Rosetta computations; then, all conformations were
computationally designed. (4) For performance comparison the sequence recovery
to native was measured.
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For SSD with ENZDES, all conformations of each protein were considered inde-
pendently for design. For each conformation, 1000 randomly seeded designs were
performed and their quality was assessed by means of the three parameters nsr,
nssr, and ts. The respective values were taken from best results after i = 1000 runs
and averaged for each of the 16 prot(k) (equations (2.8) and (2.9)) and are listed
in Table 3.4. Additionally, the convergence of the design process was followed by
monitoring the mean performance for each number i of design runs; these values
are plotted in Fig. 3.11. To conduct multi-state design by means of MSF:GA:ENZDES,
for each prot(k) in the benchmark dataset, the 20 conformations were divided into
m = 4 ensembles ensk

m each containing five conformations. The GA was executed
for 600 generations on a population consisting of 210 sequences. Analogously, nsr,
nssr, and ts values (equations (2.11) and (2.12)) were determined for each MSD run
and averaged for each of the 16 prot(k). The results for j = 600 were added to Table
3.4. As above, the convergence of the GA was followed by monitoring the mean
performance for each number j of generations; these values are also plotted in Fig.
3.11.

The protein-wise comparison (Table 3.4) indicates that in ten out of 16 cases, the
nsr and in 13 out of all 16 cases, the nssr values of MSF:GA:ENZDES designs are
superior to the corresponding values of ENZDES designs. As summarized in Fig.
3.11, MSF:GA:ENZDES recovers on average a higher percentage of native residues
(∆nsr = 2.65%) and a higher percentage of similar residues (∆nssr = 6.79%). Thus,
with respect to the more adequate similarity measure nssr, MSD performs 15%
better than SSD. In addition, MSD designs have slightly better energies (∆ts =
2.51 REU), which is in contrast to the hIFABP results and is most likely due to the
smaller ensemble size. Fig. 3.11 reflects the differences in convergence speed of
both algorithms and indicates that the better performance has its price: The MC
optimization utilized by ENZDES leads to acceptable design solutions even after a
low number of runs. In contrast, the GA of MSF:GA:ENZDES is slower and more
than one hundred generations are required to surpass the performance of the SSD
algorithm.

MSD compared to SSD on a benchmark dataset for protein-protein interface de-
sign

As mentioned before, MSF was also equipped with MSD functionality for anchored
protein-protein interface (PPI) design by integrating the AnchoredDesign protocol.
This protocol [Lewis and Kuhlman, 2011] serves to redesign the PPI of one partner
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Table 3.4 Performance of SSD and MSD for individual proteins from
BR_EnzBench. nsr, nssr and ts values were determined for each of the 16 prot(k)
from BR_EnzBench after convergence of ENZDES and MSF:GA:ENZDES. For details,
see Subsection 2.7.2.

PDB ID
nsr (%) nssr (%) ts (REU)

ENZDES
MSF:GA: ENZDES

MSF:GA: ENZDES
MSF:GA:

ENZDES ENZDES ENZDES

1fzq 53.25 37.75 58.25 48.75 -325.16 -328.55
1hsl 34.74 33.95 60.00 59.47 -448.58 -447.39
1j6z 29.81 34.81 41.11 51.30 -771.96 -774.62
1n4h 28.80 28.80 53.00 59.40 -484.49 -488.89
1nq7 30.89 32.32 51.79 57.68 -506.56 -511.51
1opb 24.77 35.68 45.00 52.27 -307.57 -307.50
1pot 12.11 17.89 41.84 43.68 -613.10 -613.72
1urg 16.05 32.63 26.05 42.63 -796.85 -799.61
2b3b 24.41 41.47 32.35 50.59 -831.19 -831.17
2dri 21.58 25.79 42.89 55.26 -611.75 -613.74
2ifb 24.77 30.23 41.82 49.09 -305.08 -305.86
2q2y 38.70 39.13 48.48 56.52 -609.27 -611.17
2qo4 45.91 40.68 56.82 62.27 -271.47 -277.49
2rct 27.27 20.45 49.32 47.27 -317.51 -320.33
2rde 14.50 19.00 25.50 37.75 -463.52 -471.90
2uyi 38.26 37.61 47.17 56.09 -640.19 -641.01

Average 29.11 31.76 45.09 51.88 -519.02 -521.53
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Fig. 3.11 Convergence of SSD and MSD algorithms on the benchmark set
BR_EnzBench. ENZDES (results in blue lines) was executed for 1000 runs i on
all 20 conformations of each prot(k) from BR_EnzBench. For each number of runs
i, the tsBR_EB

SSD (i) value (dotted line) is the mean of the twenty lowest-energy se-
quences (Equation (2.8)). The corresponding nssrBR_EB

SSD (i) value (solid line) is the
mean recovery value deduced from the same sequences (equations (2.7) and (2.9)).
MSF:GA:ENZDES (results in orange lines) was carried out for 600 generations j on
all ensemble groups using a sequence population of 210. For each generation j, the
tsBR_EB

MSD (j) value (dotted line) is the mean of the five lowest-energy sequences of
each of the four ensemble groups (Equation (2.11)). The corresponding nssrBR_EB

MSD (j)
value (solid line) is the mean recovery value deduced from the same sequences
(equations (2.7) and (2.12)).
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by exploiting already known interactions (the anchor) of the target protein with
any other partner. In contrary to de novo interface design, anchored interface design
simplifies the problem by providing the anchor as a known starting point for PPI
design.

To assess the design performance of MSD and SSD for PPI design, a benchmark
dataset was required. However, the original dataset that served to benchmark
the ANCHOREDDESIGN protocol is a fixed sequence structure prediction bench-
mark [Lewis and Kuhlman, 2011]. It consists of k = 16 protein-protein complexes
complex(k) that possess interface loops (length 8-16) mediating binding; this bench-
mark aims at testing the performance of the algorithm to correctly predict the
structure of those interface loops given their native sequence and an anchor residue
part of the interface loop.

Although the fixed sequence structure prediction benchmark provides a quick
verification of the algorithm, it is not meaningful for a comparison of the SSD and
MSD approach. Hence, we were interested in the sequence design performance of
this protocol for SSD and MSD. For this purpose, we compiled BR_IfaceBench in
analogy to BR_EnzBench by applying the BACKRUB server to generate ensembles
of the native protein-protein complexes as described in Subsection 2.7.1. Prior to
design, all residues part of the interface loop except the anchor were mutated to
alanine. Next, ANCHORED and MSF:GA:ANCHORED was given the task of designing
the sequence and structure of the interface loop by sequence design and rigid-body
docking using the anchor residue as a starting position. This is obviously much
more difficult than just predicting the structure of the interface loop given the native
sequence.

For SSD, eight randomly seeded runs of ANCHORED were applied on all l = 20
conformations con f (l) of a complex(k) as described in Subsection 2.7.2. For each k
and each l, the ts , nsr, and nssr values were extracted and are listed in Table 3.5
(equations (2.8) and (2.9)). For MSD, the 20 conformations were divided into m = 4
ensembles ensk

m each containing five conformations. Then, a two-step protocol was
applied to each ensemble in order to speed up the computation (see Subsection 2.7.2
for details): MSF:GA:ANCHORED was executed for 1000 generations on a population
of 50 sequences using a coarse-grained atom model. The energetically best 50
sequences were extracted and used to seed a refinement run for 500 generations on a
population of 50 sequences. For each k and each m, the ts, nsr, and nssr values were
extracted and added to Table 3.5 (equations (2.11) and (2.12)).
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In contrast to the results obtained from the ligand-binding benchmarks,
MSF:GA:ANCHORED does not show a clear performance advantage over AN-
CHOREDDESIGN in this benchmark dataset: Although the nsr value is 5.9% higher
for MSD than for SSD, the nssr value of MSD is 3.68% lower in total. The results were
not further analyzed, for the following reasons: Due to the much higher computa-
tional complexity of the ANCHOREDDESIGN protocol for sequence design purposes,
it was not possible to run exhaustive calculations as done for the ENZDES protocol.
For MSD, the number of generations in the refinement run and the population
size were chosen relatively small. Also, the SSD protocol was executed only eight
times for each conformation. This is much lower than the 1000 runs performed
for ENZDES. For feasibility, the parameters controlling the number of loop design
cycles were set to a relatively small number (see subsections B.3 and B.3), allow-
ing only limited loop movements. For a typical production run, the parameters
-AnchoredDesign::perturb_cycles and -AnchoredDesign::refine_cycles would be set to
values over 1000, allowing extensive loop movement but requiring at least 20 times
more computational ressources. It was thus not possible to deduce meaningful
conclusions from the available data without further computations.
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3.3.3 Characteristics of ENZDES

In the following subsection, the benchmark results of SSD and MSD for ligand-
binding design were further analyzed. First, we show that the MSD concept in fact
accounts for the performance advantage over SSD. Second, the different sequence
preferences of MSD and SSD are studied.

The MSD concept is crucial for performance on BR_EnzBench

The sequence recovery results of the hIFABP benchmark and for BR_EnzBench
strongly suggest that MSF:GA:ENZDES is superior to ENZDES in more complex
design applications. However, it was unclear to us, whether the different con-
cepts (single-state versus multi-state) or the different optimizers (MC versus GA)
contributed most to the performance. Choosing a MSD approach increases computa-
tional cost which has to be substantiated by making plausible that the choice of the
optimizer has less effect on the performance.

As described before, the performance of MSF:GA:ENZDES on BR_EnzBench was
assessed ensemble-wise by determining for each ensk

m the nssr scores, which were
averaged (Equation (2.12)). Due to the stochastic approach of the Backrub algorithm,
which was used to create the conformational ensembles (see Subsection 2.7.1), the
conformations that are combined in each of the ensembles ensk

m are unrelated. As
these ensembles contain not more than five conformations each, the nssrMSD(ensk

m)

values (Equation (2.13)) vary due to the small sample size and one can sort for
each prot(k) the four ensk

m on their nssrMSD(ensk
m) value. The result is a ranking

ensk
rank=u(1 ≤ u ≤ 4) of the four ensembles and we created the set ES1 that contained

the 16 ensembles (one for each prot(k)) with the lowest nssrMSD(ensk
m) value. Anal-

ogously, we compiled the sets ES2 − ES4; consequently, ES4 consisted of those 16
ensembles that had the highest nssrMSD(ensk

m) value; for details see Subsection 2.7.3.
For these four sets ESi, boxplots of the corresponding nssrSSD and nssrMSD values

were determined; see Fig. 3.12. The boxplots characterizing the SSD results are nearly
identical; this finding indicates that the conformations allocated to the four sets ES1-
ES4 give rise to a similar SSD performance. Moreover, the boxplots representing the
nssrSSD(ES1) and nssrMSD(ES1) values are nearly identical (median values 47.60%
and 47.76%), which indicates that the optimizer GA is not generally superior to MC.
Additionally the continuous increase observed for nssrMSD(ES1) → nssrMSD(ES4)

(but not for nssrSSD(ES1) → nssrSSD(ES4) values) supports the notion that it is the
combination of conformations that strongly affects MSD performance. Thus, we
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concluded that the MSD approach (and not the optimizer) contributes most to the
performance of MSF:GA:ENZDES.

