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Chapter 1

Introduction

1.1 Nilpotence in Borel equivariant cohomology
For a finite group G, consider a cohomology class u ∈ H∗(BG; Fp) that restricts
to zero on all elementary abelian p-subgroups (groups of the form (Z/p)×l). It
is a theorem of Quillen that u is nilpotent. In fact, Quillen showed

1.1.1 Theorem ([Qui71c, Thm. 7.1]) The map

(1.1) r̃es : H∗(BG; Fp)→ lim
E⊂G el. ab. p-gp.

H∗(BE; Fp)

where the maps in the indexing category for the limit are given by restricting
along subgroups and conjugation, is a uniform Fp-isomorphism ([Qui71c, Thm.
7.1], [Qui71c, p. 556]), which means that there is an n such that

1. Every u ∈ ker(r̃es) satisfies un = 0.

2. Every v ∈ limE H
∗(BE; Fp) \ Im(r̃es) satisfies vpn ∈ Im(r̃es).

This result in group cohomology is a consequence of the following landmark
theorem by Quillen in Borel equivariant cohomology, which is the main theorem
of the same paper. For a G-space X, we write H∗G(X; Fp) for the mod-p Borel
equivariant cohomology of X.

1.1.2 Theorem ([Qui71c, Thm. 6.2]) For X any paracompact G-space of
finite cohomological dimension, the map

r̃es : H∗G(X; Fp)→ lim
E⊂G el. ab. p-gp.

H∗E(X; Fp)

is a uniform Fp-isomorphism.

These results led to a lot of structural results in group cohomology. Quillen
himself immediately deduced

1.1.3 Corollary ([Qui71c, Cor. 7.8]) The Krull dimension of H∗(BG; Fp)
equals the rank of the maximal elementary abelian p-subgroup of G.

1



1.1. Nilpotence in Borel equivariant cohomology 2

Results directly building on Theorem 1.1.2 include a theorem of Duflot on the
depth of H∗(BG; Fp) ([Duf81, Thm. 1]), a theorem on the complexity of kG-
modules by Alperin-Evens ([AE81]), Benson’s description of the image of the
transfer map ([Ben93, Thm. 1.1]), and a theorem on the depth of group co-
homology rings by Carlson ([Car95, Thm. 2.3]). These results, and Quillen’s
original result all indicate the importance of the elementary abelian p-subgroups
in Borel equivariant Fp-cohomology in general, and group cohomology with Fp-
coefficients in particular.

It is natural to ask what one can say about the n in Theorem 1.1.1. One
approach to this question is in [MNN15], where the map (1.1) is realized as
the edge homomorphism of a homotopy limit spectral sequence, called the F -
homotopy limit spectral sequence,

(1.2) Es,t2 = lims

O(G)op
F

Ht
H(X; Fp)⇒ H∗G(X; Fp)

converging strongly to the target ([MNN15, Prop. 2.24]), where X can be
any G-space, and F any family of subgroups of G which contains at least the
family E(p) of elementary abelian p-subgroups. The indexing category is the
subcategory of the orbit category O(G) spanned by the orbits G/H with H in
the family F . The key property of the F -homotopy limit spectral sequence
is that it collapses at a finite page with a horizontal vanishing line ([MNN15,
Thm. 2.25]).

This implies that every computation with the F -homotopy limit spectral se-
quence is a finite one. Moreover, in many concrete situations we can establish a
bound on the height of the horizontal vanishing line, and a bound on which page
it will appear. Besides implying when the F -homotopy limit spectral sequence
will have collapsed, it can also be used to deduce differentials. This was illus-
trated in the computation of the cohomology of the quaternion group of order 8
in [MNN15, Ex. 5.18]. The first prinicipal goal of this thesis is to demonstrate
the computational utility of the F -homotopy limit spectral sequence and the
use of the vanishing line in determining differentials. This will be done by using
it to compute the cohomology of all 2-groups up to order 16.

Varying X over all G-spectra, this horizontal vanishing line turns out to have
a uniform bound in height ([MNN15, Prop. 2.26]). The minimal upper bound of
this height is one of the equivalent definitions of the E(p)-exponent expE(p)

HFp
G
.

In practice one can often determine this E(p)-exponent, and this leads to a quan-
tified version of Theorem 1.1.1, because one has n ≤ expE(p)

HFp
G

([MNN15,
Thm. 3.24, Rem. 3.26]). The identification of E(2)-exponents for 2-groups is the
second principal goal of this thesis, and leads to the main theorem:

1.1.4 Theorem Let G be a finite group with a 2-Sylow subgroup of order ≤ 16,
let X be any G-space 1, and let I be the kernel of

r̃es : H∗G(X; F2)→ lim
E⊂G el. ab. 2-gp.

H∗E(X; F2).

Then I4 = 0. Moreover, if u is not in the image of r̃es, then u8 is.
1In the submitted version of this thesis it was claimed that one could also let X be any

G-spectrum, but this is not the case, because for general G-spectra X the graded abelian
group H∗

G(X; F2) does not come with a ring structure.
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This follows from combining [MNN15, Thm. 3.24] and Lemma 3.2.14 with the
upper bounds on the exponents obtained in this thesis and summarized in Ta-
ble 1.1. For a description of the groups appearing in the table we refer to
Section 4.2. The first column lists the groups of order ≤ 16, the second column
the exponent or an interval in which the exponent lies, and the last column gives
a forward reference for the claim.

G expE(2)
HF2G Reference

e 1 Proposition 4.3.1
C2 1 Proposition 4.3.1

C2 × C2 1 Proposition 4.3.1
C4 2 Proposition 4.3.1

C×3
2 1 Proposition 4.3.1

C2 × C4 2 Proposition 4.3.1
C8 2 Proposition 4.3.1
D8 2 Proposition 4.4.1
Q8 4 [MNN15, Ex. 5.18]
C×4

2 1 Proposition 4.3.1
C×2

2 × C4 2 Proposition 4.3.1
C4 × C4 3 Proposition 4.3.1
C8 × C2 2 Proposition 4.3.1

C16 2 Proposition 4.3.1
D16 2 Proposition 4.4.1
Q16 4 Proposition 4.5.4

SD16 = C8
3
o C2 [3, 4] Proposition 4.6.2

M16 = C8
5
o C2 [3, 4] Proposition 4.7.4

D8 ∗ C4 4 Proposition 4.8.22
C4 o C4 [3, 4] Proposition 4.9.6

(C4 × C2)
ψ5
o C2 2 Proposition 4.10.1

Q8 × C2 4 Proposition 4.11.1
D8 × C2 2 Proposition 4.12.2

Table 1.1: The E(2)-exponents of the groups of order ≤ 16.

For specific 2-Sylow subgroups of order ≤ 16 it is possible to improve the
previous theorem by using the upper bound on the relevant exponent.

The upper bounds in Table 1.1 have been obtained by either using the projec-
tive bundle theorem as in [MNN15, Ex. 5.18] or by using Euler classes and group
cohomology computation with (1.2) as in [MNN15, Ex. 5.22]. We also refer to
Proposition 3.3.3 for the former and Corollary 3.2.10 for the latter method.

The lower bounds on the exponents have been obtained from the compu-
tations of group cohomology with (1.2). These then serve a threefold purpose:
firstly, they illustrate the computational power of the F -homotopy limit spectral
sequence, secondly they give us lower bounds on E(2)-exponents, and lastly they
can give us upper bounds on exponents. Not all our computations of group co-
homology with (1.2) are done with the family E(2), sometimes we chose a family
which was strictly larger, if it lead us to a more manageable computation.

The structure of this thesis is as follows. In Chapter 2 we collect some
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results from [MNN15] about the F -homotopy limit spectral sequence and F -
exponents. Some lemmas that can aid in the computation of exponents will be
proven in Chapter 3. In Chapter 4, which is the main chapter, we determine
upper and lower bounds on expE(2)

HF2 for various small 2-groups, and use the
F -homotopy limit spectral sequence to compute group cohomology.

In Chapter 5, which is mostly unrelated to the previous chapters, we con-
sider complex equivariant K-theory KU , which also admits F -homotopy limit
spectral sequences, but one needs to replace the family E(2) by the family C to
get a horizontal vanishing line on a finite page ([MNN15, Prop. 5.6]). We prove
lower bounds on expC KU for E-equivariant K theory, where E is an elemen-
tary abelian 2-group. For primes p 6= 2 we conjecture a lower bound, which we
verify for several small cases using Sage in Appendix A.
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1.3 Notations and conventions
Throughout, G will denote a finite group.

Let G be a finite group, and g1, . . . , gn ∈ G such that g1, . . . , gn ∈ Gab are
a basis for Gab ⊗ Fp as an Fp-vector space. We then denote the cohomology
classes in H1(BG; Fp) dual to gi ∈ Gab by δgi

.
For G a finite group, we denote by SG the ∞-category obtained from the

simplicial model category of topological G-spaces with the level model structure.
We denote by SpG the ∞-category obtained from the symmetric monoidal sim-
plicial model category of orthogonal G-spectra with the positive stable model
structure (see [MM02, Def. 5.2]).

The cyclic group of order n we denote by Cn.



Chapter 2

The F -homotopy limit
spectral sequence

2.1 Introduction
In this chapter we recall the F -homotopy limit spectral sequence as constructed
in [MNN15], as well as some of the properties of this spectral sequence. For
details of the constructions and for proofs of the statements, we refer to [MNN15]
and [MNN17].

This chapter is organized as follows. We first recall the notion of a family
of subgroups and the orbit category, which we will then use to state the F -
homotopy limit spectral sequence. One of its key properties is the fact that it
has a horizontal vanishing line at a finite page. The height of this vanishing
line and the page on which it appears can be bounded by the F -exponent,
which we then describe next. Finally we show that for specific families F ,
the F -homotopy spectral sequence (for X = pt) is isomorphic to a Lyndon-
Hochschild-Serre spectral sequence in group cohomology.

2.2 Families of subgroups
The F -homotopy limit spectral sequence depends on a family of subgroups F .
We recall this notion and describe some examples that will feature in this thesis.

2.2.1 Definition A family F of subgroups ofG is a non-empty set of subgroups
closed under taking subgroups and conjugation.

2.2.2 Examples The following are examples:

1. The elementary abelian p-subgroups (groups isomorphic to C×np ) with p a
prime. This family is denoted E(p).

2. The family C of cyclic subgroups.

3. The family A of abelian subgroups.

4. The family A `` of all subgroups.

5
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5. For a family F of subgroups of G, and N any normal subgroup of G, let
FN be the subset of groups in F contained in N . Then FN is a family of
subgroups of N , and also of G.

2.3 Orbit categories
The F -homotopy limit spectral sequence has an E2-term the derived limit out
of the opposite of a subcategory of the orbit category, of which we now recall
the definition.

2.3.1 Definition For G a finite group, the orbit category O(G) is the subcat-
egory of the category of G-sets spanned by the transitive G-sets G/H, where H
ranges over the subgroups of G. For F a family of subgroups of G, the category
O(G)F is defined to be the full subcategory of O(G) spanned by the orbits G/H
with the H ranging over the subgroups in F .

2.4 The F -homotopy limit spectral sequence
We now state the spectral sequence which is the main object of study of this
thesis. We will use the following notation.

2.4.1 Notation We denote by H∗G(X; F2) the mod-2 Borel equivariant co-
homology of a G-space X, which is by definition the ordinary cohomology
H∗(X ×G EG; F2) of the homotopy orbits of X. The G-spectrum representing
this cohomology theory we denote by HF2G, or by HF2 if the group is clear
from the context.

2.4.2 Theorem ([MNN15, Def. 2.23, Thm. 2.25, Cor. 3.6, Prop. 5.16])
Let G be a finite group, let X be a G-spectrum, and let F be family of subgroups
containing E(2). Then there is a spectral sequence, called the F -homotopy limit
spectral sequence, given by

Es,t2 (X) = lims

G/H∈O(G)op
F

Ht
H(X; F2)⇒ Hs+t

G (X; F2).

This spectral sequence converges strongly to its target. Moreover, it collapses
at a finite page with a horizontal vanishing line: there are N, l ≥ 1 such that
Es,∗N+1(X) = 0 for all s ≥ l.

In Chapter 4, we will illustrate the computational use of the F -homotopy limit
spectral sequence by using it when X = pt, is a point, to compute the cohomol-
ogy of all 2-groups up to order 16.

2.4.3 Remark We abbreviate Es,t2 = Es,t2 (pt) for the F -homotopy limit spec-
tral sequence for X = pt.

The F -homotopy limit spectral sequence can be constructed for any gener-
alized equivariant cohomology theory E ([MNN15, Def. 2.23]). The case con-
sidered in Theorem 2.4.2 is E = HF2G. For different choices of E a statement
about a vanishing line analogous to the one in Theorem 2.4.2 also holds, but
one needs to change the family E(2) to the derived defect base of E ([MNN15,
remark after def. 1.3, Thm. 2.25]). We refer to [MNN15] for the details.
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The vanishing line mentioned in Theorem 2.4.2 and the page on which it
appears turn out to have an upper bound uniform in the spectrum X. To
describe it, we introduce the notion of F -nilpotence in the next section.

2.5 F -nilpotence
We recall the notion of F -nilpotence from [MNN15], for which we first need to
recall the following space.

2.5.1 Definition Let F be a family of subgroups of G. Then the universal
F -space EF is the G-space given by the homotopy colimit

EF = hocolim
O(G)

G/H.

The space EF is, up toG-equivalence, characterized by ([LMSM86, Def. II.2.10])

EFH '

{
∅ if H 6∈ F ,
pt if H ∈ F .

Using the space EF , we can give one of the equivalent definitions of F -
nilpotence.

2.5.2 Definition (cf. [MNN15, Def. 1.3]) Let M be a G-spectrum. Then
M is said to be F -nilpotent if there is an n such that M is a retract of
F (skn−1EF+,M). The minimal n ≥ 0 for which this holds is called the F -
exponent of M , and denoted expF M .

Being F -nilpotent is a strong conditiont, it implies for example the following.

2.5.3 Proposition ([MNN15, Prop. 2.8]) Let M be F -nilpotent. Then M
is F -complete and F -colocal, that is, the F -completion mapM →M(EF+,M)
and the colocalization map M ∧ EF+ →M are weak equivalences.

The primary case of interested for us is M = HF2G.

2.5.4 Proposition ([MNN15, Prop. 5.16]) For G any group, the
G-spectrum HF2G is E(2)-nilpotent.

2.5.5 Remark In fact, [MNN15, Prop. 5.16] shows that E(2) is the minimal
family F such that HF2G is F -nilpotent. In the terminology of [MNN15] we
have that E(2) is the derived defect base of HF2G.

A trivial example is the following.

2.5.6 Proposition Every G-spectrum M is A ``-nilpotent with expA ``M ≤ 1,
and expA ``M = 0 if and only if M is contractible.

Proof We have EA `` ' pt, and every spectrum M is a retract of F (S,M) '
M .

A spectrumM has A ``-exponent 0 if and only if it is a retract of F (pt,M) '
pt, which happens if and only if M is contractible. �
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The following two propositions are immediate with some alternative definitions
of F -nilpotence, but not with the one we have given.

2.5.7 Proposition ([MNN17, Prop. 6.39]) A G-spectrumM is F -nilpotent
and G -nilpotent if and only if M is F ∩ G -nilpotent.

2.5.8 Proposition ([MNN15, Def. 1.3]) If M is F -nilpotent and G ⊃ F ,
then M is G -nilpotent.

Combining Proposition 2.5.6, Proposition 2.5.7 and Proposition 2.5.8 shows that
every G-spectrum M has a minimal family F such that M is F -nilpotent (cf.
the remark after [MNN15, Def. 1.3]).

2.5.9 Definition ([MNN15, remark after Def. 1.3]) This minimal family
F such that a G-spectrumM is F -nilpotent is called the derived defect base
of M .

The following is the main case of interest for us.

2.5.10 Proposition ([MNN15, Prop. 5.16]) For G any finite group, the de-
rived defect base of HF2G is E(2).

We can now state the uniform upper bound in the height of the horizontal
vanishing of the F -homotopy limit spectral sequence and the page on which it
appears.

2.5.11 Proposition ([MNN15, Prop. 2.26, Rem. 2.27]) Let G be a finite
group, and F ⊃ E(2) a family of subgroups, M an F -nilpotent G-spectrum.
Then the following integers equal:

(1) The F -exponent of M .

(2) The minimal N such that for all G-spectra X, the F -homotopy limit spectral
sequence E∗,∗∗ (X) admits a vanishing line of height N on the N + 1-page:
Es,∗N+1 = Es,∗∞ = 0 for all s ≥ N .

(3) The minimal n such that the canonical map
F (EF+,M) 'M → F (skn−1EF+,M) admits a section.

(4) The minimal n′ such that there is an (n − 1)-dimensional CW-complex X
with isotropy in F such that M is a retract of F (X+,M).

(5) The minimal m such that the canonical map skm−1EF ∧M →M admits
a retraction.

(6) The minimal m′ such that there is an (m′−1)-dimensional CW-complex X
with isotropy in F such that M is a retract of X+ ∧M .

Moreover, if M ′ is any G-spectrum, then the existence of an integer for M ′ as
in any one of the items from (2) to (6) implies that M ′ is F -nilpotent.

An immediate consequence is that exponents are invariant under suspension:

2.5.12 Corollary Let M be a G-spectrum, F a family and s an integer. Then
M is F -nilpotent with F -exponent n if and only if ΣsM is F -nilpotent with
F -exponent n.
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Proof This follows from suspending the retraction sequences from Proposi-
tion 2.5.11 (5). �

We end this section by recalling from [MNN15] some properties of exponents
that will be used in the next chapter to prove lemmas about exponents.

2.5.13 Proposition Let H ∈ F . Then G/H+ is F -nilpotent with expF G/H+ =
1.

Proof Because F (G/H+, G/H+) ' G/H+ ∧ G/H+ by self duality of G-sets
in SpG ([LMSM86, Cor. 6.3]), the result follows the suspending the following
composite of G-spaces, which is the composite of the diagonal followed by the
projection

G/H → G/H ×G/H → G/H

to get a retraction
�

G/H+ → G/H+ ∧G/H+ → G/H+

2.5.14 Proposition ([MNN17, Cor. 4.15]) If M is an F -nilpotent spec-
trum and X is any G-spectrum, then F (X,M) is F -nilpotent with
expF F (X,M) ≤ expF M .

2.5.15 Proposition If N is an F -nilpotent G-spectrum and M is any G-
spectrum then M ∧N is F -nilpotent with expF M ∧N ≤ expF N = n.

Proof Because N is F -nilpotent there is, by Proposition 2.5.11 (6), an (n−1)-
dimensional CW-complex with isotropy in F and a retraction

N → X+ ∧N → N,

Smashing this with M gives a retraction

M ∧N → X+ ∧M ∧N →M ∧N,

and another application of Proposition 2.5.11 (6) gives the result. �

2.5.16 Proposition ([MNN17, Prop. 4.9]) 1. If M is a retract of an F -
nilpotent spectrum N , then M is F -nilpotent and expF M ≤ expF N .

2. If M ′ and M ′′ are F -nilpotent and M ′ → M → M ′′ is a cofiber sequence
then M is F -nilpotent and expF M ≤ expF M ′ + expF M ′′.

2.5.17 Proposition Let Mα be a set of F -nilpotent spectra with F -exponents
bounded uniformly by n. Then

∨
αMα is F -nilpotent with F -exponent ≤ n.

Proof By Proposition 2.5.11 (5) there are retractions

Mα → skn−1EF+ ∧Mα →Mα.
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Wedge them together and use that smashing commutes with arbitrary colimits
to obtain a retraction∨

α

Mα → skn−1EF+ ∧
∨
α

Mα →
∨
α

Mα

and apply Proposition 2.5.11 (5) again. �

2.5.18 Proposition Let X be an (n − 1)-dimensional G-CW-complex with
isotropy in F . Then X+ is F -nilpotent and expF X+ ≤ n.

Proof By induction on n. For n = 1, X is of the form

∨
H∈F

G/H ∧
∨

α

S0


 ,

which is F -nilpotent of exponent 1 by Proposition 2.5.15, Proposition 2.5.17
and Proposition 2.5.13.

Assume we have the result for n − 1, and let X be an n-dimensional CW-
complex. Let X(n−1) be the (n − 1)-skeleton of X. Then X sits in a cofiber
sequence

X(n−1) → X →
∨
H∈F

G/H ∧
∨

α

Sn


 .

Now expF X(n−1) ≤ n by induction, and the right hand side has F -exponent
≤ 1 by Proposition 2.5.15, Proposition 2.5.17 and Proposition 2.5.13. �

2.5.19 Proposition Let X be a finite G-CW complex with isotropy in F .
Then the equivariant Spanier-Whitehead dual D(X+) of X+ is F -nilpotent, and
expF D(X+) = expF X+.

Proof Write n = expF X+. Let Y+ be an (n − 1) finite-dimensional G-CW
complex with isotropy in F such that there is a retraction

X+ → F (Y+, X+) ' D(Y+) ∧X+ → X+.

Applying D(−) to this retraction exhibits D(X+) as a retraction of Y+∧D(X+),
which has exponent ≤ n by Proposition 2.5.19 and Proposition 2.5.15. Therefore
expF D(X+) ≤ expF X+, and replacing X+ by D(X+) in this inequality shows
equality. �

2.6 Comparison with the Lyndon-Hochschild-Serre
spectral sequence

Let N be a normal subgroup of G, and let A ``N be the family of subgroups of
N . We then have the following identificaiton of spectral sequences.
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2.6.1 Proposition ([MNN15, Lem. A.3]) The A ``N -homotopy limit spec-
tral sequence

lims

O(G)op
A ``N

Ht(BH; F2)⇒ Hs+t(BG; F2)

is isomorphic to the Lyndon-Hochschild-Serre spectral sequence

Hs(BG/N ;Ht(BN ; F2))⇒ Hs+t(BG; F2).

We will make use of this identification in all our computations. In some cases
we extend the family E(2) to a family which is of the form A ``N , but this is not
always possible because there is not always a proper normal subgroup containing
all the elementary abelian subgroups.

2.7 A decomposition of the E2-page.
In Section 2.6, we saw that the F -homotopy limit spectral sequence reduces to
the LHSSS in case the family F is of the form F = A ``N , for some normal
subgroup N of G. In case the family F is not of this form, we will compute
the E2-term of the F -homotopy limit spectral sequence following the strategy
of [MNN15, App. B]. In this section we describe this strategy in the abstract.

2.7.1 Homotopy cofinality
To compute the ordinary categorical limit of a diagram I → C indexed by a cat-
egory I, one can restrict along a left cofinal functor I ′ → I. The corresponding
notion for homotopy limits is homotopy left finality, which can be characterized
as follows for homotopy limits indexed by ordinary categories. We have taken
the dual of the cited Proposition. We denote by N(−) the nerve of an ordinary
category.
2.7.1 Proposition ([Lur09, Prop. 4.1.1.8]) Let ι : I ′ → I be a functor of
ordinary categories. The following are equivalent.
(1) The functor ι is homotopy left cofinal.

(2) For C any ∞-category and I → C any diagram, the induced map of homo-
topy limits by ι is a weak equivalence. That is, taking right Kan extensions
of

N(I) C

pt

and of

N(I ′) C

pt
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yields parallel dashed arrows

N(I ′) N(I) C

pt

with a natural transformation between them. This natural transformation
is an equivalence.

2.7.2 Homotopy cofinality in orbit categories.
Let F be a family of subgroups of G, and let {Hi} be the maximal subgroups
in F . Assume there is a subgroup K of G such that K equals any intersection
of at least two of the Hi: ⋂

i∈I
Hi = K,

for all I with |I| ≥ 2. In particular, the set {Hi} ∪ {K} is closed under inter-
sections. Because the set {Hi} is closed under conjugations, so is {Hi} ∪ {K}.
Denote by Of the subcategory of O(G)F spanned by the G/J with J in the set
{Hi} ∪ {K}. Now [MNN17, Prop. 6.31] implies the following:

2.7.2 Proposition The subcategory Oop
f → O(G)op

F is homotopy left cofinal.

The construction of the homotopy limit spectral sequence by Bousfield-Kan
([BK72, Ch. XI]), applied to the diagram

O(G)op
F → Sp,

G/H+ 7→ F (G/H+, HF2)G,

yields the F -homotopy limit spectral sequence ([MNN15, Prop. 2.24]).

2.7.3 Proposition The inclusion functor ι : Of → O(G)F induces a morphism
of homotopy limit spectral sequences which is an isomorphism from E2 onward.

Proof The functor ι induces a map of the cosimplicial spectra used in the
construction of the homotopy limit spectral sequence, hence a map of homotopy
limit spectral sequences. This map is an isomorphism on E2 by the identification
of E2 in [BK72, §7.1]. �

In our computations with the F -homotopy limit spectral sequence we will make
use of the previous two propositions by restricting to homotopy left cofinal
subcategories of the orbit category when computing the E2-page of the F -
homotopy limit spectral sequence.

2.7.3 A short exact sequence of coefficient systems
We assume in addition that all the Hi and the K are normal subgroups of G.

Let Z be the constant Z-coefficient system on O(G)F . For a subgroup H
of G, we denote by Z[H] the coefficient system obtained from restricting Z to
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O(G)A ``H
and left Kan extending back up to O(G)F . Summing the counit

maps Z[Hi]→ Z yields a short exact sequence of coefficient systems

(2.1) 0→
⊕
|I|−1

Z[K] j−→
⊕
i∈I

Z[Hi]→ Z→ 0

where the map j is given by the matrix

(2.2)



1 0 · · ·
. . .

−1 1 0
. . .

0 −1 1
. . .

... 0 −1
. . .

...
... 0

. . . 0
...

. . . 1

. . . −1


with |I| rows and |I| − 1 columns.

2.7.4 Lemma The short exact sequence (2.1) lifts to a cofiber sequence of spec-
tra

(2.3)
∨
|I|−1

EA ``K+ →
∨
i∈I

EA ``Hi + → EF+.

Proof The diagram of categories

(2.4)

O(G)A ``K
O(G)A ``Hi

O(G)A ``Hi+1

assemble together to a coequalizer diagram

(2.5)
∐
|I|−1 O(G)A ``K

∐
i∈I O(G)A ``Hi

O(G)F

with coequalizer the category O(G)F . For any family G , denote by ιG : O(G)G →
SG the inclusion into G-spaces. Then EG ' hocolimO(G)G

ιG ([MNN15, p. 10]).
Applying this to (2.5) and the fact that homotopy colimits commute with co-
products yields a cofiber sequence of G-spaces

(2.6)
∨
|I|−1

EA ``K →
∨
i∈I

EA ``Hi
→ EF ,

and, after taking suspension spectra, a cofiber sequence of G-spectra. After
applying H∗(−; Z) to this cofiber sequence of G-spectra, we get a long exact
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sequence that reduces to a short exact sequence because all the homology is
concentrated in degree 0. The left hand map is given by the matrix (2.1) but
with all −1 entries replaced by 1. The bottom entry in every column comes
from the vertical maps in the (2.4), the top entry in every column entries comes
from the horizontal mamps in the (2.4), for all i. To change the bottom entries
into −1, which is necessary to make a lift of (2.1), we do the following: since
suspension preserves homotopy colimits, we can replace at the level of G-spectra
the vertical maps by the vertical maps smashed with S −1−−→ S, which preserves
cofibrations. We then get a strict map of homotopy colimit diagrams on ob-
jects given by either identity maps or the identity smashed with S −1−−→ S, and
therefore an equivalence of the homotopy colimits. We now have that
(2.7)

0→
⊕
|I|−1

H0(EA ``(−); Z)→
⊕
i∈I

H0(EA ``
(−)
Hi

; Z)→ H0(EF (−); Z)→ 0.

coincides with (2.1) on the level of objects and the left map. For any family
G we have Z[G ](−) = H0(EG (−); Z) ([MNN15, sec. 3]), so the objects of the
short exact sequences (2.1) and (2.7) are equal. By construction, the left maps
of (2.1) and (2.7) are equal. The right hand maps possibly differ up to a sign,
but postcomposing with the weak equivalence EF+

−1−−→ EF+ makes sure that
the right hand maps are equal on the level of H0(−). �

For a normal subgroup H of G, we denote by E∗,∗∗ (H) the LHSSS associated
to the group extension H → G → G/H. By Proposition 2.6.1, the A ``H -
homotopy limit spectral sequence is isomorphic to E∗,∗∗ (H). The F -homotopy
limit spectral sequence we denote by E∗,∗∗ .

