
Phillipp Reck

Quantum echoes and revivals 
in two-band systems and 
Bose-Einstein condensates



Herausgegeben vom Präsidium des Alumnivereins der Physikalischen Fakultät:
Klaus Richter, Andreas Schäfer, Werner Wegscheider 

Dissertationsreihe der Fakultät für Physik der Universität Regensburg, 
Band 52

 
Quantum echoes and revivals in two-band systems and Bose-Einstein condensates

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Physik der Universität Regensburg
vorgelegt von

Phillipp Reck

aus Erlangen
im Jahr 2017

Die Arbeit wurde von Prof. Dr. Klaus Richter angeleitet.
Das Promotionsgesuch wurde am 30.10.2017 eingereicht.

Prüfungsausschuss:  Vorsitzender:   Prof. Dr. Franz Gießibl 
 1. Gutachter:   Prof. Dr. Klaus Richter
 2. Gutachter:   Prof. Dr. John Schliemann
 weiterer Prüfer:  Prof. Dr. Tilo Wettig



Phillipp Reck

Quantum echoes and revivals 
in two-band systems and 
Bose-Einstein condensates



Bibliografische Informationen der Deutschen Bibliothek.
Die Deutsche Bibliothek verzeichnet diese Publikation
in der Deutschen Nationalbibliografie. Detailierte bibliografische Daten 
sind im Internet über http://dnb.ddb.de abrufbar.

1. Auflage 2018
© 2018 Universitätsverlag, Regensburg
Leibnizstraße 13, 93055 Regensburg

Konzeption: Thomas Geiger 
Umschlagentwurf: Franz Stadler, Designcooperative Nittenau eG
Layout: Phillipp Reck 
Druck: Docupoint, Magdeburg
ISBN: 978-3-86845-154-2 

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlags ist es 
nicht gestattet, dieses Buch oder Teile daraus auf fototechnischem oder 
elektronischem Weg zu vervielfältigen.

Weitere Informationen zum Verlagsprogramm erhalten Sie unter:
www.univerlag-regensburg.de



Contents

1 Introduction – a tiny story of time, including demons 1

2 Basic concepts 7
2.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Low energy Hamiltonian . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Graphene in a magnetic field . . . . . . . . . . . . . . . . . . . 12

2.2 TQT: A library for simulating the time evolution of quantum wave
packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Dirac Quantum Time Mirror 17
3.1 Echo mechanism and transition amplitude . . . . . . . . . . . . . . . 17
3.2 Simulations with Gaussian wave packets . . . . . . . . . . . . . . . . 24
3.3 Change of the echo wave packet in real space . . . . . . . . . . . . . . 28
3.4 Long pulse durations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Wave packets with more complicated shapes . . . . . . . . . . . . . . 36
3.6 Discussion of the experimental realization and outlook . . . . . . . . 38

4 Dirac quantum time mirrors under perturbations 41
4.1 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Implementation of the disorder potential . . . . . . . . . . . . 41
4.1.2 Scattering time . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Loschmidt Echoes . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 General discussion of perturbations . . . . . . . . . . . . . . . . . . . 52
4.3 Static magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Static, in-plane electric field . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Quantum time mirror for general two-band systems 65
5.1 General theory of the QTM for two-band systems . . . . . . . . . . . 65

5.1.1 Transition amplitude . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Effective time reversal and wave packet echo . . . . . . . . . . 69

5.2 Linear band structure with different slopes . . . . . . . . . . . . . . . 72
5.3 Hyperbolic bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Mass gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Other homogeneous pulses . . . . . . . . . . . . . . . . . . . . 78

5.4 Asymmetric parabolic bands . . . . . . . . . . . . . . . . . . . . . . . 81

v



5.5 Conclusion for the two-band QTM . . . . . . . . . . . . . . . . . . . 86

6 Effective time-inversion for Bose-Einstein condensates 87
6.1 Introduction to Bose-Einstein condensates and the nonlinear Schrödinger

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Towards quantum time mirrors for BEC . . . . . . . . . . . . . . . . 88

6.2.1 Action of the nonlinear kick . . . . . . . . . . . . . . . . . . . 88
6.2.2 Simulations to quantify the echo . . . . . . . . . . . . . . . . . 93

6.3 Quantum time lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.2 Multiple pulses – self-regulation due to the nonlinearity . . . . 99

6.4 Solitons in the pulsed NLSE . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 1d solitons in the limit of weak pulses with high repetition rate101
6.4.2 Simulating pulsed solitons . . . . . . . . . . . . . . . . . . . . 103

6.5 Summary - BEC mirrors, lenses and solitons . . . . . . . . . . . . . . 105

7 Zitterbewegung 107
7.1 From theoretical predictions of relativistic particles to experimental

realizations in BEC and semiconductors . . . . . . . . . . . . . . . . 107
7.2 Frequency, amplitude and decay of the zitterbewegung in general two-

band systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Time-independent zitterbewegung in graphene . . . . . . . . . . . . . 114

7.3.1 Pristine graphene . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.2 Gapped graphene - parallel and modified perpendicular zit-

terbewegung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Time-dependent zitterbewegung in graphene . . . . . . . . . . . . . . 121

7.4.1 First order time-dependent perturbation theory . . . . . . . . 122
7.4.2 Rotating wave approximation . . . . . . . . . . . . . . . . . . 128
7.4.3 High driving frequency . . . . . . . . . . . . . . . . . . . . . . 133
7.4.4 Numerical results for the zitterbewegung frequencies . . . . . 135
7.4.5 Long-time behavior of the zitterbewegung . . . . . . . . . . . 140
7.4.6 Summary and discussion of the driven zitterbewegung . . . . . 143

7.5 Echoes of the zitterbewegung using the QTM-protocol . . . . . . . . 143
7.5.1 Analytical prediction of the echo strength . . . . . . . . . . . 143
7.5.2 Numerical confirmation of the echo of the zitterbewegung . . . 146
7.5.3 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Summary, discussion and outlook . . . . . . . . . . . . . . . . . . . . 150

8 Summary 151

A Calculating overlaps for the transition amplitude in graphene 157

B Matrix elements of the Pauli matrices in the basis of (gapped)
graphene eigenstates 159

C Normalization factor in the disorder potential 161

D Time-dependent perturbation theory and the interaction picture 164

vi



Chapter 1

Introduction – a tiny story of time,
including demons

Philosophically, the flow of time has probably always been a mystery for mankind.
Although is seems not to be as fundamental as the question about the sense of
life, which practically everyone wondered about for a longer or shorter time before
turning one’s attention to more pragmatic issues, many great thinkers dedicated
themselves to the affairs of time.

Already in ancient Greece in the pro-Socratic philosophy [1], there were two
words for time (which of course had their godly personification): Chronos and
Kairos. While the first stands for the steady flow of time which can be measured
quantitatively, the other describes the time felt individually and the time for the
right moment.

Also in the literature, time is a reoccurring subject, most of all in modern science
fiction. The possibility of time travels is played out in uncountable stories with all
of its implications and paradoxes like meeting oneself and influencing the past. The
consequences are visualized by the trousers of time: one starts in one leg (present),
going up to the waistband (past) and changing the conditions there such that one
goes done the other leg leading to a different present. Related to this metaphor
is the multiverse theory that “everything happens somewhere”, where somewhere
might mean a hypothetical parallel universe.

From a physical point of view, the flow of time in only one direction (future) has
been coined as the arrow of time by Arthur Eddington [2]. With the formulation
of the laws of thermodynamic in the 19th century at the latest, the arrow of time
was considered in modern physics, e.g. by Boltzmann [3] and Loschmidt [4]. The
important corresponding thermodynamic theorem is the second, which says that the
entropy of a closed system increases over time. Although the arrow of time poses
some fundamental questions (“Why is there an arrow of time; that is, why is the
future so much different from the past?” [5]), the entropy seems to be the classical
observable by which one can tell the chronological order. As an easy example, think
of two photos of a flower vase: in one picture, it is intact, in the other one, hundreds
of shards are visible. Which photo has been taken before the other one? In other
words, which picture shows the higher ordering of the involved particles?

There have been many gedankenexperiments trying to violate the second law of
thermodynamics often involving some kinds of demons [6]. A famous example is
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1. Introduction – a tiny story of time, including demons

the Maxwell demon, which sits on a gate between two closed boxes filled with air of
the same temperature allows the passage of particles from left to right only if their
kinetic energy is below average and from right to left if above average. Another
less famous demon, which is more closely related to our work, is the Loschmidt
demon. Consider two adjacent boxes, one filled with air, the other one with vacuum.
Upon connecting the two boxes, the air particles will flow out of the filled box and
distribute uniformly in the enlarged volume. This state has a higher entropy, since
there are again more micro states for the uniform distribution in the larger box than
in the smaller one. Now, the demon comes into play. By perfectly inverting the
motion (v→ −v) of any gas particle in the system (and considering perfect elastic
collisions between particles), every particle would propagate back exactly the time-
reversed way, bouncing off of the same particle as it did before the inversion and
finally going back to the initial box. Although the boxes are still connected, every
particle is now again in the initial volume, which means that the entropy recovers
its initial value, thus violating the second law. The problem of the realization of
this demon is obviously the difficulty of reversing the motion of all the particles
individually. The possibility of an experimental realization is worsened by the fact
that the velocity-inversion has to be strictly perfect due to the chaotic behavior of
the many-body systems – even if only one particle is not perfectly reverted, but
moves let’s say in a slightly different direction, all of its prior collisions will not take
place the way they did before. Therefore, all the particles it collided with are not
going back to their initial position. But equally in the next step, all those particle
will not collide with the particles they did before the process. This exponentially
growing deviation from perfect time-inversion will lead in the end not to the recovery
of the particles in the smaller volume, but again to a uniform distribution in the
larger volume.

Despite the non-realizability of the initial Loschmidt demon, time-inversion pro-
tocols have been invented for all kinds of systems in the 20th century. Maybe the first
and certainly one with the highest applicability is the spin echo developed by Hahn
in the 1950’s [7]. The echo makes use of the nuclear magnetic resonance (NMR)
discovered by Bloch [8, 9] and Purcell [10], for which they were awarded the Nobel
prize for physics in 1952. The idea behind the NMR is that magnetic moments, here
the nuclear spins, rotate around a static, perpendicular magnetic field of strength B
with the Larmor frequency ωL = γB, where γ is the gyromagnetic ratio. However,
due to inelastic interaction with its environment, a nuclear spin will align along the
direction of the magnetic field on the time scale T1 of the order of some 100 ms to
a few seconds [11]. An additional radio frequency pulse close to resonance with the
Larmor frequency rotates the direction of the spin an arbitrary amount away from
its aligned position, e.g. perpendicular to the magnetic field (π/2-pulse).

In general, not a single nuclear spin is manipulated but a macroscopic ensemble,
e.g. all the nuclei of the hydrogen atoms in water molecules. There, the Larmor
frequency of the nuclear spins is given by ωL ' 42.6 MHz×B[T]. After a π/2-
pulse, all spins are perpendicular to the static magnetic field and therefore rotate
(in phase). Since rotating magnetic moments emit electromagnetic radiation, this
rotation can be measured. However, due to slightly different environments and thus
different local magnetic fields of close magnetic moments, every spin rotates with
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a slightly different Larmor frequency. The more the rotation of the spins is out
of phase, the more the emitted radiation interferes destructively until no signal is
measured. The related decay time is called T ∗2 and is in general much smaller than
T1.

The spin echo, also called Hahn echo, effectively time-inverts the dephasing pro-
cess related to T ∗2 . Thereto, an additional π-pulse is needed. The spins, which are
in a plane perpendicular to the static field, are therefore rotated by 180◦, so that
they are still in the same plane, but inverted, meaning that the faster rotating spins
find themselves ”behind“ the slower ones, catching up over time, and the ensemble
rephases again, which leads to a measurable echo.

This ”catching up“ process works of course only as long faster rotating spins
stay faster, i.e. as long as the environment does not change. In an experiment, this
environmental change will happen and its effect can be measured in an exponential
decay with the time scale denoted T2, which cannot be reverted by the spin echo.

For technical application of the spin echo, like non-invasive imaging of biolog-
ical tissue, all kinds of modifications and extensions are applied, such as making
the external magnetic field (and therefore ωL) position dependent, to get spatially
resolved pictures [12,13], for which Lauterbur and Mansfield got the Nobel prize in
medicine in 2003. The technical enhancements are such that although early NMR
needed up to an hour for making a single picture, it is nowadays even possible to
make real-time videos, i.e. more than 24 pictures per second, that can be watched
immediately [14,15].

Note that in this setup, there are quite some differences to an (effective) time-
inversion, e.g. the precession direction of the spins does not change as it would for
a time-inversion, but instead the trick is to bring the fast spins behind the slow
ones. Nevertheless, since the spins rephase and therefore the emitted signal can
be measured as an echo, it seems as if the time has been inverted. Therefore,
the spin echo as an effective time-inversion protocol can be seen as the first time
mirror protocol for a macroscopic, classical ensemble of individual quantum system,
however for a discrete Hilbert space (spin 1/2).

Our goal is a time mirror protocol for the wave function of a quantum system,
e.g. an electron in a solid, thus for a continuous Hilbert space. Therefore, let us
consider what is known of time-reversal mirrors for classical systems with continuous
degrees of freedom, i.e. classical waves, and whether the techniques are transferable
to quantum wave functions.

Since the late 20th century, time-reversal mirrors have been of practical impor-
tance in many fields like medicine, telecommunication, material analysis, and gener-
ally in wave control [16–19]. They have been realized with all kind of classical waves
like sound [20,21], elastic [16], electromagnetic [22] and recently water waves [23,24].
The basic concept is the following. An initially localized wave propagates through
some locally confined random medium in which it is scattered. Outside of the
scattering region, an array of receiver-emitter antennas measures and records the
incident wave amplitude as function of time at many positions. After some time the
signal is rebroadcast from each position, however in time-inverted manner, i.e. which
came in last is emitted first. Thus, similar to the case of the Loschmidt demon, any
scattering process takes place the same way (but backwards), such that the wave
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1. Introduction – a tiny story of time, including demons

is finally refocused to its initial position, as long as the random medium does not
change over time [25–27].

The great advantage compared to the chaotic behavior of the gas particles dis-
cussed above, which mainly scattered among each other, is that the scattering pro-
cess for the wave is not chaotic. The reason for this can be heuristically motivated
by the following argument: changing the initial condition of a discrete particle (e.g.
a ball) going through a random scattering might lead to missing the first obstacle,
for instance, which will lead to a completely different trajectory. An extended wave
(or at least parts of it) on the other hand, will always hit the obstacle, such that
a slight change of initial conditions only leads to a slight change of the trajectory.
Therefore, even if the rebroadcast of the individual emitters is not perfect, an echo
of the initial wave is achieved. For visible light, this time-inversion mirror is difficult
to implement due to missing controllable antennas [19]. Nevertheless, time-reversed
waves can also be generated for monochromatic light, using three- or four-wave
mixing [28,29].

The problem of the measuring-rebroadcasting protocol for a quantum wave func-
tion is apparent: a measurement at one position will heavily influence the outcome
of all other measurements due to the projection axiom in quantum mechanics. Thus,
for the quantum time mirror in a continuous Hilbert space, other methods have to
be applied. An alternative to control the wave via the spatial boundaries is a ma-
nipulation via time boundaries [30–36]. Similar protocols were considered, using
time- and space-modulated one-dimensional photonic [37–39] and magnonic crys-
tals [40, 41]. For a specific, one-dimensional propagation, time-reversal protocols
have been proposed [42, 43] and realized in a kicked rotor model of atomic matter
waves [44], but only in a narrow momentum range.

The new development of the so-called instantaneous time mirror (ITM) [45] has
been the initiator of the idea for the proposed quantum time mirror (QTM) protocol
in this thesis. In their work, Bacot et al. show the effective time-inversion of the
motion of water waves by applying a short disruption to the system, after which each
wave peak splits and parts of it propagate back in the opposite direction to the initial
position. The sudden modification they use is a short change of the gravitational
potential by accelerating the bottom of the box filled with water, which generates
effective source terms in the wave equation, called ”Cauchy sources“, which define
new initial conditions that lead to a partial reversion of the waves propagation, in
agreement with the Huygens-Fresnel principle. Although the time-inversion is not
perfect (actually, the ”reflected“ wave is proportional to the time-derivative ∂φ/∂t
instead of φ), distinct echoes are not only seen for radially spreading waves generated
by a point source, but also for more complicated initial wave structures, like a smiley
of the Eiffel tower.

The important feature of the ITM is the fact that no knowledge of the wave
structure and thus no measurement is needed at the time of the homogeneous pulse.
Therefore, this basic scheme is in principle transferable to quantum systems. How-
ever, a direct transfer is not possible because of the very fact that the differential
equations governing the time-evolution deviate in the case of water waves and quan-
tum systems. Nevertheless, we want to generate similarly an echo of quantum wave
packets by applying a short time-dependent perturbation (e.g. a potential V (t)),
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which is homogeneous in space. Since no measurement is involved, the system will
continue to propagate according to the Schrödinger equation, without being pro-
jected to the respective eigenstates of the measured observable. The important
point is to make sure that the velocity of parts of the wave packet change sign, such
that they move back to the initial position.

The thesis is organized as follows.
In chapter 2, the basic principles and tools used in the thesis are presented.

First, we give a short overview of graphene and derive its low energy band structure,
since it is the physical system mainly considered in the thesis. As we are interested
in the propagation dynamics, the unusual constant magnitude of the velocity of elec-
trons in graphene is stressed. Moreover, the main numerical tool used to propagate
wave packets is briefly presented, which is the time-dependent quantum transport
(TQT) library developed by Viktor Krueckl [46].

In chapter 3, the first proposed quantum time mirror setup is investigated in
graphene, as representative of any two-band system that is effectively described by
the massless Dirac equation. The time-dependent potential briefly opens a gap such
that the initial eigenstates undergo some kind of Rabi-oscillation and partly end
up in the other band which has an opposite propagation direction. Therefore, one
could speak of the ”population inversion quantum time mirror“. The mechanism
is verified both analytically and numerically and the effects of shape changing of
the wave packet, the behavior for long pulses, as well as its mode of action for
more complex wave structures is studied. The chapter ends with a discussion about
problems and possibilities for an experimental realizability of this Dirac QTM, as
well as an overlook of the areas of research which might profit from the effective
time-inversion.

In chapter 4, the Dirac QTM discussed in the previous chapter is revisited and
investigated for static perturbations to the Dirac Hamiltonian in regard of the ques-
tion of whether the effective time-inversion is destroyed or unaffected. Therefore, the
QTM with specific kinds of perturbations – disorder, electric and magnetic fields – is
investigated both, analytically and numerically. Moreover, in a general section, any
kind of static perturbation is discussed to be able to anticipate its qualitative action
on the QTM. An outlook is given in which the possibility of using time-dependent
electromagnetic fields as alternative way to induce the needed transition from one
band to the other, is discussed.

In chapter 5, the population inversion QTM mechanism is generalized for any
effective two-band system, where on the one hand requirements are derived for the
effective time-inversion to happen at all, and on the other hand, the quantitative
echo strengths are derived if these requirements are fulfilled. The general, analytical
findings are numerically verified in three example band structures, linear bands with
different slopes, the gapped Dirac equation, i.e. hyperbolic bands, and parabolic
bands with different curvatures.

In chapter 6, a different echo mechanism is studied for the nonlinear Schrödinger
equation, which describes for instance the propagation of the ground state of a Bose-
Einstein condensate (BEC). Here, the nonlinear part is used to effectively accelerate
the wave function so that parts of it reverse their direction of motion. Moreover,
with the same principle the broadening of the wave function, related to Heisenberg’s
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1. Introduction – a tiny story of time, including demons

uncertainty principle, can be inverted and the wave function refocuses again. Instead
of a time mirror, we denote this refocusing setup by a ”time lens“ due to its optical
analogy. Using the lens pulse over and over again, the broadening of the wave
function can be prevented over long times and even approximate solitonic solutions,
i.e. waves that don’t change their shape, can be achieved.

In chapter 7, the zitterbewegung of electrons in graphene is discussed. After
an extensive introduction about the well-known decay of zitterbewegung for wave
packets in the static case, we explore its behavior in a driving potential with the hope
of getting long-time surviving modes. Although this chapter seems to be completely
independent of the rest of the work, the relation to the population inversion QTM
becomes visible when a mass pulse is used to invert the afore-mentioned decay of
the zitterbewegung, leading to an echo, similar to the Hahn-echo. In a disordered
setup, we show exemplarily that the echo strength, i.e. the ratio between revived
and initial amplitude, behaves similarly to the echo fidelity, which means that it
decays exponentially with the elastic scattering time, but unlike the echo fidelity,
the zitterbewegung is in principle a measurable quantity. Due to its similarity to
the Hahn echo, one could now think of using the well-known techniques, e.g. to get
an spatial resolution of the elastic scattering time, and thus disorder strength, in a
sample.

In chapter 8, the findings of this thesis are summarized and an outlook is given
on possible future research directions of the QTM.
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Chapter 2

Basic concepts

2.1 Graphene

2.1.1 Low energy Hamiltonian

The first theoretical appearance of graphene was already 65 years ago, when P. Wal-
lace [47] used a two-dimensional, hexagonal lattice of carbon atoms (graphene) as
a first approach to graphite, which consists of many such layers that are stacked
one above the other and coupled by van der Waals forces. In the following decades,
graphene was used as a model system to understand more complicated carbon al-
lotropes, e.g. carbon nanotubes, and it was theoretically investigated due to the
surprising analogy to relativistic quantum mechanics for small energies [48–52], al-
though it was predicted that as a strictly two-dimensional structure, it is thermo-
dynamically unstable [53, 54]. Therefore, it was very surprising when in 2004, K.
Novoselov and A. Geim [55] were able to produce single layers of graphite: graphene.
The unexpected existence of free-standing graphene can be explained by the stabi-
lizing effect of slight crumbling [56]. The discovery was honored 2010 by the Nobel
prize for physics and lead to an enormous increase of research interests in the field
of graphene, not only because of its high charge carrier mobility and mechanical
stability due to the σ-bonding of neighboring atoms.

Although the original method, the mechanical exfoliation from highly ordered
pyrolytic graphite, produces high quality graphene flakes, it is not suitable for mass
production, as only a few of the exfoliated flakes are single layers which have to be
picked out manually. Therefore, other methods have to be deployed like the epitax-
ial growth on SiC [57, 58] by making use of the effect that by rising temperature,
the silicon atoms vaporize first, leaving behind only the carbon atoms which then
form a graphene sheet on the surface of the SiC crystal. Another method is the
chemical exfoliation, which again obtains graphene out of highly ordered graphite,
but instead of pealing off individual layers mechanically, the van der Waals interac-
tions are broken by ultrasonication. The resultant flakes are stabilized by a chemical
detergent and can be put on a substrate of choice [59, 60]. Nowadays most promis-
ing for applications as electrical devices (e.g. transistors) is ultraclean graphene, i.e.
graphene encapsulated in hexagonal Boron-Nitride (hBN), with has among others
the advantaged that it is flat, it is relatively free of charge puddles and dangling
bonds and it has a very similar lattice constant to graphite, such that almost no
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2. Basic concepts

(a) (b)

Figure 2.1: (a) The graphene honeycomb lattice is shown with the lattice vectors

a1 = a(1, 0) and a2 = a(1
2
,
√

3
2

) and the vectors between the nearest C atom neighbors

R1 = aCC (0, 1), R2 = aCC

(
−
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3
2
,−1

2

)
and R3 = aCC

(√
3

2
,−1
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)
. The surface that is

marked blue is the unit cell. There are two nonequivalent C atoms in the unit cell
called A(blue) and B(orange). Panel (b) illustrates the Brillouin zone in reciprocal
space with the reciprocal lattice vectors g1 and g2. The corners of the Brillouin zones
are the K-points which are connected to each other by reciprocal lattice vectors and
the K′-points.

strain is induced [61]. The encapsulation protects the graphene from environmental
influences and keeps it clean such that mean free paths of the order of 28µm [62]
and more are possible.

In this subsection, we want to derive the low energy Hamiltonian of graphene in
the tight-binding approach. There are numerous publications showing this deriva-
tion and we will follow notation-wise and conceptually Sasaki and Saito [63].

As already mentioned, graphene is a two-dimensional lattice of carbon atoms
which are arranged in a hexagonal structure as shown in Fig. 2.1(a). The primitive

translations are given by the two lattice vectors a1 = a(1, 0) and a2 = a(1
2
,
√

3
2

),

where a =
√

3aCC ≈ 2.46Å with aCC ≈ 1.42Å being the bond length between the
two neighboring carbon atoms. An important fact is that there are two carbon
atoms (often called A and B sites) in the unit cell, which leads to several interesting
consequences for the electronic structure as discussed below.

The Brillouin zone is a hexagon which is rotated with respect to the real space

hexagon by 90◦, see Fig. 2.1(b). The reciprocal lattice vectors are g1 = 2π
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a

(
−1

3
,− 1√

3

)
, connected to each other by reciprocal lattice vectors and

K′1 = −2π
a

(
2
3
, 0
)
, K′2 = −2π

a

(
−1

3
, 1√

3

)
and K′3 = −2π

a

(
−1

3
,− 1√

3

)
, which are also

equivalent to each other. The time-reversal transformation converts K into K′ and

8



2.1. Graphene

vice versa.
Most important for electronic properties of graphene is its band structure near

the K(′)-point. In the tight-binding model, we consider the electrons to be strongly
bound to the atoms, such that only the nearest-neighbor hopping is essential and
therefore, the Hamiltonian is given by [63]

H0 = −γ0

∑
i∈A

∑
a=1,2,3

((
cBi+a

)†
cAi +

(
cAi
)†
cBi+a

)
. (2.1)

This Hamiltonian describes the hopping from an A atom to a B atom and vice versa.
The operator cAi is the annihilation operator of an electron at the A atom at point ri
and accordingly,

(
cAi
)†

is the creation operator. Analogously, cBi+a and
(
cBi+a

)†
create

or annihilate electrons at B atoms at ri+a = ri + Ra. The index i runs over all A
atoms of the lattice and γ0 ≈ 2.7 eV is the nearest-neighbor hopping integral.

Since there are two atoms in the unit cell, we may choose the basis states as two
Bloch sums over sites A and B respectively:

|Ψk
A〉 =

1√
Nu

∑
i∈A

eik·ri
(
cAi
)† |0〉, (2.2)

|Ψk
B〉 =

1√
Nu

∑
i∈B

eik·ri
(
cBi
)† |0〉. (2.3)

The normalization factor Nu is the number of hexagonal cells and |0〉 is the vacuum
state.

To derive the Hamiltonian matrix in this basis, we have to calculate the overlaps
〈Ψk

A|H0|Ψk
A〉, 〈Ψk

B|H0|Ψk
A〉 = 〈Ψk

A|H0|Ψk
B〉∗ and 〈Ψk

B|H0|Ψk
B〉. Acting with Eq. (2.1)

on Eq. (2.2) we obtain

H0|Ψk
A〉 =− γ0√

Nu

∑
i∈A

∑
a=1,2,3

∑
j∈A

eik·rj
((
cBj+a

)†
cAi
(
cAj
)† |0〉︸ ︷︷ ︸

δij

+
(
cAi
)†
cBi+a

(
cAj
)† |0〉︸ ︷︷ ︸

0

)

=− γ0√
Nu

∑
i∈A

∑
a=1,2,3

eik·ri
(
cBi+a

)† |0〉. (2.4)

Therefore, the following matrix element becomes

〈Ψk
B|H0|Ψk

A〉 =− γ0
1

Nu

∑
i∈A

∑
a=1,2,3

∑
j∈B

eik·rie−ikrj〈0| cBj
(
cBi+a

)†︸ ︷︷ ︸
δj,i+a

|0〉

=− γ0

∑
a=1,2,3

e−ik·Ra , (2.5)

where we use in the last step that eik·rie−ik·ri+a = e−ik·Ra . The sum
∑

i∈A 1 = Nu

cancels with 1/Nu. Furthermore, as 〈Ψk
A|H0|Ψk

B〉 =
(
〈Ψk

B|H0|Ψk
A〉
)∗

, we get

〈Ψk
A|H0|Ψk

B〉 = −γ0

∑
a=1,2,3

eik·Ra . (2.6)

9



2. Basic concepts

On the other hand 〈Ψk
A|H0|Ψk

A〉 = 0, because of

〈Ψk
A|H0|Ψk

A〉 = −γ0
1

Nu

∑
i∈A

∑
a=1,2,3

∑
j∈A

e−ik·rjeik·ri〈0|cAj
(
cBi+a

)† |0〉, (2.7)

where cAj and
(
cBi+a

)
commute and cAj |0〉 = 0. In the same manner, 〈Ψk

B|H0|Ψk
B〉 = 0

and we see that the Hamiltonian has the following form

H = −γ0

 0
∑

a=1,2,3

eik·Ra∑
a=1,2,3

e−ik·Ra 0

 . (2.8)

We are interested in the Hamiltonian near the K-point. If we insert K1 =
(

4π
3a
, 0
)

(or, equivalently, K2 or K3), we find

∑
a=1,2,3

eiK1·Ra = e0 + ei
4π
3a
−1
2
a + ei

4π
3a

1
2
a = 1 + e−i

2π
3 + ei

2π
3 = 0. (2.9)

However, if we are not exactly at K1 but at K1 + k where k is small compared to
K1, we have to expand the exponential functions and the sum gives∑

a=1,2,3

ei(K1+k)·Ra ≈
∑

a=1,2,3

eiK1·Raik ·Ra +
∑

a=1,2,3

eiK1·Ra

︸ ︷︷ ︸
0

(2.10)

= ikyaCC + i(−1

2
− i
√

3

2
)(−
√

3

2
kx −

1

2
ky)aCC + i(−1

2
+ i

√
3

2
)(

√
3

2
kx −

1

2
ky)aCC

= −3

2
aCC(kx − iky). (2.11)

Thus, Eq. (2.8) reduces to

HK
0 = γ0

3

2
aCC

(
0 kx − iky

kx + iky 0

)
= ~vFk · σ, (2.12)

where σ is the vector of Pauli matrices σ =

(
σx
σy

)
with σx =

(
0 1
1 0

)
, σy =(

0 −i
i 0

)
and the Fermi velocity is

vF = γ0
3aCC

2~
≈ c

300
. (2.13)

The matrix structure of the Hamiltonian arises from the two carbon atoms within
the unit cell and this additional degree of freedom is called pseudospin.

The same strategy can be applied to the nonequivalent corners K′ and we can see
that the appropriate Hamiltonian is related to the Hamiltonian at the K-points by
the time-reversal. The time-reversal operator is T̂ = σxĈ, where Ĉ is the complex
conjugation operator. Thus, from Eq. (2.12) follows

HK′

0 = T̂HK
0 T̂ = γ0

3

2
aCC

(
0 −kx − iky

−kx + iky 0

)
= ~vFk · σ′, (2.14)

10



2.1. Graphene

where σ′ =

(
−σx
σy

)
.

Combining the Hamiltonian for the two different corners of the Brillouin zone
and assuming that they do not interact, we get

H = ~vF
(

k · σ 0
0 k · σ′

)
, (2.15)

which is Hamiltonian that describes massless, relativistic fermions. The only change
is that these particle have in graphene a much smaller velocity vF instead of the speed
of light c, which is the parameter in the original Dirac-Weyl Hamiltonian.

The two decoupled corners of the Brillouin zone lead to independent parts of
the Hamiltonian in Eq. (2.15), which are the same except for an overall sign and
complex conjugation, thus the physics is the same for both corners. Therefore, in
the rest of the thesis, we will only consider the K-points:

H = ~vFk · σ. (2.16)

In this thesis, the degeneracy which comes in general from the K′-points is not im-
portant for the echoes and therefore omitted. The same holds for the spin degeneracy
of the spin-independent Hamiltonian.

The eigenenergies of Eq. (2.12) can be found by diagonalization

E±(k) = ±~vF |k| , (2.17)

and the corresponding eigenstates are in the basis of Eqs. (2.2) and (2.3)

〈k | ϕk,s〉 =
1√
2

(
1

seiγk

)
, (2.18)

where γk = arctan ky
kx

is the polar angle in k-space. There is no gap between the

conduction and the valence band which touch each other in the K(′)-point (which is
at k=0). Furthermore, as the dispersion relation is linear, the band structure close
to the K(′)-point looks like a cone.

Graphene has very interesting effects because of this linear energy dispersion of
the electrons near the corners of the Brillouin zone and its subsequent analogy to
relativistic quantum mechanics [47, 50, 64, 65]. A special feature is for instance the
Klein paradox [66, 67], which states that under certain circumstances, e.g. vertical
incidence, particles can tunnel through a barrier with probability 1, thus always
passing as if there was no barrier at all. Another effect is the anomalous integer
quantum Hall effect that is in graphene observable at room temperature [68–70],
where a strong magnetic field is applied perpendicular to the graphene sheet.

For our purposes, the linear band structure is interesting due to its implied
constant speed, similar to photons. Since we want get an echo of electron wave
packets with the quantum time mirror, we have to invert their motion and inverting
their motion means changing their velocity. A normal mirror for light – let us call
it space mirror – is a discontinuity in space, which is why the momentum changes
sign and the velocity is inversed. In the case of the time mirror, we want to use
accordingly a discontinuity in time, i.e. a time-dependent term in the Hamiltonian,

11



2. Basic concepts

which changes the sign of the energy of the wave packet. Since the slope of negative
energy branch in the band structure has the negative slope of the positive branch,
which is due to the sub-lattice or chiral symmetry (E−(k) = −E+(k)), also the
velocity changes sign and the wave packet is supposed to come back.

2.1.2 Graphene in a magnetic field

In this subsection, we want to see what happens with graphene in a homogeneous
magnetic field [50]. Here, we follow the review article by Goerbig [71].

Since we are not interested in the spin, we neglect the Zeeman term related to
the magnetic field, but only concentrate on the orbital effects. Therefore, we have
to substitute the canonical momentum in Eq. (2.16) by the kinetic momentum

p→ Π = p + eA(r), (2.19)

with the vector potential A(r), which yields in symmetric gauge A(r) = B
2

(x,−y, 0),
where B is the magnetic field strength. Since the components of Π do not commute,

[Πx,Πy] = −i~eB, (2.20)

we can define ladder operators as in the harmonic oscillator

â =

√
1

2~eB
(Πx − iΠy) , (2.21)

â† =

√
1

2~eB
(Πx + iΠy) , (2.22)

which are chosen such that their commutator is normalized

[â, â†] = 1. (2.23)

The graphene Hamiltonian then becomes

HB = ~ω′
(

0 â
â† 0

)
, (2.24)

with ~ω′ =
√

2~eBvF . To solve the eigenvalue equation

HBψn = Enψn, (2.25)

we use the ansatz

ψn =

(
un
vn

)
, (2.26)

which yields the coupled set of equations

~ω′vF âvn = Enun, (2.27)

~ω′vF â†un = Envn. (2.28)

12
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wave packets

Decoupling the two equations by letting act â† on Eq. (2.27) and then inserting
Eq. (2.28), we get for the second spinor component

â†âvn =

(
E2
n

~ω′

)2

vn. (2.29)

Therefore, vn is proportional to the eigenstate |n〉 of the usual number operator
n̂ = â†â, with n̂|n〉 = n|n〉, for n > 0. Due to the square in Eq. (2.29), the energy
En has two solutions for a given n and yields

En,± = ±~ω′
√
n = ±

√
2~eBvF

√
n. (2.30)

From the coupled Eqs. (2.27) and (2.28), we see that the relations un ∼ âvn ∼ â |n〉
and â†un ∼ vn ∼ |n〉 imply that un ∼ |n− 1〉 and the eigenstates become

ψn6=0,s =
1√
2

(
|n− 1〉
s |n〉

)
, (2.31)

with s = ±1. For n = 0, there is a special case with E0 = 0 and

ψn=0 =
1√
2

(
0

|n = 0〉

)
. (2.32)

In the same way, the eigenstates can be obtained if there are additional terms in the
Dirac Hamiltonian of Eq. (2.24) like a mass term:

HB = ~ω′
(

0 â
â† 0

)
+Mσz. (2.33)

In that case, the eigenenergy becomes

εn,± = ±
√
M2 + E2

n, (2.34)

where En = E+
n is the energy of the case without mass gap. The eigenstates are

χn,s =
1√

2
√
ε2
n − εsnM

(
En|n− 1〉

(εn,s −M) |n〉

)
. (2.35)

2.2 TQT: A library for simulating the time evo-

lution of quantum wave packets

In general, to propagate a quantum state |ψ〉, one has to solve the differential equa-
tion known as Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉, (2.36)

with the Hamilton operator Ĥ. Formally, it can be solved using the time-evolution
operator

U(t0, t) = T exp

(
− i
~

∫ t

t0

Ĥ(t′) dt′
)
, (2.37)
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where T is the time-ordered product, which means for the exponential

U(t0, t) = 1 +
∞∑
n=1

(
−i
~

)n t∫
t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn Ĥ(t1)Ĥ(t2) · · · Ĥ(tn). (2.38)

The time-evolution then yields

|ψ(t)〉 = U(t0, t)|ψ(t0)〉. (2.39)

A general property of the time-evolution operator is that a time evolution from t0 to
t is the same as an evolution first from t0 to t′ and then from t′ to t, with t0 < t′ < t:

U(t0, t) = U(t′, t)U(t0, t
′). (2.40)

Moreover, for time-independent Hamiltonians, the time-evolution operator simplifies
to

U(t0, t) = exp

(
−i Ĥ

~
· (t− t0)

)
. (2.41)

On the other hand, any function can be approximated by step-wise constant func-
tions – the smaller the steps, the better the approximation. Thus, the time-ordered
exponential of Eq. (2.37) can be estimated by

U(t0, t0 +Nδt) ≈
N−1∏
j=0

exp

(
−i Ĥ(t0 + jδt)

~
· δt

)
, (2.42)

where the Hamiltonian is made step-wise constant for the time duration δt. The
advantage is that instead of the nested integrals of Eq. (2.38), a rather easy multi-
plication can be performed. Of course, one has to make sure that the time step δt
is small enough, such that the numerical result is converged.

However, this discrete slicing of the time is not enough. Instead of solving the
differential equation in Eq. (2.36) for the time propagation, we have the problem
of an operator in an exponential function, which is defined by its (infinite) series
expansion. The c++ library “Time-dependent Quantum Transport” (TQT), which
is publicly available, has been developed by Viktor Krueckl [46] as part of his PhD
project to take care of this expansion as efficient as possible for 1d or 2d systems.
The expanded time-evolution operator acts on a numerically defined initial state in
real space. Since an sufficiently smooth function can be approximated by its values
at discrete points, the space is discretized by a grid, in 2d with Nx × Ny points.
Thus, the wave function becomes a complex valued (Nx × Ny)-matrix, in our case
usually 256× 256 or 512× 512 for 2d systems.

Here, we give a minimal, user-related overview of the TQT library. For more
information, e.g. more details about the implementation we redirect to the publicly
available PhD thesis of Viktor Krückl [46].

The Hamiltonian can be either given as tight-binding Hamiltonian or as mixed
position and momentum space representation, i.e. a function of both, the position
and momentum operator, the latter being the Hamiltonian used in most cases for
analytical calculations. In the mixed representation, instead of using the spatial
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derivative, the momentum operator acts in momentum space, i.e. the wave function
is transformed by a fast Fourier transform, then the momentum operator acts as
factor, and finally the inverse fast Fourier transformation is applied to get back
to position space. The reason for using the Fourier transformation instead of the
derivative is the numerical instability of the latter. Since the momentum operator
acts several times (in higher orders kni ) in each small time step, the errors add up
quickly. In this thesis, only the mixed representation of position and momentum
operator is used.

Let us come back to the expansion of the operator exponential in the time-
evolution operator. The first guess might be to use the standard Taylor expansion
around 0, which has the problems of slow convergence for highly oscillating functions
like the time evolution operator (U ∼ e−iωt). Moreover, the error for non-zero
arguments in the exponential increases exponentially in the Taylor expansion.

Instead other expansion methods have to be applied, depending on the exact
system. For time-independent systems, an expansion in Chebyshev polynomials is
better suited due to their faster convergence for oscillating functions [72, 73]. The
recursion relation for the Chebyshev polynomials of first kind is

T0(z) = 1, T1(z) = z, Tn(z) = 2zTn−1(z)− Tn−2(z), (2.43)

and with the scalar product

〈f |g〉 =

∫ 1

−1

f(z)g(z)√
1− z2

dz, (2.44)

they form an orthogonal basis set in the interval (−1, 1). Not only do the Cheby-
shev polynomials converge faster, but also the deviation to the exponential with
imaginary argument is almost constant in the (arbitrarily scalable) interval (−1, 1).
The order of the expansion, i.e. the number of polynomials, is automatically cho-
sen such that the error by expansion are smaller than the numerical accuracy, for
a reasonable energy rescaling ∆E, i.e. that all important energies of the physical
system are smaller than ∆E such that the expansion effectively takes place in the
interval (−1, 1). The advantage for time-independent systems is that the expansion
of the Hamiltonian, i.e. the coefficients for the Chebyshev polynomials is the same
for all times, such that they have to be calculated only once. On the other hand, the
action on the state changes of course with time, since also the state changes with
time, which takes the major part of the calculation time.

For time-dependent Hamiltonians, a Lanczos method is used to expand the time-
evolution operator [74, 75]. The difference here is that instead of expanding in a
fixed set of polynomials, the time-evolution operator is expanded in terms of the
wave function ψ itself and powers of the Hamiltonian acting on the wave function
Ĥnψ. The thereby spanned subspace is an N -dimensional Krylov subspace K =
span{ψ, Ĥψ, . . . , ĤN−1ψ}, which is orthonormalized to get the basis vectors un by a
Gram-Schmidt procedure during the recursive creation for better numerical stability:

u0 =
ψ(t0)

|ψ(t0)|
, (2.45)

u1 =
Ĥu0 − α0u0

β0

, (2.46)
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un+1 =
Ĥun − αnun − βn−1un−1

βn
, (2.47)

with the overlaps αn = 〈un | Ĥ | un〉 and βn−1 = 〈un−1 | Ĥ | un〉. Note that un is a
linear combination of powers of Ĥ acting on ψ, with highest order n.

The truncated Hamiltonian in this subspace becomes tridiagonal

HK =


α0 β0 0 · · · 0
β0 α1 β1 0
0 β1 α2 0
...

. . . βN−2

0 · · · 0 βN−2 αN−1

 , (2.48)

which can be diagonalized by conventional algorithms and enables the calculation
of approximate eigenvalues of the operator Ĥ [76]. With the matrix of eigenvectors
T and eigenvalues E of the Hamiltonian in the reduced Krylov space HK, the time-
evolution of one small time step is given by

ψ(t+ δt) =
N−1∑
n=0

[
Tt exp

(
− i
~

Eδt

)
T ψK(t)

]
n

· un. (2.49)

The expansion in the Krylov subspace is faster than a Taylor expansion [77] and
for the Krylov space, a dimension N in the range 10–40 is usually enough. In this
thesis, the Lanczos method is used for time-dependent Hamiltonians. It turned out
that the dimension of the Krylov space of N = 15 suffices in our cases.

Since the state can now be calculated for any time on our discrete time line, an
arbitrary (observable) quantity like expectation values can be obtained as a function
of the time for the propagation. Due to storage reasons, only these functions are
usually saved instead of the states at any time.

In general, an important application of the TQT library are transport calcula-
tions. Although not directly obvious, the propagation of wave packets can be used to
obtain the energy-resolved scattering matrix of an arbitrary (but time-independent)
scattering region, which can be for instance used to calculate the current in a given
setup. However, since we do not calculate transport properties in this thesis, this
rather involved theory is not presented here, but we redirect again to Viktor Krückl’s
PhD thesis [46], where it is thoroughly demonstrated.

As mentioned in the beginning, this section is supposed to give a minimally
needed overview of the functionality of TQT. Since it is not the purpose of this the-
sis to go to the limits of TQT or extend its fundamental functionalities, we abstain
from describing unnecessary details of the implementation of the library. Instead,
the physics of quantum time mirrors is about to be investigated thoroughly. In that
regard, TQT is used as a tool and verification mechanism to reinforce ideas and
analytical results, as well as exploring regimes where analytical calculations are not
possible. On the other hand, naturally the simulations have initiated ideas lead-
ing in new directions, which we studied in turn analytically using approximations
understand the most fundamental issues. Therefore, almost any data obtained by
simulation using TQT in this thesis is accompanied by analytical calculations, some-
times with as easy as possible approximations, sometimes as exact as possible where
in the end only an integral is solved numerically.
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Chapter 3

Dirac Quantum Time Mirror

3.1 Echo mechanism and transition amplitude

The linear band structure of graphene in vicinity of its K- and K′-points is beneficial
for the sake of echoes due to two features. One feature is the constant magnitude of
the phase velocity vF and the other even more important one is its chiral symmetry
implying negative velocity of the valence band (E < 0) as compared to the conduc-
tion band (E > 0). For this reason, our goal will be to revert the population of the
two bands by a pulse. The velocity after the pulse has the same magnitude vF , but
points in the opposite direction as compared to before. Thus a perfect echo of the
initial state is achieved – provided perfect population inversion.

The initial Hamiltonian we use is an effective low-energy Hamiltonian around
the K-point given by the massless Dirac equation in 2d, compare Sec. 2.1.1,

H0 = ~vF k · σ = ~vF
(

0 kx − iky
kx + iky 0

)
(3.1)

Note that for graphene, the Pauli matrices σi are operators in the pseudospin space.
The additional degeneracy of spins is not of importance for the basic principle of
the echo and therefore not considered.

Since k is a good quantum number, the eigenenergies and eigenvectors can be
labeled by k and a band index s = ±:

Ek,s = s ~vFk =: sEk, (3.2)

〈k | ϕk,s〉 =
1√
2

(
1

s eiγk

)
, (3.3)

where k = |k| and γk is the polar angle in reciprocal space. An important feature
is that for every k, the eigenstates |ϕk,s〉 are complete in pseudospin space meaning
that ∑

s

|ϕk,s〉〈ϕk,s| = |k〉〈k|1ps (3.4)

with 1ps being the unit operator in pseudospin space.
Since the Hamiltonian in Eq. (3.3) is not only immanent to graphene, other

systems whose time propagation is described by the same Hamiltonian can be used
for this echo mechanism, like artificial graphene or Dirac plasmons. Moreover, the
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~v

M

~v

k

E

|ψ〉

k

E

|ψ〉

k

E

|ψ〉

t0 < t < t0 + ∆tt < t0 t0 + ∆t < t

H0 = ~vFk · σ H = H0 +Mσz H = H0

Figure 3.1: Transition mechanism in graphene for an exemplary initial state |ψ〉,
induced by opening a band gap. The band structure before, during and after the
pulse is shown. Due to the linear band structure, the magnitude of the group
velocity is constant, but the direction is opposite in the blue band and in the red
band, indicated by the colored arrows. Before the pulse, the initial state is in the
blue band and moves therefore to the right. During the pulse, a band gap opens
and the initial state is not in an eigenstate of the Hamiltonian anymore but in a
superposition of the two new eigenstates, which oscillate with different frequencies.
Depending on the pulse strength M and the pulse duration ∆t, the state switches
partly to the other band (red branch). Due to the opposite velocity, this part of the
state goes after the pulse back to its initial position as an echo.

exact coupling between the (pseudospin) and momentum is not important. The
same echo mechanism also works for 3D topological insulator surface states, which
can be described by HTI = ~vFk · (σ × êz) [78], whose band structure is also linear.
The only difference is the pseudospin orientation of the energy-eigenstates, which is
not relevant, since a unitary rotation of the spin-space maps one Hamiltonian in the
other. Nevertheless, to avoid confusion, we will consider only graphene henceforth,
but all results also apply to the afore mentioned systems.

Again, to stress the main mechanism of our proposed quantum time mirror
(QTM), the echo is achieved by inverting the energy, but keeping the momentum
k fixed, as can be seen in Fig. 3.1. In consequence, the direction of the velocity of
every mode is also inverted (v→ −v) due to the peculiar band structure.

The transition is induced by a time-dependent Hamiltonian H1(t), which is cho-
sen to be nonzero only for t0 < t < t0 + ∆t where t0 is the time of the pulse and ∆t
is the pulse duration. The full Hamiltonian during the pulse is H(t) = H0 + H1(t)
and the time evolution operator U becomes

U(t0, t0 + ∆t) = T exp

(
−i/~

∫ t0+∆t

t0

H(t) dt

)
, (3.5)

with T denoting the time-ordered product, resp. the time-ordered exponential. For
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simplicity, we choose

H1(t) =

{
M̂, t0 < t < t0 + ∆t,
0, otherwise,

(3.6)

meaning that the pulse is switched on and off abruptly to a constant potential M̂ ,
which is homogeneous in space. This simplifies the time evolution operator during
the pulse, getting rid of the time ordered exponential

U(t0, t0 + ∆t) = exp

(
− i
~

(H0 + M̂)∆t

)
. (3.7)

Note that the restriction of abrupt switching of the pulse is not a necessary con-
dition for the echo. Qualitatively the same results for other pulse shapes, as long
as it is fast enough (diabatic) compared to the other energies in the system, e.g.
the pulse strength or the energy of the wave packet. Moreover, since H(t) is not
space-dependent, k is still a good quantum number, i.e. the momentum operator ~k̂
commutes with H, but energy is not conserved due to the time-dependence.

