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ABSTRACT
Background Holoprosencephaly (HPE), the most
common malformation of the human forebrain, may
result from mutations in over 12 genes. Sonic Hedgehog
(SHH) was the first such gene discovered; mutations in
SHH remain the most common cause of non-
chromosomal HPE. The severity spectrum is wide,
ranging from incompatibility with extrauterine life to
isolated midline facial differences.
Objective To characterise genetic and clinical findings in
individuals with SHH mutations.
Methods Through the National Institutes of Health and
collaborating centres, DNA from approximately 2000
individuals with HPE spectrum disorders were analysed
for SHH variations. Clinical details were examined and
combined with published cases.
Results This study describes 396 individuals,
representing 157 unrelated kindreds, with SHH
mutations; 141 (36%) have not been previously reported.
SHH mutations more commonly resulted in non-HPE
(64%) than frank HPE (36%), and non-HPE was
significantly more common in patients with SHH
than in those with mutations in the other common HPE
related genes (p<0.0001 compared to ZIC2 or SIX3).
Individuals with truncating mutations were significantly
more likely to have frank HPE than those with
non-truncating mutations (49% vs 35%, respectively;
p¼0.012). While mutations were significantly more
common in the N-terminus than in the C-terminus
(including accounting for the relative size of the coding
regions, p¼0.00010), no specific genotype―phenotype
correlations could be established regarding mutation
location.
Conclusions SHH mutations overall result in milder
disease than mutations in other common HPE related
genes. HPE is more frequent in individuals with
truncating mutations, but clinical predictions at the
individual level remain elusive.

INTRODUCTION
Holoprosencephaly (HPE), which results from failed
or incomplete forebrain separation early in gesta-
tion, is the most common malformation of the
human forebrain. HPE occurs in up to 1 in 250
conceptions, but in only approximately 1 in 10 000
liveborn infants due to the high proportion of
intrauterine lethality.1 2 HPE is heterogeneous, and
may result from large chromosomal imbalances,
teratogenic agents, be found as one feature of an
identifiable syndrome, or occur in a ‘non-syndromic’
context due to mutations in over 12 currently
identified genes3 (reviewed in Solomon et al4).
Of the genes associated with HPE, Sonic Hedgehog

(SHH), was the first identified.5 As with other HPE
associated genes that were identified early, the
involvement of SHH in human HPE was suggested
by cytogenetic anomalies affecting chromosome
7q36, which contains the SHH locus.6 To date,
mutations affecting SHH remain the single most
common cause of non-chromosomal, non-
syndromic HPE, accounting for approximately 12%
of such cases7 (reviewed in Pineda-Alvarez et al8).
Most SHH mutations are family/individual-

specific. Determining variant pathogenicity can be
challenging, especially as functional assays are not
available except in isolated research circumstances.
Thus, assigning true ‘mutation’ status to a variant
usually rests on the interpretation of an experi-
enced molecular geneticist, and is based upon
inheritance patterns, clinical features, and specific
variant characteristics.7

As with other genes associated with non-chro-
mosomal, non-syndromic HPE, SHH mutations
result in an autosomal, dominantly inherited condi-
tion with apparently (we use the word ‘apparently’,
as many would agree that clinicians who are highly
familiar withHPE and the range ofmanifestations in
mutation-positive individualswould recognise subtle
signs of mutation status in virtually all affected
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carriers) incomplete penetrance and highly variable expressivity.4

HPE is categorised neuroanatomically by the degree of forebrain
separation into alobar (the most severe type), semilobar, lobar,
middle interhemispheric variant, and septopreoptic types.9 SHH
mutation ‘carriers’ have been described as clinically unaffected by
severe sequelae of disease, and are frequently referred to as having
‘microform’HPE. Strictly, individualswithmicroformHPE should
not be termed mutation carriers: they display subtle midline
anomalies on physical examination, such as midface hypoplasia,
hypotelorism, a flat or sharp nasal bridge, or a single maxillary
central incisor, butwill often not have detectable neuroanatomical
anomalies or neurocognitive disturbances.4 Inmany families,more
individuals will be affected with microform than with frank HPE.
In these families, mutation status may be suspected upon the
recognition of a severely affected individual.4 10e12