2.7.5 Lemma Mapping (2.3) into HF2 and taking Atiyah-Hirzebruch spectral
sequences yields a long exact sequence of spectral sequences, which on the rows
Es,∗2 of the E2-pages is given by

· · · ⊕
|I|−1 E

2,∗
2 (K)

⊕
i∈I E

2,∗
2 (Hi) E2,∗

2

⊕
|I|−1 E

1,∗
2 (K)

⊕
i∈I E

1,∗
2 (Hi) E1,∗

2

⊕
|I|−1 E

0,∗
2 (K)

⊕0,∗
i∈I E

0,∗
2 (Hi) E0,∗

2 0

j2

∂1

j1

∂0

j0

Figure 2.1: A long exact sequence of rows Es,∗2 of E2-pages.

where we have written js for the map in degree s in (2.1) induced by j, and
∂s for the degree s-boundary morphism in (2.1). The maps js are given by the
transpose of the matrix (2.2). Summing the columns in (2.1) gives the long
exact sequence of spectral sequences.

Proof We use the following standard construction of the AHSS: take a Post-
nikov tower on HF2, and take homotopy fibers at each stage (i.e. the Postnikov
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sections of HF2). Apply F (W,−) to this Postnikov tower for W the three
objects in the cofiber sequence (2.3). Taking homotopy groups gives three ex-
act couples, with associated spectral sequences the AHSS’s H∗(W ;π(−)

∗ HF2).
Moreover, since the objects W sit in a cofiber sequence, we get a long exact
sequence of exact couples, whence of spectral sequences. The identification of
the AHSS’s with F -homotopy limit spectral sequence from the E2-page onward
is [MNN15, Prop. 2.24]), the identification of A ``K- and A ``Hi

-homtopy limit
spectral sequences with LHSSS’s is Proposition 2.6.1.

The identification of the maps js follows from the identifcations

Hs(EG ;π(−)
∗ HF2) ∼= Exts,tZO(G)(Z[G ], π(−)

∗ HF2)

from [MNN15, Cor. 3.6], for every family G , and the fact that (2.6) lifts (2.1).�

We write

A∗ = Im ∂∗−1 = coker j∗−1,

B∗ = coker ∂∗−1 = ker j∗,(2.8)

(where we have suppressed t-degrees) and obtain the following proposition:

2.7.6 Proposition The E2-page of the homotopy limit spectral sequence fits in
a short exact sequence

(2.9) 0→ A∗ → E∗2 → B∗ → 0

of spectral sequences (where we suppressed t-degrees). This short exact sequence
splits as a short exact sequence of bigraded F2-modules.

Proof The short exact sequence is obtained from summing (2.8) over the s = ∗-
degree. Any short exact sequence splits as F2-modules, and necessarily preserves
the bigrading because the maps in the short exact sequence preserve the bigrad-
ing. �



Chapter 3

Exponent lemmas

3.1 Introduction
We discuss some lemmas that will be of use in determining (bounds on) expo-
nents. Some of these statements appear as exercises in [MNN17, sec. 4].

3.2 Lemmas for F -exponents
We now give various lemmas which describe how F -exponents can change as
the family F varies.

3.2.1 Lemma Let F1, F2 be two families of subgroups. Then E(F1∩F2)+ '
EF1+ ∧ EF2+ .

Proof This follows from comparing fixed points. �

3.2.2 Notation For F a family of subgroups of G, and H a normal subgroup
of G, denote by FH the subgroups of F that are contained in H. If F is a
family that make sense for all groups G, such as the family of all subgroups,
the family of elementary abelian p-groups, etc., we write F (G) for this family
of subgroups of G. For instance, we write E(2)(D8) for the elementary abelian
subgroups of the dihedral group of order 8.

3.2.3 Lemma If F is a family of subgroups of G, and H is a normal subgroup
of G, then ResGH EF ' EFH .

Proof This follows from comparing fixed points. �

3.2.4 Lemma Let M be an F -nilpotent G-spectrum, H ⊂ G a subgroup. Then
ResGHM is FH-nilpotent, and expFH

ResGHM ≤ expF M .

Proof This follows from [MNN17, Cor. 4.13] and Lemma 3.2.3. �

Recall that for a group G, we denote the spectrum representing Borel G-
equivariant Fp-cohomology by HFp

G
(Notation 2.4.1).

16
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3.2.5 Corollary Let G be a group and H ⊂ G a subgroup. Then

expE(p)(H)HFp
H
≤ expE(p)(G)HFp

G
.

3.2.6 Lemma Let F1, F2 be two families of subgroups, and let M be a G-
spectrum which is both F1- and F2-nilpotent, with exponents m, n respectively.
Then M is F1 ∩F2-nilpotent, and

expF1∩F2 M ≤ m+ n− 1.

Proof The fact that M is F1 ∩F2-nilpotent is part of [MNN17, Prop. 6.39].
The assumption on the exponents implies that both maps in

skm−1EF1+ ∧ skn−1EF2+ ∧M → skm−1EF1+ ∧ EF2+ ∧M
→ EF1+ ∧ EF2+ ∧M(3.1)

have a retraction, hence the composite has a retraction. The composite (3.1)
factors as

skm−1EF1+ ∧ skn−1EF2+ EF1+ ∧ EF2+ ∧M

skm+n−2

(
EF1+ ∧ EF2+

)
∧M

(∗)

(∗∗)
(∗∗∗)

.

Composing the retraction of (∗) with (∗∗) gives a retraction of (∗ ∗ ∗). Since
EF1+ ∧EF2+ ' E(F1∩F2)+ by Lemma 3.2.1, the desired bound follows from
Proposition 2.5.11 (5). �

3.2.7 Notation For a G-space X, we denote by I (X) the minimal family
containing the isotropy groups of X.

3.2.8 Example For an orthogonal G-representation V , the unit sphere S(V )
in V inherits a G-action. Then I (S(V )) the smallest family containing the
isotropy groups of S(V ).

3.2.9 Lemma (cf. Proof of [MNN15, Thm. 2.3]) Let R be a ring G-spectrum
with multiplicative Thom classes (see [MNN15, Def. 5.1]). Let V be a G-
representation with corresponding oriented Euler class

(χ(V ) : S−|V | → R) ∈ R∗

Suppose χ(V ) is nilpotent with χ(V )n = 0. Then R is I (S(V ))-nilpotent and

expI (V )R ≤ ndimR V.

Proof The fact that χ(V )n = 0 is equivalent to the oriented Euler class

R
enV−−→ SnV ∧R
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being nullhomotopic (see [MNN15, Lem. 5.3] and [MNN15, Rem. 2.4]). Hence
the left map in the fiber sequence

S(nV )+ ∧R→ R→ SnV ∧R

has a section: R is a retract of S(nV )+ ∧ R. But S(nV ) is a (ndimR V −
1)-dimensional G-CW complex, hence by Proposition 2.5.19, expF S(nV )+ ≤
ndimR V , and hence the same bound holds for R by Proposition 2.5.16. �

3.2.10 Corollary Let V be a d-dimensional G-representation with correspond-
ing oriented Euler class (see [MNN15, Def. 5.1])

(χ(V ) : S−d → HF2) ∈ H |V |(BG; F2).

Suppose χ(V ) is nilpotent with χ(V )n = 0. Then HF2 is I (S(V ))-nilpotent
with expI (V )HF2 ≤ nd.

3.2.11 Lemma Let f : G→ C2 ∼= O(1) be a 1-dimensional real representation
with oriented Euler class e ∈ H1(BG; F2). Suppose e is nilpotent with n the
minimal integer ≥ 0 such that en = 0. Then HF2 is nilpotent for the family
A ``ker f of subgroups of ker f with expA ``ker f

HF2 = n.

Proof The upper bound for the exponent follows immediately from Corol-
lary 3.2.10.

For the lower bound on the exponent, denote a class representing e on the
E∞-page of the A ``ker f -limit spectral sequence converging to H∗(BG; F2) by
ẽ. Since e restricts to 0 on ker f , hence on all subgroups in A ``ker f , we know
that ẽ lives in filtration degree ≥ 1 on E∞. By assumption, en−1 6= 0. This does
not imply ẽn−1 6= 0, however, if ẽn−1 = 0, then there must be a class above it
in higher filtration which detects en−1 on E∞, since en−1 6= 0. We see that on
E∞ there are elements in filtration degree ≥ n− 1, hence expA ``ker f

R ≥ n. �

3.2.12 Lemma For a G-space X, H ⊂ G a subgroup, the composite of maps
of Borel cohomology rings

H∗G(X; Fp)
ResG

H−−−→ H∗H(X; Fp)
IndG

H−−−→ H∗G(X; Fp)

is multiplication by [G : H].

Proof This follows from [Bor60, Prop. III.2.4] (note that the induction mor-
phism also goes by the name of transfer morphism in this context, and that
the morphism constructed in the proof of [Bor60, Prop. III.2.4] is the transfer
morphism).

The result also follows by considering directly what happens on the cochain
level. �

3.2.13 Corollary Let G be a group and P ⊂ G a p-Sylow. Then the maps of
G-spectra

(3.2) HFp
G
→ G/P+ ∧HFp

G
→ HFp

G

representing the natural transformations ResGP and IndGP exhibit HFp
G

as a
retract of G/P+ ∧HFp

G
.
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Proof We need to show that for all subgroups G′ ⊂ G, applying πG′∗ to (3.2)
yields an isomorphism. This composite is given precisely by Lemma 3.2.12 for
X = G/G′ andH = P . But multiplication by [G : P ] is an isomorphism because
p - [G : P ], whence [G : P ] ∈ F×p . �

3.2.14 Lemma Let G be a group, P a p-Sylow subgroup of G. Then

expE(p)(G)HFp
G

= expE(p)(P )HFp
P
.

Proof First,

ResGP HFp
G

= HFp
P
,(3.3)

ResGP EE(p)(G) = EE(p)(P ).(3.4)

Hence by Corollary 3.2.5 (cf. [MNN17, Cor. 4.13]),

expE(p)(P )HFp
P
≤ expE(p)(G)HFp

G
.

For the upper bound, write n = expE(p)(P )HFp
P
. We then have that

(3.5) skn−1EE(p)(P ) ∧HFp
P
→ HFp

P

admits a section. Note that for every X ∈ SpG, we have IndGH ResGH X =
G/H+ ∧X. Furthermore we have that, if we use the model for EE(p)(P ) from
(3.4),

skn−1EE(p)(P ) = ResGP skn−1EE(p)(G),

Applying this, the fact that ResGP is monoidal, and (3.3) to (3.5) yields a section
of

G/P+ ∧ skn−1EE(p)(G) ∧HFp
G
→ G/P+ ∧HFp

G
.

Hence

expE(p)(G)G/P+ ∧HFp
G
≤ n.

Applying Corollary 3.2.13 and Proposition 2.5.16 yields
�

expE(p)
HFp

G
≤ n.

3.2.15 Lemma Let F and G be families of subgroups, and let M be both
F - and G -nilpotent. Then for every K ∈ F , ResGKM is GK-nilpotent by
Lemma 3.2.4. Write n = expF M , mK = expGK

ResGKM for all K ∈ F ,
and m = maxK mK . Then

expG M ≤ mn.
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Proof The GK-nilpotence of ResGKM implies that, for all K ∈ F ,

skmK−1EGK ∧ ResGKM → ResGKM

admits a section. By inducing up to G, we see that expG (G/K+ ∧M) ≤ mK .
By taking the coproduct over all K ∈ F , we get that expG sk0EF ∧M ≤ m.
We now argue by induction that

(3.6) expG skd−1EF ∧M ≤ md,

for all d ≥ 1, of which the base case d = 1 we have just established.
Hence assume (3.6) has been established for some d ≥ 1, and consider the

cofiber sequence

skd−1EF ∧M → skdEF ∧M →
∨

(Sd ∧G/K+) ∧M

that ends in a wedge of spheres with isotropy in F smashed with M . By
induction, the G -exponent of the left term is ≤ md, and the G -exponent of the
right hand side is ≤ m because we already saw that expG (G/K+ ∧M) ≤ m for
all K ∈ F . Hence by [MNN17, Prop. 4.9.2] the G -exponent of the middle term
is ≤ m(d+ 1), which completes the induction.

We have by F -nilpotency ofM thatM is a retract of skn−1EF ∧M , hence
taking d = n in (3.6) yields the result. �

3.3 From representations to exponents via the
projective bundle theorem

In [MNN15, Ex. 5.16] an upper bound on the E(2)-exponent of HF2Q8
is de-

termined using the projective bundle theorem. We will also repeatedly use this
technique to give upper bounds on the F -exponent of HF2G for various 2-
groups G and families F ⊃ E(2). Therefore in this section we will describe this
argument in some detail. We will need the following classical notion:
3.3.1 Definition Let V be a real or complex vector space. Then the projecti-
vation P(V ) of V is the space of all lines in V .
3.3.2 Remark Note that if V comes equipped with a linear G-action (i.e., is
a G-representation), then P(V ) inherits a natural G-action.

The goal of this section is to prove:
3.3.3 Proposition Let G be a finite group, n ≥ 0 a natural number and suppose
G has a real n-dimensional representation V such that the projectivation P(V )
has isotropy groups contained in some family F . That is, for every real line L ⊂
V we assume that the isotropy group GL ≤ G of elements of G fixing L satisfies
GL ∈ F . Then HF2 is F -nilpotent and the exponent satisfies expF HF2 ≤ n.

3.3.4 Proposition Let G be a finite group, n ≥ 0 a natural number and sup-
pose G has a complex n-dimensional representation V such that the projectiva-
tion P(V ) has isotropy groups contained in some family F . That is, for every
complex line L ⊂ V , we assume that the isotropy group GL ≤ G of elements
of G fixing L satisfies GL ∈ F . Then HZ is F -nilpotent, and the exponent
satisfies expF HZ ≤ 2n− 1.
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3.3.1 The projective bundle theorem
To prove Proposition 3.3.3, we will use the projective bundle theorem, which can
be used to develop the theory of Stiefel-Whitney classes and Chern classes. This
is carried out for instance in [Hus94, Ch. 17]. We will follow the treatment and
notation of [Hus94, §17.2], but only discussing what we need. For an overview of
all bundles and their relations that will appear we refer to diagram (3.7) below,
where the dashed arrows indicate pullbacks.

As in [Hus94, Ch. 17], we consider real and complex vector bundles at the
same time. For the case of real vector bundles, we write c = 1, we consider
cohomology with coefficients in Kc = Z/2, and we let F be the field R of real
numbers. For the case of complex vector bundles, we write c = 2, we consider
cohomology with coefficients in Kc = Z, and we let F be the field C of complex
numbers.

We will write E(η) resp. B(η) for the total, resp. base space, of a fiber (not
necessarily vector) bundle η. Let ξ : E p−→ B be an n-dimensional vector bundle.
Let E0 be the non-zero vectors in E. Let E′ be the quotient of E0 where we
identify non-zero vectors in the same line. This yields a factorization

E0 B

E′

q ,

and E′ q−→ B is a fibre bundle with fibre FPn−1, called the projectivation of ξ
and denoted P(ξ).

For every point b ∈ B in the base, the inclusion of the fibre Fn → p−1(b) ⊂ E
defines a natural inclusion jb : FPn−1 → q−1(b) ⊂ E(P (ξ)). Pulling back the
bundle ξ along q yields a bundle q∗(ξ) : E(q∗(ξ))→ E(P (ξ)), which admits the
canonical line bundle λξ as a subbundle, where a point in the total space E(λξ)
is a pair (L, x) where L and x lie over the same base point and x ∈ L.

3.3.5 Proposition (see, e.g., [Hus94, Prop. 17.2.]) Let

jb : FPn−1 → E(P (ξ))

be the inclusion of the fibre. Then j∗b (λξ) is isomorphic to the tautological line
bundle on FPn−1.

All the bundles that appear and their relations are as follows, with dashed
lines indicating pullbacks:

(3.7)

E(j∗b (λξ)) E(λξ)

E(q∗(ξ)) E

E0

FPn−1 E(P(ξ)) B

p

jb q
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Let f : E(P(ξ)) → FP∞ be a classifying map for the line bundle λξ, i.e.
f∗(γ) ∼= λξ, where γ is the tautological line bundle on FP∞. Let z ∈ Hc(FP∞;Kc)
be the polynomial generator, and let aξ = f∗(z). Since f is unique up to homo-
topy, aξ is well defined. We then have the following Theorem:

3.3.6 Theorem (Projective bundle theorem, see [Hus94, Thm. 17.2.5])
For an n-dimensional vector bundle ξ, the classes 1, aξ, . . . , an−1

ξ form a basis
of the free H∗(B(ξ);Kc)-module H∗(E(P(ξ));Kc). Moreover,

q∗ : H∗(B(ξ);Kc)→ H∗(E(P(ξ));Kc)

is a monomorphism.

3.3.2 Free R-modules
In this subsection we discuss some properties of free R-modules. The statements
and notions are not new, but collected here for convenience.

3.3.7 Definition Let R∗ be a graded ring, M∗ a graded a graded R∗-module.
We say thatM∗ is a free R∗-module if there are integers ni and an isomorphism
of R∗-modules

g :
⊕
i

ΣniR∗
∼=−→M∗.

Here we write (ΣN)∗ = N∗+1 for the suspension of graded abelian groups.

Likewise, we have:

3.3.8 Definition Let R be a (possibly equivariant) ring spectrum, and let M
be an R-module. Then M is a free R-module if there are integers ni and a
weak equivalence of R-modules

g :
∨
I

ΣniR
'−→M.

This weak equivalence is understood to be an equivariant weak equivalence in
the equivariant case.

A map f : R → T of homotopy ring spectra makes T into an R-module. The
next proposition says that one can check freeness of T as an R-module on the
level of homotopy groups. The next proposition considers the non-equivariant
case, the equivariant case is treated later.

3.3.9 Proposition Let f : R→ T be a map of non-equivariant homotopy ring
spectra. Then the following are equivalent:

(1) The map f makes T into a free R-module.

(2) The map π∗f makes π∗T into a free π∗R-module.

(3) There are integers ni and homotopy classes of maps αi : Sni → T such that
the the αi form a basis of π∗T as a π∗R-module.
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Proof (1)⇒ (2) This follows from applying π∗ to the equivalence
∨
i ΣniR ' T

of R-modules.
(2)⇒ (3) This follows from applying π∗f to the canonical basis of

⊕
i Σniπ∗R.

(3) ⇒ (1) The αi define an isomorphism⊕
i

π∗ΣniR→ π∗T.

The result follows by lifting this isomorphism to an equivalence of spectra, which
one can do as follows. For every i, the composite

R ∧ Sni
f∧αi−−−→ T ∧ T µT−−→ T

is a map of R-modules. Taking the coproduct over i yields a map of R-modules

∨
i

ΣniR→ T

which is the desired lift. �

Combining this Proposition with Theorem 3.3.6 yields the following Corollary:

3.3.10 Corollary Let the notation be as in Theorem 3.3.6, and let HF2 be
the Eilenberg-MacLane spectrum representing cohomology with F2-coefficients.
Then the map F (B(ξ)+, HF2) → F (E(P(ξ))+, HF2) induced by q makes the
mapping spectrum F (E(P(ξ))+, HF2) a free F (B(ξ)+, HF2)-module.

Proof According to Theorem 3.3.6, q∗ makes H∗(E(P(ξ)),F2) into a free
H∗(B(ξ),F2)-module, which precisely means that the map

π∗F (B(ξ)+, HF2)→ π∗F (E(P(ξ))+, HF2)

induced by q makes π∗F (E(P(ξ)+, HF2)) into a free π∗F (B(ξ)+, HF2)-module.
Applying Proposition 3.3.9 yields the desired result. �

3.3.11 Corollary Some suspension of the mapping spectrum F (B(ξ), HF2) is
a retract of the mapping spectrum F (E(P(ξ)), HF2).

Proof Every free R-module admits some suspension of R as a retract. �

Similarly, equivariantly we have

3.3.12 Proposition Let R → T be a map of homotopy G-ring spectra. Then
the following are equivalent:

(1) The map f makes T into a free equivariant R-module,

(2) There are homotopy classes of maps αi : Sni → T such that for every sub-
group H ≤ G, the canonical map

⊕
i π

H
∗ ΣniR → πH∗ T, x 7→ x · ResGH αi is

an isomorphism of πH∗ R-modules.
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Proof (1)⇒ (2) follows from moving the canonical basis of
⊕

i π
G
∗ ΣniR through

the equivalence of RG-modules
∨
i ΣniRG ' TG.

(2) ⇒ (1) follows from taking the coproduct over i of the composite

R ∧ Sni → T ∧ T → T

to get a map ∨
i

ΣniR→ T.

The assumption on the restrictions says precisely that this is an equivariant
equivalence. �

3.3.3 From representations to exponents
In the proof of Proposition 3.3.3, we will take the projectivation of the Borel
construction of a G-representation V . The proof will make use of the fact that
the projectivation and the Borel construction commute, which is the content of
the next lemma.
3.3.13 Lemma Let V be a real or complex G-representation, and let H be a
subgroup of G. Consider the Borel construction

V → V ×H EG→ BH.

Then the projectivation of the Borel construction equals the Borel construction
of the projectivation, that is,

P(V ×H EG) = P(V )×H EG.

Proof Write V0 for the non-zero vectors in V , write P for the product V ×
EG, an write P0 = V0 × EG. Then F ∗ acts on the left coordinate of P0 by
multiplication, and trivially on the right coordinate, and H acts coordinatewise
on P0. Moreover, these actions commute, by linearity of the action of G (hence
of H) on V . Therefore P0 has in fact an action of F ∗ × H. Dividing out
the action of F ∗ first and then dividing out the action of H gives the Borel
construction of the projectivation, dividing out the action of H first and then
the action of F ∗ gives the projectivation of the Borel construction. Both equal
the space obtained by dividing out F ∗ ×H, and they are therefore equal. �

We are now ready to prove Proposition 3.3.3 and Proposition 3.3.4.
Proof (of Proposition 3.3.3 and Proposition 3.3.4) Consider the Borel
construction on V for an arbitrary subgroup H ≤ G, and call the resulting
bundle ξH :

ξH : V → V ×H EG→ BH.

Note that this is natural with respect to inclusions of subgroups. The associated
projective bundle is

P(ξH) : P(V )→ P(V ×H EG)→ BH.
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Observe that P(V ×H EG) = P(V )×H EG by Lemma 3.3.13. Hence by Theo-
rem 3.3.6,

F ((P(V )×H EG)+, HKc) ∼= F (P(V )+, HKc)H

is a free F (BH,Kc) = HKc
H -module. Recall that the real dimension of V is cn.

A basis is given by the proof of [Hus94, Prop. 17.3.3], which shows that there
are classes 1, aξH

, . . . , an−1
ξH

that form a basis of πH∗ F (P(V ), HKc) as a πH∗ HKc-
module. Moreover, the element aξH

is natural with respect to restriction to
subgroups. It follows that all basis elements, being powers of aHξ , are natural
with respect to restriction to subgroups. In particular,

ResGH aξG
= aξH

for all H ≤ G. Hence by Proposition 3.3.12, F (P(V ), HKc) is a free HKc-
module. Hence a suspension of HKc is a retract of F (P(V ), HKc). Therefore
by [MNN17, Prop. 4.9] and Corollary 2.5.12,

expF HKc ≤ expF F (P(V ), HKc),

but V is cn-dimensional, therefore P(V ) admits the structure of an (cn − c)-
dimensional G-CW-complex ([Ill83, Cor. 7.2]) with isotropy (by assumption)
contained in F , therefore by [MNN15, Prop. 2.26] the exponent of the right
hand side is

≤ cn− c+ 1.

In the case of a real representation we have c = 1 and this equals n, in the case
of a complex representation we have c = 2 and this equals 2n− 1. �

3.4 A bound on the exponent for the family of
proper subgroups

Let G be a finite non-abelian 2-group of size 2k. The goal of this section is to
prove

expP HF2G ≤ 2b
√
|G| − kc − 1,

see Corollary 3.4.2 below. The argument is an adaption of the ones found in
[PY03, Lem. 4.3] and [Sym91].

3.4.1 Lemma Let G be a finite non-abelian p-group of size pk. Then G has an
irreducible complex representation V with dimC V ≥ 2, and moreover all such
V satisfy

dimC V ≤ b
√
|G| − 1c.

Proof Denote by n1, . . . , nh the C-dimensions of the irreducible C-representations
of G. We have

n2
1 + n2

2 + · · ·+ n2
h = |G|,
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(see, e.g., [Ser77, Cor. 2.4.2]). Since G is non-abelian, some ni ≥ 2 ([Ser77,
Thm. 3.1.9]. Assume without loss of generality that it is n1. Then

|G| = n2
1 + n2

2 + · · ·+ n2
h

≥ n2
1 + 1,

because there is also a trivial representation, hence

n1 ≤
√
|G| − 1.

Flooring this preserves the inequality and does not change the integer on the
left hand side. This yields the result. �

3.4.2 Corollary Let G be a finite non-abelian 2-group of size 2k, and let P be
the family of proper subgroups of G. Then

expP HF2G ≤ 2b
√
|G| − 1c − 1.

Proof Let V be an irreducible complex representation of G satisfying

2 ≤ dimC V ≤ b
√
|G| − 1c,

as furnished by Lemma 3.4.1. Then the complex projectivation P(V ) has
isotropy in P the family of proper subgroups of G, for if L ∈ P(V ) were fixed
by all of G, V would not be irreducible, since dimC V ≥ 2. An application of
Proposition 3.3.4 yields the result. �



Chapter 4

Mod-2 group cohomology
computations of 2-groups
using the F -homotopy limit
spectral sequence

4.1 Introduction
In this chapter we apply the F -homotopy limit spectral sequence to the case
X = pt, F ⊃ E(2) and G all finite 2-groups of order ≤ 16, to compute group
cohomology. For the indexing of the F -homotopy limit spectral sequence, we
use the following non-standard convention:

4.1.1 Convention For a 2-group G and family F ⊃ E(2), the F -homotopy
limit spectral sequence is given by

Es,t2 = lims

(−)∈O(G)op
F

Ht(B(−); F2)⇒ Hs+t(BG; F2).

We use Adams’ grading convention for displaying the spectral sequences, which
means that we put s+ t on the horizontal axis and s on the vertical axis. This
yields a spectral sequence drawn in the first quadrant, with dn going 1 over to
the right and n up.

