
Photoredox Catalysis Using Copper 

Complexes 

 

Dissertation 

 

Zur Erlangung des Doktorgrades der Naturwissenschaften 

  Dr. rer. nat. 

der Fakultät für Chemie und Pharmazie 

der Universität Regensburg 

 

 

 

vorgelegt von 

Christian Lankes 

aus Cham 

 

Regensburg 2017 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die Arbeit wurde angeleitet von:  Prof. Dr. Oliver Reiser 

Promotionsgesuch eingereicht am:  08.12.2017 

Promotionskolloquium am:   31.01.2018 

Prüfungsausschuss:    Vorsitz:  Prof. Dr. Jörg Heilmann 

1. Gutachter: Prof. Dr. Oliver Reiser 

2. Gutachter: Prof. Dr. Robert Wolf 

3. Prüfer: Prof. Dr. Bernhard Dick 

  



Der experimentelle Teil der vorliegenden Arbeit wurde in der Zeit von Oktober 2013 bis Mai 

2017 unter der Leitung von Herrn Prof. Dr. Oliver Reiser am Institut für Organische Chemie 

der Universität Regensburg angefertigt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Herrn Prof. Dr. Oliver Reiser möchte ich besonders für die Aufnahme in seinen Arbeitskreis, 

die Überlassung des interessanten Themas, die anregenden Diskussionen und seine stete 

Unterstützung während der Durchführung dieser Arbeit danken.  



 

  



 

 

 

 

 

 

 

 

 

Meiner Familie 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Darkness cannot drive out darkness; only light can do that.” 

Martin Luther King Jr. 



 



Table of Contents 

 

Table of Contents 

List of Abbreviations 

A. Introduction ......................................................................................................................1 

1. Copper Catalysts in Photoredox Catalysis .....................................................................1 

3. Copper(III) Species in Organic Chemistry ....................................................................10 

2. Outline of this Study .....................................................................................................20 

B. Synthesis, Characterization and Application of New Diimine-Based Copper 

Complexes .....................................................................................................................22 

1. Introduction ..................................................................................................................22 

2. Synthesis of Modified Phenanthroline Ligands and Complexation with Copper ............24 

2.1 Synthesis of [Cu(dapacetal)2]
+ ...............................................................................24 

2.2 Synthesis of [Cu(phenazino-dap)2]
+ .......................................................................28 

2.3 Synthesis of [Cu(dap)Cl2] ......................................................................................31 

3. Characterization of New Complexes ............................................................................33 

3.1 X-ray Structures ....................................................................................................33 

3.2 Spectroscopic Investigation ...................................................................................35 

3.3 Cyclovoltammetric Measurements .........................................................................38 

3.4 Summary and Assessment of Photophysical and Electrochemical Properties .......40 

4. Comparison of Phenanthroline Complexes in Photoreactions ......................................42 

4.1 Copper(I) Phenanthroline Complexes ....................................................................42 

4.2 Copper(II) Phenanthroline Complex ......................................................................49 

5. 1,4-Diaza-1,3-butadienes: An Alternative to Phenanthrolines?.....................................52 

5.1 Photophysical and Electrochemical Properties of [Cu(DABMes)2]BF4 ....................53 

5.2 Investigation of Photocatalytic Activity of [Cu(DABMes)2]BF4 ................................55 

6. Conclusion and Outlook ...............................................................................................58 

C. Atom Transfer Radical Addition Reactions – Investigation of New Reagents ...........61 

1. Introduction ..................................................................................................................61 

2. Investigation of Different Reagents ..............................................................................62 

2.1 Ruppert-Prakash Reagent .....................................................................................62 



Table of Contents 

 

2.2 Trifluoromethanesulfonic Acid ...............................................................................64 

2.3 Phenyl Triflates ......................................................................................................66 

2.4 Trichloromethanesulfonyl Chloride ........................................................................69 

3. Conclusion and Outlook ...............................................................................................75 

D. Elucidating the Reaction Pathways of Visible-Light-Mediated Chloramination of 

Alkenes ...........................................................................................................................77 

1. Introduction ..................................................................................................................77 

2. Screening of Substrate Scope......................................................................................79 

3. Reactions with N-Centered Radicals ............................................................................87 

4. Investigation of UV-Absorption Spectra and Quantum Yield Measurements ................91 

5. Reaction Mechanism ...................................................................................................94 

6. Conclusion ...................................................................................................................96 

E. Summary / Zusammenfassung .....................................................................................97 

1. Summary .....................................................................................................................97 

2. Zusammenfassung ......................................................................................................99 

F. Experimental Part ......................................................................................................... 101 

1. General Comments .................................................................................................... 101 

2. Synthesis of Known Compounds and Reagents......................................................... 104 

3. Chapter B: Synthesis, Characterization and Application of New Diimine-Based Copper 

Complexes ................................................................................................................ 105 

3.1 Compound Characterization ................................................................................ 105 

3.2 Luminescence Properties of [Cu(dapacetal)2]
+ and [Cu(phenazino-dap)2]

+ .......... 115 

3.3 NMR Spectra ....................................................................................................... 117 

3.4 X-ray ................................................................................................................... 128 

4. Chapter C: Atom Transfer Radical Addition Reactions – Investigation of New Reagents

 .................................................................................................................................. 131 

4.1 Compound Characterization ................................................................................ 131 

4.2 NMR Spectra ....................................................................................................... 137 

4.3 Cyclic Voltammograms ........................................................................................ 146 

4.4 X-ray ................................................................................................................... 147 



Table of Contents 

 

5. Chapter D: Elucidating the Reaction Pathways of Visible-Light-Mediated Chloramination 

of Alkenes ................................................................................................................. 148 

5.1 Synthesis of N-Chlorosulfonamides ..................................................................... 148 

5.2 General Procedure for Chloramination of Olefins ................................................ 150 

5.3 Compound Characterization ................................................................................ 151 

5.4 Absorption Spectra .............................................................................................. 164 

5.5 Quantum Yield Determination .............................................................................. 165 

5.6 NMR and IR Spectra ........................................................................................... 168 

5.7 X-ray ................................................................................................................... 197 

G. References ................................................................................................................... 198 

Curriculum Vitae ............................................................................................................... 208 

Acknowledgement ............................................................................................................ 210 

Declaration ........................................................................................................................ 212 

 

 



List of Abbreviations 

 

List of Abbreviations 

A acceptor  DEPT distortionless enhancement 

Å Ångström   by polarization transfer 

Ac acetyl  DMF N,N-dimethylformamide 

AIBN azobisisobutyronitrile  dmp 2,9-dimethyl- 

APCI atmospheric pressure    1,10-phenanthroline 

 chemical ionization  DMSO dimethyl sulfoxide 

Ar aryl  dnp 2,9-dinaphthyl- 

ATRA atom transfer radical   1,10-phenanthroline 

 addition  dpp 2,9-diphenyl- 

binc bis (2-isocyanophenyl)   1,10-phenanthroline 

 phenylphosphonate  dr diastereomeric ratio 

Boc tert-butyloxycarbonyl  dtbbpy 4,4´-di-tert-butyl-2,2´- 

bpy 2,2´-bipyridine   bipyridine 

Bu butyl  E1/2 standard reduction potential 

Cat catalyst  EI electron ionization 

CI chemical ionization  EPR electron paramagnetic 

COSY correlation spectroscopy   resonance 

CT charge-transfer  equiv equivalents 

CV cyclic voltammetry  ESI electrospray ionization 

Cy cyclohexyl  Et ethyl 

D donor  et al. and others (co-authors) 

DAB 1,4-diaza-1,3-butadiene  Et2O diethyl ether 

DABMes (1E,2E)-N1,N2-dimesityl  EtOAc ethyl acetate 

 ethane-1,2-diimine  fac facial 

dap 2,9-bis(para-anisyl)-1,10-  Fc ferrocene 

 phenanthroline  FTIR Fourier-transform infrared 

dapacetal 6,9-bis(4-methoxyphenyl)-   spectroscopy 

 2,2-dimethyl-[1,3]dioxolo  glyme 1,2-dimethoxyethane 

 [4,5-f][1,10]phenanthroline  h Planck´s constant 

dba dibenzylideneacetone  HRMS high resolution mass 

DCE 1,2-dichloroethane   spectrometry 

DCM dichloromethane  HSQC heteronuclear single- 

deg degree   quantum correlation 

  



List of Abbreviations 

 

IR infrared spectroscopy  PMMA poly(methyl methacrylate) 

ISC intersystem crossing  POP bis(2-(diphenylphosphino) 

J coupling constant    phenyl)ether 

 (spectroscopy)  ppm parts per million 

L ligand, liter  ppy 2-phenylpyridine 

LED light emitting diode  Q quencher 

LRMS low resolution mass   R arbitrary residue 

 spectrometry  ref reference 

M molar (mol L-1); ground  Rf retention factor 

 state molecule  RI-NMR rapid-injection nuclear  

m meta   magnetic resonance 

max maximum   spectroscopy 

Me methyl  rt room temperature 

MeCN acetonitrile  rxn reaction 

Mes mesitylene  SCE saturated calomel electrode 

min minimum; minute  SET single electron transfer 

MLCT metal-to-ligand charge-  SM starting material 

 transfer  tBu tert–butyl 

mp melting point  Tf trifluoromethanesulfonyl 

MS mass spectrometry  THF tetrahydrofuran 

n.r. no reaction  TLC thin layer chromatography 
nBuLi n-butyllithium  TMS trimethylsilyl 

NMR nuclear magnetic resonance  tosyl 4-toluenesulfonyl 

NOESY nuclear Overhauser effect  Ts tosyl = 4-toluenesulfonyl 

 spectroscopy  UV ultraviolet 

nosyl N-chloro-N-methyl-  Vis visible light 

 4-nitrobenzenesulfonamide   quantum yield 

Nu nucleophile  PL photoluminescence  

o ortho   quantum yield 

p para   chemical shift (ppm) 

Pabs absorbed radient power   molar extinction coefficient 

PCat photoredox catalyst   wavelength 

Ph phenyl  Abs wavelength of absorption 

phenazino- 3,6-bis(4-methoxyphenyl)  max wavelength at maximum 

           dap dipyrido[3,2-a:2',3'-c]   frequency 

 phenazine   lifetime 



 

 

 

 

 

 



A. Introduction 

1 

A. Introduction 

1. Copper Catalysts in Photoredox Catalysis 

Due to the climate change[1] and because of a still growing global population of currently 

more than 7.5 billion[2] people, modern society is forced to make economical use of available 

natural resources. Hence, now more than ever, there is an increasing need for sustainable 

“green” sources and processes for chemical products as well as clean, safe and 

inexhaustible energy sources.[3] Over a century ago, Giacomo Ciamician outlined in his 

pioneering article titled “The photochemistry of the future” in 1912 the potential of sunlight as 

an abundant, safe, inexpensive and sustainable energy source usable for chemical 

transformations.[4] During the past decade, remarkable progress towards the efficient 

conversion of solar energy into electrical energy[5] and chemical fuels[6] has been achieved. 

By contrast, the use of visible light for the synthesis of structurally challenging organic 

compounds is less developed even though in nature, biological photosynthesis is 

omnipresent.[7,8] One reason for this discrepancy is that only a few molecules absorb visible 

light and most molecules usually require irradiation with short-wave and high-energy 

ultraviolet (UV) light for direct excitation. However, UV-light is unfavorable as it is not 

abundant in the solar radiation spectrum that penetrates the atmosphere and most molecular 

bonds are instable against this energy-rich radiation often causing considerable unproductive 

decomposition.[8] In order to use the abundant and mild visible light for efficient chemical 

transformations, suitable photosensitizers and photocatalysts1 have been developed.[10] After 

absorbing photons, these compounds form excited species which are able to transfer energy 

or electrons to an organic substrate.[7,12] 

 

As the present thesis focuses on photoredox catalysis, in which single electron transfer 

(SET) is the crucial pathway, these processes are explained in more detail hereafter. In 

principle, the excited state of the photoredox catalyst is both more strongly reducing and 

more strongly oxidizing than the corresponding ground state which makes the photoredox 

catalyst either a regenerable electron donor or acceptor in the catalytic cycle (Scheme 

1).[7,10,13] Hence, photoredox catalysis is convenient for both oxidation and reduction 

processes which can be described in simplified form by two different catalytic cycles, the 

oxidative and the reductive quenching cycle. Both cycles start with the absorbance of a 

photon by the photoredox catalyst (PCat) leading to a short-lived excited singlet state via a 

metal-to-ligand charge-transfer (MLCT). By means of subsequent intersystem crossing (ISC), 

                                                
1 IUPAC definition: ”Catalyst able to produce, upon absorption of light, chemical transformations of the 
reaction partners. The excited state of the photocatalyst repeatedly interacts with the reaction partners 
forming reaction intermediates and regenerates itself after each cycle of such interactions."[9] 
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a more stable triplet state (*PCat) with a longer lifetime forms, which can undergo SET. In the 

reductive quenching cycle, the excited photocatalyst *PCat accepts an electron from a 

quencher (Q) resulting in PCat–. For this pathway a non-productive quencher, often termed 

as a “sacrificial electron donor”, such as tertiary amines or ascorbate is usually 

necessary.[14,15] By transferring an electron from strongly reducing PCat– to an acceptor 

molecule, the catalytic cycle closes. Regarding the oxidative quenching cycle, the excited 

photocatalyst *PCat reduces a quencher Q such as viologens, aryldiazonium salts or 

haloalkanes, resulting in PCat+ which subsequently serves as an electron acceptor.[10,14] 

 

 

Scheme 1. General scheme for photoredox catalysis via reductive or oxidative quenching (A 
= accepter, D = donor, PCat = photoredox catalyst, Q = quencher; solid arrows: oxidation 
steps, dashed arrows: reduction steps, curled arrow: excitation by light irradiation). 

 

Due to their ease of access, stability, long excited state lifetimes and excellent photoredox 

properties, the most commonly used visible light photoredox catalysts in organic synthesis 

are ruthenium- or iridium-based metal complexes or organic dyes such as Eosin Y.[16] Over 

the last decade [Cu(dap)2]
+ (C1) has emerged as an efficient photocatalyst with valuable 

reducing properties.[17][18] In contrast to ruthenium or iridium, copper is beneficial as it is more 

abundant, less expensive and more environmentally friendly. In order to provide an overview 

of the photophysical behavior of such complexes, some prominent representatives, which 

were also employed in this thesis, are illustrated in Table 1. 
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Table 1. Selected photophysical properties of established metal-based photoredox catalysts 
used in this thesis. a) 

 

Photocatalyst 
E1/2 

(M+/M*) 
E1/2 

(M*/M–) 
E1/2 

(M+/M) 
E1/2 

(M/M–) 
Excited State 
Lifetime  / ns 

Ref 

[Cu(dap)2]
+ -1.43 - +0.62 - 130 b) [19,20] 

[Ru(bpy)3]
2+ -0.81 +0.77 +1.29 -1.33 1100 [21] 

[Ir(ppy)2(dtbbpy)]+ -0.96 +0.66 +1.21 -1.51 557 [22,23] 

fac-Ir(ppy)3 -1.73 +0.31 +0.77 -2.19 1900 [10] 
a) Data obtained in acetonitrile at room temperature. Potentials are given in V versus the saturated 
calomel electrode (SCE). b) Sauvage et al.

[19] reported a lifetime of 270 ns, however, experimental 
details for this measurement are not available. Reiser et al.

[20] reported a lifetime of 130 ns in MeCN 
and a lifetime of 540 ns in PMMA. 

 

Besides the economic benefits, copper complexes have developed into an important class of 

photocatalysts alongside established ruthenium- or iridium-based catalysts. More and more 

examples show that copper-phenanthroline complexes are of special interest, as they are 

prone to structural redistribution and ligand exchange which enables access to new reactions 

by running through alternative reaction pathways (vide infra). In particular [Cu(dap)2]
+ (C1) 

has been applied as an efficient photocatalyst in various reactions. The synthesis of 2,9-

bis(para-anisyl)-1,10-phenanthroline (dap) and its formation of stable bischelate complexes 

with copper(I) was first mentioned by J.-P. Sauvage and C. O. Dietrich-Buchecker in 1983.[24] 

Just four years later, Sauvage et al. reported the usage of [Cu(dap)2]
+ (C1) for photoredox 

reactions, exemplified by the photoassisted transformation of 4-nitrobenzyl bromide (1) into 

the bibenzylic coupling product 2 in the presence of triethylamine (Scheme 2).[19]  

 

 

Scheme 2. First example of photoredox catalysis with [Cu(dap)2]
+ (C1).[19]  
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Following the oxidative quenching cycle, the authors assume that triethylamine acts as a 

reductant of copper(II) species being formed after SET to substrate 1. When oxygen was 

present during the reaction, oxidation to 4-nitrobenzaldehyde was observed in 95% yield. 

 

In 2012, the group around O. Reiser started to explore the catalytic scope of [Cu(dap)2]
+ (C1) 

for modern photoredox catalysis.[20,25–29] Using green light for photoexcitation, for example, 

visible-light-mediated atom transfer radical addition (ATRA) reactions of various activated 

organohalides 4 such as CBr4, nitro-substituted benzyl halides or -haloketones with alkenes 

3 were developed (Scheme 3).[25,26] A sacrificial electron donor is not necessary within this 

protocol, as the reaction runs through the oxidative quenching cycle, with the organohalide 

substrates acting as the oxidative quencher. This particularly atom economic[30] strategy via 

the oxidative quenching cycle has recently been reported by Stephenson et al. using 

ruthenium(II)- or iridium(III)-based photoredox catalysts.[31,32] ATRA reactions, also known as 

Kharasch addition reactions, are in general an atom economic method for alkene or alkyne 

difunctionalization, making them a versatile tool for organic synthesis.[33–37] In redox neutral 

ATRA process, atom transfer reagents, usually haloalkanes, formally undergo  bond 

cleavage followed by addition across a  bond of an alkene or alkyne under formation of two 

new  bonds with all atoms of the starting materials being incorporated in the final product.[10] 

By means of photoredox catalysis, problems commonly encountered with this transformation 

such as the requirement of radical initiators or harsh conditions as well as limited functional 

group tolerance can be overcome.[31,36] 

 

 
Scheme 3. Visible-light-mediated ATRA reactions between alkenes 3 and organohalides 4 
catalyzed by [Cu(dap)2]Cl (C1-Cl).[25,26]  
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In another process, copper phenanthroline complex C1-Cl was utilized for the visible-light-

mediated allylation of -haloketones 6 (Scheme 4).[25] Remarkably, until then, this reaction 

had not been reported to be possible using visible light. Thus, [Cu(dap)2]Cl (C1-Cl) is 

beneficial for this transformation because radical initiators such as AIBN or BEt3 as well as 

high power UV irradiation are not required any longer. However, using ecologically more 

benign allyltrimethylsilane instead of allyltributyltin (7) was less efficient and only one 

example, coupling with tetrabromomethane, was reported. 

 

 

Scheme 4. Visible-light-mediated allylation of -haloketones 6 with allyltributyltin (7) 
catalyzed by [Cu(dap)2]Cl (C1-Cl).[25] 

 

Since then the synthetic application of copper(I) phenanthroline complexes in photoredox 

catalysis as an environmentally benign alternative to established photoredox catalysts such 

as [Ru(bpy)3]
2+ (C2) or fac-Ir(ppy)3 (C4) has been demonstrated by several groups by means 

of various further reactions such as photocyclizations[38], azidations[39,40], 

aminodifluoromethylations[41] or -amino C-H bond functionalizations[42]. Beyond that, 

promising heteroleptic alternatives of copper(I) phenanthroline complexes have also 

emerged and have been evaluated as visible light photocatalysts, demonstrating that such 

complexes have special features (Figure 1).[20,27,43,44,45,46] These complexes can be easily 

formed and their steric and electronic properties can be extensively tuned by changing the 

chelating ligands which allows adaptation for a given photochemical process. Thus it was 

possible to significantly increase the short lifetime of copper(I) phenanthroline complexes, 

which is usually one of their major drawbacks. By changing from homoleptic [Cu(dap)2]
+ (C1) 

to heteroleptic [Cu(dpp)(binc)]+ (C6), for instance, the lifetime of the excited state was 

increased from 560 nanoseconds to 17 microseconds in poly(methyl methacrylate).[20] 
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Figure 1. Examples of heteroleptic copper(I) phenanthroline complexes used as visible light 
photoredox catalysts.[20,43,46] 

 

Heteroleptic copper complex C6, for example, proved to be beneficial for visible-light-

mediated allylations. While homoleptic complex C1-Cl was only efficient in couplings with 

allyltributyltin (7) (cf. Scheme 4)[25], complex C6-BF4 also showed good activity for the 

transformation of allyltrimethylsilanes 10 (Scheme 5).[47,20] 

 

 
Scheme 5. Visible-light-mediated allylation of organohalides 9 with allyltrimethylsilanes 10 
catalyzed by [Cu(dpp)(binc)]BF4 (C6-BF4).

[20] 

 

Recently, the group around O. Reiser has developed the photoredox catalyzed 

trifluoromethylchlorosulfonylation of alkenes (Scheme 6), demonstrating that copper-based 

photocatalysts are not only alternatives to ruthenium- or iridium-based photocatalysts for 

electron transfer to substrates but have special features providing unique opportunities.[27] 

Using triflyl chloride (13) and typical photoredox catalysts such as [Ru(bpy)3]Cl2, 

[Ir(ppy)2(dtbbpy)]PF6 or Eosin Y, a known trifluoromethylchlorination[48] under loss of sulfur 

dioxide was observed and chlorinated products 15 were formed as the main products.[27] In 

contrast, [Cu(dap)2]Cl (C1-Cl) proved to be extraordinary, as sulfur dioxide was retained in 
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the course of the reaction and trifluoromethylchlorosulfonylation products 14 were obtained, 

given the absence of strong donor atoms in the substrate.[27] 

 

 

Scheme 6. Examples of visible-light-mediated trifluoromethylchlorosulfonylation (14) and 
trifluoromethylchlorination (15) of alkenes 12.[27] 

 

Regarding this photocatalyzed reaction, it is remarkable that different photoredox catalysts 

furnish different products under otherwise unchanged reaction conditions. These results 

raise new questions concerning the reaction mechanism. For visible light mediated ATRA 

reactions two different commonly assumed mechanistic pathways are established (Scheme 

7), both being initiated by a single electron transfer (SET) from photoexcited catalyst to an 

organohalide 4.[10,25,26,31,32,49] After fission of 4 under release of X–, the resulting radical 16 

adds to an alkene 3 to form the carbon-centered radical 17. In the photocatalytic cycle, the 

radical intermediate 17 is oxidized to a carbocation 18 with concurrent regeneration of the 

photocatalyst by back electron transfer. The recombination of cation 18 and the halide to the 

ATRA product 5 concludes the transformation. Alternatively, radical intermediate 17 can 

engage in a radical chain cycle with the organohalide 4. 
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Scheme 7. General mechanism for photoredox catalyzed ATRA reactions illustrated on 
basis of the example of alkenes 3 and an oxidative photocatalytic quenching cycle. 

 

The formation of chlorinated products 15, for example using [Ru(bpy)3]
2+ via loss of sulfur 

dioxide, can be explained by such an established outer-sphere mechanism.[27] After initial 

SET from photocatalyst to triflyl chloride (13), the resulting radical intermediate (CF3SO2Cl)• – 

is unstable under the reaction conditions and decomposes under loss of SO2 to the CF3-

radical and halide Cl–. Subsequently, the general mechanism for photoredox catalyzed ATRA 

reactions is followed. However, this mechanism does not explain the formation of 

trifluoromethylchlorosulfonylation products 14 using copper catalysts, because SO2 is 

retained in the product. With a quantum yield of 12% and the formation of different products 

depending on the catalyst employed, a free radical chain mechanism was ruled out. [27] 

Therefore, an inner-sphere mechanism was proposed, in which SO2Cl– is coordinated 

directly to copper and stabilized (Scheme 8).[27] Mainly due to the fact that the reaction is not 

stereospecific, initial single electron transfer from the photoexcited copper(I) catalyst C1 to 

triflyl chloride (13) was assumed, resulting in the formation of copper(II) species 19. After 

trifluoromethyl radical is added to the alkene, SO2Cl is transferred to the resulting carbon-

centered radical intermediate leading to sulfur dioxide containing product 14 and 

regeneration of the catalyst. The involvement of a substrate-coordinating copper intermediate 

is plausible as for example steric hindrance of substrate or catalyst disfavored the 

chlorosulfonylation reaction leading to increased amounts of chlorination product 15.[27,45] 
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Scheme 8. Proposed inner-sphere mechanism for [Cu(dap)2]Cl (C1-Cl) catalyzed 
trifluoromethylchlorosulfonylation according to O. Reiser et al.[27] 

 

As a variation in this mechanistic proposal, the formation of a copper(III) intermediate can 

also be envisioned, which was already speculated for UV-mediated photocatalyzed ATRA 

reactions with CuCl by M. Mitani and co-workers[50]. Over recent decades there has been 

considerable research into copper(III) species in organic catalysis, with proof and elucidation 

of organometallic copper(III) compounds as well as an increasing number of reports about 

reactions running assumedly via high-valent copper intermediates. The significance of 

copper(III) species for organic chemistry will be outlined in the next chapter. 
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3. Copper(III) Species in Organic Chemistry 

Due to the limited stability of copper(III) complexes, their isolation and characterization has 

been elusive. The late transition element copper occurs in the oxidation states of 0, +1, +2, 

+3 and +4, whereby copper(0) and copper(IV) species are extremely rare.[51,52] The most 

common oxidation states of copper are +1 and +2.[51,53] Concerning the scarcer oxidation 

state +3, the copper(III) atom with d8 electron configuration is dominated by coordination 

number four, mostly in a square-planar arrangement with different degrees of distortion, but 

several examples of pentacoordinated complexes are also reported.[53–59] In contrast to these 

prevalent diamagnetic complexes, copper(III) complexes with an octahedral geometry show 

paramagnetic properties.[53,54,59,60] 

 

Until 2000, only a few examples of well-defined high-valent copper complexes had been 

reported. In the early years, Margerum and co-workers established the strategy of using 

anionic tetradentate ligands to force square-planar geometry (cf. compound 21), which has 

been widely applied (Figure 2).[53,54,61–65] Based on the same concept, porphyrins and corrole 

ligands have also been employed to stabilize copper(III).[66] 

 

 
Figure 2. Selection of early examples of stable non-organometallic (21) and organometallic 
(22 to 26) copper(III) complexes.[54,61–65]  
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In order to stabilize organometallic copper(III) complexes, that is complexes containing a 

carbon-copper bond, trifluoro- or perfluoroalkyl anionic ligands were initially used. In 1989, 

Burton and co-workers disclosed with the crystal structure of [CuIII(CF3)2(SC(S)NEt2)] (22) the 

first characterized organometallic copper(III) complex.[62,67] Alternatively, carbaporphyrinoid 

systems such as the doubly N-confused porphyrin[63] 23 are suitable ligands for stable high-

valent organometallic copper complexes.[53,66] 

 

By using electron-donating triazamacrocyclic ligands, X. Ribas et al. were able to isolate the 

first monoaryl copper(III) complex 24.[64] In contrast to previous isolable copper(III) 

complexes, which do not have the characteristic reactivity attributed to copper(III) in 

catalysis[68], this compound is reactive to bond formation such as Caryl-nitrogen[69], Caryl-

halide[56] or even Caryl-Csp
[70] coupling.[68] Investigations of this complex as well as of the bond 

forming reactions revealed that copper(III) can be actually catalytically relevant in copper-

catalyzed cross-coupling reactions. With the disclosure of complex 25 by M.-X. Wang and 

co-workers in 2009 [65], the spectrum of aryl-copper complexes was extended with 

azacalix[1]arene[3]pyridine ligands.[71] By means of this compound class it was possible to 

show the involvement of copper(III) intermediates in further transformations such as a 

catalytic halogenation and acyloxylation of aryl triflates or a C-H bond azidation.[72] Thus, 

detailed studies on well-defined complexes showed that reductive elimination from aryl-

copper(III) complexes occurs easily under mild reaction conditions (vide infra). With trigonal-

bipyramidal, diamagnetic, tris(2-pyridylthio)methylcopper(III) (26), an example of less 

frequent pentacoordinated well-defined copper(III) complex was also reported.[54] 

Remarkably, it was shown that it was possible to convert this complex into a paramagnetic 

octahedral copper(III) complex upon addition of chloride. 

 

Over the past two decades, there have been notable developments in the observation and 

investigation of catalytically relevant copper(III) species in carbon-carbon and carbon-

heteroatom bond formation reactions. High-valent copper compounds are often too short-

lived for detection with standard spectroscopic techniques but computational studies often 

implicate copper(III) intermediates in the key bond-forming steps.[68] With the introduction of 

rapid-injection NMR spectroscopy (RI-NMR), the direct detection of unstable organometallic 

copper(III) species (Figure 3) became possible in 2007 facilitating the mechanistic 

investigation of organocuprate reactions such as the conjugate addition reactions or ligand 

exchange reactions. [53,68,73], [74–77] 
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Figure 3. Copper(III) intermediates of organocuprate reactions detected by rapid-injection 
NMR spectroscopy at low temperatures.[74–77] 

 

In addition, the relevance of copper(III) oxidation state in copper-oxygen intermediates, 

especially in biological redox processes such as dioxygen activation, has been under 

discussion for some time. Since no spectroscopic or structural evidence exists in real biologic 

systems, over recent years well-defined synthetic copper-oxygen complexes have been 

prepared to obtain deeper mechanistic insights. In this context, examples of copper(III) 

complexes including multinuclear copper cores were reported (Figure 4), which underlines 

the existence of copper(III) species in biological systems.[78,79,80] 

 

 

Figure 4. Selected examples of recently disclosed copper(III)-oxygen complexes.[78,79] 

 

With the help of well-studied complexes, the relevance of copper(III) species in many copper 

mediated organic reactions has been substantiated. The most important underlying reaction 

mechanisms will be subsequently discussed with reference to selected examples. In 

principle, the reaction mechanisms via high-valent copper species are assumed to proceed 

via a one- or a two-electron processes or a combination thereof.[53,68,81–84] Thus, usually an 

active copper(I) species is formed by transmetallation or disproportionation which 

subsequently catalyzes product formation by oxidative addition and reductive elimination. 

Beyond that, SET even under involvement of radical intermediates is another possible 

pathway. 

 



A. Introduction 

13 

The Chan-Lam-Evans coupling reaction is a versatile method for oxidative coupling of aryl 

boronic acids with diverse nitrogen or oxygen based nucleophiles.[85] Based on mechanistic 

studies by S. S. Stahl and co-workers, a mechanism via a one- and two-electron process 

involving a copper(III) species has been proposed (Scheme 9).[84,86,87] After transmetallation 

of the aryl group from an aryl boronic ester 33 to copper(II), an aryl-copper(II) complex is 

formed (steps i and ii). A subsequent disproportionation reaction with another equivalent of 

CuIIX2 affords CuIX and a copper(III) complex (step iii). Upon reaction of the copper(III) 

species with a nucleophile, reductive elimination takes place under release of product 34 

(step iv). Finally, copper(II) is regenerated by aerobic oxidation (step v). 

 

 

Scheme 9. Mechanistic proposal for Chan-Lam-Evans reactions between aryl boronic acids 
33 and methanol as nucleophile.[84,86] 

 

This concept was recently used by S. Kobayashi et al. for a visible-light-mediated Chan-Lam 

procedure for the coupling of aryl boronic acids with anilines (Scheme 10).[88] Since 

combining copper and photoredox catalysis expanded the substrate scope to electron-

deficient aryl boronic acids 36, the role of the photocatalyst fac-Ir(ppy)3 (C4) was proposed to 

be related to efficient turnover of the copper catalyst and to photoredox-mediated generation 

of a copper(III) complex. 
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Scheme 10. Visible-light-mediated Chan-Lam coupling according to S. Kobayashi et al.[88] 

 

Ullmann coupling reactions of aryl halides, first disclosed in 1901, has evolved during the last 

century.[89] Nowadays, besides the classical formation of biaryls, many examples of catalytic 

Ullmann-type coupling reactions between aryl halides 38 and a wide range of heteroatom 

nucleophiles 39 such as amides, amines, alcohols or thiols are available.[90,91] The diversity of 

catalytic systems and conditions as well as of the ligands and substrates makes it difficult to 

propose one single mechanism for all Ullmann-type coupling reactions.[53] The two main 

mechanistic proposals either run via radical intermediates, formed by SET, or via the more 

widely invoked two-electron redox process, as outlined in simplified form in Scheme 

11.[53,81,91,92] 

 

 
Scheme 11. Simplified main mechanistic proposals for Ullman-type coupling reactions. 

 



A. Introduction 

15 

In mechanism A, SET from copper(I) nucleophile species to the aryl halide 38 furnishes a 

radical pair of an aryl halide and a copper(II) species. This radical pair can be either directly 

converted into product 40 accompanied by the reduction of copper(II) or could alternatively 

form a copper(III) intermediate after a subsequent SET step. Regarding mechanism B, after 

base mediated formation of a copper(I) nucleophile species (step i), oxidative addition of aryl 

halide 38 results in a copper(III) species. It should be noted that the coordination of the 

nucleophile may alternatively occur after the oxidative addition. Reductive elimination 

furnishes the product 40 under concurrent regeneration of the catalyst. 