Fig. 3.12 Performance of ENZDES and MSF:GA:ENZDES on a distinct grouping of
conformations. Each of the sets ES1-ES4 contains a quarter of the conformations
from BR_EnzBench, which were grouped according to their nssrMSD values as de-
scribed in Subsection 2.7.3. ES1 contains all ensembles with the lowest and ES4 those
with the highest recovery values. For each set ESi, the corresponding nssrSSD(ESi)
and nssrMSD(ESi) values are represented by two boxplots. (Left) Performance of
ENZDES (blue boxplots). (Right) Performance of MSF:GA:ENZDES (orange boxplots).
Whiskers indicate the lowest and the highest datum still within the 1.5 interquartile
range.

The residue preferences of ENZDES and MSF:GA:ENZDES differ

It is known that ENZDES has a certain bias in recapitulating native residues [Leaver-
Fay et al., 2013]. Therefore it is reasonable to assess and compare the bias introduced
by ENZDES and MSF:GA:ENZDES. For the assessment of the ENZDES outcome, we
selected the 13440 sequences representing the best designs on BR_EnzBench and
determined nssrSSD(aaj) values. This distribution represents for all amino acids aaj
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the fraction of similar residues recovered at all design shell positions. Analogously,
the distribution nssrMSD(aaj) was computed that indicates the fraction of similar
residues recovered by MSF:GA:ENZDES; for details see Subsection 2.7.3.

The two distributions that are plotted in Fig. 3.13 indicate that the recovery rates
are similar and are below the optimal value of 100% for all residues. Generally,
sequence recovery for large polar or charged residues is low, which contributes to
the weakness of Rosetta to accurately design hydrogen bonds and electrostatics
[Stranges and Kuhlman, 2013]. Interestingly, ENZDES is slightly better in recovering
polar and charged residues (D, E, H, K, N, R, S), whereas MSF:GA:ENZDES clearly
recovers a higher fraction of hydrophobic residues (A, F, I, L, P, V, W, Y).

Fig. 3.13 Recovery of design shell residues from BR_EnzBench by means of
ENZDES and MSF:GA:ENZDES. The distributions nssrSSD(aaj) (blue bars) and
nssrMSD(aaj) (orange bars) represent for each amino acid aaj the nssr value deduced
from 13440 design sequences. These were created by ENZDES or MSF:GA:ENZDES
for the benchmark proteins BR_EnzBench, respectively. nssr takes into account the
recovery of all residues which are similar to the native aaj. For details, see Subsection
2.7.3.

This general trend is most evident in the two benchmark proteins with the largest
difference in nssrSSD and nssrMSD values: ARL3-GDP (PDB ID 1fzq) is a distinct
GTP binding protein [Hillig et al., 2000] from Mus musculus and both the ligand and
the native binding pocket are considerably polar. Fig. 3.14 A shows that ENZDES
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correctly recovered the residues interacting with the guanine group (colored in
teal) of GDP, while MSD was less successful. On the other hand, in the glucose
binding protein (PDB ID 2b3b) from Thermus thermophilus four tryptophan residues
provide tight binding to glucose by shape complementarity. Fig. 3.14 B shows that
MSF:GA:ENZDES recovered three critical tryptophan residues (colored in teal) in
most designs, whereas ENZDES preferred small polar residues that do not provide
tight packing. It seems that the representation of a protein by means of an ensemble
improves hydrophobic packing but not the formation of polar interaction networks.
Their design is considerably more difficult than hydrophobic packing due to the
partially covalent nature of a hydrogen bond and the geometric requirements for
orientations and distances [Boyken et al., 2016; Leaver-Fay et al., 2013].

3.4 Proof of concept - designing de novo retro-aldolase
activity

The ultimate proof of concept for any CPD algorithm is the design of functionally
active proteins. A reaction that is frequently chosen for enzyme design is the amine-
catalyzed retro-aldole cleavage of 4-hydroxy-4-(6-methoxy-2-naphtyl)-2-butanone
(methodol) into 6-methoxy-2-naphthaldehyde and acetone [Tanaka et al., 2004].
This multi-step reaction comprises the attack of an active site lysine side-chain
on the carbonyl group of the substrate to form a carbinolamine intermediate that
subsequently is dehydrated to a protonated Schiff base. The latter is then converted
to the reaction products by acid/base chemistry [Fullerton et al., 2006; Heine et al.,
2001]. The most active de novo retro-aldolase designs have been established on a
jelly roll and several (βα)8-barrel proteins [Althoff et al., 2012; Bjelic et al., 2014; Jiang
et al., 2008]. We chose this reaction as a proof of concept for MSF and selected a
previously used thermostable (βα)8-barrel scaffold for comparison purposes, namely
the indole-3-glycerolphosphate synthase from S. solfataricus (ssIGPS).

To implement the MSD approach, we first tested MD simulations as an alternative
to the BACKRUB server to generate ensembles that feature higher conformational
variability. Next, the multi-state enzyme design procedure is described: We used
MD simulations to create a conformational ensemble based on ssIGPS; afterwards,
MSF:GA:ENZDES was applied to introduce retro-aldolase activity into the ssIGPS
scaffold by considering its ensemble during MSD; finally, an in silico stabilization
method was utilized to improve the production of stable and soluble protein.
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Fig. 3.14 Recovery of two striking binding pockets by means of ENZDES and
MSF:GA:ENZDES. (A) The 3D structure of the binding pocket of ARL3-GDP is
shown on the right, the ligand GDP is colored light blue. The residues of the corre-
sponding design positions are shown on the left (labeled "Native"). The sequence
logos labeled "ENZDES" and "MSF:GA:ENZDES" represent for each design position
the distribution of residues as generated by the corresponding protocols. Residues
that are similar to the native ones are colored in green. In the native sequence,
residues are colored in teal, if the outcome of the two protocols differs drastically.
(B) The 3D structure of the binding pocket of the glucose binding protein is shown
on the right; the bound glucose is colored light blue. Native residues and sequence
logos are shown on the left and were prepared and colored as described for panel
(A).
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3.4.1 Molecular dynamics simulation is well-suited to compute en-
sembles with higher structural variability

MD simulation is a well-established and reliable method for modeling conforma-
tional changes linked to the function of proteins [Klepeis et al., 2009]. Therefore, MD
provides an alternative to the Backrub approach for the generation of ensembles
to be utilized in MSD. We were interested in assessing the designability of confor-
mations resulting from unconstrained MD simulations of length 10 ns. Thus, in
analogy to BR_EnzBench, we compiled the dataset MD_EnzBench consisting of 1000
conformations generated for each of the 16 benchmark apoproteins by means of
YASARA as described in Subsection 2.7.1. Note that according to our benchmark
protocol, all design shell residues were replaced with alanine prior to design.

To assess the structural variability of MD_EnzBench conformations, Cα-RMSD val-
ues of design shell residues were determined in a protein-specific all-against-all com-
parison and then averaged. Analogously, the structural variability of BR_EnzBench
conformations was determined. Interestingly, the structural variety of the bind-
ing pockets generated by the MD simulations is much larger than that generated
by the BACKRUB server: The mean RMSD of MD_EnzBench is 0.62 Å and that of
BR_EnzBench is 0.17 Å, which indicates that a 10 ns MD simulation generates an
ensemble with higher structural diversity than the BACKRUB server. As a control
of design performance, the 16 × 20 nssrBR values of (single) ENZDES designs gen-
erated for 20 protein-specific conformations from BR_EnzBench were summarized
in a boxplot, which had a mean value of 43.88%. To assess the designability of the
MD_EnzBench conformations, for each of the 1000 protein-specific conformations,
one sequence was designed by means of ENZDES and the resulting nssrMD values
were averaged protein-wise. Fig. 3.15 shows 100 boxplots each representing 16 × 10
nssrMD values resulting from ten conformations generated by the MD simulation
in a 100 ps interval for each of the 16 prot(k). The mean of these nssrMD values is
42.53%, which testifies to a satisfying design performance compared to nssrBR and
given that only one sequence was designed per each MD conformation. Moreover,
the boxplots indicate that performance did not decrease for conformations generated
at later phases of the MD simulation: The median nssrMD, and the first and third
quartile of the most left and the most right boxplots are 42.10% [35.40%, 45.89%] and
42.24% [34.78%, 50.00%], respectively. In summary, these findings suggest for de novo
design to consider MD simulations for the generation of ensembles that combine
high structural variability and appropriate designability.
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Fig. 3.15 Performance of ENZDES and MSF:GA:ENZDES on a distinct grouping of
conformations. Each of the 100 boxplots on the right represents 16 × 10 nssr values
resulting from ten conformations generated by the MD simulation in a 100 ps interval
for each of the 16 prot(k). As a control, the 16 × 20 nssrBR_EB

SSD values of (single)
ENZDES designs generated for 20 protein-specific conformations from BR_EnzBench
were summarized in a boxplot shown on the left (label Backrub). Whiskers indicate
the lowest and the highest values of the 1.5 interquartile.
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3.4.2 Multi-state design of retro-aldolases

As part of this thesis, a novel design procedure for multi-state enzyme design was
developed; a graphical overview with brief explanations is given in Fig. 3.16. In the
following, the procedure is described in more detail. The information given here is
complemented by additional information in Appendix C.

The structure of the scaffold protein chosen for enzyme design was ssIGPS
complexed with its product indole-3-glycerol-phosphate (PDB ID 1a53). In order
to create a conformational ensemble of the pure scaffold protein for MSD, the
preorganization introduced by ligand-binding should be completely disbanded. The
BACKRUB server provides a convenient and well-tested way to create structural
ensembles. However, as shown in the previous subsection, the generated structural
variability is lower than that of MD simulations. Hence we relied on MD simulations
in order to create a conformational ensemble free of a ligand-binding bias.

To begin with, the native ligand was removed from the dataset and the apopro-
tein was subjected to conformational sampling. Using the protocol validated with
MD_EnzBench, three individual MD simulations were performed for 10 ns. A
clustering of MD snapshots based on RMSD values helps to choose near native
conformations [Zhang and Skolnick, 2004b]. Thus, we used DURANDAL [Berenger
et al., 2012] to cluster the snapshots (conformations) generated with each MD run
and picked four conformations from the largest cluster. These 3 × 4 conformations
and the crystal structure of the apoprotein constituted the structural ensemble for
the subsequent enzyme design.

Enzyme design usually starts with generating a theozyme, which is a model for
the proposed active site that is based upon the geometric constraints dictated by the
expected transition state. To design retro-aldolase catalysis, we used a previously
designed theozyme containing the carbinolamine reaction intermediate as transition
state surrogate covalently bound to the catalytic lysine. In addition, the theozyme
contained a glutamate or an aspartate residue to function as general acid/base as
well as a serine or a threonine residue to provide additional hydrogen-bonding
interactions [Bjelic et al., 2014]. In the next step, we used ROSETTA:MATCH to create
in all conformations several thousand matched transition states (mTS) with catalytic
triads Lysi[Asp, Glu]j[Ser, Thr]k located at markedly different residue positions. A
critical step of MSD is the compilation of the ensembles that are used concurrently as
states. For enzyme design, ensembles ensmTS of mTS are needed and we compiled
them the following way: First, mTS judged as binding the transition state only
weakly were discarded. Second, mTS derived from different conformations were
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added to the same ensmTS, if identical catalytic triads were located at matching
residue positions. Thus, each ensmTS contained a certain number of conformations
accommodating the same catalytic triad. Third, the consistency of each ensmTS was
assessed by superposing the transition states and by comparing the corresponding
conformations. We chose 23 ensmTS consisting of four to 13 conformations (states)
and their design and repack shells were defined by merging the output created by
ENZDES:AUTODETECT for all conformations.