The group cohomology rings that we study in this chapter are well known.
A classical technique for computing group cohomology is to use the Lyndon-
Hochschild-Serre spectral sequence, as was for example done by Quillen to com-
pute the group cohomology of the extra-special 2-groups ([Qui71b]). Rusin com-
puted the cohomology of 2-groups up to order 32 in [Rus89] using the Eilenberg-
Moore spectral sequence. Using large initial segments of projective resolutions,
and a completion criterion of Benson ([Ben04]), Carlson computed the group co-
homology of all 2-groups up to order 64 ([CTVEZ03]) using a computer. Green
and King improved these methods by deriving a variant of Benson’s completion
criterion that allows for earlier detection of completion ([GK11, Thm. 3.3]) and

27
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using this computed the cohomology of all 2-groups up to order 64 ([GK11] and
[GK15]).

The F -homotopy limit spectral sequence provides a fourth method for com-
puting group cohomology. The advantage of this spectral sequence is that, if one
takes F ⊃ E(2), there will be a horizontal vanishing line at a finite page. Hence
the computation is a finite one, and moreover the knowledge that a vanish-
ing line must eventually appear can also help determine differentials. However,
these two advantages come with a trade-off compared to using the Lyndon-
Hochschild-Serre or Eilenberg-Moore spectral sequence: compared to the latter
two, it is in general rather difficult to compute the E2-page of the F -homotopy
limit spectral sequence. Moreover, the product structure on the E2-page of the
F -homotopy limit spectral sequence is rather mysterious, which makes propa-
gating differentials difficult. But the trade-off is at least good enough to still
be able to compute the group cohomology of all the 2-groups up to order 16, at
least additively, as shown in this chapter.

4.2 The 2-groups of order at most 16
The classification of 2-groups up to order 16 has been long known (see, e.g.,
[Bur55, §118]). In this section we recall this classification, and provide forward
references to the bounds on the exponents of HF2G for all these groups.

Each classification subsection is preceded by one or two subsections defining
families of 2-groups needed in the classification.

4.2.1 Abelian 2-groups
For all finite abelian 2-groups A, we compute the E(2)-homotopy limit spectral
sequence converging to H∗(BA; F2) in Section 4.3. Additionally, we obtain the
following exponent:

Proposition (see Proposition 4.3.1) Let A be a finite abelian 2-group, and
let n be the minimal number of generators of the subgroup of 2-divisible elements
of A, i.e., of the image of the multiplication-by-2 map A ·2−→ A. (We consider
the trivial group to be generated by 0 elements.) Then

expE(2)
HF2A = n+ 1.

Because all 2-groups up to order 4 are abelian, Proposition 4.3.1 in particular
determines all the E(2)-exponents of all 2-groups up to order 4.

4.2.2 The dihedral groups

Denote byRθ =
(

cos θ − sin θ
sin θ cos θ

)
the rotation by θ-matrix, and by S =

(
1 0
0 −1

)
the reflection-in-the-x-axis matrix. Then R2π/2n−1 and S generate a subgroup
of order 2n of O(2), called the dihedral group of order 2n, and denoted D2n . It
is the automorphism group of the regular 2n−1-gon centered at the origin and
with two of its sides bisected by the x-axis.
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The map given by R2π/2n−1 7→ ρ and S 7→ σ gives an isomorphism of D2n

with the finitely presented group

〈σ, ρ |σ2 = ρ2n−1
= e, σρσ−1 = ρ−1〉.

4.2.3 The quaternion groups
The generalized quaternion group Q2n of order 2n is the finite subgroup of
quaternionic space H generated multiplicatively by the elements of unit length
{e2πi/2n−1

, j} (see, e.g., [CE56, XII.§7]). Denoting these generators by r and s,
respectively, one gets the presentation

Q2n = 〈r, s | r2n−2
= s2, rsr = s〉.

4.2.4 The groups of order 8
Now that we have defined the families of dihedral and quaternion groups, we
are able to state the classification of the groups of order 8.

4.2.1 Theorem (see, e.g., [Arm88, Thm. 13.3]) There are, up to isomor-
phism, exactly 5 groups of order 8. They are given by C×3

2 , C2 × C4, C8, D8
and Q8.

The E(2)-homotopy limit spectral sequence converging to H∗(BD8; F2) is com-
puted in Section 4.4, and expE(2)

HF2D2n
is determined.

The E(2)-homotopy limit spectral sequence converging to H∗(BQ2n ; F2) was
already computed for n = 3 in [MNN15, Ex. 5.18], as well as expE(2)

HF2Q2n

in that case. We give a straightforward generalization for both computations to
the case n > 3 in Section 4.5. In summary, the exponents of the groups of order
8 are then given by

G expE(2)
HF2G Reference

C×3
2 1 Proposition 4.3.1

C2 × C4 2 Proposition 4.3.1
C8 2 Proposition 4.3.1
D8 2 Proposition 4.4.1
Q8 4 [MNN15, Ex. 5.18]

Table 4.1: The E(2)-exponents for the groups of order 8.

4.2.5 The groups of order 16
We state the classification of groups of order 16, following the treatment in
[Wil05]. We first need to introduce some notation as used in [Wil05].

4.2.2 Notation Given groupsN andH and an homomorphism φ : H → Aut(N),

we denote the semidirect prodct of N by H with respect to φ by N
φ
oH.

In the special case H = C2, N = C8 = 〈x〉, the possible actions of C2 on
C8 are given by x 7→ xn with n odd, and for all such actions we denote the
induced semidirect product by C8

n
o C2. In particular, C8

1
o C2 ∼= C8 × C2 and
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C8
7
oC2 ∼= D16. These semidirect products for n = 3, 5 also have names: C8

3
oC2

is also known as the semidihedral group of order 16, denoted SD16. The group
C8

5
o C2 is also known as the modular group of order 16, denoted M16.

4.2.3 Notation If N andH are groups such that there is an up to isomorphism
unique non-trivial semi-direct product of N by H, we denote it by N oH.

4.2.4 Definition Let C4 = 〈x〉, and C2 = 〈y〉. Following [Wil05, Fact 4], we
denote by ψ5, ψ6 the elements of Aut(C4×C2) given by ψ5(x) = xy, ψ5(y) = y,
ψ6(x) = x3 and ψ6(y) = x2y.

We are now able to list all groups of order 16, and the bounds on the exponents
that we obtained.

4.2.5 Theorem The following table lists in its first column all groups of order
16, see, e.g., [Wil05, Thm. 2]. The second column either gives the E(2)-exponent
or an interval in which the exponent lies. The third column gives a forward
reference for the proof of the contents of the second column. The fourth column
gives a forward reference to the computation of an F -homotopy limit spectral
sequence with F ⊃ E(2) converging to the group cohomology of the first column.

G expE(2)
HF2G Reference holim SS

C×4
2 1 Proposition 4.3.1 Section 4.3

C×2
2 × C4 2 Proposition 4.3.1 Section 4.3
C4 × C4 3 Proposition 4.3.1 Section 4.3
C8 × C2 2 Proposition 4.3.1 Section 4.3

C16 2 Proposition 4.3.1 Section 4.3
D16 2 Proposition 4.4.1 Section 4.4
Q16 4 Proposition 4.5.4 Section 4.5

SD16 = C8
3
o C2 [3, 4] Proposition 4.6.2 Section 4.6

M16 = C8
5
o C2 [3, 4] Proposition 4.7.4 Section 4.7

D8 ∗ C4 = (C4 × C2)
ψ6
o C2 4 Proposition 4.8.22 Section 4.8

C4 o C4 [3, 4] Proposition 4.9.6 Section 4.9

(C4 × C2)
ψ5
o C2 2 Proposition 4.10.1 Section 4.10

Q8 × C2 4 Proposition 4.11.1 Section 4.11
D8 × C2 2 Proposition 4.12.2 Section 4.12

Table 4.2: Summary of results for groups of order 16.

4.3 Abelian 2-groups
In this section we compute the E(2)-homtopy limit spectral sequence for finite
2-groups. We first recall some basic results on the cohomology rings of cyclic
2-groups and the LHSSS’s computing these. We will omit the F2-coefficients
from the notation for cohomology groups in this section.
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4.3.1 Cyclic 2-groups
Let C2n the cyclic group of order 2n, generated by t. Denote by δt ∈ H1(BC2n)
the cohomology class dual to t, where C2n necessarily acts trivially on F2 since
F2 has only the identity as automorhpism. Denote by βn(−) the n-th order
Bockstein. Then βnδt ∈ H2(BC2n) is the cohomology class corresponding to
the unique non-trivial group extension of C2n by C2, and furthermore (see, e.g.,
[Eve91, sec. 3.2]),

H∗(BC2n) ∼= F2[δt]/(δ2
t )⊗ F2[βnδt],

with, for n = 1, the multiplicative extension β1δt = Sq1 δt = δ2
t .

The group C2n has a unique maximal elementary abelian subgroup, which
is generated by t2n−1 . By Proposition 2.6.1, the E(2)-homotopy limit spectral
sequence for the group C2n reduces to the LHSSS of the group extension

C2 → C2n → C2n−1 .

For n = 1, the right hand side group is the trivial group, and therefore the
LHSSS collapses to the s = 0-line at E2.

For n > 1, we write a = δt, βn−1a = βn−1δt the (n− 1)-th order Bockstein
on a, and x = δt2n−1 . Because the the group C2n is abelian, the local coefficient
system is trivial, and the E2-page is isormorhic to

E∗,∗2
∼= F2[a, βn−1a, x]/(a2),

with, for n = 2, the multiplicative extension β1a = a2, and with (s, t)-degrees
given by |a| = (1, 0), |βn−1a| = (2, 0) and |x| = (0, 1).

Because the F2-dimension of Hom(C2n ,F2) is 1, the dimension of H1(BC2n)
is 1. But E2 has 2 classes in the s+ t = 1-stem, so one of them has to die, which
can only be x for degree reasons, which can only possibly hit βn−1a with a d2.
The class a is a permanent cycle for degree reasons, and hence

E3 ∼= F2[a, [x2]]/(a2).

This has a vanishing line of height 2, and therefore the spectral sequence col-
lapses at this stage.

4.3.2 Abelian 2-groups
Let A be a finite abelian 2-group. Then A is isomorphic to∏

j∈J
C2nj ×

∏
k∈K

C2

with nj ≥ 2, for some indexing sets J and K. We compute the E(2)-homotopy
limit spectral sequence converging to H∗(BA). By the Künneth isomorphism,
this ring is isomorphic to F2[xj , βnjxj , xk]/(x2

j ), with degrees |xj | = |xk| = 1,
and |βnj−1(xj)| = 2.

Since A has a unique maximal elementary abelian 2-subgroup
∏
j∈J C2 ×∏

k∈K C2, this subgroup is normal and hence by Proposition 2.6.1 this reduces
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the E(2)-homotopy limit spectral sequence to the LHSSS of the extension

(4.1)
∏
j∈J

C2 ×
∏
k∈K

C2 → A→
∏
j∈J

C2nj−1 .

Write tj for the generator of C2nj , and tk for the generator of C2 indexed
by k.

For all j ∈ J , the LHSSS corresponding to the extension

C2 → C2nj → C2nj−1

has as E2 = F2[aj , βnj−1aj , xj ]/(a2
j ) with aj = δtj , βnj−1aj = βnj−1δtj , xi =

δ
t2

ni−1
i

, and for nj = 2 with multiplicative extension β1aj = a2
j . The (s, t)-

degrees are given by |aj | = (1, 0), |βnj−1aj | = (2, 0) and |xj | = (0, 1). Further-
more, d2xj = βnj−1aj and

E3 = E∞ = F2[aj , [x2
j ]]/(a2

j ).

Using the Künneth isomorphism, the E2-page of the LHSSS of (4.1) is given
by

Es,t2 = F2[aj , βnj−1aj , xj , xk]/(a2
j | j ∈ J)

with (s, t)-degrees as above, and for nj = 2 with the multiplicative extensions
β1aj = a2

j .
By naturality, the generators on E2 supporting a d2 are the xj , and

d2xj = βnj−1aj ,

for all j. Hence

E3 = F2[aj , [x2
j ], xk]/(a2

j | j ∈ J).

By the Künneth theorem, the stems of E3 have Betti numbers equal to to the
Betti numbers of the target, hence E3 = E∞.

In particular,
∏
j∈J aj ∈ E#J,0

∞ is a non-zero element in filtration degree #J ,
which shows that

(4.2) expE(2)
HF2 ≥ #J + 1.

Conversely, for j ∈ J , consider the projection of A onto the C2 in the j-th
factor:

pj : A→ C2 ∼= O(1).

The corresponding Euler class is aj ∈ H1(BA;C2). Since a2
j = 0, we get

expA ``ker pj
HF2 = 2. Now

⋂
j∈J ker pj = E(2), and hence by Lemma 3.2.6,

expE(2)
HF2 ≤ #J + 1. Combined with Equation (4.2) this shows that
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4.3.1 Proposition Let A be a group isomorphic to∏
j∈J

C2nj ×
∏
k∈K

C2

with nj ≥ 2. Then

(4.3) expE(2)
HF2A = #J + 1.

4.3.2 Corollary Let G be a group with subgroup isomorphic to
∏
j∈J C2nj with

all nj ≥ 2. Then

expE(2)
HF2 ≥ #J + 1.

Proof This follows from Corollary 3.2.5 and Equation (4.3). �

4.4 Dihedral groups
4.4.1 Introduction
Denote by D2n the dihedral group of order 2n. We apply the E(2)-homotopy
limit spectral sequence to compute the group cohomology of D2n . We first do
computation for D2n = D8, and in the last section we do the computation for
n ≥ 4.

The cohomology rings H∗(BD2n ; F2) are all isomorphic to

F2[x, y, w]/(xy)

with degrees |x| = |y| = 1, |w| = 2, see, e.g., [AM04, Thm. 2.7]. Since HF2 is
E(2)-nilpotent ([MNN15, Prop. 5.14]), the spectral sequence will admit a vanish-
ing line, which is bounded by the exponent expE (2)HF2. In fact, the computa-
tion will show that the spectral sequence has a vanishing line of height 1, which
is equivalent to the fact that D2n has its cohomology detected on elementary
abelian 2-subgroups, which is [Qui71a, Lem. 4.6].

Before proceeding with the calculation, we first identify the exponent of
D2n-Borel equivariant F2-cohomology for all n.

4.4.2 The exponent
In this section we will show the following.

4.4.1 Proposition

expE (2)HF2D2n
=
{

2 for n ≡ 0 (mod 4),
1 otherwise.
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Proof Write n = 2vm with 2 - m. Then D2v+1 ⊂ D2n is a 2-Sylow subgroup
and by Lemma 3.2.14 we are reduced to showing that

expE(2)
HF2D2k

{
= 2 for k ≥ 3,
= 1 for k = 2.

For the case k ≥ 3, we have C2k−1 ⊂ D2k , and hence by Corollary 4.3.2,
expE(2)

HF2 ≥ 2. Combining this with the upper bound furnished by Corol-
lary 4.4.3 below gives the claimed exponent.

For the case k = 2, we have D4 ∼= C2 × C2, and hence by Proposition 2.5.6
we get the claimed exponent. �

The upper bound

In this section we will show using Proposition 3.3.3 that for D2n the dihedral
group of order 2n we have

expE(2)
HF2D2n

≤ 2,

see Corollary 4.4.3 below. To this end, consider the presentation

D2n = 〈σ, ρ |σ2 = ρ2n−1
= e, σρσ−1 = ρ−1〉.

For an angle θ, denote the matrix representing rotation in R2 by θ by

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Denote by T the matrix representing reflection in the x-axis:

T =
(

1 0
0 −1

)
.

The group D2n is the subgroup of O(2) fixing the regular 2n−1-gon centered at
the origin in R2 with one of its sides bisected in the right half-plane by the x-
axis. The inclusion D2n → O(2) is on elements given by σ → T , ρ→ R2π/2n−1 .
This yields a linear 2-dimension real representation of D2n , which we call V .
We apply Proposition 3.3.3 to compute an upper bound on the exponent with
respect to the minimal family F containing the isotropy of P(V ). This minimal
family is determined in the next lemma.

4.4.2 Lemma The minimal family containing the isotropy groups of the pro-
jectivation P(V ) is E(2), the family of elementary abelian 2-groups in D2n .

Proof The proof is by elementary linear algebra. Since V is an orthogonal
representation, a linear subspace L spanned by a vector v is fixed by an element
g of D2n if and only if g has eigenvalue 1 or −1 (we say that g has eigenvalue λ
if the matrix by which g acts on V has eigenvalue λ).

First consider the rotations in D2n , that is the elements of the form ρj . We
note that Rθ has characteristic polynomial

(cos(θ)− λ)2 + sin2 θ = 0,
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which for λ = 1 is 0 if and only if θ ≡ 0 (mod 2π), and for λ = −1 is 0 if
and only if θ = π (mod 2π). Hence ρj fixes a line if and only if 2πj/2n−2 ≡ π

(mod 2π), that is if and only if j ≡ 2n−2 (mod 2n−1). Hence ρ2n−2 is the only
non-trivial rotation that fixes a line. Since ρ2n−2 acts via Rπ, the elements ρ2n−2

fixes every line in V .
For the lines fixed by a reflection σρj , we first note that, writing e1 =

( 1 0 )t, TRθ has eigenvectors R−θ/2e1 and R−θ/2−πe1, with eigenvalues 1 and
−1, respectively. Therefore these are, up to scalar, all eigenvectors of TRθ,
since V is 2-dimensional. Assume σρj and σρk fix a common line, spanned by
a vector v. If v had the same eigenvalue for σρj and σρk, we would have

−2πj
2n−1 ≡

−2πk
2n−1 (mod 2π),

which is equivalent to k ≡ j (mod 2n−1), in other words σρj = σρk.
Alternatively, if v has different eigenvalues for σρj and σρk, then we have

−2πj
2n−2 ≡

−2πk
2n−2 − π (mod 2π),

which is equivalent to j − k ≡ 2n−2 (mod 2n−1). Hence if a line is fixed by a
relfection σρj , it is fixed by exactly one more reflection, namely σρj+2n−2 . Note
that

�
σρjσρj+2n−2

= ρ2n−2
= σρj+2n−2

σρj .

Therefore 〈σρj , σρj+2n−2〉 is isomorphic to C2 × C2.
We conclude that a line in V is fixed either by 〈ρ2n−2〉, or by 〈σρj , σρj+2n−2〉

for exactly one j (mod 2n−2). All these subgroups are elementary abelian,
proving the result.

4.4.3 Corollary The E(2)-exponent of HF2D2n
satisfies

expE(2)
HF2D2n

≤ 2.

Proof Immediate from Proposition 3.3.3 and Lemma 4.4.2 and the fact that
V is 2-dimensional. �

4.4.3 The spectral sequence
Summary of the computation

We will now compute the group cohomology ring H∗(BD8; F2) using the E(2)-
homotopy limit spectral sequence converging to H∗(BD8; F2). Since E(2) is the
derived defect base of HF2 ([MNN15, Prop. 5.16]), the spectral sequence will
have a horizontal vanishing line at a finite page. In fact, by Proposition 4.4.1,
the spectral sequence will have a horizontal vanishing line of height 2 on the
E3-page. In particular, E3 = E∞.

The computation, which follows the strategy of [MNN15, App. B], can be
summarized as follows. The most work goes into computing the E2-term. We
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find a homotopy final subcategory Of of O(D8)E (2) (using Proposition 2.7.2).
We then write a short exact sequence of coefficent systems ending in the constant
coefficient system Z on Of , which lifts to a long exact sequence of spectral
sequences, constituting of two Lyndon-Hochschild-Serre spectral sequences and
the E(2)-homotopy limit spectral sequence. We compute the E2-pages of the
LHSSS’s, which allows us to determine the E2-page of the E(2)-homotopy limit
spectral sequence.

The vanishing line of height 2 on E3 implies that the only non-trivial differ-
ential is a d2, which implies enough about the possible patterns of differentials
on the E2-page to determine E3 = E∞ (see Figure 4.4).

The orbit category

A generating set of morphism for the orbit category O(D8)E(2) is given by

D8/〈σ, σρ2〉 D8/〈σρ, σρ3〉

D8/〈σ〉 D8/〈σρ2〉 D8/〈ρ2〉 D8/〈σρ〉 D8/〈σρ3〉

D8/e

D8

C2

C2

C2×C2

C2

C2

C2 C2

Figure 4.1: The orbit category O(D8)E(2) . The highlighted subcategory is ho-
motopy final.

Write

Z = Z(D8) = 〈ρ2〉,
H1 = 〈σ, σρ2〉,
H2 = 〈σρ, σρ3〉.

With these Hi and Z, we apply the docomposition of Section 2.7. Therefore we
next compute the LHSSS’s obtained from the extensions Hi → D8 → C2 and
Z → D8 → C2 × C2.

The LHSSS of Hi → D8 → C2

We compute the E2-page of the LHSSS of the extension H1 → D8 → C2, the
case for H2 follows from the automorphism σ ↔ σρ of D8.

The group C2 = 〈ρ〉 acts on H1 by

ρ(σ)ρ−1 = σρ2,

ρ(σρ)ρ−1 = σ.
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Hence it acts on H∗(H1) by interchanging δσ and δσρ2 . Write u1,1 = δσ + δσρ2

and u1,2 = δσδσρ2 for the first and second elementary symmetic polynomial. It
is well known that the invariants of a polynomial algebra of the action of the
symmetric group on the generators is given by the polynomial algebra on the
symmetric polynomials.

Taking the minimal periodic C2-resolution of Z, applying the hom-functor
of C2-modules HomC2(−, H∗(H1)), and taking cohomology, we see that the
s = 0-row of the LHSSS is given by the C2-invariants

F2[u1,1, u2,1].

Write a1 = δρ. The image of the differential in the long exact sequence com-
puting Es,∗2 maps a polynomial to its C2-symmetrization:

P (δσ, δσρ2) 7→ P (δσ, δσρ2) + P (δσρ2 , δσ).

The image are the symmetrized polynomials, which is F2[u1,1, u2,1]{u1,1}. The
rows Es,∗2 for s > 1 are then given by the C2-invariants modulo the symmetrized
polynomials, which are

F2[u2,1]{as1}.

Assembling the rows together gives the E2-page

E2 = F2[a1, u1,1, u2,1]/(a1u1,1),

with (s, t)-degrees |a1| = (1, 0), |u1,1| = (0, 1) and |u2,1| = (0, 2).
For the extension H2 → D8 → C2, we write u1,2 = δσρ+δσρ3 , u2,2 = δσρδσρ3 ,

a2 = δρ, and obtain as an E2-page

E2 = F2[a2, u1,2, u2,2]/(a2u1,2).

Because the number of classes in the 1-stem and 2-stem equals the Betti numbers
of H1(BD8) respectively H2(BD8) ([AM04, Thm. 2.7]), the LHSSS collapses
at E2.
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0 2 4 6 8 10 s+ t

0

2

4

6

s

u1,i
u2,i

ai

Figure 4.2: The E2 = E∞-page of the LHSSS obtained from the extension
Hi → D8 → C2.

The LHSSS of Z → D8 → C2 × C2

The extension

ρ2

Z → D8 →
σ

C2 ×
σρ

C2

is central, and therefore the associated LHSSS has trivial coefficient system.
Writing b = δσ, c = δσρ and x = δρ2 , the E2-page then is

E2 = F2[b, c, x],

with (s, t)-degrees |b| = |c| = (1, 0), |x| = (0, 1). The class x supports a d2 with
d2(x) = bc ([AM04, §IV.2]), and the LHSSS collapses at E3.
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0 2 4 6 8 10 s+ t

0

2

4

6

s

x

b

c

[x2]

bc

Figure 4.3: The E2-page of the LHSSS obtained from the extension Z → D8 →
C2 × C2.

The map j

In this subsection we prove the following proposition, which describes the map
j from (2.1) from Section 2.7.
4.4.4 Proposition The map j from (2.1) is given on cohomology classes by

u1,i 7→ 0,
u2,i 7→ x2,

a1 7→ c,

a2 7→ b.

Proof The map j is in cohomology determined by the inclusions Z → Hi and
the corresponding quotient maps D8/Z → D8/H.

The map Z → H1 is on elements given by ρ2 7→ σ · σρ2, therefore on
cohomology classes by

δσ 7→ δρ2 = x,

δσρ2 7→ δρ2 = x,

and therefore

u1,1 = δσ + δσρ2 7→ 0,
u2,1 7→ x2.

The map D8/Z ∼= C2 × C2 → D8/H1 ∼= C2 is on elements given by σ 7→ e
and σρ 7→ ρ, and therefore on cohomology by

a1 = δρ 7→ δσρ = c.

This completes the formulas for i = 1, the formulas for i = 2 are obtained from
the automorphism σ ↔ σρ of D8. �
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The E2-page

We write u1,1 = (u1,1, 0), u1,2 = (0, u1,2) and u = (u2,1, u2,2). Proposition 4.4.4
shows that the kernel of j is concentrated in the s = 0-line, and equals

ker(j) = F2[u1,1, u1,2, u]/(u1,1u1,2),

with bidegrees given by |u1,1| = |u1,2| = (0, 1), and |u| = (0, 2). Moreover, it
shows that the image of j is given by

Im(j) = F2[c, x2]{c} ⊕ F2[b, x2]{b} ⊕ F2[x2].

The split exact sequence (Proposition 2.7.6) then implies that the E2-page of
the E(2)-homotopy limit spectral sequence is given by

0 2 4 6 8 10 s+ t

0

2

4

6

s

u1,1

u1,2 u

[x][x]

[bc]

Figure 4.4: The E2-page. Red classes come from the B-summand, blue classes
from the A-summand. The labeled red classes generated the red summand. The
entire page is not finitely genereted as a ring, but we labeled two blue classes
for ease of comparison with Figure 4.3.

Because the E(2)-exponent is 2, there can only be non-zero differentials on
E2, and on E3 there must be a vanishing line of height 2. The differentials are
coming from the LHSSS of the extension Z → D8 → C2, by naturality, see
Figure 4.3. So there is in fact a horizontal vanishing line of height 1 on the
E3 = E∞-page.

Multiplicative extensions

Since the E(2)-homotopy limit spectral sequence is concentrated in the s = 0-line
on E∞, there are no multiplicative extension problems to solve, and

H∗(BD8) ∼= E0,∗
∞

= F2[u1,1, u1,2, u]/(u1,1u1,2).



4.4. Dihedral groups 41

The lower bound illustrated

For G = D2n with n ≡ 0 (mod 4) and n ≥ 4 we established in Proposition 4.4.1
that expE(2)

HF2 = 2. We illustrate this exponent with a E(2)-homotopy limit
spectral sequence which has a vanishing line of height 2 on the E∞-page.

Let Cn = 〈ρ〉 ⊂ D2n act on z ∈ S1 ⊂ C via

ρ · z = e2πi/nz.

Let X be the D2n-space given by inducing the Cn-space S1 up to D2n:

(4.4) X := D2n ×Cn S
1

The space X looks like

Figure 4.5: The free D2n-space X.

The D2n-action on X is evidently free. As coset representatives of D2n/Cn
we pick {e, σ}. The underlying non-equivariant space is the coproduct S1

e t S1
σ,

where the subscripts are decorations for the corresponding coset. Denoting the
elements of X by (e, z1) and (σ, z2) (i.e., by choosing the representatives of the
elements of the quotient in Equation (4.4) which have as their first coordinate
our chosen coset representatives), the D2n-action on X is explicitly given by

ρ · (e, z) = (e, ρz),
ρ · (σ, z) = (σ, ρ−1z),
σ · (e, z) = (σ, z),
σ · (σ, z) = (e, z).