 

The photoinduced Ullmann-type C-N coupling reported by Peters, Fu and co-workers 

(Scheme 12) is an important example which supports the SET mechanism A.[53,91,93] In this 

reaction system, SET to aryl halide 41, initiated by excitation of a copper(I)-carbazolide 

complex 44 under irradiation with high-energy ultraviolet light, is proposed. The existence of 

a copper-containing radical and a radical pathway were in particular confirmed by EPR 

spectroscopy and a radical clock test with deuterated 2-(allyloxy)iodobenzene. 

 

 

Scheme 12. Photoinduced Ullmann-type C-N coupling catalyzed by copper-carbazolide 
complex 44 according to Peters, Fu and co-workers.[93] 

 

The relevance of the two-electron redox process via Cu(III) intermediates was particularly 

supported by the studies of Stahl, Ribas and co-workers on the basis of well-defined 

macrocyclic copper(III) complexes.[53,56,69,91] The first direct observation of CuI/CuIII steps 

relevant to Ullmann-type coupling reactions, for instance, was made on a square-pyramidal 

pentacoordinated copper(III) complex[56] 45, which showed under acidic conditions reductive 

elimination (Scheme 13).[53,91] This process was reversible by the addition of a base, which 

demonstrates on the other hand the oxidative addition of an aryl halide 46 to copper(I). The 

relevance of this copper(III) halide species 45 under catalytic conditions was demonstrated 

on the basis of coupling reactions with various nucleophiles.[56,94] 
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Scheme 13. Direct observation of copper(III) halide species 45 in cross-coupling reactions 
relevant to Ullmann-type coupling reactions. 

 

In 2012, M. S. Sanford and co-workers disclosed a copper-catalyzed cross-coupling of 

boronic acids 47 and perfluoroalkyl iodides, merged with a ruthenium catalyzed 

photocatalytic cycle (Scheme 14).[95] The proposed mechanism is initiated by photoexcited 

ruthenium catalyst, which oxidizes the copper(I) species by SET (step i). The RuI complex 

thereby obtained subsequently generates in the photoredox cycle the trifluoromethyl radical 

by reduction of CF3I (48). This radical is trapped by the formed copper(II) species resulting in 

a copper(III) complex (step ii). After transmetallation (iii) with a boronic acid 47, reductive 

elimination (iv) furnishes the trifluoromethylated product 49 under regeneration of copper(I). 
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Scheme 14. Trifluoromethylation of boronic acids 47 according to M. S. Sanford et al.[95] 

 

The involvement of a trifluoromethyl-copper(III) species in trifluoromethylation of arylboronic 

acids 47 was substantiated a few years later by the studies of S.-L. Zhang et al. (Scheme 

15).[58] The operational simple synthesis and characterization of stable copper(III) complex 

50a had recently been developed by V. V. Grushin and co-workers.[57] 

 

 

Scheme 15. Trifluoromethylation of arylboronic acids 47 using well-defined copper(III) 
complexes 50.[57,58] 
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Using a stoichiometric amount of well-defined trifluoromethyl-copper(III) complexes 50, both 

showing unusual pentacoordinated trigonal bipyramidal geometry, the trifluoromethylation of 

preferentially para-substituted electron-rich arylboronic acids was possible under oxidative 

conditions.[58] Based on experimental observations, the authors suggested a reaction 

mechanism which runs via reductive elimination of key intermediate 52, formed by 

transmetallation with boronic acid 47 in the presence of a fluoride salt. 

 

Due to deeper understanding, over recent years more and more reports about direct C-H 

functionalization with organocopper complexes and subsequent C-C bond forming as well as 

C-heteroatom cross-coupling reactions have been published in which copper(III) 

intermediates are proposed.[82,83,96] For example, M. J. Gaunt and co-workers reported a mild 

process for the arylation of indoles[97] 53 and meta-selective arylation of anilides[98] 57 under 

copper(II)-catalysis using iodonium salts 54 as an oxidant (Scheme 16). After the formation 

of copper(I) – formed in situ under the reaction conditions – the mechanism is proposed to 

proceed via an aryl-copper(III) species (56, 59) which is obtained by oxidation with iodonium 

salt 54. Rearomatization and reductive elimination furnish the corresponding product under 

regeneration of copper(I). 

 

 
Scheme 16. Arylation reactions under oxidative conditions reported by M. J. Gaunt and co-
workers.[97,98] 

 

As demonstrated above, organometallic copper(III) species are extensively assumed, and 

nowadays even proven in several instances, to be present in various important organic 
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coupling reactions. The involvement of such species in visible-light-mediated reactions has 

also been shown, which reinforces the assumption that copper(III) intermediates can play an 

important role in photoredox processes with copper-based photocatalysts. In the standard 

photoredox cycle of copper(I) complex [Cu(dap)2]
+ (C1), for example, copper(II) complex is 

formed via oxidative quenching which could be transformed to a transient copper(III) species 

by addition of a radical. On the other hand, it is also possible that oxidative addition takes 

place at copper(I) complex, again leading to a copper(III) species. 
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2. Outline of this Study 

Since its discovery in 1983 [24], [Cu(dap)2]
+ (C1) has emerged as a promising photo redox 

catalyst, especially in ATRA reactions. With a redox potential of -1.43 V 2, in the oxidative 

quenching cycle, [Cu(dap)2]
+ (C1) is an efficient reductant comparable to iridium- or 

ruthenium-based photocatalysts.[10,19] However, it has not been possible to transform 

substrates with stronger reduction potentials such as benzyl bromide (-1.85 V 2)[99] with this 

catalyst (Figure 5). 

 

Examples of substrates, accessible by [Cu(dap)2]Cl [25,26] 

 

 
  

-0.48 V [100] -0.49 V [101] -0.62 V [102] -0.86 V [103] 

 

Examples of substrates, not accessible by [Cu(dap)2]Cl 

   

-1.39 V [104] -1.43 V [104] -1.85 V [99] 

Figure 5. Reduction potentials of various substrates which are attractive for photoredox 
catalyzed processes. Data reported vs. SCE in MeCN. 

 

In order to extend the scope of copper photoredox catalysts and make such substrates 

accessible, the first objective of this thesis was to develop a more strongly reducing catalyst. 

For this purpose, modifications in the core structure of dap ligand were tested and an 

alternative new diaza-butadiene ligand was investigated for photoredox applications. 

 

With reference to the trifluoromethylchlorosulfonylation of alkenes developed by O. Reiser et 

al. (Scheme 6), completely new products were accessible using copper-based photoredox 

catalysts, which points to special features of copper providing unique opportunities. As the 

unusual product formation under copper catalysis cannot be explained by established outer-

sphere mechanisms of photoredox catalyzed ATRA reactions, an inner-sphere mechanism 

was proposed, but the involvement of copper(III) intermediates can also be considered. For a 

deeper understanding of a potential new reaction mechanism and in order to obtain access 

to other new transformations, a focus was placed on a search for further reagents which 

                                                
2 vs. saturated calomel electrode (SCE) in MeCN 
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might show similar reactivity to successful triflyl chloride (13). In addition, with regard to 

potential copper(III) intermediates in photoredox catalysis, the synthesis and investigation of 

a new copper(II) complex was targeted. On the basis of the example of the visible-light-

mediated chloramination reaction, the exclusive reactivity of copper in photoredox catalysis 

was elucidated by comparison with the non-catalyzed photoreaction and an iridium catalyst 

driven photoreaction. 
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B. Synthesis, Characterization and Application of New Diimine-

Based Copper Complexes 

1. Introduction 

As outlined in the introductory chapter A, efficient protocols for using [Cu(dap)2]
+ (C1, Figure 

6) as a photoredox catalyst in an oxidative quenching cycle have been developed during the 

last decade. However, with an excited state reduction potential of -1.43 V vs. SCE in MeCN, 

the substrate scope of C1 is limited compared to more strongly reducing catalysts.[10,19] In 

order to make electron-poor substrates with higher reduction potentials, such as benzyl 

bromide (-1.85 V vs. SCE in MeCN)[99], accessible by copper-based photoredox catalysis, the 

first objective was to increase the catalyst´s reduction potential. 

 

 
Figure 6. Dap (60) (2,9-bis(para-anisyl)-1,10-phenanthroline) and [Cu(dap)2]

+ (C1) with the 
corresponding redox potentials[19] (reported vs. SCE in MeCN). 

 

In general, photoredox catalysts have to show some special properties. In order to obtain 

access to mild reaction conditions, which means that harsh and energy-rich UV-light is 

avoided, the catalyst has to absorb in the visible range of the electromagnetic spectrum to 

form the excited state. In addition, the excited state lifetime has to be long enough for 

chemical reactions. Lastly, the redox potentials must be strong enough to transform 

substrates. The well-investigated system of [Cu(dap)2]
+ (C1) fulfills basically all of these 

properties. However, a more negative reduction potential of the excited state is necessary to 

make electron-poor substrates accessible as well. The photophysical properties and redox 

potentials of a photocatalyst can be rendered by modifications of the ligand.[10,105,106] Using an 

efficient route[25,107], it has already been possible to synthesize the dap ligand (60) in only four 

steps in a good yield of 50% as disclosed by T. Rawner in 2016[47] (Scheme 17). As this 

ligand was easily accessible, the first approach aimed at extending the scope of copper-dap 

catalysts by modifications of dap (60). 
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a) 1,3-dibromopropane (5.0 equiv), nitrobenzene, 125 °C, 5 h. b) KOtBu (4.2 equiv), tBuOH, 40 °C, 
21 h. c) PCl5 (2.0 equiv), POCl3, 150 °C, 21 h. d) (4-methoxyphenyl)boronic acid (2.2 equiv), 
[Pd2(dba)3] (1.2 mol%), PPh3 (5.0 mol%), K2CO3 (2.2 equiv), glyme/H2O (10/1 v/v), 100 °C, 48 h. 
 
Scheme 17. Known synthesis of dap (60).[47] 

 

Copper(I) diimine complexes often suffer from short excited state lifetimes, because of a 

reorganization of the excited state from a tetrahedral to a square-planar geometry.[105,108] 

Substitution with bulky substituents, for instance, in 2,9-position of the phenanthroline system 

hampers such a structural change and consequently the non-radiative relaxation to the 

ground state.[108] For this reason, the presence of a bulky para-anisyl-group in 2,9-position is 

necessary for the catalytic properties of the system. T. Rawner screened in his PhD thesis 

different symmetric methoxy substitution patterns on the aryl group in 2,9-position and tested 

the resulting catalytic performance of the new complexes in ATRA reactions.[47] As the 

established phenanthroline system with para-anisyl-groups proved to be the most efficient 

one, modifications in the 5,6-position are of special interest as the promising dap core 

structure can be retained. Thus, it is possible to compare the effects of the substituents 

regarding reduction potentials, the lifetime of the excited state as well as the catalytic activity 

of the new complexes. 

 

Besides 2,9-phenanthrolines, 1,4-disubstituted 1,4-diaza-1,3-butadienes (DABs) are another 

easily accessible class of nitrogen chelates. As such ligands can form stable complexes with 

copper(I) which show promising photophysical properties, their fundamental application for 

photoredox catalysis was explored as well.[109] Furthermore, with copper(II) complex 

[Cu(dap)Cl2] (C10), the role of the oxidation state of copper in the ground state for 

photoredox catalysis was investigated.  
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2. Synthesis of Modified Phenanthroline Ligands and Complexation with 

Copper 

2.1 Synthesis of [Cu(dapacetal)2]
+ 

The electronic structure of ligands has a strong influence on the redox potentials of a 

complex. In principle, electron-donating substituents on the ligands can render complexes 

more strongly reducing.[13] In order to increase the reduction potential of [Cu(dap)2]Cl (C1-Cl), 

it was first planned to insert electron-pushing groups into the existing ligand system with the 

synthetic strategy focusing on easily accessible ether moieties. Regarding the later potential 

application as a catalyst, an acetal protecting group is beneficial because it makes the ligand 

less reactive to possible side reactions during catalysis. As 2-nitropropane had already been 

used as a protecting group for 5,6-dions of phenanthrolines by J.-P. Sauvage et al.[107], 

dapacetal (dapacetal = 6,9-bis(4-methoxyphenyl)-2,2-dimethyl-[1,3]dioxolo[4,5-f][1,10] 

phenanthroline, 65) was chosen as the target compound (Scheme 18). Due to the fact that 

the synthesis of the dap ligand was already reported in an efficient route (Scheme 17), in a 

first attempt the direct insertion of oxygen in 5,6-position of dap ligand (60) was carried out. 

 

 
a) Dap (60) (1.0 equiv), H2SO4/HNO3 (2/1 v/v), KBr (1.5 equiv), 110 °C, 3 h, complex reaction mixture. 
 
Scheme 18. First strategy towards the target compound 65 via direct oxidation of dap ligand 
(60). 

 

 

 
a) 1,10-phenanthroline monohydrate (61) (1.0 equiv), H2SO4/HNO3 (2/1 v/v), KBr (1.5 equiv), 110 °C, 
3 h. 
 
Scheme 19. Oxidation of 1,10-phenanthroline (61).  
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The direct oxidation of 1,10-phenanthroline with H2SO4/HNO3 and KBr had already been 

reported in literature[107,110] and could be reproduced in a 64% yield (Scheme 19). However, 

this procedure failed for the oxidation of dap (60) and only a complex reaction mixture was 

obtained. 

 

In order to obtain dapacetal (65), an alternative route had to be followed (Scheme 20). The 

synthetic route for compound 65 runs via 2,9-dichloro-1,10-phenanthroline (64), the key 

intermediate in the literature known dap synthesis[47] (cf. Scheme 17). 

 

 

a) 1,3-dibromopropane (5.0 equiv), nitrobenzene, 130 °C, 6 h. b) KOtBu (4.2 equiv), air, tBuOH, 40 °C, 
24 h. c) PCl5 (2.0 equiv), POCl3, 145 °C, 15 h. d) H2SO4/HNO3 (2/1 v/v), KBr (10.0 equiv), 0 – 80 °C, 
3 h. e) 2-nitropropane (10.0 equiv), Na2CO3 (8.0 equiv), MeCN/H2O (1/1 v/v), 55 °C, 15 h. f) (4-
methoxyphenyl)boronic acid (2.2 equiv), [Pd2(dba)3] (1 mol%), PPh3 (4 mol%), K2CO3 (2.2 equiv), 
glyme/H2O (10/1 v/v), 100 °C, 63 h. 
 
Scheme 20. Synthesis of dapacetal (65).  
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Intermediate 64 was formed in 3 steps in 65% yield. After the protection of 1,10-

phenanthroline monohydrate (61) with 1,3-dibromopropane, the oxidation to the 3,9-dion 63 

with potassium tert-butoxide and oxygen followed. In the end, the reaction with PCl5 and 

POCl3 furnished the key intermediate 64 which was oxidized to the 5,6-dione 68. Since 68 is 

prone to degradation to a fluorenone derivative under basic conditions [111], it has to be acetal 

protected before the Suzuki-Miyaura cross coupling[47,112]. Finally, starting with 1,10-

phenanthroline monohydrate (61), the modified phenanthroline ligand dapacetal (65) was 

accessible in 6 steps in 35% overall yield. 

 

It should be noted that the work in this thesis had already been in progress before S. Rau et 

al. published the synthesis of dapacetal (65) via a different route (Scheme 21).[113] Starting 

from 1,10-phenanthroline (61) and using organolithium reagents for the C-C coupling 

reactions in 2,9-position followed by oxidation with manganese oxide, this group achieved 

the synthesis in 4 steps with approximately 12% 3 overall yield. Although the sequence is 

longer, the route demonstrated in this present thesis leads, with 35%, to much higher yields. 

 

 

Scheme 21. Synthesis of dapacetal (65) according to S. Rau et. al.[113] No yield was reported 
for the oxidation of 1,10-phenanthroline (61). 

 

                                                
3 S. Rau et al. reported no yield for the oxidation of 1,10-phenanthroline.[113] Therefore the overall yield 
was estimated under the assumption that the oxidation of 1,10-phenanthroline furnished 55% of 1,10-
phenanthroline-5,6-dione as reported by J.-P. Sauvage et al.

[107] 
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The copper complex [Cu(dapacetal)2]
+ (C8) was synthesized by mixing ligand 65 with a 

copper(I) salt (Scheme 22). Suitable crystals for X-ray structure analysis were obtained by 

vapor diffusion of diethyl ether into a dichloromethane solution. 

 

 

Scheme 22. Synthesis of [Cu(dapacetal)2]
+ (C8).  
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2.2 Synthesis of [Cu(phenazino-dap)2]
+ 

Electrochemical and photophysical investigations revealed that [Cu(dapacetal)2]
+ (C8) has a 

slightly weaker excited state reduction potential than [Cu(dap)2]
+ (C1), which was not 

expected (vide infra). Due to these results, the question arose as to whether it would be 

possible to influence the electrons on the nitrogen atoms of the phenanthroline core by 

variations on the 5,6-position. In order to check this concept, the opposite direction was 

targeted and electron-withdrawing groups were to be inserted. In addition to this, the aim was 

now to improve the catalytic performance by expansion of the ligands -system. The 

phenazine part is known to have an electron-withdrawing effect to the bipyridine system of 

the ligand.[11] This can lead to an efficient charge separation in the excited state which might 

be beneficial for photochemical reactions.[11] In 1992, Yamada et al. reported the 

condensation of 2,9-dichloro-1,10-phenanthroline-5,6-dione (68) with 1,2-diaminobenzene to 

3,6-dichlorodipyrido[3,2-a:2',3'-c]phenazine (72) in 69% yield.[11] This reaction was used to 

obtain the target structure phenazino-dap (phenazino-dap = 3,6-bis(4-

methoxyphenyl)dipyrido[3,2-a:2',3'-c]phenazine, 73) in a short sequence (Scheme 23). 

 

 
a) 1,2-Diaminobenzene, anhydrous EtOH, 95 °C, 1 – 3.5 h. b) (4-methoxyphenyl)boronic acid 
(2.2 equiv), [Pd2(dba)3] (1 mol%), PPh

3
 (4 mol%), K

2
CO

3
 (2.2 equiv), toluene/H

2
O (10/1 v/v), 100 °C, 

63 h. c) Trifluoroacetic acid/H
2
O (2/1 v/v), O

2
 (1 bar), 50 °C, 15 h. 

 
Scheme 23. Optimization of the synthesis of phenazino-dap (73). 
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The first strategy was to condense the 5,6-dion intermediate 68 of the dapacetal synthesis 

(cf. Scheme 20) before Suzuki-Miyaura cross coupling[47,112,114] with (4-

methoxyphenyl)boronic acid (Scheme 23, route A). The condensation of compound 68 with 

1,2-diaminobenzene worked with 93% in excellent yield. In order to obtain satisfactory 

amounts of the product for further tests, the subsequent Suzuki-Miyaura cross coupling was 

optimized by short screening. Table 2 depicts the different reaction conditions which were 

tested. However, the Suzuki coupling turned out to be problematic for bigger reaction scales 

because solvent-consuming column chromatography is necessary for purification. This 

purification step requires a considerable amount of solvent given that both the product 73 

and the starting material 72 are not soluble in most organic solvents, or only to a very limited 

extent. 

 

Table 2. Screening of Suzuki-Miyaura cross coupling conditions.a 

 

Entry Solvent c(SM) / 
mol/L 

Base Phosphine Time Yield / % 

1b) 1,4-dioxane/H2O 2/1 0.04 K3PO4 PCy3 24 h 23 

2 glyme/H2O 10/1 0.05 K2CO3 PPh3 63 h 44 

3 toluene/H2O 10/1 0.05 K2CO3 PPh3 63 h 64 

a) Reaction conditions: (4-methoxyphenyl)boronic acid (2.2 equiv), [Pd2(dba)3] (1 mol%), PR3 
(4 mol%), base (2.2 equiv), solvent, 100 °C. b) Conditions taken from Herron et al.

[114]; 2 mol% of 
[Pd2(dba)3] were used; the mono coupled product was formed as a byproduct. 

 

Due to the limits of the reaction scale for route A, an alternative route B was tested (Scheme 

23). This route starts with dapacetal (65) where the aryl moieties in 5,6-position are already 

coupled. After the deprotection to the 5,6-dione 66, the condensation with 1,2-

diaminobenzene results in product 73. The deprotection of the acetal protected intermediate 

65 was tested in two different ways. Deprotection to the diol using HCl in a mixture of 

chloroform and methanol4 at room temperature and 24 h reaction time was not possible. This 

shows the stability of the ligand against acidic conditions. In contrast to this, by means of 

                                                
4 concentrated HCl/CHCl3/MeOH = 1/4/5 (v/v/v) 
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diluted trifluoroacetic acid and oxygen[107,113], the 5,6-dione 66 was obtained in 86% yield 

(step c). The purification problem does not occur with this route, because the hardly soluble 

phenazine derivative 73 is formed in the very last step and can be easily purified by washing. 

Consequently, route B takes two more steps, but provides the product in the same yield as 

route A with the advantage that the protocol can be used for bigger scales.  

 

In summary, the optimized synthesis of phenazino-dap (73) (cf. route B) starts with dapacetal 

(65) which is synthesized from 1,10-phenanthroline hydrate (61) and which already bears the 

aryl moieties in 2,9-position (Scheme 24). After deprotection with trifluoroacetic acid and 

oxygen to the 5,6-dione 66, the condensation with 1,2-diaminobenzene results in product 73 

in a total of eight steps and 28% overall yield. 

 

 
a) Trifluoroacetic acid/H

2
O (2/1 v/v), O

2
 (1 bar), 50 °C, 15 h. b) 1,2-Diaminobenzene (2.9 equiv), 

anhydrous EtOH, 95 °C, 3.5 h. 

Scheme 24. Synthesis of phenazino-dap (73). 

 

The formation and crystallization of the homoleptic copper(I) complex [Cu(phenazino-

dap)2]PF6 (C9-PF6) was possible by mixing ligand 73 with the corresponding copper(I) salt 

(Scheme 25). Suitable crystals for X-ray structure analysis were obtained by vapor diffusion 

of diethyl ether into a dichloromethane solution. 

 

 
Scheme 25. Synthesis of [Cu(phenazino-dap)2]PF6 (C9-PF6).  
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2.3 Synthesis of [Cu(dap)Cl2] 

In order to open the field of copper(II) complexes for photoredox catalysis, the first aim was 

to synthesize and isolate [Cu(dap)2]Cl2 which is the oxidized form of [Cu(dap)2]Cl (C1-Cl). 

Since in both compounds copper is coordinated to the same ligands these complexes would 

be particularly beneficial for comparative studies. For the synthesis of [Cu(dap)2]Cl2, the 

standard protocol for the formation of copper phenanthroline complexes (vide supra) was 

applied and two equivalents of dap ligand were mixed with one equivalent of CuCl2. 

However, it was only possible to isolate crystals of copper(II) complex [Cu(dap)Cl2] (C10) 

(Scheme 26). Suitable crystals for X-ray structure analysis were obtained by liquid diffusion 

of diethyl ether into a dichloromethane solution. As reported by J.-P. Sauvage et al., the 

divalent copper complex with dap ligand [Cu(dap)2]
2+ is accessible in solution in the presence 

of weak coordinating perchlorate or tetrafluoroborate anions, but when isolated it is quite 

unstable under ambient conditions and decomposition under loss of ligand occurs.[115] Due to 

the synthetic results and the reported stability problems, the synthesis of [Cu(dap)2]
2+ was 

abandoned and investigation of the new complex C10, which is also a copper(II) analog of 

the established [Cu(dap)2]Cl (C1), was pursued. 

 

 

Scheme 26. Synthesis of [Cu(dap)Cl2] (C10). 

 

B. Wu, X.-J. Yang and co-workers reported in 2009 the synthesis and characterization of 

similar phenanthroline-based divalent copper complexes, such as [Cu(dpp)X2] (C11) or 

[Cu(dnp)X2] (C12) (dpp = 2,9-diphenyl-1,10-phenanthroline; dnp = 2,9-dinaphthyl-1,10-

phenanthroline) (Figure 7).[116] For synthesis, one equivalent of ligand and one equivalent of 

a copper(II) salt CuX2 was mixed in tetrahydrofuran or dichloromethane at room 

temperature.[116,117] As a special feature of such compounds, depending on solvent, steric 

hindrance of the ligand and on the type of the counterion, ligand (L) redistribution 

accompanied by reduction of copper can occur, resulting in the formation of copper(I) 

complexes [Cu(L)2]
+ (CuX2)

– (C13).[116,117] Regarding the conditions, this conversion is easier 

in acetone than in dichloromethane and the chloride ligands, as well as bulky groups in 2,9-

position of the phenanthroline, hamper ligand redistribution. For example, it was possible to 
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convert [Cu(dpp)Br2] (C11-Br2), which has the smaller ligand, into the corresponding 

copper(I) complex [Cu(dpp)2](CuBr2) at room temperature. In contrast to this, the dibromido 

complex [Cu(dnp)Br2] (C12-Br2) with bulkier ligand could only be partially converted into 

[Cu(dnp)2](BuBr2) under heating whereas [Cu(dnp)Cl2] (C12-Cl2) showed no detectable 

change under the same conditions. The authors gave no rationale for the mechanism of this 

redistribution but the copper(I) complexes [Cu(L)2]
+ (CuX2)

– (C13) are also accessible by 

mixing the corresponding copper(I) salt CuX with ligand in a 1:1 ratio.[116,117] 

 

 
Figure 7. [Cu(dpp)X2] (C11) and [Cu(dnp)X2] (C12) according to B. Wu, X.-J. Yang et al.[116] 

 

The new complex [Cu(dap)Cl2] (C10) is at least stable up to 55°C in chloroform because it 

was synthesized under these conditions. As outlined above, the chloride auxiliary ligand and 

the sterically demanding dap ligand seem to sufficiently stabilize the copper(II) complex, 

however, potential ligand redistribution should always be kept in mind when discussing 

physical properties or reaction mechanisms. With complex C10 as a copper(II) analog to 

established [Cu(dap)2]Cl (C1-Cl), it was attractive to test its potential utility for photoredox 

reactions. 
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3. Characterization of New Complexes 

3.1 X-ray Structures 

The structures of the bench-stable complexes were investigated by X-ray analysis. Figure 8 

depicts the measured X-ray structures of the new homoleptic complexes C8 and C9 which 

both show the supposed flattened pseudo-tetrahedral coordination of the copper(I) center by 

the phenanthroline nitrogen atoms. 

 

[Cu(dapacetal)2]
+ (C8) [Cu(phenazino-dap)2]

+ (C9) 

  

 

 

Bond Angle [deg] 

N1-Cu1-N2 83.1 N1-Cu1-N2 81.8 

N3-Cu1-N4 82.9 N5-Cu1-N6 81.9 

Dieder Angle [deg] 

N1Cu1N2/N3Cu1N4 77.8 N1Cu1N2/N5Cu1N6 72.1 

Bond Length [Å] 

Cu1-N1 2.048 Cu1-N1 2.025 

Cu1-N2 2.031 Cu1-N2 2.098 

Cu1-N3 2.080 Cu1-N5 2.087 

Cu1-N4 2.006 Cu1-N6 2.038 
 

Figure 8. X-ray structures and selected data of [Cu(dapacetal)2]
+ (C8) (left) and 

[Cu(phenazino-dap)2]
+ (C9) (right). 
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The dihedral angles between the mean planes of the ligands are, with values of 72.1° and 

77.8°, in agreement with reports of comparable copper phenanthroline complexes[47,118]. The 

ligands bite angles in the range of 82° to 83° are in consistence as well. The distances 

between nitrogen and copper are in a quite narrow field (short bond 2.006 Å to 2.048 Å, long 

bond 2.080 Å to 2.098 Å). 

 

Figure 9 depicts the measured X-ray structure of the heteroleptic copper(II) complex C10. 

The copper(II) center is four-coordinated by one bidentate dap ligand and two chloride ions in 

a pseudo-tetrahedral geometry with a pronounced flattening distortion. This unusual 

coordination geometry, the bite angle, as well as the bond length are in agreement with 

comparable phenanthroline complexes.[116,119] The dihedral angle between 

N1Cu1N2/Cl1Cu1Cl2 is with 66.1° in the region of the analogous compound C11-Cl2 with the 

dpp ligand (65.7°).[116] 

 

[Cu(dap)Cl2] (C10) 

 
 

 
 

Bond Angle [deg] 

N1-Cu1-N2 83.9 

Cl1-Cu1-Cl2 106.7 

Dieder Angle [deg] 

N1Cu1N2/Cl1Cu1Cl2 66.1 

Bond Length [Å] 

Cu1-N1 2.023 

Cu1-N2 2.015 

Cu1-Cl1 2.226 

Cu1-Cl2 2.223 
 

Figure 9. X-ray structure and selected data of [Cu(dap)Cl2] (C10).  
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3.2 Spectroscopic Investigation 

The absorption and emission spectra of [Cu(dapacetal)2]
+ (C8) and [Cu(phenazino-dap)2]

+ 

(C9) are depicted in Figure 10. The emission spectra were measured in a PMMA 

(poly(methyl methacrylate)) matrix, as the luminescence quantum yields in solution are too 

low at ambient temperature. Nevertheless, both complexes show in PMMA weak emission 

with photoluminescence quantum yields PL of 1% with a broad unstructured emission 

spectrum centered at around 700 nm. 

 

 
Figure 10. Absorption (solid lines) and luminescence (dashed lines) spectra of 
[Cu(dapacetal)2]BF4 (C8-BF4, red) and [Cu(phenazino-dap)2]PF6 (C9-PF6, black) at ambient 
temperature. Excitation wavelength for luminescence spectra: 300 nm for complex C8-BF4, 
330 nm for complex C9-PF6. Absorption spectra were recorded in DCM and emission was 
measured in PMMA. 

 

Both complexes showed additional weak emission in the range of 380 to 580 nm, which 

could be assigned to the emission spectra of free ligands (see experimental part, Figures 25 

and 26). In the case of [Cu(phenazino-dap)2]
+ (C9), this emission was relatively intensive and 

it was still present after thorough purification and recrystallization of the complex. As the 

phenazino-dap ligand (73) shows, in contrast to the complex, a high quantum yield PL of 

16% in a nitrogen atmosphere, traces of the ligand can lead to this emission band. Although 

the complex is stable under ambient conditions and ligand dissociation has not been 

observed during other investigations, a tiny amount must dissociate during the preparation of 

the PMMA matrix. Regarding copper(II) complex C10, it was not possible to determine the 

emission spectrum as this complex shows extremely poor emission (PL = 0% both in an air 
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and a nitrogen atmosphere). The wavelengths as well as the corresponding extinction 

coefficients are summarized in Table 3. The average excited state lifetime  was obtained by 

a biexponential fit of the emission decay function (see experimental part, Figures 23 and 24). 

 

Table 3. Photophysical properties of copper complexes. 

Complex 
Emission 
max / nm 

Excited State 
Lifetime  / ns 

Absorption 
Abs / nm 

Extinction 
Coefficient  

/ (mol-1·dm3·cm-1) 

[Cu(dap)2]Cl (C1-Cl) - 
540 

(ref[20]) 

284 

331 

455 

530 

5.9 x 104 

5.1 x 104 

2.0 x 103 

1.4 x 103 

[Cu(dapacetal)2]BF4 

(C8-BF4) 
691 a) 517 

262 

290 

332 

382 

455 

530 

5.6 x 104 

1.0 x 105 

4.0 x 104 

3.1 x 104 

4.4 x 103 

2.0 x 103 

[Cu(phenazino-dap)2]PF6 

(C9-PF6) 
722 b) 252 

294 

325 

372 

391 

455 

530 

9.5 x 104 

9.7 x 104 

5.1 x 104 

4.5 x 104 

5.0 x 103 

2.2 x 103 

[Cu(dap)Cl2] (C10) - - 

300 

351 

455 

530 

2.6 x 104 

2.9 x 104 

7.3 x 102 

4.7 x 102 

Absorption data were recorded in DCM; emission data and excited state lifetime were measured in 
PMMA. a) Excitation wavelength: 300 nm. b) Excitation wavelength: 330 nm. 
 

The UV-Vis absorption spectra (Figure 11) display for all four complexes below 355 nm 

intense absorptions (e.g. ([Cu(dapacetal)2]BF4 (C8-BF4), 290 nm = 1.0 x 105 mol-1·dm3·cm-1) 

which are assigned to * transitions of the ligands[20,105]. A weaker broad absorption occurs 

at wavelengths longer than 400 nm for all four complexes (e.g. ([Cu(dapacetal)2]BF4 (C8-

BF4), 455 nm) = 4.4 x 103 mol-1·dm3·cm-1). This absorption can be attributed to metal-to-

ligand charge-transfer (MLCT) transitions[20,105]. In this thesis, photoredox catalyzed reactions 

are usually performed using LEDs with blue (455 nm) or green (530 nm) light. Both new 

copper(I) complexes C8-BF4 and C9-PF6 show higher extinction at these wavelengths than 
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the established [Cu(dap)2]Cl (C1-Cl) and can therefore theoretically take up more light 

energy, which is basically beneficial for photocatalysis. Copper(II) complex C10 bears only 

one phenanthroline ligand and, in contrast to copper(I) complex C1-Cl, exhibits a lower 

absorbance at these wavelengths, which is in theory still high enough for photocatalysis. This 

behavior is not surprising as there is only one ligand available for MLCT instead of two. After 

all, blue (455 nm) as well as green (530 nm) LEDs can be used for adequate excitation in the 

visible range of all these complexes. 