A perfect occupation inversion of the bands is achieved if U(t0, t0 + ∆t) maps an
eigenstate at k onto the eigenstate with negative energy and the same k:

U(t0, t0 + ∆t) |ϕk,±〉 = α |ϕk,∓〉, α ∈ C, |α|2 = 1. (3.8)

Because of this condition, it is reasonable to choose M̃ = Mσz. Due to the structure
of the eigenstates in Eq. (3.3), we see that σz serves the purpose

σz |ϕk,±〉 = |ϕk,∓〉, (3.9)

since σz only changes the sign of the second component of the spinor. Physically,
Mσz is an effective mass term in the Dirac equation, which opens a gap. The full
Hamiltonian reads:

H = H0 +H1 = ~vF k · σ + f(t)Mσz, with f(t) =

{
1, t0 < t < t0 + ∆t,
0, otherwise.

(3.10)
The eigenvalues and eigenvectors of H during the pulse become

εk,± = ±
√
M2 + ~2v2

Fk
2 = ±M

√
1 + κ2, (3.11)

〈k | χk,±〉 =
1√

(M + εk,±)2 + ~2v2
Fk

2

(
M + εk,±
~vFk eiγk

)
=

1
√

2
√

1 + κ2 ±
√

1 + κ2

(
1±
√

1 + κ2

κ eiγk

)
. (3.12)

Here we introduced the dimensionless quantity

κ =
~vFk
M

, (3.13)

which is the ratio between the energy of a mode without perturbation and the gap
width and is therefore an inverse, relative measure for the pulse strength.
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t0 t0 + ∆t
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Figure 3.2: Visualizing the derivation of the transition amplitude A(k) of Eq. (3.15),
for a single k-mode with initially positive energy. During the pulse it splits into the
new eigenstates with the same k, which have energy εk,±. Due to the different

energies, these two parts acquire different phases e−
i
~ εk,±∆t and when the pulse is

switched off at t = t0 + ∆t, both of them split into the initial eigenenergies again,
and the individual terms interfere depending on different phases collected.

A small remark concerning the notation: Here and in the rest of the thesis,
the eigenstates of the initial Hamiltonian are called |ϕk,s〉, whereas during the pulse,
they are denoted by |χk,s〉, independent of whether the initial Hamiltonian is already
gapped or not.

Now that we have defined our system, we investigate analytically the time evolu-
tion of a wave packet from t = 0 to the pulse at t = t0 and then until the (possible)
echo. For this, we decompose the initial wave packet into eigenstates of H0 to
simplify the time evolution until the pulse,

|φ〉 =
∑
k

∑
s=±

〈ϕk,s|φ〉 |ϕk,s〉 =
∑
k

∑
s=±

φk,s|ϕk,s〉. (3.14)

Here we denote φk,± = 〈ϕk,s|φ〉 ∈ C, which is the projection of the initial wave
packet to the eigenstates of graphene. Since k is a good quantum number at any
point in time, the nontrivial part of the time evolution is only due to the pseudospin
terms.

Before investigating the whole time evolution of the process, we consider the
action of the time evolution operator during the pulse (compare Eq. (3.7)) to an
arbitrary wave packet. It is enough to look only at the eigenstates of H0 because
any wave packet is a superposition of |ϕk,s〉.

The following derivation is illustrated in Fig. 3.2, where an initial eigenstate
splits during the pulse in the two new eigenstates and acquires during the pulse
different phases. After the pulse, every new eigenstate splits again and the different
”paths” interfere.

e−
i
~H(t0+∆t−t0)|ϕk,s〉 =

∑
s′=±

e−
i
~H∆t|χk,s′〉〈χk,s′ |ϕk,s〉

=
∑
s′=±

e−
i
~ εk,s′∆t|χk,s′〉〈χk,s′|ϕk,s〉
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=
∑

s′,s′′=±

e−
i
~ εk,s′∆t〈ϕk,s′′|χk,s′〉〈χk,s′|ϕk,s〉 |ϕk,s′′〉. (3.15)

We inserted the eigenstates of H during the pulse to make the time evolution trivial.
Eq. (3.15) corresponds to the terms stated on the right hand side of the picture,
with

α± = 〈χk,+ | ϕk,±〉, (3.16)

β± = 〈χk,− | ϕk,±〉, (3.17)

i.e. α± corresponds to the new positive energy and β± to the new negative energy. To
calculate the overlaps of the given eigenstates is straight forward but a bit tedious,
which is why we moved it to App. A. Inserting the result of the product of overlaps
calculated in Eq. (A.3) into Eq. (3.15), we obtain

e−
i
~H∆t|ϕk,s〉

=
∑

s′,s′′=±

e−
i
~ εk,s′∆t

(
δss′′

2
+ s′ · δss

′′

2
· sκ√

1 + κ2
+ s′ · 1− δss′′

2
√

1 + κ2

)
|ϕk,s′′〉

=

(
cos

(
−εk,+∆t

~

)
+

isκ√
1 + κ2

sin

(
−εk,+∆t

~

))
|ϕk,s〉

+
i√

1 + κ2
sin

(
−εk,+∆t

~

)
|ϕk,−s〉. (3.18)

As stated in Eq. (3.9), the population reversal operator is σz, therefore we can write

e−
i
~H∆t|ϕk,s〉 =

[(
cos

(
εk,+∆t

~

)
− isκ√

1 + κ2
sin

(
εk,+∆t

~

))
1

− i√
1 + κ2

sin

(
εk,+∆t

~

)
σz

]
|ϕk,s〉

=:

[
B(k, s)1+ A(k)σz

]
|ϕk,s〉. (3.19)

A(k) is the k-dependent transition amplitude from one band to another, whereas
B(k, s) is the part of the wave packet which is not changed by the pulse and is
therefore lost for the echo. That is why we will often omit the term B(k, s) in the
rest of this chapter, in cases where we consider only the echo strength.

In general and for the rest of the thesis, we define the transition amplitude as

A(k) = 〈ϕk,−s | U(t0, t0 + ∆t) | ϕk,s〉, (3.20)

where |ϕk,s〉 are in general the eigenstates of the initial Hamiltonian. Since here,
the transition amplitude in Eq. (3.19) does not depend on s, the initial band of the
wave packet does not affect the echo strength. This means that the echo is the same
for a wave packet with positive energy or a wave packet with negative energy or
even a wave packet, which is built up from states in both bands. We see that the
k-dependent amplitude for the echo yields
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A(k) = 〈ϕk,−s|e−
i
~H∆t|ϕk,s〉 = − i√

1 + κ2
sin

(
εk,+∆t

~

)
= − i√

1 + κ2
sin

(
M∆t

~
√

1 + κ2

)
⇒ A(k) = − i√

1 + κ2
sin
(
µ
√

1 + κ2
)
, (3.21)

where we introduced the dimensionless quantity µ = M∆t
~ and κ = Ek/M as above.

The first thing to notice is that |A(k)| ≤ 1 and the equality holds only for κ = 0 = k
and µ = π(2n + 1)/2 with n ∈ N0. Furthermore, for a large transition probability
(close to 1), mostly the prefactor matters since by adjusting µ, via the pulse length

∆t, the sine can be tuned to yield ' 1. The prefactor
√

1 + κ2
−1

becomes larger,
the smaller κ, i.e. the condition M � Ek is necessary for a good echo.

Now, we calculate the full time evolution of the initial, arbitrary wave packet |φ0〉
from t = 0 until the echo at techo = t0 +∆t+ t1, t1 > 0, when the wave packet arrives
at its initial position. We are again only interested in the part of the wave packet
which comes back, i.e. only the energy inverted part. Therefore, we calculate the
overlap of the time-evolved wave packet |φ(techo)〉 with the energy inverted, initial
wave packet |φ−0 〉 = σz | φ0〉:

〈φ−0 | φ(techo)〉 = 〈φ0 | σzU(0, techo) | φ0〉

=
∑
k,
s=±

φ∗k,sφk,s〈ϕk,s | σz(0, techo) | ϕk,s〉

=
∑
k,
s=±

|φk,s|2〈ϕk,s | σze−
i
~H0t1e−

i
~H∆te−

i
~H0t0 | ϕk,s〉 (3.22)

Here, the time evolution operator can be split up into stepwise time-independent
Hamiltonians using the identity

U(tA, tB) = U(tC , tB)U(tA, tC). (3.23)

The evolution until the pulse as well as the evolution after the pulse are trivial
because |ϕk,s〉 is an eigenstate of the acting Hamiltonian H0.

〈φ−0 | φ(techo)〉 =
∑
k

s=±

|φk,s|2e−
i
~ (Ek,−st1+Ek,st0)〈ϕk,s | σze−

i
~H∆t | ϕk,s〉 (3.24)

Indeed, the two phases before and after pulse cancel if t1 = t0, i.e. that techo =
2t0 + ∆t ' 2t0 for every eigenstate, because Ek,s = −Ek,−s. The last term, i.e. the
overlap in Eq. (3.24) is just the transition amplitude, which is why the overlap of
the flipped initial wave packet and time evolved wave packet at the echo becomes

〈φ−0 | φ(techo)〉 =
∑
k

s=±

A(k) |φk,s|2. (3.25)
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3.1. Echo mechanism and transition amplitude

More conveniently, we want to know the part of |φ(techo)〉 which has traveled
back to the initial position, which we call |φecho〉. Therefore, for every eigenstate
|ϕk,s〉, we have to subtract the part B(k, s)1 in echo Eq. (3.19) for every initial
eigenstate, which is not reflected:

|φecho〉 = |φ(techo)〉 −
∑
k

s=±

B(k, s)φk,s |ϕk,s〉 =
∑
k

s=±

A(k)φk,s |ϕk,s〉, (3.26)

or in reciprocal space:

〈k | φecho〉 =
∑
k′
s=±

A(k′)φk′,s 〈k | ϕk′,s〉︸ ︷︷ ︸
∝δkk′

= A(k)
∑
s

〈k | ϕk,s〉〈ϕk,s | φ0〉

= A(k)〈k | φ0〉, (3.27)

where we used the completeness of the eigenstates in pseudospin space (Eq. (3.4)).
Thus, in reciprocal space, every single k-mode of the wave packet at the time of the
echo is given solely by the initial wave packet multiplied by the transition amplitude.
Since we the echo state is given in k-space by Eq. (3.27), this means that also the
state in real space and we can also calculate any physical property (expectation
values, or measures of the echo strength, etc.) at the time of the echo.

Above, the transition amplitude and its importance for the echo state are derived
by performing the time evolution explicitly (brute force), using the eigenstates of
the Hamiltonian before, during and after the pulse. In the rest of this subsection,
we want to show an alternative and more elegant way of deriving the transition
amplitude A(k), by making use of the following identity:

e−in·σ = 1 cos (|n|)− in · σ
|n|

sin (|n|) , (3.28)

which follows from the fact that σ2
i = 1 and that the anticommutator of two Pauli

matrices yields {σi, σj} = 2δij1. However, this holds only as long as the components
of n commute which is always the case if they are scalars, but not necessarily if they
are operators.

As we have seen above, the propagation except for the pulse is trivial. Therefore,
we only consider t ∈ [t0, t0 + ∆t]. Writing H = H0 +H1 = h ·σ, the time evolution
operator reads

U(t0, t0 + ∆t) = e−
i
~h·σ ∆t = 1 cos

(
|h|∆t
~

)
− ih · σ
|h|

sin

(
|h|∆t
~

)
, (3.29)

where, in this example, h = (~vFkx, ~vFky,M)T is in principle an operator for the
orbital degree of freedom, but since k is a good quantum number, the components
of h commute wit each other. Thus, |h| = M

√
1 + κ2 with κ = ~vFk/M as above.

The propagation of |ϕk,s〉 during the pulse yields

U(t0, t0 + ∆T )|ϕk,s〉 =

[
cos

(
|h|∆t
~

)
− ih · σ
|h|

sin

(
|h|∆t
~

)]
|ϕk,s〉

=

[
cos

(
M ∆t

~
√

1 + κ2

)
− iH0 +H1

|h|
sin

(
M ∆t

~
√

1 + κ2

)]
|ϕk,s〉
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=

[
cos
(
µ
√

1 + κ2
)
− i sκ+ σz√

1 + κ2
sin
(
µ
√

1 + κ2
)]
|ϕk,s〉, (3.30)

which is the same result as in Eq. (3.19). Again, only the terms ∝ σz matter for the
echo and the transition amplitude becomes:

A(k) = 〈ϕk,−s|U(t0, t0 + ∆t)|ϕk,s〉 =
−i√

1 + κ2
sin
(
µ
√

1 + κ2
)
, (3.31)

the same as Eq. (3.21).
This calculation is much shorter, but only valid as long as the components of

h commute, which is the case for spatially homogeneous Hamiltonians. However,
later in Chap. 4, when an additional perturbation is applied (e.g. disorder or external
fields), this need not be true anymore. For instance for a magnetic field, the canonical
momentum is then replaced by the kinetic momentum due to minimal coupling and
thus, the components hx ∝ px−eBy and hy ∝ py+eBx do not commute. Therefore,
special care has to be taken in more general systems.

To conclude the section, we want to stress that analytically, the time evolution
can be obtained exactly and that we know the echo wave function (see Eq. (3.27)).
In the next subsection, we want to see numerically, if our results can be verified, i.e.
whether the proposed quantum time mirror setup works in simulation.

3.2 Simulations with Gaussian wave packets

For the numerical simulations, the Time-dependent Quantum Transport (TQT) li-
brary is used as described in Sec. 2.2. A wave packet, typically Gaussian, is propa-
gated by H0 until t = t0, kicked by the time-dependent perturbation Mσz and then
it evolves again freely in time (by H0).

To quantify the echo strength, we use a correlator C between the initial state
|φ0〉 and the state at a later time |φ(t)〉 which is related to their (spatial) overlap.
However, we can not use the fidelity 〈φ0 | φ(t)〉, which is often to quantify echoes
(see e.g. [79]), because the initial state |φ0〉 lives in a different band than the echo
part of |φ(t)〉 and therefore, they are orthogonal. Moreover, we are not interested
in the exact pseudospin structure or some accumulated phases of the wave packet
during the evolution, which is why we use in the correlator only the moduli of the
spinors,

C(t) =

∫
d2r |φ0(r)| |φ(r, t)|. (3.32)

Alternatively, one could use the (altered) fidelity 〈φ0 | σz | φ(t)〉, also called “echo
fidelity”, where we have to compensate for the energy inversion via the included
σz. Both, the echo fidelity and the correlation in Eq. (3.32), yield qualitatively the
same results. However, it is quite unlikely that in an experimental setup the full
spinor including phases can be measured. Rather, only the position can be observed
which is why we stick to the correlation defined in Eq. (3.32). Nevertheless, the
echo fidelity will become important for the theory side when we include disorder
in Sec. 4.1, because there, the theory of Loschmidt echoes is directly linked to the
fidelity.
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As seen in Subsec. 3.1, the reflected part of the wave packet can be calculated
analytically (Eq. (3.25)) in reciprocal space. For a general wave packet, this leads
to the following echo strength, i.e. the correlator at time techo = 2t0 + ∆t,

C(techo) =

∫
d2r |φ0(r)| |φ(r, techo)| =

∫
d2r
∣∣∣φ0(r)

∣∣∣ ∣∣∣ ∫ d2k

2π
A(k)φ0(k)eik·r

∣∣∣.
(3.33)

This somewhat inconvenient formula can be simplified, if the transition amplitude
A(k) is constant over the range of the wave packet in reciprocal space, e.g. if consid-
ering a plane wave. In that case, the transition amplitude can be approximatively
taken out of the integral. Using the normalization condition of |φ0〉, the echo strength
simplifies to

C(techo) = |A(k0)|
∫

d2r
∣∣∣φ0(r)

∣∣∣ ∣∣∣ ∫ d2k

2π
φ0(k)eik·r

∣∣∣
= |A(k0)|

∫
d2r
∣∣∣φ0(r)

∣∣∣2
⇒ C(techo) = |A(k0)|. (3.34)

Here the transition amplitude A(k0) is the same as the echo strength of our simula-
tion.

For wave packets highly peaked around k0 with modulus |k0| = k0, the simplifi-
cation that A(k) is constant for all k-modes in the wave packet is still approximately
valid as shown below. Assuming a Gaussian wave packet with mean wave vector k0

and width ∆k in k-space, a sufficient condition for the approximation used above
is |∆k| � |k0| (and µ small enough such that also µ|∆k| � |k0|). Under this
assumption, the transition amplitude becomes

A(k0 + ∆k) =A(k0)− i∆k
k0

1

1 + κ2
0︸ ︷︷ ︸

≤1

(
µ cos(µ

√
1 + κ2

0)︸ ︷︷ ︸
≤1

− 1√
1 + κ2

0

sin(µ
√

1 + κ2
0)︸ ︷︷ ︸

≤1

)

+O(
∆k2

k2
0

), (3.35)

where κ0 = Ek0/M . The absolute value of the first order term is bounded from
above and therefore, the first order correction in Eq. (3.35) is smaller than

(µ+ 1)
∆k

k0

≈ µ
∆k

k0

. (3.36)

This correction is negligible as long as µ is small compared to the large value k0/∆k,
and therefore the transition amplitude is fairly well approximated by A(k0 + ∆k) ≈
A(k0). Thus, we can approximate the echo strength C(techo) for a wave packet that
is narrow in k-space and centered around k0 by

C(techo) ≈ |A(k0)| . (3.37)
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Figure 3.3: Simulation of the time evolution of Gaussian wave packets for typical sets
of parameters κ0 = 0.4 and varying µ = M∆t/~. (a) The correlation of Eq. (3.32)
is shown as a function of time for simulations with different values for µ. The
echo strength C(techo) at techo ' 2t0 depends strongly and non monotonically on
µ. (b) In the upper panel, the echo strength C(techo) is shown as a function of
µ. The black crosses belong to simulation data, whereas the dashed line is the
analytical approximation for plane waves of Eq. (3.37). The colored dots belong
to the simulation of panel (a). The lower panel shows the difference δ between
analytical calculations and simulation, again as a function of µ. The black dots
are the difference for the approximation in Eq. (3.37) and the red diamonds for the
exact solution of Eq. (3.33), showing good agreement.

To verify the echo strength of Eq. (3.33) and Eq. (3.37), the propagation of a
Gaussian wave packet is simulated. The initial wave packet is

〈r | φ0〉 =
1√
πσ

exp

(
− r2

2σ2
+ ik0 · r

)
, (3.38)

which yields in reciprocal space

〈k | φ0〉 =
1√
π∆k

exp

(
−(k− k0)2

2∆k2

)
, (3.39)

where the width in k-space is reciprocal to the width in real space, ∆k = 1/σ.
To make use of the approximation for the echo strength in Eq. (3.37), we choose
∆k = 1/8 |k0|, such that the transition amplitude is nearly constant for the whole
wave packet. As we have seen in Eq. (3.21), the transition amplitude only depends
on the ratio of the initial energy and pulse strength κ0 = ~vFk0/M = Ek0 , which is
why the exact values k0 and M do not matter.

In Fig. 3.3(a), the correlation C(t) defined in Eq. (3.32) is shown for simulations
of the wave packet with fixed κ0 = 0.4 and varying µ, i.e. changing the pulse length
∆t. Since the initial wave packet is normalized, the correlation at t = 0 yields 1. The
wave packet then moves away from its initial position which causes the correlation to
decline because the overlap in real space decreases between initial wave packet and
propagated wave packet. At t = t0, the pulse potential H1 is switched on for a short
time, between ∆t ∼ 0.002t0 and ∆t ∼ 0.02t0, such that µ has the value indicated
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in the legend of the plot. Due to the pulse, parts of the wave packet revert their
motion (see Subsec. 3.1). The pulse does not affect the correlation immediately, but
the echo takes place later at techo = 2t0 + ∆t ' 2t0. The echo strength strongly
depends on the value µ, as expected from Eq. (3.37).

In the upper panel of Fig. 3.3(b), the echo strength which is numerically found
as the maximum of the correlation after the pulse, Cmax = max

t>t0
C(t), is plotted as

a function of µ, with the same wave packet as before and again for fixed κ0 = 0.4.
Since the echo happens at the expected time techo, we find Cmax = C(techo) and will
use it in the rest of the thesis equivalently. The black crosses are the data points from
the simulation and the black dashed line is the approximated echo strength from
Eq. (3.37). The colored dots are the simulation data points that correspond to the
colored lines in 3.3(a). The results of simulation and analytical approximation match
almost perfectly for this wave packet. The deviations of analytics and simulation are
shown in the lower panel of Fig. 3.3(b). The black dots are the differences in echo
strength between the simulation and the approximation Eq. (3.37). As expected in
Eq. (3.36), the discrepancies increases with larger µ.

Furthermore, the deviations between simulation and approximation is the largest
when the sine has a root in Eq. (3.21). This is due to the fact that at these points,
no echo is expected at all. However, every k-mode in the wave packet that has a
different absolute value than k0 does contribute to the echo. The main difference
here, compared to other µ, is that the echo is stronger for both, larger and smaller k.
Usually, there are some modes with higher transition amplitude than k0, but there
are (almost) as many modes with a smaller transition amplitude, such that this
effect is nearly canceled on average (respectively moved to higher order corrections
in ∆k/k0). Additionally, the slope of the sine is the highest at its roots such that
a deviation in the argument close to multiples of π changes the value of sine – and
thus of A(k) – the most.

A similar effect is visible at the maxima of A(k). There, the deviation between
simulation and approximation has also maxima, because the errors of the estimated
echo strength do not cancel. The echo is overestimated since every k-mode except
for k0 has a smaller transition amplitude than expected. However, since the slope
is 0 at these points, the deviations of the transition amplitude are not as large as at
the roots of the sine.

The red data points in the lower panel of Fig. 3.3(b) show the difference between
the exact analytical echo strength in Eq. (3.33) and the same simulations as before.
The result of Eq. (3.33) is obtained numerically by a fast Fourier transform of the
product of the initial wave packet times the analytical transition amplitude A(k) to
real space, and a subsequent numerical integration by a Riemann sum. The results
of the simulation and of the expectation match almost perfectly. The deviations are
for all examined values of µ smaller than 5 · 10−5 with a mean absolute value of the
difference of only 3.4 ·10−7, which is probably due to some minor inaccuracies in the
numerics.

In Fig. 3.4, the echo strength is plotted as a function of κ0, in panel (a) for a fixed
µ = 1.8 and in (b) for µ = 0.5π/

√
1 + κ2

0, such that the sine in A(k0) (Eq. (3.37))
equals 1. The echo strength strongly depends on κ0 = ~vFk0/M . As expected from
Eq. (3.37), it is necessary for a strong echo to open a large gap compared to the
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Figure 3.4: Echo strength as a function of κ0.(a) The simulated echo strength (black
crosses) for µ = 1.8 is shown and matches the analytical approximation (red) in
Eq. (3.37) very well with the limitations described in the main text. (b) The pulse
length ∆t is adjusted for every κ0 such that the sine in Eq. (3.37) becomes 1 and
therefore, only the prefactor 1/

√
1 + κ2

0 (red curve) determines the echo strength.
Again, the approximation matches the simulated data (black crosses) very well. The
small subtle, step-like structure in the simulation data is due to a limited resolution
in the timeline meaning that µ can only have discrete values.

initial energy of the wave packet (κ0 � 1). In that case, the wave packet during
the pulse lives symmetrically on both energy bands, so that the transition after the
pulse can occur with a high probability.

For the sake of completeness, the joined dependence of the echo on both, µ and
κ0 is shown in Fig. 3.5(a). Since simulation and approximation are again in very
good agreement, only the analytical version is shown because there more data points
are available.

Above, we have shown that the QTM protocol works in principle as expected for
Gaussian wave packets that are highly peaked in k-space. Now, we want to go to
more subtle effects, such as deformations of the wave packet in real space and long
∆t behavior, as well as what is its effect to more complex wave packets and whether
something changes if both bands are occupied.

3.3 Change of the echo wave packet in real space

Due to the fact that in general, the transition amplitude depends on k, different
k-modes of the wave packet are reflected with different probabilities and thus, the
echo wave packet has a different structure in k-space compared to the initial one.
That means that also in real space, the shape of the wave packet changes, since
the real space and reciprocal space wave packet are directly related by a Fourier
transform. In the cases where A(k) ' A(k0) for most of the wave packet, i.e.
when the approximations for Eq. (3.37) are valid, this is only a very small effect
and the shape does not change qualitatively. However, there are cases where these
requirements are not met, e.g. if µ

√
1 + κ2

0 = nπ with n ∈ Z or if the wavepacket
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Figure 3.5: (a) The echo strength C(techo) is plotted both, as a function of µ and
κ0 = ~vFk0/M . Due to the good accordance between the analytical approximation
in Eq. (3.37) and the simulations, only the analytical results are shown (see text).
(b) Change of the echo wave functions in real space for various µ and κ0 = 0.4. Only
for roots of the transition amplitude at κ0, i.e. for µ equals integer multiples of ∼ 2.9
the wave packet shape changes qualitatively. On the left hand side, a closeup of the
changed wave functions is shown. The dashed curves are the expected shapes with
the full transition amplitude, whereas the brown, dotted-dashed line shows the linear
approximation in Eq. (3.40) for µ = 2.9. The wave functions are normalized by the
amplitude of the initial wave packet.

consists of a wide range of k-modes (e.g. ∆k & k0). Let us consider the case
that µ

√
1 + κ2

0 = nπ and approximate the transition amplitude in linear order of
κ̃ = κ− κ0:

A(k) =
−i√

1 + (κ0 + κ̃)2
sin
(
µ
√

1 + (κ0 + κ̃)2
)

= (−1)n+1 i κ̃κ0√
1 + κ2

0

3 +O(κ̃2)

(3.40)
For a 1d initial Gaussian wave packet φ0, this yields for the echo wave packet

|φecho(x)| =
∣∣∣∣∫ dkx√

2π
eikxxA(kx)φ0(kx)

∣∣∣∣ ≈ κ0√
1 + κ2

0

3

∣∣∣∣∫ dkx√
2π

eikxx
kx − k0

M/(~vF )
φ0(kx)

∣∣∣∣
=

~vF κ0

M
√

1 + κ2
0

3

∣∣∣∣∣
∫

dk̃x√
2π

eik̃xx k̃xe
− k̃2

x
2σ2

∣∣∣∣∣
=

~vF κ0

M
√

1 + κ2
0

3

∣∣∣∣∣−i ∂∂x
∫

dk̃x√
2π

eik̃xxe−
k̃2
x

2σ2

∣∣∣∣∣ =
~vF κ0

M
√

1 + κ2
0

3

∣∣∣∣ ∂∂xφ0(x)

∣∣∣∣
=

~vF κ0

M
√

1 + κ2
0

3

x

σ2
|φ0(x)| = ~vF

Mσ

κ0√
1 + κ2

0

3

∣∣∣x
σ
φ0(x)

∣∣∣ ∝ |x| e− x2

2σ2 , (3.41)

which means that the shape of the Gaussian is qualitatively changed by inducing a
node at x = 0.

In Fig. 3.5(b), the line cuts at y = 0 of the echo wave packets in 2D are compared
to the initial wave packet for various µ at fixed κ0 = 0.4 corresponding to Fig. 3.3(b).
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3. Dirac Quantum Time Mirror

The wave packets are scaled such that the amplitude of the initial wave packet is
one. It can be seen that only at the root of the sine in the transition amplitude,
i.e µ

√
1 + κ2

0 = nπ or µ ' 2.9n, with n ∈ N, the shape of the wave changes
qualitatively. Note that already for µ = 2.8 and also µ = 3.0, the shape resembles
again a Gaussian, meaning that the shape-changing features of the QTM are quite
limited.

In the right panel of Fig. 3.5(b), a closeup of the left hand side is shown for the
wave packets which change their shape. The dashed lines are the analytically ex-
pected wave packets given by Fourier transformation of the initial wave packet times
the transition amplitude in k-space and they match nearly perfectly the simulated
(solid lines) wave packets. For the brown dashed line, only the linear approximation
of Eq. (3.40) for the transition amplitude is used.

Although there is not a node at x = 0 for those wave packets as expected from the
1D linear approximation of Eq. (3.41), the probability of presence is greatly reduced
at x = 0. There is not a true node, most importantly because 2.9n

√
1 + 0.42 =

0.99nπ. Therefore the expansion of the sine has also a constant contribution which
gives an offset of ' 0.03n|φ0|, which leads to |φecho(x = 0) ' 0.017|φ0(x = 0)|. This
is in reasonable agreement with the numerical value of ' 0.013|φ0(x = 0)|. The
deviation of 0.99nπ is due to the discretized timeline, in this case by a timestep of
0.1~/M0. In principle, we could adjust the timeline to get closer to the root of the
sine, but we only wanted to emphasize the shape changing effect on the wave packet
in real space by our QTM, which is already clearly visible.

In this subsection, we have seen that in principle, it is possible to change the
qualitative shape of the wave function, but in most cases, this is a negligible effect.

In principle one could try to make use of the k-dependence of A(k), e.g. as a
k-filter as demonstrated above. Possible suggestions would be to manipulate the
echo wave packet by only reflecting certain k-modes, or to change the ongoing wave
packet by adjusting its k-mode structure using subsequent pulses. However, this
task seems to be doomed from the start, since one cannot adjust the transition
amplitude for every k-mode separately. Once the two pulse parameters M and ∆t
(implying µ and κ) are chosen, the transition amplitude is fixed for all modes. Thus,
there is probably not enough tunability in the system to get the desired outcome.

3.4 Long pulse durations

Up to now, only rather short pulse durations ∆t, resp. µ < 20 (compare Fig. 3.3(b))
have been considered, where the wave packet does not move substantially during
the pulse. So, the question arises what happens for much longer ∆t?

The intuitively expected picture is quite clear (compare Fig. 3.6): We start
with an initial eigenstate, which therefore moves in one direction away from the
initial position. During the (very long) pulse, it becomes a superposition of the new
eigenstates |χ±〉, which have opposed velocities v± = ∇kε±,k = ±∇kε+,k. Thus,
the two partial wave packets composed positive and negative components will move
away from each other. Then, the pulse ends and each partial wave packet splits
again, leading to two distinct echoes.

Indeed, this can be seen below in the simulation data of Fig. 3.7(a), where a
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Figure 3.6: Separation of the wave packet for long pulse durations ∆t. The upper
row shows the wave packet in real space at different times, whereas the lower row
depicts the band structure in the according time intervals, which is the Dirac cone
before and after the pulse, and a gapped spectrum during the pulse. Initially, the
wave packet lives only in the blue branch and moves to the right. During the pulse,
it splits into two sub-wave packets which move in opposite directions and, thus,
separates for long enough ∆t. After the pulse, each sub-wave packet splits again
and two distinct echoes will become visible.

Gaussian wave packet with κ0 = 0.4 is simulated also for longer pulse durations. As
expected already in Sec. 3.1, the echo happens later and later for larger ∆t (because
there techo = 2t0 + ∆t). The new feature is that for µ & 90, the echo peak splits into
two distinct peaks due to the separation of the sub-wave packets during the pulse,
such there are now two echo times t±echo with additional terms.

Let us consider now more analytically the time evolution to be able to quan-
titatively predict the echo strength. For that purpose, we want to remind of the
translation operator in real space, which will become important in this derivation

exp (−ik · r0)ψ(r) = ψ(r− r0), (3.42)

due to properties of the Fourier transform. As a side remark, Eq. (3.42) is the reason
for a velocity constant of linear band structures (Es(k) = ~vFk ·er, where the radial
unit vector is er = k/|k|):

〈r | ϕk,s〉
t>0−−→ exp

(
− i k · (ervF t)︸ ︷︷ ︸

r0(t)

)
〈r | ϕk,s〉 = 〈r− ervF t | ϕk,s〉. (3.43)

Now, let us consider what happens during and after the pulse with a wave packet
peaked around k0 living initially only in band s

〈k|ψ0〉 = ψ0(k) |ϕk,s〉 (3.44)

where ψ0(k) ∈ C gives the shape of the wave function in reciprocal space, e.g.
Gaussian.
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3. Dirac Quantum Time Mirror

From Subsec. 3.1, Eq. (3.27), we know that the “reflected” part 〈k|ψrefl〉, i.e. the
part of the wave packet that changed to the other band, becomes after the pulse at
t = t0 + ∆t+ t1:

〈k|ψrefl(t)〉 = ψ0(k)A(k) e−
i
~(Ek0,s

t0+Ek0,−st1)〈k|ϕk,−s〉, (3.45)

where t1 is the time after the pulse and A(k) is the transition amplitude of Eq. (3.21):

A(k) =
−i√

1 + κ2
sin

(
M ∆t

~
√

1 + κ2

)
. (3.46)

The movement of the sub-wave packet during the pulse shown in Fig. 3.6 is hidden
in the sine of the transition amplitude, which can be expanded to

sin

(
M ∆t

~
√

1 + κ2

)
=

1

2i

∑
l=±

l exp

(
il
M ∆t

~
√

1 + κ2

)
, (3.47)

where the two summands in Eq. (3.47) correspond to the two sub-wave packets
living in the two bands. Due to different signs in the exponent, whose terms linear
in k are responsible for translation, the two sub-wave packets move away from each
other.

To be able to see the translation according to Eq. (3.42), we linearize the expo-
nent of Eq. (3.47) in k around k0, where the wave packet is peaked,

√
1 + κ2 ≈

√
1 + κ2

0 +
κ0√

1 + κ2
0

~vF (k − k0)

M
, (3.48)

with κ0 = ~vFk0/M . Note that higher-order terms of (k − k0) lead to distortion
and spreading of the wave packet (e.g. in the free Schrödinger case), which lead
in general to a decrease of the echo. However for small wave packets in reciprocal
space, these effects play a minor role, because they are by definition of higher order
in (k − k0).

With Eq. (3.48), the reflected part of the wave packet from Eq. (3.45) becomes

〈k|ψrefl(t)〉 ≈ − 1

2
√

1 + κ2
ψ0(k)〈k|ϕk,−s〉

∑
l=±

l e
ilM ∆t

~

(√
1+κ2

0−κ2
0/
√

1+κ2
0

)

× exp

{
−isvFk

(
t0 − t1 − l

κ0√
1 + κ2

0

∆t

)}
, (3.49)

where the important part for the translation of the sub-wave packets is the exponent
in the last line, which is linear in k. In real space, this term leads to a translation
as seen by a Fourier transform:

〈r|ψrefl(t)〉 =

∫
d2k

2π
eik·r〈k | ψrefl(t)〉

≈ − 1

2
√

1 + κ2
0

〈k0|ϕk0,−s〉
∑
l=±

l e
ilM ∆t

~

(√
1+κ2

0−κ2
0/
√

1+κ2
0

)

×
∫

d2k

2π
eik·rψ0(k) exp

{
−isvFk

(
t0 − t1 − l

κ0√
1 + κ2

0

∆t

)}
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Figure 3.7: The QTM for long pulse durations ∆t. (a) The correlations C(t) is shown
for different pulse durations µ, resp. ∆t. While for smaller µ . 80 a single echo
peak is visible, the peak splits for larger µ into two echoes at different times t±echo,
due to the separation of the sub-wave packets during the pulse (see also Fig. 3.6).
(b) µ-dependence of the echo strength with different measures. While the black
curve shows the maximal values of C(t) in time obtained by simulation, the other
curves show C at fixed times. The cyan triangles show the local maxima and minima
of C(2t0 +∆t), i.e. at the initially expected echo time from Sec. 3.1, and the blue line
depicts the according analytical values of Eq. (3.64). The red curve shows C(t+echo)
from Eq. (3.63), i.e. the correlation at the time when one of the splitted peaks
comes back to the initial position, explaining well the saturation for long ∆t (see
also Eq. (3.57)).

=− 1

2
√

1 + κ2
0

〈k0|ϕk0,−s〉
∑
l=±

l e
ilM ∆t

~

(√
1+κ2

0−κ2
0/
√

1+κ2
0

)

× ψ0

(
r− ersvF

[
t0 − t1 − l

κ0√
1 + κ2

0

∆t

])
. (3.50)

Here, we used in the second step that the initial wave function in reciprocal space is
highly peaked at k0 to get rid of most k-dependent terms in the integral, except for
ψ0(k) and the k-dependent phases. Thus, the modulus of the wave function, which
is important for the echo becomes

|〈r|ψrefl(t)〉| = 1

2
√

1 + κ2
0

∣∣∣∣∣∑
l=±

l e
ilµ
(√

1+κ2
0−κ2

0/
√

1+κ2
0

)
ψ0 (r− rl(t))

∣∣∣∣∣ (3.51)

with the translation vector rl(t) = ersvF

(
t0 − t1 − l κ0√

1+κ2
0

∆t

)
.

In general, an echo happens when the translation is zero rl(t) = 0, which means
that the wave packet moves back to its initial position for

t1 = t0 ±
κ0√

1 + κ2
0

∆t, (3.52)

corresponding to two (partial) echoes due to the different signs as we see in Fig. 3.7(a)
for µ & 90.
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For a quantitative analysis of the echo strength, let us investigate first the limit
of such long pulses that the wave packet splits completely,

κ0√
1 + κ2

0

∆t� σx, (3.53)

since the other limit has been already investigated in Sec. 3.1. Here, σx is the real
space width of the wave packet. In this limit, the modulus becomes

|〈r|ψrefl(t)〉| = 1

2
√

1 + κ2
0

∑
l=±

|ψ0 (r− rl(t))| , (3.54)

since there is effectively no overlap of the sub-wave packets for l = + and l = −,
and thus the mixed terms in the sum over l vanish:

ψ∗0 (r− r+(t))ψ0 (r− r−(t)) ≈ 0. (3.55)

Therefore, the correlation defined in Eq. (3.32) is peaked at the two echo times

t±echo = 2t0 + ∆t

(
1± κ0√

1 + κ2
0

)
. (3.56)

Since also the initial state effectively overlaps only with (at most) one of the sub-wave
packets at a time and because the sub-wave packets did not change their (relative)
shape in our approximation, the echo strength yields

C(t±echo) =

∫
d2r |ψ0(r)| |ψrefl(r, t±echo)| = 1

2
√

1 + κ2
0

∫
d2r |ψ0(r)|2

⇒ C(t±echo) =
1

2
√

1 + κ2
0

, (3.57)

independent of ∆t (as long as its large enough), as verified in Fig. 3.7(b) by simu-
lation. Note that the analysis from Sec. 3.2 to evaluate the correlation strength at
t = 2t0 + ∆t in Eq. (3.33) is still applicable, but the problem is that the echo does
not take place at that time anymore.

Since, we know the echo strength in the cases of small ∆t (Sec. 3.2), where the
sub-wave packets have not moved at all during the pulse and for very long pulse
durations ∆t, such that the wave packet do not overlap anymore at all, we now want
to get an analytical approximation for the echo strength also in the intermediate
∆t-regime.

More precisely, we only want to estimate the envelope function, i.e. local maxima,
of the correlation C(t) as a function of µ for a Gaussian wave packet. Therefore,
we use as simplification the estimate |

∑
i βi| ≤

∑
i |βi| for the modulus of the wave

function in Eq. (3.51)

|〈r|ψrefl(t)〉| ≤ 1

2
√

1 + κ2
0

∑
l=±

|ψ0 (r− r0(t))| . (3.58)
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This estimate corresponds to perfect constructive interference of the two reflected
sub-wave packets. In Subsec. 3.1, this is the case for

µ

(√
1 + κ2

0 − κ2
0/
√

1 + κ2
0

)
≈ µ

√
1 + κ2

0 = π/2. (3.59)

Indeed, in this case Eq. (3.58) is a good estimate, because then

l eilπ/2 = i, (3.60)

i.e. it becomes independent of l = ± and the modulus in Eq. (3.51) becomes redun-
dant for a real and positive ψ0.

Consider now a Gaussian wave packet

|ψ0 (r)| = 1√
2πσ

exp

(
− r2

2σ2

)
, (3.61)

such that the correlation defined in Eq. (3.32) can be calculated analytically, because
the product of two Gaussians is again a Gaussian. Using

1

2πσ2

∫
dx e−

(x−x1)2

2σ2 e−
(x−x2)2

2σ2 = e−
(x1−x2)2

4σ2 , (3.62)

the correlation becomes

C(t) =
1

2
√

1 + κ2
0

∑
l=±

e−
rl(t)

2

4σ2 (3.63)

under the assumption of Eq. (3.58), i.e. a perfectly constructive interference of the
sub-wave packets. For spatially separated wave packets, i.e. no overlap, Eq. (3.57)
is recovered, since the exponential in one summand of Eq. (3.63) becomes 1 (rl = 0),
whereas in the other summand, the exponential is very close to 0 (r−l � σ), thus
negligible.

In Fig. 3.7(b), we compare the analytical approximations of this section with
simulation data obtained by TQT, where a Gaussian wave packet with mean relative
energy κ = 0.4 and ∆k = k0/8 = 1/σ is evolved in time. The maximal value of
the correlation max

t
C(t) of each simulation are shown as function of ∆t, resp. µ

(black). The cyan triangles correspond to C(2t0 + ∆t) obtained also by simulation,
where µ was chosen such that only local minima and maxima are shown to prevent
too crowded figures. Thus the difference between the black and cyan data is that in
the prior case, the actual best echo is shown, whereas in the other case (cyan), the
correlation at the initially expected (but in general wrong) echo time techo = 2t0 +∆t
is plotted, such that it undervalues the actual echo strength more and more, the
larger µ.

Furthermore, the blue curve shows the analytically expected (upper) envelope of
C(2t0 + ∆t) from Eq. (3.63), which reduces to

C(2t0 + ∆t) =
1√

1 + κ2
0

exp

(
−1

4

κ2
0

1 + κ2
0

µ2∆κ2

)
, (3.64)

35



3. Dirac Quantum Time Mirror

with ∆κ = ~vF∆k/M . The simulation data for C(2t0 + ∆t) is matched (as well
as from semi analytics from Eq. (3.33), although not shown). However the best
achievable echo does not happen anymore at that time t = 2t0 +∆t for large enough
µ & 90, but at t±echo from Eq. (3.56), which is why the actual echo is undervaluated.

Last but not least, the red curve shows the correlation C(t±echo) at the time when
one of the sub-wave packets comes back which is given analytically in Eq. (3.57).
For small µ . 90 deviations to the black curve appear, because the wave packet has
not splitted far enough, such that the maximal echo still appears at t = 2t0 +∆t due
to the overlap of both reflected sub-wave packets. However, the long ∆t limit, where
the wave packets have separated and the echo strength saturates to 1/2

√
1 + κ2

0 is
recovered.

Experimentally, the main result of this section, which is the saturation of the
echo strength for long pulses, might be of interest. Depending on the experimental
setup, it might be easier to have rather long pulses (e.g. order of picoseconds) than
very short ones (e.g. order of femtoseconds). For long pulses, we have seen that
not only the echo is still possible, but also that the exact echo strength becomes
independent of ∆t (as long as it is large enough). However, there are also two
downsides: One is that the echo strength is considerably smaller (factor of 1/2
or even 1/4 for the probability density related to |ψ|2), as compared to the best
achievable echoes for small ∆t, because no constructive interference of the back
propagating modes can happen, which can in principle yield an echo close to 100%.
The other downside is the potential spreading and deforming of the wave packet
during the pulse, which was neglected here due to ∆k/k0 � 1. Although spreading
and deforming, which happens before the pulse is perfectly inverted in the reflected
wave packet after the pulse, this is not possible when these distortions happen during
the pulse. Nevertheless, in a real setup, one has to ponder the advantages of one or
the other possibility, as well as the feasibilities and then decide, which way is better
suited.

As a last comment, we note that these results of long pulse durations are in
principle applicable also in all other system, below, if not otherwise stated. However,
from now on we will only consider pulses short enough such that the wave packet
does not move considerably during the pulse in order not to intermix too many
different effects.

3.5 Wave packets with more complicated shapes

Above, we always used a Gaussian wave packet to verify the QTM principle. Now,
we want to see what happens to more complicated wave packets. To show the
power of this method of time-reversal and to see its very good spatial resolution,
a complicated ~-shaped wave packet is propagated (see Fig. 3.8). In momentum
space, the distribution of the wave packet is on average isotropic such that the wave
packet spreads uniformly in all directions, as can be seen in the second and third
panel and the original shape is soon not identifiable anymore.

In the simulation, three pulses are applied subsequently to show that the res-
olution of the initial wave packet is not affected by several kicks, even though the
echo strength decreases with every echo. The pulses take place at t = t0, and the
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3.5. Wave packets with more complicated shapes

t = 0 t = 0.3t0 t = t0 t = 2t0 t = 3t0

Figure 3.8: Snapshots for the propagation of the ~-wave packet in real space. Due to
the isotropic distribution of k-modes in the wave packet, the initial ~-shape spreads
radially until t = t0, where the first pulse takes place. At this point in time, the
spatial overlap compared to the initial wave packet is almost zero. At t = 2t0 and,
due to a pulse at t = 2.5t0, also at t = 3t0, the initial structure is recovered with a
very high spatial resolution. See also the pictures in the footer, which can be used
as a flicker book, to see the full propagation related to the snapshots shown here.

arbitrarily chosen times t = 2.5t0 and t = 3.125t0, such that echo of the previous
pulse is not influenced.

As discussed above, a necessary condition for a good echo is that the pulse
strength M is strong compared to the initial energy of the wave packet. Here,
we chose M = 8〈Ek〉, where 〈Ek〉 is the mean energy of the initial wave packet.
Moreover, to get a strong echo, the pulse duration is adjusted to µ = M∆t/~ = π/2
such that the sine in Eq. (3.37) is close to one.

Additionally, the wave packets at the first echo (t = 2t0) and second echo (t =
3t0) are shown in Fig. 3.8. The spatial structure is well conserved, although the echo
strength decreases slightly with each new pulse. This can be seen in Fig. 3.9(a),
where the black line shows the correlation defined in Eq. (3.32) for the propagation
of the ~-wave packet. The five black dots indicate the time of the snapshots in
Fig. 3.8.

One can see that the correlation goes up quite symmetrically after a pulse com-
pared to the decline before. However, since a perfect echo is only possible for
Ek/M = 0, parts of the wave packet are not reflected and the echo strength is
smaller than 1. The two subsequent echoes lose a similar amount of strength, but
the spacial resolution stays almost perfectly the same.

The last feature of the QTM discussed in this chapter of the basic properties of
the Dirac QTM, is the echo behaviour of a highly random wave packet to show with
the help of simulations that the echo mechanism itself is completely independent
of the structure of the initial wave packet. The wave packet propagated in TQT
is random to the effect that any k-mode up to a maximal absolute value kmax gets
a uniformly distributed weight between 0 and 1. Since this is done for both bands
independently, the initial wave packet is now also a mixture of the two bands.
As we have seen in Eq. (3.21), A(k) does not depend on the band index and we
expect this mixture not to be important which is verified in Fig. 3.9(b). There, the
theoretical echo strength Cana of Eq. (3.21) of the given wave packet is compared to
the simulated echo strength Csim. We use this direct comparison of expected and
simulated echo strength because the echo strength depends on the random choice of

37



3. Dirac Quantum Time Mirror

0 1 2 3 4
t/t0

0

0.2

0.4

0.6

0.8

1
C(
t)

pulse echoes

Csim

0

0.5

1

Cana

0 0.5 1

analytical prediction

10−8

10−6

10−4

10−2

0.5 1

δ

(a) (b)

Figure 3.9: QTM for more complex wave packets. (a) The correlation C for the
propagation of a ~-shaped wave packet is shown as function of time. The three
distinct echoes are generated by pulses at t = t0, t = 2.5t0 and t = 3.25t0. The
black dots mark the time spots of the snapshots in Fig. 3.8. (b) The simulated echo
strength Csim for a randomly generated wave packet is plotted against the analytical
strength Cana predicted by Eq. (3.33). The data is expected to lie on the indicated
red diagonal. Indeed, for every randomly generated wave packet, the difference
δ = |Csim − Cana| shown in the inlet is at most 10−2.

the wave packet. Thus only after choosing the wave packet, the echo strength can
be calculated using Eq. (3.21).

We see also in this example of a highly non-smooth wave packet that the analyt-
ical calculation of Eq. (3.33) yields the correct result and that also here high echoes
can be achieved if the right parameters are used.

3.6 Discussion of the experimental realization and

outlook

In this chapter, the basic properties of the QTM have been studied which result from
the Dirac Hamiltonian of Eq. (3.1) and a mass pulse described in Eq. (3.6). Due to
this new approach to QTMs the according publication [80] aroused some interest in
the internet with articles on the two popular-science webpages “ars technica” [81]
and “inside science” [82].

In more detail, the investigated features in this chapter are the parameter de-
pendence of the transition amplitude and thus the echo strength, the change of the
spatial shape of the reflected amplitude, the behavior for long pulse durations, as
well as more complicated (even arbitrary) wave packets. The next chapter will deal
with the effects of perturbation, i.e. of changing the Hamiltonian, e.g. by incorpo-
rating disorder or switching on external fields.

But before we come to that, we want to discuss the experimental realizability of
the proposed population inversion Dirac QTM. Thereto, we first mention again that
not only graphene possesses the Dirac cone band structure, but also other system in
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which an experimental realization might be easier. A few examples of other Dirac
systems are artificial graphene [83] using ultracold atoms that are trapped in a
periodic potential generated interfering laser beams, surface states of 3d topological
insulators [78], Dirac plasmons in metallic nanoparticle lattices [84] and polaritons
in a honeycomb lattice [85].

To start with, let us consider the electron wave packet generation, that will be
certainly not “~”-shaped, which was only used in this thesis to illustrate the spatial
resolution of the echo wave function. Experimentally, there are several ways to inject
electron wave packets in graphene, like quantum dots as single electron sources [86]
or short voltage (“Leviton”) pulses [87], so the generation of the wave packet seems
to be no obstacle.