In particular, σρ(σ, z) = (e, ρ−1z), whereas ρσ(σ, z) = (e, ρz), hence the actions
of σ and ρ do not commute.

Since X is a free D2n-space, its homotopy orbits coincide with the actual
orbits:

X �D2n '
X × ED2n

D2n
' X/D2n ' S1/Cn ' S1.

Hence the Borel equivariant F2-cohomology of X is:

(4.5) H∗D2n
(X; F2) ∼= H∗(S1; F2) ∼= F2[x]/(x2).
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Consider the E(2)-homotopy limit spectral sequence of X:

Es,t2 = lims

O(G)op
E(2)

Ht
(−)(X,F2)⇒ Hs+t

D2n
(X; F2).

We will show that its E∞-page has an element in filtration degree 1, which im-
plies the desired lower bound on the exponent. Note that, given Equation (4.5)
and the fact that the functors Ht

(−)(X; F2) are 0 for t < 0, only two E∞-pages
are possible:

0 1 2 3 4 s+ t
0

1

2

3

4

s

Figure 4.6: First possibility for
E∞.

and

0 1 2 3 4 s+ t
0

1

2

3

4

s

Figure 4.7: Second possibility
for E∞.

We will show that the E∞-page is the second one, by showing that x ∈
H1
D2n

(X; F2) is in filtration ≥ 1, which is equivalent to showing that x is in the
kernel of the edge map

H1
D2n

(X; F2)→ lim0
O(G)op

E(2)

H1
(−)(X; F2).

In other words, we must show that for all elementary abelian 2-groups A ⊂ D2n
we have that the map induced by the quotient

q : X �A→ X �D2n

in cohomology

q∗ : H1
D2n

(X; F2)→ H1
A(X; F2)

satisfies q∗(x) = 0. For this, we may restrict to the maximal elementary abelian
2-groups in D2n, because all elementary abelian subgroups are a subgroup of a
maximal elementary abelian subgroup. Hence if an element restricts to 0 on all
maximal elementary abelian subgroup, it also restricts further down to 0 on all
elementary abelian subgroups.

The elements Nf order 2 of D2n are the reflections σρi, and the generator
of the center ρn/2. Two reflections σρi and σρj commuting is equivalent to
ρj−i = ρi−j , which is equivalent to i ≡ j (mod n/2). Since σρiσρi+n/2 = ρn/2,
we see that all maximal elementary abelian subgroups of D2n are given by
〈σρi, σρi+n/2〉 with 0 ≤ i < n/2.

First dividing out σρi identifies

(e, z)↔ (σ, ρiz).
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Hence every element of X/〈σρi〉 is represented by uniquely by a (e, z), and this
space is isomorphic to S1. We suppress the coset coordinate from now on.

Dividing this out by the central element ρn/2 identifies

z ↔ ρn/2z,

and every element becomes represented uniquely by a eθi with 0 ≤ θ < π.
Finally, dividing out by the entire group D2n identifies

z ↔ ρz,

hence every element of X/D2n is uniquely represented by a eθi with 0 ≤ θ <
2π/n.

The map S1 ∼= X/〈σρi, σρi+n/2〉 → X/D2n ∼= S1 is given by

θ (mod π) 7→ θ (mod 2π/n),

which is a (n2 : 1)-cover. Hence the map q∗ is given by multiplication by n/2.
We assumed n ≡ 0 (mod 4), hence that n/2 ≡ 0 (mod 2), and therefore

q∗(x) = 0, as desired.

4.4.4 The dihedral groups D2n with n ≥ 4
For the dihedral groups D2n with n ≥ 4 we will not compute the E(2)-homotopy
limit spectral sequence, but instead we will compute the F -homotopy limit
spectral sequence for some family F which strictly contains E(2), to be described
next.

For n ≥ 4, the dihedral group has exactly two subgroups isomorphic to
D2n−1 , which we denote by H1 = 〈σ, σρ2〉 and H2 = 〈σρ, σρ3〉. Additionally we
write J = H1∩H2 = 〈ρ2〉 ∼= C2n−2 . Write F for the family F = A ``H1∩A ``H2 .
Then F ⊃ E(2), and therefore HF2D2n

is F -nilpotent. In this subsection we
will compute the F -homotopy limit spectral sequence for D2n . This spectral
sequence will turn out to be additively isomorphic to the E(2)-homotopy limit
spectral sequence for D8. The computation will also be almost identical.

The decomposition

We apply the decomposition of Section 2.7 with the Hi as in the previous section
and K = J . Therefore we proceed by computing the LHSSS’s for te extensions
Hi → D2n → C2 and J → D2n → C2 × C2.

The LHSSS of D2n−1 → D2n → C2

We consider the caseD2n−1 = H1, the other case being obtained by the automor-
phism σ ↔ σρ. Write x1 = δσ and y1 = δ

σρ2 for the classes in H1(BD2n−1) =
Hom(D2n−1 ,F2). Let w1 be the unique class in H2(BD2n−1) that classifies
C2 → D2n → D2n−1 and that restricts to zero on both 〈σ〉 and 〈σρ2〉 (see, e.g.,
[AM04, Thm. 2.7]). Then C2 = 〈ρ〉 acts on Hab

1 = H1/〈ρ4〉 ∼= C2 × C2 by

ρσρ−1 ≡ σρ−2 ≡ σρ2 mod 〈ρ4〉,
ρσρ2ρ−1 ≡ σ mod 〈ρ4〉,
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hence it interchanges x1 and y1. The class w1 is uniquely determined by condi-
tions which are preserved by the action of C2, hence is fixed.

Write u1,1 = x1 +y1 and a1 = δρ. Taking a projective C2-resolution of Z, we
see that the s = 0 row of the E2-page of the LHSSS is given by the C2-invariants

E0,∗
2
∼= F2[u1,1, w],

and the rows for s ≥ 1 are given by

Es,∗2
∼= F2[w]{as}.

Assembling all rows together gives the E2-page

E∗,∗2 (H1) = F2[a, u1,1, w1]/(a1u1,1),

with (s, t)-degrees |a| = (1, 0), |u1,1| = (0, 1), and |w1| = (0, 2).
Consider now the extension H2 → D2n → C2. Write x2 = δσρ, y2 = δ

σρ3 ,
w2 the unique class in H2(BH2) classifying C2 → D2n → D2n−1 and restricting
to zero on 〈σρ〉 and 〈σρ3〉, a2 = δσ and u1,2 = x2 + y2. Then by applying the
automorphism of D2n determined by σ ↔ σρ we get that the E2-page of the
LHSSS of the extension H2 → D2n → C2 is given by

E∗,∗2 (H2) = F2[a2, u1,2, w1](a2u1,2).

The LHSSS of C2n−2 → D2n → C2 × C2

The extension

J ∼= C2n−2 → D2n → C2 × C2

gives a LHSSS with trivial coefficient system, for H∗(BC2n−2) has only trivial
automorphisms. Writing b = δσ, c = δσρ, z = δρ2 and βn−2(z) = βn−2(δρ2) (the
(n− 2)-th order Bockstein) we get

E∗,∗2 (J) = F2[b, c, z, βn−2(z)]/(z2).

The map j

We now determine the effect of the map j from (2.1) from Section 2.7.

4.4.5 Proposition The map j in the long exact sequence (2.1) is given by

u1,i 7→ 0,
wi 7→ βn−2(z),
a1 7→ c,

a2 7→ b.
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Proof The map j is determined by the inclusions J → Hi and the correspond-
ing quotient maps D2n/J → D2n/Hi.

For i = 1, the inclusion J = 〈ρ2〉 ↪→ H1 = 〈σ, σρ2〉 is on elements given
by ρ2 7→ σ · σρ2, hence on abelianizations by ρ2 7→ σ · σρ2, hence on degree-1
cohomology classes by

x1 = δσ 7→ δρ2 = z,

y1 = δ
σρ2 7→ δρ2 = z,

and hence

u1,1 = x1 + y1 7→ 0.

To see how the class w1 restricts, we recall that it classifies the extension C2 →
D2n → D2n−1 , which pulls back along C2n−1 → D2n−1 as

C2 C2n−1 C2n−2

C2 D2n D2n−1

,

which is non split, and therefore the class w1 restricts to a non zero class, the
only possibility being

w1 7→ βn−2(z).

The map D2n/J → D2n/H1 is on elements given by σρ 7→ ρ and σ 7→ e, and
therefore on cohomology classes by

a1 = δρ 7→ δσρ = c.

The formulas for i = 2 are obtained by applying the automorphism σ ↔ σρ.
Observe that in particular this automorphism interchanges H1 and H2, hence b
and c. �

The kernel of j

We write u1,1 = (u1,1, 0), u1,2 = (0, u1,2) w = (w1, w2). Then Proposition 4.4.5
shows that the kernel of j is concentrated in the 0-line and equals

ker(j) = F2[u1,1, u1,2, w]/(u1,1u1,2).

The image of j

Proposition 4.4.5 shows that the image of j is given by

F2[b, c, βn−2(z)].

The E2-page

This gives an E2-page which additively is isomorphic to the one in Figure 4.4.
But also all the differentials in Figure 4.4 need to happen in this case, because
it is the only possibility for a vanishing line of height 2 on E3, which must occur
by Corollary 4.4.3.
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Multiplicative structure

Because the E3 = E∞-page is concentrated in the s = 0-line, there are no
multiplicative extension problems, and we get

H∗(BD2n ; F2) ∼= F2[u1,1, u1,2, w]/(u1,1u1,2).

4.5 Quaternion groups
The generalized quaternion group Q2n of order 2n is the finite subgroup of
quaternionic space H generated multiplicatively by the elements of unit length
{e2πi/2n−1

, j} (see, e.g., [CE56, XII.§7]). Denoting these generators by r and s,
respectively, one gets the presentation

Q2n = 〈r, s | r2n−2
= s2, rsr = s〉.

for all n ≥ 3. The subgroup generated by 〈s2〉 is central and of order 2, which
makes Q2n into a central extension ([AM04, IV.2]).

(4.6) C2 → Q2n → D2n−1 .

See Proposition 4.5.2 and Proposition 4.5.3 below for a recollection on this
cohomology ring and the LHSSS computing it.

4.5.1 An upper bound on the exponent
In this subsection we will prove the following upper bound on the E(2)-exponent.

4.5.1 Proposition The E(2)-exponent satisfies

expE(2)
HF2Q2n

≤ 4.

Proof The proof is a straightforward adaption of the argument in [MNN15,
Ex. 5.18].

Let H ∼= R4 be the 4-dimensional real representation coming from the em-
bedding Q2n ↪→ H. This is a free action, and restricts to a free action on S3.
The subgroup 〈±1〉 is central, and therefore Q2n/〈±1〉 acts on S3/〈±1〉 = P(R4)
with isotropy in 〈±1〉. The result now follows from Proposition 3.3.3. �

4.5.2 The E(2)-homotopy limit spectral sequence
The group Q2n has a unique maximal elementary abelian 2-subgroup, given by
〈±1〉. Therefore, by Proposition 2.6.1, the E(2)-homotopy limit spectral sequence
reduces to the LHSSS corresponding to the central extension

〈−1〉 = Z(Q2n)→ Q2n → D2n−1 .

This spectral sequence is well known, we recall it here for convenience.
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4.5.2 Proposition (see, e.g., [AM04, Lem. 2.10]) For n = 3, the E2-page
of the LHSSS associated to the extension (4.6) is

E∗,∗2 = H∗(BC×2
2 ; F2)⊗F2 H

∗(BC2; F2) ∼= F2[x, y, e],

with all the generators in degree 1. The differentials are generated under the
Leibniz rule by

d2(e) = x2 + xy + y2,

d3(e2) = Sq1(x2 + xy + y2) = x2y + xy2.

The spectral sequence collapses at E4 with a vanishing line of height 4, with
resulting cohomology ring

H∗(BQ8; F2) ∼= F2[x, y, e4]/(x2 + xy + y2, x2y + xy2).

with degrees given by |x| = |y| = 1, and |e4| = 4.

4.5.3 Proposition (see, e.g., [AM04, Lem. 2.11]) Denote the classes x =
δσ and y = δσρ.

For n ≥ 4, the E2-page of the LHSSS associated to the extension (4.6) is
given by

E∗,∗2 = H∗(BD2n−1 ; F2)⊗F2 H
∗(BC2; F2) ∼= F2[x, y, w, e]/(xy).

The differentials are generated under the Leibniz rule by

d2(e) = x2 + y2 + w,

d3(e2) = Sq1(x2 + y2 + w) = (x+ y)w.

The spectral sequence collapses at E4 with a vanishing line of height 4, and the
resulting cohomology ring is

H∗(BQ2n ; F2) ∼= F2[x, y, e4]/(xy, x3 + y3).

with |x| = |y| = 1, and |e4| = 4.

4.5.3 The E(2)-exponent
Combining Proposition 4.5.1 with the vanishing lines of height 4 in Proposi-
tion 4.5.2 and Proposition 4.5.3 gives the following.

4.5.4 Proposition The E(2)-exponent satisfies

expE(2)
HF2Q2n

= 4.

4.6 SD16

Let

SD16 = 〈s, r | s2 = r8 = e, srs−1 = r3〉
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be the semidihedral group of order 16. This group has no unique maximal
elementary abelian 2-subgroup, but the subgroup 〈s, r2〉 ∼= D8 does contain all
the elementary abelian 2-subgroups. We will compute the A ``D8 -homotopy
limit spectral sequence converging to H∗(BSD16; F2), which is isomorphic to
([CTVEZ03, App. C, #13(16)])

F2[z, y, x, w]/(zy, y3, yx, z2w + x2),

with degrees |z| = |y| = 1, |x| = 3 and |w| = 4.
By Proposition 2.6.1, the A ``D8 -homotopy limit spectral sequence is iso-

morphic to the LHSSS corresponding to the group extension

s,r2

D8 → SD16 →
r

C2

4.6.1 The E2-page
Since rsr−1 = sr2, C2 acts on D8 by interchanging the generators s and sr2 of
D8. Write H∗(BD8; F2) = F2[x, y, w]/(xy), with x = δs, y = δsr2 , and where w
is the unique class in degree 2 that restricts to 0 on 〈s〉 and 〈sr2〉 and classifies an
extension of D8 isomorphic to D16 (see, e.g., [AM04, Thm. 2.7]). Then C2 = 〈r〉
acts by interchanging x and y. Of course it sends an extension isomomorphic
to D16 to another such extension, and since s and sr2 get interchanged, we see
that the C2-action leaves w fixed, by the restriction property mentioned before.

To determine Es,t2 = Hs(BC2;Ht(BD8; F2)), let

· · · 1−r−−→ ZC2
1+r−−→ ZC2

1−r−−→ ZC2
ε−→ Z

be the minimal free C2-resolution of Z. Applying HomC2(−, H∗(BD8; F2)), we
see that the differentials are on monomials given by

(xi + yi)wj ← [ xiwj ,
(xk + yk)wl ← [ ykwl.

Hence the kernel has as an F2-basis the elements of the form wjP (x, y), where
P (x, y) is a symmetric polynomial in x and y. Taking the cokernel divides out
the symmetrized polynomials in x and y. Hence the result has as an F2-basis
the polynomials of the form xiyiwj , which is 0 unless i = 0. Writing a = δr,
and σ1 = x+ y, we get

Es,t2 = F2[a, σ1, w]/(aσ1),

with (s, t)-degrees given by |a| = (1, 0), |σ1| = (0, 1) and |w| = (0, 2).

4.6.2 Differentials and E4 = E∞

Since SDab
16 = SD16/〈r4〉 ∼= C2×C4, we have dimF2 H

1(BSD16; F2) = 2. Hence
x+ y is a permanent cycle. Since there is no vanishing line on E2, w will have
to support a differential, which can only be d3w = a3. Hence the E3-page is
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Figure 4.8: The E3-page.

Therefore the E4-page is

F2[a, σ1, [σ1w], [w2]]/(aσ1, a[σ1w], σ2
1 [w2]− [σ1w]2, a3).

Hence the E4-page has a vanishing line of height 3, and therefore E4 = E∞.
There are several multiplicative extension problems, which we leave unresolved.

4.6.3 Poincaré Series
The E∞-page has as s = 0-line

F2[σ1, [σ1w], [w2]]/(σ2
1 [w2]− [σ1w]2)

∼= F2[σ1, [w2]]{1, [σ1w]},

which has Poincaré series

1 + t3

(1− t)(1− t4) .

The s = 1-line of the E∞-page is given by

F2[[w2]]{a},

which has Poincaré series

t

1− t4 .

The s = 2-line of the E∞-page is given by

F2[[w2]]{a2},
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which has Poincaré series

t2

1− t4 .

This shows that the Poincaré series of H∗(BSD16; F2) is given by

1 + t3

(1− t)(1− t4) + t+ t2

1− t4 = (1 + t3) + t(1− t) + t2(1− t)
(1− t)(1− t4)

= 1 + t

(1− t)(1− t4)

= 1
(1− t)2(1 + t2) ,

cf. [CTVEZ03, App. B and App. G].

4.6.4 An upper bound on the E(2)-exponent
In this subsection we will prove the following upper bound on the E(2)-exponent.

4.6.1 Proposition The E(2)-exponent satisfies

expE(2)
HF2SD16

≤ 4.

Proof We will use the notation Rθ and T from the proof of Proposition 4.7.1,
and also use the fact proven there that Rθ fixes a line only if θ ∈ Z{π}. Write
α = 2π/8. Let V be the real SD16-representation given by

s 7→ T,

r 7→ Rα ⊕Rα

from [Tot14, Lem. 13.4]. The same argument as in the proof of Proposition 4.7.1
shows that the only powers of r fixing a line are e and r4, and that the only
elements of the form srk that can possibly fix a line are s, sr2, sr4, sr6. The
elements

e, r4, s, sr2, sr4, sr6.

do not generate an elementary abelian 2-group as in the proof of Proposi-
tion 4.7.1, but all the isotropy groups of lines that occur consist of proper
subsets of the above elements that do form elementary abelian 2-groups, as we
will now show.

First, r4 fixes every line, so is in every isotropy group.
Write [x1 : y1 : x2 : y2] for the real homogenous coordinates in RP 3. Then

s · [x1 : y1 : x2 : y2] = [x2 : y2 : x1 : y1],

which is fixed if and only if (x1, y1) = (x2, y2) or (x1, y1) = −(x2, y2). Compu-
tation of sr4 · [x1 : y1 : x2 : y2] shows that this element fixes exactly the same
lines.

Computing

sr2 · [x1 : y1 : x2 : y2] = [−y2 : x2 : y1 : −x1]
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shows that sr2 fixes precisely those lines with (x1, y1) = (−y2, x2) or (x1, y1) =
(y2,−x2). Computing sr6 · [x1 : y1 : x2 : y2] shows that this element fixes
precisely the same lines.

The sets of lines {x1 = x2, y1 = y2} ∪ {x1 = −x2, y1 = −y2} and {x1 =
−y2, y1 = x2} ∪ {x1 = y2, y1 = −x2} have empty intersection, because a line in
the intersection {x1 = x2, y1 = y2} ∩ {x1 = −y2, y1 = x2} would satisfy

y2 = y1 = x2 = x1 = −y2,

a line in the intersection {x1 = x2, y1 = y2}∩{x1 = y2, y1 = −x2} would satisfy

y1 = y2 = x1 = x2 = −y1,

a line in the intersection {x1 = −x2, y1 = −y2} ∩ {x1 = −y2, y1 = x2} would
satisfy

y2 = −y1 = −x2 = x1 = −y2,

and finally a line in the interesection {x1 = −x2, y1 = −y2} ∩ {x1 = y2, y1 =
−x2} would satisfy

y2 = x1 = −x2 = y1 = −y2.

Hence the isotropy groups that occur are

〈r4〉, 〈s, sr4〉, 〈sr2, sr6〉,

all of which are elementary abelian 2-groups. Applying Proposition 3.3.3 gives
the desired result. �

4.6.5 The exponent
The 1-dimensional real representation

SD16 → SD16/D8 ∼= C2

has Euler class a. This has isotropy in A ``D8 , and the vanishing line shows
that a is of nilpotence degree 3, hence

expA ``D8
HF2 = 3.

Since increasing the family only can make the exponent go down, we have as a
consequence

4.6.2 Proposition The exponent E(2)-exponent satisfies

3 ≤ expE(2)
HF2SD16

≤ 4.
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4.7 M16

4.7.1 Introduction
Let

M16 = 〈r, f | r8 = f2 = e, frf−1 = r5〉

be the modular group of order 16. The group has this name because its lattice
of subgroups is modular (see, e.g., [Bir67, I.§7]).

In this section we will compute the E(2)-homotopy limit spectral sequence
converging to H∗(BM16; F2), which is isomorphic to ([CTVEZ03, App. C,
#11(16)])

F2[z, y, x, w]/(z2, zy2, zx, x2)

with degrees |z| = |y| = 1, |x| = 3, |w| = 4.

4.7.2 An upper bound on the exponent
In this subsecton we prove the following upper bound on the E(2)-exponent.

4.7.1 Proposition The E(2)-exponent satisfies

expE(2)
HF2M16

≤ 4.

Proof For an angle θ, let Rθ be the rotation-by-θ matrix
(

cos θ − sin θ
sin θ cos θ

)
.

Let T be the matrix 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


which interchanges the summands of R2 ⊕R2. Write α = 2π/8. Let V be the
4-dimensional real M16-representation given by

f 7→ T,

r 7→ Rα ⊕R5α.

This is the representation from [Tot14, Lem. 13.3].
We will now determine the isotropy of the projectivation P(V ).
A power of r fixes a line in R2⊕R2 if and only if it fixes a line in one of the

summands. The matrix Rθ has characteristic polynomial P (λ) = λ2−2λ cos θ+
1, which has discriminant ∆ = −4 sin2 θ. Hence Rθ has real eigenvalues only if
θ ∈ Z{π}. Since r 7→ R2π/8, rk fixes a line only if αk ∈ Z{π} or 5αk ∈ Z{π},
that is only if k ∈ Z{4}. Therefore e and r4 are the only elements powers of r
that can possibly fix a line. The element r4 acts by − Id, and therefore fixes all
lines. The element e of course also fixes all lines.
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We now consider the remaining elements of M16, which are of the form
frk, and which act by T (Rαk ⊕ R5αk). This matrix certainly only fixes a line
if its square does, which is R6αk ⊕ R6αk. These summands only fix a line if
6αk ∈ Z{π}, which implies that k is even. Hence the only possible elements of
the form frk fixing a line are f , fr2, fr4, and fr6. One verifies directly that
fr2 acts by the matrix 

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


which fixes no lines. Consequently its inverse fr6 neither fixes lines. One also
easily checks that fr4 acts by

0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0


which fixes the lines [x1 : y1 : x2 : y2] in {x1 = −x2, y1 = −y2}. Hence the only
elements of M16 fixing a line are e, f, fr4, r4, which together form a Klein four
group. Applying Proposition 3.3.3 gives the desired result. �

4.7.3 The orbit category
The group M16 has a unique maximal elementary abelian 2-subgroup, given by

C2 × C2 ∼= 〈f, fr4〉.

By Proposition 2.6.1, this identifies the E(2)-homotopy limit spectral sequence
with the LHSSS associated to the group extension

C2 × C2 →M16 → 〈r〉 ∼= C4.

4.7.4 The E2-page
The action of C4 = 〈r〉 on C2 × C2 = 〈f, fr4〉 is given by rfr−1 = fr4, i.e.
r interchanges the generators f and fr4. Denote the duals by x := δf , y :=
δfr4 ∈ H1(BC2 × C2; F2). Then H∗(BC2 × C2; F2) = F2[x, y], and r acts by
interchanging x and y.

A 2-periodic projective C4-resolution of Z is given by

· · · → ZC4
1−r−−→ ZC4

1+r+r2+r3

−−−−−−−→ ZC4
1−r−−→ ZC4

ε−→ Z.

Applying HomZC4(−, F2[x, y]) (where F2[x, y] carries the C4-action described
above) yields

· · · 0←− F2[x, y]← F2[x, y] 0←− F2[x, y]← F2[x, y],
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where the maps going from odd to even degrees are 0, and the maps from even
to odd degrees are on monomials given by

xiyj + xjyi ← [ xiyj .

This shows that the even rows of the E2-page are given by the C4-invariants of
F2[x, y], whereas the odd rows are given by the coinvariants.

We denote c0 := δr ∈ H1(BC4; F2), and let β2(c0) ∈ H2(BC4; F2) be the
second order Bockstein of c0. Then H∗(BC4; F2) = F2[c0, β2(c0)]/(c20). In
addition we write σ1 = x + y and σ2 = xy for the first and second elementary
symmetric polynomials in x and y.

The above discussion shows that E0,∗
2 = F2[σ1, σ2], and more generally that

the the even rows of the E2-page equals

(4.7) E
0 (mod 2),∗
2

∼= F2[σ1, σ2, β2(c0)].

The s ≡ 1 (mod 2)-rows of E2 are isomorphic to the coinvariants, and are as
such modules over the s = 0-row of E2, which is the invariants. In the following
lemma we describe this module structure, because we will use it to organize the
calculation.

4.7.2 Lemma The F2[x, y]C2-module F2[x, y]C2 is (non-freely) generated by
{[1], [x]}. (Recall that we denote by [P ] the coinvariance class of P ∈ F2[x, y].)

Proof Writing σ1 = x + y, σ2 = xy for the first and second elementary sym-
metric polynomials, we prove that the degree n-part of F2[x, y]C2 is generated
by {[1], [x]} by induction on n. Since the degree 0 and 1 part of F2[x, y]C2 are
given by F2{[1]} and F{[x]} respectively, the lemma holds for n = 0, 1.

Assume now n ≥ 2. The degree n-part of F2[x, y]C2 is given by

F2{[xn], [xn−1y], . . . , [xdn/2eybn/2c]}.

All elements [xiyj ] 6= [xn] in this basis have strictly positive x- and y-exponent,
and therefore

[xiyj ] = xy[xi−1yi−1],

and xy is an invariant and [xi−1yi−1] is a coinvariant of degree strictly smaller
then n, hence by induction in the F2[x, y]C2 -module generated by {[1], [x]}.

The element [xn], finally, equals

[xn] = (x+ y)[xi−1] + xy[xi−1],

where the coinvariance classes on the right hand side are also of degree strictly
smaller than n.

Notice that we used the induction hypothesis for n − 1 and n − 2, but not
smaller, so that we do not use more than the base case provided. �

Let F2[σ1, σ2] be the free graded ring with |σ1| = 1, |σ2| = 2, and let

F2[σ1, σ2]{c0, c1}
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be the free graded module with |c0| = 0 and |c1| = 1. By Lemma 4.7.2, the
morphism of F2[σ1, σ2]-modules given by

F2[σ1, σ2]{c0, c1} → F2[x, y]C2

c0 7→ [1]
c1 7→ [x](4.8)

is surjective.

4.7.3 Lemma The kernel of the map (4.8) is F2[σ1, σ2]{σ1c0}.

Proof This follows from a Poincaré series calculation. The Poincaré series of
the right hand side of (4.8) is

1 + t

(1− t2)2 = 1
(1− t)(1− t2) .

The Poincaré series of the left hand side of (4.8) is

1 + t

(1− t)(1− t2) .