 

 

Figure 11. Comparison of UV-Vis absorption spectra of [Cu(dap)2]Cl (C1-Cl, blue), 
[Cu(dapacetal)2]BF4 (C8-BF4, red), [Cu(phenazino-dap)2]PF6 (C9-PF6, black), and 
[Cu(dap)Cl2] (C10, green) recorded in DCM. 
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3.3 Cyclovoltammetric Measurements 

The new complexes were investigated by cyclovoltammetric measurements vs. ferrocene 

(Fc) as an internal standard and the potentials were converted to the SCE scale for better 

comparability. Both new copper(I) complexes show a metal-based reversible redox behavior 

for the Cu2+/Cu+ couple (Figure 12, wave A). The half-wave potential for Cu2+/Cu+ of 

[Cu(dapacetal)2]
+ (C8) is, with 0.64 V vs. SCE, within the range of [Cu(dap)2]

+ (0.62 V vs. 

SCE)[19]. This was not expected, as the possible electron-donating effect of the oxygen atoms 

in 5,6-position of the dap ligand was expected to decrease this potential. In comparison to 

this, [Cu(phenazino-dap)2]
+ (C9) shows, with 0.81 V vs. SCE, a much higher potential, which 

confirms the strong electron-withdrawing influence of the phenazine group. 

 

 

Figure 12. Cyclic voltammograms of [Cu(dapacetal)2]BF4 (C8-BF4) in MeCN and of 
[Cu(phenazino-dap)2]PF6 (C9-PF6) in DCM5 using tetrabutylammonium tetrafluoroborate as 
supporting electrolyte and ferrocene as internal standard at a scan rate of 50 mV*s-1. 

 

In contrast to [Cu(L)2]
+ complexes (cf. for example C1[47], C8 or C9), which show only one 

reversible wave at the positive potential area, the copper(II) complex [Cu(dap)Cl2] (C10) 

shows a more challenging cyclic voltammogram with irreversible processes (Figure 13). As a 

simple oxidation of copper(II) to a copper(III) species should result in one reversible redox 

wave, such an oxidation cannot be assumed for this system. However, it is known that 

besides redox reactions on the metal center, manifold ligand exchange and ligand 

redistribution processes can occur with such copper complexes.[116,120] For example, chloride 

                                                
5 Due to solubility reasons, [Cu(phenazino-dap)2]PF6 (C9-PF6) was measured in DCM. 

-2 -1 0 1
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Potential vs. SCE / V

[Cu(phenazino-dap)2]
+

[Cu(dapacetal)2]
+
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can dissociate and lead to additional oxidation peaks by adsorbance on the electrode 

surface. Moreover, analog to literature report[116], it has to be assumed that a copper(I) 

couple ([Cu(dap)2](CuCl2) (C13-dapCl) is formed by the applied potential (vide supra). 

Consequently, the observed redox waves can be most likely attributed to Cu2+/Cu+ transitions 

of different species formed in course of the measurement.[116] Nevertheless, an unambiguous 

assignment of the present species with exact oxidation states cannot be made here only on 

the basis of simple cyclic voltammetry. Since the elucidation of such processes requires a far 

more in-depth physical investigation which is beyond the scope of this thesis and since it was 

more important to firstly see if [Cu(dap)Cl2] (C10) exhibits any photoredox activity at all, the 

complex was tested without knowing the exact redox potentials. 

 

 

Figure 13. Cyclic voltammogram of [Cu(dap)Cl2] (C10) in DCM using tetrabutylammonium 
tetrafluoroborate as supporting electrolyte at a scan rate of 50 mV*s -1. Since, in this case, 
ferrocene would overlap the signals, the potentials were referenced against ferrocene by 
using an independent measurement. 
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3.4 Summary and Assessment of Photophysical and Electrochemical Properties 

As a yardstick for the “strength” of a photocatalyst, the excited state potentials play a crucial 

role in photoredox catalysis. The excited state reduction potential E1/2*(M
+/M*) of a 

photocatalyst can be approximated from the ground state electrochemical potential E(M+/M) 

and the zero spectroscopic energy of the excited state E0-0(M/M*), where M is the ground 

state molecule and M* is the lowest excited state molecule (equation (1)). [121] The ground 

state electrochemical potential E1/2(M
+/M) is obtained by cyclic voltammetry and E0-0(M/M*) 

can be estimated from the onset of the emission band. 

 

E1/2*(M
+/M*) = E1/2(M

+/M) - E0-0(M/M*) (1) 

 

Basing on the cyclovoltammetric and spectroscopic measurements, the reduction potentials 

of the copper complexes were calculated using equation (1). The physical properties of 

copper(I) complexes are summarized and illustrated in Table 4. 

 

Table 4. Summary of physical properties of copper(I) complexes. 

Catalyst 
[Cu(dapacetal)

2
]BF

4 

C8-BF4 

[Cu(dap)
2
]Cl 

C1-Cl 

[Cu(phenazino-dap)
2
]PF

6 

C9-PF6 

Redox 

Potentials 

   

  (ref[19])  

Excited State 

Lifetime  
517 ns 

540 ns 

(ref[20]) 
252 ns 

Emission  

max 
691 nm 

690 nm 

(ref[47]) 
722 nm 

Redox potentials are reported vs. SCE: potentials of [Cu(dapacetal)
2
]BF4 (C8-BF4) and [Cu(dap)2]Cl 

(C1-Cl) were recorded in MeCN whereas that of [Cu(phenazino-dap)2]PF6 (C9-PF6) were recorded in 
DCM due to solubility problems. Lifetime and emission behavior were studied in PMMA. 

 

Regarding the redox power of the complexes, [Cu(dapacetal)2]
+ (C8) shows redox behavior 

which is surprisingly similar to that of [Cu(dap)2]
+ (C1). A possible electron-donating effect of 

the oxygen atoms in 5,6-position is assumed to increase the reduction potential of the 

excited state. However, this potential is, with -1.38 V, unexpectedly somewhat weaker than 
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that of C1. In contrast to the initial assumption, this is a strong indication that the acetal 

substitution in 5,6-position of the dap ligand has no electron-donating effect on the metal 

center. In contrast to this, the reduction potential of the excited state of [Cu(phenazino-

dap)2]
+ (C9) is, with -1.20 V, much weaker than the potential of [Cu(dap)2]

+ (C1), which 

conforms the assumption of a strong electron-withdrawing influence of the phenazine group. 

Even though the reductive power of [Cu(phenazino-dap)2]
+ (C9) is reduced, it is theoretically 

still high enough to allow the reduction of interesting substrates, such as 4-nitrobenzyl 

bromide (E1/2 = -0.86 V vs. SCE)[103]. As far as the lifetime is concerned, all three complexes 

are located in the nanosecond timescale. Due to the fact that [Cu(dap)2]
+ (C1) is already 

known to be a potent photoredox catalyst (vide supra), the lifetime of each complex should 

be long enough to perform reasonable photoredox catalysis. The molar extinction coefficients 

of both [Cu(dapacetal)2]
+ (C8) and [Cu(phenazino-dap)2]

+ (C9) are at 455 nm and 530 nm 

higher than that of [Cu(dap)2]
+ (C1). Therefore, it is assumed that these new complexes are 

similarly accessible for photoredox catalysis by excitation with blue or green light. Even 

though the photophysics reveal some unexpected results for [Cu(dapacetal)2]
+ (C8) and 

[Cu(phenazino-dap)2]
+ (C9) with a low reduction potential, from a theoretical point of view 

both complexes should be applicable for photoredox catalysis. Since the copper(II) complex 

[Cu(dap)Cl2] (C10) shows a challenging cyclic voltammogram with irreversible processes, 

and it was not possible to determine the emission spectrum due to extremely poor emission 

behavior, the excited state redox potentials of this complex cannot be calculated using 

equation (1). Nevertheless, C10 shows sufficiently high absorbance for excitation in the 

spectral range of blue and green light which makes the complex interesting for photoredox 

catalysis. The photocatalytic potential of the new copper complexes, which was tested by 

means of different reactions, is illustrated in the next chapter. 
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4. Comparison of Phenanthroline Complexes in Photoreactions 

4.1 Copper(I) Phenanthroline Complexes 

In order to assess the photocatalytic potential of the new copper(I) complexes 

[Cu(dapacetal)2]
+ (C8) and [Cu(phenazino-dap)2]

+ (C9), their performance was tested on 

selected systems and compared to the established photoredox catalyst [Cu(dap)2]
+ (C1). As 

a first model system, the visible-light-mediated ATRA reaction between styrene (74) and 4-

nitrobenzyl bromide (75) (E1/2 = -0.86 V 6)[103] was chosen, which was developed by O. Reiser 

and co-workers.[26] This reaction ran excellently with [Cu(dap)2]
+ (C1) in a 99% yield in 24 h 

(Table 5, entry 1). Control experiments with CuCl, without catalyst or without light irradiation 

showed that this reaction needs both photocatalyst and light irradiation (entries 6 to 8). The 

ligand itself showed a slight photocatalytic activity with 15% yield (entry 9). When 

[Cu(dapacetal)2]BF4 (C8-BF4) (entry 4) was used, only 59% of the product was obtained, 

even after a prolonged reaction time of six days. Even though complex C8-BF4 showed 

similar redox behavior and a higher absorbance at 530 nm than [Cu(dap)2]Cl (C1-Cl), this 

reaction proceeded far more slowly. 

 

Table 5. ATRA reaction using 4-nitrobenzyl bromide (75).a 

 

Entry Conditions Yield b / %  

1 [Cu(dap)2]Cl 99 

2 [Cu(dap)2]BF4 90 

3 [Cu(dap)2]PF6 100 

4 [Cu(dapacetal)2]BF4 59 c 

5 [Cu(phenazino-dap)2]PF6 n.r. 

6 no catalyst, just light n.r. (ref[26]) 

7 [Cu(dap)2]Cl, no light n.r. (ref[26]) 

8 CuCl (1 mol%) n.r. 

9 dap (2 mol%) 15 
a) Reaction conditions: Styrene (74) (5.0 equiv, 2.5 mmol), 4-nitrobenzyl bromide (75) (1.0 equiv), 
anhydrous MeCN (1.0 mL), catalyst (0.005 mmol, 1.0 mol%), rt, 530 nm (LED-stick), 24 h. b) 
Determined by 1H-NMR using 1,2-dichloroethane as internal standard. c) Isolated yield after 6 d 
reaction time. 

 
                                                
6 vs. SCE in MeCN 



B. Synthesis, Characterization and Application of New Diimine-Based Copper Complexes 

43 

Organohalide 4-cyanobenzyl bromide (E1/2 = -1.39 V 7)[104], which cannot be converted by the 

more strongly reducing catalyst [Cu(dap)2]
+ (C1), was used as a reagent in order to control 

the calculated reduction potential of [Cu(dapacetal)2]
+ (C8) (E1/2 (Cu2+/*Cu+) = -1.38 V 7). No 

reaction occurred, as expected. As the reduction potential of [Cu(phenazino-dap)2]PF6 (C9-

PF6) is with a value of -1.20 V 7 theoretically still high enough to realize the reduction of 4-

nitrobenzyl bromide (75) (E1/2 = -0.86 V 7)[103], this complex was tested as well (Table 5, entry 

5). Interestingly, no reaction was observed in contrast to the other two complexes C1 and 

C8-BF4. As shown by the example of [Cu(dap)2]
+ (C1) (entries 2 and 3), the effect of the 

counter ion is negligible in this reaction and cannot therefore be the reason for the strange 

behavior of [Cu(dapacetal)2]BF4 (C8-BF4) and [Cu(phenazino-dap)2]PF6 (C9-PF6). 

 

In a further test, diethyl bromomalonate (78) was used as ATRA reagent (Table 6). As this 

reagent is more easily reducible (E1/2 = -0.62 V 7)[102] than 4-nitrobenzyl bromide (75), it 

should be readily accessible with [Cu(phenazino-dap)2]
+ (C9) (E1/2 = -1.20 V 7). In order to 

also have a representative for aliphatic alkenes, 1-octene (77) was used as reaction partner. 

When using standard conditions, namely acetonitrile as a solvent and green light irradiation, 

catalyst [Cu(dap)2]
+ (C1) furnished a reasonable yield of 51% (Table 6, entry 1). Control 

experiments with CuCl, without catalyst or without light irradiation showed that this reaction 

needs both photocatalyst and light irradiation (entries 13 to 16). Using standard conditions, 

catalyst [Cu(dapacetal)2]
+ (C8) again showed slower conversion and furnished only 13% of 

product (entry 6). However, C8 was just as efficient as [Cu(dap)2]
+ (C1) when irradiated with 

blue light (entries 2 and 7). This might be explained by the higher absorbance of 

[Cu(dapacetal)2]
+ (C8), which is at 455 nm approximately double the value of [Cu(dap)2]

+ 

(C1) (cf. Table 3 and Figure 11). Interestingly, dap ligand (60) itself showed quite strong 

photocatalytic activity in this system with a 59% yield (entry 17). Nevertheless, this was much 

lower than with [Cu(dap)2]
+ (C1) which furnished a 91% yield under these conditions (entry 

2). [Cu(phenazino-dap)2]PF6 (C9-PF6) did not lead to any success at all (entries 8 to 12). 

Since C9-PF6 is scarcely soluble in acetonitrile, reactions in diluted mixtures were carried out 

(entries 9 to 12). The use of more energy-rich blue light as well as the use of 

dichloromethane, where the complex is more soluble, did not show any turnover (entries 10 

to 12). These results would not be expected with regard to either the reduction potential or 

the lifetime of the excited state of [Cu(phenazino-dap)2]PF6 (C9-PF6) (vide supra). 

  

                                                
7 vs. SCE in MeCN 
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Table 6. ATRA reaction between 1-octene (77) and diethyl bromomalonate (78).a 

 

Entry Catalyst Solvent  / nm 
c(alkene) 

/ mol/L 
Yield b / % 

1 [Cu(dap)2]Cl MeCN 530 1.0 51 

2 [Cu(dap)2]Cl MeCN 455 1.0 91 c 

3 [Cu(dap)2]Cl DCM 530 0.17 25 

4 [Cu(dap)2]BF4 MeCN 530 1.0 40 

5 [Cu(dap)2]PF6 MeCN 530 1.0 50 

6 [Cu(dapacetal)2]BF4 MeCN 530 1.0 13 

7 [Cu(dapacetal)2]BF4 MeCN 455 1.0 89 

8 [Cu(phenazino-dap)2]PF6 MeCN 530 1.0 n.r. 

9 [Cu(phenazino-dap)2]PF6 MeCN 530 0.17 n.r. 

10 [Cu(phenazino-dap)2]PF6 MeCN 455 0.17 n.r. 

11 [Cu(phenazino-dap)2]PF6 DCM 530 0.17 n.r. 

12 [Cu(phenazino-dap)2]PF6 DCM 455 0.17 n.r. 

13 no catalyst MeCN 455 1.0 n.r. 

14 no catalyst DCM 455 1.0 n.r. 

15 [Cu(dap)2]Cl MeCN no 1.0 n.r. 

16 CuCl DCM 455 1.0 n.r. 

17 dap (2 mol%) MeCN 455 1.0 59 
a) Reaction conditions: 1-octene (77) (1.0 equiv), diethyl bromomalonate (78) (2.0 equiv), anhydrous 
solvent, catalyst (1.0 mol%), rt, irradiation via LED-stick for 24 h. b) Determined by 1H-NMR using 1,4-
dicyanobenzene as internal standard. c) 89% isolated yield. 
 

In a next step, N-Boc allylamine (80) was tested as an alkene. This photoredox catalyzed 

ATRA reaction between 80 and diethyl bromomalonate (78) was developed by Stephenson 

et al. who reported 99% yield using Ir[(dF(CF3)-ppy)2(dtbbpy)]PF6 as a photocatalyst.[31] 

Using copper catalysts, the reaction furnished lower yields, with [Cu(dapacetal)2]
+ (C8) 

catalyzing slightly worse than [Cu(dap)2]
+ (C1) (Table 7, entries 1 and 2). The control 

experiments without light irradiation or with a copper(I) source as a potential catalyst showed 

no reaction (entries 4 and 5), which proves the necessity of both light and catalyst for this 

reaction.  
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Table 7. ATRA reaction using N-Boc allylamine (80).a 

 

Entry LED Catalyst Yield / % 

1 530 nm [Cu(dap)2]Cl 77 b 

2 530 nm [Cu(dapacetal)2]BF4 69 

3 530 nm [Cu(phenazino-dap)2]PF6 n.r. 

4 - [Cu(dapacetal)2]BF4 n.r. 

5 530 nm [Cu(MeCN)4]BF4 n.r. 
a) Reaction conditions: N-Boc allylamine (80) (1.0 equiv, 0.5 mmol), diethyl bromomalonate (78) 
(2.0 equiv), LiBr (2.0 equiv), catalyst (0.005 mmol; 1 mol%), solvent DMF/H2O 1/4 (v/v) (1.0 mL), rt, 
530 nm (LED-stick), 24 h. b) Stephenson et al. reported 99% yield using Ir[(dF(CF3)-ppy)2(dtbbpy)]PF6 
(1 mol%) as a catalyst; irradiation with blue light for 24 h.[31] 

 

The photoredox catalyzed trifluoromethylchlorosulfonylation of alkenes developed by Reiser 

et al.[27] (cf. chapter A, Scheme 6) is extraordinary. When using triflyl chloride (13) and 

[Cu(dap)2]Cl (C1-Cl), chlorosulfonylated products 14 were obtained as the preferred products 

(Table 8, entry 1). In contrast, with other established photoredox catalysts such as 

[Ru(bpy)3]Cl2, trifluoromethylchlorination under loss of sulfur dioxide was observed resulting 

in chlorinated products 15 as the main products (entry 2). Control experiments proved that 

both light and photoredox catalyst are necessary for this reaction (entries 3 to 5). Since the 

unusual product formation under copper catalysis cannot be explained by established outer-

sphere mechanism of photoredox catalyzed ATRA reactions, a new inner-sphere mechanism 

was proposed in which copper stabilizes SO2Cl by coordination (cf. chapter A, Scheme 8).[27] 

The new complexes were tested by the example of allylbenzene (82) and compared with the 

published results of [Cu(dap)2]Cl (C1-Cl). [Cu(dapacetal)2]BF4 (C8-BF4) furnished 42% of 

chlorosulfonylated product 14a as the main product (Table 8, entry 6) but both the selectivity 

(83/17) and the yield dropped in comparison with [Cu(dap)2]Cl (C1-Cl) (entry 1). Interestingly 

[Cu(phenazino-dap)2]PF6 (C9-PF6) showed with a 37% yield a productive reaction, too. 

However, it was with a ratio of 70/30 less selective for 14a with a comparable poor yield as 

[Cu(dapacetal)2]BF4 (C8-BF4) (entry 7). The fact that [Cu(phenazino-dap)2]PF6 (C9-PF6) 

showed no reactivity in all other tested ATRA reactions (vide supra) is a further indication 

that the trifluoromethylchlorosulfonylation proceeds via a different mechanism. Even though 

there is no apparent reason from the photophysical behavior investigated so far, this complex 

does not catalyze reactions in which the traditional outer-sphere mechanism is assumed to 

be predominant. Regarding their performance, the complexes [Cu(dapacetal)2]BF4 (C8-BF4) 
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and [Cu(phenazino-dap)2]PF6 (C9-PF6) synthesized herein are not of value for the 

trifluoromethylchlorosulfonylation reaction. 

 

Table 8. Trifluoromethylchlorosulfonylation reaction of allylbenzene (82). 

 

Entry Conditions 14a/15a Yield (14a) / % 

1 [Cu(dap)2]Cl 95/5 86 

va
lu

es
 ta

ke
n 

fr
om

 
re

f [2
7]
 2 [Ru(bpy)3]Cl2 4/96 84% of 15a 

3 [Cu(dap)2]Cl, no light 99/1 10 

4 no catalyst, 530 nm - n.r.  

5 [Cu(MeCN)4]PF6 15/85 7% of 15a 

6 [Cu(dapacetal)2]BF4 83/17 42 a  

7 [Cu(phenazino-dap)2]PF6 70/30 37 a  

Reaction conditions: Allylbenzene (82) (1.0 equiv, 1.0 mmol), triflyl chloride (13) (2.0 equiv), K2HPO4 
(2.0 equiv), catalyst (0.01 mmol; 1 mol%), anhydrous MeCN (3.0 mL), rt, 530 nm (LED-stick), 24 h. a) 
The yield was determined using 1,4-dicyanobenzene as internal standard. 

 

The allylation of organohalides 9 using allyltrimethylsilane derivatives 10 under photoredox 

catalysis as developed by Reiser and co-workers, is an ecologically more favorable 

alternative to the allylation with allyl tributyltin reagents. [20,25,47] The reaction mechanism was 

proposed to run via an oxidative quenching cycle with the copper photoredox catalyst acting 

as an electron shuttle (Scheme 27).[20] After irradiation, the photoexcited copper(I) catalyst 

reduces organohalides 9 by SET to the corresponding alkyl radical 83 under formation of a 

copper(II) species. Radical 83 adds to alkene 10a under release of trimethylsilyl radical and 

product formation. Oxidation of the trimethylsilyl radical to the corresponding cation by back 

electron transfer to copper(II) closes the catalytic cycle. 
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Scheme 27. Proposed mechanism for copper-based photoredox catalyzed allylation of 
organohalides 9 with allyltrimethylsilanes 10.[20] 

 

Since the scope of this valuable reaction is still limited with regard to both more challenging 

allyltrimethylsilane derivatives 10 and the variation of organohalides 9, research for better 

photocatalysts is ongoing. For this reason, the new copper complexes were also tested on 

this reaction. As a model system the well-investigated reaction between allyltrimethylsilane 

(84) and diethyl bromomalonate (78) was used (Table 9), which needs both light[20] and 

photocatalyst[20]. When [Cu(dapacetal)2]BF4 (C8-BF4) was used as a catalyst, only half the 

yield was obtained compared to when [Cu(dap)2]Cl (C1-Cl) was used (entries 1 and 2). With 

[Cu(phenazino-dap)2]PF6 (C9-PF6) no reaction took place. Again, both new copper(I) 

complexes were inferior to [Cu(dap)2]
+ (C1). 
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Table 9. Allylation of diethyl bromomalonate (78) with allyltrimethylsilane (84).a 

 

Entry Catalyst Yield / % 

1 [Cu(dap)2]Cl 40 

2 [Cu(dapacetal)2]BF4 20 

3 [Cu(phenazino-dap)]2PF6 n.r. 
a) Reaction conditions: Allyltrimethylsilane (84) (3.0 equiv, 1.5 mmol), diethyl bromomalonate (78) 
(1.0 equiv, 0.5 mmol), catalyst (0.005 mmol, 1.0 mol%), anhydrous MeCN (1.0 mL), rt, 530 nm (LED-
stick), 48 h. The yield was determined using 1,4-dicyanobenzene as internal standard. 
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4.2 Copper(II) Phenanthroline Complex 

With the new complex [Cu(dap)Cl2] (C10), a copper(II) analog to established copper(I) 

photoredox catalyst [Cu(dap)2]Cl (C1-Cl) was readily available. In order to investigate 

whether it is possible to use a copper(II) complex to perform known copper(I) driven 

photoredox catalyzed reactions, C10 was tested for the reactions presented in the previous 

chapter. Using [Cu(dap)Cl2] (C10) instead of [Cu(dap)2]Cl (C1-Cl) is more favorable, as less 

dap ligand is needed for the catalyst synthesis. In Table 10 the results of [Cu(dap)Cl2] (C10) 

for different photoredox catalyzed reactions are summarized and compared with the results 

with [Cu(dap)2]Cl (C1-Cl). As demonstrated in the previous chapter, all listed reactions are 

definitely photocatalyzed as the control experiments without light or catalyst were negative. 

The visible-light-mediated ATRA reaction between styrene (74) an 4-nitrobenzyl bromide (75) 

(Table 10, entries 1 to 3), for example, clarifies that the copper(II) complex C10 acts with a 

76% yield indeed as a photocatalyst, as the control experiments with dap ligand gave only 

15% product yield (cf. Table 5, entry 9). In addition, the reaction did not work with a simple 

copper(I) salt such as CuCl (cf. Table 5, entry 8) or with the copper(II) salt CuCl2 (Table 10, 

entry 3).  

 

In comparison to [Cu(dap)2]Cl (C1-Cl), copper(II) complex C10 gave with 83% yield for the 

ATRA reaction between triflyl chloride (13) and allylbenzene (82) comparable yields in still 

good selectivity of 91/9 for product 14a (Table 10, entries 10 and 11). Regarding the 

reactions with diethyl bromomalonate (78), however, the performance depends on the alkene 

substrate used. With 1-octene (77) (Table 10, entries 4 and 5), the copper(I) catalyst C1-Cl 

gave with 91% much better results whereas C10 furnished with 37% only poor product yields 

which are in the order of the background reaction with the dap ligand (cf. Table 6). However, 

when the allylic alkenes N-Boc allylamine (80) or allyltrimethylsilane (84) are used, the 

[Cu(dap)Cl2] (C10) outperforms with yields of 86% and 68% the [Cu(dap)2]Cl (C1-Cl) (77% 

and 40% yield) (Table 10, entries 6 to 9). 
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Table 10. Comparison of [Cu(dap)Cl2] (C10) and [Cu(dap)2]Cl (C1-Cl). 

 Entry Catalyst Yield f / %  

 

 1 [Cu(dap)2]Cl 99  

 2 [Cu(dap)Cl2] 76  

 3 CuCl2 (1 mol%) n.r.  

 

 4 [Cu(dap)2]Cl 91  

 5 [Cu(dap)Cl2] 37  

 

 6 [Cu(dap)2]Cl 77  

 7 [Cu(dap)Cl2] 86  

 

 8 [Cu(dap)2]Cl 40  

 9 [Cu(dap)Cl2] 68  

 

   Yield (14a) 14a/15a  

 10 [Cu(dap)2]Cl 86 (ref[27]) 95/05  

 11 [Cu(dap)Cl2] 83 91/9  

Reaction conditions: Alkene, halide, anhydrous solvent, catalyst (1 mol%), rt, irradiation via LED-stick 
(indicated wavelength) for the indicated time. a) styrene (5.0 equiv, 2.5 mmol), 4-nitrobenzyl bromide 
(1.0 equiv), MeCN (1.0 mL). b) 1-Octene (1.0 equiv, 0.5 mmol), diethyl bromomalonate (2.0 equiv), 
MeCN (0.5 mL). c) N-Boc allylamine (1.0 equiv, 0.5 mmol), diethyl bromomalonate (2.0 equiv), LiBr 
(2.0 equiv) was added, DMF/H2O 1/4 (v/v) (1.0 mL). d) Allyltrimethylsilane (3.0 equiv, 1.5 mmol), 
diethyl bromomalonate (1.0 equiv), MeCN (1.0 mL). e) Allylbenzene (1.0 equiv, 1.0 mmol), triflyl 
chloride (2.0 equiv), K2HPO4 (2.0 equiv) was added, MeCN (3.0 mL). f) Determined by 1H-NMR using 
1,2-dichloroethane or 1,4-dicyanobenzene as internal standard.  
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These results raise some questions regarding the reaction mechanism with [Cu(dap)Cl2] 

(C10), considering that both complexes were used under the same conditions in the 

respective reaction. It should be noted that the extinction coefficients of the copper(II) 

complex C10 at the wavelengths of 455 nm and 530 nm which were used are just about one 

third of those of copper(I) complex C1-Cl (cf. Table 3 and Figure 11). Consequently less light 

energy can be taken up, which could be used for a productive reaction. In this regard, the 

examples with N-Boc allylamine (80) or allyltrimethylsilane (84) (Table 10, entries 6 to 9) in 

which [Cu(dap)Cl2] (C10) outperforms [Cu(dap)2]Cl (C1-Cl) are of particular interest. On the 

basis of the better performance of copper(II) catalyst C10, it can be excluded that the 

potential copper(I) species [Cu(dap)2](CuCl2) (C13-dapCl), which might be formed in situ 

from C10 (vide supra)[116], is the active species. Since C13-dapCl corresponds, apart from 

counterions, to C1-Cl and would be available in lower concentrations in the reaction mixture, 

the higher yields with C10 cannot be explained. The initial formation of a copper(I) species 

such as [Cu(dap)Cl2]
– by simple reduction of [Cu(dap)Cl2] (C10) and a subsequent 

copper(I)/copper(II) cycle is also implausible because typical electron donors such as 

triethylamine are missing in the investigated reactions. In contrast, the involvement of a 

copper(III) species is conceivable, which might form, for example, by single electron transfer 

from photoexcited C10 to alkyl halide. In particular, the coordination of substrates directly to 

the sterically less hindered copper center with just one dap ligand and subsequent reductive 

elimination might play a key role. 
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5. 1,4-Diaza-1,3-butadienes: An Alternative to Phenanthrolines? 

Copper(I) complexes with aromatic diamine ligands, for example, phenanthrolines or 

bipyridines, are well investigated (vide supra). In contrast, examples of well-defined copper(I) 

complexes with 1,4-disubstituted 1,4-diaza-1,3-butadiene (DAB) ligands are scarce[109,122,123], 

mainly owing to the ligands´ flexible backbone and different possible coordination 

modes.[109,124,125] However, DAB ligands are of special interest as they show similar -donor 

properties to and better -acceptor properties than other important bidentate nitrogen 

chelates such as 2,2´-bipyridines.[124,126] In addition, such ligands can be easily synthesized 

by condensation reactions of glyoxals, -ketoaldehydes or ,-diketones with primary 

amines.[124,127] In 2016, S. Díez-González and co-workers reported the synthesis and 

characterization of new homo- and heteroleptic copper(I) complexes with four different DAB 

ligands.[109] Thereby, the homoleptic cationic complexes proved to be “stable towards oxygen 

and moisture and could be stored/handled without the need of any particular 

precautions.”[109], p. 4650 When bulky ligand DABMes (86) with mesitylene substituents was 

used, only the homoleptic bischelate complex [Cu(DABMes)2]BF4 (C14) was observed and 

no neutral heteroleptic complex with only one diamine ligand could be formed. Due to the 

fact that [Cu(DABMes)2]BF4 (C14), which had been first reported by M. A. Halcrow et al.[122], 

showed the most resistant structure, this complex was chosen for initial photocatalytic 

investigations in this thesis. 

 

The synthesis was performed following the procedure of S. Díez-González and co-

workers[109], starting with N,N´-bis(mesityl)-1,4-diaza-1,3-butadiene (DABMes, 86) to obtain 

complex C14 in one step (Scheme 28). In doing so, the procedure for complexation is similar 

to the protocol of the phenanthroline complexes. 

 

 

Scheme 28. Synthesis of [Cu(DABMes)2]BF4 (C14) using the conditions of S. Díez-González 
et al.[109]  
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5.1 Photophysical and Electrochemical Properties of [Cu(DABMes)2]BF4 

Bench-stable complex [Cu(DABMes)2]BF4 (C14) efficiently absorbs light in the visible range 

with broad bands at 394 nm ( = 1.5 x 104·mol-1·dm3·cm-1) and 730 nm ( = 3.5 x 103·mol-1 

·dm3·cm-1) (Figure 14). In agreement with related complexes[109], these bands were attributed 

to MLCT as the free ligand absorbs at 365 nm ( = 4.6 x 103·mol-1·dm3·cm-1). 

 

 

Absorption 
Abs / nm 

Extinction Coefficient  
/ (mol-1·dm3·cm-1) 
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1.3 x 103 
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Figure 14. Absorption spectrum of [Cu(DABMes)2]BF4 (C14) in DCM. 

 

Regarding the electrochemical properties, complex C14 shows metal-based reversible redox 

behavior for the Cu2+/Cu+ couple (Wave A) with a half-wave potential of +0.86 V vs. SCE 

(Figure 15). A second potential (B) which occurs at -0.9 to -1.2 V corresponds to the 

reduction of the ligand.[127,128] 
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Figure 15. Cyclic voltammogram of [Cu(DABMes)2]BF4 (C14) in DCM using 
tetrabutylammonium tetrafluoroborate as supporting electrolyte and ferrocene as internal 
standard at a scan rate of 50 mV*s-1. 

 

Due to the extremely poor emission behavior of this complex (PL = 0% both in an air and a 

nitrogen atmosphere) it was not possible to determine the emission spectrum. Thus, the 

redox potential of the excited state could not be calculated in the context of this thesis. 
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5.2 Investigation of Photocatalytic Activity of [Cu(DABMes)2]BF4 

Regarding the use of solvents, UV-Vis spectroscopic investigation revealed instability of the 

complex towards the coordinating ligands acetonitrile and dimethylformamide resulting in 

loss of ligand. Consequently, such coordinating solvents are not applicable for this system. 

Since this otherwise stable complex shows promising absorbance behavior, the performance 

was tested in selected ATRA reactions, which were already presented in the previous 

chapters, and compared to established [Cu(dap)2]
+ (C1). Since [Cu(DABMes)2]BF4 (C14) is 

not stable in acetonitrile, all reactions were run in dichloromethane instead. 

