
WebNLP – An Integrated Web-Interface
for Python NLTK and Voyant

Manuel Burghardt, Julian Pörsch, Bianca Tirlea, & Christian Wolff
Media Informatics Group, University of Regensburg

{manuel.burghardt,christian.wolff}@ur.de
{julian.poersch,bianca.tirlea}@stud.uni-regensburg.de

Abstract

We present WebNLP, a web-based tool
that combines natural language process-
ing (NLP) functionality from Python NLTK
and text visualizations from Voyant in an
integrated interface. Language data can be
uploaded via the website. The results of
the processed data are displayed as plain
text, XML markup, or Voyant visualiza-
tions in the same website. WebNLP aims
at facilitating the usage of NLP tools for
users without technical skills and experi-
ence with command line interfaces. It also
makes up for the shortcomings of the pop-
ular text analysis tool Voyant, which, up
to this point, is lacking basic NLP features
such as lemmatization or POS tagging.

1 Introduction

Modern corpus linguistics has been on the rise
since the late 1980s (Hardie, 2012), largely be-
cause of the availability of vast amounts of dig-
ital texts and computer tools for processing this
kind of data. Since then, corpus linguistics has
produced a number of important subfields, such
as web as a corpus (cf. Kilgarriff and Grefen-
stette, 2003; Baroni et al., 2009), language in the
social media (cf. Beißwenger and Storrer, 2009)
or using language data for sentiment and opinion
mining (cf. Pak and Paroubek, 2010). More re-
cently it has been claimed that the mass of dig-

This work is licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Page
numbers and proceedings footer are added by the orga-
nizers. License details: http://creativecommons.
org/licenses/by/4.0/

ital text available for automatic analysis consti-
tutes a new research paradigm called culturomics
(Michel et al., 2010) and that the recent arrival of
the digital humanities opens up additional fields
of application for corpus linguistics and text min-
ing. Taking the increased amount of digital text
data which is readily available into consideration,
Gregory Crane has asked the well justified ques-
tion “what to do with a million books” (Crane,
2006). The question is partially answered by
Moretti (2013), who introduces the idea of dis-
tant reading of texts, as opposed to the more tradi-
tional, hermeneutic close reading, which is partic-
ularly popular in the field of literary studies. The
idea of distant reading suggests to interpret liter-
ary texts on a more generic level by aggregating
and analyzing vast amounts of literary data.

All these novel types of applications require ba-
sic NLP analysis such as tokenization, lemmatiza-
tion, POS tagging, etc. Currently, there is no lack
of adequate tools than can be used to process large
amounts of text in different languages. Promi-
nent examples are GATE (General Architecture
for Text Engineering)1 or the UIMA framework
(Unstructured Information Management Infras-
tructure)2. However, most of these tools can be
characterized as having a fairly high entry bar-
rier3, confronting non-linguists or non-computer
scientists with a steep learning curve, due to the

1Available at https://gate.ac.uk; all web re-
sources described in this article were last accessed on May
4, 2014.

2Available at http://uima.apache.org
3Hardie (2012) gives a short overview of the develop-

ment of corpus analysis tools while at the same time dis-
cussing their usability requirements.

fact that available tools are far from offering a
smooth user experience (UX). This may possibly
be caused by complex interaction styles typically
encountered in command line interfaces, by sub-
optimal interface design for graphical user inter-
faces (GUIs) or by the necessity of bringing to-
gether disparate tools for a specific task.

Nowadays, a decent UX is a basic requirement
for the approval of any application such as of-
fice tools or smartphone apps (Nielsen and Budiu,
2013). At the same time, a large and well ac-
cepted body of knowledge on usability and user
centered design (cf. Shneiderman, 2014) is at our
disposal. However, tools developed for scientific
purposes like corpus linguistics or text mining do
not seem to take advantage of these knowledge
sets: It appears that many tools are designed by
scientists who may have acquired the necessary
programming and software engineering skills, but
who are lacking experience and training in user
interface design and usability engineering. As a
result, many tools are functionally perfect, but an
obvious mess as far as usability aspects are con-
cerned.

In the following, we will not introduce yet an-
other tool, but we rather try to provide an inte-
grated, easy-to-use interface to existing NLP and
text analysis tools.

2 Tools for NLP and text analysis

There are a number of available tools that can be
used for NLP tasks and quantitative text analy-
sis (cf. the notion of distant reading). This sec-
tion introduces some of the most prominent tools,
and also makes the case for the newly created
WebNLP prototype.