Certainly, F2[σ1, σ2]{σ1c0} is contained in the kernel, for σ1c0 7→ (x+y)[1] =
0. The module F2[σ1, σ2]{σ1c0} has Poincaré series

t

(1− t)(1− t2) .

Because

1 + t

(1− t)(1− t2) −
t

(1− t)(1− t2) = 1
(1− t)(1− t2) ,

we see that in fact this is all of the kernel. �

Returning to our description of the E2-page, Lemma 4.7.3 shows that the
odd rows are given by

E
1 (mod 2),∗
2

∼=
F2[σ1, σ2]{c0, c1}
F2[σ1, σ2]{σ1c0}

⊗ F2[β2(c0)]

∼=
E0,∗

2 {c0, c1}
E0,∗

2 {σ1c0}
⊗ F2[β2(c0)].(4.9)

Combining (4.9) with (4.7) gives the E2-page:

E∗,∗2
∼= F2[σ1, σ2, c0, β2(c0), c1]/(c20, c21, c0c1, σ1c0)

with (s, t)-degrees given by |σ1| = (0, 1), |σ2| = (0, 2), |c0| = (1, 0), |β2(c0)| =
(2, 0), |c1| = (1, 1). The E2-page is depicted (without differentials) in the fol-
lowing figure:
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Figure 4.9: The E2-page, without differentials. The even rows, which are the
invariants, are colored green, the odd rows, which are the coinvariants, are
colored orange.

4.7.5 Differentials on the E2-page
Generating differentials

Denote the dimension of Hi(BM16; F2), i.e. the i-th Betti number, by hi. We
assume known that h1 = 2 and h2 = 2 in determining the differentials. The
first follows from Mab

16
∼= C2 ×C2, the second can be verified either by hand, or

using a computer algebra system such as GAP.
The classes c0 and β2(c0) are permanent cycles for degree reasons, and σ1

is a permanent cycle because h1 = 1 and there are 2 classes in the 1-stem.
There are 4 classes in the 2-stem, but h2 = 2, so two will have to support a
differential, and by the previous discussion, these will have to be σ2 and c1. The
only possibility for c1 to support a differential is

(4.10) d2(c1) = c0β2(c0).

Given this, the only remaining possibility for σ2 to support a differential is

(4.11) d2(σ2) = σ1β2(c0).

We will study the propagation of these differentials using the Leibniz rule for
the even and odd rows seperately.

Differentials in the even rows

The even rows of the E2-page are given by

E
0 (mod 2),∗
2

∼= F2[σ1, σ2, β2(c0)]
∼= F2[σ1, [σ2

2 ], β2(c0)]⊕ F2[σ1, [σ2
2 ], β2(c0)]{σ2}.
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Propagating the differential (4.11) gives the following pattern of differentials:

0 2 4 6 8 10 s+ t

0

2

4

6

s

σ2
σ1

β2(c0)
σ1β2(c0)

[σ2
2 ]

Figure 4.10: The differentials in the even rows on the E2-page.

This also shows that there is no possibility for more d2’s in the even rows on
the E2-page, and that the even rows of the E3-page are given by

E
0 (mod 2),∗
3

∼= F2[σ1, [σ2
2 ], β2(c0)]/(σ1β2(c0)).

Differentials in the odd rows

In the odd rows, propagating the differentials (4.10) and (4.11) using the Leibniz
rule, we get

d2(σ2c1) = σ1c1β2(c0) + σ2c0β2(c0),
d2(c1) = c0β2(c0),

d2(σ1σ2c1) = σ2
1c1β2(c0).

This implies that the classes in the odd rows supporting a differential generate
the submodule (

F2[σ2
2 ]{σ2c1} ⊕ F2[σ2

2 ]{c1}

⊕F2[σ1, σ
2
2 ]{σ1σ2c1}

)
⊗ F2[β2(c0)],

and that the classes that get hit are given by(
F2[σ2

2 ]{σ1c1 + σ2c0} ⊕ F2[σ2
2 ]{c0}

⊕F2[σ1, σ
2
2 ]{σ2

1c1}
)
⊗ F2[β2(c0)]{β2(c0)}.

This pattern of differentials is depicted in the following figure.
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Figure 4.11: The differentials in the odd rows of E2.

This implies that the classes in the s = 1-line surviving to E3 are

E1,∗
3
∼= F2[σ1, [σ2

2 ]]{σ1c1} ⊕ F2[[σ2
2 ]]{c0, [σ2c0]}

and that the odd s-rows with s ≥ 3 surviving to E3 are

Es,∗3
∼=

F2[σ1, [σ2
2 ]]{[σ1c1]}

F2[σ1, [σ2
2 ]]{σ1[σ1c1]}

∼= F2[[σ2
2 ]]{[σ1c1]}.

Putting the differentials in the even and odd rows together gives the following
E2-page:
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Figure 4.12: The E2-page with differentials.

4.7.6 The E3-page
For a horizontal vanishing line of height 4 on E5 there must be a non-zero

d3 : E1,2
3 → E4,0

3 .

We have E1,2
3 = F2{σ1c1, σ2c0}, hence at least one of these two classes has to

support a differential, the only possible target for both is to hit β2(c0)2 with a d3.
Because β2(c0)2 is the only class in E4,0

3 , we have that d3([σ1c1]) 6= 0 if and only
if d3([σ1c1]) = β2(c0)2. Similarly, we have that d3([σ1c1]β2(c0)) 6= 0 if and only
if d3([σ1c1]β2(c0)) = β2(c0)3. By the Leibniz rule, d3([σ1c1]) = β2(c0)2 implies
that d3([σ1c1]β2(c0)) = β2(c0)3. Furthermore, if d3([σ1c1]) = 0 then, also by
the Leibniz rule, we have d3([σ1c1]β2(c0)) = 0. Therefore d3([σ1c1]) = β2(c0)2

if and only if d3([σ1c1]β2(c0)) = β2(c0)3.
Similarly, d3(σ2c0) = β2(c0)2 if and only if d3(σ2c0β2(c0)) = β2(c0)3. But

since

[σ1c1β2(c0)] = [σ2c0β2(c0)],

as a consequence of

d2(σ2c1) = (σ1c1 + σ2c0)β2(c0)

we have:

d3(σ1c1) = d3(σ2c0) = β2(c0)2.

This is depicted in
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Figure 4.13: The E3-page with differentials.

This shows that E4 has a horizontal vanishing line of height 3, and is there-
fore the E∞-page.

4.7.7 Poincaré Series
The 0-line E0,∗

∞ is given by F2[σ1, [σ2
2 ]], which has Poincaré series 1/((1− t)(1−

t4)). The 2-line E2,∗
∞ is given by F2[[σ2

2 ]]{β2(c0)}, which has Poincaré series
t2/(1− t4).

The 1-line of E3 is given by

E1,∗
3
∼= F2[σ1, [σ2

2 ]]{σ1c1} ⊕ F2[[σ2
2 ]]{c0, [σ2c0]},

which has Poincaré series

t3

(1− t)(1− t4) + t

1− t2 .

The d3-differentials originating from the s = 1-line kill 1 class in each s+ t-stem
with s+ t ≡ 3 (mod 4), hence E1,∗

4 = E1,∗
∞ has Poincaré series

t3

(1− t)(1− t4) + t

1− t2 −
t3

1− t4 .

Taking everything together, and using

1 + (1− t)t2 + t3 + t(1 + t2)(1− t)− t3(1− t) = 1 + t,

we get that H∗(BM16; F2) has Poincaré series

1 + t

(1− t)(1− t4) = 1
(1− t)2(1 + t2) ,

cf. [CTVEZ03, App. B and App. G, #11(16)].
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4.7.8 The exponent
The above computation shows that expE(2)

HF2 ≥ 3, which together with
Proposition 4.7.1 shows that

4.7.4 Proposition The E(2)-exponent satisfies

3 ≤ expE(2)
HF2 ≤ 4.

4.8 D8 ∗ C4

4.8.1 Introduction
Let D8 = 〈σ, ρ〉 be the dihedral group of order 8 and let C4 = 〈γ〉 be the cyclic
group of order 4. Both these groups have central cyclic subgroups of order 2,
for D8 this is 〈ρ2〉 and for C4 this is 〈γ2〉. The central product of D8 and C4 is
defined to be the direct product with these central subgroups identified:

D8 ∗ C4 := D8 × C4/〈ρ2γ−2〉.

In this section we will evaluate the F -homotopy limit spectral sequence con-
verging to H∗(BD8 ∗ C4; F2) for the family F = A of abelian subgroups of
D8 ∗ C4. This ring is isomorphic to ([CTVEZ03, App. C, #8(16)])

F2[z, y, x, w]/(zx+ y2 + x2, z2x+ zx2).

with degrees |z| = |y| = |x| = 1, and |w| = 4.

4.8.2 Summary of the computation
Because the computation of the A -homotopy limit spectral sequence of D8 ∗C4
is rather long, we summarize it here.

The cohomology ofD8∗C4 is detected on abelian subgroups (see Lemma 4.8.1
below). This lemma is part of the input of the calculation, and the proof of this
lemma uses the depth of the cohomology ring of D8 ∗C4 as input. In particular,
the computation of the A -homotopy limit spectral sequence carried out here
does not provide a new computation of the cohomology of D8 ∗ C4.

The strategy is the same as the one followed for the calculation of the E(2)-
homotopy limit spectral sequence of D8 (Section 4.4), that is, we apply the
decomposition from Section 2.7.

Therefore we compute the LHSSS’s needed for this decomposition. We need
4 LHSSS’s, but 3 of them we can identify using automorphisms of D8∗C4, which
we construct first.

After the computation of the LHSSS’s we compute the map j from the LES
in (2.1). This then allows us to calculate the A- and B- summand from (2.8),
and hence the E2-page.

Next we compute an upper bound of 3 on the A -exponent of HF2D8∗C4
,

which implies that the A -homotopy limit spectral sequence will collapse at E4
with a vanishing line of height 4. However, because D8 ∗C4 has its cohomology
detected on abelian subgroups, there will be even a vanishing line of height 1,
i.e., the spectral sequence will collapse to the s = 0-line.
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Using naturality and the fact that the spectral sequence will collapse to
the s = 0-line at E4, we can compute the rank of each differential in the A -
homotopy limit spectral sequence. We are not able to determine precisely which
class hits which, but we are able to determine which classes in the s = 0-line
support a differential.

4.8.3 The orbit category
The family F = A of abelian subgroups gives the following subcategory of the
orbit category:
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Figure 4.14: The category O(D8∗C4)A . All Weyl groups are elementary abelian.
The subcategory spanned by the highlighted objects is homotopy final.
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The Weyl groups are not displayed in Figure 4.14. They all turn out to be
elementary abelian.

We introduce the following notation for the maximal abelian subgroups of
D8 ∗ C4, all of which are isomorphic to C4 × C2

A1 = 〈γ, ργ〉,
A2 = 〈γ, σ〉,
A3 = 〈γ, σρ〉.

In addition, we denote the cyclic group of order 4 generated by γ by

C = 〈γ〉.

The group C equals any non-redundant intersection of the Ai’s:

C = Ai ∩Aj = A1 ∩A2 ∩A3

for all i 6= j. We apply the decomposition of Section 2.7 with the Hi = Ai,
and with K = C. Therefore we will compute the LHSSS’s obtained from the
extensions C → D8 ∗ C4 → C2 × C2 and Ai → D8 ∗ C4 → C2. Before doing so,
we determine an upper bound on the A -exponent of HF2D8∗C4

.

4.8.4 An upper bound on the A -exponent
To give an upper bound on expA HF2D8∗C4

, we will use the following lemma.

4.8.1 Lemma The F2-cohomology of D8 ∗C4 is detected on abelian subgroups.

Proof The centralizers of the elementary abelian 2-subgroups of rank 2 of
D8 ∗C4 are precisely the Ai. If there would be a cohomology class which is not
detected on the Ai, then this would imply by [Car95, Thm. 2.3] that the depth
of H∗(BD8 ∗ C4; F2) is < 2. But the ring H∗(BD8 ∗ C4; F2) has depth 2 (see,
e.g., [CTVEZ03, App. C, #8(16)]), which gives the desired result. �

4.8.2 Corollary The A -homotopy limit spectral sequence converging to
H∗(BD8 ∗ C4) collapses at a finite page to the s = 0-line.

In addition, Lemma 4.8.1 allows us to prove the following.

4.8.3 Proposition The A -exponent of HF2D8∗C4
is ≤ 3.

Proof For each i, let τi denote the pullback of the sign representation along
the quotient map D8 ∗ C4 → D8 ∗ C4/Ai ∼= C2. Then T =

⊕
i τi is a real

representation of dimension 3 with isotropy in A . Moreover, T has a trivial
summand when restricted to any of the Ai, hence the Euler class eT is 0 by
Lemma 4.8.1. By Corollary 3.2.10 the result follows.
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4.8.5 The decomposition
We apply the decomposition of Section 2.7 with K = C and the Hi = Ai.

We therefore proceed by computing the LHSSS’s E∗,∗∗ (Ai) and E∗,∗∗ (C), and
subsequently A∗ and B∗, which will then give us the E2-page of the A -homotopy
limit spectral sequence. But first we discuss some automorphisms of the group
of D8 ∗ C4 and some low-dimensional Betti numbers that will go into these
computations.

4.8.6 Automorphisms of D8 ∗ C4

The elements ργ, σ and σρ form a generating set of D8 ∗C4. In this section we
construct an automorphism of D8 ∗ C4 that allows us to identify the LHSSS’s
of Ai → D8 ∗ C4 → C2 for all i.

4.8.4 Proposition Every permutation of the generators ργ, σ and σρ extends
to an automorphism of D8 ∗ C4.

Proof Number the 16 elements of D8 ∗ C4 as follows:

1: e 9: γ
2: ρ 10: ργ
3: ρ2 11: ρ2γ
4: ρ3 12: ρ3γ
5: σ 13: σγ
6: σρ 14: σργ
7: σρ2 15: σρ2γ
8: σρ3 16: σρ3γ

This numbering induces an inclusion i : D8 ∗ C4 → Σ16 into the symmetric
group on 16 elements, which on the generators given above is given by

ργ 7→ (1, 10)(2, 11)(3, 12)(4, 9)(5, 16)(6, 13)(7, 14)(8, 15),
σ 7→ (1, 5)(2, 6)(3, 7)(4, 8)(9, 13)(10, 14)(11, 15)(12, 16),
σρ 7→ (1, 6)(2, 7)(3, 8)(4, 5)(9, 14)(10, 15)(11, 16)(12, 13).

One easily checks that the element of Σ16 given by

(5, 6)(2, 4)(8, 7)(14, 15)(11, 9)(13, 16)

induces an inner automorphism φ of Σ16 which interchanges i(σ) and i(σρ) and
leaves i(ργ) fixed. Identifying D8 ∗ C4 with its image in Σ16 and restricting
φ|Im(i) yields an automorphism of D8 ∗ C4 which interchanges σ and σρ, and
leaves ργ fixed.

Likewise, the element of Σ16 given by

(5, 10)(14, 16)(12, 7)(4, 15)(9, 11)(13, 2)

yields an automorphism of D8 ∗ C4 that interchanges σ and ργ, and leaves σρ
fixed.

The two automorphisms we constructed restrict to two generating transpo-
sitions on the set {ργ, σ, σρ}, and hence we are done. �
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Using the automorphisms constructed in the proof of Proposition 4.8.4, we can
show the following.

4.8.5 Proposition There is an automorphism of D8 ∗ C4 that cyclically per-
mutes the elements of the set {ργ, σ, σρ} and fixes γ. In particular this auto-
morphism permutes the subgroups in {A1, A2, A3} cyclically.

Proof The existence of an automorphism that cyclically permutes the elements
of {ργ, σ, σρ} immediately follows from Proposition 4.8.4. For the statement
about γ, we note that γ = (σ · σρ)3 · ργ, and a direct computation shows that
the effect of any transposition on γ is given by

(σρ · σ)3 · ργ = γ−1,

(ργ · σρ)3 · σ = γ−1,

(σ · ργ)3 · σρ = γ−1.

Hence the cyclic permutation of 3 elements, being the composite of two trans-
positions, fixes γ. �

4.8.7 Low dimensional Betti numbers
We will denote the dimension of Hi(BD8 ∗ C4; F2), i.e. the i-th Betti number,
by hi. In the subsequent computations, we will freely use the following.

4.8.6 Proposition The Betti numbers hi for 0 ≤ i ≤ 4 are given by the fol-
lowing table:

i 0 1 2 3 4
hi 1 3 5 6 7

Table 4.3: The low dimensional Betti numbers hi.

Proof For i = 0 this is clear, and for i = 1 we observe that (D8 ∗ C4)ab =
D8 ∗ C4/〈ρ2〉 ∼= C×3

2 .
The statements for i ≥ 2 can, for instance, be verified using computer algebra

software such as GAP.

4.8.8 The LHSSS for C → D8 ∗ C4 → C2 × C2

We now compute the LHSSS for the central extension

(4.12) C4 ∼=
γ

C → D8 ∗ C4 →
σ

C2 ×
σρ

C2,

where the elements above the groups are generators. We introduce the following
notation for the elements of H∗(BC2 × C2):

a = δσ,

b = δσρ,
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and of H∗(BC):

x = δγ ,

β2x = β2δγ ,

where β2 denotes the second order Bockstein. Since the extension (4.12) is
central, the local coefficient system of the associated LHSSS is trivial, and we
get

E∗,∗2 = F2[a, b, x, β2x]/(x2),

with (s, t)-degrees given by |a| = |b| = (1, 0), |x| = (0, 1) and |β2x| = (0, 2). See
Figure 4.15 for a depiction of the E3-page, which up to differentials will turn
out to be isomorphic to the E2-page, because there are no non-zero differentials
on E2, as we will see in the next section.

Differentials on E2 and E3

The classes a and b are permanent cycles for degree reasons, and x is a permanent
cycle because h1 = 3. Since the 2-stem of the E2-page has 6 classes, but h2 = 5,
β2x will have to support a differential, which for degree reasons will be either a
d2 or a d3. There are finitely many possibilities, namely:

d2(β2x) ∈ F2{a2x, abx, b2x},
d3(β2x) ∈ F2{a3, a2b, ab2, b3}.

We first apply naturality to the map of central extensions

γ

C
γ

C4 ×
ρ

C2
ρ

C2

γ

C D8 ∗ C4
σ

C2 ×
σρ

C2

The rightmost vertical map is given by ρ 7→ σ ·σρ, and therefore on cohomology
by a = δσ 7→ δρ and b = δσρ 7→ δρ. The LHSSS of the top row collapses at E2 by
the Künneth theorem. Therefore d2(β2x) and d3(β2x), whatever they are, will
have to map to 0 in the LHSSS of the top row. This cuts down the possibilities
to

d2(β2x) ∈ F2{(a2 + b2)x},
d3(β2x) ∈ F2{a3 + b3, a2b+ ab2}.(4.13)

Applying naturality again, this time to the map of central extensions

γ

C
γ

C4 ×
σ

C2
σ

C2

γ

C D8 ∗ C4
σ

C2 ×
σρ

C2

,
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for which the right hand vertical map is given by σ 7→ σ, hence on cohomology
classes by a = δσ 7→ δσ and b = δσρ 7→ 0. Again, the LHSSS of the top row
collapses at E2. Combined with (4.13) this shows that d2(β2x) = 0, and that

d3(β2x) ∈ F2{a2b+ ab2}.

Since β2x has to support some differential, and we have determined the only
possible non-zero differential, we arrive at

(4.14) d3(β2x) = a2b+ ab2.

The E4 = E∞-page

The fact that d2 = 0 implies E3 ∼= E2, and the differential (4.14) shows that the
E3-page is given by

0 2 4 6 8 10 s+ t

0

2

4

6

s

x

a

b

β2x
[(β2x)

2]

a2b+ ab2

Figure 4.15: The E3-page.

Therefore the E4-page is given by

E4 ∼= F2[a, b, x, [(β2x)2]]/(x2, a2b+ ab2).

The E4-page has 7 classes in the 4-stem, and since h4 = 7 (Proposition 4.8.6),
the class [(β2x)2] is a permanent cycle. Alternatively, one can apply Kudo’s
transgression theorem: the class β2x transgresses with d3(β2x) = a2b+ab2. This
implies that the class [(β2x)2] = [Sq2(β2x)] also transgresses, i.e., d3([(β2x)2] =
0 and d4([(β2x)2]) = 0, and d5([(β2x)2]) = [Sq2(a2b + ab2)]. Applying the
Cartan formula several times shows

Sq2(a2b) = Sq2(a2)b+ Sq1(a2) Sq1(b) + a Sq2(b)
= a4b,
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and hence

Sq2(a2b+ ab2) = a4b+ ab4.

But since a and b are permanent cycles, we have

d3((a2 + ab+ b2)β2x) = (a2 + ab+ b2)(a2b+ ab2)
= a4b+ ab4,

so d5([(β2x)2]) = 0 also. In any case, [(β2x)2] is a permanent cycle and the
spectral sequence collapses at E4.

4.8.9 The LHSSS for Ai → D8 ∗ C4 → C2

We now compute the LHSSS for the extensions

Ai → D8 ∗ C4 → C2.

By Proposition 4.8.5, we can restrict to the case i = 1, which is the LHSSS of
the extension

γ

C4 ×
ργ

C2 → D8 ∗ C4 →
σ

C2.

We introduce the following notation for the following element of H∗(BC2):

c1 = δσ,

and for the elements of H∗(BC4 × C2):

y1 = δγ ,

β2y1 = β2δγ ,

z1 = δργ ,

where β2 denotes the second order Bockstein.

The local coefficient system

Since

σγσ−1 = γ,

σ(ργ)σ−1 = γ2 · ργ,
(4.15)

we have that the action of C2 on H1(BC4 × C4; F2) is determined by

y1 7→ y1,

z1 7→ z1.

To calculate the action on β2y1, we note that the second order Bockstein is
natural, but only well-defined up to the image of the first order Bockstein,
which in degree 2 is given by the squares of the elements in degree 1, i.e.,
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F2{z2
1}. Therefore σ · β2y1 ∈ {β2y1, β2y1 + z2

1}. To determine which of the two
possibilities we have, we apply naturality to the inclusion of groups

γ2

C2 ×
ργ

C2 ↪→
γ

C4 ×
ργ

C2(4.16)

which on cohomology is given by

y1 = δγ 7→ 0,
z1 = δργ 7→ δργ ,

β2y1 7→ δ2
γ2 .

The automorphism (4.15) on C4 ×C2 restricts along the inclusion (4.16) to the
automorphism of C2 × C2 which on elements is given by

γ 7→ γ,

ργ 7→ γ2 · ργ,

and therefore on the cohomology classes by

δ2
γ2 7→ δ2

γ2 + δ2
ργ ,

δργ 7→ δργ .(4.17)

This implies, by naturality, that σ ·β2y1 must be class of H∗(BC4×C2; F2) that
restricts via (4.16) to a class with a non-zero δ2

ργ-coefficient inH∗(BC2×C2; F2).
But there is only one such class in {β2y1, β2y1 +z2

1} by (4.17), namely β2y1 +z2
1

and therefore

σ · β2y1 = β2y1 + z2
1 .

The E2-page

We have H∗(BC4 × C2) ∼= F2[y1, z1, β2y1]/(y2
1), which has a C2 ∼= 〈σ〉-action

which we determined in the previous subsection: y1 and z1 are fixed and β2y1 7→
β2y1 + z2

1 . The E2-page of the LHSSS is given by the group cohomology of C2
with these coefficients.

The C2-module H∗(BC4 × C2) splits as

F2[y1, z1, β2y1]/(y2
1) = F2[z1, β2y1]⊕ F2[z1, β2y1]{y1}

(as C2-modules). The C2-module F2[z1, β2y1] splits further as

(4.18) F2[z2
1 , β2y1]⊕ F2[z2

1 , β2y1]{z1}

(as C2-modules). This splitting enables the computation of the C2-cohomology
with coefficients in F2[y1, z1, β2y1])/(y2

1) by computing the C2-cohomology with
coefficients in the C2-module (4.18).

The C2-cohomology H∗(BC2;M) with coefficients in any C2-module M is
in degree ∗ = 0 given by the C2-invariants of M , and in degrees ∗ ≥ 1 by
the C2-invariants of M modulo the C2-coinvariants of M , as can be seen from
mapping the standard minimal free F2[C2]-resolution of F2 into M .
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The C2-module F2[z2
1 , β2y1], equals F2[z2

1 +β2y1, β2y1]. On this latter poly-
nomial algebra, C2 acts by interchanging the polynomial generators. The in-
variants of this action are well-known and are given by

F2[z2
1 , (z2

1 + β2y1)β2y1].

We introduce the notation

q1 = (z2
1 + β2y1)β2y1,

so that the invariants are given by F2[z2
1 , q1], and the invariants modulo the

coinvariants are given by F2[q1].
Assembling back the splitting gives the invariants

F2[y1, z1, q1]/(y2
1),

and the invariants modulo coinvariants

F2[y1, z1, q1]/(y2
1 , z

2
1).

Assembling all the lines together then gives as the E2-page (recall that c1 = δσ):

E2 = F2[c1, y1, z1, q1]/(c1z2
1 , y

2
1)

with (s, t)-degrees given by |c1| = (1, 0), |y1| = |z1| = (0, 1) and |q1| = (0, 4). A
depiction of the E2-page is

0 2 4 6 8 10 s+ t

0

2

4

6

s

y1

z1

c1

q1

Figure 4.16: The E2 = E∞-page.

The class c1 is a permanent cycle for degree reasons, and y1, z1 and q1 are
permanent cycles because h1 and h4 equal to the number of classes in the 1-
stem and 4-stem respectively (Proposition 4.8.6). Hence the spectral sequence
collapses at E2.
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4.8.7 Remark To get a better understanding of the multiplicative structure
depicted in Figure 4.16 it can be helpful to observe that E2 ∼= F2[y1]/(y2

1) ⊗
F2[c1, z1, q1]/(c1z2

1) and to display only the second tensor factor:
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z1

c1

q1

Figure 4.17: The tensor factor F2[c1, z1, q1]/(c1z2
2) of the E2-page.

4.8.10 Summary of LHSSS computations
We briefly summarize the LHSSS computations that we have carried out. The
E2 = E∞-page of the LHSSS of the extension A1 → D8 ∗ C4 → C2 is given by

E2 = E∞ ∼= F2[c1, y1, z1, q1]/(c1z2
1 , y

2
1).

For the subgroup A2, we introduce the notation

c2 = δρ

for the element of H∗(BD8 ∗ C4/A2) and

y2 = δγ ,

z2 = δσ,

q2 = (δ2
σ + β2δγ)βδγ

for the elements of H∗(BA2).

For the subgroup A3 we introduce the notation

c3 = δσ,

y3 = δγ ,

z3 = δσρ,

q3 = (δ2
σρ + β2δγ)β2δγ .
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Then, by the automorphism of Proposition 4.8.5 the E2 = E∞-page of the
LHSSS of the extensions Ai → D8 ∗ C4 → C2 is given by

E2 = E∞ ∼= F2[ci, yi, zi, qi]/(ciz2
i , y

2
i )

with (s, t)-degrees given by |ci| = (1, 0), |yi| = |zi| = (0, 1) and |qi| = (0, 4).
The E2-page of the LHSSS of the central extension C → D8 ∗C4 → C2×C2

is given by

E2 ∼= F2[a, b, x, β2x]/(x2).