  

The reaction between styrene (74) and 4-nitrobenzyl bromide (75) was not possible with 

[Cu(DABMes)2]BF4 (C14) in dichloromethane and the use of high-energy blue light did not 

lead to success either (Table 11, entries 1 and 2). Usually this transformation is performed in 

acetonitrile in reasonable yields (entry 3). In order to exclude a possible solvent effect, the 

reaction was repeated with [Cu(dap)2]BF4 (C1-BF4) in dichloromethane (entry 4). However, 

the reactions still ran with 63% albeit in lower yield. 

 

Table 11. ATRA reaction using 4-nitrobenzyl bromide (75). 

 

Entry Catalyst Solvent  / nm Yield b / % 

1 [Cu(DABMes)2]BF4 DCM 530 n.r. 

2 [Cu(DABMes)2]BF4 DCM 455 n.r. 

3 [Cu(dap)2]BF4 MeCN 530 90 

4 [Cu(dap)2]BF4 DCM 530 63 
Reaction conditions: Styrene (74) (5.0 equiv, 2.5 mmol), 4-nitrobenzyl bromide (75) (1.0 equiv), 
anhydrous MeCN (1.0 mL), catalyst (0.005 mmol, 1.0 mol%), rt, irradiation via LED-stick, 24 h. b) 
Determined by 1H-NMR using 1,2-dichloroethane as internal standard. 

 

In contrast to the above reaction, [Cu(DABMes)2]BF4 (C14) was with a 46% yield successful 

in the transformation of more easily reducible diethyl bromomalonate (78) (Table 12, entry 1). 

Considering the control experiments with ligand DABMes (86) or without light, which resulted 

in neglectable or no yields (entries 2 and 3), it is evident that [Cu(DABMes)2]BF4 (C14) here 

acts as a photocatalyst. However, in comparison to established [Cu(dap)2]Cl (C1-Cl), which 

furnishes in dichloromethane a 75% yield (entry 4), the performance of the new catalyst C14 
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is worse. If acetonitrile, the best solvent in case of [Cu(dap)2]Cl (C1-Cl) (entry 5), could be 

used, the yield could certainly be increased. 

 

Table 12. ATRA reaction between 1-octene (77) and diethyl bromomalonate (78). 

 

Entry Catalyst Solvent  / nm Yield b / % 

1 [Cu(DABMes)2]BF4 DCM 455 46 

2 DABMes (2 mol%) DCM 455 4 

3 [Cu(DABMes)2]BF4 DCM no n.r. 

4 [Cu(dap)2]Cl DCM 455 75 

5 [Cu(dap)2]Cl MeCN 455 91 
Reaction conditions: 1-octene (77) (1.0 equiv, 0.5 mmol), diethyl bromomalonate (78) (2.0 equiv), 
anhydrous solvent (0.5 mL), catalyst (0.005 mmol, 1.0 mol%), rt, 455 nm (LED-stick), 24 h. b) 
Determined by 1H-NMR using 1,4-dicyanobenzene as internal standard. 

 

Finally, the trifluoromethylchlorosulfonylation of allylbenzene (82) was tested (Table 13). In 

comparison to [Cu(dap)2]Cl (C1-Cl), [Cu(DABMes)2]BF4 (C14) catalyzed the reaction with 

15% in only poor yields and a poor selectivity of 53/47 for the chlorosulfonylated product 14a.  

 

Table 13. Trifluoromethylchlorosulfonylation reaction of allylbenzene (82). 

 

Entry Catalyst Solvent 14a/15a Yield (14a) / % 

1 [Cu(DABMes)2]BF4 DCM 53/47 15 

2 [Cu(dap)2]Cl DCM 93/7 73 (ref[27]) 
Reaction conditions: Allylbenzene (82) (1.0 equiv, 1.0 mmol), triflyl chloride (13) (2.0 equiv), K2HPO4 
(2.0 equiv), catalyst (0.01 mmol; 1 mol%), anhydrous DCM (3.0 mL), rt, 530 nm (LED-stick), 24 h. The 
yield was determined using 1,4-dicyanobenzene as internal standard. 

 

Although the trifluoromethylation was hardly catalyzed by [Cu(DABMes)2]BF4 (C14), the 

example of the ATRA reaction between 1-octene (77) and diethyl bromomalonate (78) (c.f. 

Table 12) shows that this complex definitely exhibits photocatalytic activity. As referred to 

above, the redox potential of the excited state of [Cu(DABMes)2]BF4 (C14) could not be 
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determined owing to extremely poor emission behavior. Nevertheless, it could be estimated 

in this case from the reduction potentials of applied substrates. In contrast to diethyl 

bromomalonate (78) (E1/2 = -0.62 V 8)[102] which was transformed with [Cu(DABMes)2]BF4 

(C14), no reaction was observed when using 4-nitrobenzyl bromide (75) (E1/2 = -0.86 V 8)[103]. 

Consequently, the excited state reduction potential of C14 is likely to be too weak for 4-

nitrobenzyl bromide. This would indicate a reduction potential of [Cu(DABMes)2]BF4 (C14) 

between -0.62 and -0.86 V vs. SCE. However, in order to exactly determine the redox 

potentials of this system, more sophisticated physical investigations would be necessary. 

  

                                                
8 vs. SCE in MeCN 
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6. Conclusion and Outlook 

Two new homoleptic copper(I) phenanthroline complexes [Cu(dapacetal)2]
+ (C8) and 

[Cu(phenazino-dap)2]
+ (C9) were accessible starting from 1,10-phenanthroline hydrate in 

reasonable yields via the common intermediate dapacetal (65) (Scheme 29). 

 

 
Scheme 29. Synthesis of [Cu(dapacetal)2]

+ (C8) and [Cu(phenazino-dap)2]
+ (C9). 

 

Characterization and investigation of electrochemical and photophysical properties revealed 

redox behavior for [Cu(dapacetal)2]
+ (C8) which is very similar to that of the established 

[Cu(dap)2]
+ (C1). This result was surprising, as the insertion of potentially electron-donating 

oxygen atoms in the 5,6-position of the phenanthroline core structure was expected to 

increase the electron density of the complex, which should lead to more powerful reducing 

properties in the excited state. Due to these unexpected results, it was questionable as to 

whether it is possible to influence the electrons on the nitrogen atoms of the phenanthroline 

core by variations on the 5,6-position. In order to check this concept, the opposite path was 

followed by inserting electron-withdrawing groups. For this purpose, the phenazine group 

was chosen, as this part is already known for its electron-withdrawing effect to the bipyridine 

system of the ligand.[11] Indeed, the reduction potential of the excited state of complex 
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[Cu(phenazino-dap)2]PF6 (C9-PF6) is, with -1.20 V, weaker than that of [Cu(dap)2]Cl (C1-Cl), 

which confirms the assumption of a strong electron-withdrawing influence of the phenazine 

group. Even though the reductive power of [Cu(phenazino-dap)2]PF6 (C9-PF6) is reduced, it 

is theoretically sufficiently high enough to allow the reduction of interesting substrates. 

 

Although the physical properties were less promising, both copper(I) complexes were tested 

as photoredox catalysts. Using [Cu(dapacetal)2]
+ (C8) in photoredox reactions revealed that it 

was inferior to [Cu(dap)2]
+ (C1) in different ATRA and allylation reactions as it showed slower 

conversion and furnished lower yields. Only the allylation of diethyl bromomalonate with N-

Boc allylamine resulted in almost the same yields. Finally, the insertion of electron-donating 

ether functionalities in 5,6-position of the dap core structure did not lead to a better 

performance of the resulting homoleptic copper(I) catalyst (C8). As far as [Cu(phenazino-

dap)2]
+ (C9) is concerned, experiments showed that it is inactive for ATRA reactions which 

run via a commonly assumed outer-sphere mechanism. The fact that [Cu(phenazino-dap)2]
+ 

(C9), on the other hand, works for the trifluoromethylchlorosulfonylation reaction, is a further 

indication of the existence of an alternative reaction pathway for this reaction, which is 

assumed to run via an inner-sphere mechanism.[27] From the photophysical behavior 

investigated so far, there is no explanation for the predominant inactivity of C9. An 

explanation might be provided by the reduced lifetime of the excited state, which is still in the 

range of a few hundred nanoseconds, but might be too short for most of the tested reactions. 

Nonetheless, it was not possible to improve the catalyst performance by modifications in 5,6-

position of the phenanthroline core structure. In contrast to this failed strategy, a more 

promising approach for developing more efficient copper(I)-based photoredox catalysts is the 

formation of heteroleptic complexes. The benefit of such complexes was already exemplified 

by Reiser´s group in 2015 with the example of strong reducing [Cu(dpp)(binc)]+ (C6) (E1/2 

(Cu2+/*Cu+) = -1.88 V vs. SCE in acetonitrile), which showed good activity for the allylation of 

organohalides with allyltrimethylsilanes.[20] Appropriate to this concept would be, for example, 

the formation of so-called push-pull complexes with one phenazino-dap ligand as a strong 

electron-pulling ligand. 

 

With [Cu(dap)Cl2] (C10), a new copper(II) phenanthroline complex was readily synthesized 

and its structure was confirmed by X-ray analysis. Although it was not possible to determine 

the redox potentials of this complex unambiguously, this compound was tested as a 

photoredox catalyst. In a comparison of the catalytic performance of [Cu(dap)Cl2] (C10) and 

established [Cu(dap)2]Cl (C1-Cl) catalyst, copper(II) complex [Cu(dap)Cl2] (C10) proved to be 

an efficient photocatalyst and showed reactivity in all investigated reactions. In the 

transformations of diethyl bromomalonate (78) with the allylic alkenes N-Boc allylamine or 
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allyltrimethylsilane, C10 surprisingly outperformed copper(I) catalyst C1-Cl and furnished 

higher product yields. Since the formation of a copper(I) species starting from [Cu(dap)Cl2] 

(C10) is unlikely, and the resulting complexes could not explain the better performance, the 

formation of an intermediary copper(III) species as a key intermediate needs to be taken into 

consideration. Nevertheless, at this stage, there can only be speculation about the underlying 

reaction mechanism. The definitive elucidation of the mechanism requires further 

investigation, which is currently ongoing. 

 

A new alternative to phenanthroline ligands for copper photoredox catalysts could be 1,4-

diaza-1,3-butadienes (DAB). Since the known and bench-stable complex [Cu(DABMes)2]BF4 

(C14) showed promising photophysical properties, its photocatalytic activity was tested in 

visible-light-mediated ATRA reactions. Indeed, this complex proved to be a photocatalyst 

albeit it was inferior to established [Cu(dap)2]
+ (C1). The determination of the real scope of 

this complex would require the screening of more reactions, but it should be noted that the 

instability towards strong coordinating solvents limits this system as for example the 

appropriate solvent cannot always be applied. As DAB ligands can be easily synthesized, 

screening of different substitution patterns regarding the catalytic performance of the formed 

complexes and their stability against solvents would be reasonable. Since 

[Cu(DABMes)2]BF4 (C14) is only one test example there is potential for improvement by 

systematic variation of the ligand substitution. 
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C. Atom Transfer Radical Addition Reactions – Investigation of New 

Reagents 

1. Introduction 

As previously reported in the introductory chapter A, the trifluoromethylchlorosulfonylation 

reaction (Scheme 30) showed that the kind of products formed in photoredox reactions can 

significantly depend on the employed catalyst.[27] Here, trifluoromethanesulfonyl chloride (13), 

also known as triflyl chloride, was observed to be a special reagent because sulfur dioxide 

can be emitted in the course of the reaction. When [Cu(dap)2]Cl (C1) is used, SO2 is retained 

and chlorosulfonylated products 14 form as the main products. Hence, the question arose as 

to whether it is also possible to target different products with other reagents by using different 

photocatalysts, especially the established [Cu(dap)2]Cl (C1). For this reason, in this chapter 

the investigation of new ATRA reagents is described which are quite similar in structure to 

the successful triflyl chloride and exhibit a comparable redox potential making them reducible 

by [Cu(dap)2]Cl (C1) in the oxidative quenching cycle. After the reduction of the molecule, it 

should be able to dissociate into a stable radical such as the CF3 radical and an anion. 

 

 
Scheme 30. Visible-light-mediated trifluoromethylchlorosulfonylation (14a) and 
trifluoromethylchlorination (15a) of allylbenzene (82).[27] 

 

Good ATRA reagents in this context should fulfill certain requirements. First of all, they 

should be known and readily available compounds which are already characterized and 

reported in the literature. In order to ensure easier access in a laboratory environment and to 

be able to control the stoichiometry precisely, the reagent should be liquid or solid and 

bench-stable under ambient conditions. For economic reasons, inexpensive compounds are 

preferable. 
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2. Investigation of Different Reagents 

2.1 Ruppert-Prakash Reagent 

Trimethyl(trifluoromethyl)silane (TMSCF3, 88), also called Ruppert-Prakash reagent, fulfills 

the aforementioned requirements. Since its first successful preparation by Ruppert et al.[129] 

in 1984 and the initial report on its trifluoromethylating properties by Prakash et al.[130] in 

1989, TMSCF3 (88) has become a well-known nucleophilic reagent for 

trifluoromethylation[131,132]. By using a catalytic or stoichiometric amount of a nucleophilic 

initiator such as tetrabutylammonium fluoride, trifluoromethyl anion “CF3
-“ can be transferred 

to a suitable electrophile (Scheme 31).[131,132] For reactions of aldehydes or ketones, for 

example, fluoride acts as an initiator only in the first part which runs via an unstable 

pentacoordinated silicon species 90. The subsequent autocatalytic cycle is powered by the 

resulting alkoxide 91. 

 

 
Scheme 31. Trifluoromethylation of aldehydes or ketones using Ruppert-Prakash reagent 
(88).  
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As confirmed by X-ray diffraction, the Si-CF3 bond of TMSCF3 (88) is longer and weaker than 

the Si-CH3 bonds.[133] Thus, a conceivable cleavage of the Si-CF3 bond by SET is 

theoretically preferred compared to a Si-CH3 bond. With a reduction potential of the excited 

state of -1.43 V vs. SCE in acetonitrile[19], [Cu(dap)2]Cl (C1-Cl) should be strong enough to 

reduce TMSCF3 (88) showing a peak potential of -0.91 V vs. SCE in acetonitrile. Table 14 

illustrates test reactions which were performed in order to determine whether 88 is a suitable 

reagent for photocatalyzed ATRA reactions. 

 

Table 14. ATRA test reactions with TMSCF3 (88).a 

 
 

Entry R Catalyst, Additive Time Yield 

1 H [Cu(dap)2]Cl 4 d n.r. 

2 H CuCl 4 d n.r. 

3 OMe [Cu(dap)2]Cl 4 d n.r. 

4 b H [Cu(dap)2]Cl, K2HPO4 20 h n.r. 

5 c H [Cu(dap)2]Cl 2 h n.r. 

6 b, d H fac-Ir(ppy)3, K2HPO4 20 h n.r. 

7 d H [Ir(ppy)2(dtbbpy)]PF6 4 d n.r. 
a) Reaction conditions: Alkene (1.0 equiv, 0.5 mmol), trimethyl(trifluoromethyl)silane (88) (2.0 equiv), 
catalyst (5.0 mol, 1.0 mol%), anhydrous MeCN (1.0 mL), rt, 530 nm (LED, distance 1 cm). b) 0.25 
mmol scale, 1.5 mL solvent, K2HPO4 (2.0 equiv) was used as an additive. c) Anhydrous DCM was 
used as a solvent. d) 455 nm (LED, distance 1 cm). 

 

The screening showed that reagent 88 is not reactive under the applied photoredox 

conditions. Even after four days, no conversion occurred and the control experiment with 

CuCl was also negative (entry 2). In order to exclude a possible product loss in the work up, 

less volatile 4-allylanisol was tested but no conversion was observed (entry 3). Both the use 

of the same conditions as for the trifluoromethylchlorosulfonylation reaction, where K2HPO4 is 

added as a base, and the use of dichloromethane as a solvent, did not lead to success either 

(entries 4 and 5). Given that even the established and strongly reducing iridium-based 

photoredox catalysts showed no transformation of TMSCF3 (88) (entries 6 and 7), the 

investigation of this reagent was abandoned.  



C. Atom Transfer Radical Addition Reactions – Investigation of New Reagents 

64 

2.2 Trifluoromethanesulfonic Acid 

Due to the fact that Ruppert-Prakash reagent (88) proved to be unreactive in photoredox 

catalyzed ATRA reactions, compounds more similar to triflyl chloride (13) were screened. 

First of all, variation on the side of the chloride residue was tested (Figure 16). To begin with 

a readily available, inexpensive and simple compound, trifluoromethanesulfonic acid (93) 

was initially investigated (Table 15). 

 

 
Figure 16. Triflyl chloride (13) and triflic acid (93). 

 
 
Table 15. ATRA test reactions with triflic acid (93).a 

 

Entry R Catalyst Solvent Time Yield 

1 OMe [Cu(dap)2]Cl MeCN 3.5 h complex 

2 b OMe [Cu(dap)2]Cl MeCN 2 h complex 

3 H [Cu(dap)2]Cl MeCN 19 h 29% of 94  

4 H [Cu(dap)2]Cl DCM 19 h complex 

5 c H CuCl MeCN 19 h 52% of 94 

a) Reaction conditions: Alkene (1.0 equiv, 0.5 mmol), triflic acid (93) (2.0 equiv), catalyst (5.0 mol, 
1.0 mol%), anhydrous solvent (1.0 mL), rt, 530 nm (LED, distance 1 cm). b) Diluted reaction mixture: 
1.5 mL of solvent was used; 530 nm (LED-Stick). c) 1.0 mmol scale; isolated yield after treatment with 
triethylamine at rt for 50 min. 

 

All experiments resulted in complex reaction mixtures. Electrophilic addition could not explain 

the formation of possible side products, because the corresponding base of triflic acid, the 

trifluoromethanesulfonate anion, has a low degree of nucleophilicity and is known as an 

excellent leaving group.[134,135] Thus, it seemed to be unlikely that an electrophilic addition to 

the alkene had taken place. However, it was possible to isolate the main product in two 

cases (entries 3 and 5). The mass analysis showed a molecule peak at 178.12 g/mol [MH+] 

which was not compatible with any reasonable ATRA or trifluoromethylation product. Since 

the crude 1H-NMRs of entries 3 and 5 showed a very similar pattern it was concluded that 

[Cu(dap)2]Cl (C1-Cl) is not necessary for the reaction. Furthermore, the crude 1H-NMR of 
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entry 4 showed a completely different pattern. This observation led to the conclusion that 

there might be a reaction with the solvent or at least that the solvent is decisive. With these 

results obtained, it was possible to assign the main product in the cases of entries 3 and 5 as 

N-(1-phenylpropan-2-yl)acetamide[136] (94) (Scheme 32). The product is formed by a Ritter 

reaction, where the starting material is protonated using a strong acid.[137] Here, triflic acid 

(93) with pKa values of -12 in water and 0.7 in acetonitrile[138], respectively, acts as an acid to 

form the carbocation 95. After nucleophilic attack of acetonitrile and aqueous work up, amide 

94 forms. Consequently, triflic acid is too reactive, leading to unwanted reactions, and 

therefore not applicable to photoredox catalyzed ATRA reactions under the investigated 

conditions. 

 

 

Scheme 32. Ritter reaction taking place during ATRA test reaction. 
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2.3 Phenyl Triflates 

As triflic acid (93) proved to be too reactive for ATRA reactions, most probably due to its 

strong acidity, the next approach was to block this property by substituting the acidic proton. 

For this purpose, in general, a methyl group or other alkyl groups could be used as easily 

accessible substituents. With regard to the targeted reaction system, however, an alkyl 

substitution cannot be expected to be reasonable, as the resulting esters 98 are known to be 

excellent alkylation reagents.[135] This problem can be circumvented by using aryl 

substituents (99) instead of alkyl groups. The simplest compound would consequently be 

phenyl trifluoromethanesulfonate (100), the phenyl ester of triflic acid. 

 

 

Figure 17. Properties of triflic acid (93) and its esters. 

 

This known compound is, in contrast to alkyl esters, thermally more stable and does not 

react with nucleophiles such as water, alcohols or tertiary amines. [135] Regarding the 

reduction potential, phenyl trifluoromethanesulfonate (100) shows a quite high reduction 

potential of -2.71 V vs. SCE in acetonitrile9. Therefore, this compound should not be 

accessible with established photoredox catalysts. Control experiments with [Cu(dap)2]Cl (C1-

Cl) and more strongly reducing fac-Ir(ppy)3 (C4) confirmed this assumption, as no reaction 

was detectable in the oxidative quenching cycle (Table 16). 

  

                                                
9 A. Jutand et al. reported a reduction potential of -2.63 V vs. SCE in DMF at a gold electrode.[139] 
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Table 16. Testing phenyl trifluoromethanesulfonate (100) as an ATRA reagent. 

 

Entry Catalyst  / nm Yield / % 

1 [Cu(dap)2]Cl 530 n.r. 

2 fac-Ir(ppy)3 455 n.r. 
Reaction conditions: Allylbenzene (1.0 equiv, 0.5 mmol), phenyl trifluoromethanesulfonate (100) 
(2.0 equiv), catalyst (5.0 mol, 1.0 mol%), K2HPO4 (2.0 equiv), anhydrous MeCN (1.5 mL), rt, 
irradiation via LED-stick, 2 d. 

 

In order to make phenyl triflate accessible to visible-light-mediated photoredox catalyzed 

ATRA reactions, a much lower reduction potential is necessary. One strategy that can be 

used for lowering this potential is the substitution with electron-withdrawing groups at the 

phenyl ring. For this reason 2,4-dinitrophenyl trifluoromethanesulfonate (103) was 

synthesized in one step from the corresponding phenol and triflic anhydride in 30% yield 

following a procedure of S. J. Zhou and Z. Huang.[140] The cyclovoltammetric measurements 

revealed a quite complex spectrum with four irreversible redox waves (A to D) in the negative 

potential area (Figure 18). The first reduction potential (wave A) shows, with a peak potential 

of -0.68 V vs. SCE in acetonitrile, a quite low reduction potential which is theoretically 

accessible by [Cu(dap)2]Cl (C1-Cl) (E1/2 (Cu2+/*Cu+) = -1.43 V vs. SCE in MeCN)[19]. 

 

 

Figure 18. Cyclic voltammogram of 2,4-dinitrophenyl trifluoromethanesulfonate (103) in 
MeCN using tetrabutylammonium tetrafluoroborate as supporting electrolyte and ferrocene 
as internal standard at a scan rate of 50 mV*s-1. 
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Table 17. Testing 2,4-dinitrophenyl trifluoromethanesulfonate (103) as an ATRA reagent. 

 

Entry Alkene Catalyst Solvent  nm Yield 

1 
 

[Cu(dap)2]Cl MeCN 530 n.r. 

2 
 

fac-Ir(ppy)3 MeCN 455 n.r. 

3 
 

fac-Ir(ppy)3 MeCN 455 n.r. 

4 
 

fac-Ir(ppy)3 DCM 455 n.r. 

Reaction conditions: Alkene (1.0 equiv, 0.25 mmol), 2,4-dinitrophenyl trifluoromethanesulfonate (103) 
(2.0 equiv), catalyst (2.5 mol, 1.0 mol%), K2HPO4 (2.0 equiv), anhydrous MeCN (0.75 mL), rt, 
irradiation via LED-stick, 2 d. 

 

The application of 2,4-dinitrophenyl trifluoromethanesulfonate (103) as an ATRA reagent was 

firstly tested on the basis of the reaction with allylbenzene (Table 17, entry 1). As the catalyst 

[Cu(dap)2]Cl (C1-Cl) did not facilitate any reaction, more strongly reducing fac-Ir(ppy)3 (C4) 

(E1/2 (Ir
4+/*Ir3+) = -1.73 V vs. SCE in MeCN)[10] was tested (entries 2 to 4), without any 

success. No reaction took place with styrene or when using dichloromethane as a solvent. 

Due to the fact that the reduction potential of 2,4-dinitrophenyl trifluoromethanesulfonate 

(103) must be accessible by these catalysts, a further system was tested. However, also N-

Boc allylamine showed no reaction (Scheme 33). 

 

 
Scheme 33. Test reaction between N-Boc allylamine (80) and 2,4-dinitrophenyl 
trifluoromethanesulfonate (103). 

 

Based on the cyclovoltammetric results, 2,4-dinitrophenyl trifluoromethanesulfonate (103) 

should be an easily reducible compound. However, this compound showed no reactivity in 

established reactions using theoretically suitable photoredox catalysts.  
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2.4 Trichloromethanesulfonyl Chloride 

Due to the fact that the modification on the chloride side did not lead to success, the 

modification of the trifluoromethane group was investigated. The activation of sulfonyl 

chlorides via photoredox catalysis is already well known, especially for fluoroalkyl- or aryl-

substituted derivatives.[141] For instance, the application of variously substituted sulfonyl 

chlorides 105 for the photocatalytic synthesis of -hydroxysulfones 106 was developed 

during the work on this thesis by O. Reiser and co-workers (Scheme 34).[29] For this reaction, 

which is initiated by an oxidative quenching cycle, fac-Ir(ppy)3 (C4) proved to be a more 

efficient photoredox catalyst than [Ru(bpy)3]Cl2 (C2) or [Cu(dap)2]Cl (C1-Cl). Regarding the 

substitution of the sulfonyl chloride 105, a number of different aryl groups and the methyl 

group were tested. As substituents for the aryl group, both electron-donating and electron-

withdrawing groups were tolerated. 

 

 

Scheme 34. Photocatalytic synthesis of -hydroxysulfones 106 according to O. Reiser et 
al.[29] 

 

Furthermore, W. R. Dolbier and co-workers used fluoroalkylsulfonyl chlorides such as 

CF3SO2Cl, C4F9SO2Cl, CF2HSO2Cl, CH2FSO2Cl or CF3CH2SO2Cl under photoredox catalysis 

for the transformation of fluoroalkyl groups to alkenes.[41,142] Unlike the 

trifluoromethylchlorosulfonylation reaction or the photocatalytic synthesis of -

hydroxysulfones developed by O. Reiser and co-workers[27,29] (vide supra), these reactions 

are associated with a loss of SO2. 

 

In contrast to this, trichloromethanesulfonyl chloride (111), which is very similar in structure to 

triflyl chloride (13), is less investigated. During the work on this thesis, O. Reiser et al. 

reported the internal cyclization of alcohol substituted sulfonyl chlorides to sultones 110 [28,47], 

the cyclic esters of hydroxyl sulfonic acids (Scheme 35). Using [Cu(dap)2]Cl (C10-Cl) as a 

photoredox catalyst and green light, a variety of differently substituted alkenols 108 were 

reacted with fluoroalkylsulfonyl chlorides such as triflyl chloride (13) in the presence of a 

base. 
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Scheme 35. Photoredox catalyzed synthesis of sultones 110 according to O. Reiser et al.[28] 

 

In this way, sultones 110 can be formed by an intramolecular cyclization of the intermediary 

formed sulfonyl chlorides 109 in a one-step synthesis. For this reaction, 

trichloromethanesulfonyl chloride (111) was tested as well, but only on two different alkenes 

(pent-4-en-1-ol and 2,2-diphenylpent-4-en-1-ol). In both cases, a complex reaction mixture 

formed and the desired cyclized product was not observed. Given that the reaction might 

have failed due to the subsequent cyclization reaction, this reagent was investigated further 

in this thesis nonetheless. 

 

Cyclic voltammetry revealed for trichloromethanesulfonyl chloride (111) a reduction potential 

of -0.61 V 10, which is more negative than that of triflyl chloride (13) (E1/2 = -0.18 V 10)[143] but 

still easily accessible by established photoredox catalysts such as [Cu(dap)2]Cl (C1-Cl) 

(E1/2 (Cu2+/*Cu+) = -1.43 V 10)[19]. In order to check the reactivity of 111, preliminary test 

reactions were carried out under the same conditions as the 

trifluoromethylchlorosulfonylation reaction (Table 18). The reaction was stopped after 50 

hours and allylbenzene (82) was still detectable in crude 1H-NMR spectra in all cases. The 

chlorosulfonylated product 112 was formed in a 5% yield under irradiation with light when 

using [Cu(dap)2]Cl (C1-Cl) (entry 1). However, the reaction appeared to be very slow and the 

selectivity was improvable. Without irradiation, both products were detected only in traces by 

crude 1H-NMR analysis and mass analysis (entry 2), which indicates that light irradiation is 

indispensable for the reaction. Traces might have formed by ambient light during sample 

preparation and sample taking. Without catalyst, the chlorinated product 113 was formed in 

                                                
10 vs. SCE in MeCN 
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22% yield by mere irradiation with green light, whereas the chlorosulfonylated product 112 

was not observed (entry 3). Furthermore, mass analysis revealed traces of 

hexachloroethane, which provides a hint of a possible radical mechanism. Consequently, the 

chlorosulfonylation reaction is a photoredox catalyzed reaction which needs both light and a 

catalyst. However, the chlorination product 113 presumably forms in a radical mechanism 

because it occurs with mere light irradiation. 

 

Table 18. Preliminary ATRA test reactions with trichloromethanesulfonyl chloride (111). 

 

Entry  / nm Catalyst Yield (112) / % Yield (113) / % 

1 a 530 [Cu(dap)2]Cl 5 7 

2 - [Cu(dap)2]Cl traces traces 

3 b 530 - - 22 
Reaction conditions: Allylbenzene (82) (1.0 equiv, 0.5 mmol), trichloromethanesulfonyl chloride (111) 
(2.0 equiv), catalyst (5.0 mol, 1.0 mol%), K2HPO4 (2.0 equiv), anhydrous MeCN (1.5 mL), rt, 
irradiation via LED-stick, 50 h. a) 2% of elimination product were isolated. b) Traces of 
hexachloroethane were found by EI-MS analysis. 

 

To improve the reaction yield, different reaction conditions were screened (Table 19). As for 

trifluoromethylchlorosulfonylation reaction with triflyl chloride (13)[27], the use of K2HPO4 as a 

base is helpful for this reaction (entries 1 and 2). By screening different solvents, 

dichloromethane was observed to be the best choice because it furnished the highest yield of 

chlorosulfonylated product 112 and in contrast to tetrahydrofuran it resulted in less 

chlorinated product 113 (entries 3 to 7). An excess of 4.0 equivalents of halide 111 gave the 

best results (entries 7 to 10). When irradiating with blue light (455 nm), the yield dropped and 

the product ratio of 112/113 was lowered (entry 11). However, irradiation with blue light 

alone, without using any catalyst only furnished the chlorinated product 113 (entry 12). It was 

not possible to improve the conversion or yield by diluting the reaction mixture or by using 

prolonged reaction times (entries 13 and 14). The use of [Ir(ppy)2(dtbbpy)]PF6 (entry 15) or 

[Ru(bpy)3]Cl2  6H2O (entry 16) furnished mainly product 113 which resulted in an inversed 

product ratio. This trend is in accordance with the results for triflyl chloride (13) (cf. Table 8). 

Reducing the amount of catalyst to 0.5 mol% resulted in lower yields (entry 17). Using a 

copper(I) salt only furnished the chlorinated product 113 which is already formed by mere 

light irradiation. Consequently, the formation of the chlorosulfonylated product 112 is a 
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photocatalyzed reaction, with entry 7 representing the best conditions. Using the optimized 

conditions, it was possible to isolate the product in a 1.50 mmol scale in a good yield of 66%. 

 

Table 19. Optimization of reaction conditions.a 

 

Entry Solvent Modified Conditions 112/113 Yield (112) 
/ % 

Yield (113) 
/ % 

Conversion 
(Alkene) / % 

1 MeCN  - 32 traces 88 

2 MeCN no K2HPO4 - 20 - 48 

3 DMF  - - - 44 

4 b CHCl3  82/18 29 traces 44 

5 THF  72/28 56 22 89 

6 DMSO  - traces traces 87 

7 c DCM  89/11 64 8 80 

8 b DCM 0.5 equiv of halide - 11 traces 11 

9 b DCM 1.0 equiv of halide - 9 traces 9 

10 DCM 2.0 equiv of halide 83/17 10 2 18 

11 DCM 455 nm 79/21 30 8 49 

12 DCM 455 nm, no catalyst - - 87 96 

13 DCM 1.5 mL solvent - 16 - 74 

14 DCM 48 h  66 - 79 

15 b DCM 455 nm, 1 mol% 
[Ir(ppy)2(dtbbpy)]PF6 

23/77 18 60 100 

16 b, d DCM 
455 nm, 1 mol% 

[Ru(bpy)3]Cl2  6H2O 
4/96 4 96 100 

17 DCM 0.5 mol% [Cu(dap)2]Cl  61 - 66 

18 DCM 1 mol% CuCl - - 55 56 
a) Reaction conditions: Allylbenzene (1.0 equiv, 0.25 mmol), trichloromethanesulfonyl chloride (111) 
(4.0 equiv), [Cu(dap)2]Cl (2.5 mol, 1 mol%), K2HPO4 (2.0 equiv), anhydrous solvent (0.25 mL), rt, 
530 nm (LED-stick), 24 h. The yield was determined by 1H-NMR using 2-nitroporpane or 1,4-
dicyanobenzene as an internal standard (the standard was directly injected into the crude reaction 
mixture). b) 0.5 mmol scale. c) In a 1.5 mmol scale, 66% of product 112 and 7% of product 113 were 
isolated. d) 86% of product 113 were isolated.  
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When using styrene as a substrate, only the chlorination product 114 was observed and 

isolated in a 87% yield (Scheme 36). This observation concurs with the results of triflyl 

chloride (13) where in the case of styrenes as starting material a loss of SO2 and net addition 

of trifluoromethyl and chloride takes also place.[27] In contrast to the fluorine analog, however, 

the trichloromethyl substituted styrene 114 is stable and elimination of HCl was not observed. 