A larger problem for experimental realizations is the used single particle picture.
Pristine graphene is half-filled, i.e. the Fermi energy coincides with the intersec-
tion point of the Dirac cone, which prevents a switching from positive to negative
energies of the considered wave packet since the state it is supposed to transition
to is occupied. Moreover, not only the wave packet will be affected by the pulses,
but also the whole Fermi sea, leading to additional problems. However, the Fermi
energy of graphene can be influenced by a substrate and, more importantly, tuned
by external gates. To be as close as possible to the single particle setup described
in this thesis, one should use a negative Fermi energy EF far away from the Dirac
cone, such that the Fermi sea is hardly affected by the pulse (|M | � |EF |). In that
case, a generated wave packet with energy close to the Dirac point will find empty
states in the other band it can transition to such that the echo is possible. In a
bosonic system like the above mentioned Dirac plasmons, at least the question of
empty states is not of importance.

Moreover, the energy relaxation of the wave packet due to inelastic scattering
has to be considered, i.e. the propagation has to be faster than the related time
scale. Otherwise, the injected and excited state will decay to equilibrium according
to the Fermi-Dirac statistics. The dominating mechanism of inelastic scattering is
the electron-phonon scattering with an estimated relaxation time in the range of
1 ps in highly doped layers and up to 11 ps in undoped layers [88]. An additional
time scale on which the echo decays, which is the elastic scattering time due to static
disorder, will be discussed in the next chapter.

Let us come to the heart of the QTM mechanism, the time-inversion pulse, which
we assumed to be a mass pulse proportional to σz. As discussed above, the used
box-shape of the time-dependent pulse is only used for analytical reasons and is not
essential. Any other pulse shape might do the trick as long as the time-dependence
is fast enough not to be in the adiabatic regime, where no transition will happen.

Although a gap in graphene can be generated in multiple ways, e.g. by substrates
like Cu(111) [89] or transition-metal dichalcogenides [90], most of them are not suited
for fast switching. However, gaps can be dynamically opened and closed by THz
radiation [91–93], and recently even by light fields [94]. Whether or not theses
dynamical, fast oscillating, potentials mimic the mass pulses in the desired way is
currently under investigation. On the other hand, in topological insulators, gaps
can be easily generated by applying magnetic fields.

Finally the detection of the echo probability seems to be achievable, e.g. by using
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pump-probe spectroscopy combining [95] subcycle terahertz, field-resolved detection
(time resolution: ∼ 10 fs) with scattering-type near-field scanning optical microscopy
(spatial resolution: ∼ 10 nm).

Having discussed the experimental realizability of the QTM, the justified ques-
tion arises why the QTM is or could be of interest. From an academical point of
view, our proposal serves to solve the long standing question of effectively time-
inverting the wave function (orbital degrees of freedom) in a quantum system. Its
classical (time-inversion mirror) as well as quantum mechanically discrete (spin echo)
analogy, are a overwhelming success with uncountable technical applications, as dis-
cussed in the introduction, Chap. 1. Thus, also from the QTM, applications can be
anticipated.

A major point of the high fidelity echo is its utility for further basic research.
For instance, by applying multiple pulses and thus generating a kind of time-lattice,
analogies to effects occurring due to spatial lattices are expected to appear in time.
Examples are Bloch oscillations in time or Fabry Pérot in time, where the interfer-
ence of phase coherent over and over “reflected” and “transmitted” states controlled
by the QTM can be investigated.

Another possibility which comes to mind by looking at the snapshots of Fig. 3.8
is cryptography. The idea is still in its infancy but is based on the simple observation
that in the aforementioned figure, the information “~” is initially visible. During
the propagation this information is destroyed for the eye, i.e. the “~” cannot be
recognized anymore. By using the right “key” (e.g. pulse or Hamiltonian), the
initial message becomes visible again. More involved, one could think of an array
of Gaussian wave packets, each representing a bit. The wave packets have different
mean energies, such that a time-reversal pulse will reflect some wave packets more,
some less. The key used to extract the information are the pulse parameters, i.e. its
strength M and length ∆t, such that only the wave packets intended by the sender
yield an echo above a certain threshold, e.g. 50%. The bit pattern of the echo
wave function above the threshold then contains the information. Problems for this
type of cryptography lie at hand, e.g. how to send (thus copy) the initial quantum
system. Nevertheless, better devised cryptography protocols might circumvent these
problems.

Furthermore, the QTM can be used to fabricate a discrete quantum walk (in a
continuous system) using many time-reversal pulses. Discrete quantum walks can
be used in quantum computing (Grover algorithm) [96], e.g. for searching faster
through an unsorted database [97,98] than using classical random walks, because in
the quantum random walk, the space is transmigrated faster. The discrete walk is
possible in the continuous system due to the discrete times of the pulses and echoes,
which are directly related. The discrete quantum walk in a continuous system is
currently investigated by the Master student Vanessa Junk, who showed that our
QTM system is indeed quantitatively the same as the theoretically well-studied truly
discrete quantum walks.
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Chapter 4

Dirac quantum time mirrors under
perturbations

4.1 Disorder

4.1.1 Implementation of the disorder potential

In an experimental setup, the sample will never be perfectly clean. Among others,
there might be lattice distortions, vacancies and adatoms. But not only the sample,
also the fields generating the pulse will not be perfectly homogeneous. Therefore,
we want to test the robustness of the echo mechanism to two kinds of disorder, a
spatial disorder and a spatial inhomogeneity of the pulse. Both types of disorder are
simulated by a random potential. To make sure that the particular configuration
does not play a role, the results are averages of many realizations of the disorder.

In order to generate the random, inhomogeneous disorder potential Vimp, every
grid point is assigned a normally distributed random number βi. To avoid a highly
fluctuating potential, an average over neighboring points weighted by a Gaussian
profile with a range l0 is taken at each site, which gives

Vimp(r) =
u0

N

N∑
i=1

βie
− (r−ri)

2

l20 . (4.1)

Here, the sum runs over grid points of count N . u0 is related to the mean impurity
strength and N is a normalization factor to assimilate different realizations with the
same parameters u0 and l0,

N =

 1

A

∫
A

d2r

(
N∑
i=1

βie
− (r−ri)

2

l20

)2
 1

2

, (4.2)

where A is the finite area of the grid. N can be thought of the mean deviation of
the potential strength over the whole area.

Of course, technically, the integral in Eq. (4.2) is actually a sum over all grid
points times the area per point dA = dx · dy with dx, dy being the distance of
two lattice points. However, this notation is consistent with the rest of this thesis,
because in principle, also Vimp(r) or the spinor φ(r) are known numerically only on a
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Figure 4.1: Effect of disorder to the QTM mechanism. The correlation C for the
propagation of the same ~-shaped wave packet as in Fig. 3.8 is shown as a function
of time, again with three distinct echoes generated by pulses at t = t0, t = 2.5t0 and
t = 3.25t0. The black solid line belongs to the simulation of a clean system (same
as Fig. 3.9(a)) and the black dots mark again the time spots of the snapshots in
Fig. 3.8. The blue and green curve show the correlation for a system with rather
strong spatial disorder (τ0 ≈ 0.8t0 (blue) and τ0 ≈ 0.2t0 (green)) showing strong
deviations from the clean system. The red dotted curve belongs to a system with
gap disorder of similar strength. Nevertheless, the gap disorder shows no deviations
at all.

finite grid. The approximation which enters this notation is justified for fine enough
grids and large lattices.

In App. C, we show that due to self-averaging effects, the normalization factor
– for a lattice with infinite points – simplifies to

N =

√
π

2

l0√
dx · dy

(4.3)

and is therefore independent on the actual realization of the disorder potential.
As mentioned above, we investigate two different kinds of disorder: Pseudospin-

independent spatial disorder and inhomogeneities during the pulse, referred to as
gap disorder. The additional potentials to the Hamiltonian in Eq. (3.10) are

Vr(r) = Vimp(r)σ0,

Vgap(r) = Vimp(r)f(t)σz, (4.4)

respectively, with f(t) as in Eq. (3.10), i.e. f(t) = 1 during the pulse and f(t) = 0
else.

A first glimpse of the effect of disorder can be seen in Fig. 4.1, where the correla-
tion C(t) is shown. The different curves correspond to simulation of a clean system
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4.1. Disorder

(black), medium (blue) and strong (green) disorder strength with u0 = 0.025M and
u0 = 0.055M , respectively, and gap disorder (red dotted) with u0 = 0.055M . There,
the results of one typical disorder realization is plotted. While the gap disorder does
not affect the correlation at all, spatial disorder has a clearly visible effect, leading
to large randomization of the wave packet in the whole simulation area and the
distinct echo peaks are blurred. The reason for this will be explained below.

4.1.2 Scattering time

We want to describe the random potential by a single quantity to simplify the
analysis. Suitable candidates are among others the mean free path and the elastic
scattering time, which are related via the velocity. Due to its relevance in the theory
of Loschmidt echoes in the subsequent Subsec. 4.1.3, we stick to the elastic scattering
time τ .

Starting from Fermi’s golden rule, the elastic scattering time for a potential can
be derived (see e.g. [99]) to yield

~
τk

=

∫
d2k′ d2r

2π
δ(Ek − Ek′)〈Vimp(0)Vimp(r)〉ei(k−k′)·r, (4.5)

where 〈·〉 is the disorder average and 〈Vimp(r)Vimp(r′)〉 is the correlator of the im-
purity potential between the two points r and r′. The disorder average can be
calculated by taking a large number m of realizations and averaging the object of
interest over all of them

〈f〉 = lim
m→∞

1

m

m∑
l=1

f (l), (4.6)

where l is the index of one particular realization of the impurity potential Vimp.
To calculate 〈Vimp(r)Vimp(r′)〉, we make use of the averaging properties of the

normally distributed variable β, namely the expectation value β and the variance
Var(β):

β =
1

n

n∑
i=1

βi
n→∞−−−→ 0, (4.7)

Var(β) = (βi − β)2 = β2
i =

1

n

n∑
i=1

β2
i

n→∞−−−→ 1. (4.8)

The result does not depend on whether i in Eqs. (4.7) and (4.8) runs over the lattice
points in the grid or the different realization of Vimp, because in both cases, the
corresponding βi are independent. For more details see also App. C.

A useful relation, which directly derives from Eqs. (4.7) and (4.8) is the following:

n∑
l,k=1

βlβk =
n∑
l=1

β2
l +

n∑
l=1

βl︸ ︷︷ ︸
≈0

n∑
k=1
k 6=l

βk ≈ n
1

n

n∑
l=1

β2
l︸ ︷︷ ︸

≈1

+0 ≈ n, (4.9)

which is a good approximation for a large number n. Here the sum runs over different
realizations whereas in a similar calculation in App. C, the index i denotes different
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lattice sites. To distinguish between these two random components, we will use the
following notation: β

(l)
i , where the subscript i stands for the lattice site and the

superscript (l) for the realization of Vimp, similar to the notation beforehand.
For the disorder correlator 〈Vimp(r)Vimp(r′)〉, we make use of the fact that the

normalization factor N (l) ≈ N for a large lattice is independent of the disorder
realization (see Eq. (4.3)).

〈Vimp(r)Vimp(r′)〉 = lim
m→∞

1

m

m∑
l=1

V
(l)

imp(r)V
(l)

imp(r′)

= lim
m→∞

1

m

m∑
l=1

( u0

N (l)

)2
N∑

i,j=1

β
(l)
i β

(l)
j e
−

(r−ri)
2+(r′−rj)2

l20

≈ u2
0

N 2

N∑
i,j=1

e
−

(r−ri)
2+(r′−rj)2

l20 lim
m→∞

1

m

m∑
l=1

β
(l)
i β

(l)
j︸ ︷︷ ︸

δij , see Eq. (4.9)

=
2u2

0

πl20
dx dy

N∑
i=1

e
− (r−ri)

2+(r′−ri)
2

l20 (4.10)

To proceed, we use the fineness of the grid to convert the sum over all lattice points
into an integral over the simulation area A. It comes in handy, that the necessary
factor for the area element dA = dx · dy are already included in N 2 (see Eq. (4.3)).

〈Vimp(r)Vimp(r′)〉 =
2u2

0

πl20

∫
A

d2rie
− (r−ri)

2+(r′−ri)
2

l20 . (4.11)

Completing the square in the exponential to get a Gaussian integral is analogous to
the calculation in App. C and yields

〈Vimp(r)Vimp(r′)〉 =
2u2

0

πl20

∫
A

d2ri exp

(
−

2(ri − r+r′

2
)2

l20
− (r− r′)2

2l20

)

=
2u2

0

πl20
exp

(
−(r− r′)2

2l20

)∫
A

d2ri exp

(
−

2(ri − r+r′

2
)2

l20

)
︸ ︷︷ ︸

l20π/2

= u2
0 exp

(
−(r− r′)2

2l20

)
. (4.12)

This expression seems reasonable, because the impurity potential at two lattice
points is correlated via the Gaussian smoothing in Eq. (4.1) which has a similar
form.

Now, the elastic scattering time τk can be calculated using Eq. (4.5), where the
space integral becomes a Fourier transform of a Gaussian.

~
τk

= u2
0

∫
d2k′ d2r

2π
δ(Ek − Ek′) exp

(
− r2

2l20
+ i(k− k′) · r

)

44



4.1. Disorder

=
u2

0

vF~

∫
d2k′ δ(k − k′)

∫
d2r

2π
exp

(
− r2

2l20
+ i(k− k′) · r

)
︸ ︷︷ ︸

Fourier of Gaussian

=
u2

0

vF~

∞∫
0

dk′ k′
2π∫

0

dϕ δ(k − k′)l20 exp

(
−(k− k′)2l20

2

)

=
u2

0l
2
0

vF~
k exp

(
−k2l20

) 2π∫
0

dϕ exp
(
k2l20 cosϕ

)
=
u2

0l
2
0

vF~
k exp

(
−k2l20

)
2πI0

(
k2l20

)
⇒ ~

τk
=

2π

vF~
k u2

0l
2
0 exp

(
−k2l20

)
I0

(
k2l20

)
. (4.13)

The elastic scattering times in a Gaussian correlated disorder potential is in agree-
ment with previous reports (e.g. [100,101]). Here, Iν is the modified Bessel function
of ν-th kind, with

I0(0) = 1, (4.14)

I0(x)
x→∞−−−→ ex√

2πx
. (4.15)

Thus, for l0k � 1, i.e. smooth potential such that the wave length is small compared
to the variation of the disorder, the elastic scattering time τk becomes independent
on k, whereas for l0k � 1 the scattering rate 1/τk ∝ k is linear in the momentum.

In the subsequent simulations, we will choose Gaussian wave packets as in the
beginning of Subsec. 3.2 with ∆k � k0 and thus the scattering time will not change
substantially over the width of the wave packet. Therefore, we assign to the whole
Gaussian wave packet an elastic scattering time τ0 ≡ τk0 .

4.1.3 Loschmidt Echoes

Theory and Fidelity

So far, we have used the correlation C defined in Eq. (3.32) to quantify the echo,
where only the magnitudes of the wave function play a role which are the experimen-
tally relevant quantities, as opposed to the phases. In the case of disorder however, a
different quantity might be better suited where the role of disorder has been already
studied (see e.g. [102]) extensively and thoroughly: the Loschmidt echo or fidelity,
respectively. The corresponding theory was developed to quantify the accuracy of a
non-perfect time reversal of a quantum system with two Hamiltonians H1 and H2.

The fidelity is defined by

m̃(t) = |〈ψ | e+ i
~H2te−

i
~H1t | ψ〉|2, (4.16)

which can be interpreted in two ways. The first one is that the initial state |ψ〉 is
propagated by the Hamiltonian H1 for time t, then it is propagated by ”−H2” for
the same time t – which is equivalent to a propagation backwards in time by H2 –

45



4. Dirac quantum time mirrors under perturbations

and the overlap with the initial state is taken. The other way to look at it is that the
initial state is propagated twice, once by H1 and once by H2, and then the overlap
of the two propagated states is taken.

Clearly, if H1 = H2, the fidelity in Eq. (4.16) becomes 1 and the larger the
deviation between the two Hamiltonians, the smaller is m̃. Moreover, it is intuitive
that for H1 6= H2, m̃ decays with time since the longer the perturbation can act,
the more the states in the two system deviate.

Depending on the perturbation strength between H1 and H2 and also the time
of propagation t, different regimes of decay can be found [102,103]. For small times,
m̃ decays parabolically, for intermediate times, the decay is either exponential or
Gaussian. For long times, a saturation sets in which is related to the size of the
Hilbert space, that is finite in our simulations given by the number of grid points
times additional degrees of freedom, here 2 for the pseudospin.

Whether there is an exponential or Gaussian decay for intermediate times de-
pends on perturbation strength – which can be identified in our case with the disor-
der strength u0 – compared to the level spacing ∆ of the unperturbed Hamiltonian,
in our case ∆ = ~vFdk . 0.001M0 for typically used lattice sizes and pulse strengths
M0 � Ek0 . If u0 � ∆, the Gaussian regime is valid and for u0 & ∆, the exponential
decay regime, also called golden rule decay, is entered.

For our simulations with typical parameters (u0 & 0.001M0), we are always in
the golden rule decay, or already in saturation regime for large disorder or long
times. The parabolic regime, i.e. small propagation times, is not of importance
because in that situation, the initial wave packet has not moved enough away from
the initial position, such that time-inverted and proceeding parts of the wave packet
still largely overlap during the echo.

It has been shown (e.g. [104]) that the timescale of the exponential decay in the
golden rule regime is the elastic scattering time. Thus, the fidelity decays over time
as

m̃(t) ∼ e−t/τ0 . (4.17)

From this, it is already clear why gap disorder plays almost no role, as compared to
space disorder for similar disorder strengths. The timescale on which gap disorder
acts is the pulse length ∆t whereas spatial disorder acts on time scales of the echo
time 2t0 � ∆t. Due to the exponential decay, the effect of the gap disorder is
negligible compared to space disorder which is why we only consider space disorder
hereinafter.

To single out the effect of disorder from the echo, we consider the Loschmidt
echo of the full propagations until the echo, i.e. with the time reversal pulse M(t),
for both the clean system H1 = H and the disordered system H2 = Himp = H + Vr
for the same, initial Gaussian wave packet. This will not tell us anything about
the change of the echo strength due to disorder, which is the ultimate goal of this
subsection, but it will confirm the theory such that we can proceed with confidence.

In Fig. 4.2(a), the fidelity is plotted as function of the time of the pulse t0 for
different impurity strengths u0 ranging between 0.002M and 0.022M . The initial
wave packet is again a Gaussian with ∆k � k0. Every data point is the average of
50 realizations of the impurity potential and the error bars show the standard error
of the mean. The red lines are exponential fits to the data of equal u0, since we
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Figure 4.2: Loschmidt echo for disordered system. (a) The fidelity (actually its
square root

√
m̃) is plotted as a function of the pulse time t0 – which means that

the full propagation time is until the echo is t ' 2t0 – for varying disorder strengths
between u0 = 0.002M and 0.022M . The data points are averages over 50 realizations
of the disorder potential and the error bars are the standard errors of the mean. The
alternation between blue and green data points is supposed to help better distinguish
between different u0 and has no further meaning. The red lines are exponential fits
to extract the decay rate 1/τ

(fit)
0 . (b) The extracted decay rates 1/τ

(fit)
0 of (a) are

plotted as a function of u0 (red crosses). The error bars show the uncertainty of
the exponential fit. The blue line is the fitted parabolic curve for u0 ≤ 0.01M
and the black dotted line is the analytically expected value of Eq. (4.13). Thus,
theory and simulation match very well. (c) and (d) is the same as (a) and (b),
respectively, but for the echo fidelity

√
m, which includes the in general non-perfect

occupation-inversion of the QTM.
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expect in the golden rule regime a decay according to Eq. (4.17). For small u0 or
for not so large times t0, the exponential decay fits the data very well. For high u0

and/or large t0, the data deviates more and more from the exponential fit, which is
probably due to entering the aforementioned expected saturation regime.

Since the total propagation time is t = techo ' 2t0, one expects an exponential
decay for

√
m̃(techo) in Fig. 4.2(a) of the form√

m̃(techo) ∼ e
− techo

2τ0 ' e
− t0
τ0 , (4.18)

meaning that the decay rate is supposed to be the scattering time τ0.
There is a intuitive way to heuristically motivate this formula: The scattering

time tells us the time span until a certain fraction (1/e) of a quantum system is
scattered on average. Every part of the wave packet, which is scattered, deviates
from the wave packet in the clean system and therefore does not contribute to the
fidelity. As a consequence, the fidelity should have a similar time-dependence as the
fraction of the wave packet, which is scattered, and that is the exponential decay of
Eq. (4.18).

In Fig. 4.2(b), the decay rate 1/τ
fit)
0 (red crosses) of the fitted exponential decay

from Fig. 4.2(a) is plotted as a function of u0. For u0 & 0.014M , the fitted scattering

rate 1/τ
fit)]
0 seems to run again into a saturation, which is expected in [103] and

therefore the expected parabolic behavior 1/τ0 ∼ u2
0 of Eq. (4.13) is only valid up

to some umax
0 , which seems to be in our setup umax

0 ∼ 0.01M0. The blue line is a
fit to the expected parabolic behavior of the decay rate as a function of u0 and the
black dotted line is the purely analytically expected 1/τ0 of Eq. (4.13), which show
a good agreement between theory and simulation.

Echo Fidelity

So far, we have shown that the theory of Loschmidt echoes is in agreement with
the simulations for the full propagations of a clean system and a disordered system.
However, the echo strength is yet unregarded, because in both propagations, the
time reversal pulse was present.

We want to investigate now the impact of disorder to the echo strength. Unfor-
tunately, we cannot hope to apply the theory of Loschmidt echoes to the correlator
C, which was the measure for the echo strength above, because it has a different
structure than the fidelity defined in Eq. (4.16). However, in Sec. 3.1, we mentioned
a quantity which looks similar to the fidelity and which we will call in analogy “echo
fidelity” m:

m(techo) = |〈σzφ0 | U(0, techo) | φ0〉|2 = |〈φ0 | σze−
i
~H
′
0t0e−

i
~H
′∆te−

i
~H
′
0t0 | φ0〉|2

(4.19)
Here we introduced the Hamiltonians H ′0 = H0 +Vr and H ′ = H+Vr = H0 +M+Vr,
where the prime indicates that spatial disorder is present, whereas the subscript 0
indicates that the pulse is not present. The σz is needed as in the derivation of
the transition amplitude, because the pulse is supposed to switch the bands of the
initial wave packet. The fidelity between initial and propagated wave packet would
be 0 even for a perfect echo, because the eigenstates of H0 are orthogonal. Since σz
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4.1. Disorder

is the operator which maps the eigenstate of one band to the eigenstate of the other
band, the overlap in Eq. (4.19) becomes 1 for a perfect echo.

Comparing the echo fidelity of Eq. (4.19) and the fidelity of Eq. (4.16), the only
accordance is that the overlap between an initial state and its time propagated state
is taken. The important feature of the Loschmidt echo, which is the propagation
back in time by H2 seems to be completely absent in the echo fidelity. However,
we can rewrite the echo fidelity of Eq. (4.19) such that this important property is
effectively recovered. To this ind, we assume that during the short pulse duration
∆t� τ0, the effect of disorder is not of importance, i.e. H ′ ≈ H.

For the clean system, we know from Subsec. 3.1 that the action of the pulse can
be written in terms of the transition amplitude A(k) and the ongoing wave packet
(see Eq. (3.19)), which is lost for the echo and therefore does not contribute in the
overlap with the initial wave function. Then, the echo fidelity becomes

m(t0) ≈ |〈φ0 | σze−
i
~H
′
0t0σzA(k)e−

i
~H
′
0t0 | φ0〉|2

= |〈φ0 | e−
i
~σzH

′
0σzt0A(k)e−

i
~H
′
0t0 | φ0〉|2

= |〈φ0 | e−
i
~ (−H0+Vr)t0A(k)e−

i
~ (H0+Vr)t0 | φ0〉|2

= |〈φ0 | e+ i
~ (H0−Vr)t0A(k)e−

i
~ (H0+Vr)t0 | φ0〉|2. (4.20)

Here we made use of special features of the Pauli matrices, first that they are unitary
σ2
i = 1 to transfer σz to the exponential. Secondly, the anti-commutation relation
{σi, σj} = 2δij implies σzσiσz = −σi for i = x, y and therefore, H0 effectively changes
sign (σzH0σz = −H0) whereas the disorder potential remains unchanged (σzVrσz =
Vr) because of pseudospin independence. This is a very important observation: the
pulse only effectively inverts the propagation due to the clean Hamiltonian H0, but
the effect of Vr cannot be reverted. In the discussion part below, this property will
be recapitulated to get a more qualitative understanding of what happens.

If we further assume that the transition amplitude is nearly constant over the
(already scattered) wave packet A(k) ≈ A0, the echo fidelity is

m(t0) ≈ |A0|2 |〈φ0 | e+ i
~ (H0−Vr)t0e−

i
~ (H0+Vr)t0 | φ0〉|2, (4.21)

which is up to the constant prefactor the same as the fidelity with H1 = H0 + Vr
and H2 = H0 − Vr, which is why it is reasonable to assume the same decaying
behavior. Since the effect of the disorder potential cannot be reverted by the pulse,
the disorder potential acts over the whole propagation time 2t0, which is why we
expect the echo fidelity to decay as

m(t0) ∼ e
− 2t0
τ0 , (4.22)

which is exactly the same behavior as for the fidelity. The difference is that there
is the additional factor |A0|2, which makes the echo fidelity smaller in amplitude.
Note that the assumption A(k) ≈ A0 is not necessary but simplifies the notation,
because otherwise every k-mode would have to be treated individually, which is of
course possible.

For the simulations, the same wave packet is used as in the calculation for the
fidelity in the subsection above. Similar to the case of the fidelity,

√
m is plotted
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scattering 1 time-inversion

perfect time reversal:

effective time reversal:

phase coherent scattering

independent 2nd scattering

scattering 2

v

|ψ(r)|2 impurity

Figure 4.3: Difference between a perfect (real) time-reversal and our effective time-
reversal due to the QTM. The wave packet is scattered by an impurity and the
time-inversion is applied after the scattering. In the case of perfect time-reversal
(upper panels), i.e. H → −H and especially Vr → −Vr as indicated by the change
of color of the impurity, the second scattering refocuses the wave packet perfectly.
In the case of our QTM (effective time reversal), i.e. Hkin + Vr → −Hkin + Vr, the
second scattering at the same impurity is independent of the first one, because the
sign of Vr is not inverted (compare Eq. (4.20) and the discussion in Subsec. 4.1.4).
Thus, the wave packet does not refocus but is scattered in different directions.

in Fig. 4.2(c) as a function of t0 for varying u0 and the exponential decay rate,
which is extracted via an exponential fit, is plotted in Fig. 4.2(d) in dependence on
u0. There a parabolic function is again fitted and compared to the black dotted
analytical expectation of Eq. (4.13). The same saturation regimes appear and in
the golden rule regime, theory and simulation match quite well.

Moreover, Eq. (4.21) compares the echo fidelity with the fidelity which should be
approximately proportional with the factor |A(k0)|2, respectively |A(k0)| for their
square roots which are actually plotted in Fig. 4.2. Using the data shown in (a)
and (c), the proportionality factor is on average

√
m/m̃ = 0.86 ± 0.06 which is in

accordance with the analytical prediction of |A(k0)| = 0.87.

4.1.4 Discussion

In this part, we want to interpret and explain the results of the calculation for the
echo fidelity in a more qualitative way and we want to emphasize the key arguments
why our “time-reversal” pulse is not perfect, i.e. why it is sensitive to static spatial
disorder as opposed to the Hahn spin echo, for instance.

The difference between perfect time reversal and our effective time reversal mech-
anism is shown in Fig. 4.3. By a perfect time-reversal pulse, we do not mean that
necessarily 100% of the wave packet has to come back. Instead, for the part of the
wave packet which is reflected, the propagation after the pulse has to look exactly
like the propagation until the pulse, just backwards in time.

First, let us consider the situation described in the upper half of Fig. 4.3, namely
what happens if the pulse would lead to a perfect time inversion. For simplicity, we
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4.1. Disorder

consider only one k-mode and only one scattering process at one impurity. After
the scattering process, the pulse is applied and the wave packet comes back to the
same impurity again. At the first scattering process, the initial mode is scattered
with a given amplitude a to a wide range of new modes:

|ψk〉
1st scattering−−−−−−−→

∑
k′

a(k,k′) |ψk′〉, (4.23)

which is why the wave packet spreads, i.e. it moves in different directions.
After the time-reversal pulse each of the new k′-modes comes back to the impu-

rity and is in principle scattered again in wide range of modes:

|ψk′〉
2nd scattering−−−−−−−−→

∑
k′′

a(k′,k′′) |ψk′′〉, (4.24)

In a perfect time-reversal setup, only the mode k′′ = −k is allowed to survive after
the full scattering event, such that the motion of the wave packet is time reversed
as compared to the initial incoming one. At first sight, it might be not so clear,
why in this second scattering process all the k′-modes interfere such that only −k
survives and every other mode is canceled by destructive interference. This can be
easiest explained by the single particle interference in the Feynman path approach.

In general, the propagation of a quantum system can be explained by the single
particle interference of all possible paths in phase-space, weighted with a phase
determined by the action S of the given path eiS. Similar to classical mechanics,
only the paths near an extremum of the action contribute, because for the others,
fast changing phases of neighboring paths interfere destructively and their physical
weight is suppressed. Considering one particular path of the scattering problem
above, we see that until the time reversal, a certain phase is acquired due to eiS. If
exactly the same path, but time-reversed (H → −H) is chosen on the way back, the
additional cumulated phase is the same, but with a negative sign. Thus, the phase
at the initial position is 0, if the path before and after the pulse are the same. This
is true for any of the paths before the pulse and they all interfere constructively.

On the other hand, if a different path is chosen after the pulse as compared to
the original one, e.g. by scattering into a different mode k′′ 6= −k, an arbitrary
phase is collected. Moreover, every other initial path which is scattered into the
same k′′ 6= −k also collected an arbitrary phase which is (nearly) unrelated for
every initial path. Thus on average, the sum of all these phases vanishes, or in
other words, all these paths interfere destructively such that in total, only the mode
k′′ = −k survives. (Note that this is not a strict proof why all the other modes
vanish but a mere intuitive explanation why the constructive interference of the
initial mode −k should dominate.)

So far, we were talking about an theoretical, perfect time-reversal pulse. How
is this related to our “effective time-reversal” pulse and where do they differ? The
deviations are visualized in the lower half of Fig. 4.3.

The important step can be seen both in the calculation in Eq. (4.20) and in
the comments underneath Eq. (4.20). There, we saw that for the reflected wave
packet, due to the sandwiching between σz-matrices, the sign of the Hamiltonian
for the propagation after the pulse changes, which means effectively a propagation
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4. Dirac quantum time mirrors under perturbations

backwards in time. However, this is only true for the parts of the Hamiltonian which
are proportional to σx and σy, i.e. H0, whereas the pseudospin-independent disorder
Vr (as well as gap disorder ∝ σz) is not affected. Therefore, an independent second
scattering after the pulse at the same impurity occurs and thus, no constructive
interference happens to −k. Thus, the actual echo is strongly dependent on spatial
(static) disorder Vr.

In contrast, the effective time-reversal pulse for the spin echo is insensitive to
static disorder of whatever kind as discussed in the introduction in Chap. 1. Dis-
order – or let’s say different environments of the spins – leads to a different local
magnetic field and therefore a different Larmor frequency, i.e. a different precession
speed, which is why the spins dephase over time. The π-pulse at t = t0 inverts the
population of all the spins inplane, which means that faster precessing spins find
themselves “behind” the slow ones, catching up more and more until at t = 2t0, all
the spins are in phase, again (at least if they started in phase). Here, to destroy the
echo, a time-dependent change of the Larmor frequency, i.e. between initiation and
rephasing, is needed such that fast rotating spins before the pulse are not necessarily
fast spins after the pulse. The decay time due to this inelastic mechanism is called
T2, which is the analogue to the elastic scattering time τ in our QTM.

However, a major difference to our case is that for the Hahn echo, the spins are
typically assumed not to move significantly during the process. If the spins moved
through a disordered medium as the wave function does in our QTM setup, their
environment, and thus the Larmor frequency, would change in time also for static
disorder and therefore, the Hahn echo would be equally sensitive to static disorder.

Indeed, the sensitivity of the Hahn echo to static disorder for spins of moving
protons is used in NMR to distinguish the environment of the spins [105] which is the
reason why noninvasive pictures of biological, for instance, can be made. Depending
on whether the protons are in a liquid or solid, the dephasing time T2 strongly
varies and thus, measuring T2 with spatial resolution allows to distinguish between
different kinds of tissue.

Similarly, the QTM could be used to measure the cleanness of a system, provided
the echo strength can be measured, but for this, experimental realizations of the
Quantum time mirror are needed, first.

4.2 General discussion of perturbations

In the previous section, we have seen that perturbations can affect the QTM using
the example of disorder. For short enough pulse durations ∆t, i.e. that the orbital
degrees of freedom of the wave function (e.g. k) are not considerably altered, the
action of the additional potential is important only during the free propagation
before and after the pulse. The analysis for long ∆t as done in Sec. 3.4 is in this
general setup more difficult, because not only the position but also k changes during
the pulse due to V (r), and will not be considered in this thesis.

In this section, we want to qualitatively investigate whether an additional poten-
tial in the Hamiltonian will destroy the effective time reversal. In other words, does
a transition to the other band induced by the pulse lead to an effective time-reversal,
if there is additionally some (static) potential V ? Note that we do not want to give
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ŷ

ẑ

x̂

m̂, H
pulse , V ‖

n̂
′ , V
⊥

n̂, H⊥0 (k)

V ‖ + V ⊥

Figure 4.4: Visualization of the directions of the Hamiltonian in the Bloch sphere.
n̂ (blue) is the direction of the unperturbed Hamiltonian h⊥0 (k) and m̂ (red) the
direction of the homogeneous and k-independent pulse. The perturbation potential
splits into parts parallel to the pulse V ‖ and perpendicular (green) V ⊥ in direction
n̂′. By definition, n̂ ⊥ m̂ ⊥ n̂′, but n̂ and n̂′ are neither necessarily parallel nor
perpendicular. Additionally, both V and H0 might have pseudospin-independent
parts, which cannot be visualized in the Bloch sphere. The pulse can only effectively
time-invert the parts of the Hamiltonians, which are perpendicular to it, as seen in
Eq. (4.37).

a rigorous proof but merely a heuristic motivation of why certain perturbations can
be effectively time-reversed, and why others cannot.

Note that although we call it perturbation, the additional potential is not meant
to be small, here. Thus, we do not want to use perturbation theory, but instead
“perturbation” is used to indicate that there are deviations from the initial (Dirac)
Hamiltonian, e.g. via external fields or disorder as seen above.

In this general section, it is not mandatory to use the Dirac Hamiltonian, but
any homogeneous initial (two-band) Hamiltonian is suitable that is of the general
form

H0(k) = H1

0 (k) +H⊥0 (k) = h10(k)1+ h⊥0 (k)σn, (4.25)

and for which a population inversion leads to an effective time inversion (compare
Chap. 5). Here, we denote H⊥0 (k) = h⊥0 (k)n̂ · σ with some unit vector n̂ and
σn = n̂ · σ and we will omit the explicit k-dependence henceforth.

The general eigenenergies of H0 are denoted by Ek,s and the eigenstates by |ϕk,s〉
(see also Fig. 4.4).

The notation is chosen such that capital letters in the Hamiltonian are matrices
in pseudospin space, i.e. the Pauli matrices are included, whereas lowercase letters
are scalars in pseudospin space (but are in general functions of position and/or
momentum operator). The superscript ⊥ denotes that the related direction in pseu-
dospin space (here n̂) is perpendicular relative to the corresponding direction of the
pulse Hamiltonian (see below), which is chosen because of reasons that will become
clear later in the end of the section.

53



4. Dirac quantum time mirrors under perturbations

The potential related to the most general perturbation considered here is

V = V 1 + V ‖ + V ⊥ = v11+ v‖σm + v⊥σn′ , (4.26)

where σn′ = n̂′ ·σ, with n̂′ ⊥ m̂, but not necessarily n̂′ ‖ n̂ (see also Fig. 4.4). Thus,
we consider a time-independent potential which is arbitrary function of position and
momentum operator (k and r) and simultaneously an operator in pseudospin space.

The time-dependent pulse Hamiltonian on the other hand is assumed to be ho-
mogeneous

Hpulse(t) = Λm̂ · σf(t) = Λσmf(t), (4.27)

with m̂ ⊥ n̂, such that σm maps an eigenstate of one band to the eigenstate of the
other band (without changing the other good quantum numbers, e.g. possibly k):

σm|ϕk,s〉 = eiα|ϕk,−s〉, . (4.28)

Here, the phase α depends on the exact choice of the eigenstates |ϕk,s〉 – which are
given only up to a phase – and is therefore physically irrelevant. Note that in general,
the pulse need not be perpendicular, but for simplicity only the perpendicular part is
considered because it is the only one which will lead to a transition (see e.g. Sec. 3.1
and 5.1.1).

The time-dependence of the pulse is chosen as in Sec. 3.1 to be

f(t) =

{
1, t0 < t < t0 + ∆t,
0, otherwise.

. (4.29)

Let us consider the time evolution of an initial eigenstate to see whether its motion
is effectively time-inverted after the pulse. The time-evolution operator can be
split in three step-wise time-independent parts – before, during and after the pulse.
Remember that for time-independent systems, can be written as

U(tA, tB) = e−
i
~H(tB−tA). (4.30)

Since we are interested in the echo, we consider again the overlap with the band
inverted eigenstate, similar to the echo fidelity in the disorder Sec. 4.1, Eq. (4.20):

〈ϕk,−s | U(t0 + ∆t, t0 + ∆t+ t1)U(t0, t0 + ∆t)U(0, t0) | ϕk,s〉. (4.31)

In the derivation of Eq. (4.20), we used

e−iβ·σ = 1 cos |β| − iβ · σ
|β|

sin |β|, (4.32)

but since 1 will not lead to a transition in pseudospin space, it is omitted there and
in the calculations below.

In general, Eq. (4.32) is only true for commuting components of β. Nevertheless,
we use this expansion during the pulse, because we assume that it is short enough
such that the orbital degrees of freedom (momentum and position) are not changed
considerably. This implies that the operator-character of position and momentum
operator during the pulse can be approximately neglected, which we motivate by
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considering the momentum-translation operator acting for a short ∆t on the mo-
mentum eigenstate:

e−ir·ν∆t|k0〉 = |k0 − ν∆t〉 ≈ |k0〉. (4.33)

The “≈“ is due to the approximation that the pulse duration ∆t should be short
enough that the orbital degrees of freedom (here momentum) do not change during
the pulse. Thus, we see in Eq. (4.33) that in the time-evolution operator, terms
containing the position operator r have no effect, when acting in momentum space.
Vice versa, one could show that the momentum operator has no effect in position
space. In that sense, a short pulse duration means that we can neglect all terms of
the Hamiltonian that depend on the position operator.

However, we do not have to be as strict to derive the qualitative result of why
the propagation after the pulse is for some potential equivalent to a time-reversal
and for others not. To this end, we only have to neglect the (anti)commutators
of momentum and position operator during the pulse. Since these terms would
not contribute in case of neglecting all terms containing the position operator as
motivated above, this is a valid choice for small enough ∆t.

To summarize, in this approximation the Pauli matrices are the only objects
which we treat as operators during the pulse, i.e. quantities that do not commute,
such that the expansion of Eq. (4.32) is justified. Thus, Eq. (4.31) becomes

〈ϕk,−s | e−
i
~ (H0+V )t1 (Λσm +H0 + V ) g(h0,v,Λ)e−

i
~ (H0+V )t0 | ϕk,s〉, (4.34)

where the function g(h0,v,Λ) = g(h10 , h
⊥
0 , v

1, v⊥, v‖,Λ) corresponds to the term
sin(|β|)/|β| of Eq. (4.32), but it is not important in the further qualitative derivation.
The only relevant feature is that it is a scalar in pseudospin-space.

By splitting Eq. (4.34) into pulse part and everything else,

〈ϕk,−s | e−
i
~ (H0+V )t1σmΛg(h0,v,Λ)e−

i
~ (H0+V )t0 | ϕk,s〉

+〈ϕk,−s | e−
i
~ (H0+V )t1 (H0 + V ) g(h0,v,Λ)e−

i
~ (H0+V )t0 | ϕk,s〉, (4.35)

we see that the second line in Eq. (4.35) cannot lead to a time reversal, because
everything commutes there such that the exponentials before and after the pulse
can be added:

〈ϕk,−s | (H0 + V ) g(h0,v,Λ)e−
i
~ (H0+V )(t1+t0) | ϕk,s〉. (4.36)

No time-reversal after the pulse as compared to before the pulse is to be expected
from this term, since the signs of the Hamiltonians in the exponentials are un-
changed. This is why we keep only the first line in Eq. (4.35). Due to Eq. (4.28),
we can rewrite this term to

〈ϕk,s | σme−
i
~ (H0+V )t1σm Λg(h0,v,Λ) e−

i
~ (H0+V )t0 | ϕk,s〉

=〈ϕk,s | e−
i
~σm(H0+V )σmt1 Λg(h0,v,Λ) e−

i
~ (H0+V )t0 | ϕk,s〉

=〈ϕk,s | e−
i
~ (H1

0 +V 1+V ‖−H⊥0 −V ⊥)t1 Λg(h0,v,Λ) e−
i
~ (H1

0 +V 1+V ‖+H⊥0 +V ⊥)t0 | ϕk,s〉,
(4.37)

where we used σ2
m = 1 to get σm into the exponential function and σmσn(′)σm =

−σn(′) , because n̂(′) ⊥ m̂ by definition.
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The important observation of Eq. (4.37) is that only terms of the Hamiltonian
perpendicular to the pulse change their sign, which means that only those parts can
be effectively time-reversed. Thus, pseudospin-independent terms in the Hamilto-
nian can never be effectively time-inverted by our mechanism, as we have seen in
the case of disorder. However, problems can also arise if H0 itself has a k-dependent
H1

0 -term (asymmetric bands), as will be discussed in Chap. 5. Note that even if
only one part of the Hamiltonian (including the potential) does not switch its sign,
the full system cannot not be effectively time-inverted.

Of course, if the perturbation is small enough, it might not make a difference,
as we have seen in the case of disorder. The echo will continuously decrease, the
stronger the non-reversible term gets. On the other hand, if every present term
in the Hamiltonian switches sign in Eq. (4.37), the system is partially perfectly1

time-inverted, no matter how strong the potential is.
To conclude this section, we want to comment again on the derivation of the

qualitative result in Eq. (4.37). Note that this discussion was only meant to figure
out whether a perturbation in the Hamiltonian destroys the echo mechanism, but
not to get quantitative results like the echo strength. In order to achieve this,
we need to define the system at hand more precisely, as done in the preceding
sections for external, static fields. Moreover, the choice of taking the eigenstates
|ϕk,s〉 in Eq. (4.31) is not necessarily the best. Instead, an eigenstate of H0 + V
would be better for the general analysis, but is usually not known. Here, only the
general approach was to be made clear that yields the main message: pseudospin-
independent potentials can never be effectively time-reversed, whereas pseudospin-
dependent potentials might be, depending on the pulse.

4.3 Static magnetic field

In this and the next section, we want to verify the qualitative general findings above,
using external, static fields. The first example is a homogeneous magnetic field
perpendicular to the graphene plane, where we only consider the orbital effects, but
not the spin splitting by the Zeeman term, since it does not affect the propagation
of a wave packet (neglecting spin orbit coupling, which is small in graphene). Note
that the cyclotron motion of wave packets in graphene with a magnetic field has
been studied before [106, 107]. We want to go one step further and invert the
cyclotron motion by the QTM pulse. However, magnetic fields are known to break
time-reversal symmetry, as opposed to electric fields. So, the valid question arises
whether an effective time-reversal by our population inversion QTM is still possible.

As before in Chap. 3, the population inversion is induced by a mass pulse (σm =
σz), i.e.

Hpulse(t) = Mσzf(t), (4.38)

with the usual, step-like time-dependence f(t) of Eq. (4.29).

1”Partially“ because only parts of the wave packet undergo a transition (compare e.g. Sec. 3.1).
”Perfectly“ because these parts behave perfectly as if the were time-inverted, so they move exactly
back to their initial position and also anything else what changed until the pulse is recovered.
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Figure 4.5: Magnetic field dependence of the Dirac QTM. (a) The correlation C(t)
defined in Eq. (3.32) is shown as a function of time for different magnetic field
strengths. Although it differs for most of the time, the echo strength C(2t0) is quite
independent of the magnetic field and thus, our effective time-reversal is not de-
stroyed by breaking time-reversal symmetry by a magnetic field. (b) The snapshots
correspond to the simulation of the red curve in (a), at the beginning (t = 0), the
time of the pulse (t = t0) and the echo (t = 2t0). Indeed, the initial ~-shape, which
is lost in the meantime, recovers nicely at the echo time. The noisy background is
due to the parts of the wave packet, which have not undergone a transition by the
pulse, and is not of major importance.

We use the symmetric gauge A = B
2

(−y, x, 0) for the magnetic field B = (0, 0, B),
and the Hamiltonian becomes via minimal coupling

H = ~vF
(
k +

e

~
A
)
· σ = H⊥0 + V ⊥. (4.39)

According to Eq. (4.37) in the general section, the parts of the Hamiltonian per-
pendicular to the pulse (in pseudospin) can be effectively time-reverted. Since both
H⊥0 and V ⊥ are by definition perpendicular to the pulse, we expect the effective
time-reversal to work, although time-reversal symmetry is broken, which is indeed
verified in Fig. 4.5(a). There, the correlation C defined in Eq. (3.32) is plotted as a
function of time, obtained by simulating with TQT the time-evolution of the ~-wave
packet of Sec. 3.3 for different magnetic fields. The stated magnetic field strength
correspond to mean wave packet energies of ∼ 100 meV.

The correlation differs most of the time for different magnetic fields, because the
stronger the magnetic field, the more localized is the propagation of the wave packet
(classically: cyclotron orbits), therefore the spatial overlap is all the time larger (see
also snapshots in 4.5(b). However, we are interested in the effective time reversal of
a propagation, thus we want to see whether the initial state be recovered. Therefore,
the relevant quantity is the echo strength, i.e. C(2t0), which is largely independent
of the magnetic field strength, as expected.
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4. Dirac quantum time mirrors under perturbations

The snapshots for B ∼ 2.5T further verify the expectation. The initial wave
packet stays locally in the same area and looses its shape over time (compare t = t0),
but at the echo time techo ' 2t0, the initial shape is nicely recovered, where the noisy
background is due to the modes which did not undergo the transition during the
pulse.

The qualitative explanation for the recovery of the “~”-shape of the wave packet
is that Landau levels of positive energy, from which the initial wave packet is built
up, tend to rotate in one direction, say counterclockwise. After the pulse, the parts
of the wave packet which transitioned to negative Landau levels, rotate exactly
opposite, i.e. clockwise, such that the “reflected” wave packet recovers its shape.

So far, we have verified the results of the general Sec. 4.2, but since the system in
this section is clearly specified, we can investigate is more quantitatively. Thereto,
let us consider the eigenenergies and -states of the initial system, the Landau levels
in graphene, which are derived in Sec. 2.1.2:

En,s = s
~vF
lB

√
2n =: sEn (4.40)

|ϕn,s〉 =
1√
2

(
|n− 1〉
s |n〉

)
, (4.41)

with lB =
√
~/eB and the harmonic oscillator eigenstates |n〉. Since the sign of the

energy s appears only in the lower component of Eq. (4.41), the chosen mass pulse
perfectly maps Landau levels of a given energy to the negative energy:

σz|ϕn,s〉 = |ϕn,−s〉. (4.42)

In a similar way (compare again Sec. 2.1.2), the eigensystem during the pulse can
be derived to yield

εn,s = s
√
M2 + E2

n =: s εn (4.43)

|χn,s〉 =
1√

2
√
ε2
n,s − εn,sM

(
En|n− 1〉

(εn,s −M) |n〉

)
. (4.44)

The transition amplitude An from a Landau level |ϕn,s〉 to its energy inverted equiv-
alent |ϕn,−s〉 is easiest obtained in analogue to unperturbed graphene as shown in
the end of Sec. 3.1:

An(∆t) = 〈ϕn,−s | U(t0, t0 + ∆t) | ϕn,s〉

= 〈ϕn,−s |
−i(H +Mσz)

εn
sin

(
εn∆t

~

)
| ϕn,s〉

=
−iM
εn

sin

(
εn∆t

~

)
〈ϕn,−s | σz | ϕn,s〉

=
−i√

1 + E2
n

M2

sin

(
µ

√
1 +

E2
n

M2

)
, (4.45)

where 〈ϕn,−s | H | ϕn,s〉 = 0 due to perpendicular eigenstates and the familiar
µ = M∆t/~ from Chap. 3. The expansion of U(t0, t0+∆t) as in Eq. (4.32) is allowed,
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4.3. Static magnetic field

because M ∈ R commutes with H. Note that an explicit expansion of the initial
Landau levels into the modified Landau levels during the pulse and recombination
into initial Landau levels after the pulse, as done in Sec. 3.1 and visualized by
Fig. 3.2, is in principle possible and yields the same result as it needs to, but due to
its tediousness it is not shown here.

The first feature to notice from Eq. (4.45) is that the transition amplitude An(∆t)
is the same as the transition amplitude without magnetic field by replacing En ↔
Ek. Moreover, we see from calculation of Eq. (4.45) that transitions happen only
between Landau level with same n but different signs s. The reason for this is the
homogeneous pulse which does not change the orbital degrees of freedom and thus
the harmonic oscillator eigenstates |n〉 are unaffected.

