I. INTRODUCTION

Three-dimensional topological insulators (3DTIs) are a particular class of bulk insulators hosting time reversal symmetry-protected metallic surface states. The latter are helical, i.e., characterized by (pseudo)spin-momentum locking and described by low-energy effective Dirac-type models [1]. In nanowires based on 3DTI materials such locking heavily affects the one-dimensional (1D) subband spectrum and, if combined with superconductivity, is a basic ingredient for the realization of Majorana modes [1,2]. Moreover, from a general quantum transport perspective, 3DTI nanowires provide a particularly rich playground due to the interplay between topological properties and effects arising from phase coherence. The fact that the conducting states are “wrapped” around an insulating bulk, in conjunction with their helical nature, leads to various interesting and geometry-sensitive high-angular momentum surface states that extend around the entire wire circumference. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed ±h/e-periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

In particular, a 3DTI nanowire in a coaxial magnetic field with magnitude B and associated flux $\Phi = AB$, as sketched in Fig. 1(a), is expected to show peculiar Aharonov-Bohm type magnetoresistance features. Indeed, oscillations with a period of one flux quantum $\Phi_0 = h/e$ (where $h = 2\pi\hbar$ is Planck’s constant and e the elementary charge) were observed in early experiments [4,5]. According to theory [2,6–9] these oscillations reflect the wire’s 1D subband structure, given by

$$E = \pm \hbar v_F \sqrt{k_z^2 + k_l^2} \quad \text{with} \quad k_l = \frac{2\pi}{P} \left(l + \frac{1}{2} - \frac{\Phi}{\Phi_0} \right).$$

In Eq. (1), v_F is the Fermi velocity of the surface carriers, k_z the coaxial, and k_l the transversal wave vector, the latter having the meaning of angular momentum. The angular momentum quantum number is labeled by $l \in \mathbb{Z}$ and its half-integer shift in k_l is caused by a curvature induced Berry phase. The resulting energy spectrum is sketched in Fig. 1(b) for three characteristic values of the magnetic flux. For $\Phi = 0$ an energy gap is present (due to the Berry phase) and the 1D subbands are twofold degenerate with respect to angular momentum. Note, however, that owing to their Dirac-like nature these states are not spin degenerate. For finite flux such as $\Phi/\Phi_0 = 0.25$ the degeneracies with respect to k_z are lifted. For $\Phi/\Phi_0 = 0.5$, the magnetic flux cancels the Berry phase and the $l = 0$ states become gapless, $k_{l=0} = 0$. This linear gapless state is nondegenerate. More generally, the total number of states is odd, and time-reversal symmetry, restored at $\Phi/\Phi_0 = 0.5$, implies one
thermore, the phase of the Aharonov-Bohm-type oscillations

to 1.3 µm and a median width of 163 nm.

micrograph of a representative HgTe TI nanowire, taken at a tilt angle

of the HgTe and a 40 nm CdTe cap layer. After wet chemical etching

the wires were covered with 30 nm of Si2O3 using plasma

electrodeposition and 100 nm Al2O3 deposition with atomic layer deposition. For gating a metallic top

layer consisting of titanium and gold was used. The resulting

cross section is depicted in Fig. 1(c) and will be

schematic cross section is shown in Fig. 1(c). Using electron beam lithogra-

py and wet chemical etching, nanowires as the one shown in

Fig. 1(d) were fabricated. For etching we used a Br2-based wet

tching process to preserve the high charge carrier mobilities of

the bulk material. The wet etching did not result in perfectly

rectangular wire cross sections but rather in trapezoidal ones

with the narrower side on top. In Fig. 1(d) the top width

of the wire’s central segment was 133 nm while the bottom

width was 193 nm, resulting in an average (median) width of

163 nm. For easier modeling below we use a rectangular cross

section with area A given by the average wire width times

HgTe film thickness, A = \bar{w}h. This approximation reduces the

circumference P that determines the spacing between angular

momenta, \Delta k_l = 2\pi/P, by 2–3%. As discussed below, the

resulting effect of this assumption is negligible. After etching

the wires were covered with 30 nm of Si2O3 using plasma

enhanced chemical vapor deposition and 100 nm Al2O3 de-

posited with atomic layer deposition. For gating a metallic top

layer consisting of titanium and gold was used. The resulting

schematic cross section is depicted in Fig. 1(c) and will be

used for the electrostatic modeling in Sec. IV. Ohmic contacts

to the wire were formed via soldered indium. The nanowires

were fabricated in both a true four-terminal geometry (devices
denoted by w3-w5) as well as a quasi-two-terminal geometry
(devices t1-3, w1-2). In the latter case, the nanowire constric-
tion was embedded in a larger Hall bar, where the voltage

probes are several µm removed from the device.

The magnetoconductance of the wires was measured in a
dilution refrigerator at temperatures of typically 50 mK and

“perfectly transmitted mode” [10]. For \phi/\phi_0 = 0 the spectrum

covers its \phi/\phi_0 = 0 form. Further increasing the flux leads to

analogous cycles: The Berry phase cancellation, and thus

the appearance of a gapless state, takes place for half-integer

values of \phi/\phi_0, whenever k_l = 0 for a given l, while for integer

values the gapped spectrum for \phi = 0 in Fig. 1(b) is recovered.