 

 
Scheme 36. Formation of the chlorination product 114 with styrene. 

 

In the next step, consecutive reactions of the trichloromethylated sulfonyl chloride 112 were 

tested. Sulfonyl chlorides are known to readily react with anilines under formation of 

sulfonamides, an important substance class in medicinal chemistry.[27,144] In addition to that, 

such derivatives readily crystallize, which opens the possibility of indirectly proving the 

structure of sulfonyl chloride 112 by X-ray analysis. For this reason, sulfonamide 116 was 

successfully synthesized in 54% yield following a procedure of O. Reiser et al.[27] (Scheme 

37). Since suitable crystals were now obtained by liquid diffusion of diethyl ether into a 

dichloromethane solution, the structure was confirmed by X-ray analysis. 

 

 
Scheme 37. Formation of sulfonamide 116. 

 

Another interesting reaction is the internal cyclization of alcohol substituted sulfonyl chlorides 

to sultones 110 (cf. Scheme 35). Since their discovery by H. Erdmann in 1888[145], sultones 

have been of special interest as they are important intermediates in organic synthesis, 

motives in biologically active compounds or find application in material science and medicinal 

chemistry.[146] In order to test a potential internal cyclization reaction with 
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trichloromethanesulfonyl chloride (111), 2-allylphenol (117) was reacted under the improved 

reaction conditions (Table 20, entry 1). In a one-pot synthesis, via a nucleophilic substitution 

after the ATRA reaction, sultone 118 formed and was isolated in 32% yield. Using the 

standard conditions of the trifluoromethylchlorosulfonylation reaction was less successful 

(entry 2). 

 

Table 20. Reaction of 2-allylphenol (117).a 

 

Entry Solvent CCl3SO2Cl Reaction 
Time Yield 

1 DCM 4.0 equiv 3 d 32% 

2 b MeCN 2.0 equiv 5 d 11% 
a) Reaction conditions: 2-allylphenol (117) (1.0 equiv, 0.50 mmol), trichloromethanesulfonyl chloride 
(111), [Cu(dap)2]Cl (5.0 mol, 1 mol%), K2HPO4 (2.0 equiv), anhydrous solvent (0.5 mL), rt, 530 nm 
(LED-stick). b) 1.0 mmol scale. 

 

Consequently, the formation of sultones is possible with trichloromethanesulfonyl chloride 

(111) in reasonable yields. However, the reaction with 111 is less efficient than with triflyl 

chloride (13), which was reported to give 67% of product using acetonitrile as a solvent and 

only 2.0 equiv of halide 13 after 17 h (cf. ref [28]). 
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3. Conclusion and Outlook 

Four compounds were screened for their application as potential new ATRA reagents. First 

of all, Ruppert-Prakash reagent (TMSCF3, 88), an established nucleophilic reagent for 

trifluoromethylation, was tested. This reagent proved to be unreactive in photoredox 

catalyzed ATRA reactions under the investigated conditions, even though, having regard to 

its reduction potential, it should be accessible via the oxidative quenching cycle of the 

applied catalysts. 

 

As it was not clear why TMSCF3 (88) was unreactive in photoredox catalyzed ATRA 

reactions, compounds more similar to triflyl chloride (13) were screened. Beginning with 

variation on the side of the chloride residue, readily available triflic acid (93) was 

investigated. However, triflic acid proved to be unsuitable as it undergoes undesired 

reactions owing to its high acidity. By identifying one of the side products as N-

acetylamphetamine (94) it became clear that the strong acid properties lead to Ritter-like side 

reactions. 

 

In order to inhibit the side reactions caused by the compound´s acidity, the acidic proton was 

substituted by esterification in the next step. As phenyl trifluoromethanesulfonate (100) 

exhibits a quite high reduction potential, which is not accessible by common photoredox 

catalysis in theory, more easily reducible 2,4-dinitrophenyl trifluoromethanesulfonate (103) 

was tested. Surprisingly, this reagent showed no reaction with any tested theoretically 

suitable photoredox catalyst exhibiting sufficiently high redox potentials. A possible 

explanation might be a very fast back electron transfer from the substrate to the catalyst 

which is faster than the consecutive chemical reaction. For the investigation of such 

processes, further physical measurements such as Stern-Volmer analysis would be 

necessary. 

 

Finally, the modification on the chloride side was unsuccessful and the modification of the 

trifluoromethane group was targeted. In this context, the reaction between CCl3SO2Cl (111) 

and allylbenzene furnished the chlorosulfonylated product 112 as the main product using 

[Cu(dap)2]Cl as the catalyst. As observed in the case of CF3SO2Cl (13), the main product 

was formed without the extrusion of SO2 under copper catalysis. Owing to quite low yields, 

the reaction conditions had to be optimized. With the optimized conditions identified, 

trichloromethanesulfonyl chloride (111) was successfully used as an ATRA reagent similar to 

triflyl chloride (13). A test reaction with styrene revealed that after loss of SO2 only the 

chlorination product 114 was accessible with this substance class. In order to determine the 

real scope of this reagent, a screening of further substrates is necessary. Analogous to the 
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trifluoromethylated derivatives, the formation of important substance classes such as 

sulfonamides (cf. 116) or sultones (cf. 118) was also possible. In contrast to the CF3 group, 

the CCl3 group offers the possibility for additional derivatization (Scheme 38). 

 

 

Scheme 38. Transformations originating from trichloromethanesulfonyl chloride (111). 

 

With the sulfonamides so obtained, for instance, an internal cyclization after the treatment 

with a strong base should be possible[147] which would open the way for new heterocycles 

(Scheme 38, path A). Regarding the trichloromethyl group, the formation of carbonic acids is 

conceivable, for example, by hydrolysis using H2SO4 or HNO3/NO2 (path B).[148] Another 

potential derivatization is the mono-hydrodechlorination of the trichloromethyl group to a 

gem-dichloromethyl group using Pt/C under hydrogen atmosphere (path C).[149] The 

dichloromethyl functionality is of special interest for pharmaceuticals[150] or can be converted 

to the corresponding aldehyde[151]. 

 



D. Elucidating the Reaction Pathways of Visible-Light-Mediated Chloramination of Alkenes 

77 

D. Elucidating the Reaction Pathways of Visible-Light-Mediated 

Chloramination of Alkenes 

For greater clarity, catalyst [Cu(dap)2]Cl (C1-Cl) is abbreviated as [Cu] and 

[Ir(ppy)2(dtbbpy)]PF6 (C3-PF6) as [Ir] in this chapter. 

 

1. Introduction 

Photoredox catalyzed ATRA reactions are of special value for organic synthesis, being an 

alternative to transition metal catalyzed cross coupling reactions.[49,152] The initial electron 

transfer between the catalyst and the substrate is considered to be the key step that 

determines the success of a given transformation. It is less recognized that subsequent 

reaction steps involving the photocatalyst in the course of a reaction can be equally decisive 

and, in particular, that the same transformation can require different photocatalysts 

dependent on the electronic properties of the substrates that are employed. As previously 

outlined in the introductory chapter A, for visible-light-mediated ATRA reactions two different 

mechanistic pathways, both being initiated by a single electron transfer to a halide, are well-

established (cf. Scheme 7). The radical chain mechanism is plausible as many photoredox 

catalyzed ATRA reactions proceed equally well under thermal conditions in the presence of a 

radical initiator.[33–35,37,153] On the other hand, the validity of a photocatalytic cycle has been 

justified owing to so-called “light/dark” experiments, demonstrating that the ATRA process is 

shut down and turned on again by switching the light source repeatedly off and on. However, 

Yoon and co-workers revealed that such “light/dark” experiments cannot be taken as clear 

evidence for a photocatalytic cycle in ATRA reactions, considering the fast rates of radical 

chain processes.[154] 

 

The intermolecular chloramination of alkenes 119 with N-chlorosulfonamides 120 (cf. 

Scheme 39) represents a useful transformation for the synthesis of biologically important 

compounds, and consequently has been intensively studied. [155,156] Of relevance for the 

present study, a number of protocols have been reported that involve the initial generation of 

N-centered radicals 122 from 120 as key intermediates, which are assumed to add to an 

alkene 119 afterwards. Product formation runs through one of the aforementioned 

established pathways after formation of radical 123. By contrast, the studies of ATRA 

reactions using [Cu(dap)2]Cl ([Cu]) in Reiser´s group during the past decade revealed that 

with copper a potential third pathway, running via an inner-sphere mechanism, is 

present.[27,28] 
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Recently, S. Yu and co-workers published the regioselective intermolecular visible-light-

promoted chloramination of olefins 119 with N-chlorosulfonamides 120, the latter serving 

both as the nitrogen and chlorine source (Scheme 39).[156] This reaction is of special interest 

since sulfonamides play an important role in organic chemistry and find special applications 

for pharmaceuticals[144,157], and the additional chlorine functionality provides a convenient 

handle for further synthetic transformations. Investigating different iridium- and ruthenium-

based photocatalysts, [Ir(ppy)2(dtbbpy)]PF6 ([Ir]) was observed to be the most efficient 

catalyst for this transformation; however, only electron-rich alkenes gave rise to high yields in 

the process. 

 

 

Scheme 39. 1,2-chloramination of olefins according to S. Yu et al.[156] 

 

In contrast to these results, in this chapter it is demonstrated that [Cu(dap)2]Cl ([Cu]) 

efficiently converts electron-deficient alkenes to the corresponding chloraminated products, 

but is less efficient for electron-rich alkenes. Since the reaction is initiated by an electron 

transfer from the photoredox catalyst to the N-chlorosulfonamides 120 (vide infra), it is 

apparent that this initial reaction step cannot account for the catalyst dependence with 

respect to the alkenes 119 employed. Hence, for the chloramination reaction copper makes 

the significant difference as it has access to a special reaction pathway. 
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2. Screening of Substrate Scope 

Taking p-methylstyrene (124c) as the benchmark substrate, which has been reported[156] to 

give high yields in the chloramination reaction catalyzed by [Ir] (Table 21, entry 1), [Cu] was 

observed to promote the formation of 125c, albeit in lower yields (entry 2). Surprisingly, 

carrying out a control experiment by irradiating the reaction mixture in the absence of a 

photocatalyst revealed that 125c is also formed in high yields (entry 3) as long as no oxygen 

is present (entry 4), despite the fact that the reaction solution hardly absorbs any visible light 

(vide infra). Further controls nevertheless proved the necessity of light (entries 5 to 7), unless 

a catalytic amount of AIBN as a radical starter is employed at 80 °C (entry 8). 

 

Table 21. Testing of [Cu]. a 

 

Entry / nm 
Catalyst, 

Conditions 

Yield / % 

Isolated NMR b 

1 455 [Ir] 83 (ref[156]) – c 

2 455 [Cu] 66 79 d 

3 455 no 85 100 e 

4 f 455 no, 1 bar O2 - n.r. 

5 no [Cu] - 4 

6 no no - n.r. 

7 no no, 80°C - 10 

8 no AIBN g, 80 °C - 88 
a) Reaction conditions: 4-methylstyrene (124c) (1.0 equiv, 0.30 mmol), N-chlorosulfonamide 120a 
(1.5 equiv), catalyst (0.003 mmol, 1 mol%), anhydrous DCE (6.0 mL), degassed solution, rt, 455 nm 
(LED-stick), 6 h. b) Determined by 1H-NMR using 2-nitropropane as internal standard. c) NMR yield 
after 1h: 50%. d) NMR yield after 1h: 80%. e) NMR yield after 1h: 44%. f) 4 h. g) 1 mol%, dark. 

 

Due to the promising results, different electron-rich styrene derivatives 124 were screened 

(Table 22). The substitution pattern of methoxy substituted styrenes, as well as the choice of 

the catalyst used, have a dramatic influence on the reaction outcome (entries 1 to 6). While 

para substitution led to the hydroxy substituted product 125a after workup, the expected 

chlorinated product was obtained with ortho substitution.  
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Table 22. Substrate scope of electron-rich styrene derivatives 124. a 

 

Entry Product Catalyst 
Yield / % 

Isolated NMR b 

1 

 
125a 

no 18 c - 
2 [Ir] 81 (ref[156]) c 86 (ref[156]) 
3 [Cu] complex rxn mixture 
     
     
4 

 
125b 

no - 28 

5 [Ir] 26 30 

6 [Cu] 56 62 
     
     
7 

 
125c 

no 85 100 

8 [Ir] 83 (ref[156]) – 

9 [Cu] 66 79 
     
     

10 

 
125d 

no - 50 

11 [Ir] 53 60 

12 [Cu] 40 46 
     
     

13 

 
125e 

no - 66 

14 [Ir] 72 (ref[156])  - 

15 [Cu] 94 100 
     
     

16 

 
125f 

no 62 80 d 

17 [Ir] 80 (ref[156]) d - 

18 [Cu] 67 84 d 
     
     

19 

 
125g 

no 68 76 

20 [Cu] 70 80 

     
     

21 

 
125h 

no - 40 (E:Z = 7:3) 

22 [Ir] - 20 (E:Z = 6:4) 

23 [Cu] 56 e 72 (E:Z = 7:3) 
a) Reaction conditions: Styrene derivative 124 (1.0 equiv, 0.30 mmol), N-chlorosulfonamide 120a 
(1.5 equiv), catalyst (0.003 mmol, 1 mol%), anhydrous DCE (6.0 mL), degassed solution, rt, 455 nm 
(LED-stick), 6 h. b) Determined by 1H-NMR using 2-nitropropane as internal standard. c) This 
compound had already been reported as chloro substituted. The NMR-data of the product isolated 
herein is in full accordance with the data reported in literature (cf. ref[156]). However, there is clear 
evidence that these data correspond to the hydroxy substituted compound (see experimental part). d) 
dr > 99:1 (E:Z). e) The E:Z isomers were inseparable by column chromatography.  
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In case of para substitution, the chlorinated product seems to be unstable towards hydrolysis 

and elimination which results under copper catalysis in a complex reaction mixture. In 

contrast to methyl styrenes (entries 7 to 12) where the yield dropped with ortho substitution 

due to sterical hindrance independent of used catalyst, [Cu] was the best catalyst for ortho-

methoxy styrene (entry 6). With styrene (124e), the electron-poorest substrate in this row, 

[Cu] evolved its real catalytic potential with quantitative yield and exceeded both [Ir] and the 

background reaction without catalyst (entries 13 to 15). To reveal the stereoselectivity of this 

process, indene and alkynes were tested as substrates. In the case of indene, only the E-

isomer was detected and isolated, while [Cu] resulted in lower yields as [Ir] (entries 16 to 

18). However, in this reaction a catalyst is not necessarily required as light irradiation alone 

already furnishes 62% of the product. Phenylacetylene showed moderate reactivity under 

[Cu] catalysis and the chloramination product 125h was isolated in a 56% yield as a mixture 

of stereoisomers (E:Z = 7:3). Due to the fact that the pure E-isomer of this product is 

accessible in good yields by metal catalysis using a different copper complex [158], as reported 

by Liu and co-workers, it was assumed that the Z-isomer might form because of radical 

background processes triggered by light irradiation. For this reason, the experiment was 

repeated without catalyst with only light irradiation; however, the E:Z ratio remained 

unchanged except for a drop in product yield. Since Liu and co-workers had not been able to 

transform internal alkynes or alkyl alkynes[158], these substrates were very appealing, too. 

However, when converting 1-phenyl-1-propyne by using [Cu] as a photocatalyst, a complex 

reaction mixture formed which did not show any indications for the expected products. Ethyl 

cinnamate showed isomerization to the Z-isomer in 34% yield and no ATRA product was 

observed. 

 

As the copper catalyst was very efficient for styrene, electron-poor styrenes were examined 

in the next step (Table 23). Screening such substrates showed that [Cu] always led to the 

best yields. It should be noted that, in contrast to ortho- and para-methoxy substituted 

styrene (Table 22, entries 1 to 6), the copper catalyst worked excellently with the meta- 

substituted one (Table 23, entries 3 and 4) where the free electron pairs of oxygen are not in 

conjugation with the vinyl group which reduces the electron density at the benzylic position. 

Comparing the results of electron-poor styrenes, a trend emerges. The more electron-poor 

the styrene becomes, the less efficient the iridium catalyst is and the worse the reaction 

works with mere light irradiation. This trend becomes evident when comparing the results of 

4-chlorostyrene with 4-nitrostyrene (entries 5 to 8 and 19 to 22). 
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Table 23. Substrate scope of electron-poor styrene derivatives 124. a 

 

Entry Product Catalyst 
Yield / % 

Isolated NMR b 

1 

 
125i 

[Ir] 61 (ref[156])  - 

2 [Cu] 80 90 

     
     
3 

125j 

[Ir] 52 52 

4 [Cu] 96 97 

     
     
5 

 
125k 

no 44 47 

6 [Ir] 50 (ref[156])  - 

7 [Cu] 88 96 

8 no, UV - 66 
     
     
9 

 
125l 

[Ir] 37 42 

10 [Cu] 81 86 

     
     

11 

 
125m 

no - 30 

12 [Ir] 38 44 

13 [Cu] 86 92 

14 AIBN c, 80 °C - 40 
     
     

15 

 
125n 

no - 7 

16 [Ir] 26 30 

17 [Cu] 96 100 

18 AIBN c, 80 °C - 16 
     
     

19 

 
125o 

no 2 8 

20 [Ir] 34 37 

21 [Cu] 98 100 

22 AIBN c, 80 °C - 6 
     
     

23 

 
125p 

no - < 2 

24 [Ir] 19 20 

25 [Cu] 60 73 

a) Reaction conditions: Styrene derivative 124 (1.0 equiv, 0.30 mmol), N-chlorosulfonamide 120a 
(1.5 equiv), catalyst (0.003 mmol, 1 mol%), anhydrous DCE (6.0 mL), degassed solution, rt, 455 nm 
(LED-stick), 6 h. b) Determined by 1H-NMR using 2-nitropropane as internal standard. c) 1 mol%, 
dark.  
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Plotting the product yields of different styrene derivatives 124 in dependence on the 

corresponding Hammett substituent constants  clarifies that there is a correlation 

between the electron density of the substrate and the product yield, dependent on the 

catalyst used (Figure 19). 

 

 
Figure 19. Product yields of different styrene derivatives 124 plotted in dependence on the 
corresponding Hammett substituent constants .[159] Substituents without prefix are in para 
position; substituents with prefix m are in meta position. 
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Encouraged by the good results of [Cu(dap)2]Cl ([Cu]) for electron-poor styrenes, the search 

for the limits of this system and the screening of non vinylic alkenes was started (Scheme 

40). Both allylbenzene (126a) and 1-methyl-1-cyclohexene (126b) resulted in poor yields (cf. 

127a and 127b). With regard to 127b, a further isomer was observed in traces by mass 

spectrometry of the crude reaction mixture, but it was only possible to isolate the Z-isomer by 

column chromatography. The structure was confirmed by X-ray analysis (see experimental 

part). When using 1-octene (126c) as a substrate, [Ir] was most effective and under mere 

irradiation with blue light no reaction occurred (cf. 127c). Ethyl propiolate and cyclohex-2-en-

1-one showed with [Cu] no reaction at all. 

 

 

   

127a 127b 127c 

    no – (9% NMR) c  no n.r.  

 [Ir] – (15% NMR) [Ir] 18% (19% NMR) c  [Ir] 64% (ref[156]) 

 [Cu] 10% (15% NMR) [Cu] 10% (12% NMR) c  [Cu] 35% (41% NMR) 

 
a) Reaction conditions: Olefin 126 (1.0 equiv), N-chlorosulfonamide 120a (1.5 equiv), catalyst 
(1.0 mol%), anhydrous DCE, degassed solution, rt, 455 nm (LED-stick), 6 h. b) The yields in 
parenthesis were determined by 1H-NMR using 2-nitropropane as internal standard. c) Yield of Z-
Isomer. 

Scheme 40. ATRA reactions with olefins. 

 

In the next step, heterocyclic olefins were investigated, which are more challenging (Table 

24). Starting with enantiopure cyclopropanated furan derivative 126d, chloramination product 

127d was only accessible in acceptable yields using [Cu] (entries 1 and 2). The absolute 

configuration of the hydrogens on the cyclopropane ring of product 127d is known from the 

starting material and remained unchanged in the course of the reaction. The preliminary 

assignment of the stereochemistry, which is based on the plausible attack of N-centered 

radical intermediate and of the chloride from the convex side, is supported by the existence 

of NOESY signals between Hb and Hd. In contrast to the cyclopropanated pyrrole derivative 

126e, which could not be successfully transformed using [Cu] (entry 3), the furan derivative 
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126d seems to have a special electron density which is beneficial for the copper catalysis. 

This special role becomes clear when the underlying basic structures are investigated 

separately. Unlike the electron-rich 2,3-dihydrofuran (126f), which furnishes a complex 

reaction mixture, methyl acrylate (126g) seems to be too electron-poor to show any reaction 

(entries 4 to 6). 

 

Table 24. Investigation of electron-poor furan and pyrrole derviatives. a 

Entry Olefin Product Catalyst 
Yield / % 

Isolated NMR b 

1 

126d  
127d 

[Ir] 13 16 

2 [Cu] 40 50 

      
      

3 
 

126e  
127e 

[Cu] complex rxn mixture 

      
      
4 c 

 
126f  

127f 

[Ir] complex rxn mixture 

5 c [Cu] complex rxn mixture 

      
      

6  
126g  

127g 

[Cu] n.r. 

a) Reaction conditions: Olefin 126 (1.0 equiv, 0.30 mmol), N-chlorosulfonamide 120a (1.5 equiv), 
catalyst (0.003 mmol, 1 mol%), anhydrous DCE (6.0 mL), degassed solution, rt, 455 nm (LED-stick), 
6 h. b) Determined by 1H-NMR using 2-nitropropane as internal standard. c) 2,3-Dihydrofuran 
(2.25 mmol, 5.0 equiv), N-chlorosulfonamide (0.45 mmol, 1.0 equiv), catalyst (0.003 mmol). 

 

For the application of a reaction in organic synthesis, protecting groups are often a crucial 

tool.[160] As an alternative to the use of the tosyl group, there is an interest in using different 

protecting groups which are capable of being removed more easily. In order to provide such 

a protecting group, 4-nitrobenzenesulfonyl (nosyl) and tert-butyloxycarbonyl (Boc) were 

tested as protecting groups for N-chloromethylamine (Table 25). Regarding the Boc group, 

the copper catalyst was just as ineffective as [Ir(ppy)2(dtbbpy)]PF6 ([Ir]) and no reaction took 

place (entries 1 and 2). Using the electron-deficient nosyl group, [Cu(dap)2]Cl ([Cu]) resulted 

in an excellent isolated yield of the corresponding chloramination product 129b. As in the 
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case with electron-deficient styrene derivatives, the copper catalyst proved to be much more 

efficient than [Ir(ppy)2(dtbbpy)]PF6 ([Ir]). 

 

Table 25. Screening of protected N-chloromethylamine 128 as chloramine source. a 

 

Entry R Product Catalyst Yield / % 

1 
Boc 

 
129a 

[Ir] 0 (ref[156]) 

2 [Cu] 0 

          
3 

nosyl 

 
129b 

[Ir] 50 (ref[156]) 

4 [Cu] 93 

a) Reaction conditions: Styrene 124e (1.0 equiv, 0.03 mmol), N-chloromethylamine 128 (1.5 equiv), 
catalyst (0.003 mmol, 1.0 mol%), anhydrous DCE (6.0 mL), degassed solution, rt, 455 nm (LED-stick), 
6 h. 
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3. Reactions with N-Centered Radicals 

Due to the fact that the 1,2-chloramination reaction is supposed to react via a N-centered 

radical 122 (cf. Scheme 39), the transformation of this intermediate in alternative reactions 

was targeted. In 2014, M. S. Sanford et al. published the C-H amination of arenes 131 with 

N-(trifluoromethyl)acyloxyphthalimide (130) (Scheme 41).[161] As a reaction mechanism, they 

propose a radical aromatic substitution mechanism where an N-centered phthalimidyl radical 

133 forms in the initial step by a single electron transfer from the photoredox catalyst in the 

oxidative quenching cycle. Back electron transfer from radical intermediate 134 to the 

catalyst closes the photocatalytic cycle and furnishes a cationic intermediate 135 which is 

transferred to the product 132 by deprotonation. 

 

 

Scheme 41. C-H amination of arenes and heteroarenes according to M. S. Sanford et al.[161] 

 

N-chlorosulfonamide 120a could therefore be a potential substrate for such transformations. 

Similar to M. S. Sanford´s protocol, the addition of N-chlorosulfonamide 120a to arenes 131 

was tested (Table 26). Using electron-rich trimethoxybenzene 131a (entry 1) furnished a 

complex reaction mixture in which product 136a was identified only in traces by mass 

analysis. Even though the reaction was extremely unselective, this result supports the 

assumption that an N-centered radical 122 is formed from N-chlorosulfonamide 120a using 

the copper catalyst [Cu]. With benzene (131b, entry 2), no reaction was observed. 
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Table 26. C-H amination of arenes 131 using N-chlorosulfonamide 120a. 

 

Entry Ar-H Product Yield 

1 
  

complex 

rxn mixture 

131a 136a 

    

2   n.r. 

131b 136b 

Reaction conditions: Arene 131 (10.0 equiv), N-chlorosulfonamide 120a (1.0 equiv, 0.25 mmol), 
[Cu(dap)2]Cl ([Cu]) (12.5 mol, 5.0 mol%), anhydrous MeCN (2.5 mL), degassed solution, rt, 455 nm 
(LED-stick), 6 h. 

 

Since N-(trifluoromethyl)acyloxyphthalimide (130) worked well in M. S. Sanford´s case where 

a nitrogen-centered intermediate was also assumed, the next step was to test this reagent 

for alkenes under the chloramination conditions (Table 27). 

 

Table 27. Testing N-(trifluoromethyl)acyloxyphthalimide (130) as a nitrogen source. a 

 

Entry Time Catalyst Solvent Yield of 
Product 138 

1 23 h [Cu] DCE n.r. 

2 23 h [Cu] MeCN 37% 

3 b 18 h fac-Ir(ppy)3 MeCN 39% 

4 b 23 h [Cu] THF n.r. 
a) Reaction conditions: N-(trifluoromethyl)acyloxyphthalimide (130) (1.5 equiv), styrene (124e) 
(1.0 equiv, 0.30 mmol), [Cu(dap)2]Cl ([Cu]) (3.0 mol, 1.0 mol%), anhydrous solvent (6.0 mL), 
degassed solution, rt, 455 nm (LED-stick). b) 0.60 mmol scale.  



D. Elucidating the Reaction Pathways of Visible-Light-Mediated Chloramination of Alkenes 

89 

As phthalimide derivative 130 is hardly soluble in DCE (Table 27, entry 1), other solvents 

were applied (entries 2 to 4) as well. No reaction occurred when using DCE or THF (entries 1 

and 4). Entry 2 shows that [Cu(dap)2]Cl ([Cu]) is able to reduce N-

(trifluoromethyl)acyloxyphthalimide (130). Nevertheless, it was not possible to isolate the 

desired ATRA-like amination products 137 in any case. However, when using acetonitrile as 

a solvent, double amination took place and acetamide 138 was obtained in moderate yields. 

 

 
Figure 20. Isolated acetamide 138 when using acetonitrile as a solvent. 

 

M. F. Greaney et al. recently reported benzylic C-H azidation with the Zhdankin Reagent 

(139) under copper photoredox catalysis (Scheme 42).[40] Starting with the formation of azide 

radical under copper catalysis, a radical chain mechanism is proposed. In order to transform 

potentially formed radicals during the chloramination reaction, the functionalization of 

benzylic C-H bonds with N-chlorosulfonamide 120a was tested using Greaney´s conditions 

(Scheme 43). However, apart from the dehalogenation of N-chlorosulfonamide 120a, no 

reaction was observed. The N-centered radical which is formed intermediately is probably 

not stable enough to perform this reaction and abstracts a hydrogen atom from the solvent 

instead. 

 

 

Scheme 42. C-H azidation with the Zhdankin Reagent (139) according to M. F. Greaney et 
al.[40] 
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Reaction conditions: p-Xylene (142) (40.0 equiv), N-chlorosulfonamide 120a (1.0 equiv, 0.50 mmol), 
[Cu(dap)2]Cl ([Cu]) (2.5 mol, 0.5 mol%), anhydrous MeCN, degassed solution, rt, 455 nm (LED-
stick), 17 h. 

 

Scheme 43. Testing C-H-amination using N-chlorosulfonamide 120a. 
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4. Investigation of UV-Absorption Spectra and Quantum Yield 

Measurements 

With regard to the reaction mechanism, the most surprising result was that, with electron-rich 

substrates in particular, the 1,2-chloramination reaction presented here worked in good 

yields by mere light irradiation without using any catalyst. Unexpectedly, the UV-Vis 

absorption spectra of the substrates and product for the case of 4-methylstyrene (124c) (see 

experimental part, Figure 27) showed no clearly recognizable absorbance in the region of 

455 nm which was the applied excitation wavelength. In addition, the degassed reaction 

mixture showed the same absorbance behavior. Thus, the formation of a possible light 

absorbing electron donor acceptor complex was not observable. Degassing the reaction 

mixture and irradiation with blue LED from outside for one or two hours had no effect on the 

UV-Vis absorption spectra either (see experimental part, Figure 28). The reaction outcome 

was checked after two hours by 1H-NMR analysis which revealed a 21% NMR yield. As the 

control experiment without catalyst and light showed no reaction at all (Table 21, entry 6), it 

was evident that light can trigger the reaction. In the next step the UV-Vis-behavior of N-

chlorosulfonamide 120a was investigated under different concentrations, with the finding that 

there was low absorbance in the region of 450 nm which became visible when measuring a 

300 mM solution in 1,2-dichloroethane (Figure 21). 

 

 

Figure 21. UV-Vis absorption spectra of different concentrations of N-chlorosulfonamide 
120a in anhydrous DCE.  
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Furthermore, this low absorbance matched with the measured low radiant powers (Pabs) 

during quantum yield determination (cf. Table 28) and the emission band of the LED used on 

the blue spectral side overlaps well with the absorption band of N-chlorosulfonamide 120a. 

Since the light output power of such LEDs is very high, this small absorbance is sufficient to 

start chemical reactions. 

 

In order to elucidate the different reactivities of the substrates, the quantum yields of three 

selected reactions were investigated (Table 28). In the case of catalyzed reactions, the yields 

from the quantum yield reaction setup conformed well to the yields from the standard 

reactions which were performed in pressure tubes with an internal irradiation setup. The non-

catalyzed reactions (entries 1 and 4) were much slower than the catalyzed ones, which 

became evident when comparing the yields from the quantum yield determinations. This 

observation is supported by the reaction of 4-methylstyrene in the standard reaction setup 

after 1 h, where without catalyst 44%, with iridium catalyst 50%, and with copper catalyst 

80% of product was formed (entries 1 to 3). 

 

Table 28. Results of quantum yield measurements. 