Through comparisons with cohorts of patients with muta-
tions in the known HPE associated genes, some rudimentary
intergenic genotype―phenotype correlations have been
suggested. These include a preponderance of microform HPE
resulting from mutations in SHH, a specific facial phenotype in
patients with ZIC2 mutations, more severe types of HPE in
patients with SIX3 mutations, and an overrepresentation of
renal tract anomalies in patients with mutations in SHH or
ZIC2. However, no intragenic genotype―phenotype correlations
have been established.4 11 13 14

In order to describe all known patients with mutations in
SHH associated with HPE spectrum anomalies, we formed an
international collaboration and collected data from the world’s
largest HPE related molecular diagnostic centres. We describe 396
individuals, representing 157 unrelated kindreds, with mutations
in SHH. In addition to outlining clinical and molecular findings,
we focus on attempts to predict phenotypic severity based on
genotypic data.

METHODS
Patients were ascertained retrospectively through their respec-
tive institute review board approved research protocols, with

appropriate consent, and through molecular laboratories
(without identifying demographic data in this latter instance).
Clinical details were supplied by the referring clinicians:
requested items included completion of a standardised checklist,
as well as materials such as a genetics consultation note,
photographs, neuroimages, and other records, though the
available information was highly variable. For patients identified
through testing at the National Institutes of Health, sequencing
was performed using previously published methodology.7

Published cases were obtained through a PubMed/Medline
search, using the following search terms: Sonic Hedgehog, SHH,
holoprosencephaly, HPE (see supplementary table 1).
For specific portions of the presented analysis, we attempted

to be conservative and not analyse variants of unknown signif-
icance along with ‘true’ pathogenic mutations. To do this, we
intentionally excluded variants of unknown significance as
defined on the basis of previous studies.15e18 In addition to
literature based queries describing results of functional assays
and analysis, variant pathogenicity in unclear instances was
further investigated through software based prediction (Poly-
phen2),19 such that variants of possible but unproven pathoge-
nicity according to the published literature that were then
analysed as being unlikely to be pathogenic by software based
prediction were excluded from analysis.
Statistical comparisons were made using c2 or Fisher ’s exact

test, where appropriate.

RESULTS
We describe 396 individuals (from 157 independent kindreds)
with mutations in SHH (figure 1). One hundred and forty-one
(36%) of these individuals have not been previously reported in
the medical literature. Reports in the medical literature were
ascertained from 1988 through the present (some early reported
individuals were later found to have SHH mutations). The
clinical features observed in these individuals comprise the entire
phenotypic spectrum, from neuroanatomical anomalies incom-
patible with extrauterine life to isolated, extremely subtle

Figure 1 Photographs of individuals
with SHH mutations demonstrating
salient features. In relatively severely
affected individuals with frank
neuroanatomic holoprosencephaly
(HPE) (such as demonstrated by the top
row of photos and the photo on the
bottom left), common features include
microcephaly, hypotelorism, flat nasal
bridge, single nares, and premaxillary
agenesis/cleft lip/palate. Less severely
affected individuals, such as the
individuals in the bottom row (middle
and right), who both have microform
HPE, show features such as
hypotelorism and single maxillary
central incisor. Top row from left: infant
with semilobar HPE; infant with frank
HPE (type unknown); child with HPE
(type unknown). Bottom row from left:
infant with lobar HPE; mother; and child
in same family.
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midline facial anomalies and reports of individuals who were
described to be clinically ‘unaffected’. Full data are available in
supplementary table 1.