This “shifting” of the 1D subbands with changing flux

implies that for a given Fermi level position the conductance

should be \phi_0 periodic. Dominating h/e oscillations were indeed observed in a number of experiments [11–17]. Fur-

thermore, the phase of the Aharonov-Bohm-type oscillations

depends on the Fermi level position. To be definite, consider

E_F close to zero: No states are present for \phi = 0 (and

corresponding even multiples of \phi_0/2), whereas for \phi/\phi_0 = 0.5

(and corresponding odd multiples of \phi_0/2) the gapless

mode emerges. Hence, one expects a conductance minimum

(maximum) for integer (half-integer) flux quanta. For E_F

slightly above zero, e.g., at the dashed line in Fig. 1(b), the

situation is reversed: Two modes are present for \phi = 0, and only one for \phi/\phi_0 = 0.5. Such \pi-phase shifts as a function

of the Fermi level position, i.e., the gate voltage V_g, were observed in Bi1.33Sb0.67Se3 [15] and Bi2Te3 [16]. If the Fermi

level can be tuned to the Dirac point a conductance minimum

for \phi/\phi_0 = 0 and a maximum at \phi/\phi_0 = 0.5, as observed in Ref. [15], are signatures of the Berry phase of \pi

and thus of spin-helical Dirac states. However, in strained HgTe

nanowires investigated here, the Dirac point is buried in the

valence band [18–20] and thus cannot be singled out and

probed on its own. Without direct access to the latter, the phase

switching alone is not an exclusive signature of Dirac states:
The 1D subband spectrum of trivial surface states, and thus the

resulting conductance, would also be \phi_0 periodic.

Hence the crucial question arises how to distinguish topo-

cological from trivial states in 3D TI nanowires with an inaccessible Dirac point, such as strained HgTe. This is the central

point that we address below, by quantitatively analyzing the
conductance oscillation periodicity occurring as a function

of gate voltage V_g at fixed flux. The observed oscillations

reflect directly the 1D subband structure and its degeneracies.

This allows us to draw conclusions about the nature of the

surface states, trivial ones being spin degenerate, in contrast to spin-helical Dirac states. In doing so, we also address a second

issue, namely the consequences of a varying carrier density

around the wire circumference. Experiments typically rely on

the use of top and/or back gates, which couple differently to the

top, bottom, and side surfaces of the 3DTI wires. The carrier
density (or the capacitance) therefore becomes a strongly

varying function of the circumference coordinate s. Note also

that a certain degree of inhomogeneity is expected even in the

absence of gating, as a consequence of intrinsic system

anisotropies [21]. As we show below, an inhomogeneous

surface charge distribution modifies significantly the band

structure, yet leaves the essential physics intact.

II. NANOWIRE DEVICES

The investigated TI nanowires were fabricated from (013)

oriented, strained 80-nm-thick HgTe thin films grown by

molecular beam epitaxy on (013) oriented GaAs substrates

(for details see Ref. [22]). A cross section through the layer

sequence is shown in Fig. 1(c). Using electron beam lithogra-

phy and wet chemical etching, nanowires as the one shown in

Fig. 1(d) were fabricated. For etching we used a Br2-based wet

etch process to preserve the high charge carrier mobilities of

the bulk material. The wet etching did not result in perfectly

rectangular wire cross sections but rather in trapezoidal ones

with the narrower side on top. In Fig. 1(d) the top width

of the wire’s central segment was 133 nm while the bottom

width was 193 nm, resulting in an average (median) width of

163 nm. For easier modeling below we use a rectangular cross

section with area A given by the average wire width times

HgTe film thickness, A = \bar{w}h. This approximation reduces the

circumference P that determines the spacing between angular

momenta, \Delta k_l = 2\pi/P, by 2–3%. As discussed below, the

resulting effect of this assumption is negligible. After etching

the wires were covered with 30 nm of Si2O3 using plasma

enhanced chemical vapor deposition and 100 nm Al2O3 de-

posited with atomic layer deposition. For gating a metallic top

layer consisting of titanium and gold was used. The resulting

schematic cross section is depicted in Fig. 1(c) and will be

used for the electrostatic modeling in Sec. IV. Ohmic contacts

to the wire were formed via soldered indium. The nanowires

were fabricated in both a true four-terminal geometry (devices
denoted by w3-w5) as well as a quasi-two-terminal geometry
(devices t1-3, w1-2). In the latter case, the nanowire constric-
tion was embedded in a larger Hall bar, where the voltage

probes are several µm removed from the device.

The magnetoconductance of the wires was measured in a
dilution refrigerator at temperatures of typically 50 mK and

FIG. 1. HgTe-based nanowire. (a) Sketch of a nanowire with cross section A and magnetic field B along the wire axis. (b) 1D band structures of the surface states of three-dimensional topological insulator nanowires for three different representative magnetic fluxes. (c) Schematic cross section of a nanowire employed in experiment. The nanowires are etched from wafers containing an 80 nm strained HgTe film and consist of a 4 µm CdTe base layer grown on (013) GaAs substrate, two 20 nm Hg0.7Cd0.3Te buffer layers on top and bottom of the HgTe and a 40 nm CdTe cap layer. After wet chemical etching the wire is covered by SiO2/Al2O3 and a metallic top gate. (d) SEM micrograph of a representative HgTe TI nanowire, taken at a tilt angle of 50° before deposition of the topgate structure. It has a length of 1.3 µm and a median width of 163 nm.
TABLE I. Geometrical parameters of the nanowire structures considered. The height h of all devices is given by the 80-nm-thick HgTe layer of the wafers. Median width and length of the structures are denoted by w and l, respectively. The circumference P and the expected period for h/e oscillations $\Delta B_{h/e}$ (in Tesla) were calculated assuming the surface state wave functions to be located ~ 5 nm beneath the bulk surface.