Again in analogy to Sec. 3.1, the transition amplitude for each Landau level is
used to obtain the state after the pulse, which is used for instance to calculate the
real space wave function after the pulse to get the echo strength, i.e. the correlation
at the echo time techo = 2t0 + ∆t (when all kinetic phases have canceled):

C(techo) =

∫
d2r |φ0(r)| |φ(r, techo)|

=

∫
d2r
∣∣∣φ0(r)

∣∣∣ ∣∣∣∑
n,s

ϕn,s(r)An(∆t)〈ϕn,s | φ0〉
∣∣∣, (4.46)

with ϕn,s(r) = 〈r | ϕn,s〉.
Again, the echo strength of Eq. (4.46) is similar to the case without magnetic

field from Eq. (3.33), which yielded

C(techo) =

∫
d2r
∣∣∣φ0(r)

∣∣∣ ∣∣∣ ∫ d2k

2π
A(k)φ0(k)eik·r

∣∣∣, (4.47)

with the difference that a discrete sum over the Landau levels instead of the integral
over all k is to be evaluated. However, as long as the spacing between Landau levels
is small as compared to the energy (width) of the wave packet, no difference is to
be expected between no magnetic and small enough magnetic fields, as verified in
Fig. 4.5(a). As mentioned above, small differences of the echo strength are seen
there only for large magnetic fields B & 10T , when the level spacing becomes large
enough such that the deviations between sum and integral

∫
dk→

∑
n start to make

a difference. Indeed, the separation of zeroth and first Landau level for B ' 10T is
according to Eq. (2.30): E1 − E0 ' 100 meV, which is here the mean energy of our
wave packet.

To conclude this section, we emphasize again that in systems where time-reversal
symmetry is broken, our effective time-reversal by the population inversion QTM
can work and surely does work in the specific case of graphene in a magnetic fide.
The reason is that our QTM setup with a homogeneous pulse does not make use
of the time-reversal symmetry, but instead the velocity has to be inverted, which is
related to a chiral symmetry, i.e. E− = −E+. For more details, see also Sec. 5.1.2.
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4. Dirac quantum time mirrors under perturbations

4.4 Static, in-plane electric field

The very first comment is related to the action of an electric field in graphene
(or other systems with linear band structure), since it contradicts the intuition
from classical physics and quantum physics in a parabolic band structure and is
therefore a common source of misconceptions. Independent of the band structure, an
electric field changes the momentum of a charged particle (see below), as intuitively
expected. The non-intuitive part is that the velocity in the linear band structure is
not proportional the momentum, but instead it is constant in magnitude of vF and
parallel to k. Thus, an electric field does not lead to an acceleration (d|〈v〉|/dt = 0)
of the electrons the way it would be in parabolic bands, but only the direction of
movement might change. That being said, let us define the system and investigate
with regard to the QTM setup.

The Dirac Hamiltonian including a homogeneous electric field reads

H = ~vFk · σ + eE0 · r1. (4.48)

The reason for the above mentioned change of the momentum is that the time-
evolution operator related to the electric field is the translation operator in momen-
tum space

e−
i
~ eE0·rt ψ(k) = ψ

(
k +

eE0

~
t

)
. (4.49)

Thus, in the analytical calculations, we treat the electric field as a linear shift of the
momentum in time

k(t) = k(0) +
eE0

~
t, (4.50)

independent of the band, due to pseudospin independence. Note that in principle,
this momentum change could lead to band transitions, because after changing k,
the eigenstate might not be the same anymore:

|ϕk(0),s〉 6= |ϕk(t),s〉, (4.51)

or more precisely:

|ϕk(0),s〉 = αk(t)|ϕk(t),s〉+ βk(t)|ϕk(t),−s〉, (4.52)

but we consider the adiabatic case, i.e. small electric field compared to the energy
separation at a given k.

Coming back to the QTM, the time-reversal pulse is again a mass gap

Hpulse(t) = Mσzf(t) (4.53)

with the usual step-like time-dependence f(t) of Eq. (4.29). In comparison with the
general Sec. 4.2, we can write the Hamiltonian including an electric field of Eq. (4.48)
as

H = H⊥0 + V 1. (4.54)

Thus we do not expect an effective time reversal, because there is the pseudospin-
independent part V 1 in the Hamiltonian.
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4.4. Static, in-plane electric field

To verify the expectation, we simulate the time propagation of initially Gaussian
wave packets |φ0〉 in an electric field in x-direction E0 = (E0, 0, 0). To be able to
better compare the obtained data, we want the wave packets for different electric
field to have the same mean momentum k0(t0) at the pulse time, such that the
transition amplitude is independent of the electric field strength. Thus, the wave
packet is initially peaked in reciprocal space around

k0(t = 0) = k0(t0)− eE0

~
êxt0. (4.55)

The k-space width of the wave packet ∆k is chosen in the simulations to be ∆k =
|k0(t0)|/8.

In Fig. 4.6, the echo strength as function of electric field for certain simulations
is evaluated by both the correlation C defined in Eq. (3.32) as otherwise used in this
thesis, and the echo fidelitym defined in Eq. (4.19), which are qualitative different, as
explained below. We choose a negative k0,x such that electric field first decreases the
magnitude of the momentum and brings it closer to the K-point, where exceptions
are expected (see also below). The normalization of the electric field strength Eref

is the strength at which the change of k due to the electric field is the same as the
momentum at the time of the pulse k0(t0):

Eref =
~|k0(t0)|
et0

. (4.56)

For typical wave vectors such that the energy is ~vF |k0(t0)| = 100 meV and propa-
gation times t0 ' 1 ps, the reference electric field corresponds to Eref ' 105 V/m.

Analytically, the echo fidelity of Eq. (4.19) at the usual echo time techo = 2t0 +∆t
becomes the overlap of Gaussians that have moved away from each other in k-
space due to the change of k over time in Eq. (4.50) (for calculation, compare also
Eqs. (C.4) and (C.5)):

m(2t0 + ∆t) = |〈σzφ0 | U(0, techo) | φ0〉| = exp

(
−e

2E2
0t

2
echo

4∆k2

)
. (4.57)

Compared to the simulation (green squares) in Fig. 4.6, the expected echo fidelity
(red line) of Eq. (4.57) indeed matches the data well.

Thus, the expected result of the general section namely that no time-reversal is
possible seems to be true, or can we somehow circumvent the inevitable destruction
of the echo for larger and larger electric fields?

In that regard, the special velocity structure of graphene2 might help:

〈ϕk(t),s | v̂ | ϕk(t),s〉 = s

(
cos γk(t)
sin γk(t)

)
(4.58)

If γk(t) changes, there is no hope, at least for strong enough electric fields, because
then, the direction of propagation changes, which is not inverted by the pulse. On
the other hand, for k0(t = 0) ‖ E0 and a very narrow angular width ∆k of the wave
packet in k-space, the angle γk(t) = γk(0) is a constant over time. Thus, the mean

2possibly also in other systems, see the discussion in the end of this section
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Figure 4.6: Effect of an electric field to the Dirac QTM. Although the system is
not effectively time-reversed, as shown by the echo strength measured by the echo
fidelity (green squares) and the analytical prediction of Eq. (4.57) as well as the
case of E0 ⊥ k0 (blue triangles), a high quality echo can still be achieved in the case
of a propagation direction parallel to the electric field. This is due to the special
velocity of a linear band structure, which is independent of |k| but depends only on
its direction. Therefore, the mean velocity of the wave packet can be mapped to
〈v̂〉 → −〈v̂〉. The only problem arises when the electric field is strong enough to
bring the mean momentum to k ' 0, i.e. E0 ' Eref, because there, the modes in the
wave packet with k ∦ E0 move away from the wave packet for any finite width ∆k.

velocity of the wave packet is 〈vx〉 = svF before the transition and 〈vx〉 = −svF in
the opposite direction after the transition. Therefore, the wave packet is expected
to come back to the initial at techo = 2t0 + ∆t resulting in an echo.

Indeed this k-direction dependence of the echo can seen in Fig. 4.6. For E0 ⊥
k0(t0) the echo decays as a function of the electric field E0 (blue triangles), whereas
for E0 ‖ k0(t0) (black dots), the echo is for E0 < Eref independent of the electric
field. The only problem and reason, why the echo strength decreases in the parallel,
is when the electric field is strong enough (E0 ' 1) such that k = 0 is crossed. In
that case, the “narrow” angular width (∆k � |k0(t)|) cannot be achieved for any
finite width ∆k.3 Otherwise said, the wave packet does not only consist of k-modes
parallel to the electric field. This becomes more important, the closer we get to
k = 0 due to the electrical field, because then, the different modes start to move in
different directions, which cannot be reversed by our QTM. However, if the passage
through k = 0 is fast enough (E0 & 2), such that the wave packet does not have
enough time to change its shape distinctively during the transition of k = 0, the
echo gets again larger and even close to its value without electric field.

To conclude this section, we want to stress again the major feature of the QTM

3the adiabaticity is also not necessarily given
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in an electric field. As generally expected, the pseudospin-independent term in the
Hamiltonian due to the electric field causes the wave packet not to be effectively
time-inverted after switching bands. Nevertheless there are observables, like the
correlation C, where an echo can be seen. This is similar to the Hahn echo, where
the system is not effectively time-inverted (the spins do not precess in the oppo-
site direction after the π-pulse), but still the initial spin configuration is (partly)
recovered in the sense that the spins rephase, such that an signal can be measured.

As a final comment and preview to the next chapter, where the QTM in ar-
bitrary two-band systems is considered, we want to mention that the echo of the
wave function in presence of an electric field despite the fact that the system is not
effectively time reversible, is not necessarily related to the linear band structure.
The important feature is that the electric field is (essentially) parallel to the prop-
agation direction of the wave packet and that after the pulse, all reflected modes
come back at the same time, although they change their momentum. Although we
do not show it here, preliminary calculations suggest that this could be possible in
a band structure consisting of two parabolic bands with curvature a > 0 and b < 0.

4.5 Conclusion and outlook

In this chapter, we studied the effects of perturbation to our Dirac-QTM. First,
we considered the consequences of static disorder in Sec. 4.1. As opposed to the
spin echo, the wave packet cannot be effectively time-reversed in presence of static
disorder, because of the inherent motion of the wave packet through the disturbed
system. Thus, this is not in contradiction with the spin echo, which would also be
affected by static disorder (of the local magnetic field), if the spins moved through
the system.

Although not discussed, we assume that intervalley scattering due to short-range
potentials, i.e. scattering in the Brillouin zone from K to K′, is supposed to affect
the QTM in the same way as the considered intravalley scattering: the pulse will
also flip the propagation direction but the scattering events on the way back are
independent from the scattering events before the pulse. Therefore, the scattered
parts of the wave function are lost for the echo.

In Sec. 4.2, we studied qualitatively the effects of a general perturbation to a
general two-band system, to be able to predict whether some perturbation affect
the effective time-reversal of our QTM setup, or not. The used time-reversal pulse
is assumed to be homogeneous and k-independent, i.e. only the pseudospin degree
of freedom is changed. The result is that while pseudospin-independent parts in
the Hamiltonian (including the perturbation) cannot be effectively time-reverted,
pseudospin-dependent parts can be, depending on the exact system and pulse.

In the remaining of the chapter, we investigated the QTM setup for static, ho-
mogeneous external fields. The magnetic field is considered in Sec. 4.3. According
to the general predictions of Sec. 4.2 and despite breaking time-reversal symmetry,
the magnetic field does not destroy our effective time-reversal and the echo strength
is largely independent of the strength of the magnetic field.

An interesting feature is found in the case of an electric field: although an
effective time-inversion is not possible, a system can behave in some parts as if it was
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4. Dirac quantum time mirrors under perturbations

time-reversed, e.g. that an echo happens. The reason in this case is that the velocity
is mapped from v → −v, but other observables might not be “time-inverted”. In
the example of the electric field in Sec. 4.4, the change of the momentum k due to
the pseudospin-independent electric field is not inversed. Nevertheless, for parallel
propagation direction of the wave packet related to the electric field, the initial
position can be still recovered, because the velocity reversed.

So far, the pulses used the pseudospin structure to initiate the transition to the
other band. But in principle, also other mechanisms are possible, using for instance
time-dependent external fields. An example is to apply a time-dependent electric
field to make use of a Landau-Zener-Stückelberg interference. By non-adiabatic
driving of the momentum through the effective gap (ky 6= 0), the state splits into
the two bands, each part accumulating a different phase. Changing the sign of the
electric field initiates a second transition through the gap, where each part splits
again. Due to the different phases, the individual parts interfere (Landau-Zener-
Stückelberg interference). Depending on the used parameters, an almost perfect
destructive interference can be achieved in the initial band, such that almost 100%
of the wave packet switch the band. First simulations could verify the almost perfect
constructive interference for band switching. For large enough electric fields and
thus short enough pulses, the spreading of the wave packet due to the change of the
propagation direction (since k is changed) are negligible and a nice echo is visible.
The only problem, as always for in-plane electric fields, is that it works well only for
certain initial propagation directions of the wave packet. Thus, the echo of a radial
spreading wave packet like the “~” in Fig. 3.8 is not assumed to be very good.

Another idea is to use a time-dependent magnetic field as time-reversal pulse
to switch the propagation direction. The idea is the following: we always used a
pulse proportional to σz to open a gap and make the state switch bands. Instead one
could in principle use a magnetic field to open gaps by the Landau quantization. The
magnetic field has to be appropriately large such that the splitting of the Landau
levels is at least in the range of the energy width of the wave packet. First simulation
verified the this is in principle possible. The mechanism is that during the pulse,
any k-mode splits into many Landau levels (also with negative energy) and after
the pulse, modes with negative energies are occupied. Analytical calculation could
verify the action of the pulse and are in agreement with the simulations. Although
the procedure is clear from a theoretical point of view, the remaining challenge is to
find a suitable physical configuration of the fields, since a time-dependent magnetic
field will always be accompanied by a (strong) electric field. Again, it is important
that the wave packet does not considerably move during the pulse because else, its
propagation direction will change due to the change of momentum in the magnetic
field.

In the next chapter, we want to further generalize the QTM. Although the general
Sec. 4.2 did not explicitly deal with a linear band structures, the underlying system
in the examples has always been graphene (or any other system described by the
Dirac cone band structure) so far. Below, we will study homogeneous (clean) two-
band systems in general with regard to our population inversion QTM, where in
principle, the results of perturbations of Sec. 4.2 can be applied analogously.
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Chapter 5

Quantum time mirror for general
two-band systems

In the previous chapters, we investigated the population inversion time mirror for
graphene, i.e a two level system with linear, chiral symmetric bands. The nice
feature is the constant absolute velocity of the k-modes, but opposite propagation
directions in the two bands. In this chapter, we want to generalize the results to a
broader range of two-band Hamiltonians. Indeed, we will see that neither the linear
bands, nor perfect chiral symmetry are necessary conditions for the echo.

First, we will consider the QTM in general two-band systems and derive the
general transition amplitude and derive general requirements to the band structure
related to the corresponding velocity of the two bands (Sec. 5.1). Then, we will
check the general results for three examples. The first one is a toy Hamiltonian
with linear bands but different slopes for positive and negative energies (Sec. 5.2),
i.e. without chiral symmetry. Then we investigate the echo mechanism for an initial
hyperbolic band structure in Sec. 5.3 showing that the linear band structure is
not important. Finally, in Subsec. 5.4, we combine the two setups, meaning a
nonlinear band structure without chiral symmetry, i.e. parabolic bands with different
curvatures.

5.1 General theory of the QTM for two-band sys-

tems

5.1.1 Transition amplitude

We first investigate the general case of homogeneous two-band systems

H0(k) =
3∑
i=0

hi0(k)σi = h0
0(k)1+ hps

0 (k)n̂k · σ = H0
0 +Hps

0 , (5.1)

where hps
0 =

√
(hx0)2 + (hy0)2 + (hz0)2 is the modulus of the pseudospin-dependent

part of the initial Hamiltonian. In general, the Pauli matrices σi appearing in the
Hamiltonian need not be a pseudospin operator in the sense of the pseudospin in
graphene, but anything that generates two bands in the Hamiltonian, e.g. the spin
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5. Quantum time mirror for general two-band systems

in a 2d topological insulator. However, for consistency, we will continue to denote
it by pseudospin.

Concerning the notation in Eq. (5.1) and in the rest of this chapter, capital H
means that the Pauli matrices in pseudospin space are included, whereas lowercase
letters h are scalars in pseudospin space, but can still depend on the momentum
operator k. Note that the general Hamiltonian is defined differently to Sec. 4.2,
because different features are to be stressed here.

The direction of the Hamiltonian in pseudospin space n̂k (see also Fig. 5.1) is
given in usual spherical coordinates

n̂k =

cos γk sinϑk

sin γk sinϑk

cosϑk

 . (5.2)

The k-dependence of the terms in the Hamiltonians is omitted henceforth. The
corresponding eigenstates and energies are denoted by

Ek,± = h0
0 ± h

ps
0 = h0

0 ±
√

(hx0)2 + (hy0)2 + (hz0)2, (5.3)

|ϕk,+〉 =

(
cos ϑk

2

sin ϑk
2

eiγk

)
, (5.4)

|ϕk,−〉 =

(
sin ϑk

2

− cos ϑk
2

eiγk

)
. (5.5)

We assume a homogeneous and k-independent pulse of the form

Hpulse =
3∑
i=1

Λiσi, (5.6)

such that the full Hamiltonian reads

H = H0 + f(t)Hpulse. (5.7)

Note that there is no pseudospin-independent term in the homogeneous pulse Hamil-
tonian, since it would only lead to a (constant) shift of the energy but no transitions
and thus, it would have physically no impact.

For simplicity, the time-dependence is chosen as in the chapters before

f(t) =

{
1, t0 < t < t0 + ∆t,
0, otherwise,

, (5.8)

to enable analytical calculations.
Let us rewrite the pulse Hamiltonian to better relate it to the initial Hamiltonian

H0:
Hpulse =

(
Λ‖n̂k · σ + Λ⊥m̂k · σ

)
= Λ‖σn + Λ⊥σm (5.9)

with m̂k ⊥ n̂k, such that Λ‖ and Λ⊥ belong to the part of the pulse parallel or per-
pendicular to H0 in pseudospin space, respectively. For brevity, we have introduced
the notation σn = n̂k · σ and σm = m̂k · σ.
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ŷ

ẑ

x̂

m̂
k ,Λ ⊥

n̂k, H
ps
0 ,Λ

‖

Hpulse

Figure 5.1: The directions of the initial Hamiltonian H0 of Eq. (5.1) and the pulse
Hamiltonian Hpulse of Eq. (5.9) for a general two-band system in the Bloch sphere.
n̂k (blue) is the direction of the pseudospin-dependent part of the initial Hamiltonian
Hps

0 . The pulse Hamiltonian Hpulse (purple arrow) is in general a linear combina-
tion of parts parallel to n̂k (Λ‖) and in some direction m̂k ⊥ n̂k (red arrow) with
magnitude Λ⊥. Only the perpendicular parts of the pulse Λ⊥ lead to a transition
(compare Eq. (5.16)), because they lead to a rotation of the initial eigenstates on
the Bloch sphere. The transparent arrows are the projections to the x-y-plane, for
better spatial awareness.

During the pulse, the eigenenergies become

εk,± = h0
0 ± ~Ωk, (5.10)

where we have defined a new frequency,

~Ωk =

√√√√ 3∑
i=1

(hi0 + Λi)
2

=

√
(hps

0 + Λ‖)
2

+ (Λ⊥)2, (5.11)

which will become important for the transition amplitude below.
Now let us study the QTM mechanism, more precisely the transition of one

band to the other. This calculation is analogous to the graphene case at the end of
Sec. 3.1, but for a general band structure. We want to know the quantum mechanical
amplitude for a transition during the pulse (t0 → t0 + ∆t) from a given eigenstate
|ϕk,s〉 to the other band |ϕk,−s〉, which is

As(k) = 〈ϕk,−s | exp

{
− i
~

(H0 +Hpulse) ∆t

}
| ϕk,s〉. (5.12)

Note that the propagations before and after the pulse are trivial since we consider
eigenstates of H0.

To simplify the expression, the identity of Eq. (3.28) for exponentials of Pauli
matrices of Sec. 3.1 can be applied, because all prefactors of the Pauli matrices are
functions only of the momentum operator, but not of the position operator, such
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that they commute. The transition amplitude then becomes

As(k) = e−
i
~h

0
0∆t〈ϕk,−s | cos (Ωk∆t)1− i sin (Ωk∆t)

~Ωk

[
(hps

0 + Λ‖)σn + Λ⊥σm

]
| ϕk,s〉.

(5.13)

Since by definition
σn |ϕk,s〉 = s|ϕk,s〉 = s1|ϕk,s〉 (5.14)

and due to the orthogonality in pseudospin space of the eigenstates |ϕk,s〉 for every
k,

〈ϕk,s′ | ϕk,s〉 = δss′ , (5.15)

only the Λ⊥-term in Eq. (5.13) survives. Moreover, since m̂k ⊥ n̂k, σm is the
transition operator which maps an eigenstate to the other band

σm |ϕk,s〉 = eiα|ϕk,−s〉. (5.16)

This can be seen geometrically in the Bloch sphere (compare Fig. 5.1), where the
operator σm is a rotation of π around the direction m̂. The phase eiα in Eq. (5.16)
depends on the exact definition of the eigenstates, which is again arbitrary up to
some phase, such that with the right choice of the eigenstates, we get eiα = 1.

Therefore, the transition amplitude becomes

As(k) =
−iΛ⊥

~Ωk

e−
i
~h

0
0∆t sin (Ωk∆t) . (5.17)

So, let us discuss the individual terms of the transition amplitude in more detail with
regard to their effect on a possible QTM echo. The oscillations as function of ∆t in
the sin-term are due to interference of the two possible paths (positive eigenstate or
negative eigenstate of the pulse Hamiltonian, see also Sec. 3.1 and Fig. 3.2). Tuning
the pulse length ∆t during a certain setup, it can be always brought close to 1 and
thus, it is in principle not the limiting factor for the echo. Similarly, the phase factor
e−

i
~h

0
0∆t of magnitude 1 is not of important for the transition strength for a given

k, but it influences the time of the (possible) echo techo in linear order of ∆t, which
is supposed to be small. It will be discussed below in more detail for the examples
with non-chiral band structure, i.e. E−(k) 6= −E+(k).

The prefactor Λ⊥

~Ωk
on the other hand strongly affects the transition strength for a

given setup. Rearranging this prefactor by substituting Ωk from Eq. (5.11) to better
see its dependences on the individual terms, it yields

|Λ⊥|
~Ωk

=
1√

1 +
(hps

0 + Λ‖)2

(Λ⊥)2

≤ 1. (5.18)

Note that it is smaller (or equal) to one, such that the normalization of the wave
function is not violated. Moreover, for a good transition, this prefactor has to be
close to one, which happens if both conditions

|Λ⊥| � |Λ‖| and |Λ⊥| � |hps
0 | (5.19)
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5.1. General theory of the QTM for two-band systems

are met. Hence, the part of the pulse perpendicular to the initial Hamiltonian has
to be the dominant energy term during the pulse (not considering the 1-term).
Alternatively, one could try to cancel hps

0 by Λ‖, i.e. Λ‖ = −hps
0 (k), because in that

case, Eq. (5.18) yields one. However, since we are assuming a k-independent pulse,
the cancellation will happen only for certain k. Even for k-dependent pulses, it is in
most cases rather unlikely that they can cancel. Therefore, this case is not further
investigated.

For the transition amplitude in Eq. (5.17), geometrical considerations are neces-
sary in order to obtain Λ⊥. Although it is in principle possible, it might be tedious
in some cases. Therefore, we state an alternative version of Eq. (5.17),

As(k) =
−i
~Ωk

e−
i
~h

0
0∆t sin (Ωk∆t) 〈ϕk,−s | Hpulse | ϕk,−s〉, (5.20)

where instead the tedious part is to calculate the matrix elements of Hpulse. However,
it might be more convenient in some cases than the geometrical considerations, as
we will see below in the examples.

Thus, the transition from one to the other band by a time-dependent, homo-
geneous pulse is known for any initial wave packet in a general two-band system.
However, a transition does not necessarily mean that the propagation after the pulse
is effectively time-inverted. Therefore, we investigate in the next subsection under
which conditions of the initial system, echoes of the wave function are possible.

5.1.2 Effective time reversal and wave packet echo

The effective time-reversal in a more general case has already been discussed in
Sec. 4.2, but for homogeneous Hamiltonians, we can go into more details. Let us
consider the propagation of the part of an eigenstate |ϕk,s〉 which switches band
until some time after the pulse t′ = t0 + ∆t+ t1:

〈ϕk,−s | U(0, t′) | ϕk,s〉 = 〈ϕk,−s | e−
i
~H0t1e−

i
~ (H0+Hpulse)∆te−

i
~H0t0 | ϕk,s〉 (5.21)

Since |ϕk,s〉 is an eigenstate of H0 and thus only acquires some phase until the pulse
and remains otherwise unchanged, the time evolution during the pulse reduces to
the transition amplitude times σm = m̂k · σ:

〈ϕk,−s | U(0, t′) | ϕk,s〉 = As(k)〈ϕk,s | σme−
i
~ (H0

0+Hps
0 )t1σme−

i
~ (H0

0+Hps
0 )t0 | ϕk,s〉

= As(k)〈ϕk,s | e−
i
~σm(H0

0+Hps
0 )σmt1e−

i
~ (H0

0+Hps
0 )t0 | ϕk,s〉

= As(k)〈ϕk,s | e−
i
~ (H0

0−H
ps
0 )t1e−

i
~ (H0

0+Hps
0 )t0 | ϕk,s〉. (5.22)

As expected from Sec. 4.2, the pseudospin-dependent term of the initial Hamiltonian
Hps

0 changes its sign in the exponential, which means that it is effectively time-
reversed, as opposed to the pseudospin-independent part H0

0 . At first sight, this
seems to imply that only for H0

0 = 0 (or constant) and thus chiral symmetric band
structures (Ek,− = −Ek,+), the QTM is expected to work. However, already in
the case of an electric field in Sec. 4.4, we have seen that although the system
could not be (effectively) time-reversed, an echo can be possible. The important
quantity to look at is the velocity, respectively its expectation value for the two
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5. Quantum time mirror for general two-band systems

energy eigenstates at a given k. Let us assume a wave packet living in one band, say
s = +. The translation vector dk of a (reflected) plane wave at time t′ = t0 +∆t+ t1
is given by

dk(t′) = 〈v̂〉k,+t0 + 〈v̂〉k,−t1, (5.23)

where the subscript k,± means that the expectation value is taken with the eigen-
states with k of the corresponding band. Note that we assume a short pulse, such
that a considered wave packet does not move considerably during the pulse, which
is why ∆t is omitted here. An echo will happen, if all modes of this wave packet
come back at the same time:

dk(techo)
!

= 0, ∀k ⇔ 〈v̂〉k,− = − t0
techo − t0

〈v̂〉k,+, ∀k (5.24)

which means that the velocities in the two bands have to be related by a k-
independent constant ξv > 0:

〈v̂〉k,− = −ξv〈v̂〉k,+ (5.25)

Thus, let us find out what the requirements are for the Hamiltonian H0 of Eq. (5.1)
to fulfill Eq. (5.25). For that, recall that the velocity operator is defined as

v̂ = ∇kH, (5.26)

and thus the requirement of Eq. (5.25) becomes

〈ϕk,− | ∇kH0 | ϕk,−〉 = −ξv〈ϕk,+ | ∇kH0 | ϕk,+〉
〈ϕk,+ | σm∇kH0σm | ϕk,+〉 = −ξv〈ϕk,+ | ∇kH0 | ϕk,+〉

〈ϕk,+ | ∇k(H0
0 −H

ps
0 ) | ϕk,+〉 = −ξv〈ϕk,+ | ∇k(H0

0 +Hps
0 ) | ϕk,+〉

⇒ (1 + ξv)∇kH
0
0 + (ξv − 1)∇kH

ps
0 = 0 (5.27)

which is fulfilled only if

∇kH
0
0 =

1− ξv
1 + ξv

∇kH
ps
0 , ∀k. (5.28)

Therefore, even if a perfect time-reversal is not possible (H0
0 6=const), there still can

be an echo, if the requirement of Eq. (5.25), and thus Eq. (5.28) are met. This can
happen in bands with different velocities. In this situation, the propagation after
switching the band is different (slower/faster) to before the pulse, but still an echo
can happen as long as all modes come back at the same time, as we will show in the
examples of Secs. 5.2 and 5.4.

Note that the requirement of “all modes come back at the same time” is not
very strict. Even if this is not perfectly met, there will be an echo to some extent,
but the stronger the deviations, the more blurred the echo becomes, since different
k-modes come back at different times. In real materials, Eq. (5.28) will never be
completely true, but as long as it holds well enough, e.g. over the width of the wave
packet, the QTM mechanism in principle works.

For completeness, the echo time becomes in general for a transition from positive
to negative energy

t+echo =
(
1 + ξ−1

v

)
t0 +

1 + ξ−1
v

2
∆t, (5.29)

70



5.1. General theory of the QTM for two-band systems

and for transitions from the negative to the positive band:

t+echo = (1 + ξv) t0 +
1 + ξv

2
∆t. (5.30)

The graphene Hamiltonian of Sec. 3.1 is obtained by substituting

hps
0 = ~vFk, (5.31)

h0
0 = 0, (5.32)

Λ‖ = 0, (5.33)

Λ⊥ = M. (5.34)

The general formulas for the transition amplitude then yield

Agraphene(k) =
−i√

1 + ~2v2
Fk

2/M2
sin

(
M∆t

~

√
1 + ~2v2

Fk
2/M2

)
(5.35)

and the echo time becomes
tgraphene
echo = 2t0 + ∆t, (5.36)

which match the expected results (compare e.g. Eq. (3.21)).
One last comment is that k-dependent pulses, e.g. by switching on and off spin-

orbit coupling, are in general no problem and can be treated in the same way as
shown in this section. The only problem might be a possible pseudospin-independent
term Λ1(vk)1, which leads to a noninvertable motion during the pulse. For short
pulses however, i.e. when the wave packet does not have enough time to considerably
move during the pulse, this effect is negligible. For long pulses, one can derive the
following requirement that this term does not affect the echo but only shifts the
echo time, similarly to Eq. (5.28):

∇kΛ1(vk) = ξh∇kH
ps
0 , ∀k, (5.37)

where ξh is again a k-independent constant.
To conclude this section, we have derived the transition amplitude for general

two-band systems from Eq. (5.17) and discussed the requirements of the two bands
regarding velocity, such that an echo can happen. Note that the implications of
the basic Chap. 3 for the QTM apply also in the general case. For instance, the
echo strength C(techo) in the correlation defined in Eq. (3.32) can be approximated
for a narrow wave packet in k-space (peaked at k0) by the transition amplitude
A(k0). For a general wave packet, the echo strength is given by Eq. (3.33), where
all k-modes are taken into account.

In the following sections, the general findings above are investigated for three
example systems, some toy models, some resembling physical systems like direct
gap semi-conductors or bilayer graphene. We will also discuss and stress additional
features, which went short in the general discussion.
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5. Quantum time mirror for general two-band systems

5.2 Linear band structure with different slopes

As an example for a system without chiral symmetry, we use in this subsection a
toy model Hamiltonian which has still linear bands, but different slopes for positive
energy as compared to negative energies: Ek,± = ±a±|k|, with a± > 0 (compare
Fig. 5.2(a)). Since the slope is directly related to the velocity, we see that the
velocities in the two bands are multiples of each other. Thus the requirement for an
echo of Eq. (5.25) is met with the k-independent constant ξv = a−

a+
.

The pseudospin basis is rather arbitrary in this system, but to be in analogy to
the graphene case, we use a basis where the energy-eigenstates are the same as in
graphene |ϕk,s〉 in the sublattice basis:

H0 =
a+ − a−

2
|k|1+

a+ + a−
2

k · σ =

( a+−a−
2
|k| a++a−

2
(kx − iky)

a++a−
2

(kx + iky)
a+−a−

2
|k|.

)
(5.38)

The pulse is again Mσz, switched on at t0 for the duration of ∆t. In comparison to
the general case of Sec. 5.1, we have the following quantities

h0
0(k) =

a+ − a−
2

|k|, (5.39)

hps
0 (k) =

a+ + a−
2

|k|, (5.40)

Λ⊥ = M, (5.41)

Λ‖ = 0. (5.42)

Thus, the transition amplitude becomes according to Eq. (5.17)

〈ϕk,−s | U | ϕk,s〉 = 〈ϕk,−s | e−
i∆t
~ (H0+Mσz) | ϕk,s〉

= 〈ϕk,−s | e−
i
~ ãk∆t −iσz√

1 + κ̃2
sin
(
µ
√

1 + κ̃2
)
| ϕk,s〉

= e−
i
~ ãk∆t −i√

1 + κ̃2
sin
(
µ
√

1 + κ̃2
)
. (5.43)

Here, we have introduced new variables

κ̃ =
a+ + a−

2

|k|
M
, (5.44)

ã =
a+ − a−

2
, (5.45)

and µ = M∆t
~ , which is already familiar from the previous chapters. We see that

the transition amplitude of Eq. (5.43) is quite similar to the case of graphene in
Eq. (3.21). One difference is that we have to use the average κ̃, as compared to the
constant κ = ~vFk/M in graphene, but this does not affect the possibility of an
echo.

The second difference is the k-dependent phase e−
i
~ ãk∆t, which leads to a move-

ment of the wave packet also during the pulse, since a phase in momentum space
linear in k leads to a translation of the wave packet in real space, because of

FT{f(k)}(r) = f̂(r) ⇒ FT{f(k)eik·r0}(r) = f̂(r− r0). (5.46)
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Figure 5.2: (a) Example of the band structure of the toy Hamiltonian of Eq. (5.38)
for a+ < a−. (b) The correlation defined in Eq. (3.32) is shown for different wave
packet energies starting in the positive energy branch. The Hamiltonian parameters
are a− = 2a+, which is why the velocity after the pulse is twice as large and thus
the echo takes place already at t = 1.5t0. The different (but unimportant) decay
rates of the correlation are due to different wave packet widths given by the relation
∆k = k0/8, where ∆k is the width of wave packet in reciprocal space. (c) The echo
strength C(techo) is plotted as a function of the initial energy a+k0 relative to the
pulse strength M . The simulation (black dots) is compared to the modulus of the
transition amplitude of Eq. (5.43) (blue), which approximates the wave packet as
plane wave. The deviations are due to the finite width of the wave packet as in the
graphene case above. The black dashed line shows analytically the case of symmetric
bands (graphene), i.e. a− = a+. (d) Dependence of echo time techo (below) and echo
strength C(techo) (above) on the pulse duration, or equivalently µ, for fixed M and
a− = 3a+, both matching very well the expectation.
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5. Quantum time mirror for general two-band systems

In the end, this phase leads only to a slight change of the scattering time, which can
be seen by looking at all the phases which are accumulated during the time evolution
of the part of the wave packet which is important for the echo. For simplicity, we
consider a wave packet with initially positive energy. The corresponding phases are

before pulse: e−
i
~a+kt0 , (5.47)

during pulse: e−
i
~ ãk∆t, (5.48)

after pulse: e−
i
~ (−a−k)t1 , (5.49)

total phase: e−
i
~k(a+t0+ã∆t−a−t1). (5.50)

Here, t1 = techo − (t0 + ∆t) is the time duration between end of the pulse and echo.
The echo takes place, when the wave packet is back at the origin, i.e. when the

translation in real space is 0, which leads to the condition

a+t0 + ã∆t− a−t1 = 0⇒ t1 =
a+

a−
t0 +

∆t

2

(
a+

a−
− 1

)
, (5.51)

which means, that here ,also the pulse duration ∆t influences the time duration t1,
even for small ∆t, as opposed to the graphene case, where we had exactly t1 = t0.
The echo time thus changes from techo = 2t0 + ∆t in the graphene case to

techo = t0 + ∆t+ t1 =

(
a+

a−
+ 1

)
t0 +

∆t

2

(
a+

a−
+ 1

)
, (5.52)

as can be nicely seen in Fig. 5.2(b) and (d). This result corresponds to the general
echo time of Eq. (5.29). For very long ∆t, the separation of the sub-wave packet has
to be taken into account, analogue to Sec. 3.4. Note that in bands with a general
slope, the graphene case is recovered by inserting a+ = a−, as it should be.

In Fig. 5.2, we see (a) an exemplary band structure, (b) the correlations of sim-
ulations for certain parameters and (c) and (d) the echo strength of the simulations
which matches quite well the analytical expectations from Eq. (5.43). The only
deviations are due to the extended wave packet width ∆k in reciprocal space. Al-
though not shown here, by taking the full width of the wave packet into account
using Eq. (3.33) with the new transition amplitude, analytical expectations and
simulation agree perfectly (mean deviation of ∼ 10−6).

Qualitatively, the results are similar to the case of graphene. The most significant
difference can be seen in Fig. 5.2(b): due to the different velocities before and after
the pulse, the time of the echo changes from techo ≈ 2t0 to techo ≈ t0 + a+

a−
t0, where

we assumed that the wave packet has initially only positive energies (and ∆t� t0).
However, because of this feature, it becomes obvious that the wave packet in this
asymmetric band structure needs to be initially composed only of either positive
or negative energy states. Otherwise, there will be two separate echo peaks in the
correlation at t+ ≈ t0 + a+

a−
t0 and t− ≈ t0 + a−

a+
t0, whose strength depends on the

particular composition of the wave packet.
In this subsection, we have seen that the perfect chiral symmetry is not im-

portant for the echo, since also in this asymmetric, linear toy model, it does not
fundamentally change the echo properties, but only certain features, like the time
of the echo.
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5.3 Hyperbolic bands

5.3.1 Mass gap

So far, we only considered linear band structures to verify the working principle of
the QTM. However, why should not any other chiral symmetric band structure be
just as good? The main point is that the transition from Ek,s to Ek,−s = −Ek,s is
automatically a reversion of the velocity, as discussed in Sec. 5.1.2, which holds for
any chiral symmetric band structure.

To investigate this situation, we use an initially gapped, hyperbolic band struc-
ture, and a pulse with the same time dependence f(t) as before, which has the
strength M1,

H = H0 +Hpulse(t) = ~vFk · σ +M0σz + f(t)M1σz, (5.53)

such that it further widens the gap to M = M0 +M1 (see Fig. 5.3(a)). The eigenen-
ergy and eigenstates of the initial Hamiltonian H0 are given by Eqs. (3.11) and
(3.12), respectively, where we have to substitute M by M0 and κ by η = ~vFk/M0:

Ek,± = ±
√
M2

0 + ~2v2
Fk

2 = ±M0

√
1 + η2, (5.54)

〈k | ϕk,±〉 =
1√

(M0 + Ek,±)2 + ~2v2
Fk

2

(
M0 + Ek,±
~vFk eiγk

)
=

1
√

2
√

1 + η2 ±
√

1 + η2

(
1±

√
1 + η2

η eiγk

)
. (5.55)

We choose a notation in this section (e.g. M = M0+M1, κ = ~vFk/M) such that the
eigensystem during the pulse stays the same as in Eqs. (3.11) and (3.12). Compared
to the general Sec. 5.1, we have

h0
0 = 0, (5.56)

hps
0 = M0

√
1 + η2, (5.57)

Λ⊥ = M1
η√

1 + η2
= M1

κ√
M2

0

M2 + κ2

, (5.58)

Λ‖ = M1
1√

1 + η2
. (5.59)

The fact that Λ‖ 6= 0 is the main difference here compared to the linear band
structures studied before, as visualized in Fig. 5.3(b). It is due to the fact that
the transition operator which maps |ϕk,s〉 to |ϕk,−s〉 is σz in the linear case and
therefore k-independent. In the hyperbolic case however, it is k-dependent (compare
Eq. (5.55)). Only in the limit κ→∞, i.e. ~vFk �M0, σz is the transition operator.
Otherwise, only a fraction of the σz-pulse leads to a transition and for k = 0 there is
even no transition at all, because the eigenvectors become (1, 0) and (0, 1) and thus
they are eigenstates of σz. This will be reflected in the transition amplitude by an
additional factor decreasing the echo strength.
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Figure 5.3: (a) Hyperbolic band structure of the Hamiltonian in Eq. (5.53) with the
corresponding pseudospin structure indicated by the color. (b) The transition during
the pulse is shown in the Bloch sphere for linear and hyperbolic band structures. For
simplicity, we choose k = (k, 0). For initially linear bands, an eigenstates (blue dot)
can be mapped (orange curved arrow) to the other band (red dot) for any k, because
the pulse “direction” ∼ σz (orange vertical arrow) is always perpendicular to the
eigenstates. For hyperbolic bands, the direction of the initial eigenstates depends
on k (blue and red quarter circle), such that σz is not perpendicular anymore for
finite k. Thus, eigenstates are not mapped to eigenstates in the other band (upper
orange curved arrow).

According to Eq. (5.17), the transition amplitude becomes

As(k) =
M1

M︸︷︷︸
<1

κ√
M2

0

M2 + κ2︸ ︷︷ ︸
<1

i√
1 + κ2

sin
(
µ
√

1 + κ2
)

︸ ︷︷ ︸
graphene case

. (5.60)

The magnitude of the transition amplitude for the hyperbolic band structure is
independent of s and the direction of k (As(k) = A(k)). Moreover, it is always
smaller than in graphene (see Eq. (3.21)) and even goes to zero for k → 0, because
σz does not lead to a transition of the energy eigenfunctions there, as discussed
above.

In the limit M0 → 0, we have to obtain the same amplitude as in the graphene
case, which is indeed fulfilled since then M = M1 and the first factors in Eq. (5.60)
yield 1. The only difference is the minus sign, which is just due to the choice of the
eigenstates, because changing the sign of |ϕk,−〉, for example, will not change the
physics, but will result in an additional minus sign in the transition amplitude.

The analytical result of Eq. (5.60) is compared to the simulations in Fig. 5.4(a)
and shows the expected agreement. Again, by taking the width of the wavepacket
into account, the average deviation is negligible (8 × 10−4). As mentioned above,
due to the coupling of the linear bands via σz in H0 and the consequent avoided
band crossing at k = 0, the transition amplitude yields zero at κ = 0.On the other
hand, it also vanishes for κ → ∞, as in the graphene case, because in this limit,
the pulse is negligibly small compared to the energy of the wave packet, which is
why no transition is driven. Due to the continuity of A(k), there is a value of κ > 0
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for which the transition amplitude is maximal, which can be found by looking for a
horizontal tangent of the transition amplitude in Eq. (5.60).

0
!

=
∂

∂κ
A(k) (5.61)

In general, this will lead to a transcendental equation, which can be solved numeri-
cally.

One special case, which is worth to consider, is the maximally achievable echo
for a given pulse strength M1 and initial band gap M0 in the hyperbolic case. In
that case, we choose ∆t such that µ

√
1 + κ2 = π/2, i.e. the sine becomes one and

the only limiting factor for the echo is the prefactor in the transition amplitude.

0
!

=
∂

∂κ

M1

M

κ√
M2

0

M2 + κ2

i√
1 + κ2


=
iM1

M

∂

∂κ

κ√
κ4 + (1 +

M2
0

M2 )κ2 +
M2

0

M2

=
iM1

M

∂

∂κ

1√
κ2 + (1 +

M2
0

M2 ) +
M2

0

M2
1
κ2

= −1

2

iM1

M

1√
κ2 + (1 +

M2
0

M2 ) +
M2

0

M2
1
κ2

3

(
2κ− 2

κ3

M2
0

M2

)

⇒κmax =

√
M0

M
(5.62)

Thus, the best echo can be approximately achieved for κmax (and µ = π/2/
√

1 + M0

M
)

and yields

|A(κmax)| = M1

M

1√
κ2

max + (1 +
M2

0

M2 ) +
M2

0

M2
1

κ2
max

=
M1

M

1√
M0

M
+ (1 +

M2
0

M2 ) + M0

M

=
M1

M

1√(
1 + M0

M

)2
=
M −M0

M

1

1 + κ2
max

⇒ |A(κmax)| = 1− κ2
max

1 + κ2
max

=
M −M0

M +M0

. (5.63)

It is not surprising that both κmax and the value of the best echo depend on the
gaps of the initial system and the gap during the pulse.

To verify Eq. (5.63), corresponding simulations are shown in Fig. 5.4(b), i.e. the
pulse duration ∆t is adjusted for every simulation such that the sine in the transition
amplitude of Eq. (5.60) becomes 1. The echo strength is plotted as a function of
κ for different ratios M0

M1
ranging from 0.2 to 0.9 in steps of 0.1. The first thing
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5. Quantum time mirror for general two-band systems

to notice is that the smaller M0

M1
, i.e. the smaller the initial gap M0, the better the

echo. Furthermore, the black dashed line gives the position κmax and value of the
expected maxima of the curves with M0

M1
= const according to Eqs. (5.62) and (5.63).

It coincides very well with both the position and the value of the maxima of the
simulated echo strengths for a given ratio of gaps M0

M1
.

To conclude this section, we want to stress again that we do not have to consider
that the different modes have different velocity in the hyperbolic band structure.
This is simply due to the fact that the homogeneous pulse, k is conserved and that
because of the chirally symmetric band structure, the positive energy branch modes
have the same magnitude of velocity as the negative energy modes at the same k, but
with opposed direction. Thus, a wave packet will spread until the pulse due to the
different velocities over the time t0. After the pulse, the slow, mirrored modes find
themselves closer to the initial position than the fast, mirrored modes and indeed
they come back at the initial position at the same time t0.

This is similar to the spin Hahn echo, where the spins in the ensemble dephase
due to different environments (T ∗2 -time) and therefore (slightly) different Larmor
frequencies. After the π-pulse the phase of the fast precessing spins finds itself
“behind” the slow precessing ones. For a static environment, the frequencies before
and after the pulse are the same and thus, they rephase at the same amount of
time which is equal to the time between the exciting π/2-pulse and the “rephasing”
π-pulse. The difference here is that instead of the dephasing of an ensemble of spins,
the different k-modes of a wave packet dephase and are made to yield an echo.

5.3.2 Other homogeneous pulses

In the linear band case (which means a direct band crossing due to uncoupled bands),
we have the special case that the transition operator from one band to the other
is k-independent, namely σz. For hyperbolic bands, we have seen that instead, the
operator mapping the eigenstates from one band to the other depends on k. Only
far away from the initial gap, σz leads to a good transition whereas directly at the
gap (k = 0), the transition becomes 0 (see also Fig. 5.3(a) and (b)).

However, for any k there exists an operator which corresponds to the transition
from one band to the other of an eigenstate. In the Bloch sphere, the direction of
this operator is perpendicular to the direction of the given eigenstate. For k = 0,
the according spinor part of the eigenstates of the Hamiltonian are (1, 0) and (0, 1),
thus σx and σy are both leading to a band “flip” for these eigenstates.

Note that it is not surprising that there are two independent operators doing the
trick. Actually, also in the linear band case, there are two operators for the energy
change, but only σz is independent of k. One can think of it geometrically, by
considering the eigenstates in the Bloch sphere. Since σj = i(1 cos π

2
− iσj sin π

2
) =

i exp
(
−i π

2
σj
)
, the action of σj on a given state describes a rotation in the Bloch

sphere of this state around the j-axis with an angle of π and thus to its orthogonal
state. In three dimensions, a rotation by 180◦ can be done around any direction
which is perpendicular to the direction of the object to be rotated. So we can always
choose two directions, which are orthogonal among each other and orthogonal to the
initial state in the Bloch sphere. In graphene, the eigenstates are always in the x-y-
plane of the Bloch sphere and thus, σz flips the energy of any of them, but in principle

78



5.3. Hyperbolic bands

C(
t e

ch
o
)

0
0.2

0.4
0.6

0.8
1

0 0.5 1 1.5

simulation
analytics
graphene

κ
C(
t e

ch
o
)

0

0.5

1

κ
0.2 0.4 0.6 0.8 1

... simulations
maxima

C(
t e

ch
o
)

0
0.2

0.4

0.6
0.8
1

κ1

0 0.5 1 1.5

, σx-pulse
, σy-pulse

(a) (b) (c)

Figure 5.4: (a) The echo strength C(techo) is shown as a function of the initial energy
relative to the total gap, κ = ~vFk0/M , and with a pulse duration that yields
µ = M∆t/~ = 1.8. The simulation (black crosses) is compared to the modulus of
the transition amplitude of Eq. (5.60) (red). The deviations are again due to the
finite width of the wave packet. The black dashed line shows the corresponding
results of the simulation for the graphene case, i.e. symmetric linear bands. (b)
∆t is adjusted for each simulation such that the sine becomes 1 in the transition
amplitude of Eq. (5.60). Each data point corresponds to one simulation, where the
ratio M0/M1 ranges from 0.2 (black dots) to 0.9 (violet triangles) in steps of 0.1.
The black dashed line corresponds to the expected maximal values for a given ratio
M0/M1, according to Eq. (5.63) and matches the maxima obtained by simulation
well. (c) Using σx- and σy-pulses, we compare the simulated echo strength C(techo)
of a wave packet around k0 = k0/

√
2 (−1, 1) with the analytically expected values

(for a plane wave) given by the transition amplitudes of Eqs. (5.72) and (5.73) as a
function of κ1 = ~vFk0/M1, which shows a good agreement.

there is always another one inplane. In this subsection, we want to consider other
pulses, which might be better suited for a given system to do the energy transition,
e.g. near k = 0. As an example, we consider σx and σy-pulses. The general case
can be in principle obtained by using the combination of the results of σx-, σy- and
σz-pulses, but is not expected to yield further insight.