There was not a statistically significant gender disproportion
in probands or total individuals. Of the 396 total individuals,
gender was known in 359: of the 396, 185 (47%) were male and
174 (44%) were female, while 37 (9%) were of unknown gender.
One hundred and thirty-four of the 157 probands had known
gender: 71 (45%) were male and 63 (40%) were female; 23 (15%)
of 157 probands were of unknown gender. Of relatives of
probands, 225/239 (94%) had known gender: 114 males (48%)
and 111 females (46%), while 14 (6%) had unknown gender. The
higher proportion of unknown proband gender largely results
from an overrepresentation of severe HPE in probands compared
to relatives (eg, due to a pregnancy loss with unknown fetal
gender).

Of kindreds with a molecularly identified mutation in the
proband, 98/157 (62%) had multiple affected relatives; however,
familial testing was not always available. Of the 250 mutation
carriers for whom inheritance was known, 138 (55%) had
maternal inheritance, 80 (32%) had paternal inheritance, 25
(10%) of mutations were de novo, and 7 (3%) (including indi-
viduals from two different families) were identified as having
germline mosaicism (most likely), as neither parent was found
to have the mutation on peripheral blood testing, and paternity
testing confirmed parentage. The high proportion of maternally
inherited mutations may be secondary to increased maternal
testing, though a more specific calculation regarding this is not
possible, as details regarding which parents were tested are not
uniformly available.

MUTATIONS
Among the 157 families, 141 unique SHH mutations were
identified (figure 2). The largest proportion of variants (92/141,

66%) were missense, though 17/92 missense variants were
considered to be variants of unknown significance (see
Methods). Other mutation types included nonsense (21/141,
15%), frameshift (17/141, 12%), in-frame deletions or insertions
(9/141, 6%), though 2/9 of these in-frame deletion/insertion
variants were considered to be variants of unknown significance,
and splice site mutations (2/141, 1%).
Of the 157 families, 14 different variants were each found in

two apparently unrelated kindreds, and one mutation was found
in three apparently unrelated kindreds. Of these non-unique
mutations, three were nonsense mutations and four were
missense mutations in the SHH-N domain, and two were
nonsense and six were missense mutations in the SHH-C
domain.
One proband had two variants in SHH (c.327C/T and

c.328G/A), but the phase is unknown. Two probands had
additional variants in GAS1,20 21 one had an additional variant in
ZIC2,22 one had an additional variant in SIX3, and one had an
additional variant in TGIF.22 The pathogenicity status of these
non-SHH variants is not known, however, and it is entirely
possible that these simply represent rare, non-pathogenic alleles.
In order to conduct a conservative analysis, after excluding

possible variants of unknown significance (see Methods) 357
individuals with variants remained, comprising 123 unique
variants. Of those variants, 73 variants occurred in the N-
terminus and 50 in the C-terminus; there was a statistically
significant difference in that mutations were more common in
the N-terminus when compared to the expected ratio according
to the number of bases in each region (c2¼14.69, p¼0.00010).
These differences remained significant when considering each
specific type of mutation individually: single nucleotide substi-
tutions, including those predicted to result in missense and
nonsense mutations (c2¼8.46, p¼0.0036) and frameshift
substitutions (c2¼11.90, p¼0.00060).

Figure 2 (A) Distribution and types of
variants, as well as severity of clinical
manifestations are shown with the SHH
predicted protein. (B) Individuals with
frank HPE are shown below the
predicted protein (with closed
symbols), while individuals without
evidence for neuroanatomical
anomalies are shown above the
predicted protein. As the figure
illustrates, while overall trends may
be analysed regarding
genotype―phenotype correlations,
individual level predictions remain
elusive. HPE, holoprosencephaly; SHH,
Sonic Hedgehog.
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CLINICAL FEATURES
Of the 157 probands, 83 (53%) had frank HPE. Of the probands,
27 (17%) had alobar, 36 (22%) had semilobar, 8 (5%) had lobar,
and 12 (8%) had unknown type of HPE. Forty-four of 157 (28%)
did not have HPE (were considered to be microform, or not HPE
unknown) and 30 (19%) of them were unknown in terms of
HPE affectedness. Of the relatives of probands, 49/239 (21%)
had frank HPE. Of the relatives of probands, 15 (6%) had alobar,
5 (2%) had semilobar, 3 (1%) had lobar, and 26 (11%) had
unknown type of HPE, and 174/239 (73%) did not have HPE
(were categorised as ‘unaffected’ or microform). Sixteen (7%) of
the mutation positive relatives were unknown with respect to
HPE affectedness. Table 1 shows the distribution of the types of
HPE among all individuals with frank HPE. Table 2 shows the
classification of HPE type among all individuals with mutations
(probands and relatives).