<table>
<thead>
<tr>
<th>Device</th>
<th>w (nm)</th>
<th>l (µm)</th>
<th>P (nm)</th>
<th>$\Delta B_{h/e}$ (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>302</td>
<td>0.99</td>
<td>724</td>
<td>0.203</td>
</tr>
<tr>
<td>t2</td>
<td>518</td>
<td>2.06</td>
<td>1156</td>
<td>0.116</td>
</tr>
<tr>
<td>t3</td>
<td>246</td>
<td>2.51</td>
<td>613</td>
<td>0.249</td>
</tr>
<tr>
<td>w1</td>
<td>310</td>
<td>1.33</td>
<td>740</td>
<td>0.197</td>
</tr>
<tr>
<td>w2</td>
<td>163</td>
<td>1.33</td>
<td>446</td>
<td>0.386</td>
</tr>
<tr>
<td>w3</td>
<td>178</td>
<td>1.06</td>
<td>476</td>
<td>0.351</td>
</tr>
<tr>
<td>w4</td>
<td>294</td>
<td>1.95</td>
<td>708</td>
<td>0.208</td>
</tr>
<tr>
<td>w5</td>
<td>287</td>
<td>2.97</td>
<td>694</td>
<td>0.212</td>
</tr>
</tbody>
</table>

magnetic fields up to 5 T. A rotating sample holder was used for measurements to allow for in- and out-of-plane alignment of the magnetic field. Standard AC lock-in techniques and Femto voltage preamplifiers were used at excitation amplitudes and frequencies of typically 1–15 nA and 7–13 Hz, respectively. Additionally, a cold RC filter was added to suppress noise at the top gate and to improve reproducibility of magnetotransport traces. In the following, we present results from a total of eight nanowires. Parameters defining their geometries are listed in Table I. Devices t1–t3 were investigated regarding the temperature dependence of the Aharonov-Bohm-type oscillations (see Sec. III A), while devices w1–w5 were studied with regard to signatures of the subband structure (see Sec. III B).

III. CHARACTERIZATION OF CONDUCTANCE OSCILLATIONS

A. Magnetococonductance

Figure 2(a) shows the measured two-point conductance G as a function of a magnetic field B applied along the wire axis. The experimental data was taken at temperatures T between 40 mK and 300 mK. An overall h/e periodicity is clearly visible, as indicated by the horizontal bar in Fig. 2(a) (and analyzed in more detail below). The fact that $G(B)$ exhibits Aharonov-Bohm-type h/e periodicity instead of $h/(2e)$ behavior, arising from interference between time-reversed paths in the diffusive limit [24], implies that transport along the wires is indeed nondiffusive, i.e., the elastic mean free path is presumably not much shorter than the wire length and larger than the wire circumference. However, the additional conductance fluctuations present in $G(B)$ in Fig. 2(a) indicate residual disorder scattering.

From the temperature dependence we can estimate the phase coherence length l_ϕ by using the exponential decay of the amplitude ΔG of the h/e conductance oscillations for ballistic transport on scales of the perimeter P [25],

$$\Delta G \propto \exp \left(-\frac{P}{l_\phi(T)} \right). \quad (2)$$

In Fig. 2(b) the resulting phase coherence lengths obtained from three devices are plotted as a function of V_g. For all samples minimal values of 1 µm to 2 µm are found for l_ϕ, while maximal values reach 5 µm at gate voltages around $V_g = 1$ V. At $V_g = 1$ V the Fermi level E_F is in the bulk gap, as extracted from independent measurements for macroscopic Hall bars made from the the same material [23,26]. For E_F in the gap the phase coherence lengths of the topological surface states are expected to be largest as backscattering is reduced and scattering into bulk states is suppressed.

Figure 3 shows V_g-dependent resistance traces of device w1 for a number of magnetic fields B normalized to their value at $B = 0$. The maximum of the longitudinal resistance, which comes out more clearly with higher magnetic fields, is usually ascribed to the charge neutrality point (CNP). In strained HgTe it is located slightly in the valence band [23]. Hence the valence band edge is located on the right hand side of the maximum. The V_g locations of the conduction and valence band edges, indicated by arrows in Fig. 3, have been obtained by comparing to the results described by Kozlov et al. (2014) [23,26].

Next we study in more detail the Aharonov-Bohm-type oscillations and in particular their V_g dependence, here representatively discussed for device w1. To this end, we remove the small hysteresis of the superconducting magnet from the conductance and subtract a smoothly varying background

FIG. 2. (a) Magnetococonductance oscillations of device t1 measured at different temperatures T. The traces show h/e-periodic oscillations with amplitudes $\Delta G(T)$ decreasing with increasing temperature T. The T dependence of the amplitude of sample t1, taken at various gate voltages, is shown in the inset of panel (b), along with the corresponding fits using Eq. (2). The exponential fits allow for the extraction of l_ϕ, displayed in panel (b) as a function of gate voltage V_g for devices t1–t3.
blue, respectively, orange curves in Fig. 6(a). To suppress the influence of aperiodic conductance fluctuations we averaged over all positive and negative integer multiples of \(\phi_0 \) in the dataset, i.e., \(\pm \phi_0, \pm 2\phi_0, \) and \(\pm 3\phi_0 \) to generate the orange curve in the case of the representative device w1. Accordingly, the blue curve results from an average over positive and negative half-integer multiples calculated from \(\pm 0.5\phi_0, \pm 1.5\phi_0, \) and \(\pm 2.5\phi_0 \). The line cut for \(\phi = 0 \) was omitted due to a large weak antilocallizationlike background profile that renders background removal difficult. In Fig. 6(a) the two conductance curves \(\Delta G(V_g) \) obtained in this manner exhibit antiphase oscillations as a function of \(V_g \), i.e., maxima of \(\Delta G(V_g) \) for integer multiples of \(\phi_0 \) go along with minima of \(\Delta G(V_g) \) for half integer multiples.