The differential d2 = 0, and d3 is generated by d3(β2x) = a2b + ab2. We
introduce the notation r = [(β2x)2]. Then the E4 = E∞-page is given by

E4 = E∞ ∼= F2[a, b, x, r]/(x2, a2b+ ab2)

with (s, t)-degrees given by |a| = |b| = (1, 0), |x| = (0, 1) and |r| = (0, 4).

4.8.11 The map j∗

In this subsection we determine the effect of the map j∗ in the long exact
sequence (2.1), which in terms of group cohomology is given by

(4.19)
3⊕
i=1

H∗(BC2;H∗(BAi; F2)) j∗−→
2⊕
k=1

H∗(BC2 × C2;H∗(BC; F2)),

given by the matrix

(4.20)
(

1 −1 0
0 1 −1

)
,

and the inclusions C → Ai and the quotient maps D8 ∗ C4/C → D8 ∗ C4/Ai.
In (4.19) we have used that finite products and coproducts coincide in graded
F2-algebras.

4.8.8 Notation For the elements of
⊕3

i=1H
∗(BC2;H∗(BAi; F2)) we will write

c1 = (c1, 0, 0), y1 = (y1, 0, 0), c2 = (0, c2, 0), etc.
For the elements of

⊕2
k=1H

∗(BC2 × C2;H∗(BC; F2) we write a1 = (a, 0),
b1 = (b, 0), a2 = (0, a), etc. For example, we have a1 + a2 = (a, a).

4.8.9 Proposition The map j from the long exact sequence (2.1) in terms of
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(4.19) is given by

c1 7→ a1 + b1 = (a+ b, 0),
c2 7→ b1 + b2 = (b, b),
c3 7→ a2 = (0, a),
y1 7→ x1 = (x, 0),
y2 7→ x1 + x2 = (x, x),
y3 7→ x2 = (0, x),
zi 7→ 0,

β2y1 7→ β2x1 = (β2x, 0),
β2y2 7→ β2x1 + β2x2 = (β2x, β2x),
β2y3 7→ β2x2 = (0, β2x),
q1 7→ (β2x1)2 = ((β2x)2, 0),
q2 7→ (β2x1)2 + (β2x2)2 = ((β2x)2, (β2x)2),
q3 7→ (β2x2)2 = (0, (β2x)2).(4.21)

Proof The map j∗ in the long exact sequence (2.1) is determined by the inclu-
sions C → Ai, which is given by γ 7→ γ, and the induced maps on Weyl groups
D8 ∗ C4/C → D8 ∗ C4/Ai, which for i = 1 is given by

σ 7→ σ,

σρ 7→ σ,

for i = 2 is given by

σ 7→ e,

σρ 7→ ρ,

and for i = 3 is given by

σ 7→ σ,

σρ 7→ e.

This and the matrix (4.20) shows that on cohomology classes we have

c1 = δσ 7→ δσ1 + δσρ1 = a1 + b1,

c2 = δρ 7→ δσρ1 + δσρ2 = b1 + b2,

c3 = δσ 7→ δσ2 = a2,

which takes care of the first three assignments of (4.21).
For the remaining four assignments of (4.21), we observe that the restrictions

H∗(BAi; F2)→ H∗(BC; F2)

are for all i on low dimensional cohomology classes given by

yi = δγ 7→ δγ = x,

zi 7→ 0,
β2yi = β2δγ 7→ β2x,

qi = (z2
i + β2yi)β2yi 7→ (β2x)2.
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This together with the matrix (4.20) completes the proof of the remaining as-
signments. �

The B-summand

Having determined j∗, we now compute the B = ker(j∗)-summand of the short
exact sequence (2.9). The degree ≥ 1 part of the domain of j∗ is given by

3⊕
i=1

F2[ci, yi, zi, qi]/(ciz2
i , y

2
i ){ci}.

We have that the map j∗ maps

c1 7→ a1 + b1,

c2 7→ b1 + b2,

c3 7→ a2,

in particular, the ci map to algebraically independent polynomial generators of
the codomain. Therefore the kernel of j∗ in degree ≥ 1 is given by the direct
sum of the kernels of the 3 summands.

The classes qi map to a polynomial generator in the codomain. The classes
yi map to a non-zero element that squares to 0, but the classes yi themselves
also square to 0. Finally, the classes zi map to 0. Therefore the kernel of each
summand is given by

F2[ci, yi, zi, qi]/(y2
i , ciz

2
i ){cizi} = F2[ci, yi, qi]/(y2

i ){cizi},

and hence the kernel of j∗ is in degrees ≥ 1 given by

ker(j∗)s≥1 =
3⊕
i=1

F2[ci, yi, qi]/(y2
i ){cizi}.

For the computation of the degree = 0 part of ker(j∗), we introduce the notation

y = (y1, y2, y3),
q = (q1, q2, q3),

and recall the notation

z1 = (z1, 0, 0),
z2 = (0, z2, 0),
z3 = (0, 0, z3).

The domain of j∗ in degree = 0 is given by

3⊕
i=1

F2[yi, zi, qi]/(y2
i ).
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The classes yi map to a non-zero class that squares to 0, but the yi also square
to 0. The classes qi map to polynomial generators, and the classes zi map to 0.
The images of the yi satisfy the single relation

3∑
i=1

j∗(yi) = 0,

and the images of the qi satisfy also the single relation

3∑
i=1

j∗(qi) = 0.

Therefore, for a class to be in the kernel of j∗, it needs to be a multiple of at
least one of the following:

z1, z2, z3, y, q,

which shows that the kernel in degree = 0 is given by

ker(j∗)s=0 = F2[z1, z2, z3, y, q]/(z1z2, z1z3, z2z3, y
2).

The entire kernel is depicted in the following diagram:

0 2 4 6 8 10 s+ t

0

2

4

6

s

Figure 4.18: The B-summand, which equals ker(j∗).
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The A-summand

The determination of j∗ allows us to write down Im(j∗). For s ≥ 1 the image
splits because the map j∗ itself splits:

Im(j∗)s≥1 =F2[(a+ b, 0), (x, 0), ((β2x)2, 0)]/((x, 0)2)
⊕ F2[(b, b), (x, x), ((β2x)2, (β2x)2)]/((x, x)2)
⊕ F2[(0, a), (0, x)(0, (β2x)2)]/((0, x)2).

For s = 0 the image is

Im(j∗)s=0 = F2[(x, 0), ((β2x)2, 0), (0, x), (0, (β2x)2)].

The cokernel coker(j∗) is then given by

0 2 4 6 8 10 s+ t
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Figure 4.19: The cokernel of j∗, with the differentials induced from the map of
spectral sequences.

The E2-page

Since E2 ∼= A ⊕ B as bigraded F2-modules, the E2-page, without differentials,
is given by
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Figure 4.20: The E2-page of the A -homotopy limit spectral sequence converging
to the group cohomology of D8 ∗ C4, without differentials.

4.8.12 Differentials
By Proposition 4.8.3, the A -exponent of HF2D8∗C4

is ≤ 3, and hence the
A -homotopy limit spectral sequence will collapse at E4 with a vanishing line
of height 3. Furthermore, by Corollary 4.8.2, the spectral sequence will even
collapse to the s = 0-line.

We will see that the horizontal vanishing line implies that the d2-differentials
supported at the Es,t2 ∩ B with s > 0 and t ≡ 1, 2 (mod 4) map injectively to
Es+t,t−1

2 ∩A (cf. Figure 4.22). In particular, all these classes in the B-summand
die at E2. We are however not able to determine precisely which class in the
B-summand hits which class in the A-summand.

We also show that the vanishing line implies that the d2-differentials sup-
ported at E0,t

2 with t ≡ 1, 2 (mod 4) map surjectively to E2,t−1
2 ∩A. Using this

statement about surjectivity, we are after the fact able to determine which class
gets in E0,t

2 supports a differential. We postpone this to Section 4.8.14.
The long exact sequence (2.1) respects differentials. This implies that no

(red) B-summand class will hit another B-summand class, and that we have the
d3 coming from the LHSSS:
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0 2 4 6 8 10 s+ t
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Figure 4.21: A d3 coming from naturality.

Note however that, a priori, some of the classes involved supporting or get-
ting hit by the d3 in Figure 4.21 could already have died on the E2-page. We
will see however that this is not the case: all the differentials in Figure 4.21
actually occur. To see this, observe that the the (blue) A-summand classes in
the t ≡ 0, 1 (mod 4) diagonals that do not get hit by the d3 from Figure 4.21
need to die (since the spectral sequence will collapse to the s = 0-line), and the
only possibility for them to do so is to get hit by (red) B-summand classes (by
naturality they cannot get hit by (blue) A-summand classes).

The classes in the A-summand with degree (s, t) with s + t ≥ 5 and t ≡ 1
(mod 4) that do not get hit by a d3 from the A-summand can only get hit by
classes from the B-summand with degrees (s − 2, t + 1) or (s − 3, t + 2). But
there are no classes of degree (s − 3, t + 2) in the B-summand satisfying this
inequality and congruence, therefore these classes in the A-summand will have
to get hit by a d2 originating from the B-summand.

Now the classes in the B-summand with degree (s, t) with s = 2 and t ≡ 1
(mod 4) also will die. By naturality, they will not get hit by other classes from
the B-summand, hence they will hit a class from the A-summand, which for
degree reasons can only be a class in degree (4, t − 1) with a d2. If such a
class in the B-summand would hit the target of a d3 in the A-summand, then
the pre-image of this target in the A-summand, which lives in degree (1, t+ 1),
which would then be a permanent cycle, contrary to the fact that the spectral
sequence will collapse to the s = 0-line.

For the same reason, classes in the B-summand with degree (s, t) with s = 1
and t ≡ 2 (mod 4) cannot hit a class of the A-summand of degree (4, t − 2),
for there would remain permanent cycles in the s = 1-line. The only remaining
possibility for these classes in the B-summand to die is to hit the three classes
of the A-summand with degree (3, t− 1) that do not get hit by a d3 by a class
in the A-summand.

Finally, the only remaining possibility for the classes in the B-summand with



4.8. D8 ∗ C4 80

degree (s, t) with s = 1 and t ≡ 1 (mod 4) to die is to hit the three classes in
the A-summand with degree (3, t− 1).

This pattern of differentials is expanded in Figure 4.22.

0 2 4 6 8 10 s+ t
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Figure 4.22: The only possible pattern of d2’s and d3’s originating from the
classes in the B-summand with s-degree ≥ 1. The pattern only involves non-
zero d2-differentials.

With these d2’s determined, we also see that all the d3’s from Figure 4.21
need to happen.

Putting the d2 and d3 differentials that we’ve deduced so far together gives
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Figure 4.23: The d2 and d3 differentials deduced so far.

Of course the (blue) A-summand classes with s = 2 also need to die, and
they can only be killed by (red) B-summand classes on the s = 0-line. It
is an interesting question which classes in the s = 0-line precisely support a
differential, for this information is required if we want to have any hope of
deducing the ring structure on H∗(BD8 ∗ C4) from this spectral sequence. We
will leave this question for the next section, and for now only depict the A -
homotopy limit spectral sequence with all the differentials drawn:

0 2 4 6 8 10 s+ t
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Figure 4.24: The A -homotopy limit spectral sequence converging to the F2-
group cohomology of D8 ∗ C4.
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Since there are non-zero d3-differentials, we have expA HF2D8∗C4
≥ 3. Com-

bined with Proposition 4.8.3, this gives

4.8.10 Proposition The A -exponent satisfies

expA HF2D8∗C4
= 3.

4.8.13 Poincaré series
To compute the Poincaré series, we first recall that the s = 0-line of the E2-page
was given by

E0,∗
2 = F2[z1, z2, z3, y, q]/(z1z2, z1z3, z2z3, y

2).

Write R = F2[y, q]/(y2) for the subring of this 0-line. Then, as F2[q]-modules,
we have

R ∼= F2[q]{1, y},

and therefore R has Poincaré series (1+ t)/(1− t4). Furthermore, the s = 0-line
is, as an R-module, isomorphic to

E0,∗
2
∼= R⊕

3⊕
i=1

R[zi]{zi}.

Therefore E0,∗
2 has Poincaré series

1 + t

1− t4 + 3 · t(1 + t)
(1− t)(1− t4) = (1 + t)(1− t) + 3t(1 + t)

(1− t)(1− t4)

= 1 + 3t+ 2t2

(1− t)(1− t4) .

There is exactly one differential originating from E0,k
∗ for every k ≡ 1, 2 (mod 4),

and therefore E0,∗
∞ has Poincaré series

1 + 3t+ 2t2

(1− t)(1− t4) −
t+ t2

1− t4 = 1 + 2t+ 2t2 + t3

(1− t)(1− t4)

= (1 + t)(1 + t+ t2)
(1− t)2(1 + t)(1 + t2)

= 1 + t+ t2

(1− t)2(1 + t2) ,

cf. [CTVEZ03, App. C, #8(16)].

4.8.14 Differentials originating from the s = 0-line
We now determine the d2-differentials originating from the s = 0-line. These
classes kill the (blue) A-summand classes with s = 2, which are given by
[(rkxεa, 0)] with k ≥ 0 and ε = 0, 1.
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4.8.11 Proposition The equations

d2(y) = d2(z1) = d2(z2) = d2(z3) = [(a, 0)]

completely describe the differential d2 : E0,1
2 → E2,0

2 .

Proof We are looking for the classes that hit [(a, 0)] ∈ E2,0. If the element
y = (y1, y2, y3) were to survive to E∞, this would imply that H∗(BD8 ∗C4) had
an element that restricted to yi on all abelian subgroups. However, the classes
that do restrict to yi for the various i are given by:

A1: {δσ, δσρ}
A2: {δσρ, δργ}
A3: {δσ, δργ}

Since the intersection of these sets is empty, such a class does not exist, and
y will have to die, hence d2(y) = [(a, 0)].

Suppose (z1, 0, 0) did not support a d2. Then H∗(BD8 ∗ C4) would have a
class that restricted to δργ on A1 and to 0 on A2 and A3. But such a class does
not exist. Therefore d2((z1, 0, 0)) = [(a, 0)], and by symmetry (Proposition 4.8.5
and the fact that there is a unique (blue) A-summand class in E2,0) we also get
d2((0, z2, 0)) = d2((0, 0, z3)) = [(a, 0)]. This completes the proof. �

4.8.12 Proposition The equations

d2(z1y) = d2(z2y) = d2(z3y) = [(xa, 0)]

completely describe differential d2 : E0,2
2 → E2,1.

Proof We know that the class [(xa, 0)] dies. Squares cannot support d2-
differentials, hence some ziy, and therefore all ziy by Proposition 4.8.5, must
hit [(xa, 0)]. �

4.8.13 Remark The Leibniz rule together with the proof of Proposition 4.8.12
shows that we have at E2 the relation

y[(a, 0)] + zi[(a, 0)] = [(xa, 0)]

for all i.

4.8.14 Lemma For all k ≥ 0, l ≥ 3, ε = 0, 1 and i = 1, 2, 3 we have

d2(qkzliyε) = 0

Proof The class q is a permanent cycle, since there are no differentials orig-
inating from E0,4

∗ , by our computations in Section 4.8.12. First observe that

d2(z3
i ) = z2

i dzi = 0,
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because there is no differential originating from E0,3
∗ , by our computations in

Section 4.8.12. This then implies for l ≥ 3 that

d2(qkzli) = qkzl−1
i dz = 0.

Likewise, because there are no differentials originating from E0,3
2 , by our

computations in Section 4.8.12, we have

d2(z2
i y) = z2

i dy = 0,

and because there are no differentials originating from E0,4
2 either, we have

d2(z3
i y) = yz2

i dzi + z3
i dy = 0.

This then shows for k ≥ 0, l ≥ 3 that
�

d2(qkzliy) = 0.

4.8.15 Proposition The equations

d2(qkzi) = d2(qky) = [(rka, 0)]

completely describe the differentials d2 : E0,4k+1
2 → E2,4k

2 .

Proof By Lemma 4.8.14, the only classes that possibly can support a non-
zero differential are the qkzi and qky. We also know that there must be some
non-zero differential. By Proposition 4.8.11, we have

d2(qkzi) = qk[(a, 0)],
d2(qky) = qk[(a, 0)].

Since at least one of these differentials must be non-zero, they both are (since
they hit the same class). �

4.8.16 Remark The proof of Proposition 4.8.15 shows that we have at E2 the
relation

qk[(a, 0)] = [(rka, 0)].

In a completely similar manner we have

4.8.17 Proposition The equations

d2(qkziy) = [(rkxa, 0)]

completely describe the differentials d2 : E0,4k+2
2 → E2,4k+1

2 .

Proof There is at least some class in E0,4k+2
2 that kills [(rkxa, 0)]. By

Lemma 4.8.14, the only candidates are the qkziy. Since for all i we have

d2(qkziy) = qk[(xa, 0)],

we must have that qk[(xa, 0)] = [(rkxa, 0)], since that is the only possibility for
the latter class to die. �
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4.8.18 Remark The proof of Proposition 4.8.17 shows that we have at E2 the
relation

qk[(xa, 0)] = [(rkxa, 0)].

4.8.15 Exponents for various families
In this subsection we will determine upper bounds on the F -exponent of
HF2D8∗C4

for two different families, one of which is E(2).
The group D8 ∗C4 has three subgroups isomorphic to D8: 〈σ, σρ〉, 〈σρ, ργ〉,

and 〈ργ, σ〉, which are all normal. Denote them by H1, H2 and H3. Denote by
τi the real 1-dimensional representation of D8 ∗ C4 obtained from pulling back
the sign representation along the quotient map D8∗C4 → D8∗C4/Hi

∼= C2, and
let eτi

be the corresponding Euler classes. Let e be the Euler class of
⊕3

i=1 τi.

4.8.19 Lemma The
⋃3
i=1 A ``Hi-exponent satisfies

exp⋃3
i=1

A ``Hi

HF2 ≤ 3.

Proof The Euler classes eτi
are all distinct, because resD8∗C4

Hi
eτj

= 0 if and
only if i = j. They are one dimensional cohomology classes, hence detected
on the E∞-page of the A -homotopy limit spectral sequence considered in the
previous sections. Since the Euler classes eτi are of cohomological degree 1, and
since the A -homotopy limit spectral sequence collapsed to the 0-line, they are
detected in

(4.22) E0,1
∞ = F{[z1 + y], [z2 + y], [z3 + y]}.

The automorphism from Proposition 4.8.5 that cyclically permutes the genera-
tors {σ, σρ, ργ} also cyclically permutes the groups {H1, H2, H3}, since it cycli-
cally permutes the generators of these dihedral groups. This automorphism also
cyclically permutes the basis elements of (4.22).

We now consider three cases. The first case is that eτ1 is detected by [zi+y]
for some i. Then eτ2 is detected by [zi+1 + y] and eτ3 is detected [zi+2 + y],
where the indices of the z’s are understood to be classes modulo 3. Because

3∏
i=1

[zi + y] = [z1y + z2y][z3 + y] = 0,

we have that e is 0 up to higher filtration, of which there is none. Hence in this
case e = 0.

The second case is that eτ1 is detected by some [zi + y] + [zj + y] with i 6= j.
Again the automorphism from Proposition 4.8.5 then shows that eτ2 is detected
by [zi+1 + y] + [zj+1 + y] and eτ3 is detected by [zi+2 + y] + [zj+2 + y], where
the indices of the z’s are understood to be classes modulo 3. Because

3∏
i=1

([zi + y] + [zi+1 + y]) =
3∏
i=1

[zi + zi+1]

= [z2
2 ][z3 + z1]

= 0,
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we have again that e is 0 up to higher filtration, of which there is none. Hence
also in this case e = 0.

The third and final case is that eτ1 is detected by
∑3
i=1[zi + y]. But the

latter is fixed by the automorphism of Proposition 4.8.5, hence this implies that
eτ1 is fixed up to higher filtration, of which there is none. This contradicts the
fact that the automorphism maps eτ1 7→ eτ2 and that the eτi

are distinct, so in
fact this case does not occur.

We conclude that in any case, e = 0, and by Corollary 3.2.10, the result
follows. �
4.8.20 Corollary The E(2)-exponent satisfies expE(2)

HF2D8∗C4
≤ 5.

Proof This follows from Proposition 4.8.3, Lemma 4.8.19, A ∩
(⋃3

i=1 A ``Hi

)
=

E(2), Lemma 3.2.6, and 3 + 3− 1 = 5. �
We can slightly improve the bound in Corollary 4.8.20 as follows.
4.8.21 Proposition The E(2)-exponent satisfies expE(2)

HF2D8∗C4
≤ 4.

Proof Let

σ 7→


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , ρ 7→


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , γ 7→


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


be the underlying 4-dimensional real representation from [Tot14, Lem. 13.5].
The following table gives, up to inverses, all elements of D8 ∗ C4, the effect of
this representation on a line [x1 : y1 : x2 : y2], and the set of lines each element
fixes.

g g[x1 : y1 : x2 : y2] fixes the lines in the set(s)
ρ [−x2 : −y2 : x1 : y1] ∅
ρ2 [−x1 : −y1 : −x2 : −y2] ∅
γ [−y2 : x1 : −y2 : x2] ∅

σργ [y2 : −x2 : y1 : −x1] ∅
σγ [−y1 : x1 : y2 : −x2] ∅
σ [x1 : y1 : −x2 : −y2] {x1 = y1 = 0}, {x2 = y2 = 0}

σρ2 [−x1 : −y1 : x2 : y2] {x1 = y1 = 0}, {x2 = y2 = 0}
σρ [−x2 : −y2 : −x1 : −y1] {x1 = x2, y1 = y2}, {x1 = −x2, y1 = −y2}
σρ3 [x2 : y2 : x1 : y1] {x1 = x2, y1 = y2}, {x1 = −x2, y1 = −y2}
ργ [y2 : −x2 : −y1 : x1] {x1 = y2, y1 = −x2}, {x1 = −y2, y1 = x2}
ρ3γ [−y2 : x1 : y2 : −x2] {x1 = y2, y1 = −x2}, {x1 = −y2, y1 = x2}

Table 4.4: The elements of D8 ∗C4, their effect on a line in the above represen-
tation, and the lines fixed by each element.

Write

L1 = {x1 = y1 = 0} ∪ {x2 = y2 = 0},
L2 = {x1 = −x2, y2 = −y1} ∪ {x1 = x2, y1 = y2},
L3 = {x1 = y2 = y1 = −x2} ∪ {x1 = −y2 = y1 = x2}.
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Then the Li, together with the set of all lines, are the sets of lines that occur as
the lines fixed by an element of D8∗C4. We immediately see from Table 4.4 that
the lines in L1 are fixed by 〈σ, σρ2〉, the lines in L2 are fixed by 〈σρ, σρ3〉, and the
lines in L3 are fixed by 〈ργ, ργ3〉. Moreover, the Li are pairwise disjoint. To see
this, note that a line in L1∩L2 would be fixed by both σ and σρ, hence by their
product σ ·σρ = ρ. But ρ does not fix any line, by Table 4.4. Similarly, a line in
L2 ∩L3 would be fixed by both σρ and ρ3γ, but σρ · ρ3γ = σγ does not fix any
line. Lastly, a line in L3∩L1 would be fixed by σ ·ργ, which does not fix any line.
Therefore, no line is fixed by a strict supergroup of 〈σ, σρ2〉, 〈σρ, σρ3〉, 〈ργ, ρ3γ〉,
which are therefore the maximal isotropy groups of a line. All these three groups
are elementary abelian, so the result follows from Proposition 3.3.3. �

We can use the previous proposition to determine the E(2)-exponent.

4.8.22 Proposition The E(2)-exponent satisfies

expE(2)
HF2 = 4.

Proof The upper bound is Proposition 4.8.21, the lower bound follows from
the fact that D8 ∗C4 has a subgroup isomorphic to the quaternion group Q8 of
order 8, generated by 〈ρ, σγ〉. Now Proposition 4.5.4 and Lemma 3.2.4 imply
the desired lower bound.

4.9 C4 o C4

Let r and s generate two copies of C4: 〈r | r4 = e〉, 〈s | s4 = e〉 ∼= C4. Let
〈s〉 act on 〈r〉 by s · r = r−1. Then C4 o C4 is defined to be the semi-direct
product 〈r〉 o 〈s〉. A presentation is C4 o C4 = 〈r, s | r4 = s4 = e, srs−1 =
r3〉. We will compute the E(2)-homotopy limit spectral sequence converging to
H∗(BC4 o C4; F2) which is isomorphic to ([CTVEZ03, App. C, #10(16)])

F2[z, y, x, w]/(z2 + y2, zy).

with degrees |z| = |y| = 1, |x| = |w| = 2.

4.9.1 An upper bound on the exponent
In this section we show the following upper bound on the E(2)-exponent:

expE(2)
HF2C4oC4

≤ 8.

4.9.1 Lemma For P the family of proper subgroups of C4 o C4, we have the
upper bound:

expP HF2C4oC4
≤ 4.
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Proof Consider the linear action of C4 o C4 on R4 from [Tot14, Lem. 13.7]
given by

s 7→


1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

 , r 7→


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

We compute the lines fixed by this action. A group element g fixes a line L if
and only if g−1 fixes L. Furthermore, the central element r2s2 fixes all lines.
Hence the table below suffices to determine the isotropy groups of all lines:

g g[x1 : y1 : x2 : y2] fixes the lines in the set(s)
r [−y1 : x1 : x2 : y2] {x1 = y1 = 0}
r2 [−x1 : −y1 : x2 : y2] {x1 = y1 = 0}, {x2 = y2 = 0}
s [x1 : −y1 : −y2 : x2] {x2 = y2 = x1 = 0}, {x2 = y2 = y1 = 0}
rs [y1 : x1 : −y2 : x2] {x2 = y2 = x1 − y1 = 0}, {x2 = y2 = x1 + y1 = 0}
r2s [−x1 : y1 : −y2 : x2] {x2 = y2 = x1 = 0}, {x2 = y2 = y1 = 0}
r3s [−y1 : −x1 : −y2 : x2] {x2 = y2 = x1 − y1 = 0}, {x2 = y2 = x1 + y1 = 0}
s2 [x1 : y1 : −x2 : −y2] {x1 = y1 = 0}, {x2 = y2 = 0}
rs2 [−y1 : x1 : −x2 : −y2] {x1 = y1 = 0}

From this table we read of that the maximal isotropy groups are:

1. The group 〈r, s2〉 ∼= C4 × C2, fixing the lines in the set {x1 = y1 = 0}.

2. The group 〈r2, s〉 ∼= C2×C4 fixing the lines in the sets {x2 = y2 = x1 = 0}
and {x2 = y2 = y1 = 0}.

3. The group 〈r2, rs〉 ∼= C2 × C4, fixing the lines in the sets {x2 = y2 =
x1 − y1 = 0} and {x2 = y2 = x1 + y1 = 0}.

These are precisely the maximal proper subgroups of C4oC4, hence the minimal
family containing all the isotropy of P(R4) is P. An application of Proposi-
tion 3.3.3 yields the desired result. �

4.9.2 Proposition For E(2) the family elementary abelian subgroups, we have

expE(2)
HF2C4oC4

≤ 8.

Proof We apply Lemma 3.2.15 with F = P and G = E(2). All maximal
subgroups K in P are isomorphic to C4×C2, and for those we know (Proposi-
tion 4.3.1) that expE(2)

ResGK HF2 = 2. Hence, in the notation of Lemma 3.2.15,
m := maxK∈P mK = 2. Combined with n = expP HF2 = 4 this yields by
Lemma 3.2.15

�
expE(2)

HF2 ≤ 4 · 2 = 8.
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4.9.2 The spectral sequence
We will compute the E(2)-homotopy limit spectral sequence of HF2.