Individuals with frank HPE were universally severely cogni-
tively impaired, and microcephaly and hypotelorism were very
commonly reported in those with available data (due to lack of
uniform data, we were unable to calculate specific percentages of
these features). Clinical data obtained from other reports show
that the most common features commented on were (of note,
some of these features may be underreported due to variable
clinical data) single central maxillary incisor (21%), cleft lip and/
or palate (20%), choanal stenosis/atresia (7%), coloboma (5%),
reported diabetes insipidus (DI) (3%), reported pituitary
dysfunction (in addition to DI) (3%), proboscis (2%), cyclopia or
synophthalmia (2%), and ptosis (1%). Additionally, 5% had
genitourinary/renal abnormalities including hypoplastic penis,
cryptorchidism, renal hypoplasia, hypospadias, and ambiguous
genitalia. Two percent had cardiac abnormalities (including
persistently patent ductus arteriosus, ventricular septal defect,
atrial septal defect, tricuspid atresia, interrupted inferior vena
cava, and situs ambiguous). Renal anomalies and cardiac defects
are not considered to be a classic component of non-chromo-
somal, non-syndromic HPE spectrum, although a recent large
case series described renal anomalies in several individuals with
SHH mutations.14

GENOTYPE―PHENOTYPE ANALYSIS
Many kindreds displayed wide intrafamilial phenotypic vari-
ability. After excluding variants of unknown significance, we
compared the phenotypic severity in patients with truncating
mutations to those with missense or in-frame small deletions/
insertions, with the hypothesis that, despite limitations due to
overgeneralisation, truncating mutations cause more severe
phenotypes than hypomorphic alleles resulting from missense or
in-frame mutations. Of the truncating mutations with known
phenotype, 63 (49%) individuals had frank HPE and 65 (51%)
did not have frank HPE. Of the non-truncating missense or
small in-frame deletions/insertions in individuals with known

phenotype, 74 (35%) had HPE and 138 (65%) did not have HPE.
There was a statistically significant difference such that indi-
viduals with truncating mutations had HPE more frequently
than individuals with non-truncating mutations (p¼0.012 by
two-tailed Fisher ’s exact test).
To evaluate the potential correlation between mutation loca-

tion and phenotypic severity, we analysed missense and in-frame
deletions/insertions (truncating mutations were not included
secondary to the possibility of nonsense mediated decay).
Thirty-four individuals with HPE and 53 without HPE had N-
terminus mutations. Forty individuals with HPE and 85 without
HPE had C-terminus mutations. There was not a statistically
significant difference (p¼0.31 by two-tailed Fisher ’s exact test)
between the groups with respect to severity of phenotype and
mutation location.
We compared the prevalence of HPE (117) versus non-HPE

(204) in patients with SHH mutations with previously
published cohorts of patients with intragenic mutations
affecting the other most common HPE associated genes (ZIC2:
88 HPE, 13 non-HPE; SIX3: 59 HPE, 33 non-HPE; and TGIF: 6
HPE, 7 non-HPE).11 13 23 After correcting for multiple compari-
sons, there was a statistically significant overrepresentation of
non-HPE in the SHH cohort versus the SIX3 and ZIC2 cohorts
(p<0.0001 for each comparison by two-tailed Fisher ’s exact
test), while there was not a statistically significant difference
compared to the TGIF cohort (p>0.5 by two-tailed Fisher ’s
exact test, likely related at least in part to a very small
comparison cohort).