In Secs. IV–VI we carry out an in-depth analysis associating these characteristics with the quantized subbands of helical surface states. Based on this study the analysis of the conductance oscillations in Fig. 6(a) proceeds as follows: The minima in \(\Delta G(V_g) \) correspond to a Fermi level at the edge of a subband since the corresponding high density of states (the van-Hove singularity) causes enhanced scattering. Accordingly, the gate voltage distance \(\Delta V_g \) between two minima, corresponding to the period of the conductance oscillation, can be directly mapped onto the subband spacing. One key property that distinguishes topological surface states from their trivial counterparts is their degree of spin degeneracy. It directly affects \(\Delta V_g \) since a spin degeneracy of two, as for trivial surface states, implies that twice as many states need be filled compared to helical edge states. This allows us to extract the spin degeneracy of the subbands involved by quantitatively analyzing the distance \(\Delta V_g \) between adjacent conductance minima.

To increase the accuracy of the extracted \(\Delta V_g \), we use the anticorrelation between the two curves for \(j\phi_0 \) and \((j + 0.5)\phi_0 \) with \(j = \pm 1, \pm 2, \ldots \) and the corresponding minima-maxima pairs in order to label the pairs by a running index and to obtain \(\Delta V_g \). Pairs with the maximum corresponding to integer/half-integer flux quantum are labeled by an integer/half-integer index by black and green dashed lines, respectively. Since in strained HgTe the Dirac point is located in the valence band, we do not know the precise number of filled 1D subbands at a given gate voltage. We thus start counting by fixing a reference voltage \(V_0 \) at which a certain (unknown) number \(N_0 \) of subbands is filled and use the relative index \(N - N_0 \), with \(N \) the total number of occupied subbands. In Fig. 6(b) the gate voltage at which a particular minimum-maximum pair occurs is plotted as a function of the corresponding index \(N - N_0 \).

The connection between \(\Delta G(V_g; \phi) \) and the nanowire band structure is a priori not obvious, since the nanowire surface charge carrier density, and ergo its capacitance, is inhomogeneous due to asymmetric gating. However, as we will detail in Secs. IV–VI, an analysis in terms of a single effective charge carrier density \(n_{\text{eff}} \), i.e., effective capacitance \(C_{\text{eff}} \), turns out to be fully justified. They are related to each other via

\[
(n_{\text{eff}} - n_0)e = C_{\text{eff}}(V_g - V_0),
\]

where \(V_0 \) is the gate voltage at which the oscillation counting starts and \(n_0 \) the corresponding carrier density. For a 2D system the Fermi wave vector \(k_F \) is given by

\[
k_F = \sqrt{(4\pi/g_s)n_{\text{eff}}},
\]

\[R_w(B)\] using a Savitzky-Golay filter \([27]\). The filter was applied in a way that frequencies smaller than \(1/2\phi_0\) are cut off. The resulting conductance \(\Delta G(V_g; \phi) \) is shown in the color plot in Fig. 4(a). Here, the gate voltage spacing of neighboring traces is \(\Delta V_g = 0.01 \) V. Corresponding data, but now as line cuts taken at different values of \(V_g \) are shown in Fig. 4(b) for sample w2. \(\Delta G \) shows dominant \(\phi_0 \)-periodic oscillations over a large gate voltage range, as well as a pronounced phase switching between minima and maxima, i.e., additional conductance oscillations upon varying \(V_g \) at fixed flux (to be analyzed in Sec. III B). The \(\phi_0 \) periodicity is confirmed by a fast Fourier transform (FFT) analysis of traces covering a magnetic field range corresponding to \(20\phi_0 \) in the case of device w1. As the period of the oscillations should be independent of the gate voltage spouses \(j\phi_0 \) for integer multiples of \(2\phi_0 \) and \((j + 0.5)\phi_0 \) for half-integer values of \(\phi_0 \) in Fig. 4(a) and plotted as

\[
0.5 mT \quad 100 mT \quad 150 mT \quad 200 mT \quad T=1.5 K
\]

\[
g_{\text{sm}}(B) \]

\[
G_{\text{sm}}(B) \]

\[
R_{\text{w}}(B)/R_{\text{w}(0)}(B=0)
\]

\[
V_g=0
\]
FIG. 4. Quantum conductance corrections of transport measurements in TI nanowires. (a) Color plot of conductance correction ΔG as a function of magnetic flux ϕ (in units of flux quantum ϕ_0) and gate voltage V_g from device w1. (b) Selection of representative magnetoconductance curves from device w2 comprising a larger flux range. The different traces (offset for clarity) exhibit clear ϕ_0-periodic behavior, as well as a switching of the phase with varying V_g.

with the spin degeneracy factor $g_s = 1$ and $g_s = 2$ for spin-resolved topological surface states and spin-degenerate trivial surface states, respectively. Assuming a constant subband splitting $E/(\hbar v_F) = \Delta k_l = 2\pi/P$ [in view of Eq. (1)], the Fermi wave vector at a conductance minimum (subband opening) can be written as

$$k_F = k_0 + (N - N_0)\Delta k_l \quad \text{with} \quad k_0 = \sqrt{(4\pi/g_s)n_0}. \quad (5)$$

Combining Eqs. (3), (4), and (5) yields the relation

$$V_g - V_0 = \frac{g_s e}{4\pi C_{\text{eff}}} \left[2k_0(N - N_0)\Delta k_l + (N - N_0)^2\Delta k_l^2 \right] \quad (6)$$

between gate voltage and subband level index N. The distance between two conductance minima depends essentially on the effective capacitance C_{eff} and wire circumference P.