MSF:GA:ENZDES was executed with each ensemble until convergence; see Sec-
tion C.1 for details of the protocol. In brief, to assess the designs we compared
active-site geometry as well as total and interaction energies and the best 100 vari-
ants were subjected to MD simulations of 10 ns length. For each variant, we analyzed
in detail catalytic site geometries of 100 snapshots (see Section C.2) and nine variants
named RA_MSD1 to RA_MSD9 were chosen for biochemical characterization; see
Table 3.6. Previous experience had shown that not only the catalytic efficiency but
also the conformational stability of initial designs is often poor [Khersonsky et al.,
2012]. This is why the sequences are generally further optimized with the help of
FOLDIT or other software tools to revert unnecessary mutations back to the native
sequence of the scaffold [Bjelic et al., 2014] or, alternatively, by means of directed
evolution [Althoff et al., 2012]. We, however, initially did not introduce subsequent
stabilizing mutations into the sequences of RA_MSD1 to RA_MSD9 prior to a first
experimental characterization. In doing so, we wanted to demonstrate the potential
and also the limitations of multi-state designs.

For a comparison of these novel designs with previous ones, we compiled a
list of 42 retro-aldolases RA* from the literature (see Subsection C.4) that were also
created in the ssIGPS scaffold by means of SSD in Rosetta. These RA* sequences
differ on average at 15 positions from the native ssIGPS sequence; in contrast, the
nine RA_MSD* (see Section C.2) sequences contain on average 21 amino acid substi-
tutions. Moreover, RA* sequences deviate on average from RA_MSD* sequences
at 24 positions and 18 substitutions distinguish the most similar pairs of variants
(RA41 versus RA_MSD9 and RA90 versus RA_MSD8). Even the two designs (RA114
versus RA_MSD1) that share the same catalytic residues K210 and S110 differ at 25
positions. Although we utilized the same transition state and the same scaffold that
was used for the design of RA114 - RA120 [Bjelic et al., 2014], our MSD approach
has generated a set of entirely novel catalytic sites located in the same shell as used
for previous designs, compare Fig. 3.17.
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Scaffold protein:
indole-3-glycerol 
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Fig. 3.16 Overview of the retro-aldolase design process. (Ensemble representa-
tion) The scaffold protein was sampled via MD; the MD trajectory was clustered and
snapshots were extracted to generate an ensemble representation. (Theozyme) The
theozyme for the retro-aldol reaction was defined based on previous work [Bjelic
et al., 2014]. (Matching and design) ROSETTA:MATCH was utilized to place the
theozyme into the scaffold ensemble. The best matches were filtered and manually
selected; multi-state design was performed using MSF:GA:ENZDES. (Selection of
variants) A coarse evaluation based on Rosetta scores and a more detailed eval-
uation via MD were performed to choose variants for biochemical experiments.
(Experiments) Retro-aldolase activity was verified by in vitro experiments. The
solubility of one variant was further increased using the PROSS server.
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Table 3.6 MSD proteins and their retro-aldolase activity. The catalytic triad de-
signed for nine proteins (RA_MSD1 - RA_MSD9) is specified in the second column.
The third column gives the number of residue exchanges compared to the native
sequence of ssIGPS. The third column lists the conversion rates (rate of product for-
mation divided by the enzyme concentration) in the presence of 500 µM S-methodol,
and the last column the catalytic efficiency kcat/KM as determined from the linear
part of the substrate saturation curves. ND: not determined.

Name Catalytic triad Number of Conversion kcat/KM
exchanges rate (s−1) (M−1s−1)

RA_MSD1 K210/D131/S110 21 8.08 × 10−7 ND
RA_MSD2 K210/D131/S110 22 3.14 × 10−7 ND

RA_MSD2.4 K210/D131/S110 26 1.23 × 10−6 ND
RA_MSD2.5 K210/D131/S110 29 1.49 × 10−6 ND
RA_MSD3 K210/D131/S110 22 2.60 × 10−6 ND
RA_MSD4 K51/E53/S83 20 3.03 × 10−6 ND
RA_MSD5 K51/E53/S83 21 1.69 × 10−5 3.47 × 10−2

RA_MSD6 K231/E53/S83 25 2.82 × 10−6 ND
RA_MSD7 K231/E131/T159 18 8.33 × 10−6 1.41 × 10−2

RA_MSD8 K231/E131/T159 18 5.61 × 10−6 ND
RA_MSD9 K231/E53/T83 19 7.55 × 10−7 ND
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Fig. 3.17 Mutations introduced into the ssIGPS scaffold to design retro-aldolase
activity. (A) An overview of all mutations introduced in 42 previous designs sub-
sumed in the set RA* (sequences listed in Subsection C.4). Blue spheres indicate
residue positions and sphere diameters are proportional to the frequency of the mu-
tations in comparison to the native ssIGPS sequence. (B) Ditto, for nine RA_MSD*
designs, mutations are visualized by means of orange spheres.

3.4.3 All initial multi-state designs possess activity but need fur-
ther processing to improve solubility

The genes for RA_MSD1-RA_MSD9 were synthesized and expressed in E. coli as fu-
sion constructs with the gene for the maltose binding protein (MBP). The fusion pro-
teins were purified with metal chelate affinity chromatography via their N-terminal
hexa-histidine tags, resulting in high yields (50-150 mg protein/l expression culture).
RA_MSD5 could be produced in soluble form also without MBP, whereas the other
designs precipitated in the absence of the solubility enhancer. All designs showed
modest catalytic activity with low substrate affinity, leading to conversion rates for
500 µM S-methodol ranging from only 3 × 10−7 to 1.7 × 10−5 s−1 (see Table 3.6). For
the best designs, RA_MSD5 and RA_MSD7, the linear part of the substrate satu-
ration curve was used to determine kcat/KM values of 3.47 × 10−2 and 1.41 × 10−2

M−1s−1, which are similar to the values obtained for RA114-RA120 [Bjelic et al.,
2014]. Moreover, the RA_MSD5 designs with and without MBP displayed virtually
the same kcat/KM values, excluding an influence of the solubility enhancer on ac-
tivity. All experimental work was done by the biochemists in the lab of Prof. Dr.
Reinhard Sterner.
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Due to the intentionally omitted step of secondary protein stabilization follow-
ing the initial design process, eight of our nine designs were insoluble without
MBP. We wanted to test whether protein stabilization would result in higher activ-
ity. Accordingly, we attempted to improve the stability of RA_MSD2, which has
the lowest activity of all designs (see Table 3.6), by using the fully automated in
silico method offered by the PROSS webserver [Goldenzweig et al., 2016]. The six
conformations constituting the ensemble ensmTS used to design RA_MSD2 were
individually submitted to PROSS and the corresponding output sets that contained 6
to 21 stabilizing mutations were merged to five consensus sequences (see Section
C.3). Variants RA_MSD2.4 and RA_MSD2.5 that contained the highest number of
stabilizing mutations, could be produced in soluble form without MBP and were
purified with high yield (about 25 mg protein/l expression culture).

Software protocols for in silico protein stabilization are known to include false
positives when choosing stabilizing mutations [Magliery, 2015]. Thus, a single
destabilizing mutation could undo the stabilizing effects of other mutations. This is
why in previous studies, the number of mutations simultaneously introduced into
the scaffold had generally been kept low and different types of stabilizing mutations
had been tested. For the stabilization of RA_MSD2 via PROSS, we pursued a similar
strategy of varying the number of stabilizing mutations and their location (see Fig.
3.18 and Fig. C.3). Interestingly, the variants with the highest number of introduced
mutations (RA_MSD2.4 and RA_MSD2.5) showed the highest effect of stabilization,
while those with the lowest number of stabilizing mutations (RA_MSD2.1 and
RA_MSD2.2) were still completely insoluble without MBP. Although the solubility
of variants RA_MSD2.4 and RA_MSD2.5 was strongly increased, their melting
temperatures were unaffected by this stabilization; however, melting temperatures
were already at a very high level due to selecting a thermostable scaffold (Tm around
80◦C [Andreotti et al., 1997]). Also, activity measurements showed that mutations
did not drastically improve the conversion rate of RA_MSD2 (see Table 3.6). We
therefore can confirm that the PROSS server is able to predict stabilizing mutations
at a low false-positive rate. In addition, we could not find drastic changes in activity,
indicating that those mutations did not introduce dramatic structural changes.

In summary, our results showed that MSD (based on a structural ensemble) is
comparably successful as SSD (based on a single structure) for establishing retro-
aldolase activity on a thermostable (βα)8-barrel scaffold, indicating that this particu-
lar reaction requires only a limited degree of conformational flexibility. However,
catalysis is often linked to conformational transitions, which can only be captured by
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Table 3.7 Stabilizing mutations predicted by PROSS that were introduced intro
RA_MSD2 variants. From RA_MSD2.1 to RA_MSD2.5, stabilizing mutations are
marked in bold when appearing for the first time. Colored circles correspond to the
sphere colors of Fig. 3.18 indicating the location in the scaffold protein.

Name Mutations

RA_MSD2.1 N34K S102A S117Y N164E N190D N204D
N228H L248E (8)

RA_MSD2.2 S70A N161H C178G D180N I189V S234E (6)

RA_MSD2.3 N34K S70A S102A S117Y N161H N164E I189V
N190D N204D N228H S234E L248E (12)

RA_MSD2.4
P8W M9L N34K S70A Y89F S102A S108L S117Y
N161H N164E C178G N190D N204D N228H
S234E L248E (16)

RA_MSD2.5
P8W M9L Q14E L15I S25E N34K S70A Y89F
S102A S108L S117Y N161H N164E C178G D180N
I189V N190D N204D N228H S234E L248E (21)

Fig. 3.18 Location of PROSS mutations used to stabilize RA_MSD2. Spheres mark
positions proposed by PROSS and sphere colors correspond to the colored circles
in Table 3.7. Stabilizing mutations for RA_MSD2.1 were selected on the protein
surface (green); those for RA_MSD2.2 in the protein core but outside of the catalytic
site (yellow). RA_MSD2.3 contained the union of the mutations from RA_MSD2.1
and RA_MSD2.2. For RA_MSD2.4 (orange) and RA_MSD2.5 (red), more stabilizing
mutations were added irrespective of their distance from the active site.
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MSD approaches. Moreover, in contrast to SSD, MSD offers a broader functionality
and is also suited for more challenging tasks like negative design. The combination
of positive and negative design offers the stabilization of desired conformations
while simultaneously impairing unwanted conformations. This is particularly inter-
esting for designing protein-ligand or protein-protein interaction specificities such
as different oligomerization states [Davey and Chica, 2012].



Chapter 4

Outlook

The advent of ensemble methods has found its way into many scientific fields, e.g.
weather prediction: Instead of generating a single prediction for the available input
data, supercomputers now generate hundreds of predictions using different models
to address multiple sources of forecast uncertainty [Bauer et al., 2015; Gneiting and
Raftery, 2005]. In analogy, our framework ROSETTA:MSF allows a protein designer to
address the structural uncertainty of a protein scaffold by considering an ensemble
of structures instead of a single rigid model. In Subsection 3.3.2 we could show that
this improves design accuracy. Unfortunately, due to the computational intensity of
our algorithm, ensembles with only less than a dozen of models could be considered.
On the other hand, generating structural data by simulation is relatively fast and
cheap compared to CPD in terms of computing time. It would thus be desirable to
consider a much bigger ensemble, which requires a computational speedup.