The initial Hamiltonian is the hyperbolic Hamiltonian of Eq. (5.53), but the
pulse-Hamiltonian changes:

H = H0 +Hpulse(t) = ~vFk · σ +M0σz + f(t)M1σj, j ∈ {x, y} (5.64)

The initial energy Ek,s and the corresponding eigenstates |ϕk,s〉 are thus still the
same as in Eqs. (5.54) and (5.55). During the pulse, instead of opening a gap,
the origin in k-space is effectively shifted by M1 in direction j, because the term
proportional to σj in the Hamiltonian is ~vFkj + M1. Nevertheless, we keep the
notation (M1), which initially indicated as mass gap. The energy for the quasi-
static Hamiltonian during the pulse yields

εk,± = ±εk = ±
√
M2

0 + ~2v2
Fk

2 + 2~vFkjM1 +M2
1

= ±M1

√
1 + κ2

1 +
M2

0

M2
1

+ 2κ1,j. (5.65)
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Here, we introduced κ1 = ~vFk/M1 and κ1,j = ~vFkj/M1. Moreover, we will use
below the abbreviation

ξ(κ1) = 1 + κ2
1 +

M2
0

M2
1

(5.66)

To have some diversion, we use Eq. (5.20) in this example for calculating the tran-
sition amplitude, where instead of doing geometry, we have to calculate a scalar
product. The transition amplitude becomes accordingly

Aj(k) =
−i sin

(
µ1

√
ξ(κ1) + 2κ1,j

)
√
ξ(κ1) + 2κ1,j

〈ϕk,−s | σj | ϕk,s〉. (5.67)

So, we need the scalar product of the different energy eigenstates with the Pauli
matrices σx and σy, given in App. B. To remind the reader, we use the notation
η = ~vFk/M0 as opposed to κ1 = ~vFk/M1 (and κ = ~vFk/(M0 + M1), which we
do not need here). Thus, we get

〈ϕk,−s | σx | ϕk,s〉 =
1√

1 + η2
cos γk + is sin γk, (5.68)

and

〈ϕk,−s | σy | ϕk,s〉 = − 1√
1 + η2

sin γk + is cos γk, (5.69)

where γk is the polar angle of k in the x-y-plane. Therefore, the transition ampli-
tudes for potentials in either x- or y-direction become

Ax(k) =
−i sin

(
µ1

√
ξ(κ1) + 2κ1,x

)
√
ξ(κ1) + 2κ1,x

(
1√

1 + η2
cos γk + is sin γk

)
, (5.70)

Ay(k) =
−i sin

(
µ1

√
ξ(κ1) + 2κ1,y

)
√
ξ(κ1) + 2κ1,y

(
−1√
1 + η2

sin γk + is cos γk

)
. (5.71)

Their moduli are

|Ax(k)| =

√
1

1+η2 cos2 γk + sin2 γk

ξ(κ1) + 2κ1,x

∣∣∣∣sin(µ1

√
ξ(κ1) + 2κ1,x

)∣∣∣∣ , (5.72)

|Ay(k)| =

√
1

1+η2 sin2 γk + cos2 γk

ξ(κ1) + 2κ1,y

∣∣∣∣sin(µ1

√
ξ(κ1) + 2κ1,y

)∣∣∣∣ . (5.73)

In Fig. 5.4(c), we compare the transition amplitude calculated in Eqs. (5.70)
and (5.71) of a plane wave, with the simulated time propagations with TQT of a
Gaussian wave packet for fixed µ1 = 1.4. In both cases, we use the same wave packet
with mean wave vector k0 = k0/

√
2 (−1, 1) and a width of ∆k = k0/8. The two

corresponding pulse-Hamiltonians are M1σx and in the other simulations M1σy.
First, we can see indeed that there is a strong enhancement for initial energies

close to the band gap (κ1 � 1), as compared to the σz-pulse from Fig. 5.4(a), as
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5.4. Asymmetric parabolic bands

explained above. Furthermore, as we can see from the transition amplitudes, not
only the absolute value but also the direction of the wave vector k0 is important for
the probability of the energy change, which is why the simulations for a σx-pulse
differ from the σy-pulse. In the first case, the pulse moves the gap minimum in
k-space effectively closer to k0 which leads to a lower energy during the pulse and
therefore to a higher transition (the energy during the transition is in the denomi-
nator), whereas in the latter case (σy) the band gap minimum is moved away from
k0 leading similarly to a smaller transition (and higher frequency).

To conclude, we have shown in this section, that the QTM works in the case of
non-linear bands, but still with chiral symmetry. The broadening of a wave packet
due to different velocities of the individual modes is perfectly reverted, such the
part of the wave packet which is ”reflected“ by the QTM pulse looks exactly as if it
moved backwards in time. Moreover, we considered different types of pulses, which
might be better suited for high echoes, depending on the ratio of initial energy of
the wave packet and initial gap size M0. The analytically expected echo strengths
from Sec. 5.1 are confirmed by simulations in all cases.

5.4 Asymmetric parabolic bands

For the last example of different band gaps, we want to combine both changes
compared to a graphene band structure discussed in this section: no strict chiral
symmetry as in the case of linear bands with different slopes (Sec. 5.2), and no
linear bands as in the hyperbolic case (Sec. 5.3), where the magnitude of the velocity
becomes k-dependent.

In the general Sec. 5.1.2, we have seen that the velocity in the two bands needs
to fulfill the following requirement to get an echo

〈v̂〉k,− = −ξv〈v̂〉k,+ and ξv ∈ R+ (5.74)

⇒ ∇kEk,− = −ξv∇kEk,+. (5.75)

Assuming that the initial band structure is isotropic, i.e. it does not depend on the
direction of k but only on its modulus k, the condition becomes

⇒ ∂Ek,−
∂k

= −ξv
∂Ek,+
∂k

. (5.76)

For linear bands, this is always fulfilled, since the velocity does not depend on k.
Let us consider the case of a parabolic band structure E± = a±(k − b±)2 + c±.

There, we get the following requirement:

2a−(k − b−) = −ξv 2a+(k − b+), ∀k (5.77)

⇒ ξv = −a−
a+

and b+ = b−. (5.78)

Thus, the extrema of the parabolas have to be at the same k, but the curvature of
the two parabolas does not matter as long as one is positive and the other is negative.
Examples of physical system with such a band structure are bilayer graphene and
direct gap semi-conductor in the vicinity of the gap minimum, since we can expand
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5. Quantum time mirror for general two-band systems

the band structure there and obtain approximately parabolic bands as described
above.

We will investigate the parabolic bands with the requirement of Eq. (5.78), i.e.
different curvature but same vertex position as an example of generalized chiral
symmetry. By generalized chiral symmetry, we mean that instead of E−(k) =
−E+(k), the requirement of Eq. (5.75) has to be fulfilled, i.e. that the group velocity
in the two bands differs only by a k-independent factor. The initial Hamiltonian is

H0 =

(
a+k

2 + c+ 0
0 −a−k2 − c−

)
, (5.79)

where we set without loss of generality the position of the direct gap in the origin
of the reciprocal space. Furthermore, we can shift the energy scale to the center of
the gap between the two bands, which yields c+ = c− ≡ c0.

The initial Hamiltonian can be written in terms of Pauli matrices as

H0 =
a+ − a−

2
k2
1+

(
a+ + a−

2
k2 + c0

)
σz = αk2

1+
(
ζk2 + c0

)
σz, (5.80)

with α = a+−a−
2

and ζ = a++a−
2

, visualized in Fig. 5.5(a). Since the Hamiltonian H0

is diagonal, the eigenvectors are (1, 0) and (0, 1), which are in this basis independent
of k.

Note that in this subsection, we use a 2-band model in the basis of its eigenstates.
Thus, the pseudospinors are not related to the pseudospinors of graphene, where
the basis states are the localized wave functions around the two atoms of the unit
cell. Depending on the actual system, the Hamiltonian will look different, using
a physically relevant basis. In that basis, the transition operator, which maps the
eigenstates from one band to the other, can in general depend on k. Nevertheless,
with our choice of the system, any linear combination of the operators σx and σy
leads to a perfect transition between the two bands. Without loss of generality, we
use σx and the same time-dependence as always:

Hpulse = f(t)Λxσx. (5.81)

To distinguish from the graphene case, where the chosen perturbation leads to a mass
gap, we denote here the pulse strength Λx instead of M , although theoretically it
is similar because both induce the transition between the bands. Compared to the
general section, the parameters become here

h0
0(k) = αk2, (5.82)

hps
0 (k) = (ζk2 + c0), (5.83)

Λ⊥ = Λx, (5.84)

Λ‖ = 0, (5.85)

and the transition amplitude in this example yields, according to Eq. (5.17),

As(k) = e−
i
~αk

2t
−i sin

(
µx

√
1 + (ζk2+c0)2

Λ2
x

)
√

1 + (ζk2+c0)2

Λ2
x

, (5.86)
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5.4. Asymmetric parabolic bands

where we have introduced µx = ∆tΛx/~. We see that the transition is independent
of the band index s. Still, a wave packet living in both bands will not lead to a
single echo but to two echoes at t0(1 + a+

a−
) for the upper band and t0(1 + a−

a+
) for the

lower band, compare Eq. (5.29). The reason is that the mode which switches from
the faster band to the slower band comes back later than modes switching from the
slow to the fast band.

Moreover, we see the amplitude in Eq. (5.17), i.e. omitting the sin-term, is higher
the smaller k and the smaller ζ. The reason is equivalent to the one given in the
general Sec. 5.1, that the energy related to hps

0 , which is in this case related to the
average energy of the two bands at a given k (ζk2), should be much smaller than
the energy of the pulse for a strong echo.

Without loss of generality, we let the energy of the wave packet be positive.
Similar to the asymmetric linear bands, there is an additional k-dependent phase in
the transition amplitude of Eq. (5.86). As discussed in the general Sec. 5.1.1, this
phase leads to an additional shift of the echo time by a+/(2a−)∆t. This can be seen
again by examining the phases accumulated before and after the pulse.

before pulse: e−
i
~ (a+k2+c0)t0 , (5.87)

during pulse: e−
i
~αk

2 ∆t, (5.88)

after pulse: e−
i
~ (−a−k2−c0)t1 , (5.89)

total phase: e−
i
~k

2(a+t0+α∆t−a−t1)− i~ c0(t0−t1). (5.90)

The last term in the total phase is unimportant, since it would only yield a constant
phase shift of the echo wave packet compared to the initial wave packet. The term
proportional to k2 on the other hand implies a k-dependent shift of the wave packet in
real space. This means that the wave-packet as a whole moves away from the initial
position and additionally spreads, which is well-known from the free Schrödinger
equation. For the echo, this phase shift needs to be 0, which yields the condition:

a+t0 + α∆t− a−t1 = 0 ⇒ t1 =
a+

a−
t0 +

1

2
(
a+

a−
− 1)∆t, (5.91)

leading to an echo time of

techo = t0 + ∆t+ t1 = (1 +
a+

a−
)t0 +

∆t

2
(1 +

a+

a−
), (5.92)

exactly as in the linear band case with different slopes in Eq. (5.52).
Let us come back to the strength of the echo. We have seen in Eq. (5.86) that

it is independent of the band index s, which means that only the k-dependence
of the wave packet plays a role, or in otherwise said, for a given k, the transition
amplitude does not change in the different bands. This implies that if we consider
the (modulus of the) energy Ek instead the wave vector, the transition amplitude
becomes s-dependent due to the asymmetric bands. Since in the subsections above,
the transition amplitude is given in terms of the ratio of initial mean wave packet
energy and pulse strength in the section above, we will do the same here.

To obtain the transition amplitude in terms of the initial mean energy of a
wavepacket E±0 = ±E0, we insert in the transition amplitude of Eq. (5.86) either
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Figure 5.5: QTM for parabolic bands. (a) The band structure (solid) of the Hamilto-
nian in Eq. (5.79) is shown as well as the individual terms (dashed) of the equivalent
Hamiltonian in Eq. (5.80). (b) Correlation C(t), showing that the echo time changes
for going from ”fast“ to ”slow“ band compared to vice versa, according to Eq. (5.98).
(c) Echo strength C(techo) as a function of the average energy of the wave packet,
obtained by simulation (black crosses), as well as using the transition amplitude of
Eq. (5.93) for plane waves (red) and for the whole wave packet (green). The data
set with (mostly) smaller values corresponds to a+ = 0.5a− and the data set with
the higher echoes to a+ = 2a−.

k2 = E0−c0
a+

or k2 = E0−c0
a−

, depending on the initial band. For the rest of the
discussion, we will consider a wave packet with initially positive energy - the only
change for an initially negative energy is to substitute a+ by a− everywhere. Thus,
the energy-dependent transition amplitude yields

A(E+
0 ) = e−

i
~αk

2t
−i sin

(
µx
√

1 + 1
Λ2
x
(ζ E0−c0

a+
+ c0)2

)
√

1 + 1
Λ2
x
(ζ E0−c0

a+
+ c0)2

= e−
i
~αk

2t

−i sin

(
µx

√
1 + 1

4

(
(1 + a−

a+
)E0

Λx
+ (1− a−

a+
) c0

Λx

)2
)

√
1 + 1

4

(
(1 + a−

a+
)E0

Λx
+ (1− a−

a+
) c0

Λx

)2
. (5.93)

Its absolute value is limited by

A(Es
0) ≤ 1√

1 + 1
4

(
(1 + a−

a+
)E0

Λx
+ (1− a−

a+
) c0

Λx

)2
. (5.94)

We see that the transition amplitude depends on many parameter: most of all the
ratios of initial energy and pulse strength E0/Λx and between initial gap and pulse
strength c0/Λx and also the ratio of curvatures of the bands a−/a+. If the first
two are small (strong pulse), there will be a good echo. Note that the seeming
asymmetry of a+ and a− is only due to our choice of a wave packet in the positive
branch, and it would be the other way round for a wave packet of negative energy.
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5.4. Asymmetric parabolic bands

Due to the minus sign in the bracket in the root, one would hope for cancellation
of terms and therefore also strong echo even for smaller pulse strength Λx. The best
value would be achieved, if the bracket under the root becomes zero. The condition
for this case is

E0

(
1 +

a−
a+

)
= −c0

(
1− a−

a+

)
, (5.95)

which yields a mean energy of the wavepacket E0 for given band structure of

E0 = c0

−1 + a−
a+

1 + a−
a+

. (5.96)

Unfortunately, since a+ and a− are both positive real numbers, this would yield

|E0| ≤ c0, (5.97)

and thus a wave packet energy inside the gap, which is not allowed.
Nevertheless, we can see that the smaller the ratio of a−/a+, the higher the

transition amplitude. This implies that the echo is higher for a transition from
higher group velocity to lower group velocity for the same magnitude of the initial
energy |E0|. The reason for this is that here, the transition amplitude is given
as a function of the energy, instead of momentum, and the above discussed ζk2-
dependence of the transition amplitude in Eq. (5.86). Since ζ is the average of
the curvatures of the parabolas and smaller ζ equals larger amplitude, the energy-
dependent transition amplitude is larger when transitioning to a band with an as
flat as possible curvature (ζ becomes smaller).

In Fig. 5.5(b), the correlation C(t) is shown for two different in two different
band structures: first a+ = 2a− i.e. transition from high to low group velocity and
second a+ = 0.5a−. The initial (mean) energy relative to the gap is E0/Λx = 0.75
and µ = 1.4. The main difference to graphene is that the time of the echo changes
according to Eq. (5.29) to

techo ≈ t0(1 + a+/a−), (5.98)

where we used ∆t� t0.
As in the sections above, we compare in Fig. 5.5(c) the echo strength obtained

via simulation, C(techo), with the analytical expectations. A Gaussian wave packet is
considered with the initial energy E0 = a+k

2
0 + c0, where k0 is the mean wave vector

of the wave packet, in two different band structures: first a+ = 2a− i.e. transition
from high to low group velocity and second a+ = 0.5a−. For the chosen parameters
(c0 = 0.3Λx, µx = 1.3) the denominator in the transition amplitude of Eq. (5.93)
yields

a+ = 0.5a− :

√
1 +

(
1.5

E0

Λx

− 0.15

)2

, (5.99)

a+ = 2a− :

√
1 +

(
0.75

E0

Λx

+ 0.075

)2

. (5.100)
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On the whole, the analytical expectations are confirmed by simulations. Thus,
the population inversion QTM works also in the case of non-linear bands and an
extended chiral symmetry (i.e. the matching velocity relation in the two bands),
where the propagation after the pulse does not exactly look like the time-inverted
propagation before the pulse. Instead, the “reflected” wave packet is faster or slower
than initially depending on the setup, but still, it is possible to recover nicely the
initial wave packet.

5.5 Conclusion for the two-band QTM

To summarize this chapter, we calculated the transition amplitude for a general two-
band structures (see Eq. (5.17)) in Sec. 5.1 and derive requirements of the velocity
in the two bands for a generalized chiral symmetry (see Eq. (5.25)) that allows us
to obtain echoes of the wave function. These general results indicate whether any
band structure with a given pulse is suited for our proposed population inversion
QTM or not. The general results have then been tested in several examples: linear
bands (Sec. 5.2), hyperbolic bands (Sec. 5.3) and parabolic bands (Sec. 5.4). In all
systems, strong echoes are possible, depending on parameters and chosen pulses and
the simulations confirm the analytical expectations very well.

Since this is the last chapter discussing the population inversion QTM, let us give
an overall outlook. In Chaps. 3 to 5, the population inversion QTM for two-band
systems has been treated thoroughly and the experimental realizability is discussed
for graphene in Sec. 3.6. We do not want to discuss the experimental realizability
for all proposed systems here, like bilayer graphene or direct gap semi-conductors,
since considering all possibilities is beyond the scope of this thesis. Instead, we want
to stress again Secs. 4.2 and 5.1, where the general results and requirements for the
population inversion QTM are presented. With the help of the results derived in
these sections, any two-band system at hand can be tested on suitability. In case
some system turns out to be experimentally not suited for the QTM, e.g. because of
non-realizable pulses needed or too short (in)elastic scattering times, there are still
uncountable system out there, in which the requirements might better qualify for
implementing the QTM. Thus, we are convinced that sooner or later, a population
inversion QTM will be verified experimentally.
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Chapter 6

Effective time-inversion for
Bose-Einstein condensates

6.1 Introduction to Bose-Einstein condensates and

the nonlinear Schrödinger equation

The experimental realization in 1995 of BECs using alkali atoms at very low temper-
atures of a few hundred nanokelvins [108–110] created a huge interest in this topic
(e.g. [111]), which culminated in the Nobel prize in 2001 awarded to Cornell, Wie-
man and Ketterle for its realization and early fundamental studies of the properties
of the condensates.

In this chapter, we want to study the QTM for the quantum-mechanical, spatially
extended wave function of a Bose-Einstein condensate (BEC) cloud propagating in
free space. Our QTM strategy utilizes well-established experimental techniques to
tune the interaction strength among the cloud atoms [112,113] the so-called Feshbach
resonance. However, not only the propagation, but also the broadening of the wave
function in a parabolic band structure can be inverted, using a slightly adjusted
protocol, which we will call quantum time lens (QTL). Applying a the QTL pulse
several times, in the right limits, even soliton-like solutions can be obtained, i.e. that
the shape of the wave packet does not change (considerably) over a long time.

Note that in this chapter, we do not go as much into detail as in the rest of the
thesis, since most calculations and results have been obtained by others: All the an-
alytical work has been done by Arseni Goussev [114,115] and most of the simulation
data has been produced by Bachelor students under my supervision. More precisely,
Thomas Buchner has studied the quantum time lens for single pulses of Sec. 6.3.1
with varying parameters and pulses [116]. Andreas Hauke then considered multi-
ple pulses (see Sec. 6.3.2) and the parameter space in which a refocus of the wave
packet is still possible [117]. And finally, Florian Moser investigated numerically the
solitonic solutions proposed, again, by Arseni Goussev (see Sec. 6.4), showing that a
certain wave packet keeps its shape for a few thousand pulses and more (depending
on the parameters) [118]. For more details on the subject we refer the reader to
their Bachelor theses.
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6. Effective time-inversion for Bose-Einstein condensates

6.2 Towards quantum time mirrors for BEC

6.2.1 Action of the nonlinear kick

We want to consider the propagation of the ground state of a Bose-Einstein con-
densate (BEC). The differential equation describing the motion of the ground state
is the Gross-Pitaevskii equation (GPE), also called nonlinear Schrödinger equa-
tion(NLSE), which can be obtained as mean field solutions in Hartree-Fock for a
bosonic many-particle system with δ-function like contact interactions, under the
constraint of particle number conservation [119]

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + V (r) + g|ψ|2

)
ψ(r, t). (6.1)

It looks similar to the Schrödinger equation, but it has an additional nonlinear term
controlled by the parameter g, which is related to the strength of the repulsion
(g > 0) or attraction (g < 0) among the bosons.

Our goal is to revert the motion of the BEC using time-dependent pulses, to get
a QTM for BECs. We want to consider the case V (r) = 0 and a time-dependent
nonlinearity, i.e. g = g(t) which serves as the QTM pulse. Thus, the system first
moves according to the free Schrödinger equation, then the short nonlinear pulse
acts and afterwards, hopefully, some part of the system comes back to its initial
position, again obeying the free Schrödinger equation.

But first we want to remind the reader how a Gaussian wave packet of the form

ψ0(x) =
1√√
πσ

e−
x2

2σ2 +ik0x (6.2)

evolves in time according to the free Schrödinger equation. For simplicity, we
consider the 1d-case, but it is analogous for higher dimensions. The according
calculation can be found in most standard text books about quantum mechanics,
e.g. [120–122]. The procedure is to go to reciprocal space, since k is a good quan-
tum number, make the time-evolution and go back to real space. Although it is
straightforward since only Gaussian integrals are involved, we skip the calculation
and state the result

ψ(x, t) =
1√√

πσ(1 + i%t)
exp

(
− (x− v0t)

2

2σ2(1 + i%t)
+ i(k0x− ω0t)

)
(6.3)

with

v0 =
~k0

2m
, ω0 =

~k2
0

2m
, % =

~
mσ2

. (6.4)

The main features are that the wave packet moves away from its initial position,
which is what we want to invert in this section, and that the wave packet spreads,
i.e. it gets broader over time, according to its standard deviation of the position
expectation value

∆xt =
σ

2

√
1 + (%t)2. (6.5)

Reverting this spreading will then be the focus of the quantum time lens in Sec. 6.3,
but let us focus first on the fundamental mechanism of the proposed QTM.
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6.2. Towards quantum time mirrors for BEC

The NLSE of our setup is

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + g(t)|ψ|2

)
ψ(r, t), (6.6)

where we choose for analytical reasons the time-dependence of the pulse as

g(t) = λδ(t− t0), (6.7)

with t0 being the time of the pulse and we refer to λ in the rest of this chapter by
pulse strength. Note that experimentally, a stronger coupling does not necessarily
mean a larger magnetic field using the Feshbach resonance discussed below. Thus,
we want to stress that we are always talking about the strength λ when mentioning
stronger pulses.

But why should the given setup lead to an echo of the initial wave packet, i.e. why
should the pulse make parts of the wave packet move back to its initial position? The
mechanism is explained qualitatively in Fig. 6.1. There, snapshots of the simulated
time-evolution of an initially Gaussian wave packet |ψ|2 are shown. The initial state
is indicated by the black dashed line, whereas the |ψ(t)|2 is plotted in red. At the
time of the pulse t0, the wave packet has moved away from its initial position. Then,
for a short time, the nonlinearity is switched on. In the NLSE of Eq. (6.6), this is
equivalent to a potential which is proportional to the wave function itself V ∼ |ψ(t)|2
(blue line). Classically, a particle is accelerated according to −∂V/∂x, thus the left
part of the wave packet is expected to be accelerated to the left, whereas the right
part is accelerated to the right. If this acceleration is strong enough to overcome the
initial velocity ∼ k0, (at most) half of the wave packet moves right again. Indeed,
this is what we can see at t = techo.

A few comments can be made already from the qualitative picture. Compared
to the two-band QTM discussed in Chaps. 3-5, the quality of the echo in this setup
is not even close. As already mentioned, at most half of the wave packet can move
back in this example, whereas in the Dirac case, almost 100% can be achieved in
principle. Moreover, the shape of the wave packet changes here quite significantly
(e.g. many sub-peaks in figure 6.1), whereas in the two-band QTM, a real effective
time-reversal can be achieved, where indeed the time-evolution after the pulse looks
exactly as compared to before the pulse but time-inversed, at least for certain setups
(compare Secs. 4.2 and 5.1). Nevertheless, this QTM for a BEC is more close to
the instantaneous time mirror for water waves [45]. There, the water wave structure
also changes and has several side peaks, but still, what comes back is enough to
recreate the structure of what was induces initially (e.g. Eiffel tower or a smiley).
In that sense, our proposed setup might be good enough to get an echo.

Before investigating the echo mechanism in more detail, we want to rescale the
Schrödinger equation, using t → τt, r → ξr, ψ → ξ−D/2ψ and λ → ~ξDλ, where
D is the (spatial) dimension of the system. We can write the nonlinear Schrödinger
equation in a dimensionless form as

i
∂

∂t
ψ(r, t) =

(
− ~τ

2mξ2
∇2 + λδ(t− t0/τ)|ψ|2

)
ψ(r, t). (6.8)

Depending on the exact problem, different choices of τ and ξ will be better suited.

In this case, it makes sense to use τ = t0, ξ =
√

~τ
2m

, such that the unit of time is
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Figure 6.1: Qualitative explanation of the echo mechanism of our proposed QTM
for BECs. The initial state (black dashed, in arbitrary units) propagates according
to the free Schrödinger equation for t < t0, moving away from its initial position
and increasing its width (red). At t = t0, the nonlinear term is switched on for a
short time and acts effectively like a potential V ∼ |ψ|2 (blue). Classically, particles
are accelerated according to −∂V/∂x, which would mean in this case that the left
hand side of the wave packet is accelerated to the left, whereas the right part to the
right, according to the red arrows. Indeed, parts of the wave move back to its initial
position, with the highest overlap with the initial state at techo.

the time of the pulse and Eq. (6.8) becomes

i
∂

∂t
ψ(r, t) =

(
−∇2 + λδ(t− 1)|ψ|2

)
ψ(r, t), (6.9)

where everything is dimensionless.
Having defined the setup, let us study now the action of the pulse. Since it is

∼ δ(t− 1), we assume that the nonlinearity is the most important term during the
pulse and we neglect the rest, meaning that the shape of the wave packet does not
change during the pulse. Therefore, the propagation is governed by

i
∂ψ(r, t)

∂t
= λδ(t− 1)|ψ−|2ψ(r, t), (6.10)

where ψ−(x) = ψ(x, t−0 ) is the wave function directly before the pulse at t−0 = 1− ε,
with a small ε > 0. Rewriting Eq. (6.10) by dividing by ψ, we get
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6.2. Towards quantum time mirrors for BEC

i
∂(lnψ(r, t))

∂t
= λδ(t− 1)|ψ−|2

ln
ψ(r, t+0 )

ψ(r, t−0 )
= −iλ|ψ−|2, (6.11)

where in the last step, we integrated over time just around the pulse from t−0 to
t+0 = 1 + ε in dimensionless units. Therefore, the wave function ψ+(r) = ψ(r, t+0 )
directly after the pulse reads

ψ+(r) = ψ−(r)e−iλ|ψ−|
2

, (6.12)

thus, we only changed the phase of the wave function. As said before, we assume
that the pulse is short enough such that the probability density of the wave function
does not change over the duration of the pulse such that

ρ = |ψ−(r)|2 = |ψ+(r)|2. (6.13)

To see whether the phase change enables to revert the motion of the wave function,
we consider the current density, which is given in dimensionless units as

j(r, t) = Im [ψ(r, t)∗ ∇ψ(r, t)] . (6.14)

After the pulse, the current j+(r) = j(r, t+0 ) becomes

j+(r) = j−(r)− ρλ∇ρ, (6.15)

which indeed corresponds to an acceleration proportional to the gradient of the
shortly acting potential (∼ −∇ρ) as expected classically (see Fig. 6.1). j−(r) =
j(r, t−0 ) is the current directly before the pulse. So indeed, if at some positions r
the requirement that |ρλ∇ρ| > |j−| (and that both terms have the same sign) is
fulfilled, parts of the wave change their propagation direction because the sign of
the current density changes.

As an example, consider the initial 1d Gaussian wave packet of Eq. (6.2). Until
the pulse, it has changed its shape according to Eq. (6.3) to (up to space-independent
phases)

ψ−(x) =
(
π(σ2 − σ−2)

)− 1
4 exp

(
− x̃2

2σ2(1 + i%t)
+ ik0x̃

)
, (6.16)

with x̃ = x− k0 (in dimensionless units). Thus,

ρ = |ψ−(x)|2 =
exp (−x̃2/σ2

1)√
πσ1

, (6.17)

σ1 =
√
σ2 − σ−2 (6.18)

and the currents before and after the pulse are according to Eqs. (6.14) and (6.15)

j−(x) =

(
k0 +

x̃

σ2σ2
1

)
ρ, (6.19)

j+(x) = j−(x)− 2λx̃

σ2
1

ρ2. (6.20)
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We can estimate the minimally required kicking strength λmin by demanding that
at x̃ = σ1, the current density is just about to reverse its sign

j+(k0 − σ1)
!

= 0

⇒ λmin '
e
√
π

2
k(σ2 + σ−2), (6.21)

under the assumption k � 1/(σ2σ1), i.e. a wave packet that moves much faster than
it spreads.

As an example for a 2d wave packet, we use a Gaussian ring

ψ0(r) =

√
1

2π3/2Rσ
exp

(
−(r −R)2

2σ2
+ ik0r

)
, (6.22)

with r = |r| and k > 0, which spreads radially with average velocity k. Similar to
the 1d case, but way more tedious [114], in the regime kR � 1 and 1 � σ � R,
the current after the pulse yields

j+(r) =

(
k0ρ+

2λ(r −R1)

σ2ρ2

)
r

r
, (6.23)

where R1 = R+ k is the radius at the time of the pulse and the minimally required
pulse strength can be estimated as

λmin ' e
√
π

3
(R + k)kσ2. (6.24)

To conclude the analytical section, we want to comment on the well-known tech-
nique of phase imprinting and the connection to our proposal. The phase-imprinting
technique (e.g. [123]) was proposed to change the motion of a wave packet by ap-
plying a position-dependent potential for a short time. The additional position-
dependent phase factor coming from the time-evolution operator changes the cur-
rent density, similar to Eq. (6.12). Thus, mathematically the current-manipulation
mechanism is the same as in our case. If one knows exactly the shape and the
position of the wave function, one could achieve exactly the same with external
potentials as we do. But here is the important difference: in our proposal, we do
not have to know anything about the wave function. We only propose to change
homogeneously the interaction strength among the atoms in the BEC cloud. The in-
herent nonlinearity in the NLSE then takes care of manipulating the current density
of the wave function, such that parts come back to the initial position. Therefore,
despite the non-perfectness of the echo, our setup should be much easier to be im-
plemented than to optimally match external fields to the position and shape of the
wave function.

92



6.2. Towards quantum time mirrors for BEC

0 0.5 1 1.5 2 2.5
t

0

0.2

0.4

0.6

0.8

1

N

pulse

λ
200
100
75
50
40
30
20
10

0

3

6

|ψ|2

0 4
x

-40

0

40

j

(a) (b)

Figure 6.2: Dependence of our proposed echo mechanism on the pulse strength λ
in dimensionless units. (a) The norm correlation N defined in Eq. (6.26) is shown
as a function of time for several pulse strengths λ, with σ = 1 and k0 = 4. Over a
wide range, echoes can be obtained, with the general feature that the larger λ, the
stronger is the effective (backwards) acceleration such that the echo happens earlier.
The best echo can be achieved at around λ ' 50. (b) The wave function |ψ|2 at the
time of the echo (upper panel), as well as the current density j directly after the
pulse are shown with the same color code as in (a). The initial |ψ|2 and j are shown
as dashed lines and the dash-dotted line in the upper panel is the wave function at
the time of the pulse t = t0.

6.2.2 Simulations to quantify the echo

To verify the analytically found results concerning the QTM for a BEC in the
previous section, we use the TQT library to simulate the time evolution of a Gaussian
wave packet |ψ0〉 according to the nonlinear Schrödinger equation (6.6). Instead of
the instantaneous δ-pulse, we use a sharp Gaussian of the form

g(t) =
1√

2π∆t
e−

(t−t0)2

∆t2 , (6.25)

with ∆t = 0.001t0 in the 1d case and ∆t = 0.0025t0 in 2d.
To measure the echo strength, one could use the fidelity, i.e. the overlap of initial

and echo state, but taking into account that the momentum reversed its direction.
However, to be closer to experiments where the quantum overlap is quite unlikely
to be measured, we stick to the norm correlation N , defines as

N (t) =

∫
dDr|ψ0(r)|2 |ψ(r, t)|2√∫

dDr|ψ0(r)|4
√∫

dDr|ψ(r, t)|4
, (6.26)

where only the probability density of initial and propagated wave packet is used.
The denominator in the norm correlation serves as normalization and is the reason
why also overlaps with broadened wave function yield rather high values, due to the
4th power.

In Fig. 6.2(a), the norm correlation is shown as a function of time for different
values of λ. Remember that we use dimensionless variables, such that the time is
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normalized to when the pulse takes place. The 1d Gaussian wave packet of Eq. (6.2)
is used with width σ = 1 and the initial momentum k0 = 4. As expected, the
stronger the kick, the faster the acceleration such that the wave packet comes back
to its initial position earlier. On the other hand, an echo can be seen over a large
interval of kicking strength λ, as long as it is strong enough (λmin ' 20, compare
Eq. (6.21)) to invert the sign of the current.

The change of the current right after the pulse, as well as the echo wave function
are shown for three values of λ in Fig 6.2(b), with the same color coding as in panel
(a). The dashed black line shows initial current and probability density and the
dash-dotted black line shows |ψ(x, t0)|2 at the time of the pulse. The current j in
the lower panel of Fig. 6.2(b) right after the pulse shows nicely that indeed the
sign changes for the left half of the wave packet, such that this part moves back.
Moreover, in the critical case λ ' 20 (red), the “acceleration” due to the kick is just
strong enough to make the current change its sign at some points.

Although the wave packets change their shape and are in general broader than
the initial Gaussian, there is still an distinct echo visible. The side peaks of the blue
curve have been present already in Fig. 6.1, with the rule of thumb: The stronger
the kick, the more side peaks.

To get a better feeling for the needed parameters, the echo strength, which is
the maximal value of the norm correlation after the pulse for a given simulation, is
plotted as a function of λ and σ in Fig. 6.3(a) and as function of λ and k0 in panel
(b)). The missing, fixed parameter is k0 = 4 and σ = 1, respectively. The black
line shows the analytical approximation for the minimally required strength λmin of
Eq. (6.21), matching reasonably the simulation.

Furthermore, for a 2d Gaussian ring of Eq. (6.22), the same parameter plots are
shown in panels (c) and (d), with fixed k0 = 4 or σ = 2, respectively. The radius of
the ring is R = 6 in all cases. Although we are not really in the valid limit used to
approximate the minimally required kicking strength λmin of Eq. (6.24), where we
required R� σ, the estimate still yields reasonable results, at least to evaluate the
order of magnitude of the required kicking strength.

To conclude this section, we want to comment on whether or not such a quantum
time mirror in Bose-Einstein condensates is in principle realizable in atom-optics
experiments. The first remark is about the time-dependence of the nonlinearity.
The interaction rate of atoms in Bose-Einstein condensates can be tuned, using
a magnetic field-dependent Feshbach resonance. By changing the magnetic field
strength by several Gauss, the collision rate varied by a factor of 104 [112, 113], so
even a rather fast switching on and off should be in principle possible, to make the
proposed QTM possible.

Finally, let us consider realistic parameters, e.g. of a Bose-Einstein condensate of
7Li atoms with mass m = 7.016u = 1.165× 10−26 kg. We assume a free propagation
time until the pulse of 10 ms. Thus a typical range of wave packet width of 10 −
−50µm corresponds in our dimensionless parameters to 1.05 < σ < 5.26, and the
mean velocity in the typical range of 2 − −10 mm/s corresponds to 2.1 < k0 <
10.5. These are parameter which were considered in this section, and therefore we
believe that the predicted QTM mechanism is possible in nowadays atom optics
experiments.
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Figure 6.3: Parameter space for the BEC echo measured by the norm correlation
N varying the pulse strength λ, the wave packet width σ and the mean velocity
k0 (dimensionless units) in 1d (a) and (b)) and 2d ((c) and (d)). The black curves
are the estimated minimally required kicking strength λmin of Eq. (6.21) in 1d, resp.
Eq. (6.24) in 2d, below which no echo is supposed to happen. Although in the 2d
case, the parameters are in a regime in which the estimation for λmin is not justified
(see text), the approximation yields at least the right order of magnitude of the
needed value of λ.

6.3 Quantum time lens

6.3.1 Single pulse

In Sec. 6.2, we addressed the problem of inverting the motion of a BEC whose
propagation is governed by the NLSE of Eq. (6.6). In this section, we are only
interested in reverting the spreading, i.e. the broadening of a wave packet in the free
Schrödinger equation.

The idea is simple: We manipulate the current density by the same setup, but
adjust the parameters such that the desired effect happens. All we have to do is
to change the sign of the nonlinear term (λ < 0), such that the effective potential
during the pulse refocuses the wave packet, see Fig. 6.4(a). Moreover, since smaller
velocities have to be overcome (the “spreading velocity“) in this refocusing setup,
the required pulse strength is supposed to be much smaller than for the time mirror.
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Figure 6.4: Qualitative mechanism and quantitative refocus strength of the QTL.
(a) The mechanism is the same as in Sec. 6.2 (compare Fig. 6.1), with the difference
that λ < 0 is used here. The initial state (black dashed) broadens until the pulse
(red), where the nonlinearity acts as an effective potential (blue) which qualitatively
accelerates the flanks of the wave packet towards the center (blue arrows), such
that the wave function refocuses again (orange dashed). (b) The refocus strength
measured by the norm correlation N (solid) defined in Eq. (6.26) or by the fidelity
F (dashed) defined in Eq. (6.27) is shown as a function of time for different pulse
strengths λ, with k0 = 0. Though showing qualitatively similar behavior, the norm
correlation overvalues the refocus strength as compared to the fidelity, because only
the probability densities play a role. Another feature is that for strong pulses (|λ| &
50), the decay after the refocus is much higher than in the case without pulse,
which will become important in the self-regulation mechanism of multiple pulses in
Sec. 6.3.2.

In Fig. 6.4(a), also the “refocused“ wave packet (orange) is shown. For other pa-
rameters (stronger λ), the wave packet can be made to refocus to the same height,
or even higher than the initial wave packet.

The analytical treatment is the same in Sec. 6.2.1, with the only difference that
the outer parts of the wave packet are moving back to its center. That means that
for k0 > 0, the classical velocity changes from e.g. j(x>)/ρ > k0 to j(x>)/ρ < k0,
where x> = k0 + ε is a position where the spreading is faster than the mean velocity
k0. In other words, instead of demanding a negative velocity as compared to before
the pulse, we require that parts faster than k0 have a velocity smaller than k0 after
the pulse such that they move back to the center.

For the QTL, we consider as a measure for the wave packet refocus the (trans-
lated) fidelity F

F(t) = |〈ψ̃0 | ψ(t)〉|2, (6.27)

where ψ̃0 is the initial state translated by the mean velocity ψ̃0(r) = ψ0(r + v0t),
since we want to invert only the spreading but not the over all movement of the wave
packet. The reason to consider the fidelity instead of the norm correlation as in the
QTM case is that, in the long run, we do not only want to do one single refocus,
but many of them. Thus, not only the experimentally accessible norm correlation
is of importance but rather the true ”similarity“ to the initial wave packet, which is
better described by the fidelity since also phases are considered.

96



6.3. Quantum time lens

In Fig. 6.4(b), the fidelity (dashed lines) as well as the norm correlation (solid
lines) are shown for a 1d Gaussian wave packet with k0 = 0 and an initial width
σ such that the width of the wave packet at the pulse is σ1 = 11σ. The definition
of these two observables of Eqs. (6.26) and (6.27) seems to be such that in the
case without pulse (black), the fidelity (dashed) corresponds to the square of the
norm correlation (solid): F ' N 2. Although the two observables are comparable
qualitatively, e.g. extrema at (roughly) the same times, the norm correlation yields
distinct higher refocus values, since the phases are not considered. For λ = 30, the
initial and time evolved probability density of the wave packets |ψ(r)|2 might look
the same at the time of the echo in real space (N ≈ 1). However, the structure in
k-space differs, which would yield some destructive interference by evaluating F in
real space, but this does not matter for N due to its dependence only on |ψ(r)|2
and therefore F < N .

We want to draw attention to the rate of decay after the refocus has happened
in Fig. 6.4(b), because this will become important later in Sec. 6.3.2. Whereas for
small pulse strength, the fidelity and norm correlation decrease very slowly (see e.g.
red line λ = 10), the decay rate is much higher for larger pulse strengths, see λ = 50
(blue). The reason for this is that the broadening, which decreases initially the
amplitude of the wave packet is drastically accelerated, such that it even outruns
the case without kick at around t = 1.5t0. Therefore, due to the nonlinearity (|ψ|2),
the effect of a subsequent kick at t = 2t0 would be effectively smaller in the case
of λ = 50 than for λ = 10 or λ = 30, since the amplitude of the wave function is
smaller.

In the last part of this section, we want to compare the simulations of the fidelity
with analytically obtained data for a 1d Gaussian wave packet. To be able to
compare with experiments, we choose physically relevant parameters for a BEC of
Rubidium atoms

m = 86.909u = 1.44× 10−25 kg (87Rb atom), (6.28)

σ = 5µm = 5× 10−6 m. (6.29)

Furthermore, instead of fixing the pulse time t0, we set the time of the measurement
(here still fidelity) to 0.2 s and vary t0 ∈ [0, 0.2 s] as well as the pulse strength λ.

Analytically, the initial wave packet with the shorthand notation

ψ(0)
α0,x0,v0

(x) =

(
2Re(α0)

π

)1/4

e−α0(x−x0)2+im v0(x−x0)/~, (6.30)

is propagated until the pulse, using the propagatorK
(t)
0 (x−x′) of the free Schrödinger

equation given by

K
(t)
0 (ξ) =

√
m

2πi~t
exp

(
i
mξ2

2~t

)
, (6.31)

which yields

ψ(t)
α0,x0,v0

(x) =

∫ ∞
−∞

dx′ K
(t)
0 (x− x′)ψ(0)

α0,x0,v0
(x′)

= eiθtψ(0)
αt,xt,v0

(x) (6.32)
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Figure 6.5: Parameter space of the refocus strength. Here, the fidelity F at t = 0.2 s
is plotted, depending on the kicking strength λ and the time of the pulse t0, either
by (a) evaluating the analytical solution of Eq. (6.38), or by (b) simulating the full
propagation using TQT, which yield the same result. The other parameters are
chosen to be in agreement with a BEC of Rubidium atoms, see Eqs. (6.28) and
(6.29). The analytical solution of Eq. (6.38) as well as its numerical evaluation was
performed by Arseni Goussev, whereas the simulation data was obtained by Thomas
Buchner for his Bachelor thesis [116].

with

αt =
α0

1 + 2i~α0t/m
, (6.33)

xt = x0 + v0t, (6.34)

θt =
mv2

0t

2~
− 1

2
tan−1

(
2~α0

m
t

)
, (6.35)

in agreement with Eq. (6.3), where α0 = 1/
√

2σ. We define the pulse operator Qλ

with

〈x | Qλψ〉 = eiφλ(x)ψ(x) with φλ(x) = −λ
~
|ψ(x)|2, (6.36)

in agreement with Eq. (6.12)
To calculate the fidelity after at t1 = 0.2 ms, as a function of pulse time t0 < t1

and pulse strength λ, we let the free propagator K0 act before and after the pulse
and in between the pulse operator takes care of the right time evolution

F(t0, λ) = |〈ψ(0)
α0,xt1 ,v0

| K(t1−t0)
0 QλK

(t0)
0 | ψ(0)

α0,x0,v0
〉|2. (6.37)

Again, we only want to recover the initial shape of the wave function but not change
the overall movement, the overlap is taken at t1 with the bra 〈ψ(0)

α0,xt1 ,v0| of the
translated initial state. Altogether, we arrive at

F(t0, λ) =
2

π

√
Re(αt0)Re(αt1−t0)

×

∣∣∣∣∣∣
∞∫
−∞

dx exp

{
− (αt0 + αt1−t0)x2 − i λ

~

√
2Re(αt0)

π
e−2Re(αt0 )x2

}∣∣∣∣∣∣
2

, (6.38)
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which has to be evaluated numerically and is shown in Fig. 6.5(a) for the physical
parameters for mass and width in Eqs. (6.28) and (6.29) of the wave packet. A very
interesting feature of Eq. (6.38) is that the refocus is independent of the velocity of
the initial wave packet.

On the other hand, we can use TQT to evolve the initial wave packet of Eq. (6.30)
in time with the same parameters and conditions as before, but a sharp Gaussian
pulse instead of the Dirac-δ. This simulations have been done by Thomas Buchner
[116]. The simulation data is shown in Fig. 6.5(b) and is in almost perfect agreement
with the analytical data. The reason why it is slightly more blurred is that the
calculation of the full simulation takes longer than the numerical evaluation of an
integral, which is why less data points have been gathered here.

The best achievable refocus is in both cases Pmax ≈ 0.82, achieved analytically
at tmax

0 = 0.1117 s and λmax/~σ = −36.25, and by simulation at reasonable similar
values of tmax

0 = 0.1123 s and λmax/~σ = −36.99.

6.3.2 Multiple pulses – self-regulation due to the nonlinear-

ity

In Subsec. 6.3.1, we have seen that the initial state can be approximately refocused
to its original shape by applying the nonlinear pulse. In this subsection, we want
to investigate what happens if multiple pulses are applied one after the other, such
that the state keeps its shape over longer time.

In his Bachelor thesis [117], Andreas Hauke investigated, among other topics, the
optimal parameter sets empirically for (. 10) pulses, i.e. finding out the optimal
time and strength of each subsequent pulse such that the refocused wave packet
has again the same shape. Although quite interesting, this empirical search is quite
tedious and not applicable for a lot of pulses and/or different initial wave packets
and/or initial parameters.

More importantly, he found out that deviating from his perfect parameter set,
e.g. by choosing a constant kicking strength Λ of each subsequent pulse and constant
time intervals ∆T after the first kick, the qualitative behavior is rather independent
of the exact choice of parameters. Moreover, the refocus value does not decrease
monotonically, but undergoes some oscillating behavior as can be seen in Fig. 6.6(a).
There, the norm correlation N defined in Eq. (6.26) as measure of the refocus is
plotted as a function of time with physical parameters of, again, a BEC of Rubidium
atoms (m = 1.44 × 10−25kg, σ = 6 × 10−6m) and parameters of the first pulse
λ/(~σ) = 50 and t0 = 0.2s. The time between each subsequent pulse is ∆T = 0.7s
and the pulse strength Λ varies from Λ/(~σ) = 35 to Λ/(~σ) = 55.

However, due to the nonlinear pulse, the ”real pulse strength“ does not only de-
pend on Λ, but also on the wave function at the time of the pulse |ψ(x)|2. Therefore,
we define the ”real pulse strength“ as the product λ|ψ(x)|2 at the time of the pulse.
This nonlinearity leads to a self-regulation that makes the refocus strength oscillate
in a range rather independent on the exact parameter.

The reason for this self-regulation is explained oversimplified in the sketch of
Fig. 6.6(b). According to Sec. 6.3.1, a weak pulse leads to a slow decay after the
refocus process and therefore a rather high amplitude of |ψ(x, tpulse)|2 at the time of
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Figure 6.6: Refocusing with multiple pulses. (a) The norm correlation is shown
as a function of time, with eight kicking and refocusing events, for different kicking
strengths Λ for the pulses after the first one, according to Andreas Hauke [117]. The
parameters are chosen to be in agreement with a BEC of Rubidium atoms (see text).
Although in detail quite different, the refocus values for all three shown Λ undergo
an oscillation in the same range of refocus strengths. Therefore, it does not matter,
which exact pulse strength Λ is chosen. The self-regulation mechanism which is
behind this oscillating behavior is (oversimplified) shown in panel (b). Due to the
nonlinearity, the real pulse strength is not only governed by Λ, but also the |ψ|2 itself
at the time of the pulse. Thus, if after some time the amplitude of |ψ|2 is rather
small, the according pulse will be also rather weak. Weak pulse means (by tendency)
weak refocus, but also slow decay after the refocus. Therefore, the amplitude of |ψ|2
at the next pulse will be larger, such that a stronger pulse happens, with a stronger
refocus. However, also the decay will be stronger and thus the amplitude of |ψ|2 at
the next pulse will be smaller again and the cycle begins from the top.

the next pulse. Although Λ does not change, the real pulse strength, i.e. including
|ψ(x, tpulse)|2, is still higher than before, because of the higher amplitude. Therefore,
a strong pulse happens, which makes the decay again faster such that the next time,
the pulse is effectively weaker, and the cycle repeats from the top. Of course, sub-
steps of this cycle will happen in reality such that the oscillation period is not 2
pulses but rather roughly 4 − 5 in our case, for instance. In this explanation, we
assumed that the parameters are in a regime such that the refocus always happens
before the next pulse. For more information, see Ref. [117].

In this section, we showed that multiple pulsing can be used to prevent the
spreading of a wave packet. Moreover, due to the nonlinear pulse, a self-regulation
sets in such that the exact parameters (strength Λ and time until next pulse ∆T )
are not of major importance, as long as they are in the right order of magnitude. In
the next section, we go one step further and look for setups where the shape of the
wave function can be kept over hundred or even thousands of pulses. For that, the
approach has to be more methodological, which is why we start with an analytical
derivation of solitonic solutions in the pulsed nonlinear Schrödinger equation.
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6.4 Solitons in the pulsed NLSE

6.4.1 1d solitons in the limit of weak pulses with high rep-

etition rate

In Sec. 6.3.2, we considered numerically multiple (. 10) pulses and investigated
which parameters are to be chosen. On the other hand, it is known that for the
nonlinear Schrödinger equation, there exist solitonic solutions, i.e. solutions which
do not change their shape. Since we are considering the free Schrödinger equation
for the most time and only during the short pulse, the nonlinearity kicks in, they are
not directly applicable in our case. However, in the limit of fast but weak kicks, the
solutions of the static, nonlinear Schrödinger equation should be recovered. As any
analytical calculations in this chapter, the following derivation has been performed
by Arseni Goussev.