 

Entry Product Catalyst 

Standard Reaction a 
(NMR Yield c) Quantum Yield Determination b 

6 h 1 h t / h 
NMR 

Yield c 
Pabs 

/ mW 
1 

125c 

no 100% 44% 6 30% 0.64 57% 

2 [Ir] 83% (ref[156]) 50% 1 39% 93.6 3% 

3 [Cu] 79% 80% 1 41% 94.0 3% 
                  

4 

125k 

no 47% - 6 4% 2.36 2% 

5 [Ir] 50% (ref[156]) - 1 27% 97.0 2% 

6 [Cu] 96% - 1 34% 97.2 3% 
         
         

7 

125o 

no 8% - - - - - 

8 [Ir] 37% - 1 9% 97.3 0.7% 

9 [Cu] 100% - 1 18% 95.5 1.4% 
Reaction conditions: Styrene derivative 124 (1.0 equiv), N-chlorosulfonamide 120a (1.5 equiv), 
catalyst (1.0 mol%), anhydrous DCE, degassed solution. a) Irradiation via LED-stick (455 nm) at rt for 
6 h, reaction vessel: pressure tube. b) Irradiation via LED (455 nm) in quantum yield apparatus at rt for 
the indicated time, reaction vessel: fluorescence cuvette. c) Determined by 1H-NMR using 2-
nitropropane as internal standard, literature yields are isolated yields.  
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It should be noted that the light power at the sample in the quantum yield apparatus was 

significantly lower than in the standard reaction setup. For instance, even after 6 h reaction 

time in the quantum yield apparatus, only poor yields were obtained with 4-chlorostyrene 

because the light power is weaker (entry 4). Regarding the quantum yields, with electron-rich 

4-methylstyrene (entries 1 to 3) the non-catalyzed reaction showed, with 57%, the highest 

value, which is a strong indication for a radical chain pathway. It has to be remarked that the 

overall efficiency of this reaction is nonetheless very poor because the absorbance of the 

reaction solution is feeble and for the calculation of the quantum yield only the absorbed 

photons are taken into account (cf. absorbed radiant power Pabs). The low quantum yields of 

3% of the catalyzed reactions provide evidence that a potential radical chain mechanism 

plays a subordinated role here. Electron-deficient 4-chlorostyrene (entries 4 to 6) showed, 

with 2% to 3%, only low quantum yields in all cases. In contrast to 4-methylstyrene in the 

non-catalyzed reaction, both the reaction yield in the standard reaction setup (47%) and the 

quantum yield (2%) dropped dramatically, demonstrating that a potential radical chain 

mechanism becomes less efficient with electron-deficient substrates. With even more 

electron-deficient 4-nitrostyrene (entries 7 to 9), this effect became stronger so that the 

quantum yield of the non-catalyzed reaction was not determined as the yield in the standard 

reaction setup was already very low. Both catalyzed reactions showed, with less than 2%, a 

very low quantum yield; however, the copper catalyzed reaction had a value of double the 

amount, highlighting the better performance of [Cu]. 
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5. Reaction Mechanism 

Taking the preceding results into consideration, the following reaction mechanism (Scheme 

44), which is compatible with the mechanism of S. Yu et al.[156], is assumed. After excitation 

of a photoredox catalyst by visible light, single electron transfer to N-chlorosulfonamide 120a 

generates the nitrogen-centered radical intermediate 122 under oxidation of the catalyst. The 

regioselective addition of radical 122 to alkene 124 forms the carbon-centered radical 

intermediate 123 which can react in three different pathways to form product 125. 

 

 

 

Oxidation potentials vs. SCE in acetonitrile 

    

+0.37 V (ref[162]) +0.73 V (ref[162]) +0.51 V (ref[163]) +1.08 V (ref[163]) 

Scheme 44. Proposed reaction mechanism for 1,2-chloramination reaction. 

 

In pathway A, the radical intermediate 123 is oxidized to carbocation 143 by back electron 

transfer and regeneration of the catalyst. Path B is a conceivable radical chain mechanism 

which is in competition with pathway A. In this case radical 123 abstracts chlorine from N-

chlorosulfonamide 120a and forms product 125 by the generation of the nitrogen-centered 

radical 122. When using AIBN as a radical starter under elevated temperatures, N-centered 

radical 122 is formed in the initial step and the reaction proceeds via pathway B. With 

electron-rich substrates, the radical chain works well which has been proven by the excellent 
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yield for the reaction of 4-methylstyrene and catalytic amounts of AIBN (Table 21, entry 8). 

When using electron-poor substrates, the carbon-centered radical intermediate 123 becomes 

more electrophilic and less reactive to the chloramine source 120a. As a consequence, the 

radical chain mechanism slows down and the yields drop dramatically without a catalyst. In 

contrast to 4-methylstyrene, the reaction of 4-nitrostyrene with AIBN, for example, furnished 

only 6% NMR-yield (Table 23, entry 22). 

 

The contrasting reaction behavior of [Cu] and [Ir] for electron-rich and electron-poor 

substrates can be explained as follows. With electron-rich substrates the oxidation of the 

readily oxidizable carbon-centered radical intermediate 123 is possible with both catalysts 

and pathway A takes place. The oxidation potential of the benzyl radical of ethylbenzene was 

reported as +0.37 V 11. [162] This would be accessible by both [Cu] (E1/2 (Cu2+/Cu+) = 

+0.62 V 11)[19] and more strongly oxidizing [Ir] (E1/2 (Ir
4+/Ir3+) = +1.21 V 11)[23]. With electron-

poor substrates, the oxidation potential of the carbon-centered radical intermediate 123 

increases and the potential of [Cu] is not high enough to oxidize it to carbocation 143 

(oxidation potential of 4-methylbenzylradical: +0.51 V 11; oxidation potential of 4-

cyanobenzylradical: +1.08 V 11). [163] Thus, pathway C is favored, which involves structural 

reorganization and substrate coordination of the copper catalyst. After SET, the photoexcited 

copper complex coordinates an additional chloride and concurrently forms copper(II) species 

144 and the nitrogen-centered radical intermediate 122. As in pathways A and B, the addition 

of this radical to alkene 124 results in the carbon-centered radical intermediate 123. The 

product could now be directly formed after combination of 123 with the coordinated chloride 

under regeneration of copper(I) catalyst [Cu] ([LnCu]+). However, as outlined in the 

introductory chapter A and also proposed by S. Z. Zard[164], it needs to be considered that a 

transient copper(III) species 145 is probably involved. After formation of 145 by the attack of 

copper(II) species 144 on radical 123, the product would be formed by reductive elimination. 

In contrast to [Cu], more strongly oxidizing [Ir] might be still able to oxidize the electron-rich 

carbon-centered radical 123 to the corresponding carbocation 143. However, this electron-

deficient carbocation is very unstable, and product formation is hindered. If [Ir] was not 

strong enough for oxidizing the benzyl radical, a coordination of chloride would not be 

possible and product formation could not take place.  

                                                
11 vs. SCE in MeCN 
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6. Conclusion 

The investigation of different styrenes under various reaction conditions revealed two 

important aspects of the chloramination reaction. Firstly, the reaction does not always require 

a photocatalyst. Secondly, this chloramination works for electron-rich substrates with AIBN 

and there is a necessity for [Cu(dap)2]Cl ([Cu]) when the substrates become more electron-

deficient. In addition, the copper catalyst outperforms the iridium catalyst, when using the 

nosyl group as a protecting group. Given that the nosyl group is more easily removable than 

the tosyl group, [Cu] provides access to valuable intermediates for consecutive reactions. 

 

Since a reaction mechanism which runs over an N-centered radical intermediate was 

assumed, N-chlorosulfonamide 120a was tested for C-H amination of arenes. However, 

selective product formation using the copper catalyst [Cu] was not successful. Attempts to 

use the potential N-centered radical intermediate 122 for benzylic C-H aminations similar to 

M. F. Greaney and co-workers´ protocol[40] also failed, which may be due to the instability of 

the radical. When using N-(trifluoromethyl)acyloxyphthalimide (130) as a nitrogen source for 

the amination of styrene, a double amination was observed in acetonitrile in moderate yields. 

This observation opens the door for more interesting transformations. 

 

The reactivity of electron-poor styrenes by mere light excitation was clarified by UV-Vis 

spectrometry. Due to the high emission power of the LEDs used, a little absorbance of N-

chlorosulfonamide 120a is sufficient to drive the reaction. From a mechanistic point of view, 

generation of N-centered radicals is the initial step, irrespective of which catalytic system is 

used. The key steps are the subsequent reaction steps depending on the electronic 

properties of the substrate. Without a catalyst or when using AIBN as a radical initiator, a 

radical chain pathway is the only possible mechanism, whereas both, the copper and the 

iridium catalyst, can run in a photoredox cycle after single electron transfer via a carbon-

centered radical intermediate 123 broadening the scope of the reaction. The decisive 

difference between the copper and iridium catalyst occurred for electron-poor substrates 

which could exclusively be converted in good yields with [Cu(dap)2]Cl ([Cu]). These 

substrates are accessible, since [Cu], in contrast to the iridium catalyst [Ir], is prone to 

undergo structural reorganization as well as ligand exchange [45]. Hence, [Cu] can run 

through an alternative pathway, in which copper can coordinate to intermediates under the 

formation of a potential copper(III) species. 
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E. Summary / Zusammenfassung 

1. Summary 

In the present thesis, the value of copper complexes for photoredox catalysis is 

demonstrated. In particular, new copper photoredox catalysts were developed and 

investigations were carried out to identify new ATRA reagents. On the basis of the visible-

light-mediated chloramination of alkenes, it became particularly evident that the special 

reactivity of copper results in alternative reaction pathways which are crucial for the unique 

opportunities afforded by copper complexes. 

 

After a brief introduction to copper catalysts in photoredox catalysis and the role of copper(III) 

species in organic chemistry (Chapter A), Chapter B examines the development of new 

copper photoredox catalysts. At first, the new copper(I) complexes, [Cu(dapacetal)2]
+ and 

[Cu(phenazino-dap)2]
+ were synthesized and characterized. Both complexes were inferior to 

the established [Cu(dap)2]
+ in all tested photoreactions. Finally, it was not possible to improve 

the catalyst performance by modifications in 5,6-position of the phenanthroline core 

structure. More promising for the development of more efficient copper(I)-based photoredox 

catalysts is the formation of heteroleptic complexes. As for copper(II) complexes, the new 

and readily synthesizable [Cu(dap)Cl2] was observed to be an efficient photocatalyst that was 

even able to outperform the successful copper(I) complex [Cu(dap)2]Cl. With regard to the 

better performance of [Cu(dap)Cl2], the formation of intermediary copper(III) species as key 

intermediates need to be taken into consideration. In order to explore the real scope of this 

copper(II) complex for photocatalysis and to elucidate the underlying reaction mechanism, 

further research, which is already ongoing, is necessary. Finally, as a new alternative to 

phenanthroline ligands for copper photoredox catalysts, 1,4-diaza-1,3-butadienes were 

investigated. In this context, [Cu(DABMes)2]BF4 was for the first time successfully applied to 

visible-light-mediated ATRA reactions. Since this catalyst showed less efficiency it is not 

competitive with established [Cu(dap)2]Cl. However, further research of modified variants 

might lead to an easily accessible new class of photocatalysts. 

 

In Chapter C, the investigation of four compounds for their potential application as new ATRA 

reagents in photoredox catalysis is described. Readily available trifluoromethanesulfonic acid 

proved to be unsuitable as it is too reactive. Owing to its high acidity, side reactions such as 

Ritter-like reactions occurred. The Ruppert-Prakash reagent (TMSCF3) and 2,4-dinitrophenyl 

trifluoromethanesulfonate surprisingly exhibited no reactivity, even though the reduction 

potentials are in the accessible area of the photoredox catalysts used. Finally, after 
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optimizing the reaction conditions, it proved possible to use trichloromethanesulfonyl chloride 

(CCl3SO2Cl) as an ATRA reagent with a similar reactivity to that of trifluoromethanesulfonyl 

chloride (CF3SO2Cl). The use of the corresponding ATRA products was demonstrated using 

the formation of important substance classes such as sulfonamides or sultones as an 

example. The screening of further substrates would be appropriate because, in contrast to 

the trifluoromethyl group, the trichloromethyl group offers the potential for interesting 

additional derivatizations. 

 

In the final Chapter, the reaction pathways of visible-light-mediated cloramination of alkenes 

with N-chlorosulfonamides are elucidated. This reaction was observed to be highly 

dependent on the type of photoredox catalyst used. While electron-rich alkenes furnished 

best results with iridium-based photocatalyst [Ir(ppy)2(dtbbpy)]PF6 but were also converted in 

the absence of any catalyst, electron-deficient alkenes required [Cu(dap)2]Cl for this process. 

This behavior was explained on the basis of a mechanism, indicating the important role of 

photoredox catalysts beyond the initiation of a reaction by an initial electron transfer. The 

decisive difference between the copper and iridium catalyst was observed for electron-poor 

substrates, which were exclusively converted in good yields with [Cu(dap)2]Cl. The copper 

complex is the key to this reaction because, in contrast to the iridium complex, it has the 

ability to undergo rapid structural reorganization as well as ligand exchange. 
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2. Zusammenfassung 

In der vorliegenden Arbeit wird die Bedeutung von Kupferkomplexen für die 

Photoredoxkatalyse veranschaulicht. Insbesondere wurden neue Kupfer-Photoredox-

katalysatoren entwickelt und es wurden Untersuchungen durchgeführt, um neue ATRA 

Reagenzien zu ermitteln. Anhand der durch sichtbares Licht vermittelten Chloraminierung 

von Alkenen wurde besonders deutlich, dass die spezielle Reaktivität von Kupfer zu 

alternativen Reaktionswegen führt, welche für die einzigartigen Möglichkeiten von 

Kupferkomplexen ausschlaggebend sind. 

 

Nach einer kurzen Einleitung über Kupferkatalysatoren in der Photoredoxkatalyse und über 

die Rolle von Kupfer(III)-Spezies in der organischen Chemie (Kapitel A), wird in Kapitel B die 

Entwicklung von neuen Kupfer-Photoredoxkatalysatoren verfolgt. Dabei wurden zunächst die 

neuen Kupfer(I)-Komplexe, [Cu(dapacetal)2]
+ und [Cu(phenazino-dap)2]

+, synthetisiert und 

charakterisiert. Beide Komplexe waren dem etablierten [Cu(dap)2]
+ in allen getesteten 

Photoreaktionen unterlegen. Letztendlich war es nicht möglich, die Katalysatorleistung durch 

Modifikationen in der 5,6-Position der Phenanthrolinkernstruktur zu verbessern. 

Erfolgversprechender für die Entwicklung von effizienteren Kupfer(I)-basierten 

Photoredoxkatalysatoren ist die Bildung von heteroleptischen Komplexen. In Bezug auf die 

Kupfer(II)-Komplexe, zeigte sich der neue und leicht herstellbare [Cu(dap)Cl2] als ein 

effizienter Photokatalysator, der sogar den erfolgreichen Kupfer(I)-Komplex [Cu(dap)2]Cl 

übertreffen konnte. Hinsichtlich der besseren Leistung von [Cu(dap)Cl2], muss die Bildung 

von intermediären Kupfer(III)-Spezies als entscheidende Zwischenprodukte in Betracht 

gezogen werden. Um das wahre Potential dieses Kupfer(II)-Komplexes für die Photokatalyse 

zu erforschen und um den zugrundeliegenden Reaktionsmechanismus aufzuklären, ist eine 

weitere Untersuchung nötig, welche bereits im Gange ist. Schließlich wurden 1,4-Diaza-1,3-

butadiene als neue Alternative zu Phenanthrolinliganden in der Photoredoxkatalyse 

untersucht. In diesem Zusammenhang wurde [Cu(DABMes)2]BF4 zum ersten Mal erfolgreich 

in durch sichtbares Licht vermittelte ATRA Reaktionen angewendet. Da dieser Katalysator 

geringere Effizienz zeigte, ist er nicht konkurrenzfähig zum bewährten [Cu(dap)2]Cl. Jedoch 

könnte eine weitere Erforschung von abgeänderten Varianten zu einer leicht zugänglichen 

neuen Klasse von Photokatalysatoren führen. 

 

In Kapitel C wird die Untersuchung von vier Verbindungen auf ihre mögliche Anwendung als 

neue ATRA Reagenzien in der Photoredoxkatalyse beschrieben. Die leicht verfügbare 

Trifluormethansulfonsäure erwies sich als ungeeignet, da sie viel zu reaktiv ist. Aufgrund 

ihrer hohen Azidität traten Nebenreaktionen wie zum Beispiel Ritterartige Reaktionen auf. 

Das Ruppert-Prakash Reagenz (TMSCF3) und 2,4-Dinitrophenyl-trifluormethansulfonat 
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zeigten überraschenderweise keine Reaktivität, obwohl die Reduktionspotentiale im 

zugänglichen Bereich der verwendeten Photoredoxkatalysatoren liegen. Schließlich war es 

nach Optimierung der Reaktionsbedingungen möglich, Trichlormethansulfonylchlorid 

(CCl3SO2Cl) als ATRA Reagenz mit einer ähnlichen Reaktivität wie 

Trifluormethansulfonylchlorid (CF3SO2Cl) zu verwenden. Mit der Bildung von wichtigen 

Substanzklassen, wie zum Beispiel von Sufonamiden oder Sultonen, wurde die Verwendung 

der entsprechenden ATRA Produkte veranschaulicht. Ein Austesten von weiteren Substraten 

ist sinnvoll, da die Trichlormethylgruppe, im Gegensatz zu der Trifluormethylgruppe, die 

Möglichkeit für interessante zusätzliche Derivatisierungen bietet. 

 

Im letzten Kapitel werden die Reaktionswege der durch sichtbares Licht vermittelten 

Chloraminierung von Alkenen mi N-Chlorsulfonamiden erläutert. Diese Reaktion zeigte sich 

stark abhängig vom verwendeten Photoredoxkatalysator. Während elektronenreiche Alkene 

die besten Ergebnisse mit dem iridiumbasierten Photokatalysator [Ir(ppy)2(dtbbpy)]PF6 

lieferten, aber auch in Abwesenheit eines Katalysators umgesetzt wurden, erforderten 

elektronenarme Alkene [Cu(dap)2]Cl für diesen Prozess. Dieses Verhalten konnte anhand 

eines Mechanismus begründet werden, der die wichtige Rolle von Photoredoxkatalysatoren 

aufzeigt, die über den Anstoß einer Reaktion durch einen anfänglichen Elektronentransfer 

hinausgeht. Der entscheidende Unterschied zwischen dem Kupfer- und Iridiumkatalysator 

kam bei elektronenarmen Substraten zum Vorschein, welche ausschließlich mit [Cu(dap)2]Cl 

in guten Ausbeuten umgesetzt wurden. Dabei ist der Kupferkomplex der Schlüssel zu dieser 

Reaktion, weil er im Gegensatz zum Iridiumkomplex die Fähigkeit hat, schnelle strukturelle 

Umorganisation sowie Ligandenaustausch einzugehen. 
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F. Experimental Part 

1. General Comments 

All commercially available reagents were used without further purification unless stated 

otherwise. Anhydrous solvents were prepared by established laboratory procedures[165]. 

Reactions with moisture or oxygen-sensitive reagents were carried out in oven-dried or 

flame-dried glassware under an atmosphere of predried nitrogen. 

 

If not stated otherwise, all photochemical reactions were performed under a nitrogen 

atmosphere using degassed solvents. While being stirred, the reaction mixture in each case 

was irradiated using an internal irradiation setup, which was developed by O. Reiser et. 

al.[166] (Figure 22). The setup consists of a Schlenk pressure tube (A) and a “LED-stick” (LED 

(B) on top of a glass rod (C)), which channels light directly into the reaction mixture (D). A 

screw cap with a Teflon adaptor (E) allows tight closure of the reaction vessel. For irradiation, 

a blue light emitting diode (LED) (700 mA, max = 455 nm, Osram Oslon 80) or a green LED 

(700 mA, max = 530 nm, Cree XP-E) was used. 

 

 

Figure 22. Irradiation setup using a LED-stick. 

 

Column chromatography was performed on silica gel (Mesh 0.063 – 0.200 mm, Merck) or on 

silica gel for flash chromatography (Mesh 0.040 – 0.063 mm, Merck). Solvents for column 

chromatography were distilled prior to use. Thin layer chromatography (TLC) was performed 

on Merck TLC aluminum plates coated with silica gel 60 F254. A dual short/long wave UV 

lamp or treatment with suitable stains (solutions of vanillin/sulfuric acid, phosphomolybdic 

acid or potassium permanganate) followed by heating was used for visualization on TLC. 

B 

C 

D 

E 

A 
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1H-NMR, 13C-NMR and 19F-NMR measurements were recorded on a Bruker Avance 300 

(300 MHz for 1H, 75 MHz for 13C, 282 MHz for 19F), on a Bruker Avance III 400 MHz 

(400 MHz for 1H, 101 MHz for 13C, 386 MHz for 19F) or on a Bruker Avance III 600 MHz 

(600 MHz for 1H, 151 MHz for 13C, 565 MHz for 19F) spectrometer. Chemical shifts  are 

reported in parts per million (ppm) relative to the solvent peak of deuterated chloroform 

(CDCl3, 7.26 ppm for 1H, 77.16 ppm for 13C) or deuterated dimethyl sulfoxide (DMSO-d6, 

2.50 ppm for 1H, 39.52 ppm for 13C). The spectra were analyzed by first order, and the 

coupling constants J are reported in Hertz (Hz). The characterization of the splitting patterns 

of the spin multiplicity is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m 

= multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dt = doublet of 

triplets, ddt = doublet of doublet of triplets, qd = quartet of doublets, quin = quintet, b = broad. 

DEPT-135: CH peaks up, CH2 peaks down, CH3 peaks up. 

 

Infrared spectra were recorded on a Biorad Excalibur FTS 3000 spectrometer, equipped with 

a Specac Golden Gate Diamond Single Reflection ATR-System, or on a Cary 630 FTIR 

spectrometer. The wavenumbers are reported in cm-1. 

 

Mass spectrometry was performed by the Central Analytic Department of the University of 

Regensburg on a Finnigan MAT95, a Jeol AccuTOF GCX, a Finnigan MAT SSQ 710 A, a 

ThermoQuest Finnigan TSQ 7000 or an Agilent Q-TOF 6540 UHD. Elemental microanalysis 

was performed by the Micro Analytical Department of the University of Regensburg on a 

Vario MICRO cube (Elementar Analysensysteme GmbH). 

 

Melting points (mps) were recorded on an automated system: Stanford Research Systems 

OptiMelt MPA 100. 

 

X-ray crystallographic analyses were performed using an Agilent Technologies SuperNova, 

an Agilent Technologies Gemini R Ultra, an Agilent GV 50 or a Rigaku GV 50 diffractometer 

by the Central Analytic Department of the University of Regensburg. 

 

UV-Vis absorption measurements were performed on a Varian Cary 50 Bio UV-VIS 

spectrophotometer or on an Agilent Cary 100 UV-VIS spectrophotometer. Luminescence 

spectra, excitation spectra, decay times and photoluminescence quantum yields were 

measured under the guidance of A. Schinabeck in the group of Prof. Dr. H. Yersin at the 

University of Regensburg. Luminescence and excitation spectra were recorded on a Horiba 

Jobin Yvon Fluorolog 3 steady-state fluorescence spectrometer or on a Horiba Jobin Yvon 

Fluorolog 3-22 spectrometer. For decay time measurements on the Fluorolog 3 system, a 
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PicoQuant LDH-P-C-375 pulsed diode laser with an excitation wavelength of 372 nm and a 

pulse width of 100 ps was used as the excitation source. For decay time measurements on 

the Fluorolog 3-22 spectrometer, a Picobrite PB-375L pulsed diode laser with an excitation 

wavelength of 378 nm and a pulse width < 100 ps was used as the excitation source. The 

emission signal was detected with a cooled photomultiplier attached to a FAST ComTec 

multichannel scalar card with a time resolution of 250 ps. Photoluminescence quantum yields 

were determined at ambient temperature with a Hamamatsu C9920-02 system equipped with 

a Spectralon® integrating sphere. Emission spectra of LEDs were recorded on an Ocean 

Optics USB4000-UV-VIS spectrometer. 

 

For the cyclic voltammetry measurements, an Autolab PGSTAT302N (Metrohm) setup was 

used. The measurements were carried out by R. Hoheisel (group of Prof. Dr. B. König, 

University of Regensburg) in a conventional undivided electrochemical cell at 20 °C in the 

stated solvent under an argon atmosphere using tetrabutylammonium tetrafluoroborate (0.1 

mol/L) as supporting electrolyte. The following electrodes were used: a glassy carbon 

working electrode, platinum wire as a counter electrode and silver wire as a reference 

electrode. The solvent was degassed by vigorous argon bubbling prior to the measurements. 

Redox potentials were referenced against ferrocene as an internal standard. The potentials 

of irreversible peaks were approximated by using the peak potentials. For better comparison, 

all values were converted using the conversion constants of A. W. Addison et al.[167], and are 

reported in reference to the saturated calomel electrode (SCE). 
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2. Synthesis of Known Compounds and Reagents 

The following compounds were synthesized according to the reported procedures. The 

spectral data corresponded to the reported ones: 

 

2,9-bis(para-anisyl)-1,10-phenanthroline (dap, 60)[25,47], 6,7-dihydro-5H-[1,4]diazepino 

[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium bromide (62)[107], 2,9-dichloro-1,10-

phenanthroline (64)[107], 1,10-phenanthroline-5,6-dione (67)[110], 2,9-dichloro-1,10-

phenanthroline-5,6-dione (68)[107], 3,6-dichlorodipyrido[3,2-a:2',3'-c]phenazine (72)[11], 

[Cu(dap)2]Cl (C1-Cl)[25,47], [Cu(dap)2]BF4 (C1-BF4)
[25,47], [Cu(dap)2]PF6 (C1-PF6)

[25,47], 4-

nitrobenzyl bromide (75)[168], N-Boc allylamine (80)[169], N,N´-bis(mesityl)-1,4-diaza-1,3-

butadiene (DABMes, 86)[170], [Cu(DABMes)2]BF4 (C14)[109], phenyl trifluoromethanesulfonate 

(100)[140], 3-methoxystyrene (125j)[171], 1-nitro-4-vinylbenzene (125o)[172], 6-(tert-butyl) 3-

methyl (1S,5S,6S)-2-oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylate (126d)[173], 12, di-tert-butyl 

(1R,5R,6R)-2-azabicyclo[3.1.0]hex-3-ene-2,6-dicarboxylate (126e)[174], 13, N-(trifluoromethyl) 

acyloxyphthalimide (130)[161]. 

  

                                                
12 Provided by R. Eckl 
13 Provided by U. Klimczak 



F. Experimental Part 

105 

3. Chapter B: Synthesis, Characterization and Application of New 

Diimine-Based Copper Complexes 

3.1 Compound Characterization 

 

 

6,7-dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-3,9-dione (63)[175] 

In a round-bottom flask, compound 62 (11.05 g, 28.9 mmol, 1.0 equiv) was dissolved in tert-

butanol (180 mL). To the stirred solution, potassium tert-butoxide (13.62 g, 121.4 mmol, 

4.2 equiv) was added at 40 °C within 10 min. After stirring at 40 °C in the open flask for 24 h, 

the reaction solution was saturated with oxygen using an oxygen balloon. Brine (200 mL) and 

chloroform (100 mL) were added and the phases were separated. The aqueous phase was 

extracted with chloroform (3 x 70 mL). The combined organic phases were washed with brine 

(100 mL), dried over Na2SO4, filtered and concentrated in vacuum. Compound 63 was 

obtained as a brown solid (6.71 g, 26.6 mmol, 92%). 1H-NMR (400 MHz, CDCl3)  7.71 (d, J 

= 9.5 Hz, 2H), 7.36 (s, 2H), 6.80 (d, J = 9.5 Hz, 2H), 4.32 (t, J = 6.6 Hz, 4H), 2.46 (quin, J = 

6.5 Hz, 2H). 

 

 

 

 

6,9-bis(4-methoxyphenyl)-2,2-dimethyl-[1,3]dioxolo[4,5-f][1,10]phenanthroline 

(dapacetal, 65) 

A two-necked Schlenk flask, fitted with a condenser, was charged with compound 69 

(526 mg, 1.64 mmol, 1.0 equiv), (4-methoxyphenyl)boronic acid (550 mg, 3.62 mmol, 

2.2 equiv), triphenylphosphine (17.2 mg, 0.066 mmol, 4.0 mol%) and 1,2-dimethoxyethane 

(6.0 mL). The mixture was degassed by two freeze-pump-thaw cycles. [Pd2(dba)3] (15.1 mg, 

0.016 mmol, 1 mol%) as well as a mixture of K2CO3 (500 mg, 3.62 mmol, 2.2 equiv) in water 
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(1.2 mL) were added under slight nitrogen overpressure and the resulting mixture was 

degassed by two further freeze-pump-thaw cycles. The reaction mixture was stirred under a 

nitrogen atmosphere at 100 °C for 63 h. After cooling to room temperature, water (90 mL) 

and dichloromethane (60 mL) were added, and the phases were separated. The aqueous 

phase was extracted with dichloromethane (7 x 50 mL). The combined organic phases were 

washed with brine (1 x 100 mL), dried over Na2SO4, filtered and concentrated in vacuum. 

Purification by column chromatography on silica gel using mixtures of DCM:MeOH (Rf = 0.76 

in DCM:MeOH 98:2) afforded the desired product as a yellow green solid (671 mg, 

1.44 mmol, 88%). IR (neat, cm-1) 3040, 3000, 2966, 2940, 2836, 1650, 1587, 1519, 1508, 

1448, 1360, 1247, 1173, 1075, 1029, 816. 1H-NMR (400 MHz, CDCl3)  8.41 (d, J = 8.8 Hz, 

4H), 8.27 (d, J = 8.6 Hz, 2H), 8.08 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.9 Hz, 4H), 3.92 (s, 6H), 

1.89 (s, 6H). 13C-NMR (101 MHz, CDCl3)  160.9, 154.1, 142.2, 136.4, 132.4, 128.9, 128.9, 

120.6, 119.3, 117.0, 114.3, 55.6, 26.3. HRMS (ESI): m/z calculated for C29H25N2O4 [MH+]: 

465.1809, found: 465.1810. mp: 266 - 271 °C. The 1H-NMR data are in accordance with the 

data reported in the literature.[113] 

 

 

 

 

2,9-bis(4-methoxyphenyl)-1,10-phenanthroline-5,6-dione (66)[113] 

Compound 65 (300 mg, 0.65 mmol) was dissolved in a mixture of water (8.0 mL) and 

trifluoroacetic acid (16.3 mL) in a Schlenk flask. The reaction mixture was saturated with 

oxygen by using an oxygen balloon. Then, the mixture was stirred at 50 °C for 15 h under 

oxygen atmosphere. Trifluoroacetic acid was removed by distillation under reduced pressure. 

Dichoromethane (50 mL) and a solution of NaHCO3 (1 M, 50 mL) were added, and the 

phases were separated. The aqueous phase was extracted with dichloromethane (7 x 

50 mL). The combined organic phases were washed with water (1 x 100 mL), dried over 

Na2SO4, filtered and concentrated in vacuum. The residue was suspended in toluene (30 mL) 

and stirred for 10 min. The solid residue was recovered by filtration, washed with diethyl 

ether and dried in vacuum. This procedure afforded compound 66 as an orange solid 

(237 mg, 0.56 mmol, 86%). IR (neat, cm-1) 3082, 3003, 2833, 1668, 1604, 1553, 1512, 1446, 

1375, 1320, 1254, 1168, 1026, 832, 817, 769, 613. 1H-NMR (400 MHz, CDCl3)  8.49 (d, J = 
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8.3 Hz, 2H), 8.36 (d, J = 8.8 Hz, 4H), 7.94 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.8 Hz, 4H), 3.94 

(s, 6H). 13C-NMR (101 MHz, CDCl3)  179.0, 162.5, 162.4, 153.2, 138.0, 130.4, 129.7, 126.3, 

120.5, 114.7, 55.7. HRMS (ESI): m/z calculated for C26H19N2O4 [MH+]: 423.1339, found: 

423.1342. 

 

 

 

 

6,9-dichloro-2,2-dimethyl-[1,3]dioxolo[4,5-f][1,10]phenanthroline (69)[107] 

Compound 68 (558 mg, 2.00 mmol, 1.0 equiv) and 2-nitropropane (1.80 mL, 20.0 mmol, 

10.0 equiv) were dissolved in a mixture of acetonitrile (90 mL) and water (30 mL) in a three-

necked flask fitted with a condenser. The mixture was degassed by two freeze-pump-thaw 

cycles. A Solution of Na2CO3 (1.70 g, 16.0 mmol, 8.0 equiv) in water (60 mL) was degassed 

by two freeze-pump-thaw cycles and added. The resulting mixture was degassed by one 

more freeze-pump-thaw cycle and stirred at 55 °C for 15 h. After cooling to room 

temperature, the organic solvent was evaporated and the resulting mixture was neutralized 

to pH 6-7 with diluted HCl (0.5 M). The aqueous phase was extracted with dichloromethane 

(4 x 100 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuum. Purification by column chromatography on silica gel using 

dichloromethane (Rf = 0.42) afforded the desired product as a light yellow solid (530 mg, 

1.65 mmol, 83%). 1H-NMR (300 MHz, CDCl3)  8.16 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.6 Hz, 

2H), 1.86 (s, 6H). 
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3,6-bis(4-methoxyphenyl)dipyrido[3,2-a:2',3'-c]phenazine (phenazino-dap, 73) 14 

Synthesis using condensation in the last step: 

Compound 66 (350 mg, 0.83 mmol, 1.0 equiv) was suspended in ethanol (130 mL) in a 

round-bottom flask, 1,2-diaminobenzene (256 mg, 2.37 mmol, 2.9 equiv) was added and the 

suspension was refluxed at 95 °C for 3.5 h. After cooling to room temperature, the solid was 

filtered out and washed with ethanol and acetone. Drying in vacuum afforded compound 73 

as a yellow solid (377 mg, 0.76 mmol, 92%). 