Relying on a genetic algorithm as its optimization routine is the weakest point of
ROSETTA:MSF, leading to slow convergence times and a high consumption of compu-
tational resources. However, our implementation is modular and designed to easily
integrate other optimization routines, if those are made available in Rosetta. An opti-
mizer of preference supporting MSD is particle swarm optimization [Kennedy, 2011],
which converges faster than a genetic algorithm thanks to the particle movement in
the direction of the gradient. Although ROSETTA:MSF is an improvement compared
to the default application, the accuracy of de novo ligand-binding design reached in
our benchmark dataset is still rather low due to the inevitable simplification and lack
of an accurate physical model in CPD. Fortunately, our recent efforts of integrating
ROSETTA:MSF into the codebase of Rosetta, which is maintained by the community,
will allow the framework to take part in all general improvements implemented in
the future.



84 Outlook

We applied ROSETTA:MSF to computationally design an enzyme. To our knowl-
edge, this is the first de novo enzyme design approach that uses an ensemble of
structures via multi-state methods. With our approach, we could not observe a
higher catalytic activity than that described in previous works for single-state design
methods. However, there may be a good reason: In a recently published work
[Obexer et al., 2016], the authors evolved retro-aldolase activity on the same scaf-
fold as in this work by fluorescence-activated droplet sorting, a technique allowing
high-throughput screening. Their best evolved variants reached catalytic activity
comparable to natural enzymes. Although CPD and experimental screening meth-
ods have different scenarios of use, the results offered an interesting fact: The crystal
structure of the best evolved variant complexed with an inhibitor similar to the
substrate was barely different to the apo structure of the evolved protein, suggesting
negligible conformational flexibility in the binding site. Apparently, establishing
native-like retro-aldolase activity does not require conformational dynamics. How-
ever, this can by no means be generalized and future enzyme design approaches
for more complex reaction types will require the consideration of protein dynamics
[Mukherjee and Gupta, 2015].

Still, computational enzyme design remains one of the most complex de novo
design problems to be solved and most enzymes obtained this way are quite slow
catalysts compared to native enzymes. Nevertheless, the era of de novo design has
come. As mentioned in Section 1.1.2, the number of folds explored by evolution is
very small and protein evolution has most probably sampled only a tiny fraction
of the gigantic sequence space available to proteins [Huang et al., 2016]. Protein
designers have already begun to explore this unknown space, by generating proteins
with no sequence similarity to natural ones [Harbury et al., 1998; Walsh et al., 1999]
as well as protein structures unseen in Nature [Brunette et al., 2015; Kuhlman et al.,
2003]. This is not a coincidence: The fundamentals of protein design have been
understood better and better in the last years. Recently, the atomically-accurate
design of hydrogen bonds [Boyken et al., 2016], idealized folds [Lin et al., 2015],
self-assembling oligomers with precisely defined PPIs [Gonen et al., 2015; King et al.,
2012], repeat proteins [Doyle et al., 2015] as well as the recombination of pieces of
existing proteins [Jacobs et al., 2016] have been described. Further understanding
the fundamentals of protein folding, dynamics, and biophysics will enable to design
from ground up a world of customized proteins. Such a powerful tool could help
facing important challenges in the future, such as clean energy, customized drugs
and materials as well as biosensors.



Abbreviations

Acronyms

AS Anthranilate synthase

CAA Canonical amino acid

CH Chorismate

CPD Computational protein design

DAF Dynamic aggregate function

DTE 1,2-dithienylethene

EHM Equilibrated homology model

GA Genetic algorithm

HM Homology model

ICS Isochorismate synthase

IC Isochorismate

MC Monte Carlo method

MBP Maltose-binding protein

MD Molecular dynamics

MSA Multiple sequence alignment

MSD Multi-state design

MSF Multi-state framework

MM Molecular mechanics

NMR Nuclear magnetic resonance

PLD Protein-ligand docking

PNT Putative nucleophile trajectory

PPI Protein-protein interface

PRFAR N’-[(5’-phosphoribulosyl)formimino]
-5-aminoimidazole-4-carboxamide ribonucleotide
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ProFAR N’-[(5’-phosphoribosyl)formimino]
-5-aminoimidazole-4-carboxamide ribonucleotide

pum Pumilio protein

RMSD Root mean square deviation

rotamer Amino acid rotational isomer

SSD Single-state design

TS Transition state

mTS Matched transition state

vdW Van der Waals

Nomenclature
dmBrat Brain tumor NHL-domain from Drosophila melanogaster

hIFABP Human intestinal fatty acid binding protein

mtPknD Serine/threonine protein kinase PknD from Mycobacterium tuberculosis

mtPriA Phosphorybosyl isomerase A from Mycobacterium tuberculosis

rnPAL Peptidyl-α-hydroxyglycine α-amidating lyase from Rattus norvegicus

ssIGPS Indole-3-glycerolphosphate synthase from Sulfolobus solfataricus

stAS Anthranilate synthase from Salmonella typhimurium

stTrpE TrpE subunit from Salmonella typhimurium

stTrpG TrpG subunit from Salmonella typhimurium

Units
f s Femtosecond

K Kelvin

kcat Turnover number

kcal Kilocalorie

kJ Kilojoule

KM Michaelis-Menten constant
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ns Nanosecond

nsr Native sequence recovery

nssr Native sequence similarity recovery

ps Picosecond

REU Rosetta energy unit

ts Rosetta total score
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Sehnal, D., Vařeková, R. S., Berka, K., Pravda, L., Navrátilová, V., Banáš, P., Ionescu,
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Appendix A

List of command line options for MSF

Table A.1 Options required for multi-state design. Current MSF applications re-
quire the setup of an entity_resfile and fitness_file, which replicate the functionality
of MPI_MSD’s counterparts. See the documentation of MPI_MSD for these func-
tions: https://www.rosettacommons.org/docs/latest/application_documentation/
design/mpi-msd

Option (MSF namespace) Description Default

entity_resfile Defines the size of the design shell
fitness_file Path to the DAF file which defines

how to calculate an ensemble score
read_states_on_demand Load state structures on demand from

disk; saves memory when a large num-
ber of states are used

false

A typical call of msf_ga_enzdes may look like the following: mpirun –np num_cpu
$ROSETTA_ROOT/main/source/bin/msf_ga_enzdes.mpi.linuxgccrelease @flags; the
number of processes should be chosen wisely to match half the size of the genetic
algorithm’s population size with the number of available processing cores. Please
refer to the options table below to fill the flags file. It is required to specify most of
the options. Example flag files are listed in the next chapter.

https://www.rosettacommons.org/docs/latest/application_documentation/design/mpi-msd
https://www.rosettacommons.org/docs/latest/application_documentation/design/mpi-msd
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Table A.2 Command line options of the genetic algorithm. The following com-
mand line options define the parameters of the GA.

Option (MSF namespace) Description Default

checkpoint_write_interval Write checkpoint every x
generations

1

checkpoint_prefix Location to the store
path of the checkpoint
files

darwin_resume Resume from check-
point files

false

fill_gen1_from_seed_sequences Initialize GA from dis-
tinct sequences

false

fraction_by_recombination Fraction of the popula-
tion that is recombined
every generation

0.05

generations Number of generations
to be evolved

0

pop_size Size of the population 0
resfile_tmpdir Path to directory that al-

lows saving temporary
resfiles

seed_sequences List of sequences sepa-
rated by ","

seed_sequences_from_input_pdb Fill the population from
the sequence of the input
structure

seed_sequence_using_correspondence_file Extract sequence from
design shell

false



Appendix B

Details of benchmark datasets /
protocols for their compilation

The datasets used for benchmarking are deposited on the website of our department:
https://bioinf.ur.de/downl/MSF_bench.tar.gz; The following text lists the protocol
of the energy-minimization performed via relax, the composition of the design and
repack shell and the parameters used for benchmarking

B.1 Relax protocol

Structures were energy-minimized using a fast-relax protocol with backbone re-
straints, defined by the following flags:

-ignore_unrecognized_res

-relax:constrain_relax_to_start_coords

-relax:ramp_constraints false

-ex1

-ex2

-use_input_sc

-correct

-restore_pre_talaris_2013_behavior

-no_his_his_pairE

-no_optH false

-flip_HNQ

-nstruct 1

-relax:fast

-extra_res_fa ligand.params

https://bioinf.ur.de/downl/MSF_bench.tar.gz
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B.2 Design and repack shell composition

The following table lists the design and repack shells used for recapitulation calcu-
lations on NMR ensemble hIFABP and those for BR_EnzBench and MD_EnzBench.
Note that all numbers are based on structures, where missing residues (in the crystal
structure) were loop-modeled with YASARA and residues were renumbered to start
with 1.

Composition of design and repack shells for ligand-binding design

Table B.1 List of proteins, design shell and repack shell residues for benchmark
datasets hIFABP, BR_EnzBench and MD_EnzBench.

PDB ID design shell repack shell

2mji 14 17 21 23 24 27 28 31 58
70 72 75 76 78 91 93 102
104 117 119 124

8 11 13 15 16 18 20 22 25 26 30 32 33 36 38 49 51
53 59 60 62 68 69 71 73 74 77 79 80 82 89 90 92
94 95 96 100 101 103 105 106 115 116 118 122
123 126

1fzq 23 25 26 27 28 29 30 31 32
33 66 90 92 125 126 128
129 158 159 160

21 22 24 34 35 51 53 64 65 67 88 91 93 94 95 102
123 124 127 130 131 132 156 157 161 162 163
164 165 177

1hsl 11 14 52 69 70 71 72 90
117 119 120 121 122 123
143 160 161 192 195

10 12 13 15 17 18 30 51 53 55 56 67 68 73 74 76
77 83 87 88 89 91 92 116 118 124 125 140 141
142 146 158 159 162 163 164 165 190 191 193
194 196 239

1j6z 8 10 11 12 13 15 30 71 151
153 154 155 178 179 180
182 183 207 210 211 214
298 299 300 302 303 333

9 14 24 27 28 29 66 68 69 70 103 105 106 134
138 152 156 157 158 181 184 185 186 203 204
206 208 209 212 213 215 216 254 255 258 297
301 304 306 332 334 335 336 337 338 370

1n4h 20 21 22 55 58 59 62 65 96
97 99 100 102 103 104 111
112 113 123 128 131 132
135 212 216

16 19 23 24 26 27 30 51 52 53 54 56 57 60 61 63
64 66 68 69 93 94 95 98 101 110 114 115 116 117
118 119 120 122 126 129 130 133 134 136 137
138 139 149 152 156 213 215 219 220 239 245
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1nq7 20 21 22 55 58 59 62 65 93
96 97 99 100 102 103 111
112 113 123 126 128 131
132 135 136 212 213 216

16 17 18 19 23 24 26 27 43 51 52 53 54 56 57 60
61 63 64 66 68 69 92 94 95 98 101 104 110 114
115 117 118 119 120 121 122 124 129 130 133
134 138 139 149 152 156 209 210 211 214 215
217 219 220 239 243 245

1opb 20 25 29 33 36 38 40 42 51
53 55 57 58 59 60 62 76 77
106 108 117 119

4 8 10 13 16 17 19 21 22 23 30 31 32 34 35 37
39 41 44 49 50 52 54 56 61 63 64 72 74 75 78 84
86 93 94 95 97 104 105 107 109 110 115 116 118
120 121 126 128 130 134

1pot 9 10 11 12 37 58 107 143
145 146 186 187 204 206
207 230 232 268 302

8 13 33 34 35 36 38 39 40 56 57 59 60 61 104 105
106 108 109 141 142 144 147 149 150 185 188
189 190 191 202 203 205 210 228 229 231 233
266 301 303 323