DISCUSSION
We present a large cohort of patients with SHH mutations. To
our knowledge, this is the largest described cohort with muta-
tions in a single HPE gene. As mutations in this gene were the
first and most commonly associated with HPE, SHH mutations
are often considered to result in ‘prototypical’ HPE.24 Indeed,
many of the findings described here reinforce this, including the
presence of large families with multiple affected members of
varying severity, as well as de novo mutations in a minority of
cases, which is overall similar to the pattern seen in mutations in
SIX3,11 but very different to that due to ZIC2 mutations.13

Despite the establishment of SHH as being associated with HPE
over 15 years ago, there is still no firm explanation for the widely
variable expressivity observed in these families, though plausible
explanations typically involve multiple interacting genetic and
environmental factors superimposed on a severely deleterious
mutation. In virtually every case in which multiple mutations
were purported, only one of the variants ultimately had any

Table 1 Distribution of holoprosencephaly (HPE) types among
individuals with frank HPE

HPE type
Probands with SHH
mutation, n (%)

Individuals with SHH
mutations, n (%)

Alobar 27 (33%) 42 (32%)

Semilobar 36 (43%) 41 (31%)

Lobar 8 (10%) 11 (8%)

HPE (type unknown)* 12 (14%) 38 (29%)

Total 83 132

*HPE (type unknown): individuals identified with true HPE, which was not further
categorised into specific type.

Table 2 Distribution of holoprosencephaly (HPE) among all individuals

HPE type
Probands with SHH
mutation, n (%)

Individuals with SHH
mutation, n (%)

Alobar 27 (17%) 42 (11%)

Semilobar 36 (23%) 41 (10%)

Lobar 8 (5%) 11 (3%)

HPE (type unknown)* 12 (8%) 38 (10%)

Microform 42 (27%) 167 (42%)

None 0 (0%) 29 (7%)

Not HPE (type unknown)y 2 (1%) 22 (5%)

Unknown (no data)z 30 (19%) 46 (12%)

Total 157 396

*HPE (type unknown): individuals identified with true HPE, which was not further
categorised into specific type.
yNot HPE (type unknown): individuals identified without HPE but not further described.
zUnknown (no data): individuals without any clinical data available.
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evidence for pathogenicity, and thus may represent ‘red
herrings’14 25 (reviewed in Wannasilp et al26). In fact, recent
statistical evidence bears out the observation that the presence
of multiple modifiers of individually small effect offers a better
model of causality rather than a few digenic mutations of major
effect.27

We found that there is a significantly higher proportion of
HPE in individuals with a truncating mutation versus a non-
truncating mutation. This is clearly a very inexact comparison,
as some missense mutations will certainly be highly functionally
significant, but the overall trend is informative.11 Further func-
tional studies may help determine the relative activity of these
variants in order to perform correlations with our phenotypic
data.

Interestingly, in our cohort, we have identified some families
with a relatively large number of severely affected individuals, as
well as other families in which many members are only mildly
affected (tables 3 and 4).

Specifically, four families have high proportions of members
who are severely affected. They have varying mutations:
c.9_12dup4, p.Arg6GlyfsX59; c.136 C/T, p.Gln46X;
c.383G/A, p.Trp128X; c.664G/A, p.Asp222Asn. In six fami-
lies, there appears to be an overrepresentation of individuals
with microform HPE or who were classified as ‘unaffected’,
again with a variety of mutation types: c.263A/T, p.Asp88Val;
c.313A/T, p.Lys105X; c.708C/A, p.Ser236Arg; c.1051C/T,
p.Gln351X; c.1202_1225del24, p.Gly404_Gly411del; c.1370delT,
p.Met457ArgfsX18.