The elements of order precisely 2 in G are r2, s2, r2s2. Hence all elementary
abelian 2-subgroups are contained in 〈r2, s2〉 =: V4 ∼= C2 × C2, a copy of the
Klein four-group, which is also the center of G. Hence, by Proposition 2.6.1,
the E(2)-homotopy limit spectral sequence reduces to the LHSSS associated to
the central extension

V4 → G→ 〈r̄, s̄〉,

We observe that G/V4 is also isomorphic to the Klein four-group, and call this
group V ′4 . Hence the spectral sequence takes the form.

Es,t2 = Hs(BV ′4 ;Ht(BV4; F2))⇒ Hs+t(BG; F2).

Since the action of V ′4 on the center is trivial the local coefficient system is also
trivial. Hence the E2-page is isomorphic to

F2[δr̄, δs̄]⊗ F2[δr2 , δs2 ],

with (s, t)-degrees |δr| = |δs| = (1, 0), and |δr2 | = |δs2 | = (0, 1).

0 1 s+ t

0

1

s

•δr2

•δs2

•δ2
r2

•δr2δs2

•δ2
s2

•δr̄
•δs̄

•δ2
r̄

•δr̄δs̄
•δ2

s̄

Figure 4.25: E2-page for C4 o C4, with no differentials drawn.

To compute d2 we consider the map of spectral sequences given by restriction
to various subgroups.

First consider the restriction 〈r〉 ∼= C4 ↪→ G. This has one elementary
2-group, 〈r2〉 ∼= C2, and we get

1→ C2︸︷︷︸
=〈r2〉

C4︸︷︷︸
=〈r〉

C2︸︷︷︸
=〈r̄〉

→ 1

1→ V4︸︷︷︸
=〈r2,s2〉

G C2 × C2︸ ︷︷ ︸
=〈r̄,s̄〉

→ 1

We already saw that the LHSSS has a d2 given by d2(δr2) = δ2
r̄ (Section 4.3.1),
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where we use the same notation for dual elements in the cohomology of the
subgroups. This gives the following two conclusions for d2 of the LHSSS G:

1. d2δr2 has a non-zero δ2
r̄ -coefficient;

2. d2δs2 has a zero δ2
r̄ -coefficient.

Second we consider the restriction 〈s〉 ∼= C4 ↪→ G. This gives a similar
diagram

1→ C2︸︷︷︸
=〈s2〉

C4︸︷︷︸
=〈s〉

C2︸︷︷︸
=〈s̄〉

→ 1

1→ V4︸︷︷︸
=〈r2,s2〉

G C2 × C2︸ ︷︷ ︸
=〈r̄,s̄〉

→ 1

Again by dimension and degree reasons we infer that

3. d2δs2 has a non-zero δ2
s̄ -coefficient;

4. d2δr2 has a zero δ2
s̄ -coefficient.

Finally, we consider the restriction to 〈rs〉 ∼= C4 ↪→ G. Then (rs)2 = s2, and
we get the diagram

1→ C2︸︷︷︸
=〈s2〉

C4︸︷︷︸
=〈rs〉

C2︸︷︷︸
=〈rs〉

→ 1

1→ V4︸︷︷︸
=〈r2,s2〉

G C2 × C2︸ ︷︷ ︸
=〈r̄,s̄〉

→ 1

Now the inclusion C2 ↪→ C2 × C2 : rs 7→ r̄s̄ gives the restriction map in coho-
mology, which is given by

H∗(BC2 × C2; F2)→ H∗(BC2; F2)
δr̄ 7→ δrs

δs̄ 7→ δrs.

Again, the LHSSS supports a differential at δs2 with image δ2
rs, which implies

that

5. d2δs2 has an odd number of non-zero {δ2
r̄ , δr̄δs̄, δ

2
s̄}-coefficients.

6. d2δr2 has an even number of non-zero {δ2
r̄ , δr̄δs̄, δ

2
s̄}-coefficients.

Taking all these things together we obtain

d2δr2 = δ2
r̄ + δrδs,

d2δs2 = δ2
s̄ .(4.23)
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0 1 s+ t

0

1

s

•δr2

•δs2

•δ2
r2

•δr2δs2

•δ2
s2

•δr̄
•δs̄

•δr̄2

•δr̄δs̄
•δ2

s̄

Figure 4.26: E2-page for C4 o C4, with the generating differentials drawn.

Therefore we get that the E3-page is

E3 ∼= F2[δr̄, δs̄]/(δ2
r̄ , δr̄δs̄ + δ2

r̄)⊗F2 F2[[δ2
r2 ], [δ2

s2 ]].

0 1 2 3 4 5 s+ t

0

1

2

3

s

•δr̄
•δs̄

•[δr̄δs̄]

•[δ2
r2 ]

•[δ2
s2 ]

•[δ2
r2 ]

2

•[δ2
r2 ][δ

2
s2 ]

•[δ2
r2 ]

2

Å

Figure 4.27: E3-page for C4 o C4. There is a vanishing line of height 3.

This page has a vanishing line of height 3, and therefore

E∞ = E3

= F2[δr̄, δs̄]/(δ2
r̄ , δr̄δs̄ + δ2

r̄)⊗F2 F2[[δ2
r2 ], [δ2

s2 ]].
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4.9.3 Poincaré series
The resulting Poincaré series of H∗(BC4 o C4; F2) is

1 + 2t+ t2

(1− t2)2 = 1
(1− t)2 ,

(cf. [CTVEZ03, App. B and App. G, #10(16)]).

4.9.4 The exponent
Using the computation of the E(2)-homotopy limit spectral sequence, we improve
the upper bound on the E(2)-exponent from Proposition 4.9.2 by showing that

expE(2)
HF2C4oC4

≤ 4.

4.9.3 Lemma The Euler class e of the 1-dimensional real representation given
by pulling back the sign representation along the quotient map

C4 o C4 → C4 o C4/〈r, s2〉 ∼= C2 :

satisfies e2 = 0.

Proof We have the composite of quotient maps

r

C4 o
s

C4 →
s

C2 ×
r

C2 →
s

C2,

the composite being the quotient-by-〈r, s2〉-map. The Euler class of the sign
representation of C2 is δs ∈ H1(BC2). Euler classes are natural, so e is the
pullback of δs ∈ H1(BC2×C2). In other words, the edge map E1,0

2 → H1(BC4o
C4) maps δs → e. Hence δs detects e in the LHSSS. Since δ2

s = 0 on E3 on
account of the differentials in (4.23), e2 is zero up to higher filtration, of which
there is none. �

4.9.4 Lemma The Euler class e of the 1-dimensional real representation given
by pulling back the sign representation along the quotient map

C4 o C4 → C4 o C4/〈r2, s〉 ∼= C2

satisfies e3 = 0.

Proof The proof is the same as the proof of Lemma 4.9.3, but now e is detected
by δr instead of δs. The class δ2

r is non-zero, but δ3
r = 0, hence e3 is zero up to

higher filtration, of which there is none. �

4.9.5 Proposition The E(2)-exponent satisfies

HF2C4oC4
≤ 4.

Proof We just have to remark that 〈r2, s2〉, which is the unique maximal
elementary abelian 2-subgroup of C4 o C4, is the intersection of 〈r2, s〉 and
〈r, s2〉, the groups we divided out by in Lemma 4.9.3 and Lemma 4.9.4. Hence
by Lemma 3.2.11 and Lemma 3.2.6, expE(2)

HF2 ≤ 2 + 3− 1 = 4. �
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Proposition 4.9.5 together with the vanishing line of height 3 on E∞ implies
that

4.9.6 Proposition The E(2)-exponent satisfies

3 ≤ expE(2)
HF2 ≤ 4.

4.10 (C4 × C2)
ψ5
o C2

Let C4 = 〈x〉, C2 = 〈y〉, and recall from Definition 4.2.4 that ψ5 was defined to
be the element of Aut(C4 × C2) defined by x 7→ xy, y 7→ y. In this section we
will compute the E(2)-homotopy limit spectral sequence for the group G = (C4×

C2)
ψ5
oC2 converging to its cohomology ring, which is isomorphic to ([CTVEZ03,

App. C, #9(16)])

F2[u, v, w, r, t]/(u2, uv, uw, v2r + w2).

with degrees |u| = |v| = 1, |w| = |r| = |t| = 2.
Under the correspondence a ↔ x, b ↔ y and c ↔ z, this group admits a

presentation given by

G = 〈a, b, c | a4 = b2 = c2 = e, ab = ba, bc = cb, cac−1 = ab〉.

Let A be the normal subgroup 〈a2, bc, c〉 of G. The group A is the unique
maximal elementary abelian 2-subgroup of G, hence by Proposition 2.6.1 the
E(2)-homotopy limit spectral sequence reduces to the LHSSS obtained from the
extension A→ G→ C2.

The Weyl group WG(A) = 〈a〉 acts on the generators of A by

a(a2)a−1 = a2,

a(bc)a−1 = a(bc)a3 = (ab)4c = c,

a(c)a−1 = bc.

Writing x = δa2 , y = δbc, and z = δc, we get that C2 interchanges y and z and
fixes x.

Write σ1 = y + z, σ2 = yz, and b = δa. Taking a C2-projective resolution of
Z and applying Hom(−, H∗(BA)), we get that the s = 0-line of the E2-page is
given by the invariants

E0,∗
2 = F[σ1, σ2, x],

and the s-lines for s ≥ 1 are given by the invariants modulo the symmetrized
classed, which is

Es,∗2 = F2[σ2, x]{bs},

which assembles to

E2 = F2[b, σ1, σ2, x]/(bσ1)

with (s, t)-degrees given by |b| = (1, 0), |σ1| = (0, 1), |σ2| = (0, 2), |x| = (0, 1).
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4.10.1 Differentials
The subgroup C4 = 〈a〉 is normal because b commutes with a and ca2c−1 =
(ab)2 = a2.

The map of extensions

(4.24)

a2

C2
a

C4
a

C2

A G
a

C2

gives a map of LHSSS’s. This is induced by the maps in cohomology of the left
and right vertical maps, which are the inclusion C2 → A and the corresponding
quotient C2 → C2 (which is the identity). The inclusion C2 ↪→ A is on elements
given by a2 7→ a2, hence on cohomology by

x = δa2 7→ δa2 ,

y = δbc 7→ 0,
z = δc 7→ 0,

and therefore

σ1 = y + z 7→ 0,
σ2 = yz 7→ 0.

The right hand vertical map C2 → C2 of (4.24) is the identity, and hence in
cohomology also given by the identity map b = δa 7→ δa.

Because the differentials of the LHSSS of the top row are given by d2(δa2) =
δ2
a (Section 4.3.1), we must have

d2(x) = b2,

d2(σ1) = 0,
d2(σ2) = 0,

Observe that σ1x survives to E3 because

d2(σ1x) = σ1b
2 = 0.

The E2-page with differentials is depicted in the next picture.
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Figure 4.28: The E2-page with differentials.

The E3-page is given by

E3 = F2[b, σ1, σ2, [x2], [σ1x]]/(bσ1, b
2, [σ1x]2 − σ2

1 [x2], b[σ1x]),

which has a vanishing line of height 2, and therefore the spectral sequence
collapses as E3.

4.10.2 Poincaré series
The E2-page of the LHSSS is E2 = F2[b, σ1, σ2, x]/(bσ1). The polynomial ring
F2[b, σ1, σ2, x] has Poincaré series 1/((1 − t)3(1 − t2)), the ideal (bσ1) in this
ring, which is a free module over the ring, has therefore Poincaré series t2/((1−
t)3(1− t2)). Again because the ideal is a free module, the quotient has Poincaré
series (1− t2)/((1− t)3(1− t2)).

The classes supporting the d2-differential generate the sub-F2-module of E2
given by

F2[b, σ2, [x2]]{x},

and their image is

F2[b, σ2, [x2]]{b2}.

The first has Poincaré series t/((1− t)(1− t2)2), the second has Poincaré series
t2/((1− t)(1− t2)2), and therefore H∗(BG; F2) has Poincaré series

1− t2

(1− t)3(1− t2) −
t

(1− t)(1− t2)2 −
t2

(1− t)(1− t2)2 = 1
(1− t)3(1 + t) ,

cf. [CTVEZ03, App. B and App. G, #9(16)].
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4.10.3 The exponent
Consider the quotient map in the group extension

A→ G→ C2 ∼= 〈a〉

of which we just computed the LHSSS. This gives a 1-dimensional real repre-
sentation of G with oriented Euler class e. Because e restricts to 0 on A, we
see that e lives in filtration > 0 on E∞, in other words e = δa. The compu-
tation showed that δ2

a = 0, since there is nothing in higher filtration. Hence
by Lemma 3.2.11, expE(2)

HF2 ≤ 2, which together with the vanishing line of
height 2 on the E∞-page implies

4.10.1 Proposition The E(2)-exponent satisfies

expE(2)
HF2 = 2.

4.11 Q8 × C2

In this section we will compute the F -homotopy limit spectral sequence con-
verging to the group cohomology of Q8 × C2 and using the family F = E(2) of
elementary abelian subgroups. The computation suggests that there might be
a better way to do this using a Künneth-type theorem for the E(2)-homotopy
limit spectral sequence for HF2, but we have not been able to prove such a
theorem. The computation presented here is just a straightforward adaption of
the computation of the E(2)-homotopy limit spectral sequence for Q8.

Let i, j be the usual elements of Q8, and let σ be the generator of C2. The
group Q8×C2 has a maximal elementary abelian subgroup, C2×C2 ∼= 〈−1, σ〉,
which is furthermore central. Hence, by Proposition 2.6.1, the E(2)-homotopy
limit spectral sequence reduces to the LHSSS for the central extension

(4.25) 〈−1, σ〉 ∼= C2 × C2 → Q8 × C2 → C2 × C2 ∼= 〈i, j〉.

Since 〈−1, σ〉 is central, the coefficient system of B(−) applied to (4.25) is
trivial. Writing a = δi, b = δj , x = δ−1 and y = δσ, the E2-page of the E(2)
homotopy limit spectral sequence is therefore

Es,t2
∼= Hs(BC2 × C2;Ht(BC2 × C2))
∼= F2[a, b, x, y]

with (s, t)-degrees given by |a| = |b| = (1, 0), |x| = |y| = (0, 1).
Applying naturality to the map of extensions

〈−1, σ〉 Q8 × C2 〈i, j〉

〈σ〉 〈σ〉 {e}

.

shows that δσ = y is a permanent cycle.
The differentials of the LHSSS for the extension

〈−1〉 ∼= C2 → Q8 → C2 × C2 ∼= 〈i, j〉
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are well known (see Proposition 4.5.2). Using this, naturality, and the map of
extensions

〈−1, σ〉 Q8 × C2 〈i, j〉

〈−1〉 Q8 〈i, j〉

shows that

d2(x) = a2 + ab+ b2

d3([x2]) = a2b+ ab2.

Hence

(4.26) E4 ∼= F2[a, b, [x4], y]/(a2 + ab+ b2, a2b+ ab2)

which has a vanishing line of height 4. Therefore the spectral sequence collapses
and E4 = E∞.

4.11.1 The exponent
The above computation allows us to prove

4.11.1 Proposition The E(2)-exponent is

expE(2)
HF2Q8×C2

= 4.

Proof Elementary abelian subgroups of Q8 pull back to elementary abelian
subgroups of Q8 × C2 along the projection map Q8 × C2 → Q8. Therefore,
pulling back the 4-dimensional real representation of Q8 whose projectivation
has isotropy in E(2) considered in [MNN15, Ex. 5.18] along the projection map
gives a 4-dimensional real representation of Q8 × C2 with projectivation with
isotropy in E(2)(Q8 × C2). Hence, by Proposition 3.3.3, the exponent satisfies
expE(2)

HF2Q8×C2
≤ 4.

Conversely, the vanishing line of height 4 in (4.26) shows the reverse inclu-
sion, giving the desired result. �

4.12 D8 × C2

4.12.1 Introduction
In this section we analyze the behaviour of the E(2)-homotopy limit spectral
sequence converging to H∗(BD8 × C2; F2). The computation suggest, as the
computation for Q8 ×C2 did, that there might be a better way to do this com-
putation using a Künneth-type theorem for the E(2)-homotopy limit spectral
sequence for HF2, but we have not been able to prove such a theorem. The
computation presented here is just a straightforward adaption of the computa-
tion for D8.
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The elementary abelian subgroups of D8 pull back to elementary abelian
subgroups of D8 × C2 along the projection

D8 × C2 → D8,

and since D8 has a 2-dimensional real representation V such that the projecti-
vation P(V ) has istropy in E(2), the same is true for D8 × C2. Hence

expE(2)
HF2 ≤ 2.

Therefore the E(2)-homotopy limit spectral sequence will collapse on the E3-page
with a vanishing line of height ≤ 2. In fact, since the cohomology of both D8
and C2 is detected on elementary abelian subgroups (see, e.g., [Qui71a, Lem.
4.6]), the same is true for D8 × C2, by the Künneth Theorem. Therefore the
E(2)-homotopy limit spectral sequence will be concentrated in the s = 0-line on
E3 = E∞.

4.12.2 The decomposition
Let D8 = 〈σ, ρ |σ2 = ρ4 = e, σρσ−1 = ρ−1〉, C2 = 〈u |u2 = e〉. The maximal
elementary abelian subgroups of D8 × C2 are F1 := 〈σ, σρ2, u〉 ∼= C×3

2 and
F2 := 〈σρ, σρ3, u〉 ∼= C×3

2 . Closing this set of subgroups under intersections
adds the additional group

F1 ∩ F2 = 〈ρ2, u〉 =: Z ∼= C2 × C2

We apply the decomposition of Section 2.7 with K = Z, and Hi = Fi. We
therefore proceed by computing the LHSSS’s E∗,∗∗ (Fi) and E∗,∗∗ (Z).

4.12.3 The Serre spectral sequence for the subgroups Fi

We do the case i = 1, the case i = 2 being completely similar. We consider the
extension

(4.27) 〈σ, σρ2, u〉 ∼= F1 → D8 × C2 → C2 ∼= 〈ρ〉.

Write x1 = δσ, y1 = δσρ2 , z1 = δu, and a1 = δρ. The extension (4.27) induces
an action of C2 on F1 given by interchanging σ and σρ2 and fixing u. Hence
the s = 0-row of the Serre spectral sequence is isomorphic to the invariants in
x1 and y1 tensored with F2[z1]. Writing σ1,1 = x1 + y1 and σ2,1 = x1y1 for the
first and second elementary symmetric polynomial in x1 and y1, we have

E0,∗
2 = F2[σ1,1, σ2,1]⊗F2 F2[z1].

The rows with s > 0 are given by the symmetric polynomials in x1 and y1
divided out by the symmetrized polynomials, i.e., for s > 0,

Es,∗2 = as1F2[σ2,1]⊗F2 F2[z1].

Combining this gives

E∗,∗2 = F2[a1, σ1,1, σ2,1]/(a1σ1,1)⊗F2 F2[z1].
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with (s, t) degrees given by |a1| = (1, 0), |σ1,1| = |z1| = (0, 1), |σ2,1| = (0, 2).
For every k ≥ 0, the k-column

⊕
sE

s,k−s
2 of the E2-page has the dimension

of Hk(BD8 × C2; F2), as can be seen from the Künneth-formula, hence the
spectral sequence collapses at E2.

We don’t repeat the calculation for the case i = 2, but we do define for later
use for i = 2 the classes x2 = δσρ, y2 = δσρ3 , z2 = δu, a2 = δρ, σ1,2 = x2 + y2
and σ2,2 = x2y2.

4.12.4 The Serre spectral sequence for the subgroup Z

We consider the central extension

〈ρ2, u〉 = Z → D8 × C2 → C2 × C2 = 〈ρ〉.

Writing a3 = δσ, b3 = δσρ, x3 = δρ2 , z3 = δu, we have as the E2-page:

E2 = F2[a3, b3, x3, z3]

with (s, t)-degrees given by |a3| = |b3| = (1, 0), |x3| = |z3| = (0, 1).
Applying naturality to the map of extensions

〈ρ2〉 D8 C2 × C2

〈ρ2, u〉 D8 × C2 C2 × C2

shows that

d2(x3) = a3b3.

Applying naturality to the map of extensions

〈ρ2, u〉 D8 × C2 C2 × C2

〈u〉 〈u〉 {e}

shows that z3 is a permanent cycle. The classes a3 and b3 are permanent cycles
for degree reasons. Hence

E3 = F2[a3, b3, [x2
3], z3]/(a3b3).

Again by naturality, we see that [x2
3] is a permanent cycle, hence E3 = E∞.

4.12.5 The map j∗

We now compute the map j∗ in the long exact sequence (2.1) as a map of
spectral sequences coming from the maps of extensions

Z D8 × C2 C2 × C2

Fi D8 × C2 C2.
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Hence we determine the maps Z → Fi and C2 × C2 → C2 and their effect on
cohomology classes.

Inclusion of the center Z in F1

The inclusion

〈ρ2, u〉 → 〈σ, σρ2, u〉

is on elements given by

ρ2 7→ σ · σρ2,

u 7→ u

and therefore is in cohomology given by

x3 = δρ2 ← [ δσ = x1

x3 = δρ2 ← [ δσρ2 = y1

z3 = δu ← [ δu = z1.

Inclusion of the center Z in F2

The inclusion

〈ρ2, u〉 → 〈σρ, σρ3, u〉

is on elements given by

ρ2 7→ σρ · σρ3,

u 7→ u

and therefore is in cohomology given by

x3 = δρ2 ← [ δσρ = x2

x3 = δρ2 ← [ δσρ3 = y2

z3 = δu ← [ δu = z1.

The quotient of D8 × C2/F1 by C2

The quotient

D8 × C2/〈ρ2, u〉 → D8 × C2/〈σ, σρ2, u〉

is on elements given by

σ 7→ e

σρ 7→ ρ

and therefore is in cohomology given by

b3 = δσρ ←[ δρ = a1.
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The quotient of D8 × C2/F2 by C2

The quotient

D8 × C2/〈ρ2, u〉 → D8 × C2/〈σρ, σρ3, u〉

is on elements given by

σ 7→ ρ

σρ 7→ e

and therefore is in cohomology given by

a3 = δσ ←[ δρ = a2.

Summary

Summarizing, in the long exact sequence (2.1), we have

E2(Z) = F2[a3, b3, x3, z3],
E2(F1) = F2[a1, σ1,1, σ2,1, z1]/(a1σ1,1),
E2(F2) = F2[a2, σ1,2, σ2,2, z2]/(a2σ1,2).

The map j∗ is given by

a1 7→ b3,

σ1,2 = x1 + y1 7→ x3 + x3 = 0,
σ2,1 7→ x2

3,

z1 7→ z3,

a2 7→ a3,

σ1,2 7→ 0,
σ2,2 7→ x2

3,

z2 7→ z3.(4.28)

The kernel of j∗

The effect (4.28) of j∗ on cohomology classes shows that in s-degree s > 0, j∗ is
injective because a1 and a2 map to different non-nilpotent elements of E2(Z).
Hence ker j∗ is concentrated in s-degree equal to 0, and from (4.28) we deduce

(4.29) ker j∗ = F2[(σ1,1, 0), (0, σ1,2), (σ2,1, σ2,2), (z1, z2)]/((σ1,1, 0)(0, σ1,2)).

4.12.1 Remark As already mentioned, D8 × C2 has its F2-cohomology de-
tected on the elementary abelian 2-subgroups. Hence the edge map to the
s = 0-line of the E(2)-homotopy limit spectral sequence, which is precisely (4.29),
is injective. Moreover, the Poincaré series of (4.29) is precisely equal to the one
of H∗(BD8×C2; F2), hence the edge morhpism is also surjective. In particular,
there will be no differentials emitting from the s = 0-line. We argued before
that expE(2)

HF2 ≤ 2, hence all classes above the s = 0-line will either support
a differential or be hit by one on E2.
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The image of j∗

The effect (4.28) of j∗ on cohomology classes shows that

Im j∗ = F2{ai13 x
2l1
3 zk1

3 } ∪ {b
i2
3 x

2l2
3 zk2

3 }.

In other words, a class ai3bi
′

3 x
l
3z
k
3 not being in the image of j∗ is exactly equivalent

to at least one of the following conditions being true:

1. The exponents i and i′ are both > 0.

2. The exponent l ≡ 1 (mod 2).

4.12.6 The E2-page
Having computed ker j∗ and Im j∗, we know A = coker j∗[1] and B = ker j∗ in
(2.9). Moreover, since ∂ is a map of spectral sequences, and the fact that on
E2(Z) we have

d3(x3) = a3b3,

shows that we also have this differential on the E(2)-homotopy limit spectral
sequence under the identification (2.9).

Therefore all classes ai3bi
′

3 x
l
3z
k
3 in coker j∗ with l ≡ 1 (mod 2) will support a

differential:

(4.30) d2(ai3bi
′

3 x
l
3z
k
3 ) = ai+1

3 bi
′+1

3 xl−1
3 zk3 .

Hence all classes with even x3-exponent and strictly positive a3 and b3-exponent
get hit, which accounts for all classes in coker j∗: they all either hit or get hit
by a d2. Therefore there cannot be any d2-differentials emitting from the B-
summand, and E3 = B. Since this is concentrated in the s = 0-row, E3 = E∞.

4.12.7 Multiplicative extensions
Since on E∞ everything is concentrated in the s = 0 row, we have

B ∼= E0,∗
∞

∼= F 0H∗(BD8 × C2)/F 1H∗(BD8 × C2)
= H∗(BD8 × C2).

4.12.8 The exponent
We now prove

4.12.2 Proposition The E(2)-exponent satisfies

expE(2)
HF2 = 2.

Proof Pulling back transitive D8-orbits with isotropy in elementary abelian
groups along the projection map D8 × C2 gives transitive D8 × C2-orbits with
isotropy in elementary abelian groups. Therefore pulling back the representation
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of D8 considered in the proof of Corollary 4.4.3 along the projection map D8 ×
C2 → D8 gives a 2-dimensional real representation of D8 × C2 with isotropy in
E(2). Hence by Proposition 3.3.3 we have expE(2)

HF2D8×C2
≤ 2.

Conversely, in the above computation of the E(2)-homotopy limit spectral
sequence converging to H∗(BD8 × C2; F2), we saw that E2 6= E∞ (Equa-
tion (4.30)). Hence we also have the reverse inequality, and the result follows.�



Chapter 5

Properties of the
F -homotopy limit spectral
sequence for equivariant
K-theory

5.1 Elementary abelian 2-groups
5.1.1 Introduction
In [MNN15, App. B], the C -homotopy limit spectral sequence of KU is com-
puted for G = C×2

2 . The target of this spectral sequence is π∗KU ∼= R(G)[β±],
the polynomial ring on the Bott periodicity generator β, with |β| = 2, and its
inverse β−1, with coefficients in the representation ring of G. The E3-page is
the last page with differentials, hence expC KU ≥ 3.

In this section, we will establish lower bound on the C -exponent of KU for
all elementary abelian 2-groups. More precisely, we will show that for G = C×n2
we have expC KU ≥ n.