1urg 43 44 45 64 66 67 112 145
148 149 150 151 206 224
226 257 259 327 337

8 9 10 38 42 47 62 63 65 68 70 71 97 109 110 111
113 114 144 147 153 205 222 223 225 227 254
255 256 258 260 295 296 328 329 333 334 336
338 340 374

2b3b 8 9 13 41 42 43 66 119 224
242 244 276 278 312 347
348 349

7 10 12 14 15 16 17 37 39 40 44 45 46 47 64 65
67 70 116 117 118 120 121 165 167 168 170 171
223 225 228 241 243 245 247 248 275 277 279
308 313 314 345 346 350 357 393

2dri 13 15 16 89 90 102 103 105
131 132 135 137 164 189
190 192 214 215 235

8 9 10 12 14 18 19 41 64 65 66 67 68 87 88 91
104 136 138 139 140 141 163 165 166 188 191
193 194 195 213 216 217 219 232 233 234 236
237 240 263 265 272

2ifb 17 18 23 27 30 31 38 49 51
60 62 70 72 73 74 78 82 91
93 102 104 117

2 6 11 14 15 19 20 21 22 24 26 28 29 32 34 36 39
40 47 48 50 53 54 55 56 58 59 61 63 68 69 71 75
76 77 79 80 81 89 90 92 94 95 103 105 106 115
116 118 119 122 124 125 126 132

2q2y 98 99 100 101 102 110 113
115 116 117 119 120 143
154 155 194 197 198 200
201 203 204 222

61 95 96 97 103 108 109 111 112 114 118 121 122
123 124 141 142 144 145 193 195 196 199 202
205 207 208 215 220 221 223 224 246 248 331

2qo4 17 18 21 23 27 30 31 34 36
51 53 54 55 56 72 73 74 75
76 98 111 118

8 11 13 14 15 16 20 22 24 28 29 32 33 35 37 38
49 52 57 58 60 70 71 77 78 91 93 95 96 97 99 100
109 110 112 113 116 119 120 122 126
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2rct 20 24 29 33 37 40 42 44 55
57 59 61 62 63 64 66 80 81
110 112 121 123

8 12 14 17 21 23 25 26 27 28 30 34 35 36 38 39
41 43 45 46 48 53 54 56 58 60 65 67 68 76 78 79
82 88 90 97 98 99 101 108 109 111 113 119 120
122 124 125 130 132 134 142

2rde 73 75 79 112 113 114 115
117 139 140 141 143 144
145 146 184 185 196 197
198

17 18 20 71 72 74 76 77 78 80 81 110 111 116
118 119 120 137 138 142 147 148 158 179 181
182 183 186 187 194 195 199 204 207 211 225

2uyi 100 101 102 103 104 112
115 117 118 119 121 122
145 156 157 196 199 200
202 203 205 206 224

63 97 98 99 105 110 111 113 114 116 120 123
124 125 126 143 144 147 154 163 195 197 198
201 204 207 209 210 217 222 223 225 226 248
250 332

Composition of design shells for anchored design of protein-
protein interfaces

Table B.2 List of proteins and design shell residues for BR_IfaceBench. All other
residues of the proteins are part of the repack shell.

PDB ID chain anchor residue design-shell residues

1dle B 32 27 28 29 30 31 33 34
1fc4 B 71 66 67 68 69 70 72 73 74 75 76
1fec B 458 455 456 457 459 460 461 462
1jtp B 104 99 100 101 102 103 105 106 107 108

1qni B 399
388 389 390 391 392 393 394 395 396

397 398 400 401 402
1u6e B 96 90 91 92 93 94 95 97 98 99
1zr0 B 19 14 15 16 17 18 20 21

2bwn B 85 77 78 79 80 81 82 83 84 86 87 88 89 90

2hp2 B 300
288 289 290 291 292 293 294 295 296

297 298 299 301 302 303
2i25 O 90 85 86 87 88 89 91 92
2obg B 80 77 78 79 81 82 83 84 85 86
2qpv B 55 50 51 52 53 54 56 57
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2wya C 89 83 84 85 86 87 88 90 91 92

3cgc B 429
421 422 423 424 425 426 427 428 430

431 432 433 434

3dxv B 289
286 287 288 290 291 292 293 294 295

296 297
3ean B 464 458 459 460 461 462 463 465

B.3 Parameters for design

In this section, the ROSETTA parameters are listed that allow the reproduction of all
design computations used for benchmarking.

Parameter set ps_enzdes for single-state ligand-binding design

Example flags are given for running ENZDES on the first benchmark protein 1fzq of
BR_EnzBench. Using the information of the above shell composition, the benchmark
computations can be easily reproduced for other benchmark proteins.

1fzq.flags:

-in:file:l ./lists/1fzq_all # a list with paths to all conformations

to design

-resfile ./resfiles/1fzq.resfile # using above defined design shell

-no_his_his_pairE

-correct

-restore_pre_talaris_2013_behavior

-extra_res_fa ./params/1fzq.params

# ENZDES flags

-enzdes::cst_design

-enzdes::design_min_cycles 2

-out::nstruct 1000

-enzdes::cst_min

-enzdes::chi_min

-enzdes::bb_min

-enzdes::lig_packer_weight 1.8

-enzdes::final_repack_without_ligand

-ex1

-ex2
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-ex1aro

-ex2aro

-extrachi_cutoff 1

-soft_rep_design

-flip_HNQ

-linmem_ig 10

-docking::ligand::old_estat

-out:file:o ./output/1fzq_energy

-out:prefix ./output/1fzq_design

-run:constant_seed

-run:jran 11111111

./resfiles/1fzq.resfile:

NATRO

start

...

21 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2 # repack shell

22 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

23 A ALLAA EX 1 EX 2 EX ARO 1 EX ARO 2 # design shell

...

Parameter set ps_msf_enzdes for multi-state ligand-binding design

In the following, example flags are given for running MSF:GA:ENZDES on the first
conformation group of benchmark protein 1fzq. Using the information of the above
shell composition and modifying few lines, the benchmark computations can be
easily reproduced. The way how an MSF run is set up follows the way implemented
in MPI_MSD and thus, the definition of *.resfile files, *.daf files, *.state files, *.corr
files, *.2resfile files for MSF is exactly the same. A more detailed documentation
on how to prepare and customize a multi-state run is provided here: https://www.
rosettacommons.org/docs/latest/application_documentation/design/mpi-msd

1fzq.flags:

-entity_resfile ./resfiles/1fzq.resfile

-msf::fitness_file 1fzq.daf

-msf::pop_size 210

-msf::generations 600 # 800 for hIFABP

-msf::fraction_by_recombination 0.05

-msf::seed_sequences AAAAAAAAAAAAAAAAAAAA # length of DS - ALA seed

-msf::resfile_tmpdir ./tmp_resfiles/1fzq/ # temporary resfiles

-msf::checkpoint_write_interval 1

https://www.rosettacommons.org/docs/latest/application_documentation/design/mpi-msd
https://www.rosettacommons.org/docs/latest/application_documentation/design/mpi-msd
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-msf::checkpoint_prefix ./checkpoints/1fzq/checkpoint

-no_his_his_pairE

-correct

-restore_pre_talaris_2013_behavior

-extra_res_fa ./params/1fzq.params

# ENZDES flags

-enzdes::cst_design

-enzdes::design_min_cycles 2

-enzdes::cst_min

-enzdes::chi_min

-enzdes::bb_min

-enzdes::lig_packer_weight 1.8

-enzdes::final_repack_without_ligand

-ex1

-ex2

-ex1aro

-ex2aro

-extrachi_cutoff 1

-soft_rep_design

-flip_HNQ

-linmem_ig 10

-docking::ligand::old_estat

-out:file:o msd_output/1fzq_energies

-out:prefix msd_output/1fzq_design

-run:constant_seed

-run:jran 11111111

./resfiles/1fzq.resfile:

20

ALLAA EX 1 EX 2 EX ARO 1 EX ARO 2

Start

1fzq.daf:

STATE_VECTOR state1 ./states/1fzq/state1

STATE_VECTOR state2 ./states/1fzq/state2

STATE_VECTOR state3 ./states/1fzq/state3

STATE_VECTOR state4 ./states/1fzq/state4

STATE_VECTOR state5 ./states/1fzq/state5

SCALAR_EXPRESSION best_state1 = vmin( state1 )

SCALAR_EXPRESSION best_state2 = vmin( state2 )

SCALAR_EXPRESSION best_state3 = vmin( state3 )

SCALAR_EXPRESSION best_state4 = vmin( state4 )

SCALAR_EXPRESSION best_state5 = vmin( state5 )
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SCALAR_EXPRESSION best_sum = best_state1 + best_state2 + best_state3

+ best_state4 + best_state5

FITNESS best_sum

./states/1fzq/state1:

./1fzq/input/1_backrub_input.pdb ./corr/1fzq.corr ./resfiles/1fzq.2

resfile

./corr/1fzq.corr:

1 23 A

2 25 A

3 26 A

4 27 A

5 28 A

6 29 A

7 30 A

8 31 A

9 32 A

10 33 A

11 66 A

12 90 A

13 92 A

14 125 A

15 126 A

16 128 A

17 129 A

18 158 A

19 159 A

20 160 A

./resfiles/1fzq.2resfile:

NATRO

start

21 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

22 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

23 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

24 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

25 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

26 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

27 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

28 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

29 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2
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30 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

31 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

32 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

33 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

34 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

35 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

51 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

53 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

64 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

65 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

66 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

67 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

88 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

90 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

91 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

92 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

93 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

94 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

95 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

102 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

123 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

124 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

125 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

126 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

127 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

128 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

129 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

130 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

131 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

132 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

156 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

157 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

158 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

159 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

160 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

161 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

162 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

163 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

164 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

165 A NATAA EX 1 EX 2 EX ARO 1 EX ARO 2

177 B NATAA EX 1 EX 2 EX ARO 1 EX ARO 2
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Parameter set ps_anchored for single-state protein-protein interface
design

Example flags are given for running ANCHOREDDESIGN on the first benchmark
protein 1dle of BR_IfaceBench. Using the information of the above shell composition,
the benchmark computations can be easily reproduced for other benchmark proteins.

# protocol for coarse optimization

-unmute protocols.loops.CcdLoopClosureMover

#repeating options for safety

-run::version

-options::user

#packing options - these are about as high as they can go

-ex1

-ex2

-use_input_sc

-extrachi_cutoff 8

-linmem_ig 42

#minimization options

-run::min_type dfpmin_armijo

-nblist_autoupdate

#loops options

-loops::vicinity_sampling true

-loops::loop_file ../../loopsfile

#AnchoredDesign options

-AnchoredDesign

-anchor ../../anchor

-allow_anchor_repack false

-vary_cutpoints true

-debug false

-show_extended false

-refine_only false

-perturb_show false

-perturb_temp 0.8

-refine_temp 0.8

-refine_repack_cycles 50

-rmsd false

-unbound_mode false

-no_frags false

-perturb_CCD_off false

-perturb_KIC_off false

-refine_CCD_off false
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-refine_KIC_off false

-chainbreak_weight 2.0

-testing::VDW_weight 2

#sample-size command

-AnchoredDesign::perturb_cycles 50

-AnchoredDesign::refine_cycles 100

-nstruct 8

Parameter sets for multi-state protein-protein interface design

In the following, example flags are given for running MSF on the first conformation
group of benchmark protein 1dle. Using the information of the shell composition
described above and by modifying few lines, the benchmark computations for
MSF:GA:ANCHORED can be easily reproduced. Two parameter sets are listed:
ps_msf_anchored_coarse was run in centroid mode, providing sequence optimization
while coarsely sampling loop conformations.