On a mutation per base level, we found that there are
statistically significantly more mutations in the N-terminus of
the gene compared to the C-terminus. Specifically, there are
significantly more total mutations, more substitution mutations
(missense and nonsense), and more frameshift mutations. The
explanation for this is unclear. For example, it could be postu-
lated that N-terminus mutations confer a more severe pheno-
type and that individuals with mutations in the C-terminus
may go undiagnosed more frequently. This cannot be the only
explanation, as there are individuals with severe phenotypes
who have mutations in the 39 end of the gene. Again, the
importance of functional studies arises here in order to compare
the pathogenicity of variants in the C-terminus and the impact
of those variants on processing. In addition, we note that the

available clinical data are not uniform, which could affect the
results.
We found no difference in HPE severity based on mutation

location when comparing N-terminus to C-terminus mutations.
However, there again was a significant difference when exam-
ining the location of the types of mutations, with significantly
fewer truncating mutations in the C-terminus. It is unclear why
there are fewer truncating mutations in the C-terminus
compared to non-truncating mutations.
As mentioned, the major limitation to this study hinges on

a lack of uniform clinical and functional data, which is unfor-
tunately inevitable, as these cases were collected over the course
of more than two decades from laboratories and clinics from
a number of different countries, as well as from numerous
previously published reports. However, the advantage of a large
cohort helps ameliorate some of these shortcomings, and allows
important observations that may be helpful for clinicians and
diagnostic laboratories involved with the care of affected
patients. We can conclude that non-HPE is overall more
common than frank HPE in individuals with SHH mutations.
Further, compared to cohorts of patients with mutations in the
other two most common HPE associated genes, mutations in
SHHmore frequently result in non-HPE compared to frank HPE.
Individuals with truncating mutations are more likely to have
frank HPE than those with non-truncating mutations. Impor-
tantly, however, within any specific family or for any single
person (eg, as applies to a mutation positive fetus, which is
a frequently encountered clinical question), a prediction of
individual severity is not currently possible. While extra-neuro-
anatomical/related facial anomalies are rare, cardiac and geni-
tourinary anomalies are found in a small percentage of patients,
including those without frank HPE. The majority of mutations
in SHH occur in the N-terminus compared to the C-terminus
and specifically that there is a paucity of truncating mutations
in the C-terminus.
In summary, despite the lack of firm answers regarding

major questions related to the clinical expression of SHH
mutations, the information presented here should prove valu-
able to both the clinician and researcher for the purposes of
helping frame questions about the pathogenicity of newly
discovered variants, as well as counselling affected patients and
families.

Table 3 Families with a relatively large number of severely affected individuals

Mutation Amino acid change Type of mutation Location Individuals with HPE Individuals without HPE

c.9_12dup4 p.Arg6GlyfsX59 Frameshift N terminus 4 alobar 1 microform

c.136C/T p.Gln46X Nonsense N terminus 1 semilobar; 2 HPE type unknown 2 microform

c.383G/A p.Trp128X Nonsense N terminus 3 alobar 1 microform

c.664G/A p.Asp222Asn Missense C terminus 2 semilobar; 7 HPE type unknown 3 microform; 1 none; 1 not HPE unknown

HPE, holoprosencephaly.

Table 4 Families with a large number of mildly affected individuals

Mutation Amino acid change Type of mutation Location Individuals with HPE Individuals without HPE

c.263A/T p.Asp88Val Missense N-terminus 1 alobar; 1 HPE type unknown 6 microform

c.313A/T p.Lys105X Nonsense N-terminus 1 alobar; 1 semilobar;
2 HPE type unknown

12 microform

c.708C/A p.Ser236Arg Missense C-terminus 1 semilobar 4 microform; 2 none;
1 not HPE type unknown

c.1051C/T p.Gln351X Nonsense C-terminus 0 4 microform

c.1202_1225del24 p.Gly404_Gly411del Inframe deletion C-terminus 0 2 microform; 3 none

c.1370delT p.Met457ArgfsX18 Frameshift C-terminus 0 3 microform; 2 none

HPE, holoprosencephaly.
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