2.1 Python NLTK

Python NLTK4 (Bird, 2006) is a widely used
toolkit that allows the user to perform sophisti-
cated NLP tasks on textual data and to visual-
ize the results. One drawback of NLTK, how-
ever, is its command line interface. Also, a ba-
sic understanding of the programming language
Python is necessary for using it. Depending on
the target platform, setting up the NLTK environ-
ment can be rather cumbersome. For these rea-

4Available at http://www.nltk.org/

sons, many humanities scholars who are lacking
technical skills in Python and command line in-
terfaces may refrain from using NLTK as a means
for NLP.

2.2 TreeTagger

TreeTagger5 (Schmid, 1994), another widely used
NLP tool, tries to address this issue by providing
a GUI (only available for Microsoft Windows)6.
The output of the tool can however not be visual-
ized in the same GUI.

2.3 Voyant Tools

Voyant7 (cf. Ruecker et al., 2011) is a web-based
tool that is very popular in the digital humanities
community. It allows the user to import text doc-
uments and performs basic quantitative analysis
of the data (word count, term frequency, concor-
dances, etc.). The results of this analysis are vi-
sualized in the browser, e.g. as KWIC lists, word
clouds or collocation graphs. While the tool is
easy to use via a modern web browser, Voyant is
lacking a feature to perform basic NLP operations
(e.g. lemmatization) on the data before it is ana-
lyzed.

2.4 The case for WebNLP

It shows that many of the existing tools are ei-
ther not accessible to non-technical users due to
their technical complexity, or that they are lack-
ing important functionality. The goal of this work
is to provide an easy-to-use interface for the im-
port and processing of natural language data that,
at the same time, allows the user to visualize the
results in different ways. We suggest that NLP
and data analysis should be combined in a sin-
gle interface, as this enables the user to experi-
ment with different NLP parameters while being
able to preview the outcome directly in the visu-
alization component of the tool. We believe that
the immediate visualization of the results of NLP
operations makes the procedure more transparent
for non-technical users, and will encourage them
to utilize NLP methods for their research.

5Available at http://www.cis.uni-muenchen.
de/˜schmid/tools/TreeTagger/

6Available at http://www.smo.uhi.ac.
uk/˜oduibhin/oideasra/interfaces/
winttinterface.htm

7Available at http://voyant-tools.org/

Figure 1: WebNLP architecture and main components.

In order to achieve this goal, we integrate two
existing tools (Python NLTK and Voyant) in a
combined user interface named WebNLP8.

3 WebNLP

In this section we describe the basic architecture
of WebNLP and explain the main functions and
interface components of the tool.

3.1 Tool architecture
We decided to implement the interface as a web
service for several reasons:

• No installation or setup of Python NLTK and
related Python modules by the user is re-
quired.

• Previous experience and familiarity of non-
technical users with web services and inter-
active elements such as form fields, radio
buttons, etc.

8WebNLP is currently available as a prototype at
http://dh.mi.ur.de/

• Seamless integration of the existing web tool
Voyant, which allows the user to quickly
analyze and visualize language data in the
browser.

• Opportunities for future enhancements of the
tool, e.g. collaboration with other users,
sharing of data and results, etc.

WebNLP uses a client-server architecture to pro-
vide an easy-to-use interface via modern web
browsers, while the NLP functions are executed
on our server (cf. Figure 1). The interface on
the client side is structured in three main areas
(cf. Figure 2) which will be explained in more
detail in the next section. All interface logic is
implemented by means of JavaScript, the page
layout utilizes a template from the popular front-
end framework Bootstrap9. The communication
between client and server is realized by means of
PHP and AJAX.

9Bootstrap is available at http://getbootstrap.
com/.

Figure 2: WebNLP interface with three main areas: input, options, results.

A number of Python NLTK scripts (e.g. for
tokenization, lemmatization, etc.) can be called
from the client interface and are then executed
on the server. The results are displayed on the
client side by calling different visualization forms
of the web service Voyant, which is embedded in
the WebNLP interface as an HTML iframe. At
the same time, the NLTK processed data is stored
on the server as plain text or as text with XML
markup, which are both available for download
on the client side.

3.2 Input: Upload of natural language data

The input field allows the user to upload text doc-
uments to the NLP application on the server. Data
may either be entered directly in the text area form
field, or by making use of the file upload dialog.
Currently, only files in plain text format (.txt) can
be processed by the NLTK tools on our server.
Another restriction for the current implementa-
tion of the tool is concerned with the language of
the text documents: At the moment, only NLTK
scripts for processing English language data have
been integrated into the tool. However, the sys-
tem architecture is designed in a modular fash-
ion that allows the administrators to add more
NLTK scripts for other languages at a later point

in time. Once the data has been uploaded to the
server, a first NLTK pre-processing of the data is
executed, analyzing the overall number of tokens,
types and sentences in the file. This information
is displayed at the bottom of the input area after
the upload of the file has been completed.