All optimized sequences from this first run were fed into a run with parameter
set ps_msf_anchored_refine using -msdesign::seed_sequences and performing
in both centroid and refinement mode by setting the following flagsnumber of
-AnchoredDesign::refine_cycles in the below parameter set to 100 and run-
ning for -msf::generations 1000 generations.

ps_msf_anchored_perturb:

-unmute protocols.loops.CcdLoopClosureMover

#repeating options for safety

-run::version

-options::user

#packing options - these are about as high as they can go

-ex1

-ex2

-use_input_sc

-extrachi_cutoff 8

-linmem_ig 42

#minimization options

-run::min_type dfpmin_armijo

-nblist_autoupdate

#loops options
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-loops::vicinity_sampling true

-loops::loop_file ../../loopsfile

#AnchoredDesign options

-AnchoredDesign

-anchor ../../anchor

-allow_anchor_repack false

-vary_cutpoints true

-debug false

-show_extended false

-refine_only false

-perturb_show false

-perturb_temp 0.8

-refine_temp 0.8

-refine_repack_cycles 50

-rmsd false

-unbound_mode false

-no_frags false

-perturb_CCD_off false

-perturb_KIC_off false

-refine_CCD_off false

-refine_KIC_off false

-chainbreak_weight 2.0

-testing::VDW_weight 2

#sample-size command

-AnchoredDesign::perturb_cycles 50

-AnchoredDesign::refine_cycles 0

-nstruct 1

#msf flags

-msf:fitness_file ../daf1

-msf:entity_resfile ../entity_resfile

-msf:resfile_tmpdir ../tmp_resfiles1

-msf:checkpoint_prefix ../checkpoints1/checkpoint

-msf::pop_size 50

-msf::generations 500

-msf::fraction_by_recombination 0.05

-msf::checkpoint_write_interval 1

-ignore_unrecognized_res



Appendix C

Multistate approach to design
retro-aldolases

This appendix complements the main text with more figures and information about
the in silico design and evaluation of retro-aldolases. The sequences of initial variants
chosen for expression as well as stabilized variants are listed in Section C.2. The RA*
dataset used for comparison with RA_MSD* variants is listed in Section C.4.

C.1 Multi-state design

Multi-state design was performed on the scaffold protein indole-3-glycerolphosphate
synthase from S. solfataricus (ssIGPS). First, the ligand was removed and confor-
mations were sampled by means of MD simulations. To obtain representative
conformations, the snapshots of the trajectory were clustered and in total 12 confor-
mations were picked from different clusters. ROSETTA:MATCH was used to graft the
transition state in those conformations and in the original crystal structure. Matched
transition states (mTS) with putative weak binding were discarded and 23 ensembles
of matched transition states (ensmTS) were chosen for design. Here, each ensmTS has
a specific catalytic triad (unique positions and amino acid identities). Finally, ensmTS

were designed with MSF:GA:ENZDES.

MD simulations of the scaffold protein

Three 10 ns MD simulations were applied to the scaffold ssIGPS without ligand,
generating a snapshot every ps (10,000 snapshots per trajectory). MD simulations
were performed with YASARA (version 14.7.17) employing the YAMBER3 force
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field. Simulations were run at 298 K under periodic boundary conditions and
with explicit water, using a multiple time step of 1 f s for intramolecular and 2 f s
for intermolecular forces. To perform three individual simulations, independent
calculations were seeded by slightly changing the simulation temperature (±0.01K)
which reassigns the initial atom velocities. Lennard Jones forces and long-range
electrostatic interactions were treated with a 7.86 Å cutoff, the latter were calculated
using the Particle Mesh Ewald method. Temperature was adjusted using a Berendsen
thermostat based on the time-averaged temperature and simulations were carried
out at constant pressure. MD simulations require the definition of a simulation
cell that should be adequately sized to prevent self-interaction through periodic
boundaries. Simulation cells were thus defined as 5 Å larger than the protein along
each axis. Cells were filled with water to a density of 0.997 g/ml, and counterions
were added to a final concentration of 0.9% NaCl. Next, the protonation states of all
molecules were assigned according. Before capturing production runs, usually an
equilibration run is performed to remove conformational stress. Here, we performed
an energy minimization, which was done as follows: After removing conformational
stress by a steepest descent minimization, the procedure continued by simulated
annealing (time step 2 f s, atom velocities scaled down by 0.9 every 10th step) until
convergence was reached, i.e. the energy improved by less than 0.05 kJ/mol per
atom during 200 steps.

Selection of representative conformations and matching

All snapshots (3 x 10,000 in total) were clustered with Durandal, using smart-mode
enabled and semi-auto [0.03 .. 0.20]. Four structures were picked from each largest
cluster of the three trajectories. In addition to those 12 conformations, the crystal
structure of ssIGPS was used. Next, the theozyme was grafted onto the 13 conforma-
tions with ROSETTA:MATCH. The matcher proposes a number of ligand positions
within a scaffold’s cavity with regard to the given theozyme. The cavities of all con-
formations were detected by means of the tool Rosetta:gen_apo_grids as described
in ROSETTA’S documentation. The theozyme definition was derived from previous
work [Bjelic et al., 2014] and is given by:

CST::BEGIN

TEMPLATE:: ATOM_MAP: 1 atom_name: C5 C4 C3

TEMPLATE:: ATOM_MAP: 1 residue3: MTD

TEMPLATE:: ATOM_MAP: 2 atom_type: Nlys ,

TEMPLATE:: ATOM_MAP: 2 residue1: K
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CONSTRAINT:: distanceAB: 1.51 0.2 50.0 1 0

CONSTRAINT:: angle_A: 110. 5.0 0.0 60. 0

CONSTRAINT:: angle_B: 110. 10.0 0.0 60. 1

CONSTRAINT:: torsion_A: -120. 20.0 0.05 60. 0

CONSTRAINT:: torsion_AB: 0. 180.0 0.05 60. 3

CONSTRAINT:: torsion_B: 0. 180.0 0.00 60. 3

CST::END

CST::BEGIN

TEMPLATE:: ATOM_MAP: 1 atom_name: O2 C5 C6

TEMPLATE:: ATOM_MAP: 1 residue3: MTD

TEMPLATE:: ATOM_MAP: 2 atom_type: OOC ,

TEMPLATE:: ATOM_MAP: 2 residue1: DE

CONSTRAINT:: distanceAB: 3.0 0.3 10.0 0 1

CONSTRAINT:: angle_A: 125.0 20.0 0.0 60. 0

CONSTRAINT:: angle_B: 125.0 25.0 0.05 60. 0

CONSTRAINT:: torsion_A: -60.0 20.0 0.01 60. 0

CONSTRAINT:: torsion_AB: 0.0 180.0 0.0 60. 3

CONSTRAINT:: torsion_B: 180.0 180.0 0.0 60. 3

CST::END

CST::BEGIN

TEMPLATE:: ATOM_MAP: 1 atom_name: O2 C5 C6

TEMPLATE:: ATOM_MAP: 1 residue3: MTD

TEMPLATE:: ATOM_MAP: 2 atom_type: OH ,

TEMPLATE:: ATOM_MAP: 2 residue1: ST

CONSTRAINT:: distanceAB: 3.0 0.30 10. 0 0

CONSTRAINT:: angle_A: 125.0 20.0 0.0 60. 0

CONSTRAINT:: angle_B: 125.0 25.0 0.05 60. 0

CONSTRAINT:: torsion_A: 60.0 20.0 0.01 60. 0

CONSTRAINT:: torsion_AB: 0.0 180.0 0.0 60. 3

CONSTRAINT:: torsion_B: 180.0 180.0 0.0 60. 3

CST::END

ROSETTA:MATCH was executed seven times with different seeds. For each
uniquely specified catalytic triad (amino acid identities and positions), the resulting
matched transition states (mTS) were collected, as described in methods. In total, 23
ensembles ensmTS containing four up to 13 conformations were chosen. In Fig. C.1,
the ensmTS of design RA_MSD2 is shown, consisting of six conformations (states for
MSD).
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Fig. C.1 ensmTS from design of RA_MSD2. Transition state of
MTD (green) and the three catalytic residues (Lys/Asp/Ser)
matched at positions 210, 131 and 110, respectively.

Multi-state design with MSF:GA:enzdes

All ensmTS were designed with MSF:GA:ENZDES using the following flags, exem-
plarily for the design of RA_MSD2:

-entity_resfile ./corr_resfiles/RA_MSD2/entity_resfile

-msf::fitness_file ./daf/RA_MSD2.daf

-msf::pop_size 210

-msf::generations 2000

-msf::fraction_by_recombination 0.05

-msf::seed_sequence_using_correspondence_file ./corr_resfiles/RA_MSD2

.corr

-msf::resfile_tmpdir tmp_resfiles/RA_MSD2/

-msf::checkpoint_write_interval 1

-msf::checkpoint_prefix checkpoints/RA_MSD2/checkpoint

-no_his_his_pairE

-correct

-restore_pre_talaris_2013_behavior

-extra_res_fa ./params/MTD_sb.params

-enzdes::cst_design

-enzdes::design_min_cycles 2

-enzdes::cst_min

-enzdes::chi_min

-enzdes::bb_min

-enzdes::favor_native_res 1.5
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-ex1

-ex2

-ex1aro

-ex2aro

-use_input_sc

-extrachi_cutoff 1

-soft_rep_design

-flip_HNQ

-linmem_ig 10

-enzdes::lig_packer_weight 1.8

-docking::ligand::old_estat

-out:file:o ./energies/RA_MSD2/RA_MSD2_energies

-out:prefix ./output/RA_MSD2/

-enzdes::final_repack_without_ligand

-enzdes::cst_opt

-enzdes::cstfile ./cst/MTD.cst

-run:constant_seed

-run:jran 11111111

Here, the f itness_ f ile defines the fitness as the sum of total energies over all states
(conformations) in ensmTS. Designs were then run for 97 to 710 generations and Fig
C.2 shows the convergence for RA_MSD2:

C.2 Evaluation of designs

The structures of the best designed sequences of each design run were visually in-
spected, followed by an evaluation in terms of Rosetta. Because scores of design runs
originating from different conformations are difficult to compare, we also compared
the active-site geometries. Next, the best 100 variants were further analyzed via MD
simulations.
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Fig. C.2 Energetic convergence of design run RA_MSD2. Generations of designed
sequences plotted against their fitness (sum of Rosetta scores for all states). Lines
show the fitness of each generation’s best sequence (blue) and the mean fitness of
the generation (green).