So let us consider the following differential equation with infinite, periodic pulses

i
∂ψ

∂t
= − ~

2m

∂2ψ

∂x2
− λ

∞∑
n=−∞

δ(t− nt0)|ψ|2ψ. (6.39)

Introducing different dimensionless parameters than in Sec. 6.2.1 of the form

t→ ~t20
mλ2

t, x→ ~t0
mλ

x, ψ →
√
mλ

~t0
ψ, (6.40)

and defining

ε =
mλ2

~t0
, (6.41)

the differential equation (6.39) becomes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− ε

∞∑
n=−∞

δ(t− nε)|ψ|2ψ. (6.42)

Thus, the parameter ε is the only free parameter, which describes both, the time
between two kicks and the kicking strength.

For a soliton, we require a normalizable wave function∫ ∞
−∞

dx |ψsol|2 = 1, (6.43)

which fulfills

if ψ(x, 0+) = ψsol(x), then ψ(x, ε+) = eiφψsol(x− q), (6.44)

where q and φ are arbitrary real numbers and the superscript ′′ + “ denotes the
moment just after the according time. In words, the real space shape of the soliton
must not change from one pulse to the next. The only difference is that it might
have acquired a kinetic phase φ and it is allowed to move a distance q.

As mentioned above, for weak kicks and high kicking frequency, we expect a
solitonic solution to exist, as in the case of the static nonlinear Schrödinger equation.
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This limit corresponds in our case to ε � 1. Therefore, let us consider the time
evolution from one kick to the next, as well as the action of the pulse up to linear
order in ε. For simplicity, let us start with ψ0(x) = ψ(x, 0+) directly after a kick
until t = ε−, which is the (dimensionless) time right before the next kick. According
to the free Schrödinger equation, we have

ψ−(x) ≡ ψ(x, ε−) = ψ0(x) +
iε

2
ψ′′0(x) +O(ε2). (6.45)

After the pulse, the wave function ψ+(x) = ψ(x, ε+) becomes due to the action of
the nonlinear pulse in Eq. (6.12)

ψ+(x) = ψ−(x) exp
(
iε|ψ−(x)|2

)
= ψ0(x) + iε

(
1

2
ψ′′0(x) + ψ0(x)|ψ0(x)|2

)
+O(ε2). (6.46)

On the other hand, we required for a soliton Eq. (6.44), which becomes in linear
order of ε

ψ+(x) = eiωεψ0(x− v0ε) +O(ε2)

= ψ0(x) + iε (ωψ0(x) + iv0ψ
′
0(x)) +O(ε2), (6.47)

where v0 corresponds to the velocity and ω is some energy related frequency yielding
the kinetic phase. Comparing Eqs. (6.46) and (6.47), we find that ψ0(x) must fulfill

− 1

2
ψ′′0 + iv0ψ

′
0 + (ω − |ψ0|2)ψ0 = 0. (6.48)

Looking for solutions of the form

ψ(x) = f(x) eiv0ε, (6.49)

with a real valued function f(x), Eq. (6.48) demands f to satisfy

f ′′ − 2

(
ω − v2

0

2
− f 2

)
f = 0. (6.50)

With an ansatz motivated by the ”static“ soliton

f(x) = A sech(αx), (6.51)

it can be shown that Eq. (6.50) is satisfied for all x if and only if

A = α =
√

2ω − v2
0. (6.52)

Using the normalization condition of Eq. (6.43), we find that

α =
√

2ω − v2
0 (6.53)

and thus, the dispersion relation reads

ω =
v2

0

2
+

1

8
, (6.54)
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where the wave function parameters are

A =
1

2
= α. (6.55)

Thus finally, we arrive at the soliton solution of the wave function

ψsol(x) =
1

2
sech

(x
2

)
eiv0x, (6.56)

which satisfies the requirement for solitons of Eq. (6.44) with

q = v0ε and φ =

(
v2

0

2
+

1

8

)
ε. (6.57)

In the original physical parameters, i.e. not dimensionless, the soliton solution is

ψsol(x) =
1

2

√
mλ

~t0
sech

(
mλ

2~t0
x

)
exp

(
i
mλv0

~t0
x

)
, (6.58)

satisfying requirement of Eq. (6.44) with

q = v0λ and φ =

(
v2

0

2
+

1

8

)
mλ2

~t0
. (6.59)

The main result of this derivation is the sech-shape of the solitonic solution for
weak kicks with a high frequency (ε � 1) for a width of 1/2. Note that again, the
existence of the soliton is independent of the velocity in this limit, which only enters
the dispersion relation in Eq. (6.54). In the next section, we will check by simulation
how well these solitons survive even for finite ε . 1 and different parameters.

6.4.2 Simulating pulsed solitons

In this section, we want to verify the analytically found solitonic solution Eq. (6.56)
of the pulsed nonlinear Schrödinger equation of Eq. (6.42). Since we cannot start
with pulsing at t = −∞, the actual equation of motion is given by

i
∂ψ

∂t
= −1

2

∂t

∂x2
− ε

∞∑
n=1

g(t− nε)|ψ|2ψ, (6.60)

with g(t) being a short Gaussian as in Sec. 6.2 instead of a δ-function due to nu-
merical reasons.

Note that there is a slight difference due to the start at finite times: Usually, after
a kick, the state refocuses sometime before the next pulse and then spreads again.
On the other hand, we start here at t = 0 with the solitonic state of Eq. (6.56),
which will broaden immediately. However, it turns out that for small enough ε,
i.e. fast enough pulses, such that there is not enough time to considerably spread
between two pulses, this difference does not really matter.

In his Bachelor thesis [118], Florian Moser investigated carefully the parameter
(kicking strength and time ε, velocity v0, width 1/α,) dependence of the solitons
numerically using TQT and found out that, in the right regime, the shape of the
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solitonic wave packet does not significantly change over 100, 000 pulses. The used
parameters in this case are ε = 0.1, v0 = 4 and α = 0.5. Moreover, the exact shape,
the sech, is not of major importance, but also Gaussian wave packets with the right
width (σ ' 2.3), such that they are similar to the corresponding sech yield good
results.

From a technical point of view, the most important feature that he has noticed
is that numerical artifacts appear when the nonlinear pulse sets in. Depending on
the velocity v0 and the numerical time-step between two propagation steps δt, every
nonlinear kick alters the velocity, resp. momentum, of the wave packet by some ∆v
approximately linear in theses parameters:

∆v

v0

' −1.5× 10−4 δt

0.01ε
, (6.61)

which means that for typical time steps of δt = ε/100, i.e. hundred time-steps
between two kicks, the relative change of the velocity of 0.015% is rather small. But
since many pulses are applied (> 103) it adds up and leads eventually to a non-
negligible effect. The reason that ∆v depends on the time between two propagation
steps highly suggests, that it is indeed a numerical artifact instead of a physical
property of the finite time-width of the nonlinear kick, although the reason why it
happens could not be identified and thus the problem has not been remedied.

The related shift in real space related to this artificial velocity can be easily
nullified by calculating the effective fidelity as in Eq. (6.27), by using the displaced
initial state

ψ̃0(r) = ψ0(r + rmax), (6.62)

where rmax is the numerically found position of the wave packet peak for any time,
instead of the beforehand used ψ̃0(r) = ψ0(r+v0t). On the other hand, the (artificial)
shift in k-space, which affects the fidelity as can be seen be evaluating the overlap in
reciprocal space, cannot be circumvented as easily for a general wave packet. This
difference becomes important at a later time than the real space shift, when the
change of the velocity ∆v is comparable to velocity width of the wave packet.

In Fig. 6.7, we show exemplarily the v0-dependence of the soliton for fixed α = 0.5
and ε = 0.4, which is already not really in the limit of ε� 1 anymore. In panel (a),
the fidelity defined in Eq. (6.27) is plotted, as a function of time for several velocities
v0. The smooth decay for v0 6= 0 is due to the above mentioned numerical artifacts.
The very rapidly oscillating changes in the cases v0 = 0 at around t = 3, 000ε and
v0 = 2 at around t = 3, 300ε on the other hand cannot be explained by this numerical
artifact and are very likely of physical nature, as can be seen also in panel (b).

There, the amplitude of the wave packet A(t) relative to the initial amplitude
A(0) of the same simulations is shown. In the beginning, the amplitude does not
change considerably in all cases, but at the same time when the fidelity wiggles for
v0 = 0 and v0 = 2, also the amplitude changes considerably and even decreases
for v0 = 2. On the other hand, the amplitude is not affected at all for the higher
velocities, thus the solitons seem to be more stable for higher velocities. We do
not have an explanation for the velocity dependence of the solitons, which is not
expected in the analytical derivation of Sec. 6.4.1. It is quite likely that higher
order terms in ε, which are neglected in the approximation, will yield a velocity
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Figure 6.7: Solitons for the pulsed nonlinear Schrödinger equation, according to
Florian Moser [118]. (a) The fidelity F is shown for different velocities v0 as a func-
tion of time t/ε (=̂ number of pulses) for the solitonic solution of Eq. (6.56) and
ε = 0.4. The smooth decay, which is stronger for higher v0, is due to numerical
artifacts coming from the nonlinear pulse (see text). Only in the parts with seem-
ingly chaotic changes in the cases of v0 = 0 (black) and v0 = 2 (red) the solitonic
approximation ”breaks down“, which happens because the solution only holds for
ε � 1 and small deviations accumulate over time. (b) The normalized amplitude
of the same simulation as in (a) is shown, which is supposed not to change for a
soliton, as in the cases v0 > 3. For v0 = 0 (black) and v0 = 2 (red) the change of
the amplitude starts at the same time as in the fidelity case, such that the soliton
seems to not really hold anymore at these points in time.

dependence, but this has not been investigated in detail. Nonetheless, the solitonic
wave packets, which keep their shape over a few thousand pulses, which is already
quite interesting. For comparison, the relative amplitude of the wave packet without
kicking decreases to 0.1 within the time of 60 pulses, i.e. t = 60ε in the simulations
related to Fig. 6.7. For further parameter studies and more in depth investigations,
we direct again the kind reader to the Bachelor thesis of Florian Moser [118].

6.5 Summary - BEC mirrors, lenses and solitons

To summarize, we have shown that using the nonlinear pulse by changing the inter-
action strength among the atoms of a BEC cloud, an echo of the wave function can
be achieved. However, the echo is by no means as good as in the two-band systems,
because in the best case, only half of the wave packet can come back to the initial
position (compare Fig. 6.1), instead of up to 100% which is possible in the two-band
system due to constructive interference. Moreover, the shape of the wave packet
changes drastically due to the position dependent (∼ |ψ|2) ”acceleration“ during
the nonlinear pulse. Nevertheless, echoes can be achieved in wide parameter range.

Regarding applications, the quantum time lens, which inverts the broadening of
the wave function, could be more important due to its higher fidelities. In future
research, combinations of QTL pulses could be used to fit the individual purposes,
like a first small pulse to ”freeze“ the wave packet width for a longer time and then
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a second, stronger pulse, which ”reactivates“ the wave packet to first refocus and
then broaden again. Moreover, one could further study the analogy to optical lenses
in term of refocusing to the possible end to build combinations of lenses, which are
well-known in optical systems like telescopes or microscopes.

In the last section, we showed that soliton-like solution to the kicked NLSE
approximatively exist in the limit of small and high frequency pulsing. Deviations
appear for stronger and not-so-frequent pulses, and the soliton quality also depends
on the velocity, which is not anticipated by the linear approximation in the kicking
strength. Thus, there is plenty of room for further research, also including the
numerical artifacts appearing for the long-time simulations.

Finally, we want to emphasize, that since experimental possible parameters are
already used in some of the simulations shown in this chapter, the suggested proto-
cols are in reach to be verified experimentally.
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Chapter 7

Zitterbewegung

7.1 From theoretical predictions of relativistic par-

ticles to experimental realizations in BEC and

semiconductors

Zitterbewegung (ZB), i.e. the trembling motion of high relativistic particles de-
scribed, by the Dirac equation has been found by Schrödinger already in 1930
[124, 125]. The reason for the jittery movement is the fact that velocity operator
does not commute with the Hamiltonian and therefore, it is not constant of motion.
Indeed, the superposition of particle- and antiparticle-like solutions of the Dirac
equation leads to a harmonic oscillation, in case of electrons and positrons with a
frequency of the f = 2mc2/h ∼ 1020 Hz and an amplitude given by the Compton
wave length of λC ∼ 10−13 m, which is the reason why it has not been discovered
experimentally yet [126].

On the other hand, the requirements of ZB are not unique to the relativistic
Dirac equation, but can be in principle fulfilled in any two- or more band system,
e.g. for solid state systems with spin-orbit coupling, as proposed for the first time by
Schliemann et al. in III-V semi-conductor quantum wells [127,128], where the energy
spectrum is formally similar to the Dirac Hamiltonian. Vividly, the harmonic ZB is
induced in a solid state system by the periodic underlying lattice [129]. The ZB in
Dirac cone systems has later been proposed for carbon nanotubes [130], graphene
[107, 131] and topological insulators [132]. Also in the presence of a magnetic field,
signatures of the ZB can be found in both graphene [106, 107] and III-V semi-
conductor quantum wells with spin-orbit coupling [133].

The first experimental realization of ZB in solid state systems has been reported
in late 2016 [134]. There, the mutual motion of an ensemble of electrons in n-type
InGaAs, initialized optically in the same spin state. An in-plane magnetic field of
a few Tesla leads to a spin splitting of the order of a few hundred µeV and an
electronically easily accessible frequency in the GHz range, measured as an change
of the AC current. Vividly, the inplane magnetic fields leads to a precession of
the optically generated spins. Since the velocity operator is spin-dependent, the
direction of motion changes periodically, according to the spin. Note that in this
setup, the motion of the ensemble of electrons is investigated as opposed to the
jittery motion induced by the single particle interference of states which occupy
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both bands (electron- and hole-like). Earlier, the first experimental realizations of
ZB in general have been achieved with a single 40Ca+-ion in a linear Paul trap [135]
and by Bose-Einstein condensates [136, 137] with an induced spin-orbit coupling,
using atom-light interactions [138].

The recent experimental realization of ZB (in a broader sense) in a solid state
system [134] motivated us to investigate the trembling motion in a time-dependent
setup to possibly prolongate its duration and circumvent its decay. ZB in a time-
dependent driving field has not been considered extensively, yet. One of the two
publications we are aware of investigated theoretically a time-dependent Rashba
spin-orbit coupling in a two-dimensional electron gas [139] where the ZB indeed
might be sustained indefinitely. The other one studied graphene in an external
electromagnetic driving field, i.e. a time-dependent vector potential [140]. They
found multimode ZB, i.e. ZB with additional emerging frequencies, which however
still decay over time.

Our goal is to combine the two, i.e. to find non-decaying ZB modes in driven
graphene, using a time-dependent mass gap. Moreover, we want to investigate the
ZB with regard to the possibility of generating echoes, similar to the spin echo,
using our QTM mechanism. But first, we give an extensive introduction about the
well-known properties of ZB in static graphene. While this can be found in the
literature (see e.g. the review article in Ref. [125]), we do not follow here a certain
publication but show our own calculations with special focus on its decay, which is
to be circumvented.

7.2 Frequency, amplitude and decay of the zitter-

bewegung in general two-band systems

The ZB can be described both in the Heisenberg picture, e.g. [134], and in the
Schrödinger picture, e.g. [140], without significant advantages. In this thesis, we
stick to the Schrödinger picture, simply because in the TQT simulations the time-
dependent wave functions are calculated.

Since the ZB describes the jittery motion of particles, we are interested in the
time-dependence of the expectation value of the position operator

〈x̂〉(t) = 〈ψ(t) | x̂ | ψ(t)〉 (7.1)

or equivalently its time-derivative: the expectation value of the velocity operator
given by Ehrenfest’s theorem

〈v̂〉(t) :=
d〈x̂〉(t)

dt
=
i

~
〈ψ(t) | [Ĥ, x̂] | ψ(t)〉. (7.2)

Evaluating the commutator [Ĥ, x̂] in reciprocal space, we see that the velocity op-
erator is given by

v̂ :=
dx̂

dt
=
i

~
[H(k), i∇k] =

1

~
∇kH(k) (7.3)
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In graphene close to the K-points, the velocity operator is |k|-independent for in-
stance,

v̂ = vFσ. (7.4)

In a two-band system with eigenstates |k,±〉 and energies ε±(k) = ~ωk,±, the time
evolution of an initial k-mode |ψk

0 〉 is given by

|ψk(t)〉 = c+,ke−iωk,+t|k,+〉+ c−,ke−iωk,−t|k,−〉, (7.5)

where c+,k = 〈k,+ | ψk
0 〉 and c−,k = 〈k,− | ψk

0 〉 are the normalized amplitudes in
the two bands, i.e

|c+,k|2 + |c−,k|2 = 1, ∀k. (7.6)

We will use k-mode and plane wave as synonyms and want to stress that they are
meant to possibly live in both bands – the only requirement is that they have a
single wave vector k. We define the matrix elements of v̂ by

vss′k := 〈k, s | v̂ | k, s′〉, (7.7)

where s = ± and s′ = ±. The time-dependent expectation value of the velocity
operator of a plane wave in a two band setup thus yields

〈v̂k〉(t) = |c+,k|2 v++
k + |c−,k|2 v−−k + 2 Re{c+,kc

∗
−,k e−i(ωk,+−ωk,−)t v−+

k } (7.8)

=: 〈v̂const
k 〉+ 〈v̂ZB

k 〉(t) (7.9)

From Eq. (7.8), we see that only the last term is time-dependent and contributes to
the ZB, whereas the first two terms describe a constant motion (of the two sub-wave
packets, i.e. the wave packets in the two bands).

There are two requirements for ZB in a time-independent setup: a) the initial
wave function must consist of both bands (c+,k 6= 0 and c−,k 6= 0) and b) the velocity
operator must not commute with the Hamiltonian since otherwise |k,±〉 is also an
eigenstate of v̂ and the matrix element v−+

k vanishes because the eigenstates of the
Hamiltonian are orthogonal.

Equation (7.8) can be rewritten as

〈v̂i,k〉(t) = 〈vconst
i,k 〉+ Ai,k cos(ΩZB

k t+ ϕi,k), (7.10)

where i ∈ {x, y} and the parameters of the ZB are:

frequency: ΩZB
k = ωk,+ − ωk,−, (7.11)

amplitude: Ai,k = 2|c+,k| |c−,k| |v−+
i,k |, (7.12)

phase: ϕi,k = −
(
arg(c+,kc

∗
−,k) + arg(v−+

i,k )
)
. (7.13)

From Eq. (7.11), we can see that the frequency of the ZB is given by the difference
of the two band energies, which is k-dependent, but independent of i, which denotes
the direction of the ZB. The k-dependency will lead to dephasing and thus decay of
the ZB for a wave packet, as we will explain below. Considering the amplitude, we
see what we have discussed above: it is only finite, if the wave packet is a mixture
of both bands and if the Hamiltonian does not commute with the velocity operator.
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7. Zitterbewegung

The phase is rather unimportant, but might diminish the amplitude of the ZB for a
wave packet as it will be discussed later.

So far, the ZB does not decay, but oscillates with an amplitude and frequency
given by the initial plane wave and the band structure. For a wave packet however,
the ZB has a transient character [141], i.e. it vanishes. This is due to the fact that
for a given initial wave packet of the general form

|ψ0〉 =

∫
d2k ψ0(k) |ψk

0 〉, (7.14)

where |ψk
0 〉 is a plane wave (living in both bands) as above, the time evolution yields

|ψk(t)〉 =

∫
d2k ψ0(k)

(
c+,ke−iωk,+t|k,+〉+ c−,ke−iωk,−t|k,−〉

)
(7.15)

(compare Eq. (7.3)). Therefore, the expectation value of the velocity related to ZB
of a wave packet becomes

〈v̂ZB〉(t) = 2

∫
d2k d2k′ ψ∗0(k′)ψ0(k) Re{c+,kc

∗
−,k′ v

−+
k e−i(ωk,+−ωk′,−)t}. (7.16)

Since for space-independent velocity operators, plane waves are eigenstates, i.e.

〈k′,− | v̂ | k,+〉 = δk,k′〈k,− | v̂ | k,+〉 (7.17)

the ZB of Eq. (7.16) reduces to

〈v̂ZB〉(t) =

∫
d2k |ψ0(k)|2 〈v̂ZB

k 〉(t) (7.18)

with the same parameters as in Eqs. (7.11)-(7.13). The k-dependent phase given
in Eq. (7.13) diminishes in general the ZB right from the start and can change the
decay behavior for short times. However, we will see that for the usually chosen
wave packets in a (gapped) graphene setup, the phase is almost constant over the
width of the used wave packets. Moreover, it does not influence the long-term decay
behavior since it is t-independent, which is the main point of this section. Therefore
the phase does not play an important role for the ZB which will be considered in
the next sections.

In Eq. (7.18), the vk-dependence of is ΩZB
k is of major qualitative importance,

because it leads to the transient character of the ZB. From a physical point of view,
due to the different frequencies of the many k-modes in the wave packet, the ZB
dephases over time and vanishes. From a mathematical point of view, this decay is
described by the fact that for larger and larger t, the cosine in Eq. (7.18) oscillates
stronger and stronger as function of k. Thus, the individual terms of the integral
over k cancel, as illustrated in Fig. 7.1. This will happen when the amplitude
|ψ0(k)|2Ai,k is almost constant over one oscillation period of the cosine as function
of k, or more quantitatively, when the change of the argument in the cosine as
function of k is much larger than the change of the prefactor:∣∣∇kΩZB

k

∣∣ t

2π
� |∇k (|ψ0(k)|2Ai,k) |

max
k
|Ai,k|ψ0(k)|2|

, ∀k (7.19)
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Figure 7.1: Visualization of the reason why the ZB decays. The integrand
|ψ0(k)|2 〈v̂ZB

k 〉 of the ZB of Eq. (7.18) is shown as function of k for different times
t in arbitrary units. For simplicity, a Gaussian wave packet with equal weight in
both bands is assumed (c+,k = c−,k = 1/

√
2) in a gapped graphene band structure

(see Subsec. 7.3.2), although the exact setup does not really matter. The important
statement is that while at Ωk0t = 0 the integral of the shown function is nonzero
since the integrand is positive, it decreases over time due to the faster and faster
oscillations as function of k, which lead to cancellation of positive and negative val-
ues of the integrand. The values of the integral of the shown integrands are 0.18
(black), 8.6× 10−3 (red) and 3.9× 10−10 (blue).

which will be the case after long enough time, if ΩZB
k is not constant in k. Notice

that the exact structure of Eq. (7.19) is quite arbitrary, e.g. the denominator on
the right hand side (max

k
|Ai,k|ψ0(k)|2|). But with this choice, we make sure that

only those parts of the wave function play a role, which have a considerably large
probability density |ψ0(k)|2.

For a constant amplitude Ai,k = A, and a Gaussian wave packet of Eq. (3.39),
the estimate Eq. (7.19) reduces to the more intuitive form

∂ΩZB
k

∂k
∆k t

!
� 2π

|(k− k0)|
∆k

e−
(k−k0)2

∆k2 . 2π, (7.20)

which states that the phase difference over the width of the wave packet ∆k needs
to be much larger than 2π.

Rusin and Zawadzki give an alternative explanation for the decay of the ZB
by considering the movement of the two sub-wave packets in the different bands
[142]. In the time-independent setup, each state stays in its band with the velocity
v± = ∇kε±(k). Thus, the two sub-packets move away from each other for different
velocities in the two bands (see also Fig. 3.6 in Sec. 3.4). The overlap of the two
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7. Zitterbewegung

sub-packets is given by

〈ψ+(t)|ψ−(t)〉 =

∫
d2k |ψ0(k2)|2

(
|c+,k|2 + |c−,k|2 + 2 Re{c+,kc

∗
−,k′ e

−i(ωk,+−ωk′,−)t}
)

(7.21)
and therefore, the time-dependent part differs from the ZB in Eq. (7.18) only by the
missing velocity matrix element v−+

k . In graphene, the magnitude of this matrix
element is k-independent, and therefore, the decay times of the ZB and the overlap
of the wave packets are the same [142].

To be able to estimate the decay time in advance, we want to derive an as easy
as possible formula which has more predictive power than the rather qualitative
expression of Eq. (7.19). For that purpose, let us consider a Gaussian wave packet
of the form

ψ0(k) =
1√
π∆k

exp

(
−(k− k0)2

2∆k2

)
. (7.22)

The integral in Eq. (7.18) can in principle be solved for a Gaussian wave packet and
a Taylor expansion of 〈v̂ZB

k 〉 around k0 up to arbitrary order, using

∞∫
−∞

dx x2n+1 exp
(
−αx2

)
=0, (7.23)

∞∫
−∞

dx x2n exp
(
−αx2

)
=(−1)n

(
∂

∂α

)n ∞∫
−∞

dx x2n exp
(
−αx2

)

=(−1)n
∂n

∂αn

√
π√
α

=

√
π

√
α

2n+1

n∏
l=1

(2l − 1)

2n

=
1

2
√
α

2n+1 Γ

(
n+

1

2

)
. (7.24)

The general result for Eq. (7.18) is

〈v̂ZB〉(t) =
∞∑

nx,ny=0

1

(2nx)!(2ny)!

(
∂2nx

∂k2nx
x

∂2ny

∂k
2ny
y

〈v̂ZB
k 〉(t)

)∣∣∣∣
k=k0

× ∆k(2nx+2ny)

4π
Γ

(
nx +

1

2

)
Γ

(
ny +

1

2

)
, (7.25)

which is still not very helpful for a quick estimation due to the infinite sum. For
the approximation of the decay time, we use only the first non-vanishing correction
terms, which is best suited for rather small wave packets in k-space.

〈v̂ZB〉(t) ≈ 〈v̂ZB
k0
〉(t) +

1

2

∆k2

2

(
∂2

∂k2
x

+
∂2

∂k2
y

)
〈v̂ZB

k 〉(t)
∣∣∣∣
k=k0

. (7.26)

The second derivative of 〈v̂ZB
k 〉 splits into terms of differing importance.
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∂2

∂k2
i

〈v̂ZB
j,k〉 =

∂2Aj,k
∂k2

i

cos(ΩZB
k t+ ϕj,k)− Aj,k cos(ΩZB

k t+ ϕj,k)

(
∂ΩZB

k

∂ki
t+

∂ϕj,k
∂ki

)2

+ 2
∂Aj,k
∂ki

(−1) sin(ΩZB
k t+ ϕj,k)

(
∂ΩZB

k

∂ki
t+

∂ϕj,k
∂ki

)
. (7.27)

The first term of Eq. (7.27) is in-phase to the initial ZB, but since it has no extra
time-dependence, it just contributes slightly (O(∆k2)) to the initial amplitude but
does not lead to a decay. The second term describes an out-of-phase change of the
velocity of the ZB, which will alter the ZB but not directly lead to a decay.

The last term of Eq. (7.27) however is in phase with the initial oscillation but
with opposite sign. Therefore, it is the most important contribution for the decay.
Furthermore, for long enough times, the term quadratic in time will very likely be
the more import one compared to ∂ϕj,k/∂k, due to the qualitative requirement of
Eq. (7.20). For the sake of an easy first approximation formula and the reasons given
above, we will only consider the in-phase term with quadratic decrease in time.

∂2

∂k2
i

〈v̂ZB
j,k〉 ' −Aj,k cos(ΩZB

k t+ ϕj,k)

(
∂ΩZB

k

∂ki

)2

t2 = −〈v̂ZB
j,k〉
(
∂ΩZB

k

∂ki

)2

t2 (7.28)

Below, when the gapped graphene case is studied in Subsec. 7.3.2, we show in
Fig. 7.3(a) at an example the importance of the different terms in Eq. (7.27), where
indeed the only term which we keep here is the most important one. With Eq. (7.28),
the ZB becomes:

〈v̂ZB〉(t) ≈ 〈v̂ZB
k0
〉(t)

1− t2

2

∆k2

2

∑
i∈{x,y}

(
∂ΩZB

k

∂ki

)2
∣∣∣∣∣
k=k0

 . (7.29)

If the energy of the bands - and thus ΩZB
k - depends only on the magnitude of k and

not its direction, the derivatives can be further simplified to∑
i∈{x,y}

(
∂ΩZB

k

∂ki

)2

=
∑

i∈{x,y}

(
∂ΩZB

k

∂k

∂k

∂ki

)2

=

(
∂ΩZB

k

∂k

)2 ∑
i∈{x,y}

k2
i

k2
=

(
∂ΩZB

k

∂k

)2

(7.30)

and the ZB finally yields

〈v̂ZB〉(t) ≈ 〈v̂ZB
k0
〉(t)

(
1− t2

2

∆k2

2

(
∂ΩZB

k

∂k

)2
)
. (7.31)

As an estimation for the decay time of the ZB, which we denote by T ∗2 in analogy to
the spin-spin dephasing time in a Hahn echo setup, we use the time when Eq. (7.31)
vanishes:

T ∗2 =
2

∆k

∣∣∣∣∂ΩZB
k

∂k

∣∣∣∣ (7.32)

So we see that the assumption for the decay in Eq. (7.20), where we demand that
the time is ”much larger than” is too restrict and can be reduced to “similar”.

For t > T ∗2 , our 2nd order approximation predicts rising amplitudes again. How-
ever, this is clearly just an artifact of the approximation and is cured by considering
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7. Zitterbewegung

higher orders in the perturbation, which get more and more important for longer
times.

Note that as already mentioned, the derivation of the decay time T ∗2 is by no
means meant to be very exact with all the assumptions which enter, but was designed
to give an easy as possible formula to estimate the magnitude of the decay time.
In the end, we arrive at a result which could have been guessed already in the
beginning (up to factors of π), but is now reinforced. To anticipate the results from
the simulations: We found that at the time T ∗2 , the amplitude of the ZB decreases
to about 30% to 40% of the initial value for the used wave packets, depending on
the system.

In this section, we have seen, that the ZB of wave packets decays over time. For
experiments, the decay might be an obstacle for the observation of ZB, or put in
another way, the longer the ZB survives, the easier it should be to observe it. One
known way is to decrease the width of the wave packet in reciprocal space, which
only prolongates the lifetime but does not prevent the decay. Instead, in this thesis,
we want to focus on time-dependent potentials in the Hamiltonian, that will keep
the particle trembling for a long time (optimally forever) in analogy to the driven,
damped classical harmonic oscillator, which will keep oscillating perpetually.

But first, in Sec. 7.3, we will start with the time-independent ZB in pristine and
gapped graphene, which is already well-known, to get used to the systems. Then,
we will consider a time-dependent mass term in Sec. 7.4 for these systems by using
first order time-dependent perturbation theory, rotating wave approximation (RWA)
and high-driving frequency approximation (HDF), where we follow the strategy of
Rusin and Zawadzki [140] who considered time-dependent vector potential instead
of a mass term. Moreover, they focus more on the emergent multimode ZB, whereas
we are primarily interested in the long time survival of modes of the ZB to possibly
facilitate the experimental observation. We will show numerical calculations verify-
ing the analytical results in the given limits and uncovering interesting effects where
we do not have analytical access.

In the last section of this chapter, we will consider a revival of ZB similar to the
quantum time mirror in Chap. 3, where we will show that the ZB could be used to
verify the QTM mechanism.

7.3 Time-independent zitterbewegung in graphene

7.3.1 Pristine graphene

As discussed previously, the low-energy Hamiltonian for graphene around the K-
point is given by

H = ~vF k · σ = ~vF
(

0 kx − iky
kx + iky 0

)
(7.33)

and thus, the velocity operator yields

v =
1

~
∇kH(k) = vFσ = vF

(
σx
σy

)
. (7.34)
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The eigenstates are

|ϕk,±〉 =
1√
2

(
1
±eiγk

)
|k〉 (7.35)

where γk is the polar angle in k-space as in the rest of the thesis and the eigenenergies
are

E±(k) = ±~vFk =: ±E(k). (7.36)

From Eq. (7.11), we know that the frequency of the ZB is

ΩZB
k = 2vFk. (7.37)

One requirement for ZB is that the velocity operator does not commute with the
Hamiltonian. Calculating the commutator

[v̂, H] = ~v2
F

[(
σx
σy

)
, kxσx + kyσy

]
= ~v2

F

(
ky
−kx

)
2iσz, (7.38)

we see that the ZB in x-direction is only governed by the ky part of the plane wave
and in the y-direction by the (−)kx part. Thus, the ZB is perpendicular to the
propagation direction of the plane wave, which is why we will refer to this type of
ZB by “perpendicular ZB”.

To get the amplitude of the ZB, we need to calculate the matrix element v−+
k

with the eigenstates of Eq. (7.35), compare App. B.

v−+
k = 〈ϕk,− | v̂ | ϕk,+〉 = vF

(
i sin γk
−i cos γk

)
= i

vF
k

(
−ky
kx

)
(7.39)

Thus, the ZB related part of the velocity is

〈v̂ZB
k 〉(t) = −2vF

(
sin γk
− cos γk

)
Im
{
c+,kc

∗
−,ke−iΩ

ZB
k t
}
. (7.40)

Without loss of generality, let us assume a plane wave with momentum k = (k0, 0)T ,
i.e. γk = 0. Furthermore, to maximize the amplitude of the ZB, let us consider a
symmetric occupation of the two bands, e.g. for simplicity c+,k = c−,k = 1/

√
2, such

that the initial state is

|ψk
0 〉 =

(
1
0

)
|k〉. (7.41)

In this case, the velocity related to ZB becomes

〈v̂ZB
k 〉(t) = −vF

(
0
1

)
sin(ΩZB

k t), (7.42)

which is, as expected, perpendicular to the propagation direction of the plane wave.
For a wave packet, the ZB decays over time due to the different frequencies of

different k-modes, as explained in Subsec. 7.2. From a numerical point of view, it
is easy to calculate the time evolution - and the damping - of the ZB by evaluating
the integral in Eq. (7.18) explicitly for a given initial wave packet. On the other
hand, we can use TQT to calculate explicitly the time evolution of the wave packet
and use it to get the expectation value of the velocity to see the ZB. These two
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Figure 7.2: The ZB in graphene measured by the expectation value of the velocity
operator perpendicular to the propagation direction as a function of time with ΩZB

k0
=

2vFk0. (a) The result of the explicitly simulated time-evolution with TQT (black
solid) is shown as well as the expected value obtained by numerically evaluating the
integral in Eq. (7.18) (red dashed) for the same Gaussian wave packet with width
∆k = k0/5 and the pure analytical result of a plane wave (blue dotted) which is
not damped. The results match very well showing that in our clean setup, the ZB
is solely damped due to its width in k-space, i.e. different ZB frequencies. The
vertical dashed line indicates the estimated decay time T ∗2 from Eq. (7.43). (b) The
simulations for three different wave packets of varying width are shown (solid lines).
The dashed lines indicate the estimated decay times from Eq. (7.43) in the color
according to the simulation. In general, wider wave packets in k-space decay faster
because the range of the ZB frequencies is higher leading to a faster dephasing.

approaches are compared in Fig. 7.2(a). There, we can see the ZB of a wave packet
obtained by both, simulation with TQT and calculated directly with Eq. (7.18).
Both calculations coincide very well.

The initial wave packet is a Gaussian wave packet as in Eq. (7.22). Since the
absolute values of the parameters of the system are physically not important but
only their relation (which can be seen by rescaling the Schrödinger equation), we
are free to choose one parameter arbitrarily and state all other parameters in its
relation. Here we choose an arbitrary mean energy of the wave packet E0 = ~vFk0

or equivalently k0. The wave packet is set to propagate (mainly) in x-direction, i.e.
k0 = (k0, 0)T , which does not lead to a loss of generality due to the radial symmetry
of our system. The width of the chosen wave packet is rather small ∆k = 0.2k0, but
still the ZB survives only a few cycles.

The blue dotted line in Fig. 7.2(a), is the expected perpendicular ZB of a plane
wave with k0 according to Eq. (7.42). We can see that the perpendicular ZB obtained
by simulating the propagation of the wavepacket with TQT (solid black) has the
same frequency but decays as expected over time Moreover, the semi-analytical
result by evaluating the integral in Eq. (7.18) numerically for the given initial wave
packet (dashed line), yields the same results as the pure simulation, verifying that
the decay mechanism in this clean setup solely originates from the width of ψ0(k)
in k-space. Although not shown, there is no parallel ZB, i.e. no oscillations of 〈vx〉.

116



7.3. Time-independent zitterbewegung in graphene

The estimated decay time T ∗2 from Eq. (7.32) yields in this gapless graphene
setup

T ∗2 =
1

∆kvF
(7.43)

which means for the chosen wave packet

ΩZB
k0
T ∗2 = 2vFk0T

∗
2 =

2

∆k/k0

= 10 (7.44)

as labeled in Fig. 7.2(a). Indeed the ZB has decreased in this example significantly
at the time T ∗2 to an amplitude of approximately 1/3 of the initial amplitude.

The approximation for the decay time in Eq. (7.43) states that the decay time
is linear in 1

∆k
= ∆x with ∆x being the real space width of the wave packet.

In Fig. 7.2(b) the perpendicular ZB is shown for wave packets of different widths
∆k = k0/4, k0/8 and k0/12. At the estimated decay times (dashed lines) from
Eq. (7.43), the amplitudes have dropped to values of roughly 33% − 38%, showing
that the rough estimation of Eq. (7.32) works quite well in pristine graphene as a
timescale for the decay.

7.3.2 Gapped graphene - parallel and modified perpendic-

ular zitterbewegung

In this subsection, we consider the ZB in gapped graphene with a hyperbolic band
structure as discussed also at other instances in this thesis. The Hamiltonian reads

H = ~vF k · σ +M0σz = ~vF

 M0

~vF
kx − iky

kx + iky −M0

~vF

 , (7.45)

with eigenenergies

ε±(k) = ±
√
M2

0 + ~2v2
Fk

2 = ±M0

√
1 + κ2 =: ±ε(k), (7.46)

where κ = ~vFk0/M0, and with eigenstates

|χk,±〉 =
1

√
2
√

1 + κ2 ±
√

1 + κ2

(
1±
√

1 + κ2

κ eiγk

)
|k〉. (7.47)

The frequency of the ZB is given by the difference of positive and negative energies
and thus yields

ΩZB
k = ε+(k)− ε−(k) = 2M0

√
1 + κ2 (7.48)

Due to the k-independence of the mass term, the velocity operator is the same as
in the pristine graphene

v̂ =
1

~
∇kH(k) = vFσ = vF

(
σx
σy

)
, (7.49)

but its commutator with the Hamiltonian changes:

[v̂, H] = ~v2
F

[(
σx
σy

)
, kxσx + kyσy

]
+M0vF

[(
σx
σy

)
, σz

]
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= ~v2
F

(
ky
−kx

)
2iσz +M0vF2i

(
−σy
σx

)
. (7.50)

Thus, there is an additional term, which allows also for parallel ZB.
Since we already covered the perpendicular ZB in pristine graphene in Sub-

sec. 7.3.1, we will focus first on the parallel ZB and come back to perpendicular ZB
at the end of this section. Since for the parallel ZB, the direction perpendicular to
the propagation is not important, we will consider here a one-dimensional system in
the x-direction, for simplicity.

For the amplitude of the ZB, we need the matrix element v−+
k of the velocity

operator

v−+
k = 〈χ−k | v̂ | χ

+
k 〉 = vF 〈χ−k | σx | χ

+
k 〉. (7.51)

The velocity matrix element is calculated in App. B as

vs,−sk =
vF√

1 + κ2
. (7.52)

Inserting vs,−sk of the gapped graphene case in the general formula of the ZB, we get
for a plane wave

〈v̂ZB
k 〉(t) = vF

2√
1 + κ2

Re
{
c+,kc

∗
−,ke

−iΩZB
k t
}

= vF
2 |c+,k| |c−,k|√

1 + κ2
cos
(
ΩZB

k t+ ϕk
)
. (7.53)

For typical wave packets, where c+,k = c+ and c−,k = c− are k-independent,
Eq. (7.53) yields

〈v̂ZB
k 〉(t) = vF

2|c+c−|√
1 + κ2

cos
(
ΩZB

k t+ ϕ
)
, (7.54)

where also the phase ϕ from Eq. (7.13) becomes k-independent.
For a wave packet, the usual dephasing process takes place, leading to a decrease

of the (observable) ZB over time. The general estimation of the decay time T ∗2 for
a Gaussian wave packet of width ∆k in Eq. (7.32), where we derive the frequency
ΩZB
k of Eq. (7.48) with respect to k, yields

T ∗2 =
2

∆k

1

2vF

√
1 + κ2

κ
=

1

∆kvF

√
1 + κ2

κ︸ ︷︷ ︸
≥1

≥ 1

∆kvF
, (7.55)

and is therefore larger than the decay time of the perpendicular ZB in pristine
graphene (compare Eq. (7.43)).

In Fig. 7.3(a), the parallel ZB of a Gaussian wave packet is shown for gapped
graphene as a function of time. Here, we state all physical quantities in relation
to the gap term M0. The used wave packet is Gaussian peaked around k0 =
0.4M0/(~vF ), i.e. κ0 = ~vFk0/M0 = 0.4 with a width ∆k = 0.2k0. It is chosen
to be an eigenstate with positive energy of the ungapped graphene Hamiltonian
|ϕk,+〉 of Eq. (7.35). Thus, the occupation of positive and negative band is given by
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Figure 7.3: The ZB in gapped graphene. (a) The result for the parallel ZB is shown.
The black solid line corresponds to the simulation (TQT), which matches perfectly
the numerically evaluated integral in Eq. (7.18) (red dashed line). The nondecaying
result for a plane wave with k0 shows the same initial oscillation (blue). To compare
the estimation of the decay in linear order used to derive Eq. (7.32), both the in-
phase contribution (orange solid) as well as the full first non-vanishing order (green
dashed) in ∆k is plotted, showing almost no difference at all. The vertical dashed
line indicates the estimated decay time T ∗2 from Eq. (7.55), which is close to the
point in time, when the amplitude of the full first non-vanishing order is zero. (b)
The parallel (blueish) and perpendicular (reddish) ZB in gapped graphene is shown
both with a TQT-simulation (solid lines) and numerical evaluation of Eq. (7.18)
taking the width of the wave packet into account. As expected, the frequency is the
same, whereas the amplitude changes from parallel to perpendicular, and they have
a phase shift of π. The constant offset of 〈vx〉 is due to the unequal occupation of
the two bands.

c+,k = 〈χ+
k | ϕk,+〉, (7.56)

c−,k = 〈χ−k | ϕk,+〉, (7.57)

and their product yields for k = k0:

c+,k0c
∗
−,k0

=
1

4

1 + κ0 +
√

1 + κ2
0

1 + κ2
0 +

√
1 + κ2

0

1 + κ0 −
√

1 + κ2
0

1 + κ2
0 −

√
1 + κ2

0

=
1

2
√

1 + κ2
0

. (7.58)

Since the product as well as the matrix element of the velocity operators are real
numbers, the phase is ϕ = 0 and the ZB becomes

〈v̂ZB
k0
〉(t) =

vF
1 + κ2

cos

(
M0t

~

√
1 + κ2

0

)
, (7.59)

as shown by the blue line for a plane wave with k0 in Fig. 7.3(a). The black solid line
shows the decaying ZB of the full quantum simulation by TQT. The red dashed line
indicates the expected decay for the given wave packet be evaluating the integral
over all k-modes in Eq. (7.18) numerically, and matches the full simulation perfectly.

Additionally, parts of the first non-vanishing order in the width ∆k of the wave
packet are shown, which were used to derive the formula for the decay time T ∗2
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of Eq. (7.32), to show the effects of the approximations, which have entered the
derivation. We see both, the full order (green dashed) as in Eq. (7.27), as well as
keeping only the in-phase terms (orange). Since there is almost no difference at all,
the assumption to neglect the out-of-phase terms for T ∗2 is justified (at least in this
example).

Furthermore, we see that it is also justified to neglect the in-phase-term which
has no additional time-dependence as discussed below Eq. (7.27). The difference
between keeping and neglecting this term can be seen by comparing the indicated
T ∗2 = 33.67~/M0 of Eq. (7.55) in Fig. 7.3(a) (vertical black dashed line), with the
time when the amplitudes of the green and orange lines vanish, which would yield
a slightly shorter decay time (T ∗2 ' 32~/M0). However, this difference is not signifi-
cant, especially because we are only interested in an estimation for the magnitude of
T ∗2 . Moreover, we see that in this order of ∆k, the ZB vanishes but then reemerges.
As explained in Sec. 7.2, in reality, the higher orders for larger times get more and
more important, and they prevent the “revival” of the ZB, as expected only from
lowest order.

Now, let us investigate the change to the perpendicular ZB. The first change is
obvious: The frequency of the ZB is necessarily the difference of the energy levels
as in Eq. (7.48), which has changed as compared to pristine graphene (Eq. (7.37)).
For the amplitude, we need again the matrix element v−+

k of the velocity operator.
Without loss of generality, let us assume again k = (k, 0)T . Then, the perpendicular
element of v−+

k is its y-component, which yields in analogously to the parallel case
Eq. (7.52)

vss
′

k · êy = vF 〈χsk | σy | χs
′

k 〉 =
ivFκ

2

(1− 1) + (−s+ s′)
√

1 + κ2√
(1 + κ2)2 + ss′(1 + κ2) + (s+ s′)

√
1 + κ2

3
,

(7.60)
which reduces for s′ = + and s = − to

v−+
k · êy = vF 〈χ−k | σy | χ

+
k 〉 =

ivFκ

2

2
√

1 + κ2

κ
√

1 + κ2
= ivF , (7.61)

as in the gapless graphene case (see also App. B).
Thus, the perpendicular ZB for gapped graphene combines the perpendicular

ZB of pristine graphene (amplitude) with the parallel ZB of gapped graphene (fre-
quency). However, this means, that the decay behavior is the same as in the parallel
case, since the decay is (almost) solely due to the k-dependence of the frequency:

T ∗2 =
1

∆kvF

√
1 + κ2

κ
. (7.62)

Moreover, the phase of the ZB between x- and y-direction is shifted by π/2, since
the matrix element is purely imaginary for vy and real for vx.

In Fig. 7.3(b), the ZB of a Gaussian wave packet centered around κ0 = (κ0, 0)T

with κ0 = 2 and width ∆k = k0/10 is shown, both in x-direction (parallel) and
y-direction (perpendicular) ZB. The occupation of the bands is chosen such that
c+ =

√
3/2 and c− = i/2 at k = k0. The imaginary c− leads to the constant phase
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7.4. Time-dependent zitterbewegung in graphene

shift ϕ of the ZB as in Eq. (7.13), which shifts the parallel ZB slightly away from
the “− sin ΩZBt”, for instance.

As expected, the simulation and the numerical evaluation of the sum in Eq. (7.18)
yield the same results. Both components of the ZB oscillate with the analytically
obtained frequency with a period T = 2π/ΩZB

k0
≈ 1.4~/M0. The initial amplitude

differs in the two cases due to the different velocity matrix elements of Eqs. (7.52) and
(7.61) by a factor of

√
1 + κ2

0 =
√

5 (Ax ≈ 0.62, Ay ≈ 1.38) and the phase between
parallel and perpendicular ZB is shifted by π/2 as explained above. The decay time
is in both cases the same and yields for the given wave packet T ∗2 = 5.6~/M0. At
this point in time, the amplitude has decreased as in the cases before by a factor of
roughly 1/3.

As already mentioned, the ZB in the static case is well-known and in this section,
we have seen that our calculations match the expectations. The reason for the
extensive discussion of the established transient character of the ZB is that this
decay is what we want to delay or even circumvent with time-dependent potentials,
here a time-dependent mass potential.

7.4 Time-dependent zitterbewegung in graphene

In this section, we want to investigate the influence of a time-dependent mass po-
tential to the ZB. The Hamiltonian of choice is

H = ~vFk · σ +M0σz +M(t)σz = H0 +H1(t), (7.63)

with the time-dependent mass term

M(t) = M̃ sinωDt, (7.64)

where ωD is the driving frequency. As in Subsec. 7.3.2, the frequency of the ZB for
the time-independent case (e.g. M̃ = 0) is

ΩZB
k = 2

M0

~
√

1 + κ2, (7.65)

with κ = ~vFk/M0. Subsequently, we will also call ΩZB
k the frequency of the “static”

ZB, although the ZB is by nature not static but what we mean is that the Hamilto-
nian is time-independent. Moreover, we will find that new ZB frequencies emerge in
time-dependent systems. There, ΩZB

k is not to be confused with the actual frequency,
but is only meant as the abbreviation defined in Eq. (7.65).

First, we want to see what happens for small time-dependent potentials in first
order of time-dependent perturbation theory. Next, we use the rotating wave ap-
proximation (RWA) and the high-driving frequency (HDF) limit to determine the
emerging frequencies of the driven ZB, similar to Rusin and Zawadzki [140], who
considered a time-dependent vector potential instead of our mass term. After that,
we will consult the simulation package TQT, first to confirm the analytic results
in their valid parameter regime and then to study the multimode ZB in regimes
we cannot access with our approximations. For that, we will take a Fourier trans-
form of the numerically obtained, time-dependent velocity to find out the oscillation
frequencies.
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Our main goal is to find long-lived or even non-decaying modes, i.e. a long term
oscillation is of interest. Therefore, we take the Fourier transform from the rest of
the “signal“, starting at a time when the system has settled, i.e. when the transient
oscillations have decayed.