Equation (6) is only valid for V_g values for which E_F is located in the bulk gap. We estimate this V_g range from the gate-voltage dependent resistance curves plotted in Fig. 3. The corresponding region is highlighted by the dashed horizontal lines in Fig. 6(b) and matches the region of longest phase-coherence lengths l_ϕ discussed above.

The key quantity which is missing for comparing Eq. (6) with the experimental data of Fig. 6(b) is the effective capacitance C_{eff}, which is not directly accessible from experiment. Therefore, we resort to a numerical solution of the Poisson equation (described in Sec. IV) and the definition of C_{eff} given in Sec. VC. The anticipated result of such a calculation is $C_{\text{eff}} = 3.987 \times 10^{-4}$ F/m2, carried out for the geometry and dielectric constants of the present wire. The curves obtained from Eq. (6) both for spin helical and trivial surface states are shown in Fig. 6(b). In the gap region the experimental data points are best described by the model invoking spin-helical surface states (solid lines); trivial surface states lead to a steeper slope (red dashed line) and fail to describe the experiment. It would be interesting to apply this kind of analysis to wires with trivial surface states [28].

The analysis described in this section was carried out for five devices with different cross sections A. For each device the nanowire circumference P, which defines the subband splitting $\Delta k_l = 2\pi/P$, was extracted from the SEM micrographs. Alternatively, one can extract the circumference by fitting the data points, shown for samples w1-w5 in the inset of Fig. 7, with Eq. (6). Using the corresponding effective capacitances C_{eff}, the only remaining fit parameter is Δk_l. The best fits in the relevant V_g ranges for all five investigated samples are shown.

FIG. 5. Fourier spectrum of nanowire magnetoconductance oscillations. Fast Fourier transform, calculated from the magnetoconductance of device w1 and averaged over all V_g values, shows a dominant peak close to $1/\phi_0$, reflecting $\phi_0 = \hbar/e$-periodic oscillations. The bar at the peak denotes the expected range of the peak to occur, see text.
FIG. 6. (a) Conductance oscillations due to subband quantization. Conductance corrections ΔG as a function of gate voltage for integer (blue curve) and half-integer (orange curve) values of ϕ/ϕ_0, obtained by averaging several line cuts taken along constant ϕ from the data set of device w1 in Fig. 4(a). The curves exhibit a clear anticorrelated behavior. Each minimum-maximum pair (marked by vertical dashed lines) is assigned an index N that can be associated with a subband of the wire, see text. (b) Gate voltage position of conductance maxima from (a) as a function of (subband) index N (with arbitrary offset N_0). Within the bulk gap (marked by dashed horizontal lines) the red curve segments denote expected behavior for $V_g(N)$ based on models for helical Dirac-type (solid line) and trivial spin-degenerate (dashed) surface states, see main text. Agreement of the conductance data with the former model implies the topological character of the surface states. For comparison, the blue line shows corresponding results for a Dirac surface state model, based on a trapezoidal cross section instead of a simple rectangular cross section. The gray area around the data points is obtained repeating the analysis while introducing an artificial error of up to ± 0.2 in ϕ_0, showing that the method is robust against errors in ϕ_0.

in the inset of Fig. 7. In the main panel of Fig. 7 the extracted values of $\Delta k_{l\text{,in}}$ are plotted versus Δk_l. The plot shows that $\Delta k_l \approx \Delta k_{l\text{,in}}$ within experimental accuracy, thus confirming the suitability of the analysis. In the following we present an in-depth study of the nanowire electrostatics, band structure, and magnetoconductance that provides the theoretical basis for the analysis of Fig. 6 indicating the existence of helical surfaces states.

FIG. 7. Analysis of subband spacing. The inset shows the dependencies $V_g(N - N_0)$ of samples w1-w5. The black dashed lines are best fits (within the bulk band gap) based on Eq. (6) with Δk_l as the only fit parameter. Main panel: Best fitting values $\Delta k_{l\text{,in}}$ of samples w1-w5 are plotted versus $\Delta k_l = 2\pi/P$, determined from the nanowires’ circumference P taken from SEM micrographs. The dashed straight line marks the condition $\Delta k_l = \Delta k_{l\text{,in}}$. Devices whose data is presented in this paper are marked by squares.

IV. ELECTROSTATICS OF WIRE GEOMETRY

Since the capacitance used in the preceding section is not experimentally accessible we need to resort to numerical analysis. Furthermore, in the experimental setup, the Fermi energy is locally tuned by a gate electrode that covers roughly the upper part of the nanowire [see Fig. 1(c)] and induces a nonuniform surface electron density $n(z,s)$, where z is the longitudinal ($0 < z < L$) and s the circumferential coordinate ($0 < s < P = 2w + 2h$). To account for the inhomogeneous charge density in our subsequent transport simulations while keeping the model as simple as possible, we assume that $n(z,s) = n(s)$ is constant along the z direction. Agreement of the conductance data with the former model implies the topological character of the surface states. For comparison, the blue line shows corresponding results for a Dirac surface state model, based on a trapezoidal cross section instead of a simple rectangular cross section. The gray area around the data points is obtained repeating the analysis while introducing an artificial error of up to ± 0.2 in ϕ_0, showing that the method is robust against errors in ϕ_0.