MD evaluation

As described in methods, the best 100 designs were selected for 10 ns MD simulations
in water and 100 snapshots were generated per simulation. Simulations were
performed for i) the enzyme/TS complex and ii) the enzyme/substrate complex.
For each trajectory, the catalytic distances and angles of each snapshot were plotted
as boxplot (Fig. C.3), in difference to the optimum as described in the theozyme
definition C.1.
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Fig. C.3 MD evaluation of RA_MSD2. (A) Catalytic distances and angles of all
snapshots deviating from the optimum value of the theozyme definition after run-
ning the design of RA_MSD2 in MD simulations. Dots show raw data plotted as
boxplots from each trajectory consisting of 100 snapshots. Deviations from the
theozyme for the enzyme/TS complex. (B) Deviations from the theozyme for the
enzyme/substrate complex.
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Sequences of variants chosen for biochemical characterization

After filtering in silico for the best designs, the following sequences were chosen for
biochemical characterization:

>RA_MSD1

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYSKFMERYAVGLTIVTFEWYYNGSYETLRKIASSVSIPISMSDIIV

KESQIDDAYNLGADTVDIIVKILTERELESLLEYARSYGMEPRIEINDENDLDIALR

IGARFIVIDSRDPETLEINKENQRKLISMIPSNVVKVAKSGISERNEIEELRKLGVN

AFDIGSSLMRNPEKIKEFIL

>RA_MSD2

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYSKFMERYAVGLTIVTFEKYYNGSYETLRKIASSVSIPISMSDVIV

KESQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDINDENDLDIALR

IGARFICIDSRDPETLEINKENQRKLISMIPSNVVKVAKSGISERNEIEELRKLGVN

AFDIGSSLMRNPEKIKEFIL

>RA_MSD3

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYSKFMERYAVGLTIVTFERYYNGSYETLRKIASSVSIPIAMSDIIV

KESQIDDAYNLGADTVDIIVKILTERELESLLEYARSYGMEPRICINDENDLDIALR

IGARFIAIDSRDPETLEINKENQRKLISMIPSNVVKVAKSGISERNEIEELRKLGVN

AFDIGSSLMRNPEKIKEFIL

>RA_MSD4

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAKYERKHP

SGLDVERDPIEYSKFMERYAVGLTISTLEKYFNGSYETLRKIASSVSIPIEMFDIIV

KESQIDDAYNLGADTVVLVVKLLTERELESLLEYARSYGMEPLIIITDENDLDIALR

IGARFIGIWSRDGETLEINKENQRKLISMIPSNVVKVADGGISERNEIEELRKLGVN

AFAIGESLMRNPEKIKEFIL

>RA_MSD5

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAKYERKHP

SGLDVERDPIEYSKFMERYAVGLMISTEEKYHNGSYETLRKIASSVSIPIAMFDIIV

KESQIDDAYNLGADTVVLVVGLLTERELESLLEYARSYGMEPLIIITDENDLDIALR

IGARFIGIWSRDGETLEINKENQRKLISMIPSNVVKVAIGGISERNEIEELRKLGVN

AFAIGESLMRNPEKIKEFIL

>RA_MSD6

MPRYLKGWVKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYERKSL

SGLDVERDPIEYSKFMERYAVGLFISTEEKYHNGSYETLRKIASSVSIPIGMVDGIV
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KESQIDDAYNLGADTVVLVVRLLTERELESLLEYARSYGMEPLIVIKDENDLDIALR

IGARFIAIDSQDWETLEINKENQRKLISMIPSNVVKVAVNGISERNEIEELRKLGVN

AFKISASLMRNPEKIKEFIL

>RA_MSD7

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIALYGRKSP

SGLDVERDPIEYSKFMERYAVGLAIFTEEKYHNGSYETLRKIASSVSIPICMTDFIV

KESQIDDAYNLGADTVELYVKILTERELESLLEYARSYGMEPIITINDENDLDIALR

IGARFIGILSRDLETLEINKENQRKLISMIPSNVVKAAAEGISERNEIEELRKLGVN

AFKIWESLMRNPEKIKEFIL

>RA_MSD8

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAIYGRKSP

SGLDVERDPIEYSKFMERYAVGLQIFTEEKYHNGSYETLRKIASSVSIPICMSDFIV

KESQIDDAYNLGADTVELWVKILTERELESLLEYARSYGMEPIITINDENDLDIALR

IGARFIGILSRDLETLEINKENQRKLISMIPSNVVKAASEGISERNEIEELRKLGVN

AFKIWESLMRNPEKIKEFIL

>RA_MSD9

MPRYLKGWMKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAAYERKSP

SGLDVERDPIEYSKFMERYAVGLSITTEEKYGNGSYETLRKIASSVSIPIDMTDVIV

KESQIDDAYNLGADTVTLVVRILTERELESLLEYARSYGMEPLIVISDENDLDIALR

IGARFICIDSRDWETLEINKENQRKLISMIPSNVVKVAANGISERNEIEELRKLGVN

AFKIGSSLMRNPEKIKEFIL

C.3 In silico stabilization

Variant RA_MSD2 had the lowest activity of all designs and was insoluble on ex-
pression without MBP. To assess the relationship between activity and solubility, we
predicted stabilizing mutations utilizing the PROSS server as described in Methods
(Section 2.8.3). Each sequence logo shown below is computed from an MSA that
was generated by predicting seven stabilized variants for each conformational state
of RA_MSD2 and merging the predicted mutations for each degree of stabilization.
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Fig. C.4 Sequence logos 1-7 from PROSS predictions with an increasing number
of putatively stabilizing mutations. Sequence logos were determined using WE-
BLOGO [Crooks et al., 2004]. Black letters correspond to the native sequence and
green letters indicate stabilizing mutations. The height of the letter represents the
consensus from all designed conformational states.
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Sequences of variants chosen for stabilization

For the sake of completeness, this is the list of stabilized sequences chosen for
expression:

>RA_MSD2.1

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLKERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYSKFMERYAVGLTIVTFEKYYNGSYETLRKIASAVSIPISMSDVIV

KEYQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDINDEEDLDIALR

IGARFICIDSRDPETLEIDKENQRKLISMIPSDVVKVAKSGISERNEIEELRKLGVH

AFDIGSSLMRNPEKIKEFIE

>RA_MSD2.2

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYAKFMERYAVGLTIVTFEKYYNGSYETLRKIASSVSIPISMSDVIV

KESQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDIHDENDLDIALR

IGARFIGINSRDPETLEVNKENQRKLISMIPSNVVKVAKSGISERNEIEELRKLGVN

AFDIGESLMRNPEKIKEFIL

>RA_MSD2.3

MPRYLKGPMKRAVQLSLRRPSFRASRQRPIISLKERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYAKFMERYAVGLTIVTFEKYYNGSYETLRKIASAVSIPISMSDVIV

KEYQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDIHDEEDLDIALR

IGARFICIDSRDPETLEVDKENQRKLISMIPSDVVKVAKSGISERNEIEELRKLGVH

AFDIGESLMRNPEKIKEFIE

>RA_MSD2.4

MPRYLKGWLKRAVQLSLRRPSFRASRQRPIISLKERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYAKFMERYAVGLTIVTFEKYFNGSYETLRKIASAVSIPILMSDVIV

KEYQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDIHDEEDLDIALR

IGARFIGIDSRDPETLEIDKENQRKLISMIPSDVVKVAKSGISERNEIEELRKLGVH

AFDIGESLMRNPEKIKEFIE

>RA_MSD2.5

MPRYLKGWLKRAVEISLRRPSFRAERQRPIISLKERILEFNKRNITAIIAEYKRKEP

SGLDVERDPIEYAKFMERYAVGLTIVTFEKYFNGSYETLRKIASAVSIPILMSDVIV

KEYQIDDAYNLGADTVDLIVKILTERELESLLEYARSYGMEPRIDIHDEEDLDIALR

IGARFIGINSRDPETLEVDKENQRKLISMIPSDVVKVAKSGISERNEIEELRKLGVH

AFDIGESLMRNPEKIKEFIE
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Locations of PROSS stabilizing mutations

In analogy to Fig. 3.18, the following figures show the locations of stabilizing
mutations for variants RA_MSD2.1-RA_MSD2.5

RA_MSD2.1 RA_MSD2.2

RA_MSD2.3 RA_MSD2.4
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RA_MSD2.5

C.4 List of retro-aldolase sequences (RA*) used for
comparison with multi-state variants (RA_MSD*)

For an easier comparison, termini were defined from N-MPRYL... until
...PEKIKE-C. The complete sequence of RA variants contains – depending on
the variants - more amino acid at the C-termini and a his-tag (For example
...PEKIKELIEGSLEHHHHHH-C for RA114.3.

>RA41

MPRYLKGWAKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAVYSRKSP

SGLDVERDPIEYSKFMERYAVGLTIYTEEKYWNGSYETLRKIASSVSIPILMADLIV

KESQIDDAYNLGADTVVLIVPILTERELESLLEYARSYGMEPLIVIVDENDLDIALR

IGARFIKIKSRDWETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFIIGSSLMRNPEKIKE

>RA115

MPRYLKGTLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIASYTRKEP

SGLDVERDPIEYAKFMERYAVGLSILTEEKWSNGSYETLRKIASSVSIPILMKDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLIEINDENDLDIALR

IGARFIGINSRDRETWEINKENQRKLISMIPSNVVKVAEKGISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA114
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MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKDP

SGLDVERDPIEYAKFMERYAVGLSILTEEKYFNGSYETLRKIASSVSIPILMSDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIIINDENDLDIALR

IGARFIGIASRDWETGEINKENQRKLISMIPSNVVKVAKEGISERNEIEELRKLGVN

AFEIGSSLMRNPEKIKE

>RA116

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAGYSRKSP

SGLDVERDPIEYAKFMERYAVGLSIMTEEKYFNGSYETLRKIASSVSIPIMMLDFIV

KESQIDDAYNLGADTVLLLVKILTERELESLLEYARSYGMEPLIAINDENDLDIALR

IGARFIGIYSRDPETLEINKENQRKLISMIPSNVVKVAIGGISERNEIEELRKLGVN

AFKIESSLNRNPEKIKE

>RA117

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKSP

SGLDVERDPIEYAKFMERYAVGLKILTEEKYFNGSYETLRKIASSVSIPIAMSDVIV

KESQIDDAYNLGADTVVLIVKLLTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIGISSRDWETLEINKENQRKLISMIPSNVVKVAISGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA118

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAGYHRKDP

SGLDVERDPIEYAKFMERYAVGLAIATEEKYANGSYETLRKIASSVSIPIEMWDFIV

KESQIDDAYNLGADTVCLIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSRDFETLEINKENQRKLISMIPSNVVKVASFGISERNEIEELRKLGVN

AFSILSSLMRNPEKIKE

>RA119

MPRYLKGWLEDAVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIALYMRKMD

AGLDVERDPIEYAKFMERYAVGLSILTSEKNHNGSYETLRKIASSVSIPILMWDMIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGISSEDSETLEINKENQRKLISMIPSNVVKVAQSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA120

MPRYLKGWLEDAVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKSP

SGLDVERDPIEYAKFMERYAVGLSILTSEKYFNGSYETLRKIASSVSIPIMMKDMIV

KESQIDDAYNLGADTVKLTVKILTERELESLLEYARSYGMEPLIEINDENDLDIALR

IGARFIGINSRDSETLEINKENQRKLISMIPSNVVKVAQSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA95.5-8
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MPRYLKGWLEDVVQLSLRRPSVHASRQRPIISLNERILEFNKRNITAIIAYYLRKSP