 

Synthesis using Suzuki coupling in the last step: 

A two-necked Schlenk flask, fitted with a condenser, was charged with compound 72 (80 mg, 

0.228 mmol, 1.0 equiv), (4-methoxyphenyl)boronic acid (76 mg, 0.502 mmol, 2.2 equiv), 

triphenylphosphine (2.4 mg, 9.1 mol, 4.0 mol%) and toluene (4.0 mL). The mixture was 

degassed by two freeze-pump-thaw cycles, [Pd2(dba)3] (2.2 mg, 2.3 mol, 1 mol%) as well 

as a mixture of K2CO3 (69 mg, 0.50 mmol, 2.2 equiv) in water (0.4 mL) were added under 

slight nitrogen overpressure and the resulting mixture was degassed by two further freeze-

pump-thaw cycles. The reaction mixture was stirred under a nitrogen atmosphere at 100 °C 

for 63 h. After cooling to room temperature, water (30 mL) and dichloromethane (20 mL) 

were added, and the phases were separated. The aqueous phase was extracted with 

dichloromethane (4 x 20 mL). The combined organic phases were washed with brine (1 x 

40 mL), dried over CaCl2, filtered and concentrated in vacuum. Purification by column 

chromatography on silica gel using mixtures of DCM:MeOH (Rf = 0.54 in DCM:MeOH 99:1) 

afforded the crude product. After washing with ethyl acetate and acetone using a paper filter, 

the desired product was obtained as a yellow green solid (72 mg, 0.146 mmol, 64%). 

 

IR (neat, cm-1) 3052, 3008, 2937, 2840, 1606, 1573, 1511, 1480, 1431, 1361, 1252, 1170, 

1032, 820, 760. 1H-NMR (600 MHz, CDCl3)  9.65 (d, J = 8.4 Hz, 2H), 8.50 (d, J = 8.7 Hz, 

                                                
14 The NMR spectra of this compound were measured by the Central Analytic Department of the 
University of Regensburg. 
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4H), 8.36 (dd, J = 6.4, 3.5 Hz, 2H), 8.24 (d, J = 8.5 Hz, 2H), 7.90 (dd, J = 6.5, 3.3 Hz, 2H), 

7.15 (d, J = 8.7 Hz, 4H), 3.95 (s, 6H). 13C-NMR (151 MHz, CDCl3)  161.5, 158.9, 148.3, 

142.6, 141.5, 134.8, 131.7, 130.4, 129.7, 129.3, 126.0, 120.2, 114.5, 55.6. HRMS (ESI): m/z 

calculated for C32H23N4O2 [MH+]: 495.1816, found 495.1821. mp: > 310 °C, decomposition. 

 

 

 

 

[Cu(dapacetal)2]BF4 (C8-BF4) 

In a round-bottom flask, [Cu(MeCN)4]BF4 (34.9 mg, 0.11 mmol, 1.0 equiv) was suspended in 

chloroform (1.0 mL) and sonicated at room temperature for 3 min. To the stirred solution, 

dapacetal (65) (100 mg, 0.22 mmol, 2.0 equiv) and 2.0 mL chloroform were added. The 

mixture was sonicated at room temperature for 3 min, and stirred at 60 °C for 25 min. After 

the solvent had been evaporated, the resulting solid was recrystallized from chloroform and 

diethyl ether. Crystallization was completed in a freezer. This procedure afforded compound 

C8-BF4 in the form of black red crystals (113 mg, 105 mol, 95%). 

 

[Cu(dapacetal)2]Cl (C8-Cl) 

Following the previous procedure, CuCl (6.3 mg, 0.06 mmol, 1.0 equiv) and dapacetal (65) 

(57.5 mg, 0.12 mmol, 2.0 equiv) afforded after 30 min [Cu(dapacetal)2]Cl (C8-Cl) in the form 

of red brown crystals (47.5 mg, 46 mol, 72%). 

 

[Cu(dapacetal)2]PF6 (C8-PF6) 

Following the previous procedure, [Cu(MeCN)4]PF6 (20.4 mg, 55 mol, 1.0 equiv) and 

dapacetal (65) (49.7 mg, 0.11 mmol, 2.0 equiv) afforded after 30 min [Cu(dapacetal)2]PF6 

(C8-PF6) in the form of red crystals (62.4 mg, quantitative). 

 

Suitable crystals for X-ray structure analysis of [Cu(dapacetal)2]PF6 (C8-PF6) were obtained 

by vapor diffusion of diethyl ether into a dichloromethane solution. 

 

IR (neat, cm-1) 3069, 2994, 2932, 2840, 1652, 1606, 1585, 1505, 1445, 1372, 1247, 1178, 

1034, 821. 1H-NMR (300 MHz, CDCl3)  8.41 (d, J = 8.5 Hz, 4H), 7.87 (d, J = 8.5 Hz, 4H), 
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7.33 (d, J = 8.6 Hz, 8H), 6.11 (d, J = 8.7 Hz, 8H), 3.58 (s, 12H), 2.00 (s, 12H). 13C-NMR 

(75 MHz, CDCl3)  160.0, 154.4, 139.7, 137.0, 131.6, 129.3, 129.0, 124.7, 122.5, 117.1, 

112.8, 55.5, 26.2. HRMS (ESI): m/z calculated for C58H48CuN4O8 ([Cu(dapacetal)2]
+): 

991.2763, found 991.2757. mp: > 272 °C, decomposition. 

 

 

 

 

[Cu(phenazino-dap)2]PF6 (C9-PF6) 
15 

In a round-bottom flask, phenazino-dap (73) (173 mg, 0.35 mmol, 2.0 equiv) was suspended 

in chloroform (60 mL) and sonicated at room temperature for 5 min. To the stirred solution, 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (67.2 mg, 0.18 mmol, 1.0 equiv) was 

added, the mixture was sonicated at room temperature for 5 min, and stirred at 60 °C for 

30 min. After evaporation of the solvent, the resulting brown solid was dried in vacuum, 

washed with water (3 x) using a Büchner funnel and dissolved in acetonitrile. The solvent 

was evaporated and the crude product was recrystallized from dichloromethane and diethyl 

ether. Crystallization was completed in a freezer to afford compound C9-PF6 in the form of 

red crystals (159 mg, 133 mol, 74%). IR (neat, cm-1) 3075, 3023, 2974, 2937, 2840, 1607, 

1577, 1513, 1484, 1438, 1364, 1256, 1174, 1022, 824, 753. 1H-NMR (600 MHz, DMSO-d6)  

9.70 (d, J = 8.3 Hz, 4H), 8.56 (dd, J = 6.4, 3.4 Hz, 4H), 8.26 (d, J = 8.3 Hz, 4H), 8.20 (dd, J = 

6.4, 3.4 Hz, 4H), 7.53 (d, J = 8.6 Hz, 8H), 6.24 (d, J = 8.6 Hz, 8H), 3.12 (s, 12H). 13C-NMR 

(151 MHz, DMSO-d6)  159.8, 157.7, 145.6, 142.0, 139.7, 134.2, 132.0, 130.7, 129.4, 128.9, 

126.3, 125.8, 112.8, 54.6. HRMS (ESI): m/z calculated for C64H44CuN8O4 ([Cu(phenazino-

dap)2]
+): 1051.2776, found 1051.2757. mp: > 290 °C, decomposition. 

 

Suitable crystals for X-ray structure analysis of [Cu(phenazino-dap)2]PF6 (C9-PF6) were 

obtained by vapor diffusion of diethyl ether into a dichloromethane solution. 

  

                                                
15 The NMR spectra of this compound were measured by the Central Analytic Department of the 
University of Regensburg. 
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[Cu(dap)Cl2] (C10) 

In a round-bottom flask, CuCl2 (8.8 mg, 0.065 mmol, 1.0 equiv) was suspended in chloroform 

(0.7 mL) and sonicated at room temperature for 3 min. To the stirred solution, 2,9-bis(para-

anisyl)-1,10-phenanthroline (dap, 60) (50.5 mg, 0.128 mmol, 2.0 equiv) and 0.3 mL 

chloroform were added. The mixture was sonicated at room temperature for 3 min, and 

stirred at 55 °C for 60 min. After the solvent had been evaporated, the resulting solid was 

recrystallized from chloroform and diethyl ether. Crystallization was completed in a freezer. 

This procedure afforded compound C10 in the form of brownish green crystals (23.0 mg, 

44 mol, 68%). [Cu(dap)Cl2] (C10) used for test reactions was synthesized in a 56% yield 

using the same procedure starting with a CuCl2:dap ratio of 1:1. IR (neat, cm-1) 3049, 2963, 

2930, 2904, 2837, 1603, 1577, 1487, 1454, 1256, 1182, 1018, 842, 805, 753. Elemental 

microanalysis (%): calculated for C26H20Cl2CuN2O2: C 59.27, H 3.83, N 5.32; found: 

C 59.09, H 3.83, N 5.06. mp: 209 °C. 

 

Suitable crystals for X-ray analysis of [Cu(dap)Cl2] (C10) were obtained by liquid diffusion of 

diethyl ether into a dichloromethane solution. 
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1-(3-bromo-3-phenylpropyl)-4-nitrobenzene (76) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

4-nitrobenzyl bromide (108.0 mg, 0.50 mmol, 1.0 equiv), [Cu(dapacetal)2]BF4 (C8-BF4) 

(5.4 mg, 0.005 mmol, 1 mol%) and anhydrous acetonitrile (1.0 mL). The mixture was 

degassed using two freeze-pump-thaw cycles. Styrene 74 (286 L, 2.50 mmol, 5.0 equiv) 

was added under slight nitrogen overpressure and the reaction mixture was degassed by 

one freeze-pump-thaw cycle. The tube was equipped with a light emitting LED-stick and 

sealed. The reaction mixture was irradiated at room temperature with a green LED (max = 

530 nm) and the reaction progress was monitored by TLC. After 24 h, the mixture was 

concentrated and purified by column chromatography on silica gel (hexanes:EtOAc 9:1, Rf = 

0.39) to afford product 76 as a colorless oil (95.1 mg, 59%). 1H-NMR (300 MHz, CDCl3)  

8.22 – 8.11 (m, 2H), 7.41 – 7.28 (m, 7H), 4.87 (dd, J = 8.7, 6.1 Hz, 1H), 2.95 (ddd, J = 14.4, 

9.1, 5.7 Hz, 1H), 2.82 (ddd, J = 13.9, 8.8, 6.6 Hz, 1H), 2.63 (ddt, J = 14.4, 8.7, 5.7 Hz, 1H), 

2.44 (ddt, J = 14.3, 9.1, 6.4 Hz, 1H). 13C-NMR (75 MHz, CDCl3)  148.4, 146.8, 141.5, 129.5, 

129.0, 128.8, 127.3, 124.0, 54.1, 40.9, 34.3. The NMR data are in accordance with the data 

reported in the literature.[26] 

 

 

 

 

Diethyl 2-(2-bromooctyl)malonate (79) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

diethyl bromomalonate (0.17 mL, 1.0 mmol, 2.0 equiv), [Cu(dap)2]Cl (C1-Cl) (4.4 mg, 

0.005 mmol, 1.0 mol%) and anhydrous acetonitrile (0.5 mL). The mixture was degassed 

using two freeze-pump-thaw cycles. 1-Octene 77 (79 L, 0.50 mmol, 1.0 equiv) was added 

under slight nitrogen overpressure and the reaction mixture was degassed by one freeze-

pump-thaw cycle. The tube was equipped with a light emitting LED-stick and sealed. The 

reaction mixture was irradiated at room temperature with a blue LED (max = 455 nm) and the 

reaction progress was monitored by TLC. After 24 h, the reaction was stopped by switching 

off the light source. The resulting mixture was concentrated and purified by column 

chromatography on silica gel (hexanes:EtOAc 5:1, Rf = 0.55) to afford product 79 as a 

colorless oil (156.4 mg, 89%). IR (neat, cm-1) 2930, 2859, 1733, 1465, 1371, 1210, 1148, 
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1029, 857. 1H-NMR (400 MHz, CDCl3)  4.25 – 4.16 (m, 4H), 4.00 (dddd, J = 10.7, 8.1, 5.5, 

3.1 Hz, 1H), 3.78 (dd, J = 10.2, 4.2 Hz, 1H), 2.46 (ddd, J = 14.9, 10.2, 3.1 Hz, 1H), 2.25 (ddd, 

J = 14.9, 10.7, 4.2 Hz, 1H), 1.88 – 1.81 (m, 2H), 1.58 – 1.50 (m, 1H), 1.46 – 1.39 (m, 1H), 

1.31 – 1.25 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H). 13C-NMR (101 MHz, CDCl3)  169.2, 169.0, 

61.8, 61.7, 55.2, 50.8, 39.6, 38.0, 31.8, 28.7, 27.5, 22.7, 14.2, 14.2. HRMS (ESI): m/z 

calculated for C15H28BrO4 [MH+]: 351.1165, found 351.1170. The data are in accordance with 

the data reported in the literature.[176] 

 

 

 

 

Diethyl 2-(2-bromo-3-((tert-butoxycarbonyl)amino)propyl)malonate (81) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

LiBr (87 mg, 1.0 mmol, 2.0 equiv), N-Boc allylamine(79.0 mg, 0.50 mmol, 1.0 equiv), diethyl 

2-bromomalonate (0.17 mL, 1.0 mmol, 2.0 equiv), [Cu(dap)2]Cl (C1-Cl) (4.4 mg, 0.005 mmol, 

1 mol%) and a mixture of DMF/H2O (1/4 v/v, 1.0 mL). After degassing the mixture using three 

freeze-pump-thaw cycles, the tube was equipped with a light emitting LED-stick and sealed. 

The reaction mixture was irradiated at room temperature with a green LED (max = 530 nm) 

and the reaction progress was monitored by TLC. After 24 h, the mixture was concentrated 

and purified by column chromatography on silica gel (hexanes:EtOAc 8:1, Rf = 0.38 in 

hexanes:EtOAc 4:1) to afford product 81 as a colorless oil (152.0 mg, 77%). 1H-NMR 

(400 MHz, CDCl3) 4.97 (bs, 1H), 4.26 – 4.17 (m, 4H), 4.16 – 4.07 (m, 1H), 3.74 (dd, J = 9.5, 

4.9 Hz, 1H), 3.57 – 3.45 (m, 2H), 2.47 (ddd, J = 14.8, 9.5, 3.7 Hz, 1H), 2.27 (ddd, J = 15.1, 

10.2, 5.1 Hz, 1H), 1.45 (s, 9H), 1.27 (td, J = 7.1, 2.2 Hz, 6H). 13C-NMR (101 MHz, CDCl3)  

169.0, 168.6, 155.7, 80.0, 62.0, 61.9, 53.4, 50.3, 47.2, 34.8, 28.5, 14.2, 14.2. The NMR data 

are in accordance with the data reported in the literature.[25,31] 

 

 

 

 

Diethyl 2-allylmalonate (85) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

diethyl bromomalonate (85 L, 0.50 mmol, 1.0 equiv), allyltrimethylsilane (0.24 mL, 

1.5 mmol, 3.0 equiv), catalyst (0.005 mmol, 1.0 mol%) and anhydrous acetonitrile (1.0 mL). 

After degassing the mixture using three freeze-pump-thaw cycles, he tube was equipped with 
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a light emitting LED-stick and sealed. The reaction mixture was irradiated at room 

temperature with a green LED (max = 530 nm) for 48 h. Using DCM, the mixture was filtrated 

through a short plug of silica and the solvent was removed under reduced pressure. The 

residue was dissolved in CDCl3 and 1,4-dicyanobenzene (16.0 mg, 0.125 mmol,  7.80 (s, 

4 H)) was added as internal standard. The yield was determined by 1H-NMR by means of the 

characteristic product signal at 3.42 ppm (t, J = 7.6 Hz, 1H). MS (APCI) (relative intensities): 

m/z 202.12 (10), 201.11 (100) [MH+], 173.08 (5) [MH+, -C2H4], 109.03 (6). The product 

signals of the crude NMR and the mass analysis correspond to the data reported in the 

literature.[20] 
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1 = 296 ns (A1 = 820) 

2 = 835 ns (A2 = 202) 

av = (A11
2 + A22

2) / (A11 + A22) = 517 ns 

1 = 394 ns (A1 = 581) 

2 = 115 ns (A2 = 2076) 

av = (A11
2 + A22

2) / (A11 + A22) = 252 ns 

3.2 Luminescence Properties of [Cu(dapacetal)2]
+ and [Cu(phenazino-dap)2]

+ 

 
Measured in PMMA at ambient temperature: excitation wavelength 375 nm, detection wavelength 
700 nm. The measured emission kinetics was fitted using a biexponential decay function (solid line): 1 
and 2 are the individual decay times, A1 and A2 are the individual amplitudes and av is the average 
excited state lifetime resulting from the fit. 

Figure 23. Luminescence decay of [Cu(dapacetal)2]BF4 (C8-BF4). 

 

 

 
Measured in PMMA at ambient temperature: excitation wavelength 375 nm, detection wavelength 
723 nm. The measured emission kinetics was fitted using a biexponential decay function (solid line): 1 
and 2 are the individual decay times, A1 and A2 are the individual amplitudes and av is the average 
excited state lifetime resulting from the fit. 

Figure 24. Luminescence decay of [Cu(phenazino-dap)2]PF6 (C9-PF6).  
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Figure 25. Luminescence spectra of [Cu(dapacetal)2]BF4 (C8-BF4, dashed line) and 
dapacetal (65, dotted line) in PMMA at ambient temperature; excitation wavelength 300 nm. 

 

 

 
Figure 26. Luminescence spectra of [Cu(phenazino-dap)2]PF6 (C9-PF6, dashed line) and 
phenazino-dap (73, dotted line) in PMMA at ambient temperature; excitation wavelength 
330 nm. 
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3.3 NMR Spectra 

6,9-bis(4-methoxyphenyl)-2,2-dimethyl-[1,3]dioxolo[4,5-f][1,10]phenanthroline (dapacetal, 

65): 1H-NMR 

 
 
13C-NMR and DEPT-135 
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2,9-bis(4-methoxyphenyl)-1,10-phenanthroline-5,6-dione (66): 1H-NMR 

 

 

13C-NMR and DEPT-135 
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3,6-bis(4-methoxyphenyl)dipyrido[3,2-a:2',3'-c]phenazine (phenazino-dap, 73): 1H-NMR 

 

 

13C-NMR 

 

  



F. Experimental Part 

120 

HSQC 
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[Cu(dapacetal)2]Cl (C8-Cl): 1H-NMR 

 

 

13C-NMR 
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[Cu(phenazino-dap)2]PF6 (C9-PF6): 
1H-NMR 

 

 

13C-NMR 
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HSQC 
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1-(3-bromo-3-phenylpropyl)-4-nitrobenzene (76): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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Diethyl 2-(2-bromooctyl)malonate (79): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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Diethyl 2-(2-bromo-3-((tert-butoxycarbonyl)amino)propyl)malonate (81): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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Diethyl 2-allylmalonate (85): 1H-NMR (400 MHz, CDCl3) – spectrum after filtration, containing 

1,4-dicyanobencene as internal standard 
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3.4 X-ray 

[Cu(dapacetal)2]PF6 (C8-PF6) 

 

 

 

Formula  C58H48CuF6N4O8P  

Dcalc./ g cm-3  1.488  
/mm-1  1.631  
Formula Weight  1137.51  
Color  clear red  
Shape  needle  
Max Size/mm  0.47  
Mid Size/mm  0.07  
Min Size/mm  0.05  
T/K  123.00(14)  
Crystal System  orthorhombic  
Space Group  Pbca  
a/Å  16.84654(14)  
b/Å  20.23300(16)  
c/Å  29.7937(2)  
/°  90  
/°  90  
/°  90  

V/Å3  10155.38(14)  
Z  8  
Z'  1  
min/

°  3.723  
max/

°  62.963  
Measured Refl.  86664  
Independent Refl.  8160  
Reflections Used  7300  
Rint  0.0375  
Parameters  747  
Restraints  104  
Largest Peak  0.399  
Deepest Hole  -0.364  
GooF  1.020  
wR2 (all data)  0.0936  
wR2  0.0900  
R1 (all data)  0.0389  
R1  0.0341  
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[Cu(phenazino-dap)2]PF6 (C9-PF6) 

 

 

 

Formula  C64H44CuF6N8O4P  

Dcalc./ g cm-3  1.511  
/mm-1  1.574  
Formula Weight  1197.58  
Color  red  
Shape  plate  
Max Size/mm  0.14  
Mid Size/mm  0.08  
Min Size/mm  0.04  
T/K  123.01(10)  
Crystal System  triclinic  
Space Group  P-1  
a/Å  7.36674(15)  
b/Å  12.3386(2)  
c/Å  29.5439(3)  
/°  81.6050(12)  
/°  86.8755(12)  
/°  82.4782(16)  

V/Å3  2632.05(8)  
Z  2  
Z'  1  
min/

°  3.649  
max/

°  73.534  
Measured Refl.  27672  
Independent Refl.  10260  
Reflections Used  8564  
Rint  0.0270  
Parameters  924  
Restraints  1215  
Largest Peak  1.878  
Deepest Hole  -0.594  
GooF  1.048  
wR2 (all data)  0.2202  
wR2  0.2073  
R1 (all data)  0.0817  
R1  0.0707  
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[Cu(dap)Cl2] (C10) 

 

 
 

 

Formula  C26H20Cl2CuN2O2  

Dcalc./ g cm-3  1.512  
/mm-1  3.673  
Formula Weight  526.88  
Color  brownish green  
Shape  n/a  

Size/mm3  0.11×0.04×0.02  
T/K  123  
Crystal System  monoclinic  
Space Group  P21/n  
a/Å  8.18335(13)  
b/Å  18.4690(3)  
c/Å  15.3943(2)  
/°  90  
/°  95.7444(15)  
/°  90  

V/Å3  2314.98(6)  
Z  4  
Z'  1  
Wavelength/Å  1.54184  
Radiation type  CuK  
min/

°  3.749  
max/

°  74.034  
Measured Refl.  18159  
Independent Refl.  4588  
Reflections Used  4076  
Rint  0.0473  
Parameters  300  
Restraints  0  
Largest Peak  0.339  
Deepest Hole  -0.623  
GooF  1.044  
wR2 (all data)  0.0861  
wR2  0.0827  
R1 (all data)  0.0370  
R1  0.0317  
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4. Chapter C: Atom Transfer Radical Addition Reactions – Investigation 

of New Reagents 

4.1 Compound Characterization 

 

 

N-(1-phenylpropan-2-yl)acetamide (94) 

An oven-dried vial (6 mL size) equipped with a rubber septum and a magnetic stir bar was 

charged with CuCl (1.0 mg, 10 mol, 1 mol%) and anhydrous acetonitrile (2.0 mL). The 

mixture was degassed using three freeze-pump-thaw cycles. Allylbenzene (132 L, 

1.0 mmol, 1.0 equiv) and triflic acid (176 L, 2.0 mmol, 2.0 equiv) were added under slight 

nitrogen overpressure. The vial was sealed, the reaction mixture was irradiated at room 

temperature with a green LED (max = 530 nm, distance 1 cm) and the reaction progress was 

monitored by TLC. After 19 h, the mixture was filtered through a plug of Celite using 

DCM:MeOH 4:1. The resulting mixture was concentrated in vacuo and triethylamine (10 mL) 

was added. After stirring at rt for 50 min, the mixture was neutralized with diluted HCl and the 

aqueous phase was extracted with dichloromethane (3 x). The combined organic phases 

were washed with 2 M HCl (2 x) and brine (1 x), dried over Na2SO4, filtered and concentrated 

in vacuum. Purification by column chromatography on silica gel using mixtures of 

DCM:MeOH (98:2 and 95:5, Rf = 0.65 in DCM:MeOH 9:1) afforded product 94 as a pink oil 

(91.5 mg, 52%). IR (neat, cm-1) 3285, 3067, 3027,2969, 2928, 2872, 1639, 1548, 1497, 

1453, 1372, 1296, 1145, 745, 698, 609. 1H-NMR (400 MHz, CDCl3)  7.32 – 7.28 (m, 2H), 

7.25 – 7.16 (m, 3H), 5.33 (bs, 1H), 4.33 – 4.19 (m, 1H), 2.84 (dd, J = 13.5, 5.7 Hz, 1H), 2.72 

(dd, J = 13.5, 7.1 Hz, 1H), 1.94 (s, 3H), 1.11 (d, J = 6.7 Hz, 3H). 13C-NMR (101 MHz, CDCl3) 

 169.5, 138.0, 129.6, 128.5, 126.6, 46.2, 42.5, 23.6, 20.1. MS (CI (NH3)) (relative 

intensities): m/z 178.2 (33) [MH+], 195.2 (100) [MNH4
+]. The data are in accordance with the 

data reported in the literature.[136] 
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2,4-dinitrophenyl trifluoromethanesulfonate (103)[140] 

A flame-dried Schlenk flask equipped with a rubber septum was charged with 2,4-

dinitrophenol (5.14 g, 27.9 mmol, 1.0 equiv), anhydrous dichloromethane (85 mL) and 

anhydrous pyridine (3.4 mL, 41.9 mmol, 1.5 equiv). After the mixture was cooled to 0 °C with 

an ice bath, trifluoromethanesulfonic anhydride (5.6 mL, 33.5 mmol, 1.2 equiv) was added 

dropwise to the stirred solution. The resulting mixture was warmed to room temperature and 

stirred for additional 20 h. Using mixtures of hexanes:EtOAc, the reaction mixture was filtered 

through a pad of silica and the solvent was removed under reduced pressure. Purification by 

column chromatography on silica gel using mixtures of hexanes:EtOAc (9:1 to 1:1, Rf = 0.40 

in hexanes:EtOAc 4:1) afforded product 103 as a yellow solid (2.63 mg, 30%). IR (neat, cm-1) 

3116, 2889, 1610, 1543, 1480, 1435, 1342, 1211, 1129, 1066, 924, 865, 834, 738. 1H-NMR 

(300 MHz, CDCl3)  9.04 (d, J = 2.8 Hz, 1H), 8.62 (dd, J = 9.0, 2.8 Hz, 1H), 7.72 (d, J = 

9.0 Hz, 1H). 13C-NMR (75 MHz, CDCl3)  146.7, 145.3, 141.8, 129.8, 125.9, 122.6, 118.6 (q, 

J = 321.1 Hz). 19F-NMR (282 MHz, CDCl3)  73.0. HRMS (ESI): m/z calculated for 

C7H3F3N2O7S [M+]: 315.96076, found: 315.96121. mp: 53 – 54 °C. The data are in 

accordance with the data reported in the literature.[177] 

 

 

 

 

4,4,4-trichloro-1-phenylbutane-2-sulfonyl chloride (112) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

[Cu(dap)2]Cl (C1-Cl) (13.3 mg, 0.015 mmol, 1 mol%), K2HPO4 (523 mg, 3.00 mmol, 

2.0 equiv) and anhydrous dichloromethane (1.5 mL). The mixture was degassed using two 

freeze-pump-thaw cycles. Allylbenzene (200 L, 1.50 mmol, 1.0 equiv) was added and the 

reaction mixture was degassed by one freeze-pump-thaw cycle. Trichloromethanesulfonyl 

chloride (111) (1.31 g, 6.00 mmol, 4.0 equiv) was added under slight nitrogen overpressure, 

the tube was equipped with a light emitting LED-stick and sealed. The reaction mixture was 

irradiated at room temperature with a green LED (max = 530 nm) while being stirred and the 

reaction progress was monitored by TLC. After 24 h, the reaction was stopped by switching 

off the light source. Water (20 mL) was added and the aqueous phase was extracted with 

dichloromethane (3 x 25 mL). The combined organic phases were dried over Na2SO4, filtered 
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and concentrated. Purification by column chromatography on silica gel using mixtures of 

pentane:Et2O (99:1 to 98:2, Rf = 0.57 in pentane:Et2O 95:5) afforded the main product 112 as 

a white solid (332 mg, 66%). IR (neat, cm-1) 3071, 3038, 2974, 2940, 2863, 1603, 1491, 

1454, 1424, 1368, 1348, 1159, 1081, 1029, 932, 798, 753, 697. 1H-NMR (300 MHz, CDCl3)  

7.41 – 7.27 (m, 5H), 4.25 (qd, J = 6.3, 2.1 Hz, 1H), 3.67 (dd, J = 15.8, 2.1 Hz, 1H), 3.61 (d, J 

= 6.1 Hz, 2H), 3.24 (dd, J = 15.8, 6.6 Hz, 1H). 13C-NMR (101 MHz, CDCl3)  134.8, 129.8, 

129.0, 128.0, 96.0, 74.5, 53.2, 37.7. HRMS (ESI): m/z calculated for C10H10Cl4O2S [M+]: 

333.91501, found 333.91523. mp: 46 °C. 

 

 

 

 

(2,4,4,4-tetrachlorobutyl)benzene (113) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

[Ru(bpy)3]Cl2  6H2O (3.7 mg, 0.005 mmol, 1 mol%), K2HPO4 (174 mg, 1.00 mmol, 2.0 equiv) 

and anhydrous dichloromethane (0.5 mL). The mixture was degassed using two freeze-

pump-thaw cycles. Allylbenzene (66 L, 0.50 mmol, 1.0 equiv) was added and the reaction 

mixture was degassed by one freeze-pump-thaw cycle. Trichloromethanesulfonyl chloride 

(111) (436 mg, 2.00 mmol, 4.0 equiv) was added under slight nitrogen overpressure, the tube 

was equipped with a light emitting LED-stick and sealed. The reaction mixture was irradiated 

at room temperature with a blue LED (max = 455 nm) while being stirred and the reaction 

progress was monitored by TLC. After 24 h, the reaction was stopped by switching off the 

light source and reaction mixture was diluted to 5.00 mL with DCM. For determining the yield 

by NMR, a sample of 0.50 mL was taken and 2-nitropropane was added as an internal 

standard. Water (20 mL) was added to the remaining 4.50 mL of the crude reaction mixture 

and the aqueous phase was extracted with dichloromethane (3 x 10 mL). The combined 

organic phases were dried over Na2SO4, filtered and concentrated. Purification by column 

chromatography on silica gel using mixtures of pentane:Et2O (99:1 to 98:2, Rf = 0.75 in 

pentane:Et2O 95:5) afforded the main product 113 as a white solid (104.3 mg, 86%). 1H-NMR 

(300 MHz, CDCl3)  7.38 – 7.27 (m, 4H), 7.26 – 7.23 (m, 1H), 4.48 (ddt, J = 8.1, 5.9, 4.3 Hz, 

1H), 3.31 – 3.22 (m, 3H), 3.14 (dd, J = 14.2, 8.0 Hz, 1H). 13C-NMR (75 MHz, CDCl3)  136.7, 

129.7, 128.8, 127.4, 96.9, 61.2, 57.8, 45.4. MS (EI) (relative intensities): m/z 272.0 (8) [M+], 

91.1 (100) [C7H7
+]. The data are in accordance with the data reported in the literature.[178] 
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(1,3,3,3-tetrachloropropyl)benzene (114) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

[Cu(dap)2]Cl (C1-Cl) (4.4 mg, 0.005 mmol, 1 mol%), K2HPO4 (174 mg, 1.00 mmol, 2.0 equiv) 

and anhydrous dichloromethane (0.5 mL). The mixture was degassed using two freeze-

pump-thaw cycles. Distilled styrene (57 L, 0.50 mmol, 1.0 equiv) was added and the 

reaction mixture was degassed by one freeze-pump-thaw cycle. Trichloromethanesulfonyl 

chloride (111) (436 mg, 2.00 mmol, 4.0 equiv) was added under slight nitrogen overpressure 

and the tube was equipped with a light emitting LED-stick and sealed. The reaction mixture 

was irradiated at room temperature with a green LED (max = 530 nm) while being stirred. 

After 24 h, the reaction was stopped by switching off the light source and the reaction mixture 

was diluted to 5.00 mL with DCM. For NMR-analysis, a sample of 0.50 mL was taken. Water 

(20 mL) was added to the remaining 4.50 mL of the crude reaction mixture and the aqueous 

phase was extracted with dichloromethane (3 x 10 mL). The combined organic phases were 

dried over Na2SO4, filtered and concentrated. Purification by column chromatography on 

silica gel using pentane:Et2O (Rf = 0.70 in pentane:Et2O 95:5) afforded 114 as a colorless oil 

(100.5 mg, 87%). IR (neat, cm-1) 3034, 3068, 2967, 2935, 1603, 1495, 1454, 1424, 1200, 

1063, 1021, 969, 854, 824, 760, 693. 1H-NMR (400 MHz, CDCl3)  7.47 – 7.33 (m, 5H), 5.32 

(t, J = 5.9 Hz, 1H), 3.64 (dd, J = 15.3, 5.4 Hz, 1H), 3.55 (dd, J = 15.3, 6.4 Hz, 1H). 13C-NMR 

(101 MHz, CDCl3)  140.5, 129.0, 127.5, 96.3, 62.8, 58.4. The data are in accordance with 

the data reported in the literature.[179] 

 

 

 

 

N-(4-bromophenyl)-4,4,4-trichloro-1-phenylbutane-2-sulfonamide (116) 

4,4,4-trichloro-1-phenylbutane-2-sulfonyl chloride (112) (84.0 mg, 0.25 mmol, 1.0 equiv) and 

triethylamine (49 L, 0.35 mmol, 1.4 equiv) were dissolved in dichloromethane (2.5 mL) in a 

round-bottom flask and cooled to 0 °C. After adding 4-bromoaniline (60.2 mg, 0.35 mmol, 

1.4 equiv), the reaction mixture was stirred at room temperature for 19 h. The reaction 
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mixture was quenched with HCl (2.5 mL, 2 M) and extracted with dichloromethane (3 x 

5 mL). The combined organic phases were washed with saturated NaHCO3 solution (1 x 

10 mL) followed by brine (1 x 10 mL), dried over Na2SO4, filtered and concentrated in 

vacuum. Purification by column chromatography on silica gel using mixtures of 

hexanes:EtOAc (5:1 to 1:1, Rf = 0.53 in hexanes:EtOAc 5:1) afforded the desired product as 

a light yellow solid (63.0 mg, 54%). IR (neat, cm-1) 3288, 3079, 3038, 2986, 2926, 2856, 

1588, 1487, 1461, 1387, 1323, 1219, 1152, 928, 828, 798, 745, 701. 1H-NMR (400 MHz, 

CDCl3)  7.43 – 7.29 (m, 5H), 7.26 – 7.24 (m, 2H), 6.44 – 6.33 (m, 2H), 5.29 (s, 1H), 3.75 – 

3.68 (m, 2H), 3.63 (dd, J = 14.7, 3.0 Hz, 1H), 3.34 (dd, J = 14.7, 10.7 Hz, 1H), 3.00 (dd, J = 

15.7, 7.1 Hz, 1H). 13C-NMR (101 MHz, CDCl3)  137.5, 135.1, 132.3, 129.7, 129.3, 128.0, 

121.1, 118.1, 97.8, 61.2, 53.2, 38.3. HRMS (ESI): m/z calculated for C16H16BrCl3NO2S [MH+]: 

469.9145, found 469.9137. mp: 153 - 155 °C. 