3.3 Options: NLP and visualization
parameters

The second area in the interface contains options
for the NLP and visualization of the uploaded
data. The first set of options selects Python NLTK
scripts on the server, that are then executed on the
data. In the current tool version, the following
main functions are available:

• Stop word filter; can be combined with any
other parameter (a list of all stop words may
be looked up in the interface)

• Tokenizer (words and punctuation marks)

• Part of speech tagger (tokenization implied)

• Lemmatizer (tokenization implied)

• No NLP (used if no additional NLP process-
ing is needed)

The second group of options allows the user to
select a visualization style for the processed data
from Voyant. The following visualization10 op-
tions are available in the current WebNLP proto-
type:

• Wordcloud

• Bubblelines

• Type frequency list

• Collocation clusters

• Terms radio

• Scatter plot

• Type frequency chart

• Relationships

• No visualization

Due to the internal NLP workflow on the server,
currently only one NLP and one visualization op-
tion can be selected at a time. We are planning
to implement a more flexible solution in the next
version of WebNLP.

A short evaluation with a sample of five text
documents with different file sizes indicates an al-
most linear increase of processing time related to
text size. The smallest of the test documents had a
size of 50 kB (approx. 11.000 tokens), the largest
document had a size of 4230 kB (approx. 920.000
tokens). POS tagging for the smallest document
took 18 seconds, lemmatization took 20 seconds.
For the largest document, POS tagging took ap-
prox. 24 minutes, lemmatization took approx. 25
minutes. These results indicate that WebNLP in
its current implementation is well-suited for small
to medium sized corpora, but may be too slow for
larger text collections.

3.4 Results: Client-side visualizations and
download formats

The third interface area displays the results of the
chosen NLP options in the selected Voyant visual-
ization (e.g. word cloud view). The user may also

10A detailed description of the different Voyant visualiza-
tion types can be found at http://hermeneuti.ca/
voyeur/tools.

switch to plain text or XML markup view of the
results (these formats are also available for down-
load).
Plain text view (original NLTK output):

(VBN , come)
...

XML view (custom WebNLP format):

<root>
<token>

<pos>VBN</pos>
<word>come</word>

</token>
...

</root>

4 Conclusions

Our tool provides access to existing NLP and vi-
sualization tools via a combined interface, thus
acting as a GUI wrapper for these applications.
While a thorough usability evaluation is still
missing, we are confident that NLP functionality
from the Python NLTK becomes more accessible
through WebNLP, and that the combination with
visualizations from the Voyant set of tools will
be attractive for many applications of text tech-
nology. In its current implementation, WebNLP
should be treated as a prototype that illustrates
how a web-based interface to basic NLP and text
visualization functions can be realized by means
of standard web technologies. We are, however,
planning to implement more NLTK functions,
and to improve the performance as well as the in-
terface of the service in the future.

References

Marco Baroni, Silvia Bernardini, Adriano Fer-
raresi, and Eros Zanchetta. The wacky wide
web: a collection of very large linguistically
processed web-crawled corpora. Language re-
sources and evaluation, 43(3):209–226, 2009.

Michael Beißwenger and Angelika Storrer. Cor-
pora of Computer-Mediated Communication.
In Anke Lüdeling and Kytö Merja, editors,
Corpus Linguistics. An International Hand-
book, pages 292–308. Mouton de Gruyter,
Berlin, New York, 2009.

Steven Bird. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL on Inter-
active presentation sessions, pages 69–72. As-
sociation for Computational Linguistics, 2006.

Gregory Crane. What do you do with a million
books? D-Lib Magazine, 12(3), 2006.

Andrew Hardie. Cqpweb – combining power,
flexibility and usability in a corpus analysis
tool. International Journal of Corpus Linguis-
tics, 17(3):380–409, 2012.

Adam Kilgarriff and Gregory Grefenstette. In-
troduction to the special issue on the web as
corpus. Computational linguistics, 29(3):333–
347, 2003.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva P.
Aiden, Adrian Veres, Matthew K. Gray, The
Google Books Team, Joseph P. Pickett, Dale
Hoiberg, Dan Clancy, Peter Norvig, Jon Or-
want, Steven Pinker, Martin A. Nowak, and
Erez Lieberman Aiden. Quantitative analysis
of culture using millions of digitized books.
Science, 331(6014):176–182, 2010.