7.4.1 First order time-dependent perturbation theory

As in the time-independent case, we have to investigate the expectation value of the
position or velocity operator to study the ZB. Since the time-dependent potential
in the Hamiltonian in Eq. (7.63) is translational invariant, the momentum k is
conserved. For simplicity, we will first consider a single k-mode, which can live in
both bands, before we will consider wave packets again.

We use the following general ansatz for the wave function:

|ψk〉(t) =
∑
n=±

cn(t)e−iω
k
nt|k, n〉, (7.66)

where |k, n〉 := |χk,±〉 are the eigenstates of the gapped graphene Hamiltonian H0

from Eq. (7.63), with the functional form as in Eq. (7.47), and the corresponding
energy ε±(k) = ~ωk

± as in Eq. (7.46). Note that for a time-independent Hamiltonian,
the coefficients cn do not depend on time, or otherwise said, the time-dependence
of cn(t) is due to the time-dependent potential H1(t).

The expectation value of the velocity then yields

〈v̂k〉 =
∑
m,n=±

c∗m(t)cn(t)e−i(ω
k
n−ωk

m)t〈k,m | v̂ | k, n

= |c+(t)|2v++
k + |c−(t)|2v−−k + 2Re

{
c∗−(t)c+(t)e−iΩ

ZB
k tv−+

k

}
, (7.67)

Here we used again the definition of the velocity matrix elements as in Eq. (7.7),
which is very similar to the time-independent system of Eq. (7.8), The only differ-
ence is that the coefficients cn are now time-dependent, which means that also the
diagonal terms of the velocity operator are not time-independent anymore. Thus
they can additionally contribute to some kind of jiggly motion.

But also the off-diagonal terms proportional to v−+
k are more complicated than

before due to the time-dependence of the coefficients cn(t). In general, cn(t) can-
not be obtained exactly, although there are a few examples for 2 level systems, e.g.
the spin-magnetic resonance (see e.g. [143]), but for the time-dependent mass po-
tential as in our case, the exact solutions are not known, which is why we consult
perturbation theory.

In App. D, the occupation coefficients cn(t) of the time-dependent perturbation
are derived without going to much into detail, together with a very short reminder
of the interaction picture. We are interested in the first order approximation for a
2-level system. Using the initial condition

|ψk〉(0) =
∑
n=±1

cn,0 |k, n〉, (7.68)

where cn,0 = cn(0), and the formula for the first order correction from Eq. (D.18) in
App. D, the occupation coefficient becomes approximatively

cn(t) ≈ c(0)
n + c(1)

n (t), (7.69)
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with

c(0)
n (t) = cn,0 (7.70)

c(1)
n (t) = − i

~

t∫
0

dt′
(
cn,0〈k, n | H1(t′) | k, n〉+ c−n,0 einΩZB

k t′ 〈k, n | H1(t′) | k,−n〉
)
,

(7.71)

where every quantity is known. With the chosen Hamiltonian, the first order cor-
rection becomes in our case

c(1)
n (t) = − i

~
M̃

t∫
0

dt′ sin(ωDt
′)
(
cn,0〈k, n | σz | k, n〉+ c−n,0 einΩZB

k t′ 〈k, n | σz | k,−n〉
)
.

(7.72)

The integrals can be easily performed. Moreover, the matrix elements of the Pauli
matrices in the basis |±,k〉 are calculated in App. B. In total, the occupation coef-
ficients yield in first order correction in terms of the time-dependent potential

cn(t) ≈ cn,0

(
1− iM̃

~ωD
n(1− cosωDt)

)

+c−n,0
iM̃

2~
κ√

1 + κ2

(
ei(nΩZB

k −ωD)t − 1

nΩZB
k − ωD

− ei(nΩZB
k +ωD)t − 1

nΩZB
k + ωD

)
. (7.73)

The first order correction to 〈v̂k〉 in M̃ , which we call 〈v̂k
(1)〉, is obtained by inserting

Eq. (7.69) into Eq. (7.67) and keeping only the terms linear in c
(1)
n :

〈v̂(1)
k 〉 =

∑
n=±1

[
vnnk 2Re

{
c(1)∗
n (t)c(0)

n

}]
+ 2Re

{
e−iΩ

ZB
k tv−+

k

(
c

(1)∗

− (t)c
(0)
+ + c

(0)∗

− c
(1)
+ (t)

)}
.

(7.74)

Thus, the behavior of the mean velocity is known for every time in first order
correction. For an initial wave packet

|ψ0〉 =

∫
d2k φ0(k)

∑
n=±

cn,0|k, n〉, (7.75)

the velocity expectation value becomes in first order of M̃ :

〈v̂〉 =

∫
d2k |φ0(k)|2

(
〈v̂(0)

k 〉+ 〈v̂(1)
k 〉
)
. (7.76)

In Fig. 7.4, 〈vx〉 is shown, both from full simulation of the propagation of a Gaussian
wave packet using TQT centered around k0, as well as from perturbation theory. For
small amplitude M̃/M0 = 0.005 (panel (a)) and a driving frequency ωD = 1.01ΩZB

k0

close to the resonance frequency of the ZB in the static case, ΩZB
k = 2M0

√
1 + κ2, the

perturbation theory up to first order matches the simulation very well. As expected,
the zeroth order (static case) decays as in Subsec. 7.3.2, the first order amplitude
on the other hand increases over time until it reaches a maximum value. For large
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Figure 7.4: The expectation value of the velocity operator as function of time com-
paring full simulation (black) and time-dependent perturbation theory in M̃ (red,
see Eq. (7.76)) for a driven mass gap for the resonant case ωD ≈ ΩZB

k0
. For small

M̃/M0 = 0.005, (a), the perturbation theory up to first order (red line) matches very
well the simulation (black line), whereas for higher M̃/M0 = 0.025, (b), deviations
appear for larger times. Furthermore, only the zeroth order (blue line) is shown in
both panels as well as only first order (brown line). We want to draw attention to
the predicted long-time behavior of the first order time-dependent perturbation the-
ory, which is an oscillation with constant amplitude and frequency ωD, in agreement
with the analytical approximation of Eq. (7.92).

times, the first order is a oscillation with constant amplitude and only one frequency,
which is equal to the driving ωD.

In panel (b), the same wave packet is subject to a stronger amplitude of M̃/M0 =
0.025 with the same ωD ≈ ΩZB as panel (a). As expected, the agreement is worse
for larger M̃ , but still, for intermediate times, the results match quite well. Most
of all, the frequency of the ZB coincides in simulation and perturbation theory, but
the amplitude does not for larger times match, where the first order perturbation
theory predicts a single frequency oscillations with ωD and with constant amplitude,
alike panel (a).

Since first order perturbation theory of Eq. (7.74) captures important features
of the ZB, we want to understand it better on an analytical level, e.g. which terms
dominate, or what is responsible for oscillation with constant amplitude and ωD for
long times. Therefore, we want to have a closer look at the first order correction of
the wave function, given by c

(1)
n (t) in Eq. (7.73):

c(1)
n (t) = cn,0

iM̃

~ωD
n(1− cosωDt)

+c−n,0
iM̃

2~
κ√

1 + κ2

(
ei(nΩZB

k −ωD)t − 1

nΩZB
k − ωD

− ei(nΩZB
k +ωD)t − 1

nΩZB
k + ωD

)
. (7.77)

In the transition part proportional to c−n,0, we see that there is the possibility of
resonant behavior for ΩZB

k = ±ωD, as opposed to the part linear in cn,0. There the
case that the amplitude becomes large, i.e. M̃/(~ωD) � 1, is not a justified limit
that is reasonably covered by the perturbation theory.
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Therefore, let us have a closer look at the transition part. The ratio predominates
in the brackets which has a pole , since |ΩZB

k −ωD| < ΩZB
k +ωD. Thus, in the resonant

regime ωD ≈ ΩZB
k , we approximate c

(1)
n (t) by

c(1)
n (t) ≈ c−n,0

iM̃

2~
κ√

1 + κ2

ein(ΩZB
k −ωD)t − 1

ΩZB
k − ωD

. (7.78)

We want to study the behavior for large times t → ∞. Considering only the last
ratio,

ei(Ω
ZB
k −ωD)t − 1

ΩZB
k − ωD

=
cos
(
(ΩZB

k − ωD)t
)
− 1

(ΩZB
k − ωD)

+ i
sin
(
(ΩZB

k − ωD)t
)

(ΩZB
k − ωD)

, (7.79)

we see that the pole is a removable discontinuity, because both cos(x)− 1 ≈ −0.5x2

and sin(x) ≈ x are elements of O(x) for x→ 0.
For large times t → ∞, the imaginary part is known to be a representation of

the Dirac-Delta in the sense of a distribution:

lim
t→∞

sin (xt)

x
= πδ(x). (7.80)

The heuristic reason for Eq. (7.80) is that for larger and larger times t, which is the
”frequency“ of sine in this case, the given function becomes more and more peaked
around x = 0. While ∫

R

dx
sin (xt)

x
= π, (7.81)

it can be shown for any δ > 0 that

lim
t→∞

∫
R\[−δ,δ]

dx
sin (xt)

x
= 0. (7.82)

Therefore, all of the weight has to be inside the arbitrarily small region [−δ, δ] and
due to the high oscillations, any smooth function will cancel in the integral, except
at the point x = 0.

Another intuitive explanation for Eq. (7.80) is the following. On the one hand,
sin(xt)
x

is (up to constant factors) the Fourier transform of the box function with
width t. On the other hand, the Fourier transformation of the constant function
f(x) = 1 is the δ-distribution. Since for t → ∞, the box becomes the constant
function, its Fourier transformation needs to become the δ-distribution.

There are several reasons, why the contribution to the velocity of a wave packet
〈v̂〉 of the real part in Eq. (7.79), i.e. the cosine term, is in most cases small compared
to the imaginary part which yields the δ(ΩZB

k −ωD). First of all and most important,
it does not yield a contribution at the pole ΩZB

k = ωD, because

lim
x→0

cos(x)− 1

x
= 0. (7.83)

Moreover, in the integral over k in Eq. (7.76),
cos((ΩZB

k −ωD)t)−1

ΩZB
k −ωD

is even around kωD

(which is the k-value such that ΩZB
kωD

= ωD). Thus, only the even parts around kωD ,
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of the other function play a role, because else the integrand becomes odd such that
the integral from −∞ to ∞ vanishes. Furthermore, one can show that unlike the
sine part of Eq. (7.79), the cosine part is dependent on the initial configuration of
the wave packet (∼ |c+,0|2 − |c−,0|2,) when we want to calculate the velocity. For a
symmetric wave packet, |c+,0|2 = |c−,0|2, this term would have no contribution.

The last reason, why we will keep only the imaginary part of Eq. (7.79) when it
comes to give an estimate of 〈v̂〉 in Eq. (7.76), is simply convenience: The integral
over k can always be handled by the δ-distribution, whereas the part in Eq. (7.79)
with the cosine might not give an analytically solvable integral.

Due to the four reasons given above, we neglect the first term in Eq. (7.79), and

approximate c
(1)
n (t) for large times by:

c(1)
n (t) ≈ −c−n,0

M̃

2~
κ√

1 + κ2
πδ(ΩZB

k − ωD). (7.84)

Due to the δ-function, the integral in Eq. (7.76) can be performed easily. Further-
more, using that

Re
{
c∗−n,0cn,0

}
=

1

2

(
c∗−n,0cn,0 + c∗n,0c−n,0

)
(7.85)

is symmetric under exchange of n ↔ −n, and that vnnk ∝ n, the following sum
cancels. ∑

n=±1

vnnk︸︷︷︸
∝n

Re
{
c∗−n,0cn,0

}
= 0 (7.86)

Thus, the diagonal term of Eq. (7.74), i.e. the term containing vnnk , does not con-
tribute in our approximation, such that the only resonant mode is due to the off-
diagonal term proportional to v−+

k .
The expectation value of the velocity 〈v̂〉 from Eq. (7.76) becomes

〈v̂〉 = v0 −
∫

d2k
κv−+

k√
1 + κ2

M̃

~
|φ0(k)|2Re

{
e−iΩ

ZB
k tδ(ΩZB

k − ωD)

1︷ ︸︸ ︷(
|c−,0|2 + |c+,0|2

)}
,

(7.87)
where v0 is the 0th-order result, that we know from the case of time-independent
Hamiltonians in Sec. 7.3.2, which is due to the decay of the ZB a constant (or even
0) and therefore not of importance for us.

To further simplify let us consider the 1D-case, which is equivalent to a wave
packet with small angular width in k-space. Using the property

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

(7.88)

of the δ-distribution, where xi are the single roots of g(x), we get

δ(ΩZB
k − ωD) =

√
1 + κ2

2vFκ
(δ(k − kωD) + δ(k + kωD)) , (7.89)

where the prefactor is due to the derivative of ΩZB
k with respect to k, which is the

same for both roots, and

kωD =
1

vF

√
ω2
D

4
− M2

0

~2
(7.90)
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is the positive k where ΩZB
kωD

= ωD. Usually, one δ-function in Eq. (7.89) can be
neglected, except if the wave packet is rather broad, and has similar weight at kωD
and −kωD . Thus, with

v−+
k =

vF√
1 + κ2

sgn(k), (7.91)

as in App. B, the velocity in Eq. (7.87) becomes

〈v̂〉 = v0 −
πM̃

2~
√

1 + κ2
ωD

(
|φ0(kωD)|2 − |φ0(−kωD)|2

)
cos (ωDt) (7.92)

in first order in M̃ , with κωD = ~vFkωD/M0. Thus, the largest effect can be seen for
small κωD which means for large M0 for a given ωD.

The important message from first order perturbation theory is, that the mass gap
with the driving frequency ωD projects out only those terms of the wave function,
which oscillate naturally (in the static case) with the same frequency, whereas all
other frequencies die out. Thus, if the ZB of a wave packet is off-resonant to ωD, no
contribution is expected. Indeed, according simulations with an off-resonant driving
confirm this, but since the ZB looks exactly as in the static case, it is not shown
explicitly. The observations from solving the integral in Eq. (7.76) are reproduced,
which could be seen in Fig. 7.4, where for large times, the first order term becomes
an oscillation of constant amplitude with the frequency ωD (compare Eq. (7.92)).

In Fig. 7.5, we compare the analytically obtained first order approximation for the
velocity from Eq. (7.92) with full simulation from TQT and the numerically obtained
integral from Eq. (7.76). The only numerical input we need for the analytical solution
is the initial wave function at kωD , which is φ0(kωD). In the simulation (black solid
line), the velocity expectation value of a Gaussian wave packet centered around
some k0 such that κ0 = ~vFk0/M0 = 0.4 with k-space width ∆k = 0.1k0 is plotted
as a function of time. The parameters of the time-dependent mass potential are
M̃ = 0.01M0 and ωD = 1.01ΩZB

k0
. The additional data in Fig. 7.5 are obtained from

perturbation theory. The red dashed line is obtained by numerical integration of
Eq. (7.76), which matches the simulation quite well, as already shown in Fig. 7.4(a).

The important statement of Fig. 7.5 is to show that despite all the approxima-
tions made during its derivation, Eq. (7.92) (purple line) is a good estimate for the
actual first order correction of the velocity (brown line). The only difference is a
small change is a slight phase change of the oscillation with constant frequency, and
a very small change in amplitude.

To conclude this section, we want to highlight again the most important result,
which is that time-dependent perturbation theory in first order predicts that there
is an infinitely long lived mode of the ZB with the driving frequency ωD, whose
amplitude can be estimated by the analytical formula given in Eq. (7.92). This long
lived mode is confirmed numerically for small perturbation amplitudes M̃ .

One last comment is that the behavior from first order perturbation theory for
a time-dependent mass potential is fundamentally different to a time-dependent
vector potential, which was considered by [140]. First of all, their results still show
a decaying ZB. Moreover, in contrast to our results, their numerical investigations
match the perturbation theory only for rather short times. However, with their
choice of parameters, their perturbation strength is comparable to energy of the
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wave packet in the case without perturbation, such that it is not surprising that
perturbation theory is not valid anymore.

In the next sections, we want to investigate a broader parameter regime, to see
for instance whether a multimode ZB is appearing.

0 20 40 60 80 100

ωDt/2π
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〈v̂
x
〉/
v F

44 46 48

Figure 7.5: Justification of approximations that entered the derivation of the analyt-
ical formula for 〈v̂〉 of Eq. (7.92) in first order time-dependent perturbation theory.
The ZB of a wave packet obtained by simulation (black), 0th+1st order of perturba-
tion theory (red), only 1st order (brown) and the analytical resonant approximation
for the 1st order given by Eq. (7.92) (purple) are shown. The inlet shows a close-
up, to better compare the results. The pure analytical estimation (purple) matches
quite well the 1st order obtained by numerical integration (brown), up to small
changes in phase and minor changes for the amplitude. The constant vertical offset
compared to the simulation is just because 0th order is not incorporated to avoided
a too crowded plot.

7.4.2 Rotating wave approximation

The rotating wave approximation (RWA) is well-known and often used in atomic
optics to simplify the interaction between atoms, i.e. few level systems, and a laser-
field. It can be applied for low intensities of the driving field, if its frequency is in
resonance with one of the level spacings. In that case, all high frequency terms in
the Hamiltonian average out on physical time scales and only the in-resonant terms
survive [144]. In a two-level system, it is used to derive the famous Rabi oscillations
for instance. Although we consider two bands, the system is for any arbitrary k
effectively a two-level system as long as k is conserved, i.e. for homogeneous pulses.

In our case, the conditions for the RWA are that M̃ is small compared to the
other energy scales in the system and that ωD ≈ ΩZB

k . In this derivation, we will

128



7.4. Time-dependent zitterbewegung in graphene

consider only a single k-mode, since the ZB of a wave packet is then given by a
weighted superposition, according to Eq. (7.18). This subsection follows the strategy
of Ref. [140], where a time-dependent vector potential is considered instead of the
time-dependent mass potential.

We use a similar time-dependent Hamiltonian as before in Eq. (7.45), but rewrite
it slightly

H = ε(k)nk · σ + M̃ cos(ωDt), (7.93)

where we assume a cosine-oscillation instead of the above used sine, which is not
supposed to make a relevant difference. The time-independent part is

Hstatic := ε(k)nk · σ =

~vFkx
~vFky
M0

 . (7.94)

Here, ε(k) = M0

√
1 + κ2 is the energy of the time-independent Hamiltonian as in

Eq. (7.46). The normalized vector nk can be expressed in spherical coordinates by

nk =

cos γk sinϑk

sin γk sinϑk

cosϑk

 , (7.95)

where the azimuthal angle is denoted by γk = arctan−1 ky
kx

as in the rest of the thesis,

and the polar angle is ϑk =
(
π
2
− arctan−1 M0

~vF k

)
.

The goal is first to approximate the time evolution |ψ(t)〉 of an initial state |ψ(0)〉
and use it to calculate the ZB, i.e. 〈v̂〉(t). In the preceding section, this was done
in perturbation theory, but now, we want to use the rotating wave approximation
(RWA).

The first step is to make the time-independent part diagonal using an unitary
transformation SRWA, which rotates around mk = (sin γk,− cos γk, 0) in pseudospin-
space by ϑk:

SRWA = e−i
ϑk
2
mk·σ. (7.96)

As a consequence, the time-dependent Hamiltonian (∼ M̃σz) is not diagonal any-
more, as visualized in Fig. 7.6, where the rotations in the Bloch sphere due to the
transformation SRWA are shown. The important changes of the operators in pseu-
dospin space are due to geometrical considerations

SRWAnk · σS†RWA = σz, (7.97)

SRWAσzS
†
RWA =

−nx−ny
nz

 · σ =: n′k · σ, (7.98)

which can be verified also by calculations. Thus, the Schrödinger equation trans-
forms to

i~
∂

∂t
ψRWA
k (t) =

(
ε(k)σz + M̃ n′k · σ cos(ωDt)

)
ψRWA
k (t), (7.99)
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ŷ

ẑ

x̂

m̂
k

n̂′k

ϑ
kϑk

SRW
A
σ z
S
†
RW

A
S

RW
AH

staticS †
RW

A

n̂k

Figure 7.6: Visualization of the transformation used in RWA, SRWA, to make the
static part of the Hamiltonian diagonal (i.e. ∼ σz). We choose k = (k, 0), i.e. γk = 0,
such that the direction of the stationary Hamiltonian n̂k (compare Eq. (7.94)) is in
the x-z-plane. The transformation SRWA rotates around m̂k (here (0,−1, 0)) by ϑk

as indicated by the purple dashed arrow, such that the static Hamiltonian becomes
diagonal. Consequently, the initially diagonal driving with amplitude M̃ is rotated
away from the z-axis (orange dashed arrow) to n̂′k, which is directly related to n̂k

as in Eq. (7.98).

where ψRWA
k (t) = SRWAψk(t) is the transformed state. To cancel the time inde-

pendent part in the Hamiltonian, we use the following ansatz in the transformed
Schrödinger equation

ψRWA
k (t) =

(
a1(t)e−

i
~ ε(k)t

a2(t)e+ i
~ ε(k)t

)
. (7.100)

Note that the coefficients a1 and a2 depend in general on k. However, in order not
to overload the denotation, we omit all labels k henceforth in the derivation.

The ansatz in Eq. (7.100) leads to a set of differential equation for the coefficients
a1 and a2

i~
∂

∂t

(
a1(t)
a2(t)

)
= M̃ cos(ωDt)

(
nz

(
a1(t)
−a2(t)

)
+

(
a2(t)(n′x − in′y) e+2 i~ ε(k)t

a1(t)(n′x + in′y) e−2 i~ ε(k)t

))
,

(7.101)
where n′x and n′y are the components of n̂′k defined in Eq. (7.98).

Up to now, the transformations have been exact and the rotating wave approxi-
mation enters after expanding the cosine

cos(ωDt) = 1/2(eiωDt + e−iωDt). (7.102)

In the RWA, we consider the resonant case ωD = 2ε(k)/2~ and we neglect ev-

ery fast oscillating term in Eq. (7.101), which is proportional to e±i(2
ε(k)
~ +ωD)t or

e±iωDt, because they are supposed to cancel on physically relevant time scales. The
only non-neglected, slowly oscillating terms are those which are in-resonance, i.e.
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e±i(2
ε(k)
~ −ωD)t, and thus, Eq. (7.101) simplifies to

iȧ1 =
a2

2

M̃

~
(n′x − in′y) e+ i

~∆t, (7.103)

iȧ2 =
a1

2

M̃

~
(n′x + in′y) e−

i
~∆t, (7.104)

with ∆ = 2ε/~− ωD. Note that this approximation is in general less accurate than
the one used by Rusin in Zawadzki [140], since in their considered case no terms
with frequency ωD have to be neglected but only neglect terms with frequency
(ωD + 2ε(k)/~) which are of higher frequency than ωD.

Next, we decouple the coupled set of differential equations in Eqs. (7.103) and
(7.104), e.g. by taking the derivative of one of them a second time and insert the
other one:

ä1 = +i∆ ȧ1 −
M̃2

4~2
n2
xya1, (7.105)

ä2 = −i∆ ȧ2 −
M̃2

4~2
n2
xya2, (7.106)

where we defined

n2
xy := n2

x + n2
y = (n′x)

2 + (n′y)
2 = ~2v2

Fk
2/(M2

0 + ~2v2
Fk

2) = κ2/(1 + κ2). (7.107)

Since Eqs. (7.105) and (7.106) resemble the differential equation for a harmonic
oscillator, we choose the ansatz

ai(t) ∼ eiΩ
±
i t (7.108)

to find the two linearly independent solutions of both Eq. (7.105) and Eq. (7.106).
The resulting frequencies are

Ω±1 =
1

2
(∆± ωR) , (7.109)

Ω±2 =
1

2
(−∆± ωR) , (7.110)

with the Rabi-like frequency defined as

ωR =
√

∆2 + n2
xyM̃

2/~2. (7.111)

Using a linear superposition of the independent solutions of ai(t) and insert them
into Eq. (7.100), the time evolution of the wave function becomes

ψRWA
k (t) =

(
A+e−i

ωD+ωR
2

t + A−e−i
ωD−ωR

2
t

B+ei
ωD+ωR

2
t +B−ei

ωD−ωR
2

t

)
. (7.112)

Note that the amplitudes A± and B± depend on the considered k-mode. Since
the amplitudes B± are directly related to A± via the coupled differential equations
(7.105) and (7.106),

B± = A±
~
√

1 + κ2

M̃κ
eiγk (∆± ωR) , (7.113)
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the wave function of Eq. (7.112) becomes

ψRWA
k (t) =

(
αRWA
k (t)
βRWA
k (t)

)
=

(
A+e−i

ωD+ωR
2

t + A−e−i
ωD−ωR

2
t

~
√

1+κ2

M̃κ
eiθk

[
A+ (∆ + ωR) ei

ωD+ωR
2

t + A− (∆− ωR) ei
ωD−ωR

2
t
]) ,
(7.114)

where the amplitudes A± are given by the initial condition.
Now that we know the time-evolution of a k-mode, we can calculate the expec-

tation value of the velocity, which will show some ZB. Let us start with the perpen-
dicular velocity v̂⊥ = vFσ⊥, which is by definition parallel to m̂k (axis of the rota-
tion), because it has to be in the x-y-plane and perpendicular to k. Therefore, the
σ⊥ = m̂k ·σ and the transformation SRWA keeps σ⊥ unchanged: SRWAσ⊥S

†
RWA = σ⊥

for geometrical reasons (compare Fig. 7.6), so that

〈ψ | σ⊥ | ψ〉 = 〈ψRWA | σ⊥ | ψRWA〉. (7.115)

Without loss of generality, we can assume that k = (k, 0)T , i.e. γk = 0, and therefore
σ⊥ = σy, up to a non-relevant sign factor, yielding

〈v̂k⊥〉 = vF 〈ψRWA
k | σy | ψRWA

k 〉 = vF2Im
{

(αRWA
k )∗βRWA

k

}
. (7.116)

The result of the product (αRWA
k )∗βRWA

k is

(αRWA
k )∗βRWA

k =
~
√

1 + κ2

M̃κ

{
|A+|2(∆ + ωR)ei(ωD+ωR)t+

+ |A−|2(∆− ωR)ei(ωD−ωR)t + 2∆ Re
(
A∗+A−eiωDt

)
+ 2iωR Im

(
A∗−A+e−iωDt

)}
,

(7.117)

which will be also needed later for the parallel ZB. With Eq. (7.117), the perpen-
dicular ZB of a given k-mode becomes

〈v̂k⊥〉 =vF
~
√

1 + κ2

M̃κ

{
|A+|2(∆ + ωR) sin ((ωD + ωR)t)

+ |A−|2(∆− ωR) sin ((ωD − ωR)t) + 2ωR Im
(
A∗−A+e−iωDt

)}
. (7.118)

The main result is that the perpendicular ZB oscillates with three different frequen-
cies: ωD, ωD ± ωR, which is different to Rusin and Zawadzki [140], who obtained
only the frequencies ωD ± ωR in the case of a time-dependent vector potential. We
stress this point, because the mode oscillating with the driving frequency ωD will
become important in the long-time behavior of the ZB in Sec. 7.4.5. Although not
shown here, the static case can be derived from Eq. (7.118), e.g. by taking the limit
M̃ → 0.

Similarly, the parallel ZB 〈v̂k‖ 〉 can be obtained

〈ψk | v̂k‖ | ψk〉 = vF 〈ψRWA
k | SRWAσ‖S

†
RWA | ψ

RWA
k 〉. (7.119)
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Here, an important difference is that the according Pauli matrix in v̂k‖ = vFσ ·k/|k|
change due to the transformation SRWA and get an out-of-plane component, which
yields due to geometrical considerations (compare Fig. 7.6)

SRWAσ‖S
†
RWA = σ‖ cosϑk + σz sinϑk =

σ‖√
1 + κ2

+
σz κ√
1 + κ2

. (7.120)

Using again, without loss of generality, k = (k, 0)T , i.e. σ‖ = σx, the individual
terms are

〈ψRWA
k | σx | ψRWA

k 〉 = 2Re
{

(αRWA
k )∗βRWA

k

}
, (7.121)

〈ψRWA
k | σz | ψRWA

k 〉 = |αRWA
k |2 − |βRWA

k |2, (7.122)

which yields after trivial calculations

〈v̂k‖ 〉 =
~vF
M̃κ

{
|A+|2(∆ + ωR) cos ((ωD + ωR)t) + |A−|2(∆− ωR) cos ((ωD − ωR)t)

+ 2∆ Re
(
A∗+A−eiωDt

)}
+ 4vF cos(ωRt)Re

{
A∗+A−

}
+ const. (7.123)

Thus, the parallel ZB oscillates even with four different frequencies: ωD, ωD ± ωR
(from 〈σx〉) and ωR (from 〈σz〉). Compared again to Rusin and Zawadzki [140], they
only obtain a single parallel mode with frequency ωR, which is very likely due to the
fact that they only consider pristine graphene, where no parallel ZB is expected in
the static case. Again, the mode with frequency ωD found here will be important
for the long-time behavior.

To conclude this subsection, let us compare the found results with the ones
obtained by perturbation theory. Although they are in a similar regime (small
M̃ and ωD ' ΩZB

k , because else, there is no ZB in perturbation theory), RWA is
richer in the sense that it predicts multimode ZB both perpendicular and parallel
to the initial propagation direction, with three, respectively four, frequencies. The
analytical results of this section will be tested by simulation in Sec. 7.4.4.

7.4.3 High driving frequency

In this subsection, we want to investigate the ZB for very high driving frequencies
ωD, i.e. ~ωD � M̃,M0, to extend the region where we can give analytical estimates.
The derivation is similar to RWA with a different initial transformation, such that the
time-dependent part of the Hamiltonian is diagonal and follow again the strategy
of Ref. [140]. In our case, it is already diagonal and thus, the transformation in
pseudospin space is not needed. Otherwise the strategy is the same, which is why
we shorten the derivation considerably. The eager reader should be still able to
recover the results with the help of Subsec. 7.4.2.

We start from the same Hamiltonian of Eq. (7.93) as in the previous subsection.
This time, we use an ansatz to cancel the terms proportional to σz in the Schrödinger
equation

ψk(t) =

(
b1(t)e−

i
~
∫ t
0 dt′M(t′)−iω0t

b2(t)e+ i
~
∫ t
0 dt′M(t′)+iω0t

)
, (7.124)
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with ω0 = M0/~, which results again in a set of coupled differential equations for
the coefficients bi

iḃ1 = vF (kx − iky) b2 e
−2i M̃

~ωD
sin(ωDt)−2iω0t, (7.125)

iḃ2 = vF (kx + iky) b1 e
+2i M̃

~ωD
sin(ωDt)+2iω0t. (7.126)

The approximation of the HDF is to set e
±2i M̃

~ωD
sin(ωDt) ≈ 1, due to the fact that

~ωD � M̃ . This estimate is applied to solve the set of differential equations analyt-
ically. Below, higher orders in M̃

~ωD
will be used, which is a small inconsistency for

the sake of getting an analytical solution at all. Decoupling Eqs. (7.125) and (7.126)
the same way as for the RWA, the above mentioned approximation yields

b̈1 = i2ω0ḃ1 − v2
Fk

2b1, (7.127)

b̈2 = −i2ω0ḃ2 − v2
Fk

2b2, (7.128)

which again resembles the differential equation of a harmonic oscillator. To find the
linear independent solutions for both Eqs. (7.127) and (7.128), we use the ansatz
bi(t) ∼ eiΩit, which yields the frequencies

Ω±1 = ω0

(
1±
√

1 + κ2
)

= ω0 ±
ΩZB

k

2
, (7.129)

Ω±2 = ω0

(
−1±

√
1 + κ2

)
= −ω0 ±

ΩZB
k

2
. (7.130)

Just as in the RWA section, the amplitudes which are related to the frequencies Ω±1
and Ω±2 , depend on each other due to the set of coupled differential equations in
Eqs. (7.125) and (7.126). The time evolution of a k-mode thus becomes

ψHDF
k (t) =

(
αHDF
k

βHDF
k

)
=

[D+eiΩ
ZB
k t/2 +D−e−iΩ

ZB
k t/2

]
e
−i M̃

~ωD
sin(ωDt)[

F+eiΩ
ZB
k t/2 + F−e−iΩ

ZB
k t/2

]
e

+i M̃
~ωD

sin(ωDt)



=


[
D+ei

ΩZB
k
2
t +D−e−i

ΩZB
k
2
t

]
e
−i M̃

~ωD
sin(ωDt)

− eiγk
2vF k

[
D+

(
2ω0 + ΩZB

k

)
ei

ΩZB
k
2
t +D−

(
2ω0 − ΩZB

k

)
e−i

ΩZB
k
2
t

]
e

+i M̃
~ωD

sin(ωDt)

 ,

(7.131)

where D± are the amplitudes of the harmonic ansatz and correspond to the A±
in the previous subsection about RWA. Thus, they can be obtained by the initial
conditions, i.e. the initial pseudospin structure of the considered mode.

To calculate explicitly the perpendicular and parallel ZB, let us assume without
loss of generality that k = (k, 0)T , i.e. γk = 0, and thus

〈vk⊥〉 = vF 〈ψHDF
k | σy | ψHDF

k 〉 = 2vF Im
{

(αHDF
k )∗βHDF

k

}
, (7.132)

〈vk‖ 〉 = vF 〈ψHDF
k | σx | ψHDF

k 〉 = 2vFRe
{

(αHDF
k )∗βHDF

k

}
. (7.133)

The product (αHDF
k )∗βHDF

k yields

134



7.4. Time-dependent zitterbewegung in graphene

(αHDF
k )∗βHDF

k =− e
+i M̃

~ωD
sin(ωDt)

2vFk

(
|B+|2(2ω0 + ΩZB

k ) + |B−|2(2ω0 − ΩZB
k )

+ 4ω0Re
{
B+B

∗
−eiΩ

ZB
k t
}

+ ΩZB
k 2i Im

{
B+B

∗
−eiΩ

ZB
k t
})

. (7.134)

By expanding e
+i M̃

~ωD
sin(ωDt) ≈ 1 + i M̃

~ωD
sin(ωDt), we get the following expectation

value of the velocity operator perpendicular to the propagation direction

〈vk⊥〉 =− 1

k

(
const + 2ΩZB

k Im
{
B+B

∗
−eiΩ

ZB
k t
})

− 4 M̃

k~ωD
ω0 sin(ωDt) Re

{
B+B

∗
−eiΩ

ZB
k t
}
, (7.135)

and for the parallel direction

〈vk‖ 〉 =− 1

k

(
const + 4ω0Re

{
B+B

∗
−eiΩ

ZB
k t
})

+
2 M̃

k~ωD
ΩZB

k sin(ωDt) Im
{
B+B

∗
−eiΩ

ZB
k t
}
. (7.136)

In both cases, one frequency of the ZB terms is ΩZB
k as in static case. Moreover,

there are suppressed oscillations of the orderO(M̃/(~ωD)) with frequencies ωD±ΩZB
k .

Higher orders in the expansion of e
+i M̃

~ωD
sin(ωDt) will lead to additional frequencies

nωD ± ΩZB
k , because of

sinn(x) =
n∑
l=0

αl,n sin(lx), (7.137)

with αn,n 6= 0. However, these terms are again suppressed accordingly to n-th order
in M̃/(~ωD). The reason for this suppression and the survival of only the static
mode (ΩZB

k ) is that for very fast external perturbation, the electrons cannot follow
anymore and behave as if there was no extra field and only the static frequency
survives.

With this subsection, we finish the analytical calculations for the driven ZB in
graphene by a time-dependent mass potential. In the next subsections, we will
study numerically the behavior of the driven ZB and discuss it in terms of the found
analytical approximations.

7.4.4 Numerical results for the zitterbewegung frequencies

In this subsection, we want to compare the analytical results of RWA in Subsec. 7.4.2
and HDF in Subsec. 7.4.3 with the numerical data obtained by TQT. Thereto,
a Gaussian wave packet with the parameters ~vFk0 = 0.4M0 and k-space width
∆k = k0/10 is propagated in presence of the time-dependent mass potential. The
expectation value of the velocity is obtained by calculating the average position of
the wave packet at any discrete point in time and approximating its time-derivative
by the difference quotient. The static ZB frequency for the choice of parameters
yields ΩZB

k0
≈ 2.15M0/~.
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Figure 7.7: Extracting the ZB frequencies via a Fourier transformation of 〈v̂‖(t)〉 and
comparing them to analytical results of the RWA in Eq. (7.119). (a) The parallel
ZB is shown both, as a function of time (black) and its Fourier transform (blue),
i.e. as function of ω, for ωD = 2M0/~ and M̃ = 1.2M0. The inset shows a close-up
for larger times. Peaks appear in the Fourier transform at multiple integers of ωD
with satellite peaks with a distance of ωR (orange line at the first peak) away from
the major peaks. (b) The Fourier transformation of 〈v‖〉 is shown as a function of

the amplitude M̃ of the time-dependent mass term. The blue indicated line cut
is the function shown in panel (a) (illustrated by the blue arrow). The expected
frequencies from RWA, ωD, ωD±ωR and ωR are shown (red, solid), as well as higher
order terms in ωD (red, dashed). For smaller M̃ , up to M̃ ≈ 1.5M0 the RWA results
are recovered, but for larger M̃ , the RWA is not justified anymore. Furthermore,
the dependence of the parallel ZB on the driving frequency ωD is shown for fixed (c)
M̃ = 0.5M0 and (d) M̃ = 2.2M0. In (c) analytical results and simulations match
very well, whereas in (d) deviations are visible, which vanish for ~ωD � M0. In all
plots, the mean energy of the wave packet is Ek0 = 0.4M0, such that the static ZB
is ΩZB

k0
≈ 2.15M0/~.
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7.4. Time-dependent zitterbewegung in graphene

In Fig. 7.7(a), the simulation data of 〈v‖〉 is shown for rather high driving ampli-

tude M̃ = 1.2M0 at ωD = 2M0/~ as a function of time (black).1 In the beginning,
rather unregular behavior is visible which transitions after some time into a nicely
periodic oscillation. This is similar to first order perturbation theory of Sec. 7.4.1,
where initially present modes decay and only certain modes survive. The differ-
ence here is that the driving amplitude M̃ is here much higher, which results not
in oscillation with a single frequency, but with many frequencies (as can be seen in
the close-up, which is clearly not a single cosine). The reason for this behavior is
explained in the next subsection.

Moreover, the Fourier transform of 〈v‖(t)〉 is shown in Fig. 7.7(a) (blue) to be
better able to compare the frequencies of the driven ZB. Since the timeline is dis-
cretized, we use numerically the fast Fourier transform (FFT). In panel (a), we can
see that 〈v‖〉 is highly peaked at integer multiples n of ωD and smaller satellite peaks
appear at nωD ± ωR, close to the major peaks. To have a better overview over the
parameter dependencies, the Fourier transform of the velocity will be shown in den-
sity plots, where one vertical line corresponds to one simulation. The amplitude of
the ZB is color coded and on the remaining axis, either the driving amplitude M̃ is
varied (Fig. 7.7(b)) or the driving frequency ωD (panels (c) and (d)).

There, the fixed parameter is ωD = 2M0/~ and the amplitude M̃ of the time-
dependent mass term varies. the vertical blue line corresponds to the simulation
shown in panel 7.7(a), as indicated by the blue arrow. The ZB frequencies expected
from RWA are all present: ωD, ωD±ωR and ωR (lowest four red lines). But addition-
ally, higher frequencies emerge, which can be obtained by adding integer multiples
of ωD to the lower frequencies. Heuristically, this can be explained with the help of
perturbation theory: every higher order adds another ±ωD to the existing frequen-
cies, because of the factor H1(t) ∼ sinωDt appears n times (compare Eq. (D.15) in
App. D). The fact that higher frequencies are occupied more and more for higher M̃
also suggests this explanation by perturbation theory. Another hint for the emer-
gence of frequencies that are nωD times higher than expected has been given in the
end of the HDF section, where modes of frequency nωD + ΩZB

k are more and more
suppressed for higher ωD. Also in panel 7.7(b), the modes are suppressed for higher
ωD, but the difference is that the simulated modes are not added to ΩZB

k but to the
expected modes from RWA, at least for small M̃ . However, it is not surprising that
the HDF does not yield the right frequencies in a regime, where it is not valid.

For higher M̃ & 1.5M0, strong deviations between RWA and simulation occur.
Again, this is expected, since RWA is only valid for small M̃ (compared to the other
energy scales in the system, e.g. M0, Ek0). There are some qualitative observation
in 7.7(b) for high M̃ , which we cannot explain analytically. At first glance the
deviations from RWA look somehow like an avoided crossing with a (more or less)
periodic structure (see also Fig. 7.8(e)), since for all modes, the horizontal lines
ω = nωD are crossed again at M̃ ≈ 3.8M0. However, the fact that far away from
the crossings, the analytical structure is not recovered, contradicts an usual anti-
crossing picture. On the other hand, the modes with frequency nωD are not altered
themselves. Since we will find later that they are the most relevant ones for the

1Here, 〈v‖〉 is discussed exemplarily, but similar results are obtained for 〈v⊥〉. For simulation
data of 〈v⊥〉, see Fig. 7.8(c) and (g).
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long-time behavior, this is an important result for us.
In panel (c), the parallel ZB measured by the velocity is shown as a function of ωD

and fixed M̃ = 0.5M0. Although M̃ not really small compared to M0, the frequencies
obtained by RWA (plus integer multiples of ωD) match the numerical ZB frequencies
for large enough ωD. For ~ωD �M0, a lot of frequencies appear such that it becomes
difficult to distinguish between individual modes. In the opposed limit, the only
mode which does not vanish for ~ωD � M0 is the one with the frequency of the
static ZB: (ωR − ωD)

ωD→∞−−−−−→ ΩZB
k0

, as expected by HDF in Subsec. 7.4.3.

Panel (d) shows the same as (c) but with higher M̃ = 2.2M0, such that the RWA
is not justified anymore and deviations appear. The qualitative observation is that
the frequency of the ZB modes are by tendency shifted to smaller ωD and/or to
smaller (higher) ω for left(right)-curved modes in the diagram, but we do not have
an explanation for this behavior. On the other hand, for high ωD, the ZB frequencies
obtained in the HDF approximation are recovered. These are ΩZB

k0
and ΩZB

k0
± ωD,

where only the strength of the ΩZB
k0

does not diminish for high ωD. Although not yet
very well visible in the shown regime, the amplitude of the mode ΩZB

k0
± ωD indeed

declines for larger and larger ωD.
For the dependency of the ZB frequencies for a wider parameter regime, see the

panels on the left-hand side of Fig. 7.8 (the right-hand side panels will be discussed
in the next subsection). There, the panels show four additional plots of the emerging
ZB frequencies, both as a function of M̃ and ωD, both for the parallel and perpen-
dicular ZB, and both for M0 6= 0 and M0 = 0. The wave packet is the same as before
in Fig. 7.7. The normalization factor ω̃ = 2.5vFk0, is introduced because of the plots
where M0 = 0, and thus M0 cannot be used as normalization. For comparison, ω̃
is defined such that in the cases where M0 6= 0, ω̃ = M0/~, since ~vFk0/M0 = 0.4.
Qualitatively, the results are similar to the in-depth discussed cases of Fig. 7.7: for
small M̃ and not too small ωD, RWA yields the correct frequencies of the multimode
ZB. However, also ”higher harmonics“ in ωD, i.e. · · · + nωD frequency modes are
present.

In general, expected modes from RWA (plus integer multiples of ωD), which are
present in the simulations are visualized by red-dashed lines. Missing modes in the
simulations, regardless of whether expectedly or unexpectedly missing, are indicated
by dotted violet lines. The unexpected missing modes appear in the cases of M0 = 0
(panels 7.8(c) and (e)), where every second ωD-mode is missing – for v‖ only the
even modes, for v⊥ only the odd modes are present, which we cannot explain why.
The only expected missing mode is the one with frequency ωR in 〈v⊥〉 (see 7.8(c)
and (g)), which is not present in RWA (see Eq. (7.118)).

After this in-depth discussion of the emerging multimode ZB in graphene for
a driving mass potential, we want to turn in the next subsection to the (for us)
more important question of whether there exist modes which survive for a long
time (compare Fig. 7.7(a)), similar to Ref. [139] but now in graphene instead of a
two-dimensional electron gas with driven Rashba spin-orbit coupling.
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Figure 7.8: Infinitely long surviving modes of the ZB. The left column shows plots of
all appearing ZB modes whereas the panels on the right side show the modes which
survive a long time (as defined in the text). The emerging modes of the perpendicular
and parallel ZB 〈v⊥(ω)〉 and 〈v‖(ω)〉 obtained by simulation are shown as a function

either of the parameter ωD or M̃ . Furthermore, the gapless case M0 = 0 is shown in
panels (c), (d), (e) and (f). In the other cases, M0 = ~ω̃, such that ~vFk0/M0 = 0.4.
Analytically expected modes from RWA (red, dashed) as well as ”missing“ modes
(dotted violet) are indicated in the left panels. In general, the surviving modes are
the ones not depending on k, e.g. multiples of ωD or where ∂ωR/∂k = 0 (indicated
by the green dashed lines in (b) and (d)), which are thus weakly k-dependent.
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7.4.5 Long-time behavior of the zitterbewegung

In this subsection, we want to study the long-time behavior of the ZB in (gapped)
graphene driven by a harmonically oscillating mass gap. We hope to find infinitely
long surviving modes, since they are probably easiest to detect experimentally.First
order perturbation theory of Subsec. 7.4.1 predicts one infinitely-long lived mode
with frequency ωD, however we have also seen that for larger M̃ , deviations for the
first order appear in the simulations. Thus, we want to study numerically what
happens for larger perturbation M̃ .

From the simulation data, the frequencies of the long-terms ZB can be obtained
easily. Instead of starting the Fourier transformation at t = 0 to go from time
to frequency space, we begin at a later time to avoid capturing the frequencies of
the fast-decaying modes. Theoretically, we could use the analytical approximation
for the static decay time T ∗2 from Eq. (7.32). However, since the amplitude of
the decaying modes are still around 30%-40% at T ∗2 , and because we consult TQT
anyway, we can use directly its simulation data for the static decay times to choose an
appropriate starting time of the Fourier transformation. Here, we choose a starting
time, where the relative amplitude of the ZB in the time-independent setup has
decreased to less than 5% in both 〈v‖〉 and 〈v⊥〉 (if both are present) and we denote
this time by t0.05 > 0. Considering the plots of the static Subsec. 7.3.1 and 7.3.2,
e.g. Fig. 7.2, we expect t0.05 ≈ 2T ∗2 .

In Fig. 7.8, the frequency spectrum of the ZB using a Fourier transformation
starting from t = 0 (left panels) is compared to the Fourier transformation starting
at t0.05 (right panels), i.e. the long-term ZB, for several parameter combinations.
The actual simulation is the same on both sides, but only the time changes, from
which on the existent frequencies are obtained. The wave packet is again the same
Gaussian as in the two preceding subsections. Since we deal with the case M0 = 0,
we cannot use the familiar normalization relative to M0. Instead, we introduce the
normalization ω̃ = 2.5vFk0 as in Subsec. 7.4.4, which corresponds to ~ω̃ = M0 in
the cases with M0 6= 0.

The first thing to notice on the right-hand side panels of Fig. 7.8 is that some
branches drop out completely, some remain unchanged and others survive only in
small parameter regime. To be able to explain this, we remind the reader of the
static sections, where we showed that the decay of the ZB is due to the different fre-
quencies of the different k-modes in the wave packet and the consequential dephasing
(compare Fig. 7.1). Vice versa, that means that ZB modes that are k-independent,
are supposed to survive, since no dephasing happens.

Consulting the analytical approximations of RWA and HDF, we find that the
only k-independent ZB mode has the frequency ωD. Indeed in all plots, modes with
frequencies that are (integer multiples) of ωD are unchanged in the long-time limit
for all shown cases. Theses are the only modes, which completely survive in the
long-time case.

The fact that mostly integer multiples of ωD survive might explain the strange
shape of the timeline of the long lived ZB in Fig. 7.7(a) in the previous section, which
suggests long-lived modes (see close-up) but with several frequencies. The strangely
regular shape of the long-term oscillation might be due to the fact that mostly
modes with multiple integers of ωD survive, which corresponds to a discrete Fourier
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7.4. Time-dependent zitterbewegung in graphene

transformation. A discrete Fourier transformations generates a periodic structure
in the timeline, in our case with frequency ωD, that is possibly strangely regular –
for a periodic box for instance, it is f(t) ∝

∑∞
k=1 sin((2k − 1)ωt)/(2k − 1).

Coming back to Fig. 7.8, we see that from other modes, only some minor parts
survive. These are the parts that are locally independent of k, i.e. changing k a bit
does not affect the frequencies of the ZB. Thus, the corresponding frequencies of
the ZB need to have horizontal tangents as a function of k. The only k-dependent
frequency obtained in RWA is ωR (plus integer multiples of ωD), which is why we

want to find the positions where ∂ωR/∂k
!

= 0:

∂ωR
∂k

= 0⇔ −M0ωD + ΩZB
k M0 +

M̃2

2
√

1 + κ2
3 = 0. (7.138)

To use it in panels (b),(d) of Fig. 7.8, where the ZB is shown as a function of ωD,
we solve Eq. (7.138) for ωD

ωcrit
D = ΩZB

k

(
1 +

M̃2

4M2
0

1

(1 + κ2)2

)
, (7.139)

which is indicated by green dashed line for the given wave packet in the according
panels. Since any k-dependence of the frequency of every mode is because of ωR,
every mode intersecting with the green line should survive. In panel (b), this is
indeed the case. Note that not only the exact ωcrit

D survives, but an extended region
(left and right of green line). Choosing longer and longer times, these regions are
supposed to shrink more and more.