SGLDVERDPIEYAKYMERYAVGLSIKTEEKYFNGSYEMLRKIASSVSIPILMNDFIV

KESQIDDAYNLGADTVLLIVNILTERELESLLEYARSYGMEPLILINDENDLDIALR

IGARFIVIFSMNFETGEINKENQRKLISMIPSNVVKVAHLDISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA95.5-8F

MPRYLKGWLEDVVQLSLRRPSVHASRQRPIISLNERILEFNKRNITAIIAYYLRKSP

SGLDVERDPIEYAKYMEPYAVGLSIKTEEKYFDGSYEMLRKIASSVSIPILMNDFIV

KESQIDDAYNLGADTVLLIVEILTERELESLLEYARGYGMEPLILINDENDLDIALR

IGARFITIYSMNFETGEINKENQRKLISMIPSNVVKVPLLDFFEPNEIEELRKLGVN

AFMISSSLMRNPEKIKE

>RA114.3

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKDP

SGLDVERDPIEYAKFMERYAVGLFISTEEKYFNGSYETLRKIASSVSIPILMYDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIIINDENDLDIALR

IGARFIGIAARDWETGEINKENQRKLISMIPSNVVKVAKEGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA95.0

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAVYERKSP

SGLDVERDPIEYAKFMERYAVGLSITTEEKYFNGSYETLRKIASSVSIPILMSDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLILINDENDLDIALR

IGARFIGIMSRDFETGEINKENQRKLISMIPSNVVKVAKLGISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA95.5-5

MPRYLKGWLEDVVQLSLRRPSVHASRQRPIISLNERILEFNKSNITAIIAYYTRKSP

SGLDVERDPIEYAKFMERYAVGLSIKTEEKYFNGSYEMLRKIASSVSIPILMNDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLILINDENDLDIALR

IGARFISIFSMNFETGEINKENQRKLISMIPSNVVKVAKLGISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA95.5

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAYYSRKSP

SGLDVERDPIEYAKFMERYAVGLSIKTEEKYFNGSYETLRKIASSVSIPILMSDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLILINDENDLDIALR

IGARFIGIFSMNFETGEINKENQRKLISMIPSNVVKVAKLGISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA117.1
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MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKSP

SGLDVERDPIEYAKFMERYAVGLKILTEEKYFNGSYETLRKIASSVSIPIAMSDAIV

KESQIDDAYNLGADTVVLIVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIGIESRDWETLEINKENQRKLISMIPSNVVKVAIAGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA114.4

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIAEYKRKDP

SGLDVERDPIEYAKFMERYAVGLFISTEEKYFNGSYETLRKIASSVSIPILMYDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIIINDENDLDIALR

IGARFIGIAARDWETGEINKENQRKLISMIPSNVVKVAKEGISERNEIEELRKLGVN

AFVTASGSLMRNPEKIKE

>RA22

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYDRKSP

SGLDVERDPIEYSKFMERYAVGLSITTEEKYFNGSYETLRKIASSVSIPILMADFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSADWETLEINKENQRKLISMIPSNVVKVAAFGISERNEIEELRKLGVN

AFSIHSSLMRNPEKIKE

>RA34.6

MPRYLKGWLEDVVQLSLRRPSVRASRQRPIISLNERILEFNKRNITAIIATYMRKSP

WGLDVERDPIEYAKFMERYAVGLSICTEEKYANGSYETLRKIASSVSIPILMADFIV

KESQIDDAYNLGADTVPLIVKILTERELESLLEYARSYGMEPIIKINDENDLDIALR

IGARFIGICSRDWETLEINKENQRKLISMIPSNVVKVASTGISERNEIEELRKLGVN

AFSIISSLMRNPEKIKE

>RA67

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAKYKRKHP

SGLDVERDPIEYSKFMERYAVGLSIWTEEKYFNGSYETLRKIASSVSIPILMSDFIV

KESQIDDAYNLGADTVVLYVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIEIVSRDLETGEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFSIGSSLMRNPEKIKE

>RA90

MPRYLKGSLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYSRKSP

WGLDVERDPIEYSKFMERYAVGLTILTEEKYFNGSYETLRKIASSVSIPILMSDVIV

KESQIDDAYNLGADTVKLIVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIGILSRDLETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA92
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MPRYLKGSLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYTRKHP

SGLDVERDPIEYSKFMERYAVGLSILTEEKYLNGSYETLRKIASSVSIPILMVDLIV

KESQIDDAYNLGADTVVLIVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIGIKSRDFETLEINKENQRKLISMIPSNVVKVALSGISERNEIEELRKLGVN

AFLITSSLMRNPEKIKE

>RA98

MPRYLKGSLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAKYLRKSP

WGLDVERDPIEYSKFMERYAVGLSILTEEKYTNGSYETLRKIASSVSIPILMVDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLIEINDENDLDIALR

IGARFILINSRDHETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA68

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAKYKRKSP

TGLDVERDPIEYSKFMERYAVGLSISTEEKYHNGSYETLRKIASSVSIPILMMDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLILINDENDLDIALR

IGARFIGINSRDYETGETNKENQRKLISMIPSNVVKVAIYGISERNEIEELRKLGVN

AFLISSSLMRNPEKIKE

>RA53

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAVYSRKHP

SGLDVERDPIEYSKFMERYAVGLSIYTEEKYTNGSYETLRKIASSVSIPILMVDVIV

KESQIDDAYNLGADTVVLIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIVISSYDWETLEINKENQRKLISMIPSNVVKVASGGISERNEIEELRKLGVN

AFSIGSSLMRNPEKIKE

>RA43

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAVYSRKSP

SGLDVERDPIEYSKFMERYAVGLLIWTGEKYGNGSYETLRKIASSVSIPILMVDWIV

KESQIDDAYNLGADTVLLVVKILTERELESLLEYARSYGMEPLISIYDENDLDIALR

IGARFIKIASRDPETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFVIGSSLMRNPEKIKE

>RA40

MPRYLKGWVKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAVYMRKSP

SGLDVERDPIEYSKFMERYAVGLTIYTEEKYFNGSYETLRKIASSVSIPILMVDFIV

KESQIDDAYNLGADTVVLFVPILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIKILSSDVETLEINKENQRKLISMIPSNVVKVASHGISERNEIEELRKLGVN

AFSIGSSLMRNPEKIKE

>RA26
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MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAEYSRKSP

WGLDVERDPIEYSKFMERYAVGLLILTEEKYFNGSYETLRKIASSVSIPILMHDFIV

KESQIDDAYNLGADTVKLIVKILTERELESLLEYARSYGMEPLIAIHDENDLDIALR

IGARFIGISSRDPETLEINKENQRKLISMIPSNVVKVALSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA63

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIALYMRKSP

WGLDVERDPIEYSKFMERYAVGLSILTEEKYFNGSYETLRKIASSVSIPILMHDFIV

KESQIDDAYNLGADTVKLSVYILTERELESLLEYARSYGMEPLISINDENDLDIALR

IGARFIGIVSRDPETLEINKENQRKLISMIPSNVVKVAISGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA57

MFRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYMRKSP

SGLDVERDPIEYSKFMERYAVGLSIWTEEKYSNGSYETLRKIASSVSIPILMLDFIV

KESQIDDAYNLGADTVVLIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSRDWETLEINKENQRKLISMIPSNVVKVASHGISERNEIEELRKLGVN

AFTIYSSLMRNPEKIKE

>RA56

MPRYLKGRLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYIRKHP

SGLDVERDPIEYSKFMERYAVGLAIYTEEKYTNGSYETLRKIASSVSIPILMIDFIV

KESQIDDAYNLGADTVVLIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIHSRDWETFEINKENQRKLISMIPSNVVKVATSGISERNEIEELRKLGVN

AFSIYSSLMRNPEKIKE

>RA55

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAYYTRKSP

WGLDVERDPIEYSKFMERYAVGLSILTEEKYFNGSYETLRKIASSVSIPILMTDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSRDWETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFSIVISLMRNPEKIKE

>RA49

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAMYSRKSP

WGLDVERDPIEYSKFMERYAVGLVILTGEKYANGSYETLRKIASSVSIPILMVDWIV

KESQIDDAYNLGADTVVLHVKILTERELESLLEYARSYGMEPLITINDENDLDIALR

IGARFIKISSRDHETLEINKENQRKLISMIPSNVVKVAALGISERNEIEELRKLGVN

AFIIGSSLMRNPEKIKE

>RA48
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MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAMYSRKSP

LGLDVERDPIEYSKFMERYAVGLAIFTEEKYWNGSYETLRKIASSVSIPILMLDFIV

KESQIDDAYNLGADTVKLSVLILTERELESLLEYARSYGMEPLISIYDENDLDIALR

IGARFILIVSRDPETLEINKENQRKLISMIPSNVVKVALSGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA46

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAVYSRKSP

SGLDVERDPIEYSKFMERYAVGLSIYTEEKYWNGSYETLRKIASSVSIPILMVDLIV

KESQIDDAYNLGADTVVLIVSILTERELESLLEYARSYGMEPVIVINDENDLDIALR

IGARFILIKSRDLETLEINKENQRKLISMIPSNVVKVASWGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA45

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIALYSRKHP

SGLDVERDPIEYSKFMERYAVGLSIWTEEKYVNGSYETLRKIASSVSIPILMVDFIV

KESQIDDAYNLGADTVLLFVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIGIKSRDWETLEINKENQRKLISMIPSNVVKVAMSGISERNEIEELRKLGVN

AFLITYSLMRNPEKIKE

>RA42

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIALYSRKSP

WGLDVERDPIEYSKFMERYAVGLVIATEEKYTNGSYETLRKIASSVSIPILMWDFIV

KESQIDDAYNLGADTVLLIVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIKISSMDYETLEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFVIYSSLMRNPEKIKE

>RA6

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAMYSRKSP

WGLDVERDPIEYSKFMERYAVGLVILTEEKYANGSYETLRKIASSVSIPILMVDWIV

KESQIDDAYNLGADTVVLVVKILTERELESLLEYARSYGMEPLIVINDENDLDIALR

IGARFIKISSEDLETLEINKENQRKLISMIPSNVVKVAAHGISERNEIEELRKLGVN

AFLIGSSLMRNPEKIKE

>RA47

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYMRKSP

WGLDVERDPIEYSKFMERYAVGLAITTEEKYANGSYETLRKIASSVSIPILMADFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSRDWETLEINKENQRKLISMIPSNVVKVASYGISERNEIEELRKLGVN

AFSIYSSLMRNPEKIKE

>RA39
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MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYSRKSP

TGLDVERDPIEYSKFMERYAVGLSILTEEKYFNGSYETLRKIASSVSIPILMTDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIVITDENDLDIALR

IGARFIKILSRDWETGEINKENQRKLISMIPSNVVKVASSGISERNEIEELRKLGVN

AFSIYSSLMRNPEKIKE

>RA36

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYVRKGP

WGLDVERDPIEYSKFMERYAVGLAIATEEKYWNGSYETLRKIASSVSIPILMTDFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSADWETLEINKENQRKLISMIPSNVVKVASFGISERNEIEELRKLGVN

AFAIYSSLMRNPEKIKE

>RA35

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIAGYIRKSP

SGLDVERDPIEYSKFMERYAVGLAITTEEKYGNGSYETLRKIASSVSIPILMADFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIISRDWETLEINKENQRKLISMIPSNVVKVASYGISERNEIEELRKLGVN

AFSIYSSLMRNPEKIKE

>RA34

MPRYLKGWLKDVVQLSLRRPSFRASRQRPIISLNERILEFNKRNITAIIALYMRKSP

WGLDVERDPIEYSKFMERYAVGLSITTEEKYANGSYETLRKIASSVSIPILMADFIV

KESQIDDAYNLGADTVALIVKILTERELESLLEYARSYGMEPLIKINDENDLDIALR

IGARFIGIVSRDWETLEINKENQRKLISMIPSNVVKVASYGISERNEIEELRKLGVN

AFSIGSSLMRNPEKIKE
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