The PDE solver numerically yields solutions of the Laplace equation $\nabla^2 u(x,y) = 0$ for the heterostructure; an example with $V_g = 1V$ is given in Fig. 8(a). The induced surface charge density $n(s)$ is then given by the gradient of the electric potential at the nanowire surface according to [31]

$$n(s) = (\epsilon_r \epsilon_0/e) (\nabla u) \cdot \hat{e}_n,$$

where \hat{e}_n is the unit vector defining the surface normal, ϵ_r is the dielectric constant of the insulating layer sur-
rounding the nanowire ($\epsilon_r = 3.5$ for SiO$_2$ and $\epsilon_r = 13.0$ for HgCdTe), and ϵ_0 is the vacuum permittivity. The gate capacitance per unit charge, $C(s)/e$, defined as the surface electron density $n(s)$ per gate voltage V_g, is then exported from the PDE solver. The surface charge density at arbitrary gate voltages is obtained by exploiting the linearity from the PDE solver. The surface charge density at arbitrary ϵ for HgCdTe, and ignoring thus the quantum capacitance also leads to capacitance values which are 5% larger. The finite length of our wires which is ignored in our 2D electrostatic model underestimates the capacitance by the fringe fields at the ends. By analogy with finite length cylindrical capacitors the error for our wires is estimated to be $\leq 10\%$ [32]. As the errors due to the idealizations within our model tend to compensate each other, we expect the calculated values to be quite accurate.

V. BAND STRUCTURE OF GATED NANOWIRE

A. Dirac surface Hamiltonian

Assuming that the bulk is insulating we model the HgTe nanowire by means of the Dirac surface Hamiltonian

$$H = v_F \left[p_z \sigma_z + (p_x + eA_z) \sigma_y \right], \quad (8)$$

where A_z is the vector potential which creates the longitudinal magnetic field. The numerical results presented in the following were obtained using the python software package KWANT [33]. Since KWANT utilizes tight-binding models, Eq. (8) needs to be discretized leading to fermion doubling [34,35]. In order to circumvent this, we add a small term quadratic in the momentum to the Hamiltonian which removes the artificial valleys from the considered energy range (for a recent discussion see Ref. [36]).

The magnetic flux and the curvature-induced Berry phase are implemented via the boundary condition

$$\Psi(z, s + P) = e^{i2\pi(\phi/P + 1/2)} \Psi(z, s), \quad (9)$$

We further account for the effect of the top gate by adding the onsite energy [see corresponding Eq. (4) with $g_s = 1$]

$$E_{\text{gate}}(s) = -\hbar v_F \sqrt{4\pi \frac{C(s)}{e}}, \quad (10)$$

which induces the correct charge density $n(s)$ along the nanowire circumference.

B. Gate effect: Simplified capacitance model

In order to illustrate the effect of the gate-induced potential on the band structure of a nanowire, we start with a simple step-shaped capacitance [see Fig. 8(c)] before examining the more realistic case shown in Fig. 8(b). In this simplified model, $C(s)$ is determined by two capacitance values, one for the top surface C_{top} and one for the bottom surface C_{bot}, neglecting separate profiles at the narrow side surfaces. We choose $C_{\text{top}}/C_{\text{bot}} = 5$ for didactic purposes; in the experiments the ratio is ≈ 2.

In the following, we first use a sketch of the resulting band structure in Fig. 9(a) to explain the mechanisms that lead to the corresponding numerical results shown in Fig. 9(c). For $V_g = 0$ the band structure is given by a simple 1D Dirac cone [left panel in Fig. 9(a)] with quantized subbands owing to the finite circumference. The positions of the subband minima at $k_z = 0$ are marked by blue rectangular boxes. The flux through the nanowire is chosen to be $0.5\phi_0$ implying a state at zero energy (marked by a red box). For $V_g > 0$ the Dirac cone splits, so that the distances between the common Fermi level E_F and the two Dirac points are $E_{\text{top}} = \hbar v_F \sqrt{4\pi n_{\text{top}}}$ and $E_{\text{bot}} = \hbar v_F \sqrt{4\pi n_{\text{bot}}}$ [right panel in Fig. 9(a)]. The difference arises since the top surface is filled faster than the bottom one. The Fermi energy is given by the average $E_F = (E_{\text{top}} + E_{\text{bot}})/2 = \hbar v_F \sqrt{\pi V_g/e} (\sqrt{C_{\text{top}}} + \sqrt{C_{\text{bot}}})$.

035157-7
FIG. 9. Gate-dependent splitting of Dirac-type nanowire band structure for simplified step capacitance model for top and bottom surface [see Fig. 8(c)]. (a) Sketch of the band structure for zero (left) and finite (right) gate voltage. Subband bottoms at \(k_z = 0 \) are indicated by blue rectangular boxes. (b) Probability distributions of two representative states along wire circumference with capacitances \(C_{\text{top}} \) and \(C_{\text{bot}} \) at top and bottom surface. The state in the upper (lower) panel corresponds to an energy marked by a blue (yellow) cross in panel (c). (c) Calculated band structures for three magnetic fluxes \(\phi/\phi_0 = 0, 1/4, 1/2 \) for \(V_g = 1 \)V and \(v_F = 5 \times 10^5 \) m/s. In the left panel the dashed black horizontal line marks the Fermi level and the dashed yellow lines positions of shifted Dirac points. In the middle panel areas corresponding to flux-sensitive (insensitive) energy levels are marked by dark (light) green color.