In panel (d) on the other hand, the green line does not fit at all. The reason is that
since here (M0 = 0) and thus the expected horizontal tangent is at ωcrit

D = 0.8ω̃ =
2vFk0, which is much smaller than in the case of panel (b), where ωcrit

D ' 2.75ω̃.
However, we know that for smaller ωD, our analytical approximation do not match
anymore (see Subsec. 7.4.4), which is why the expected green line is far away from
the actual surviving modes at ωcrit

D = 1.25ω̃. A similar feature occurs in panel (b)
for smaller ωD. There, additional surviving (i.e. k-independent modes) pop up (e.g.
ωD = 1.2ω̃), which we cannot explain in our approximations.

The only other partly surviving modes can be seen in the M̃ -dependency plots
of panels (f) and (h). There, the modes with ω = nωD survive, as discussed above,
but also the other modes close to the crossings with the horizontal lines ω = nωD
survive. Since those are not explained by our analytical approximations, as dis-
cussed in the previous subsection, we can investigate their k-dependence only nu-
merically. Thereto, we simulate the propagation of wave packets with different
initial energies. So far, the propagated Gaussian wave packet is centered around
k0 = (0.4ω̃/vF , 0)T with a k-space width of ∆k = k0/10 = 0.04ω̃/vF . To find out
the k-dependence of the ZB modes, we simulate now two wave packets centered
around 〈k〉 = k0 ± (∆k, 0)T instead. If the position of the modes do not change in
the diagrams, they are not k-dependent and are supposed to survive. On the other
hand, if the frequencies of the modes do change, they are k-dependent and should
therefore dephase. In Fig. 7.9, the data of these additional simulations are shown, i.e.
wave packets of different initial energy are propagated, in a much smaller parameter
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Figure 7.9: Explanation why the modes at the crossing (ω ≈ nωD) survive in
Fig. 7.8(f) and (h). The parallel velocity |〈v‖(ω)〉|2 is shown as a function of M̃
for M0 = 0 and ωD = 1.5ω̃, for two different energies with k = 0.36ω̃/vF (in (a) and
(c)) and k = 0.44ω̃/vF (in (b) and (d)). The frequency of the ZB is quite independent
at the crossings, i.e. (a) and (b) are very similar, whereas away from the crossing,
it is energy dependent, i.e. (c) and (d) differ. Since only energy-independent modes
survive as discussed in this section, only the crossings can be seen after a long time
(Fig. 7.8(f) and (h)).

regime than before. Here, the parameters are M0 = 0 and ωD = 1.5ω̃. Panels (a)
and (b), show the ZB modes at the crossing of the horizontal line ω = 4.5ω̃ = 3ωD,
for different initial energies, whereas panels (c) and (d) depict the region away from
those crossings. Since the position of the crossing at M̃ ≈ 4.1~ω̃ does not consider-
ably change, whereas away from the crossing, the position change of the modes is
visible with the naked eye, the crossings are rather k-independent over the width of
the wave packet, whereas the region away from the crossing are k-dependent. This
is reflected in the long-time behavior, where the crossings survive and the other
regions decay over time.

In conclusion, we have studied in this subsection the long-time behavior of the
ZB, which shows persistent ZB modes. In all cases, the reason for the survival is
the k-independence of these modes, such that they do not dephase as opposed to
the static case discussed in previous sections.
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7.4.6 Summary and discussion of the driven zitterbewegung

To finish the section of the time-dependent ZB, let us summarize the results and
discuss them with respect to the literature, especially Refs. [139,140]. In this section,
we investigated the effects of a harmonic driving potential (∝ σz) on the ZB in
gapped graphene, where the case of pristine graphene can be obtained from our
results using M0 = 0. First, we used first order time-dependent perturbation theory,
which states that the ZB of only those k-modes survives, which have (in the static
case) the same frequency as the driving frequency, see Eq. (7.92). This is verified
by simulations for small driving amplitudes M̃ .

Furthermore, we used the strategy of Rusin and Zawadzki [140], to obtain ana-
lytical approximation in the rotating wave approximation (RWA) and in the limit of
Fhigh driving frequencies (HDF), which yield a multimode ZB, and are compared
to the results of simulation in Subsec. 7.4.4. Within their regime of validity, the
analytical approximations yield the correct results except for the fact that higher
order in ωD appear, which can be motivated by perturbation theory.

In Subsec. 7.4.5, the long-term behavior of the ZB is studied, with the result that
k-independent modes are persistent, i.e. that they survive for all times. Since the
decay of the ZB in the static case is due to the k-dependence of the ZB frequency,
this result is easily conceivable. These persistent modes are a significant difference to
the case of a time-dependent vector potential in graphene as discussed in Ref. [140].
They find a similar multimode ZB, with the difference that no k-independent mode
appears, which is in our case a ZB mode with the same frequency as the driving
frequency ωD. Although their ZB is prolonged by the driving, it still decays over
time. Thus, we propose in our setup the (as far as we know) first persistent ZB
modes in graphene with a driving potential.

Note that earlier, persistent modes driven by a time-dependent Rashba spin orbit
coupling have been proposed in a two-dimensional electron gas [139]. Although they
investigate their existence and features like the amplitude dependence thoroughly,
they do not discuss in detail the origin of the persistent mode, which is in our case
the k-independence.

7.5 Echoes of the zitterbewegung using the QTM-

protocol

7.5.1 Analytical prediction of the echo strength

As mentioned in Sec. 7.2, the decay of the ZB of wave packets in the static case
stems from the spatial separation of the two sub-wave packets in the two bands until
they do not interfere anymore [142]. In the previous section a periodic modulation
of mass gap is used to circumvent the decay of ZB and generate persistent modes.
Vividly, the driving potential leads continuously to transitions from one band to the
other such that there is always a spatial overlap of counter propagating modes and
thus, the ZB can survive.

In this section, we want to use an alternative way to bring the two sub-wave
packets back together, which has been used in the rest of the thesis: the quan-
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tum time mirror (QTM). Parts of both sub-wave packets are made to switch their
propagation direction such that they move back to their initial position and overlap
again so that they can interfere. In the physical picture of the decay due to sepa-
rating wave packets, this is supposed to yield an echo of the initial ZB. Thus, let us
have a closer look to the theory, e.g. to compare the echo strength C(techo), used in
Chaps. 3-5, with the relative change of the amplitude of the ZB.

To distinguish clearly from the last section, we want to stress that now, the
time-dependent part of the Hamiltonian acts only very shortly, meaning that we use
a pulse to induce the echo, instead of the sinusoidal modification of the previous
section:

H = H0 +Hpulse(t), (7.140)

where we choose again a mass pulse

Hpulse(t) = Mσzf(t). (7.141)

For analytical reasons, the time-dependence f(t) of the pulse is the same as in
Chaps. 3, 4 and 5, i.e. it is immediately switched on at t0 for a (short) duration ∆t.

From Sec. 3.1, we know the action of the pulse on an initial eigenstate, which is

|ϕk,s〉 = Bs(k,∆t)|ϕk,s〉+ As(k,∆t)|ϕk,−s〉. (7.142)

In the considered case of (gapped) graphene, the transition amplitude is independent
of s and we write A ≡ As. For the echo, only the part which switches band, i.e.
proportional to the transition amplitude A, is important since it propagates in the
opposite direction whereas the other part (∝ Bs) keeps on moving in the same
direction. Therefore, only the ”reflected“ part will be considered after the pulse.

We assume a general initial wave packet

|φ0〉 =
∑
k

φ0(k)|φk
0 〉 =

∑
k

φ0(k)
(
α+
k |ϕk,+〉+ α−k |ϕk,−〉

)
, (7.143)

with |α+
k |2+|α−k |2 = 1. Let us denote the essentially reflected part of the wave packet

by |φecho〉 and neglect the ongoing part, as mentioned above. Since the propagation
before and after the pulse are trivial, |φecho〉 becomes at some time t′ = t1 + t0 + ∆t
after the pulse

|φecho(t′)〉 =
∑
k

φ0(k) |φk
echo(t′)〉

=
∑
k

φ0(k)
∑
s=±1

αske−iωk,st0 A(k,∆t) e−iωk,−st1 |ϕk,−s〉, (7.144)

because before the echo, the kinetic phase is given by its energy Ek,s = ~ωk,s, then
the pulse acts yielding A(k,∆t) and finally after the pulse, the accumulated phase in
time t1 is governed by Ek,−s = ~ωk,−s (for the echo part), since the state changed the
band. Note that due to the homogeneous pulse, the momentum k is not changed.
Thus, the amplitude in k-space, φ0(k), remains unchanged.

Now, we want to investigate the ZB. Therefore, we compare the expectation
value of the velocity operator before and after the pulse. For simplicity, let us first
consider only a single k-mode. Before the pulse, it is given by Eq. (7.8) of Sec. 7.2:
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〈v̂ZB
i,k 〉(t < t0) = 2 Re{α+

k (α−k )∗ e−iΩ
ZB
k t 〈ϕk,− | v̂i | ϕk,+〉}

= 2|α+
k | |α

−
k | |〈ϕk,− | v̂i | ϕk,+〉| cos

(
ΩZB

k t+ ϕk + νi,k
)
, (7.145)

where i ∈ {x, y} denotes the direction, with the already defined static frequency of
the ZB ΩZB

k = (Ek,+ − Ek,−)/~ and the phases

ϕk = − arg
(
α+
k (α−k )∗

)
, (7.146)

νi,k = − arg (〈ϕk,− | v̂i | ϕk,+〉) . (7.147)

After pulse, at time t′ = t1 + t0 + ∆t, and considering only the ”reflected“ parts of
the wave packet |φecho〉, we get similarly with the help of the time evolution shown
in Eq. (7.144):

〈v̂ZB
i,k 〉(t′) = 2|A(k)|2Re

{
α+
k (α−k )∗ e−iΩ

ZB
k (t0−t1) 〈ϕk,+ | v̂ | ϕk,−〉

}
= 2|A(k)|2 |α+

k | |α
−
k | |〈ϕk,− | v̂i,k | ϕk,+〉| cos

(
ΩZB

k (t0 − t1) + ϕk − νk
)
, (7.148)

with the phases ϕk and νk as in Eqs. (7.146) and (7.147). The amplitude is the
same as before the pulse, except for |A(k)|2, which is due to the fact that only the
”reflected“ part of the wave packet contributes to the ZB. Another difference is the
sign of the phase νi,k due to the fact that after the pulse αsk is coupled to |ϕk,−s〉
as opposed to before the pulse. Thus, we have 〈ϕk,+|v̂i,k|ϕk,−〉 = 〈ϕk,−|v̂i,k|ϕk,+〉∗,
which is equivalent to changing the sign of the phase. For gapless graphene, the
matrix element 〈ϕk,−|v̂|ϕk,+〉 is purely imaginary (see App. B) and therefore it
leads to a phase jump of π, which does not affect the amplitude of the ZB.

The most important difference for the echo is the time-dependence of the cosine.
The time-dependent phase, which has accumulated before the pulse in time t0 is
now continuously removed by t1(=time after the pulse) until at t1 = t0, the initial
phase is recovered. The important point is that this happens for any k-mode in the
same way, such that all modes rephase simultaneously.

Let us consider now the ZB of a wave packet instead of a plane wave. The
derivation is exactly the same as in Sec. 7.2 for Eq. (7.18) leading to

〈v̂ZB〉(t′) =

∫
d2k |φ0(k)|2 〈v̂ZB

k 〉(t′). (7.149)

Thus, all implications of the static ZB in Sec. 7.2 also apply here. For instance, the
decay of the static ZB has been due to the k-dependence of the term cos(ΩZB

k t) which
makes the integral in Eq. (7.149) vanish at large t due to fast oscillations (compare
Fig. 7.1). However, after the pulse, the according term is cos(ΩZB

k (t0 − t1)). As
discussed above, dephasing is thus reverted after the pulse and an echo is expected
at t1 = t0, which means techo = 2t0 + ∆t, where all modes are in phase again and an
echo is expected.

The major difference is that only parts of every k-mode undergo the needed
transition according to A(k,∆t), which appears in the integral of Eq. (7.149) due
to 〈v̂ZB

k 〉(t′) of Eq. (7.148). For a highly peaked wave packet around some k0, such
that A(k) ≈ A(k0) over the width of the wave packet, the transition amplitude can
be approximately taken out of the integral (for calculation see Sec. 3.2), and the
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relative amplitude between initial amplitude Binitial and revived amplitude Brevived

of the ZB, denoted by ṽ, becomes

ṽ :=
Brevived

Binitial

≈ |A(k0)|2. (7.150)

Thus, we have shown that an echo of the ZB by the QTM mechanism is not only
possible, but also derived its approximate strength in Eq. (7.150). Indeed, the setup
is in some sense quite close to the spin echo. There, rotating spins whose signal is
lost due to dephasing are made to rephase again, leading to an echo of the initial
signal. Here, oscillating electron wave packets which dephase due to different ZB
frequencies of the individual k-modes are made to rephase by the QTM, which also
leads to an echo of the ZB.

We conclude this Sec. by making a final remark of rather technical nature. As
discussed above, since the complex number 〈ϕk,− | v̂ | ϕk,+〉 is purely imaginary in
graphene, i.e. its phase is νk = ±π/2 for any k, the pulse leads to a constant phase
jump of π which does not effect the amplitude of the echo. For a general system
on the other hand, the phase νk becomes k-dependent. Considering the cosine in
Eq. (7.148), this leads in general at t = 0 and t = t0 to different k-dependent phases:
cos (ϕk ± νk). In principle, this influences the amplitude of the ZB of a wave packet
due to the integral over k in Eq. (7.149). However this should in general not lead to
a further reduction of the ZB compared to the initial ZB – as long as the phases ϕk

and νk are unrelated. In that case the sign in ϕk ± νk does not make a qualitative
difference and we assume that the different k-dependent phases averages out.

An artificial exception would be for instance the case νk = ϕk. This is highly
unlikely, since these two quantities are independent – ϕk depends only on initial wave
packet, whereas νk only on unperturbed Hamiltonian and the velocity operator. In
this unrealistic case, the ZB at t = 0 is diminished because cos(ϕk + νk) ≤ 1 varies
and is truly smaller than 1 in most cases of k. On the other hand, the ZB at t1 = t0
is enhanced due to cos(ϕk−νk) = cos 0 = 1 for all k. Thus for a transition amplitude
close to one (|A(k)| . 1), the amplitude of the echo ZB could be even higher than
initially. However, this is a highly unlikely case, which is why we do not consider
it further. Instead, we forget about the effect νk, which is justified for narrow wave
packets in k-space, such that the νk ' νk0 over the width of the wave packet. In
the next section, we numerically investigate the existence of the echo of the ZB.

7.5.2 Numerical confirmation of the echo of the zitterbewe-

gung

In the previous subsection, we derived that the expected amplitude of the echo
of the ZB given by the transition amplitude, more precisely by |A(k0,∆t)|2, for
a narrow wave packet reciprocal space around k0. Here, we want to verify this
result by simulations using TQT. Since we know from Sec. 3.1 in Eq. (3.37) that
for a narrow wave packet in k-space, also the correlation C(techo) is given by the
transition amplitude

C(techo) ≈ |A(k0,∆t)|, (7.151)
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the relative amplitude ṽ is supposed to be

ṽ = C2(techo). (7.152)

As example of different band structures in connection with the QTM, we use pristine
graphene, discussed in Chap.3, as well as gapped graphene from Sec. 5.3, where in
both cases the transition amplitude is known (see Eq. (3.21) for pristine graphene
and Eq. (5.60) for gapped graphene).

To get an initial ZB, we have to start with a wave packet living in both bands.
For the proof of principle, we use a small width of the Gaussian wave packet in
reciprocal space (∆k = k0/8), such that we the approximation is justified made in
Eq. (7.150) for the amplitude of the revived ZB. The wave packet is peaked around
k0 = (k0, k0)T/

√
2, with κ0 = ~vFk0/M = 0.4, if not stated otherwise.

In Fig. 7.10, the data obtained by simulation is shown. In panel (a), we compare
the correlation C defined in Eq. (3.32), to the relative amplitude of the revived ZB.
Numerically, the amplitude of the echo is obtained as half of the distance between
the consecutive maximum and minimum with the highest difference between them
in a certain time interval I = [techo − δt, techo + δt] around the expected echo time
techo = 2t0 + ∆t, i.e.

Brevival = max
t∈ I

|vmax(t)− vmin(t+ π/ΩZB
k0

)|
2

, (7.153)

where vmax is a local maximum and vmin a local minimum. Here, we use δt = 0.5t0,
but the exact value does not matter, as long as the revival is included in the interval
I and the ZB that does not belong to the revival is excluded.

The velocities in panel (a) of Fig. 7.10 are normalized by the initial amplitude of
the ZB Binitial. Thus, at the echo time techo ' 2t0, the amplitude of the ZB coincides
with the echo strength C2

echo = C2(techo) ' |A(k0,∆t)|2, as expected from Eq. (7.150).
In panel (b), the relative amplitude ṽ = Brevival/Binitial and echo strengths C2

echo are
shown as a function of the pulse length ∆t, respectively µ = M∆t/~. Since no
difference is visible, the expectations are met.

For gapped graphene, the velocity in panel (c) looks a bit different to the gapless
case in (a). First, the chosen wave packet does not occupy both bands with the
same magnitude and thus, a drift is visible in the expectation value of vx. This drift
is the reason why the velocities are no longer normalized by the initial amplitude of
the ZB but by vF , since a comparison with the naked eye as in panel (a) would be
here only possible for vy. Although not directly visible, the values ṽ and C2 indeed
coincide. The third difference is the appearing ZB directly after the pulse. This is
actually not surprising, because after the pulse, the wave packets splits into reflected
and ongoing part which occupy different bands, which is the essential ingredient for
ZB in this system and therefore, a ZB can be seen. In principle, this happens also in
gapless graphene, i.e. each sub-wave packet undergoes a ZB directly after the pulse,
but there, because of symmetric occupancy of both bands, the terms of the two
sub-wave packets cancel exactly in the expectation value of the velocity. In panel
(d), the relative amplitude of the revived ZB matches the echo strength obtained by
the correlation, for varying mean wave vectors κ = ~vFk/M . The agreement of the
values of ṽ and C2 confirms our analytical expectations.
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Figure 7.10: Confirmation of the proposed echo of the ZB by simulation for gapless
graphene (a), (b) and gapped graphene (c), (d). In the left panels, the timeline
is shown for both the expectation values of the velocity and the correlation C2 as
defined in Eq. (3.32). In panel (a), C2 and the amplitude of the ZB coincides at
the echo time techo ' 2t0, as expected from Eq. (7.152). In panel (b), the echo
strength C(techo), which corresponds approximately to |A(k0,∆t)| (see Eq. (3.37)),
is compared to the relative amplitude of the revived ZB ṽ as function of µ and fixed
κ = ~vFk0/M = 0.4. Panels (c) and (d) show the same for gapped graphene with
a different velocity normalization. The good agreement in (d), with µ = 1.4 and
varying κ, confirms again the expected results.

7.5.3 Disorder

In the previous subsections, we showed that the echo of ZB induced by our QTM
behaves as expected in pristine and gapped graphene. Now, we could continue and
verify all other results obtained in the context of the QTM discussed in Chaps. 3-5.
Exemplarily, we investigate the effect of disorder (compare Sec. 4.1). As a quick
reminder, the disorder cannot be effectively time-inverted by the QTM and leads
to an exponential decay of the echo strength (measured by the echo fidelity) as
function of propagation time, which is in our case the echo time techo ' 2t0. Due to
the overlap of states with positive and negative energy in the ZB, ṽ is closely related
to the echo fidelity and we expect a similar behavior, i.e. an exponential decay.

We use the same setup as in Sec. 4.1, i.e. pristine graphene (Hamiltonian, see
e.g. Eq. (3.1)) with a pulse that opens a mass gap of strength M and an pseudospin-
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(a) (b)

Figure 7.11: Revival of the ZB with disorder. (a) The time-dependent revival
strength ṽx is shown as a function of the pulse time t0 for different disorder strengths
ranging from u0 = 0.002M to 0.014M . An exponential decay can be seen in the
small disorder regime. (b) The rate of decay 1/τ is extracted by a fit (red lines in
(a)) and is plotted as a function of u0, as well as the analytically expected scattering
time (black dotted) from Eq. (4.13). The quadratic fit in u0 (blue line) to the data
points, is close to the scattering time. For larger u0 a saturation is obtained. For
more details, see the discussion of disorder in Sec. 4.1 of the graphene QTM.

independent disorder potential Vimp(r) as defined in Eq. (4.1). The only difference is
that, in order to generate ZB, the initial wave packet lives in both bands – otherwise
the simulations are the same.

As before, we measure the revival of the ZB by the relative amplitude of the echo

ν̃ =
Brevival

Binitial

, (7.154)

which is plotted as a function of the pulse time t0 in Fig. 7.11(a) for different disorder
strengths u0. Indeed, we see exponential decays of ν̃ as function of the pulse time t0,
where again a saturation is achieved for high u0 and t0, in analogy to Sec. 4.1. The
fitted decay rates 1/τ of panel (a) (red lines) are plotted in panel (b) as function
of the disorder strength u0, which are expected to increase quadratically (compare
Eq. (4.13)). Up to some value of u0 ' 0.012M , the decay rate indeed increases
quadratically, as can be seen by the quadratic fit (blue) and is slightly larger but
close enough to the purely analytically expected decay, which was calculated in
Subsec. 4.1.2 with the result given in Eq. (4.13) (black dotted line).

Thus, the disorder affects the revival of the ZB via the QTM mechanism as
expected, namely in the same way as discussed earlier in the thesis. Therefore we
assume that also the other features of the QTM for two-level systems discussed in
Chaps. 3-5 apply for the revival of the ZB.
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7.6 Summary, discussion and outlook

In this chapter, after giving an extensive introduction of the static ZB in graphene,
we investigated the effect of a periodically driven mass term to the ZB in graphene,
both analytically and by simulation and found that a multimode ZB emerges. Study-
ing the long-time behavior, we even found persistent ZB modes which do not decay,
because they are k-independent. Such persistent modes of the ZB might help to
measure the ZB in graphene experimentally.

Moreover, we used the QTM mechanism discussed in Chaps. 3-5, to invert the
aforementioned decay of the ZB. Similar to the spin echo, a revival of the ZB appears,
which we studied analytically and verified by simulation. Therefore, if the ZB can
be measured, it could be used to verify the QTM mechanism.

Furthermore, the effects of the QTM discussed in the rest of the thesis are highly
likely to be applicable for the echo of the ZB. Explicitly, we studied the effect of
disorder, which influences the echo strength in the same way as the echo fidelity of
Sec. 4.1, i.e. the echo decays exponentially over time. However, in contrast to the
echo fidelity, the ZB is a (in principle) measurable quantity. Thus, a measurement
of the revival strength would allow to obtain the decay rate, which is given by the
elastic scattering time, corresponding to the decay time T2 in spin echo setups.

If this becomes experimentally possible, the analogy to the spin echo would come
into play. For the spin echo, which is known since the 1950’s, involved protocols
and algorithms have been developed for a usage in technical devices. Some of those
protocols – mostly T2-weighted imaging – could be directly transferable to the echo of
the ZB. An easy example would be to apply some gradients that make the frequency
of the static ZB space-dependent. By investigating which frequency decays how
much, one could determine locally the impurity strength. This could help in a
sample, e.g. on a large graphene flake to find out where the best environment is for
a particular measurement.

Unfortunately, all the experimental hurdles of the QTM discussed in Sec. 3.6 are
still there and additionally, the ZB has to measured. Although the last point has
been recently achieved in a solid state setup [134], it is in a different regime than
what would be needed here. Nevertheless, this raises our hope that the ZB can also
be measured in systems and regimes needed for the echo of the ZB.
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Chapter 8

Summary

In this thesis, we address the long-standing problem of the effective time-inversion
of a continuous quantum system, e.g. the wave function of a electron wave packet
in a solid. Although for classical waves such time-inversion mirrors exist since the
1990’s [16–24] and for discrete quantum systems even since the 1950’s [7] known as
the spin echo or Hahn echo, analogue implementations have failed for the quantum
wave function. One major reason is the involved measuring process of the classical
waves, which is not applicable in a similar way because of the projection theorem of
quantum mechanics .

However, a recent development for classical time-inversion mirrors (for water
waves), the instantaneous time mirror [45], circumvents the measuring of the wave
completely. Instead, a short pulse is applied homogeneously to the system, which
leads in their case to a partial inversion of the velocity. Therefore, parts of the waves
come back to the initial position and create an echo, although the wave has lost its
initial structure completely in the meantime. Due to the homogeneity of the pulse,
a knowledge of the wave structure is not necessary at all, which will be helpful in
quantum systems.

In this thesis, we present and investigate thoroughly two independent setups
where a homogeneous, time-dependent pulse is exploited to effectively time-invert
continuous quantum systems, i.e. to generate an echo of the initial wave function at
the initial position. One is the population inversion quantum time mirror (QTM),
that we use in two-band systems, the other one is the Bose-Einstein condensate
time-mirror, which utilizes the tunability of the nonlinearity in the Gross-Pitaevskii
equation. The general strategy is to first confirm the qualitative ideas by analytical
calculations and further verify those by simulations of the time evolution of wave
packets using the library TQT.

The basic principles of the population inversion quantum time mirror are dis-
cussed in Chap. 3 at the example of graphene. The goal is to invert the motion,
i.e. change the sign of the velocity of a wave packet in the low-energy band struc-
ture of graphene, the Dirac-cone. To achieve a “reflection”, a usual mirror changes
the momentum of, e.g., a photon to invert its motion by breaking translational
symmetry in space. In contrast, we want to use a homogeneous, time-dependent
pulse that breaks translation symmetry only in time. Thus, the (quasi)momentum
of the wave packet is conserved but its energy changes, so that parts of the wave
packet can switch bands. The group velocity given by the derivative of the energy:
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vg = ∇kε(k), indeed has a different sign in the two bands of graphene, which is
why the parts of the wave packet that switch bands indeed come back and create
an echo. In graphene, a mass pulse, i.e. ∝ σz, is considered. For an illustration of
the mechanism, see Fig. 3.1 and for snapshots of the wave packet, see Fig. 3.8 or
the footer, which can be used as a flicker book.

Apart from the mechanism, the echo strength is calculated analytically and con-
firmed numerically in Chap. 3 for short and long pulses as well as for Gaussian,
“~”-shaped and even arbitrary wave packets without showing signs of deviations
from the theory. Moreover, the change of the real space structure of the wave
packet, which is in principle possible, is investigated and discussed with regard to
potential utilizations.

From an experimental point of view, there are many hurdles to be overcome,
starting from the generation of electron wave packets, over applying a suitable pulse
and measuring the “reflected” state, to integrating our single particle picture in
an actual system. Promising rudiments and not yet solved problems are in-length
discussed in Sec. 3.6, as well as research areas which could benefit from implementing
the QTM.

The effect of imperfections in the Hamiltonian, or more generally, position de-
pendent terms in the initial Hamiltonian, are investigated in Chap. 4. Explicitly,
the low-energy Hamiltonian of graphene is studied in presence of random disorder
as well as for external static electro-magnetic fields and compared to our theory
for general perturbations of Sec. 4.2. Qualitatively, a system can only be effectively
time-inverted by the QTM pulse if the kinetic phase of those parts that switched their
energy state which is accumulated before the pulse is canceled by the kinetic phase
acquired during the propagation after the pulse. Thus, a pseudospin-independent
potential, like a static electric field or the considered disorder potential, destroy the
echo. The reason is that the accumulated phases due to the potential do not cancel
before and after the pulse but are similar because they are independent on changing
the pseudospin structure (and thus occupancy of the energy levels) of the state. For
disorder, this leads to an exponential decrease of the echo as a function of propaga-
tion time, where the decay rate is given by the elastic scattering time. This feature
could be used experimentally to measure the disorder strength in a given sample in
a similar way as the spin echo, which is discussed thoroughly in Sec. 4.1.4.

For an external electric field, a new feature appears: although the system cannot
be effectively time-inverted due to the pseudospin-independent scalar potential, an
echo can be still generated under certain circumstances. The reason is that as long
as the velocity is inverted due to the pulse, the wave packet goes back to its initial
position, despite the fact that other quantities are not inverted. In the considered
case, the constant change of the momentum as consequence of the electric field
cannot be inverted by the pulse. However, since the group velocity in graphene only
depends on the direction of k but not its modulus |k|, changing the momentum does
not necessarily mean changing the velocity. In the case of a parallel electric field to
the propagation direction, when the pulse “flips” the energy of the state it also flips
the velocity which again remains constant after the pulse and an echo happens.

The case of a static magnetic field is at first glance contradictory. Although
time-reversal symmetry is broken, the used mass gap still leads to an effective time-
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inversion of the system. The seeming contradiction is dissolved by the fact that
time-reversal symmetry is not needed for the QTM mechanism to work – instead, it
is the chiral (or sub-lattice) symmetry, i.e. E− = −E+ + c, although we even show
that a less strict condition suffices (see below). Indeed, the mass gap will map a
Landau level n in graphene partly to its negative counterpart −n. Assume that a
wave packet composed of Landau levels with positive energy rotates by tendency
clockwise. After the pulse, the switched parts then tend to rotate counterclockwise,
unwinding the propagation before the pulse and ending up at the initial position.
This is in agreement with the general qualitative result of Sec. 4.2, which states that
if the “direction” of the pulse Hamiltonian in pseudospin-space (here ẑ due to σz) is
perpendicular to the pseudospin-direction of the initial Hamiltonian (somewhere in
the x-y-plane since it is a linear combination of σx and σy), the system is effectively
time-inversed, in the sense that those parts of the state that change their energy
behave after the pulse exactly as if they would move backwards in time.

Finally, the possibility of using time-dependent electro-magnetic potentials as
pulse are discussed briefly, where first investigations delivered promising results.

So far, the Dirac cone has been investigated when considering an explicit system.
However, its nice features, i.e. the linear band structure and the chiral symmetry, are
not necessary requirements to induce an echo via the population inversion QTM. In
Chap. 5, the actually needed conditions of the initial band structure – providing a
homogeneous system and a homogeneous pulse – are derived. Instead of a true chiral
symmetry (E−(k) = −E+(k) + c), a generalized version is sufficient (∇kE−(k) =
−ζ∇kE+(k), with ζ > 0 independent of k). It follows from the demand that the
propagation distance before the pulse is canceled after the pulse at the same time for
all k-modes. Here, we do not mean that the time before and after the pulse (until
the echo) should be the same, which would be the case for a true time-reversal.
Instead, we allow all modes to come back faster or slower than before the pulse, but
we require of them to come back at the same time. This is where the constant ζ
enters.

Moreover, the quantitative echo strength (or equivalenty the transition ampli-
tude) is derived and discussed with regard to as high as possible echoes: the pulse
should be such that an initial eigenstate is mapped in the best possible way to its
counterpart with negative energy. In the Bloch sphere, this requirement means that
its pseudospin direction is supposed to be perpendicular to the one of the initial
Hamiltonian. Moreover, during the pulse its strength needs to be the dominant
energy scale. If these requirements are fulfilled, echoes close to 100% are possible.

The general findings are quantitatively confirmed in three example band struc-
tures: linear bands with different slopes for positive and negative energies, hyperbolic
bands, and parabolic bands with different curvatures. Physical systems that can be
described by theses examples are, among others, direct gap semi-conductors and
Bernal stacked bilayer graphene.

With the general results of Sec. 4.2 and Sec. 5.1, any effective two-band system
can be tested on its suitability for the QTM. With this abundance of possible sys-
tems, we are convinced that the QTM can be experimentally verified in some system
or another.

In Chap. 6, we study the second and independent approach to a QTM for the
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wave function, a Bose-Einstein condensate (BEC). We make use of the tunable
nonlinearity of the Gross-Pitaevskii equation by a Feshbach resonance [112,113]. A
wave packet is effectively accelerated by changing the nonlinearity with a short time-
dependent pulse. Depending on the choice of parameters, parts of the wave packet
(≤ 50%) can be made to invert their propagation direction, leading to an echo. The
parameter space in which an echo is possible is investigated and in agreement with
the analytically obtained critical values [114].

Qualitatively more promising than the QTM in a BEC is the quantum time lens
(QTL), where the broadening of a wave packet due to the Schrödinger equation
is refocused – similar to an optical lens which (re)focuses the beam of a laser, for
instance. The mechanism is the same as for the echo, but here, fidelities close to
100% are in principle possible. Applying multiple QTL pulses, a wave packet can be
kept in its initial width for a longer time. Even solitonic solutions can be achieved
(approximately), where the initial shape is “freezed” for up to 100, 000 pulses in
our simulations. Our simulations with nowadays experimentally feasible parameters
show that both, QTM and QTL in a BEC are in reach, if not already possible in
state of the art BEC experiments.

Finally, we investigate zitterbewegung in graphene in the presence of time-
dependent potentials, with special regard to its decay for finite width wave packets.
In the static case, the decay is well-known and stems from the k-dependence of the
modes of the zitterbewegung and the related dephasing. Equivalently, the decay
can be explained by the separation of sub-wave packets with positive and negative
energy, whose interference is the reason for the zitterbewegung. When those sub-
wave packets do not overlap anymore, they also do not interfere and thus, there is
no zitterbewegung.

The time-dependent driving is hoped to have a similar effect as in a damped
harmonic oscillator. Without driving, the oscillations die over time, but a sinusoidal
driving can keep them alive. In a two-dimensional electron gas with driven Rashba
spin-orbit coupling, such persistent modes have been proposed [139], whereas in
graphene, a time-dependent electromagnetic field implemented in the Hamiltonian
by a vector potential generates a multimode zitterbewegung but can only prolong
its lifetime for a finite amount of time [140].

Instead, we investigate the effect of a sinusoidal mass gap (∝ σz) in graphene.
Indeed, first order time-dependent perturbation predicts a persistent, harmonic os-
cillation with a single frequency – the driving frequency. Consulting the rotating
wave approximation (RWA) and considering the limit of high driving frequencies
(HDF), we also predict a multimode zitterbewegung. All analytically predicted fre-
quencies of the zitterbewegung are confirmed by simulation within their respective
regime of validity, including unpredicted higher orders in ωD. Moreover, we find
that some of theses modes are persistent, i.e. non-decaying, at least on the con-
sidered time-scales in the simulation. The fact that all of the surviving modes are
k-independent suggests that they are truly persistent modes, at least in our the
clean setup, where the decay only stems from the dephasing (k-dependence) of the
modes in the wave packet. The theoretically found persistent modes of the zitter-
bewegung might help to facilitate the experimental evidence of zitterbewegung in
graphene.
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Furthermore, we propose a different setup to revive the initial zitterbewegung.
As mentioned above, the decay of the zitterbewegung of wave packets is due to the
separation of the sub-wave packets. Thus, we have to find a way to invert the motion
of theses wave packets. Luckily, this is exactly what we have discussed in Chaps. 3
to 5: the QTM, where we use a time-dependent pulse to change the occupation
bands leading to an inversion of the velocity. Indeed, we show analytically that
the zitterbewegung is revived by a mass pulse (∝ σz) and derive its echo strength.
The simulation of pristine and gapped graphene confirm the analytical calculations
quantitatively. Moreover, we exemplarily show in the case of disorder where the
zitterbewegung echo strength decays with the same rate as discussed above, that all
results of Chaps. 3 to 5 are (very likely to be) directly transferable to the proposed
revival of the zitterbewegung. With this, we have found a new way to experimentally
verify the QTM mechanism.

To give an outlook for future research, we want to start with possible applications
of the QTM. Since echoes with high fidelities are in principle possible, applying
the QTM pulse several times is not a problem. With a periodic kicking, a time-
lattice is generated. From a basic research point of view, this is exciting, since
lattice effects known from spatially periodic structures, like Bloch oscillations, are
in principle also possible in the time-domain. Moreover, periodic kicking can be
used to effectively generate a discrete quantum random walk for a continuous wave
packet. Such discrete quantum walks are, among others, important in quantum
computing [96–98].

Another interesting point for further research is the analogy of the zitterbewe-
gung echo with the Hahn echo, which is known since the 1950’s. The well-known
protocols initially developed for the spin echo are possibly directly transferable to
the revival of the zitterbewegung, e.g. to apply gradients to make the frequency of
the zitterbewegung position dependent. The position dependence of the frequency
can in turn be used to extract locally system parameters like the elastic scattering
time. With the recent first experimental evidence of zitterbewegung in a solid state
system [134] – despite the fact that it deals with the jittery motion of an ensemble
of electrons instead of the single particle interference due to the superposition of
particle- and antiparticle-like states – a completely new field opens here with an
abundance of topics to research and possible technical applications.
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Appendix A

Calculating overlaps for the
transition amplitude in graphene

This chapter is to outsource the details of the calculation for the transition amplitude
in Sec. 3.1. Using the explicit form of the eigenenergies of Eqs. (3.2) and (3.11) and
the eigenstates of Eqs. (3.3) and (3.12), the overlap between the different eigenstates
at the same k yields:

〈ϕk,s|χk,s′〉 =
1√
2

1
√

2
√

1 + κ2 + s′
√

1 + κ2

(
1

seiγk

)†(
1 + s′

√
1 + κ2

κ eiγk

)
=

1

2

1 + s′
√

1 + κ2 + sκ√
1 + κ2 + s′

√
1 + κ2

(A.1)

Therefore, the product of scalar products in Eq. (3.15) yields:

P =〈ϕk,s′′ |χk,s′〉〈χk,s′ |ϕk,s〉

=
1

4
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√
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√
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=
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√
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√
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s′
√
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(A.2)

Up to now, only arithmetic operation were performed, first expanding the product
in the numerator with collecting terms of similar shape and using (s(′))2 = 1, then
factorizing the denominator and splitting up the fraction to be able to cancel single
factors. The ultimate goal is to explicitly sum over s′ in Eq. (3.15) using sine and
cosine functions, which is why we want to get rid of s′ in the denominator. This
is already achieved in the first summand in Eq. (A.2), but the second one must be
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extended accordingly.

P =
s′
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(A.3)

The important term for the echo is the last one, where the initial state (s) switches
band (s′′ = −s), i.e. the propagation changes direction (v→ −v).
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Appendix B

Matrix elements of the Pauli
matrices in the basis of (gapped)

graphene eigenstates

Pristine graphene

Using the eigenstate of the graphene Hamiltonian (H = ~vFk · σ),

〈k | ϕk,s〉 =
1√
2

(
1

s eiγk

)
, (B.1)

with s = ±1, we state the matrix elements of the Pauli matrices in this basis for a
given k, as needed in several instances in this thesis, e.g. for the expectation value
of the velocity operator.

Diagonal terms:

〈ϕk,s | σx | ϕk,s〉 = s
kx
k
, (B.2)

〈ϕk,s | σy | ϕk,s〉 = s
ky
k
, (B.3)

〈ϕk,s | σz | ϕk,s〉 = 0. (B.4)

Off-diagonal terms:

〈ϕk,s | σx | ϕk,−s〉 = −isky
k
, (B.5)

〈ϕk,s | σy | ϕk,−s〉 = is
kx
k
, (B.6)

〈ϕk,s | σz | ϕk,−s〉 = 1. (B.7)

Gapped graphene

We state the matrix elements of the Pauli matrices for a given k, as needed in
several instances in this this, using the basis of eigenstates of the gapped graphene
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graphene eigenstates

Hamiltonian (H = ~vFk · σ +Mσz),

〈k | χk,s〉 =
1

√
2
√

1 + κ2 + s
√

1 + κ2

(
1 + s

√
1 + κ2

κ eiγk

)
, (B.8)

with κ = ~vFk/M .
Note that depending on the section of the thesis, the gapped graphene state

can also be called |ϕk,s〉 instead of |χk,s〉, e.g. if the initial Hamiltonian is already
gapped.

Diagonal terms:

〈χk,s | σx | χk,s〉 =
sκ√

1 + κ2

kx
k
, (B.9)

〈χk,s | σy | χk,s〉 =
sκ√

1 + κ2

ky
k
, (B.10)

〈χk,s | σz | χk,s〉 =
s√

1 + κ2
. (B.11)

Off-diagonal terms:

〈χk,s | σx | χk,−s〉 =
1√

1 + κ2

kx
k

+ si
ky
k
, (B.12)

〈χk,s | σy | χk,−s〉 = −si kx
k

+
1√

1 + κ2

ky
k
, (B.13)

〈χk,s | σz | χk,−s〉 =
−κ√
1 + κ2

. (B.14)
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Appendix C

Normalization factor in the disorder
potential

In this appendix, we want to show that the normalization factor N in the disorder
potential Vimp of Eq. (4.1) in Sec. 4.1.1 simplifies for a lattice with infinitely many
points to

N =

√
π

2

l0√
dx · dy

. (C.1)

Thus, the normalization is (approximately) independent on the actual realization of
Vimp which simplifies the calculation for the scattering time.

As stated in Sec. 4.1.1, N is given by

N =

 1

A

∫
A

d2r

(
N∑
i=1

βie
− (r−ri)

2

l20

)2
 1

2

, (C.2)

where the sum runs over all grid points. To get rid of the square root, we consider
N 2, perform the square of the integral explicitly and change order of summation
and integration:

N 2 =
1

A

N∑
i,j=1

βiβj

∫
A

d2r e
− (r−ri)

2

l20 e
−

(r−rj)2

l20 . (C.3)

The integral is equivalent in both spatial directions which is why we only consider
the x-direction:

∞∫
−∞

dx e
−

(x−xi)
2+(x−xj)2

l20 =

∞∫
−∞

dx e
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i+x2

j

l20 =

∞∫
−∞

dx e
− 2

l20

[
x2−x(xi+xj)+

x2
i+x2

j
2

]
.

(C.4)

By completing the square we obtain
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∞∫
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Thus, Eq. (C.3) becomes

N 2 =
l20
A

π

2

N∑
i,j=1

βiβje
−

(ri−rj)2

2l20 . (C.6)

Now, we make use of the fact that the random variable β is normally distributed,
which means

β = lim
n→∞

1

n

n∑
i=1

βi = 0, (C.7)

Var(β) = lim
n→∞

1

n

n∑
i=1

(βi − β)2 = lim
n→∞

1

n

n∑
i=1

β2
i = 1. (C.8)

Note that usually, one needs the probability distribution (density) p in the sum
(integral) to calculate the variance and the expectation value for a discrete (contin-
uous) random variable. In this case, p is not needed explicitly because some value
of β has the appropriate probability to be chosen and is therefore implicitly hidden
in the random choice of β. Due to the law of large numbers, the relative appearance
of each value of β in Eqs. (C.7) and (C.8) corresponds to the probability to find this
β and therefore both equations are true.

Consequently, the sum of the product of two normally distributed random vari-
ables on our lattice sites is 0 as long as they are independent, which is obviously not
the case if they are at the same site i = j:

lim
n→∞

1

n

n∑
i,j=1

βiβj = lim
n→∞

1

n

 n∑
i=1

β2
i +

n∑
i=1

βi

n∑
j=1
j 6=i

βj

 = 1 + 0 = 1. (C.9)

To use Eq. (C.9) in Eq. (C.6), we still have to show that the exponential factor in
Eq. (C.6) does not play a role for impurity potentials smoothed on a short length
scale, i.e. l0 �

√
A. For that reason, we look at all pairs of sites with a given

distance R. For R .
√
A, and thus R� l0, the exponential factor is negligible and

the terms do not contribute.
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In the other case, for R �
√
A, the number of these pairs is of the order of the

number of lattice sites N , because every lattice points, which is not near the edge,
has 4 neighbors with the same distance and the number of points near the edge can
be neglected for R�

√
A. Since we assume a large lattice, i.e. N � 1, we can make

use of the averaging effects of β for every R and we show that for i 6= j, i.e. R 6= 0,
the terms are averaged out,

n∑
i,j=1
i 6=j

βiβje
−

(ri−rj)2

2l20 =
∑
R 6=0

e
−R

2

2l20

∑
i,j

|ri−rj |=R

βiβj ≈ 0, (C.10)

where the last sum is 0 due to Eq. (C.9). Thus, only the terms i = j, i.e. R = 0,
survive in Eq. (C.6) and N 2 becomes

N 2 =
π

2

l20
A

N∑
i,j=1

βiβje
−

(ri−rj)2

2l20 =
π

2

l20
A

N∑
i=1

β2
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≈N

≈ π

2

l20N

A
=
π

2

l20
dx · dy

, (C.11)

which is the result which was to be proven.
To conclude, we showed in this appendix that for a lattice with many grid points,

the normalization N becomes independent on the given realization of the impurity
potential and has the form given in Eq. (4.3).
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Appendix D

Time-dependent perturbation theory
and the interaction picture

Interaction picture

In this subsection, we show the very basic properties of the interaction picture,
most of all those which are helpful in the derivation of time-dependent perturbation
theory. For simplicity, the reference time where Schrödinger and interaction picture
coincide is set to t = 0.

Assume that for the time-dependent Hamiltonian

H = H0 + V (t) = H0 +H1(t), (D.1)

the eigenvalues and eigenfunctions of the time-independent part are known to be

H0|n〉 = En|n〉. (D.2)

The transition from Schrödinger picture (state |ψ(t)〉S and arbitrary operator AS)
to the interaction picture (state |ψ(t)〉I and arbitrary operator AI(t)) is done by the
following operations

|ψ; t〉I = eiH0t/~|ψ; t〉S (D.3)

AI(t) = eiH0t/~ASe−iH0t/~. (D.4)

The time evolution of the states in the interaction picture is determined by VI

i~
∂

∂t
|α; t〉I = VI(t)|α; t〉S, (D.5)

whereas for the operators, only H0 is important

dAI
dt

=
1

i~
[AI , H0] . (D.6)

Time-dependent perturbation theory

Here, we want to remind the reader of time-dependent perturbation theory and
derive the transition coefficients needed in Subsec. 7.4.1 without going too much
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into details. For a more in-depth explanation of time-dependent perturbation theory,
we direct the kind reader to most standard textbooks about quantum mechanics,
e.g. Sakurai and Napolitano [143], which was used as a guideline for creating this
appendix and where we borrowed most of the notation.

The Hamiltonian is the same as in Eq. (D.1) with known eigenstates and energies
of the time-independent part H0 as in Eq. (D.2). For a given initial state at t = 0,

|α〉 = |α; t = 0〉 =
∑
n

cn(0)|n〉, (D.7)

we want to find the time-evolution

|α; t〉 =
∑
n

cn(t)e−iEnt|n〉, (D.8)

where the prefactor is split as a matter of prudence in a time-dependent phase due
to the time-independent Hamiltonian such that the evolution of the coefficients cn(t)
is a consequence only of the time-dependent part V (t).

In the interaction picture, this choice of splitting leads to (compare Eq. (D.3))

|α; t〉I =
∑
n

cn(t)|n〉, (D.9)

and thus
cn(t) = 〈n | α; t〉I , (D.10)

where we use |n〉 as basis set which is possible for eigenstates of a Hermitian operator.
Since |n〉 are time-independent states, the time evolution of cn(t) is similar to the
one of kets in the interaction picture (see Eq. (D.5))

i~
∂

∂t
cn(t) = i~

∂

∂t
〈n | α; t〉I = 〈n | VI | α; t〉I

=
∑
m

〈n | VI | m〉〈m | α; t〉I

=
∑
m

ei(En−Em)t/~Vnm〈m | α; t〉I

=
∑
m

Vnmei(En−Em)t/~cm(t), (D.11)

where Vnm = 〈n|V |m〉 is the matrix element of the operator V ≡ VS in the
Schrödinger picture. The coupled differential equations of Eq. (D.11) are usually
not exactly solvable, which is why we turn to perturbation theory.

With the time evolution operator in the interaction picture, which is defined by

|α; t〉I = UI(t)|α; 0〉I , (D.12)

we can rewrite the coefficients cn(t) from Eq. (D.10) in terms of UI :

cn(t) = 〈n | UI | α; 0〉I . (D.13)
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Using the Dyson series of UI , which is given by an iteration of the formal solution
of the Schrödinger equation

UI(t) = 1− i

~

t∫
0

VI(t
′)UI(t

′) dt′, (D.14)

we obtain a series expansion of UI in powers of the (small) time-dependent potential
V (t):

UI(t) = 1− i

~

t∫
0

VI(t
′) dt′ +

(
− i
~

)2
t∫

0

dt′
t′∫

0

dt′′ VI(t
′)VI(t

′′) + . . . , (D.15)

Inserting Eq. (D.15) in Eq. (D.12), we find an expansion of the occupation coef-
ficients cn(t) in powers of the perturbation V :

cn(t) = 〈n | α; 0〉 − i

~

t∫
0

dt′〈n | VI(t′) | α; 0〉 + . . .

= c(0)
n + c(1)

n (t) + . . . (D.16)

Thus, for the occupation coefficient in first order perturbation theory c
(1)
n (t), we

arrive at

c(1)
n (t) = − i

~
∑
m

cm

t∫
0

dt′eiωnmt
′ 〈n | V (t′) | m〉, (D.17)

with ωnm = (En − Em)/~. All appearing quantities of Eq. (D.17) are either given
by the knowledge of the time-independent Hamiltonian H0, the time-dependent
potential in the Schrödinger picture and the initial wave function |α; 0〉 =

∑
m cm|m〉

and therefore, it can be calculated for a given system.
For an effective two-level system (n ∈ {−1, 1}), Eq. (D.17) further simplifies

since there are only two summands

c(1)
n (t) = − i

~

t∫
0

dt′
(
〈n | V (t′) | n〉+ eiωn,−nt

′ 〈n | V (t′) | −n〉
)
. (D.18)

The main result of this appendix is Eq. (D.18), which will be used in Subsec. 7.4.1
to approximate the time-dependent wave function which is needed to calculate the
Zitterbewegung.
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[1] Heller H., Gemessene Zeit - gefühlte Zeit, LIT Verlag Münster (2006).

[2] Eddington A.S., The nature of the physical world, New York, The Macmil-
lan Company; Cambridge, Eng., The University Press (1928).

[3] Boltzmann L., Über die Beziehung eines allgemeinen mechanischen Satzes
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