Franco Moretti. Distant reading. London: Verso,
2013.

Jakob Nielsen and Raluca Budiu. Mobile usabil-
ity. New Riders, Berkeley, CA, 2013.

Alexander Pak and Patrick Paroubek. Twitter as
a Corpus for Sentiment Analysis and Opinion
Mining. In Proceedings of the LREC, pages
1320–1326, 2010.

Stan Ruecker, Milena Radzikowska, and Stéfan
Sinclair. Visual interface design for digital cul-
tural heritage: A guide to rich-prospect brows-
ing. Ashgate Publishing, Ltd., 2011.

Helmut Schmid. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of in-
ternational conference on new methods in lan-
guage processing, pages 44–49. Manchester,
UK, 1994.

Ben Shneiderman. Designing the user interface:
strategies for effective human-computer inter-
action. Pearson, 5th edition, 2014.

!!!
!!!
!!!
!!!
!!!!

W
eb

N
LP

 –
 A

n
In

te
gr

at
ed

 W
eb

-In
te

rf
ac

e
fo

r
Py

th
on

 N
LT

K
 a

nd
 V

oy
an

t

1.
 U

pl
oa

d
na

tu
ra

l l
an

gu
ag

e
da

ta
 to

th

e
se

rv
er

.
2.

 S
et

 N
LP

 (P
yt

ho
n

N
LT

K)
 a

nd

vi
su

al
iz

at
io

n
(V

oy
an

t)
pa

ra
m

et
er

s.

3.
 V

isu
al

iz
e

re
su

lts
 in

 th
e

br
ow

se
r o

r d
ow

nl
oa

d
th

em

as
 p

la
in

 te
xt

 /
xm

l fi
le

s.

M
an

ue
l B

ur
gh

ar
dt

, J
ul

ia
n

Pö
rs

ch
, B

ia
nc

a
Ti

rle
a,

 a
nd

 C
hr

ist
ia

n
W

ol
ff

M
ed

ia
 In

fo
rm

at
ic

s
an

d
In

fo
rm

at
io

n
Sc

ie
nc

e
G

ro
up

, U
ni

ve
rs

ity
 o

f R
eg

en
sb

ur
g

 Tr
y

ou
t

W
eb

N
LP

: h
tt

p:
//d

h.
m

i.u
r.d

e/

Co
nt

ac
t:

 m
an

ue
l.b

ur
gh

ar
dt

@
ur

.d
e

D

ig
it

al
 H

um
an

it
ie

s
Re

ge
ns

bu
rg

: h
tt

p:
//d

hr
eg

en
sb

ur
g.

de

A
bs

tr
ac

t
–

W
e

pr
es

en
t W

eb
N

LP
, a

 w
eb

-b
as

ed
 to

ol
 th

at

co
m

bi
ne

s
na

tu
ra

l l
an

gu
ag

e
pr

oc
es

sin
g

(N
LP

) f
un

ct
io

na
lit

y
fr

om
 P

yt
ho

n
N

LT
K

an
d

te
xt

 v
isu

al
iz

at
io

ns
 fr

om
 V

oy
an

t i
n

an
 in

te
gr

at
ed

 in
te

rf
ac

e.
 L

an
gu

ag
e

da
ta

 c
an

 b
e

up
lo

ad
ed

vi

a
th

e
w

eb
sit

e.
 T

he
 re

su
lts

 o
f t

he
 p

ro
ce

ss
ed

 d
at

a
ar

e
di

sp
la

ye
d

as
 p

la
in

 te
xt

, X
M

L
m

ar
ku

p,
 o

r V
oy

an
t v

isu
al

i-
za

tio
ns

 in
 th

e
sa

m
e

w
eb

sit
e.

 W
eb

N
LP

 a
im

s
at

 fa
ci

lit
at

in
g

th
e

us
ag

e
of

 N
LP

 to
ol

s
fo

r u
se

rs
 w

ith
ou

t t
ec

hn
ic

al
 s

ki
lls

an

d
ex

pe
rie

nc
e

w
ith

 c
om

m
an

d
lin

e
in

te
rf

ac
es

. I
t a

lso

m
ak

es
 u

p
fo

r t
he

 s
ho

rt
co

m
in

gs
 o

f t
he

 p
op

ul
ar

 te
xt

an

al
ys

is
to

ol
 V

oy
an

t,
w

hi
ch

, u
p

to
 th

is
po

in
t,

is
la

ck
in

g
ba

sic
 N

LP
 fe

at
ur

es
 s

uc
h

as
 le

m
m

at
iz

at
io

n
or

 P
O

S
ta

gg
in

g.