Interestingly, the splitting of the Dirac cone does not influence the \(k_z = 0 \) subband spacing, which is perfectly preserved. Furthermore, for \(k_z \neq 0 \) the states can be divided into two groups. States with energies in the light green regions in Fig. 9 extend over the entire wire circumference and consequently are flux sensitive, whereas states with energies in the light green regions are localized on the upper or lower surface and hence are not susceptible to flux changes. Representative examples of both kinds of states are shown in Fig. 9(b). The reason for this peculiar behavior is Klein tunneling [37]. Modes at \(k_z = 0 \) perpendicularly hit the potential step associated with the capacitance profile of Fig. 8(c) and are thus unaffected by its presence—Klein tunneling is perfect. On the other hand, for \(k_z \neq 0 \) the light green regions host states from one Dirac cone only, the dark green ones from both. Since \(k_z \) is conserved during tunneling, it is only in the dark green regions that electrons can Klein tunnel from one cone to the other, yielding hybridized extended states.

The different flux sensitivity of the two classes of states is also reflected in the numerical band structures shown in Fig. 9(c) for three different fluxes: While the hyperbolic energy levels in the regimes corresponding to the light green areas are identical (on scales resolved in the figures) for all three fluxes, the energy levels belonging to the dark green areas obviously change with varying flux. We note in passing that trivial surface states which might form at the etched side surfaces do not contribute to the oscillations and thus to our analysis as they are localized at the sides.

C. Gate effect: Realistic capacitance model

We now use these insights to examine the results obtained with the more realistic capacitance profile shown in Fig. 8(b). We present results for the nanowire geometry of sample w2; the other geometries do not qualitatively change the results. The corresponding band structures are presented in Fig. 10 for three different magnetic fluxes and \(V_g = 0.3 \) V. The interpretation of the band structure is not as simple as in the step capacitance model, as there are now four nanowire surfaces involved, each with a more complicated capacitance profile. Furthermore, the difference between the “potential bottoms” on each surface is smaller. However, the main features discussed in Sec. VB are still present, since they are actually independent of the capacitance profile shape.

Notably, Fig. 10 shows that the \(k_z = 0 \) subband spacing is perfectly preserved, even though the transversal wave vector \(k_l(s) = \sqrt{4\pi n(s)} \) is now \(s \) dependent. Indeed, we can generalize the discussion of the simplified step capacitance model: For \(k_z = 0 \) the motion is purely angular, and thus Klein tunneling is perfect irrespective of the complexities of the potential profile. Hence, the electron wave function experiences an average of the gate potential, whose corresponding wave vector average fulfills

\[
\langle k_l(s) \rangle = \frac{1}{P} \int_0^P ds k_l(s) = \frac{2\pi}{P} (l + 0.5 - \phi/\phi_0). \tag{11}
\]

This leads to a gate-independent subband spacing \(\Delta k_l = 2\pi/P \) that can be also derived by solving the Dirac equation for \(k_z = 0 \).
through the correlator \(\phi/\phi_0 \) is typically quite small (e.g., for \(w_2 \)). The extended system were carried out by using an extended version of the tight-binding model introduced in Sec. V.A. The extended system includes coupling of the nanowire to leads with the same geometry as the nanowire but with negative onsite energy \(\gamma \) and half a flux quantum (red curve). Calculations are performed for \(k_z = 0 \), as also observed in the experiments. The Fermi level stays always above both Dirac points for \(V_g > 0 \). Moreover, in the experimentally relevant parameter range, the Fermi level stays always above both Dirac points for \(V_g \) and the subband minima at \(E_F \) are always at \(k_z = 0 \).

For a general capacitance profile \(C(s) \) the Fermi energy is given by the average

\[
E_F = \frac{\hbar v_F}{\pi} \sqrt{4\pi V_g C_{\text{eff}}/e} = \frac{\hbar v_F}{\pi} \sqrt{4\pi V_g C_{\text{eff}}/e},
\]

where the effective value \(C_{\text{eff}} \) enters instead of the mean \(C_{\text{mean}} \) with \(\langle \ldots \rangle \) denoting the mean value along the circumference. The value for \(C_{\text{eff}} \) calculated from the capacitance profile of \(w_1 \) was used in the analysis of the experimental data in Fig. 6. Note that the difference between \(C_{\text{eff}} \) and \(C_{\text{mean}} \) is given by the variance of the capacitance profile \(\text{Var}(C(s)) = C_{\text{mean}} - C_{\text{eff}} \). For the step capacitance model with \(C_{\text{top}} = 5 C_{\text{bot}} \) this difference is clearly visible \(C_{\text{eff}}/C_{\text{mean}} \approx 0.87 \), see Fig. 8(c) but in the experiments it is typically quite small (e.g., for \(w_2 \)). As will become evident in the following, the perfect subband quantization and the fact that the subband minima are located at \(k_z = 0 \) are crucial ingredients to probe the signature of the Dirac surface states in transport.

VI. CONDUCTANCE SIMULATIONS

The conductance simulations presented in the following were carried out by using an extended version of the tight-binding model introduced in Sec. V.A. The extended system includes coupling of the nanowire to leads with the same geometry as the nanowire but with negative onsite energy (i.e., highly-doped leads) to account for the wide leads in the experiment. Residual disorder in the wires used in the experiment is modeled by adding a random disorder potential \(V(r) \) defined through the correlator

\[
\langle V(r)V(r') \rangle = K_0 \frac{\hbar v_F^2}{2\pi \xi^2} e^{-r-r'/2\xi^2}.
\]

Here, \(\xi \) is the correlation length and \(K_0 \) determines the disorder strength [38].