The proof can be summarized as follows. Most of the work goes into de-
scribing the edge map

(5.1) R(C×n2 )→ lim0

O(C×n
2 )op

C

R(−) ∼= E0,0
2

of the spectral sequence. The upshot is that the exponent (as a group) of the
cokernel of (5.1) is 2n−1 (Corollary 5.1.8). A qualitative analysis of the E2-page
shows that the classes in positive filtration are (at most) 4-torsion, and Bott
periodicity implies Es,t2 = 0 if s + t is odd. This then implies that there are
non-zero differentials on at least d(n − 1)/2e odd pages, whence expC KU ≥ n
(Proposition 5.1.10).

104
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5.1.2 The exponent of the cokernel of the edge map
We will determine the exponent of the cokernel of the edge map

(5.2) R(C×n2 )→ lim
O(C×n

2 )op
C

R(−) = E0,0
2

of the C -homotopy limit spectral sequence of KU . We will do this by finding
bases of the left and right hand side that diagonalize the edge map.

Splitting of the augmentation ideal

For e the trivial subgroup, identify R(e) ∼= Z by sending the trivial representa-
tion to 1. For every group H, the restriction map then gives a map R(H)→ Z,
the kernel of which is called the augmentation ideal of R(H) and is denoted
I(H). The map R(H) → Z is naturally split by sending 1 ∈ Z to the trivial
representation.

For the coefficient system R(−) on the orbit category O(G)F , for every
H ∈ F , the restriction map R(H) → R(e) ∼= Z gives a map R(−) → Z,
where Z is the constant coefficient system at Z. This map is naturally split, by
applying the natural splitting to every individual group H ∈ F .

Combining the two splittings splits the map (5.2) as a direct sum of maps

Z⊕ I(C×n2 )→ lim
O(C×n

2 )op
C

Z⊕ lim
O(C×n

2 )op
C

I(−) ∼= Z⊕ lim
O(C×n

2 )op
C

I(−).

This direct sum decomposition reduces describing (5.2) to describing

(5.3) I(C×n2 )→ lim
O(C×n

2 )op
C

I(−).

A basis for I(C×n2 )

Denote

C×n2 = 〈s1, . . . , sn | s2
i = e, sjsk = sksj ∀i, j, k〉.

Denote by σj the sign representation of 〈sj〉 ∼= C2, and also of the representation
of C×n2 given by

σj(si) =
{
−1 if j = i,

1 otherwise.

For J ⊂ {1, . . . , n}, denote

aJ =
∏
j∈J

(1− σj) ∈ R(C×n2 ).

Observe that aJ ∈ I(C×n2 ) if and only if J 6= ∅. In fact, more is true.

5.1.1 Proposition The set A := {aJ}∅ 6=J⊂{1,...,n} is a basis of I(C×n2 ) as a
Z-module.
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Proof Since {1, σj} is a basis of R(〈sj〉) ([Ser77, Sec. 5.1]) as a Z-module, the
set {1, 1 − σj} is also basis of R(〈si〉). Since R(C×n2 ) =

⊗
iR(〈si〉) ([Ser77,

Thm. 3.2.10]) the set {aJ}J⊂{1,...,n} is a basis of R(C×n2 ). Since a∅ generates
the Z-summand of R(C×n2 ) ∼= Z⊕ I(C×n2 ) and all aJ ∈ I(C×n2 ) for J 6= ∅, the
result follows. �

A basis for limO(C×n
2 )op

C
I(−)

We will now describe a Z-basis of limO(C×n
2 )op

C
I(−). This limit is given by the

equalizer

eq

∏
C∈C

I(C)→ I(e)

 ,

where the map from the product to I(e) comes from the universal property
of the product and the restriction maps I(C) → I(e) for every C. But since
I(e) = 0 this is equal to

∏
C∈C ′ I(C), where C ′ denotes the the set (not family)

of non-trivial cyclic subgroups of C×n2 .

5.1.2 Notation For J ⊂ {1, . . . , n}, denote sJ =
∏
j∈J sj ∈ C

×n
2 . Then the

elements of C ′ are in (1 : 1)-correspondence with the non-empty J via J ↔ 〈sJ〉.
Denote the sign representation of 〈sJ〉 by σJ , and denote 1 − σJ ∈ I(〈σJ〉)

by σJ . Observe that I(〈sJ〉) is Z-module of rank 1, generated by σJ .
Denote the projection

∏
C∈C ′ I(C) → I(〈sJ〉) by prJ , and let b′J be the

element of
∏
C∈C ′ I(C) satisfying prK(b′J) = σJ if K = J and 0 otherwise.

This discussion shows

5.1.3 Proposition The set B′ := {b′J |∅ 6= J ⊂ {1, . . . , n}} is a basis of
limO(C×n

2 )op
C
I(−).

The map (5.3) is not diagonal with respect to the bases A and B′. To get a
diagonal matrix, denote for non-empty J ⊂ {1, . . . , n}

bJ =
∑

J⊂K⊂{1,...,n}

b′K .

5.1.4 Proposition The set B = {bJ}∅6=J⊂{1,...,n} is a basis of limO(C×n
2 )op

C
I(−)

as a Z-module.

Proof First note that B ⊂ ZB′. Conversely, by the principle of inclusion-
exclusion,

b′J = bJ −
∑
J⊂K

#(K−J)=1

bK +
∑
J⊂K

#(K−J)=2

bK − · · · ,

hence also B′ ⊂ ZB. Proposition 5.1.3 and #B′ = #B now imply the desired
result. �
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The edge map

We now describe the edge map (5.1), which we reduced to describing (5.3),
which we will do in terms of the bases A and B.

5.1.5 Warning Although the next proposition is phrased in terms of the bases
A (Proposition 5.1.1) and B (Proposition 5.1.4), the proof will also make use of
the basis B′ (Proposition 5.1.3).

5.1.6 Proposition The map (5.3) is given on the bases A (Proposition 5.1.1)
and B (Proposition 5.1.4) by

(5.4) aJ 7→ 2#J−1bJ .

Proof For σ the sign representation of a cyclic group of order 2, we have
(1− σ)2 = 2σ. Hence for basis elements b′J , b′K ∈ B′, we have

(5.5) b′Jb
′
K =

{
2b′J if J = K,

0 otherwise.

By induction therefore, we also have (b′J)m = 2m−1b′J .
First we verify (5.4) on basis elements indexed by singletons:

a{j} = 1− σj
7→

∑
j∈J⊂{1,...,n}

b′J

=: b{j}.

Then, by multiplicativity of the edge map, we get for all non-empty J ⊂
{1, . . . , n}

aJ =
∏
j∈J

(1− σj)

7→
∏
j∈J

 ∑
j∈K⊂{1,...,n}

b′K


By the product structure on limO(C×n

2 )op
C
I(−), all terms of the sum with K 6⊃ J

will go to zero in the product. Hence we can discard those terms:

=
∏
j∈J

 ∑
J⊂K⊂{1,...,n}

b′K


The factors of this product do not depend on the index j anymore, so we get:

=

 ∑
J⊂K⊂{1,...,n}

b′K


#J
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which by Equation (5.5) equals

=
∑

J⊂K⊂{1,...,n}

(b′K)#J

= 2#J−1
∑

J⊂K⊂{1,...,n}

b′K

=: 2#J−1bJ . �

5.1.7 Corollary The cokernel of (5.3) (which equals the cokernel of (5.1)), is⊕
∅ 6=J⊂{1,...,n}

Z/2#J−1Z{bJ}.

5.1.8 Corollary The exponent of the cokernel of (5.1) is 2n−1.

5.1.3 A lower bound on expC KU

Using Corollary 5.1.8, we now prove a lower bound on expC KU . We do this
by analyzing the C -homotopy limit spectral sequence

(5.6) Es,t2 = lims

O(C×n
2 )op

C

R(−)[β±]⇒ R(C×n2 )[β±].

where β is the Bott periodicity generator with (s, t)-degree |β| = (0, 2). We
need the following lemma, which gives an upper bound on the torsion on the
E2-page for s ≥ 2.

5.1.9 Lemma In the C -homotopy limit spectral sequence (5.6), Es,t2 is annihi-
lated by 4 for s ≥ 1.

Proof For a family F ⊂ C , write Z[F ] for the constant coefficient system Z
restricted to O(C×n2 )F and then left Kan extended back up to O(C×n2 )C , as in
[MNN15, App. B]. As in [MNN15, B.3], the sum of the counit maps⊕

C∈C

Z[{e, C}]→ Z

is surjective and yields a short exact sequence of coefficient systems

(5.7) 0→
⊕
|C |−1

Z[{e}]→
⊕
C∈C

Z[{e, C}]→ Z→ 0.

This induces a long exact sequence of Ext-groups as in [MNN15, eq. B.6] that
we will not spell out, but we describe what we need.

The Ext-groups corresponding to the left term in (5.7) are isomorphic to a
direct sum of groups of the form Hs(BC×n2 ; Z), which are 2-torsion for s ≥ 1
by the Künneth theorem.

The Ext-groups corresponding to the middle term in (5.7) are isomorphic
to a direct sum of groups of the form Hs(BC×(n−1)

2 ;R(C2)). Here R(C2) is a
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free Z-module with trivial C×(n−1)
2 -action, hence Hs(BC×(n−1)

2 ;R(C2)) is also
2-torsion for s ≥ 1 by the Künneth theorem.

As in the proof of [MNN15, Thm. B.9], we obtain a short exact sequence

0→ As,t → Es,t2 → Bs,t → 0

where A and B are subquotients of the Ext-groups corresponding to the left and
middle term of the short exact sequence (5.7), but with A shifted by 1 in the
positive s-direction. In particular, A and B are 2-torsion for s ≥ 2, and hence
E2 is 4-torsion for s ≥ 2. �

5.1.10 Proposition For G = C×n2 , we have expC KU ≥ n.

Proof We consider the C -homotopy limit spectral sequence

Es,t2 = lims

O(C×n
2 )op

C

R(−)[β±]⇒ R(C×n2 )[β±].

where β is the Bott periodicity generator which has (s, t)-degree (0, 2). First, by
Lemma 5.1.9, the E2-page is qualitatively (made precise after the figure) given
by

−4 −2 0 2 t− s
0

2

s

� �
?

∗

�
?

∗
∗

∗

�
?

∗
∗

∗
∗

�
?

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

Figure 5.1: The E2-page qualitatively.

Here qualitatively means that every � signifies a free Z-module (not nec-
essarily of rank 1), every ∗ signifies a not necessarily free Z/4Z-module (not
necessarily of rank 1), every empty square signifies the 0 group and every ques-
tion mark ? signifies that it could be anything.

Second, by Corollary 5.1.8, we have that the edge map

R(C×n2 ) r̃es−−→ lim0

O(C×n
2 )op

C

R(−)

is injective and has cokernel with exponent 2n−1. That is, there is an x in E0,0
2

such that 2n−1x ∈ Im(r̃es) but 2n−2x /∈ Im(r̃es).
Combining these two points, we see that E0,0

2 will have to support at least
differentials on dn−1

2 e pages, since all the groups in positive filtration ≥ 2 are
4-torsion, and there is no possibility for a class in the s = 0-line to hit a question
mark in the s = 1-line, so taking a kernel gives at least a subgroup of index
4. The even differentials are all 0, and so we get that dM 6= 0 for some M ≥
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2dn−1
2 e+ 1 ≥ n, by the pigeonhole principle. Since expC KU ≤ N implies that

the spectral sequence degenerates at EN+1 ([MNN15, Prop. 2.26]), we get that
expC KU ≥ n, as desired. �

5.1.11 Remark By distinguishing between n even and odd, the proof in fact
shows

expC KU ≥

{
n+ 1 if n ≡ 0 (mod 2),
n if n ≡ 1 (mod 2).

5.1.4 Odd primes
We do not have a generalization of the structure result of the cokernel like Corol-
lary 5.1.7 to odd primes p yet. However, experimental evidence does suggest a
generalization. To describe it, we need the following combinatorial notion.

5.1.12 Definition ([And76], [Com74, Ex. I.16], [Fah12]) Define the poly-
nomial coefficient

(
x,q
k

)
by the coefficients of

(1 + t+ · · ·+ tq−1)x =
∑
k≥0

(
x, q

k

)
tk.

The coefficients for q = 2 are also known as binomial coefficients. Polynomial
coefficients for q = 3 we call trinomial coefficients. For arbitrary q we call them
the q-nomial coefficients.

5.1.13 Warning Polynomial coefficients are not the same thing as multinomial
coefficients.

5.1.14 Conjecture Let p be a prime. Set

en,k,p =
p−1∑
j=0

(
n, p

(p− 1)(k + 1)− j

)

(cf. for p = 3 [OEI05]). Then the cokernel of the edge map R(C×np )→ E0,0
2 of

the C -homotopy limit spectral sequence converging to π∗KU is isomorphic to

n−1⊕
k=0

(Z/pk)⊕en,k,p .

5.1.15 Remark For p = 2, Conjecture 5.1.14 is Corollary 5.1.7.

Experimental evidence for Conjecture 5.1.14 is given in Appendix A.

5.1.16 Corollary (of Conjecture 5.1.14) For G = C×np the elementary abelian
p-group of rank n, we have expC KU ≥ n.

Proof The same as the proof of Proposition 5.1.10. �
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5.1.5 The real case for p = 2
For G an elementary abelian 2-group, the complex and real representation rings
of G coincide, which we use to give a lower bound on expC KO using real Bott
periodicity. The argument is completely analogous to the complex case.

5.1.17 Proposition For G = C×n2 the C -exponent of KO satisfies

expC KO ≥ n.

Proof As in the complex case, there need to be at least dn−1
2 e non-zero dif-

ferentials, as again the E2-page is 4-torsion for s ≥ 2. However, real Bott pe-
riodicity is 8-fold periodic with 4 non-zero groups in each period, which makes
computing a lower bound on the r for which Er = E∞ a bit harder as it comes
down to making a case distinction on the class of n modulo 8 rather than n
modulo 2 as in the complex case. Nevertheless, one can do the counting, and
the result is:

expC KO ≥


2 + 2dn−1

2 e if n ≡ 0, 1 (mod 8),
2 + 2(dn−1

2 e − 1) + 1 if n ≡ 2, 3 (mod 8),
2 + 2(dn−1

2 e − 2) + 3 if n ≡ 4, 5 (mod 8),
2 + 2(dn−1

2 e − 3) + 7 if n ≡ 6, 7 (mod 8).

All these 4 expressions are ≥ n. �

5.1.18 Remark The proof in fact shows

(5.8) expC KO ≥



n+ 2 if n ≡ 0 (mod 8),
n+ 1 if n ≡ 1 (mod 8),
n+ 1 if n ≡ 2 (mod 8),
n if n ≡ 3 (mod 8),
n+ 1 if n ≡ 4 (mod 8),
n if n ≡ 5 (mod 8),
n+ 3 if n ≡ 6 (mod 8),
n+ 2 if n ≡ 7 (mod 8).

The fact that KU is a KO-module implies that KU is a retract of KO and
therefore expC KU ≤ expC KO. Hence the lower bounds on expC KU of Re-
mark 5.1.11 give lower bounds on expC KO, but the ones in (5.8) are in all cases
at least as good or better.



Appendix A

Sage computations

A.1 Introduction
Let p be a prime, and consider the edge map R(C×np )→ E0,0

2 of the C -homotopy
limit spectral sequnce (cf. Section 5.1.2 and Section 5.1.4). Denote the cokernel
of this map by Qp,n. Using Sage ([S+15]), we have computed the isomorphism
type of Qp,n for the primes p = 2, 3, 5, 7, 11 and various small values of n. The
results are summarized in the following five tables. Of course, for p = 2 we also
have Corollary 5.1.7. We also give the Sage code used for the computation. The
computations provide experimental evidence for Conjecture 5.1.14.

A.2 Summary of computations
A.2.1 p = 2
The following table gives Q2,n for 1 ≤ n ≤ 8. It turns out that for those values of
n, Q2,n is the direct sum of groups of the form (Z/2kZ)⊕ek , for some exponents
ek. The entry in the k-th row and n-th column of the table gives the exponent
ek of Z/2kZ in Q2,n. An empty entry means that the exponent is zero.

n 1 2 3 4 5 6 7 8
Z/2k
Z/1 1 2 3 4 5 6 7 8
Z/2 1 3 6 10 15 21 28
Z/4 1 4 10 20 35 56
Z/8 1 5 15 35 70

Z/16 1 6 21 56
Z/32 1 7 28
Z/64 1 8

Z/128 1

Table A.1: Exponent ek in decomposition of Q2,n as direct sum of groups of the
form (Z/2k)⊕ek .

112
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For instance, from the table we read off that

Q2,4 ∼= Z/8⊕ (Z/4)⊕4 ⊕ (Z/2)⊕6 ⊕ (Z/1)⊕4.

The reason that we write down those trivial groups is that Q2,3, for instance,
is the quotient of a free abelian group of rank 7. Hence in the quotient “there
really are” these trivial groups. Moreover, they fit nicely in the pattern of half
of Pascal’s triangle that this table has.

A.2.2 p = 3
Also for low values of n, Q3,n is isomorphic to a direct sum of groups of the form
(Z/3k)⊕ek for some exponents ek. The following table gives these exponents for
1 ≤ n ≤ 6 (we go less high because the algorithm takes too long to terminate
for higher n).

n 1 2 3 4 5 6
Z/3k
Z/1 2 5 9 14 20 27
Z/3 3 13 35 75 140
Z/9 4 26 96 267

Z/27 5 45 216
Z/81 6 71

Z/243 7

Table A.2: Exponent ek in decomposition of Q3,n as direct sum of groups of the
form (Z/3k)⊕ek .

For example,

Q3,4 ∼= (Z/27)⊕5 ⊕ (Z/9)⊕26 ⊕ (Z/3)⊕35 ⊕ (Z/1)⊕14

The pattern in the table seems to be described by pairwise sums of trinomial
coefficients, cf. [OEI05].

A.2.3 p = 5
We write down the same table as in the previous two sections for the prime 5:

n 1 2 3 4
Z/5k
Z/1 4 14 34 69
Z/5 10 70 285

Z/25 20 235
Z/125 35

Table A.3: Exponent ek in decomposition of Q5,n as a direct sum of groups of
the form (Z/5k)⊕ek .

The pattern of the table seems to be described by 4-term sums of 5-nomial
coefficients.
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A.2.4 p = 7
For the prime 7 the table is

n 1 2 3
Z/7k
Z/1 6 27 83
Z/7 21 203

Z/49 56

Table A.4: Exponent ek in decomposition of Q7,n as a direct sum of groups of
the form (Z/7k)⊕ek .

The pattern of the table seems to be described by 6-term sums of 7-nomial
coefficients.

A.2.5 p = 11
For the prime 11 the table is

n 1 2
Z/11k

Z/1 10 65
Z/11 55

Table A.5: Exponent ek in decomposition of Q11,n as direct sum of groups of
the form (Z/11k)⊕ek .

The pattern of the table seems to be described by 10-term sums of 11-nomial
coefficients.

A.3 Sage code
The Sage code implementing the cokernel calculation is

1 sage: def first_non_zero_entry (v):
2 ... r"""
3 ... Return the first non -zero entry of the row
4 ... vector ‘v‘.
5 ...
6 ... The input is a row vector ‘v‘. The output
7 ... is the first non -zero entry of ‘v‘,
8 ... starting from the right , if it exists .
9 ... Otherwise the output is None.

10 ... """
11 ... for i in range(v. parent (). rank ()):
12 ... if v[i] != 0:
13 ... return v[i]
14 ... return None
15 sage: def next_p_vector (v,p):
16 ... r"""
17 ... Return the next vector modulo p in lexicographic
18 ... ordering .
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19 ...
20 ... Input is a prime ‘p‘ and a row vector ‘v‘ with entries
21 ... between 0 and p -1.
22 ... Output is the next vector of this type in
23 ... lexicographic ordering , or None if no such
24 ... vector exists .
25 ... """
26 ... # Start at the right hand side of the row vector ‘v‘.
27 ... n = v. parent (). rank () - 1
28 ... # Move from the right to the left.
29 ... for i in range(v. parent (). rank ()):
30 ... # If we can increase the digit ...
31 ... if v[n-i] < p -1:
32 ... # ... do it , and return the resulting vector ,
33 ... v[n-i] = v[n-i] + 1
34 ... return v
35 ... # otherwise the entry equals ‘p-1‘, hence we need
36 ... # set the digit to zero and move one digit to
37 ... # the left
38 ... elif v[n-i] == p -1:
39 ... v[n-i] = 0
40 ... return None
41 sage: def matA(p,n):
42 ... r"""
43 ... Return a matrix with generators for all the
44 ... subgroups of ‘C_p^n‘ isomorphic to ‘C_p ‘.
45 ...
46 ... Input is a prime ‘p‘ and a natural number ‘n‘.
47 ... Output is a matrix ‘A‘ whose columns are
48 ... precisely generators of all the subgroups
49 ... of ‘C_p^n‘ isomorphic to ‘C_p ‘, namely the
50 ... vectors that have the shape
51 ... ‘(0 ,0 ,... ,1 ,* ,* ,... ,*)^T,‘ where ‘*‘ means any
52 ... entry and ‘^T‘ transpose .
53 ... """
54 ... # We first do some initialization .
55 ... # Make ‘v‘ the vector ‘(0 ,0 ,... ,0 ,1) ‘.
56 ... v = (ZZ**n)(0)
57 ... v[n -1] = 1
58 ... # Make the matrix ‘A‘ the same thing ,
59 ... # but then as a matrix :
60 ... A = MatrixSpace (ZZ ,n ,1)(0)
61 ... A[n -1 ,0] = 1
62 ... # Now ‘A‘ already has the current ‘v‘ as
63 ... # its first column , so we move on to the
64 ... # next ‘v‘:
65 ... v = next_p_vector (v,p)
66 ... # While we haven ’t gone through all the
67 ... # vectors ...
68 ... while v != None:
69 ... # ... if the current vector is one of our
70 ... # chosen generators ...
71 ... if first_non_zero_entry (v) == 1:
72 ... # ... augment it to A,
73 ... A = A. augment (v)
74 ... # otherwise , skip this vector .
75 ... v = next_p_vector (v,p)
76 ... # Once we have augmented all the
77 ... # generators to ‘A‘, return ‘A‘.
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78 ... return A
79 sage: def matB(p,n):
80 ... r"""
81 ... Return a matrix with columns the
82 ... non - identity elements of ‘C_p^n‘.
83 ...
84 ... Input is a prime p and a natural number n.
85 ... Output is a matrix whose columns are
86 ... precisely all the non - identity elements of
87 ... ‘C_p^n‘.
88 ... """
89 ... # First we do some initialization
90 ... # Set ‘v‘ to be the first non - identity
91 ... # element in lexicographic ordering .
92 ... # ‘v = (0 ,0 ,... ,0 ,1) ‘.
93 ... v = (ZZ**n)(0)
94 ... v[n -1] = 1
95 ... # Do the same for ‘B‘, but then as a
96 ... # matrix .
97 ... B = MatrixSpace (ZZ ,n ,1)(0)
98 ... B[n -1 ,0] = 1
99 ... # ‘B‘ now already has the current ‘v‘ as

100 ... # a column , so we move to the next ‘v‘.
101 ... v = next_p_vector (v,p)
102 ... # While we haven ’t added all elements ...
103 ... while v != None:
104 ... # add the current one.
105 ... B = B. augment (v)
106 ... v = next_p_vector (v,p)
107 ... return B
108 sage: def redmatmodp (Matr ,p):
109 ... r"""
110 ... Return the integer matrix ‘Matr ‘ with all
111 ... its entries reduced ‘\mod p‘.
112 ...
113 ... Input is a matrix ‘Matr ‘ with integer values
114 ... and a prime ‘p‘. Output is the matrix ‘Matr ‘
115 ... with integer entries , reduced ‘\mod p‘,
116 ... hence the output matrix has entries between
117 ... ‘0‘ and ‘p-1‘.
118 ... """
119 ... Matroutput = Matr. parent ()(0)
120 ... for row in range(Matr. parent (). nrows ()):
121 ... for col in range(Matr. parent (). ncols ()):
122 ... Matroutput [row ,col] = mod(Matr[row ,col],p)
123 ... return Matroutput
124 sage: def matD(C,p,n):
125 ... r"""
126 ... Input is a prime p, a natural number n,
127 ... and a matrix C with entries between 0
128 ... and p -1. The idea is that all the
129 ... entries between 1 and p-1 correspond
130 ... to different basis elements of the
131 ... representation ring. Therefore , each
132 ... row of entries between 0 and p-1 will
133 ... give p-1 rows in the output matrix . If
134 ... the j-th entry of the row is a number
135 ... 1 <= k <= p-1, then this will give a 1
136 ... in the k-th row and j-th column (of the
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137 ... p-1 columns corresponding to this
138 ... column ).
139 ... """
140 ... dim = p**n - 1
141 ... D = MatrixSpace (ZZ ,dim ,dim )(0)
142 ... for row in range ((p**n - 1)/(p -1)):
143 ... for col in range(p**n -1):
144 ... if C[row ,col] != 0:
145 ... D[C[row ,col] + (p -1)* row - 1,col] = 1
146 ... return D
147 sage: def count_list_elements (L):
148 ... r"""
149 ... Count the elements in a list.
150 ...
151 ... Input is a list. Output is a dictionary with
152 ... keys the elements of the list , values the
153 ... number of occurences .
154 ... """
155 ... counts = {}
156 ... for i in range(len(L)):
157 ... if L[i] in counts :
158 ... counts [L[i]] = counts [L[i]] + 1
159 ... else:
160 ... counts [L[i]] = 1
161 ... return counts
162 sage: def calculation_2 (p,n):
163 ... """
164 ... For the n-th elementary abelian p-group ,
165 ... one can look at the orbit category
166 ... given by the family of cyclic subgroups .
167 ... The representation ring functor gives a
168 ... contravariant functor on this category ,
169 ... and we can compute the limit. The
170 ... representation ring of the total group
171 ... maps injectively into this limit. This
172 ... is in general not surjective , and this
173 ... function computes the cokernel . The
174 ... output is a dictionary , whose keys are
175 ... moduli of the integers , and whose values
176 ... are the exponents with which the
177 ... integers modulus the moduli appear in
178 ... the quotient . For example ,
179 ... calculation_1 (2 ,3) yields
180 ... {1: 3, 2: 3, 4: 1}, which means that
181 ... the quotient is isomorphic to
182 ... {e}^3 x C_2 ^3 x C_4.
183 ... """
184 ... A = matA(p,n)
185 ... print "Done A"
186 ... B = matB(p,n)
187 ... print "Done B"
188 ... C = A. transpose ()*B
189 ... print "Done C"
190 ... C = redmatmodp (C,p)
191 ... print "Done reduction modulo p"
192 ... D = matD(C,p,n)
193 ... print "Done D"
194 ... # The elementary divisors of ‘D‘
195 ... # are the elements on the diagonal
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196 ... # of a Smith Normal form of ‘D‘.
197 ... # An elementary divisor ‘d‘
198 ... # corresponds to an occurens of
199 ... # ‘\ZZ/d \ZZ ‘ in the quotient .
200 ... divisors = D. elementary_divisors ()
201 ... print "Done Elementary Divisors "
202 ... counted = count_list_elements ( divisors )
203 ... return counted
204 sage: calculation_2 (2 ,3)
205 Done A
206 Done B
207 Done C
208 Done reduction modulo p
209 Done D
210 Done Elementary Divisors
211 {1: 3, 2: 3, 4: 1}

This last calculation shows, for example, that

Q2,3 ∼= (Z/1)⊕3 ⊕ (Z/2)⊕3 ⊕ Z/4.
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