Figure 11 shows the conductance \(G(V_g) \) for \(\phi = 0 \) and \(\phi = 0.5 \phi_0 \). Both curves exhibit distinct oscillations on top of an increasing conductance background (similar to corresponding calculations in Ref. [7]). The anticorrelated behavior of the two oscillatory curves is due to the flux sensitivity of the states near \(k_z = 0 \). The oscillatory behavior can be explained by the band structure: Whenever the Fermi energy approaches the bottom of one of the disorder-broadened subbands, the high density of states (associated with a van-Hove singularity) causes enhanced scattering and thus leads to a reduction of the conductance. By further increasing the gate voltage, the additional conductance channel fully opens and the Fermi energy leaves the vicinity of the van-Hove singularity, both effects leading to an increasing conductance. Thus, the conductance oscillation, related to successive subband opening, is a fingerprint of the band structure at \(k_z = 0 \), as also observed in the transport measurements. Due to the undisturbed subband quantization at \(k_z = 0 \), the distance between two conductance minima (one oscillation period) corresponds to a change of \(\Delta k_z = 2\pi/P \) in the Fermi wave vector, as in the case without any inhomogeneity caused by the top gate. However, the inhomogeneity enters via \(C_{\text{eff}} \), which determines the Fermi wave vector \(k_F = \sqrt{4\pi V_g C_{\text{eff}}/e} \) [see Eq. (12)]. This justifies

\[
\phi = 0, \quad \phi = \phi_0/4, \quad \phi = \phi_0/2
\]

FIG. 10. Calculated band structures of device \(w_2 \) based on the realistic capacitance model [see Fig. 8(b)] for \(V_g = 0.3 \) V and three fluxes \(\phi/\phi_0 = 0, 1/4, 1/2 \) (from left to right). The spacing between subband minima at \(k_z = 0 \) is constant for given flux.

FIG. 11. Calculated disorder-averaged conductance as a function of gate voltage (starting from the Dirac point) for zero flux (blue curve) and half a flux quantum (red curve). Calculations are performed for the nanowire geometry and using \(C_{\text{eff}} \) of sample \(w_2 \). The average is taken over \(10^3 \) disorder configurations, based on the impurity model [Eq. (13)] with disorder strength \(K_0 = 0.2 \) and correlation length \(\xi = P/100 \). Minima-maxima pairs in the conductance are marked with gray vertical lines. The inset shows the gate position of the minima-maxima pairs as a function of subband index \(N \), following the same evaluation as performed in Fig. 5(b) for the experimental data.
that the extracted phase-coherence lengths are increased up to micron scales. At low temperatures we moreover found mediated and quasiballistic, and additionally phase-coherent type conductance modulations due to a coaxial flux clearly bulk systems prevail and appear in combination with quantum way. In particular, we demonstrated that in these mesoscale were built out of strained bulk systems in a well controlled addition feature high surface mobilities [23]. The nanowires the former appear to be well decoupled from bulk states and ad-

Besides the Aharonov-Bohm oscillations, we observed and examined in detail further distinct conductance oscillations appearing as a function of a gate voltage. We showed that the spacing of the observed regular gate-dependent oscillations reveals the topological nature of the surface states: The gate dependence is only compatible with a model assuming nondegenerate (Dirac-type helical) surface states and rules out usual spin-degenerate states. This identification required on the theory side a quantitative electrostatic calculation of the gate-induced inhomogenous charge carrier density and associated capacitance of the whole (wire plus gate) system. The latter entered the evaluation of the transport data and was furthermore integrated into numerical tight-binding magneto-transport calculations to show that the gate-dependent conductance oscillations obtained indeed agree with experiment. This theoretical analysis also shed light on the role of Klein tunneling for the flux-sensitive surface states extending around the entire wire circumference, which govern the wire band structure.

Our finding that spin nondegenerate states exist on the wire surface suggests in particular that for $\phi/\phi_0 = 0.5$, where time reversal symmetry is restored, the total number of left- or right-moving states is always odd at arbitrary Fermi level, implying a topologically protected perfectly transmitted mode. In the presence of an s-wave superconductor, which opens a gap in the nanowire band structure via the proximity effect, Majorana fermions are expected to appear at the endings of the 3DTI wire, if the latter hosts such an odd number of states at E_F [39,40]. This opens up the interesting possibility of switching from a topologically trivial (even number of states at E_F) to a nontrivial situation (odd number of states at E_F) by adding half a flux quantum through the wire's cross section. This notably led to a recent proposal to use proximitized TI nanowires as building blocks for (coupled) topological Majorana qubits and networks of those [41]. While such proposals usually assume a uniform carrier density around the wire circumference, in experiments such density is expected to be strongly inhomogeneous, especially if the Fermi level is tuned via a top/back gate voltage. This raises the question of how substantially the topological behavior would be affected by strong inhomogeinities. Here we demonstrated through the quantitative analysis of our data that the essential characteristics of topological transport are indeed preserved under realistic experimental conditions. To conclude, our work puts forward HgTe-based topological insulator nanowires as a promising and realistic platform for exploring a wealth of phenomena based on spin-momentum locked quantum transport and topological superconductivity.

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsgemeinschaft (within Priority Program SPP 1666 “Topological Insulators”) and the Elitenetzwerk Bayern Doktorandenkolleg “Topological Insulators.” Support by Russian Federation President Grant No. MK-3603.2017.2 and RFBR Grant No. 17-42-543336 is also acknowledged. We thank J. Bardarson, J. Dufouleur, S. Essert, and E. Xypakis for useful conversations.

[38] For a detailed discussion of scattering in quasiballistic Dirac nanowires, see Ref. [42].