 

Suitable crystals for X-ray structure analysis of N-(4-bromophenyl)-4,4,4-trichloro-1-

phenylbutane-2-sulfonamide (116) were obtained by liquid diffusion of diethyl ether into a 

dichloromethane solution. 

 

 

 

 

3-(2,2,2-trichloroethyl)-3,4-dihydrobenzo[e][1,2]oxathiine 2,2-dioxide (118) 

An oven-dried pressure tube (6 mL size) equipped with a magnetic stir bar was charged with 

allylbenzene (66 L, 0.50 mmol, 1.0 equiv), [Cu(dap)2]Cl (C1-Cl) (4.4 mg, 0.005 mmol, 

1 mol%), K2HPO4 (174 mg, 1.00 mmol, 2.0 equiv) and anhydrous dichloromethane (0.5 mL). 

The mixture was degassed using two freeze-pump-thaw cycles. Trichloromethanesulfonyl 

chloride (111) (436 mg, 2.00 mmol, 4.0 equiv) was added under slight nitrogen overpressure 

and the reaction mixture was degassed by one freeze-pump-thaw cycle. The tube was 

equipped with a light emitting LED-stick and sealed. The reaction mixture was irradiated at 

room temperature with a green LED (max = 530 nm) while being stirred and the reaction 

progress was monitored by TLC. After 3 d, the reaction was stopped by switching off the light 

source. Water (5 mL) was added and the aqueous phase was extracted with 

dichloromethane (3 x 10 mL). The combined organic phases were dried over Na2SO4, filtered 

and concentrated. Purification by column chromatography on silica gel using mixtures of 

pentane:DCM (Rf = 0.72 in pentane:DCM 1:1) afforded product 118 as a white solid 

(50.0 mg, 32%). IR (neat, cm-1) 3067, 2974, 2934, 1584, 1487, 1453, 1431, 1361 (vs), 1238, 

1182, 1155, 1100, 962, 890, 813, 753. 1H-NMR (300 MHz, CDCl3)  7.37 – 7.29 (m, 1H), 
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7.25 – 7.18 (m, 2H), 7.12 – 7.01 (m, 1H), 3.99 (ddt, J = 7.5, 5.3, 2.1 Hz, 1H), 3.88 (dd, J = 

16.9, 5.3 Hz, 1H), 3.69 – 3.55 (m, 2H), 3.01 (dd, J = 15.3, 7.6 Hz, 1H). 13C-NMR (101 MHz, 

CDCl3)  151.1, 129.9, 129.1, 125.9, 119.5, 118.9, 96.3, 53.8, 52.0, 33.7. HRMS (EI): m/z 

calculated for C10H9Cl3O3S [M+]: 313.93325, found 313.93384. mp: 111 °C. 
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4.2 NMR Spectra 

N-(1-phenylpropan-2-yl)acetamide (94): 1H-NMR 

 

 
13C-NMR 
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2,4-dinitrophenyl trifluoromethanesulfonate (103): 1H-NMR 

 

 
19F-NMR 
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13C-NMR and DEPT-135 
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4,4,4-trichloro-1-phenylbutane-2-sulfonyl chloride (112): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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(2,4,4,4-tetrachlorobutyl)benzene (113): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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(1,3,3,3-tetrachloropropyl)benzene (114): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(4-bromophenyl)-4,4,4-trichloro-1-phenylbutane-2-sulfonamide (116): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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3-(2,2,2-trichloroethyl)-3,4-dihydrobenzo[e][1,2]oxathiine 2,2-dioxide (118): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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HSQC 
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4.3 Cyclic Voltammograms 

The following Cyclic voltammograms were recorded in MeCN using tetrabutylammonium 

tetrafluoroborate as supporting electrolyte and ferrocene as internal standard at a scan rate 

of 50 mV*s-1. 

 

Trimethyl(trifluoromethyl)silane (TMSCF3, 88)  

 
 

 

Phenyl trifluoromethanesulfonate (100) 

 

 

Trichloromethanesulfonyl chloride (111) 
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4.4 X-ray 

N-(4-bromophenyl)-4,4,4-trichloro-1-phenylbutane-2-sulfonamide (116) 

 

 

 

 

Formula  C16H15BrCl3NO2S  

Dcalc./ g cm-3  1.703  
/mm-1  8.202  
Formula Weight  471.61  
Color  clear colorless  
Shape  prism  

Size/mm3  0.15×0.13×0.11  
T/K  123.0(2)  
Crystal System  monoclinic  
Space Group  P21/n  
a/Å  11.7170(3)  
b/Å  9.7941(2)  
c/Å  16.5349(4)  
/°  90  
/°  104.195(3)  
/°  90  

V/Å3  1839.57(8)  
Z  4  
Z'  1  
Wavelength/Å  1.54184  
Radiation type  CuK  
min/

°  4.182  
max/

°  74.229  
Measured Refl.  31414  
Independent Refl.  3679  
Reflections Used  3351  
Rint  0.1419  
Parameters  260  
Restraints  34  
Largest Peak  0.572  
Deepest Hole  -0.723  
GooF  1.031  
wR2 (all data)  0.1007  
wR2  0.0973  
R1 (all data)  0.0392  
R1  0.0359  
  



F. Experimental Part 

148 

5. Chapter D: Elucidating the Reaction Pathways of Visible-Light-

Mediated Chloramination of Alkenes 

5.1 Synthesis of N-Chlorosulfonamides 

 

 

Synthesis of N-chloro-N,4-dimethylbenzenesulfonamide (120a) 16 

To an ice-cooled mixture of N,4-dimethylbenzenesulfonamide (2.78 g, 15.0 mmol, 1.0 equiv) 

in dichloromethane (150 mL) was added 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione (TCCA, 

3.84 g, 16.5 mmol, 1.1 equiv). After stirring for 4 h, the reaction was complete (judged by 

TLC) and the mixture was diluted with 150 mL of water. The layers were separated and the 

aqueous phase was extracted with dichloromethane (3 x 100 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuum. Purification by column 

chromatography on silica gel using hexanes:ethyl acetate 5:1 (Rf = 0.42) afforded the desired 

product quantitatively as a white solid. IR (neat, cm-1) 3071, 2986, 2933, 1595, 1494, 1454, 

1429, 1403, 1353, 1308, 1297, 1101, 1088, 1029, 802, 779, 663. 1H-NMR (300 MHz, CDCl3) 

 7.83 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 3.10 (s, 3H), 2.49 (s, 3H). 13C-NMR 

(101 MHz, CDCl3) 145.7, 130.0, 129.8, 128.7, 45.5, 21.9. HRMS (ESI): m/z calculated for 

C8H11ClNO2S [MH+]: 220.0194, found 220.0196. mp: 77 °C. 

 

 

 

 

Synthesis of N-chloro-N-methyl-4-nitrobenzenesulfonamide (128b) 16 

To an ice-cooled mixture of N-methyl-4-nitrobenzenesulfonamide (1.51 g, 7.0 mmol, 

1.0 equiv) in dichloromethane (70 mL) was added 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione 

(TCCA, 1.79 g, 7.7 mmol, 1.1 equiv). After stirring for 4 h, the reaction was complete (judged 

by TLC) and the mixture was diluted with 70 mL of water. The layers were separated and the 

aqueous phase was extracted with dichloromethane (3 x 40 mL). The combined organic 

layers were dried over Na2SO4, filtered and concentrated in vacuum. Purification by column 

chromatography on silica gel using hexanes:EtOAc 2:1 (Rf = 0.55) afforded the desired 

                                                
16 Conditions according to: S. Yu et al., Org. Lett. 2015.[147] 
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product as a white solid (1.70 g, 97%). IR (neat, cm-1) 3108, 2937, 2870, 1733 (broad), 1607, 

1528 (vs), 1453, 1405, 1349, 1311, 1182, 1085, 1036, 857, 798, 738, 682. 1H-NMR 

(300 MHz, CDCl3) 8.53 – 8.42 (m, 2H), 8.21 – 8.09 (m, 2H), 3.17 (s, 3H). 13C-NMR 

(75 MHz, CDCl3) 151.3, 137.5, 131.2, 124.4, 45.4. HRMS (ESI): m/z calculated for 

C7H8ClN2O4S [MH+]: 250.9888, found 250.9869. mp: 156 - 158 °C. 
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5.2 General Procedure for Chloramination of Olefins 

An oven dried pressure tube (25 mL size) equipped with a magnetic stir bar was charged 

with N-chloro-N,4-dimethylbenzenesulfonamide (120a) (98.9 mg, 0.45 mmol, 1.5 equiv), 

[Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) and anhydrous 1,2-dichloroethane (6.00 mL). 

The mixture was degassed using three freeze-pump-thaw cycles. Olefin (0.30 mmol, 

1.0 equiv) was added under a slight nitrogen overpressure and the tube was equipped with a 

light emitting LED-stick and sealed. The reaction mixture was irradiated at room temperature 

with a blue LED (max = 455 nm) while being stirred and the reaction progress was monitored 

by TLC. After 6 h, the reaction was stopped by switching off the light source and a sample of 

0.20 mL of the crude reaction mixture was taken for measurements. For determining the 

yield by NMR, another sample of 1.00 mL was taken and 2-nitropropane was added as an 

internal standard. The remaining 4.80 mL of the crude reaction mixture were concentrated 

and purified by column chromatography on silica gel by using mixtures of hexanes and ethyl 

acetate (EtOAc) or diethyl ether (Et2O) to afford the desired product. 
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5.3 Compound Characterization 

 

 

N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125a) 

According to general procedure, 125a was prepared from 4-methoxystyrene (124a) (40 L, 

0.30 mmol, 1.0 equiv) using no catalyst. The crude product was purified by column 

chromatography on silica gel (hexanes:Et2O 1:1, Rf = 0.16) to afford 125a as a colorless oil 

(18.9 mg, 18% yield). After column chromatography, the product was still impurified with 

small amounts of N,4-dimethylbenzenesulfonamide (TsNMeH). IR (neat, cm-1) 3507 (broad), 

3295 (broad) 3076, 2922, 2839, 1610, 1513, 1457, 1327, 1245, 1156, 1088, 1033, 947, 813, 

719. 1H-NMR (400 MHz, CDCl3) 7.66 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.7 Hz, 4H), 6.88 (d, 

J = 8.7 Hz, 2H), 4.87 (dd, J = 8.9, 3.4 Hz, 1H), 3.80 (s, 3H), 3.27 (dd, J = 14.1, 8.9 Hz, 1H), 

2.98 (dd, J = 14.1, 3.5 Hz, 1H), 2.79 (s, 3H), 2.41 (s, 3H). 1H-NMR (400 MHz, DMSO-d6)  

7.61 (d, J = 8.2 Hz, 2H), 7.42 – 7.39 (m, 2H), 7.24 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 

2H), 5.44 (d, J = 4.5 Hz, 1H), 4.67 (dt, J = 7.8, 4.8 Hz, 1H), 3.74 (s, 3H), 3.01 (qd, J = 13.5, 

6.4 Hz, 2H), 2.66 (s, 3H), 2.39 – 2.38 (m, 3H). 13C NMR (101 MHz, CDCl3)  159.6, 143.8, 

134.4, 133.3, 129.9, 127.6, 127.4, 114.1, 71.9, 58.4, 55.4, 36.9, 21.7. HRMS (APCI): m/z 

calculated for C17H22NO4S [MH+]: 336.1264, found 336.1262. 

 

This compound had already been reported as chloro substituted (N-(2-chloro-2-(4-

methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide): The NMR-data of the product, 

which was isolated here, is in full accordance with the data reported in the literature (c.f. 

ref[156]). According to the measured data of 125a (IR, HRMS, NMR-Data in DMSO-d6) there is 

evidence for the hydroxy substituted compound. The IR spectrum shows a typical broad O-H 

stretching vibration in the region of 3500 cm-1.[180] Concerning the NMR-data, the predicted 
13C-carbon shift of carbon 6 is in the region of 71 ppm 17 for the hydroxy-substituted 

compound, which fits well with the experimental value of 71.9 ppm. In contrast to that, for the 

Cl-substituted compound, this carbon shift is predicted in the region of 59 ppm 17 which is in 

accordance with the measured values of the chloro-substituted compounds synthesized 

herein. Moreover, measuring the 1H-NMR in DMSO-d6 disclosed an additional doublet at 

5.44 ppm which could be assigned to the proton of the hydroxy group. 

  

                                                
17 Data received via SciFinder: Predicted NMR data calculated using Advanced Chemistry 
Development, Inc. (ACD/Labs) Software V11.01 (© 1994-2017 ACD/Labs). 
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N-(2-chloro-2-(2-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125b) 

According to general procedure, (125b) was prepared from 2-methoxystyrene 124b (40 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:Et2O 1:1, Rf = 0.45) to afford 125b as a light yellow oil 

(47.3 mg, 56% yield). IR (neat, cm-1) 3070, 2922, 2840, 1599, 1491, 1461, 1342, 1249, 1159, 

1088, 1025, 929, 818, 752, 730. 1H-NMR (400 MHz, CDCl3)  7.67 – 7.60 (m, 2H), 7.48 (dd, 

J = 7.6, 1.7 Hz, 1H), 7.35 – 7.27 (m, 3H), 6.99 (td, J = 7.5, 1.1 Hz, 1H), 6.88 (dd, J = 8.3, 

1.0 Hz, 1H), 5.56 (dd, J = 7.7, 6.5 Hz, 1H), 3.85 (s, 3H), 3.62 – 3.51 (m, 2H), 2.76 (s, 3H), 

2.42 (s, 3H). 13C-NMR (101 MHz, CDCl3)  156.7, 143.5, 135.1, 130.1, 129.8, 128.8, 127.5, 

126.8, 121.1, 111.0, 56.5, 55.8, 55.2, 36.3, 21.6. HRMS (ESI): m/z calculated for 

C17H21ClNO3S [MH+]: 354.0925, found 354.0935. 

 

 

 

 

N-(2-chloro-2-(p-tolyl)ethyl)-N,4-dimethylbenzenesulfonamide (125c) 

According to general procedure, 125c was prepared from 4-methylstyrene (124c) (40 L, 

0.30 mmol, 1.0 equiv) without using any catalyst. The crude product (4.8 mL of the original 

reaction mixture) was purified by column chromatography on silica gel (hexanes:EtOAc 15:1, 

Rf = 0.21) to afford 125c as a white solid (68.6 mg, 85% yield). IR (neat, cm-1) 3034, 2922, 

2865, 1595, 1513, 1460, 1342, 1156, 1088, 984, 924, 857, 820, 734. 1H-NMR (300 MHz, 

CDCl3)  7.64 (d, J = 8.3 Hz, 2H), 7.30 (dd, J = 8.1, 1.9 Hz, 4H), 7.17 (d, J = 7.7 Hz, 2H), 

5.08 (t, J = 7.3 Hz, 1H), 3.57 (dd, J = 14.5, 7.4 Hz, 1H), 3.39 (dd, J = 14.4, 7.3 Hz, 1H), 2.63 

(s, 3H), 2.42 (s, 3H), 2.36 (s, 3H). 13C-NMR (75 MHz, CDCl3) 143.7, 138.9, 135.9, 134.9, 

129.9, 129.6, 127.5, 127.5, 61.4, 58.1, 37.1, 21.7, 21.4. HRMS (ESI): m/z calculated for 

C17H21ClNO2S [MH+]: 338.0976, found 338.0985. mp: 91 - 94 °C. The data are in accordance 

with the data reported in the literature.[156] 
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N-(2-chloro-2-(o-tolyl)ethyl)-N,4-dimethylbenzenesulfonamide (125d) 

According to general procedure, 125d was prepared from 2-methylstyrene (124d) (39 L, 

0.30 mmol, 1.0 equiv) using [Ir(ppy)2(dtbbpy)]PF6 (2.7 mg, 0.003 mmol, 1.0 mol%) as a 

catalyst. The crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 20:1, Rf = 0.16) to afford 125d as a colorless 

oil (43.1 mg, 53% yield). IR (neat, cm-1) 3067, 2922, 2868, 1599, 1490, 1461, 1342, 1156, 

1088, 984, 924, 816, 753, 723. 1H-NMR (300 MHz, CDCl3)  7.65 (d, J = 8.3 Hz, 2H), 7.52 – 

7.41 (m, 1H), 7.31 (d, J = 7.9 Hz, 2H), 7.25 – 7.13 (m, 3H), 5.47 (t, J = 7.2 Hz, 1H), 3.59 – 

3.38 (m, 2H), 2.71 (s, 3H), 2.46 (s, 3H), 2.42 (s, 3H). 13C-NMR (101 MHz, CDCl3)  143.8, 

137.2, 136.2, 134.8, 130.9, 129.9, 128.7, 127.5, 127.2, 126.7, 58.1, 57.7, 37.5, 21.7, 19.5. 

HRMS (ESI): m/z calculated for C17H21ClNO2S [MH+]: 338.0976, found 338.0986. 

 

 

 

 

N-(2-chloro-2-phenylethyl)-N,4-dimethylbenzenesulfonamide (125e) 

According to general procedure, 125e was prepared from distilled styrene (124e) (34 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.14) to afford 125e as a light yellow 

oil (73.0 mg, 94% yield). IR (neat, cm-1) 3063, 3034, 2926, 1599, 1495, 1454, 1338, 1156, 

1088, 988, 932, 813, 738, 697. 1H NMR (300 MHz, CDCl3)  7.69 – 7.61 (m, 2H), 7.45 – 7.33 

(m, 5H), 7.33 – 7.28 (m, 2H), 5.11 (t, J = 7.4 Hz, 1H), 3.59 (dd, J = 14.5, 7.4 Hz, 1H), 3.40 

(dd, J = 14.5, 7.3 Hz, 1H), 2.62 (s, 3H), 2.43 (s, 3H). 13C NMR (101 MHz, CDCl3)  143.8, 

138.9, 134.9, 129.9, 129.0, 128.9, 127.7, 127.5, 61.5, 58.2, 37.1, 21.7. HRMS (ESI): m/z 

calculated for C16H19ClNO2S [MH+]: 324.0820, found 324.0823. The data are in accordance 

with the data reported in the literature.[156] 
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N-(1-chloro-2,3-dihydro-1H-inden-2-yl)-N,4-dimethylbenzenesulfonamide (125f) 

According to general procedure, 125f was prepared from 1H-indene (124f) (35 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.13) to afford 125f as a light yellow 

oil (53.7 mg, 67% yield). IR (neat, cm-1) 3030, 2955, 2922, 2857, 1599, 1492, 1461, 1338, 

1156, 1088, 965, 816, 746, 701. 1H-NMR (300 MHz, CDCl3, E-isomer)  7.79 (d, J = 8.3 Hz, 

2H), 7.35 (d, J = 8.2 Hz, 3H), 7.32 – 7.24 (m, 1H), 7.29 – 7.22 (m, 1H), 7.22 – 7.13 (m, 1H), 

5.08 (d, J = 5.6 Hz, 1H), 4.95 (dt, J = 8.2, 5.9 Hz, 1H), 3.20 (dd, J = 16.5, 8.2 Hz, 1H), 2.83 

(dd, J = 16.4, 6.4 Hz, 1H), 2.68 (s, 3H), 2.46 (s, 3H). 13C-NMR (75 MHz, CDCl3, E-isomer) 

143.7, 140.2, 139.6, 136.3, 129.9, 129.5, 127.9, 127.6, 125.1, 124.7, 67.0, 62.8, 33.4, 29.9, 

21.8. HRMS (ESI): m/z calculated for C17H19ClNO2S [MH+]: 336.0822, found 336.0820. The 

data are in accordance with the data reported in the literature. [156] 

 

 

 

 

N-(2-chloro-2-(naphthalen-2-yl)ethyl)-N,4-dimethylbenzenesulfonamide (125g) 

According to general procedure, 125g was prepared from 2-vinylnaphthalene (124g) 

(46.3 mg, 0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a 

catalyst. The crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.09) to afford 125g as a colorless 

oil (62.4 mg, 70% yield). IR (neat, cm-1) 3056, 2922, 2851, 1599, 1495, 1443, 1342, 1156, 

1088, 988, 932, 820, 779, 723. 1H-NMR (300 MHz, CDCl3)  7.92 – 7.78 (m, 4H), 7.63 (d, J = 

8.3 Hz, 2H), 7.59 – 7.46 (m, 3H), 7.31 – 7.27 (m, 1H), 7.26 – 7.22 (m, 1H), 5.28 (t, J = 

7.4 Hz, 1H), 3.69 (dd, J = 14.5, 7.2 Hz, 1H), 3.52 (dd, J = 14.5, 7.5 Hz, 1H), 2.63 (s, 3H), 

2.41 (s, 3H). 13C-NMR (75 MHz, CDCl3)  143.8, 136.0, 134.9, 133.5, 133.1, 129.9, 129.0, 
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128.3, 127.9, 127.4, 127.3, 126.9, 126.8, 124.6, 61.7, 58.0, 37.2, 21.7. HRMS (ESI): m/z 

calculated for C20H21ClNO2S [MH+]: 374.0983, found 374.0976. 

 

 

 

 

N-(1-chloro-1-phenylprop-1-en-2-yl)-N,4-dimethylbenzenesulfonamide (125h) 

According to general procedure, 125h was prepared from phenylacetylene (124h) (33 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.10) to afford 125h as a colorless 

oil (43.0 mg, 56% yield of a mixture of non-separable diastereomers: E:Z = 7:3). 1H-NMR 

(300 MHz, CDCl3, E-isomer)  7.71 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.30 – 7.24 

(m, 2H), 7.26 – 7.18 (m, 3H), 6.67 (s, 1H), 2.58 (s, 3H), 2.48 (s, 3H). 1H-NMR (300 MHz, 

CDCl3, Z-isomer)  7.74 (d, J = 8.1 Hz, 2H), 7.56 – 7.46 (m, 2H), 7.36 – 7.31 (m, 5H), 6.90 (s, 

1H), 3.23 (s, 3H), 2.45 (s, 3H). 13C-NMR (101 MHz, CDCl3, E-isomer)  144.4, 135.5, 134.1, 

130.1, 129.4, 128.9, 128.3, 127.6, 127.4, 127.2, 126.1, 36.7, 21.8. 13C-NMR (101 MHz, 

CDCl3, Z-isomer)  144.2, 136.5, 135.2, 130.0, 129.4, 129.2, 128.6, 127.4, 126.8, 126.7, 

125.1, 36.5, 21.8. HRMS (ESI, E-isomer): m/z calculated for C16H17ClNO2S [MH+]: 322.0663, 

found 322.0668. The data of the E-isomer are in accordance with the data reported in the 

literature.[158] 

 

 

 

 

N-(2-chloro-2-(4-fluorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125i) 18 

According to general procedure, 125i was prepared from 4-fluorostyrene (124i) (36 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

                                                
18 The NMR spectra of this compound were measured by the Central Analytic Department of the 
University of Regensburg. 
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chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.18) to afford 125i as a colorless oil 

(65.3 mg, 80% yield). IR (neat, cm-1) 3049, 2926, 2827, 1603, 1513, 1457, 1338, 1226, 1159, 

1088, 988, 932, 839, 734. 1H-NMR (400 MHz, CDCl3)  7.69 – 7.60 (m, 2H), 7.43 – 7.37 (m, 

2H), 7.34 – 7.28 (m, 2H), 7.12 – 7.01 (m, 2H), 5.10 (t, J = 7.4 Hz, 1H), 3.55 (dd, J = 14.5, 

7.1 Hz, 1H), 3.39 (dd, J = 14.5, 7.6 Hz, 1H), 2.63 (s, 3H), 2.43 (s, 3H). 13C-NMR (101 MHz, 

CDCl3)  163.0 (d, JC-F = 248.0 Hz), 143.9, 134.8, 134.7 (d, JC-F = 3.3 Hz), 130.0, 129.5 (d, 

JC-F = 8.3 Hz), 127.5, 115.9 (d, JC-F = 21.9 Hz), 60.6, 58.2, 37.2, 21.7. 19F-NMR (282 MHz, 

CDCl3)  -113.0. HRMS (ESI): m/z calculated for C16H18ClFNO2S [MH+]: 342.0725, found 

342.0739. The data are in accordance with the data reported in the literature. [156] 

 

 

 

 

N-(2-chloro-2-(3-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125j) 

According to general procedure, 125j was prepared from 3-methoxystyrene (124j) (42 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:Et2O 1:1, Rf = 0.38) to afford 125j as a light yellow oil 

(81.9 mg, 96% yield). IR (neat, cm-1) 3067, 2930, 2840, 1599, 1491, 1457, 1342, 1260, 1156, 

1088, 1040, 936, 768, 731, 697. 1H-NMR (400 MHz, CDCl3)  7.69 – 7.60 (m, 2H), 7.34 – 

7.27 (m, 3H), 7.03 – 6.95 (m, 1H), 6.95 (t, J = 2.1 Hz, 1H), 6.87 (ddd, J = 8.3, 2.6, 0.9 Hz, 

1H), 5.07 (t, J = 7.3 Hz, 1H), 3.82 (s, 3H), 3.57 (dd, J = 14.5, 7.4 Hz, 1H), 3.41 (dd, J = 14.5, 

7.2 Hz, 1H), 2.65 (s, 3H), 2.42 (s, 3H). 13C-NMR (101 MHz, CDCl3)  159.9, 143.8, 140.3, 

134.9, 130.0, 129.9, 127.4, 119.9, 114.6, 113.1, 61.4, 58.1, 55.5, 37.1, 21.6. HRMS (ESI): 

m/z calculated for C17H21ClNO3S [MH+]: 354.0925, found 354.0930. 

 

 

 

 

N-(2-chloro-2-(4-chlorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125k) 

According to general procedure, 125k was prepared from 4-chlorostyrene (124k) (36 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 
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crude product (5.0 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.11) to afford 125k as a colorless 

oil (78.0 mg, 88% yield). IR (neat, cm-1) 3034, 2968, 2922, 1596, 1491, 1457, 1342, 1156, 

1088, 988, 928, 813, 749, 686. 1H NMR (300 MHz, CDCl3)  7.63 (d, J = 8.3 Hz, 2H), 7.35 (s, 

4H), 7.36 – 7.26 (m, 2H), 5.08 (t, J = 7.4 Hz, 1H), 3.54 (dd, J = 14.5, 7.1 Hz, 1H), 3.37 (dd, J 

= 14.4, 7.7 Hz, 1H), 2.63 (s, 3H), 2.43 (s, 3H). 13C NMR (75 MHz, CDCl3)  143.9, 137.3, 

134.9, 134.6, 130.0, 129.1, 129.1, 127.4, 60.5, 58.1, 37.2, 21.7. HRMS (ESI): m/z calculated 

for C16H18Cl2NO2S [MH+]: 358.0430, found 358.0436. The data are in accordance with the 

data reported in the literature.[156] 

 

 

 

 

N-(2-(4-bromophenyl)-2-chloroethyl)-N,4-dimethylbenzenesulfonamide (125l) 

According to general procedure, 125l was prepared from 4-bromostyrene (124l) (39 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.10) to afford 125l as a colorless oil 

(78.3 mg, 81% yield). IR (neat, cm-1) 3053, 2952, 2922, 2848, 1596, 1491, 1462 , 1445, 

1405, 1346, 1156, 1088, 988, 924, 824, 746, 667. 1H-NMR (300 MHz, CDCl3)  7.63 (d, J = 

8.3 Hz, 2H), 7.56 – 7.45 (m, 2H), 7.36 – 7.28 (m, 4H), 5.07 (t, J = 7.4 Hz, 1H), 3.53 (dd, J = 

14.5, 7.1 Hz, 1H), 3.37 (dd, J = 14.4, 7.7 Hz, 1H), 2.63 (s, 3H), 2.43 (s, 3H). 13C-NMR 

(75 MHz, CDCl3)  143.9, 137.8, 134.6, 132.1, 130.0, 129.4, 127.4, 123.0, 60.5, 58.0, 37.2, 

21.7. HRMS (ESI): m/z calculated for C16H18BrClNO2S [MH+]: 401.9925, found 401.9929. 

 

 

 

 

N-(2-chloro-2-(3-chlorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125m) 

According to general procedure, 125m was prepared from 3-chlorostyrene (124m) (38 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 
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chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.13) to afford 125m as a colorless 

oil (74.0 mg, 86% yield). IR (neat, cm-1) 3064, 2922, 2818, 1595, 1576, 1476, 1431, 1338, 

1156, 1088, 992, 932, 816, 753, 727, 690. 1H-NMR (400 MHz, CDCl3)  7.64 (d, J = 8.3 Hz, 

2H), 7.41 – 7.36 (m, 1H), 7.36 – 7.27 (m, 5H), 5.07 (t, J = 7.3 Hz, 1H), 3.54 (dd, J = 14.6, 

7.3 Hz, 1H), 3.40 (dd, J = 14.5, 7.3 Hz, 1H), 2.66 (s, 3H), 2.43 (s, 3H). 13C-NMR (101 MHz, 

CDCl3)  143.9, 140.8, 134.8, 134.8, 130.2, 130.0, 129.2, 127.8, 127.5, 125.9, 60.5, 58.1, 

37.3, 21.7. HRMS (ESI): m/z calculated for C16H18Cl2NO2S [MH+]: 358.0430, found 358.0438. 

 

 

 

 

N-(2-chloro-2-(4-cyanophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125n) 

According to general procedure, 125n was prepared from 4-cyanostyrene (124n) (39 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (mixtures of hexanes:EtOAc 8:1 to 3:1, R f = 0.29 in 

hexanes:EtOAc 3:1) to afford 125n as a colorless oil (80.0 mg, 96% yield). IR (neat, cm-1) 

3065, 3027, 2926, 2823, 2229, 1599, 1495, 1457, 1338, 1156, 1088, 988, 932, 816, 760, 

720. 1H-NMR (400 MHz, CDCl3)  7.68 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.56 (d, J 

= 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.15 (t, J = 7.4 Hz, 1H), 3.52 (dd, J = 14.5, 7.0 Hz, 

1H), 3.41 (dd, J = 14.5, 7.8 Hz, 1H), 2.63 (s, 3H), 2.43 (s, 3H). 13C-NMR (101 MHz, CDCl3)  
144.1, 143.8, 134.4, 132.7, 130.0, 128.6, 127.4, 118.4, 112.9, 60.1, 58.1, 37.4, 21.7. HRMS 

(ESI): m/z calculated for C17H18ClN2O2S [MH+]: 349.0772, found 349.0773. 

 

 

 

 

N-(2-chloro-2-(4-nitrophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125o) 

According to general procedure, 125o was prepared from 4-nitrostyrene (124o) (45 mg, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (5.0 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:Et2O 1:1, Rf = 0.30) to afford 125o as a yellow oil 
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(90.0 mg, 98% yield). IR (neat, cm-1) 3112, 3083, 2926, 2866, 1599, 1521 (vs), 1457, 1342, 

1156, 1092, 932, 857, 813, 742. 1H NMR (400 MHz, CDCl3)  8.24 (d, J = 8.7 Hz, 2H), 7.69 – 

7.56 (m, 4H), 7.32 (d, J = 8.0 Hz, 2H), 5.21 (t, J = 7.4 Hz, 1H), 3.54 (dd, J = 14.5, 6.9 Hz, 

1H), 3.44 (dd, J = 14.5, 7.8 Hz, 1H), 2.65 (s, 3H), 2.43 (s, 3H). 13C-NMR (101 MHz, CDCl3)  

148.2, 145.7, 144.1, 134.4, 130.1, 128.8, 127.5, 124.1, 59.7, 58.1, 37.4, 21.7. HRMS (ESI): 

m/z calculated for C16H18ClN2O4S [MH+]: 369.0670; found: 369.0674. 

 

 

 

 

N-(2-chloro-2-(perfluorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125p) 19 

According to general procedure, 125p was prepared from distilled 2,3,4,5,6-

pentafluorostyrene (124p) (41 L, 0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 

0.003 mmol, 1.0 mol%) as a catalyst. The crude product (4.8 mL of the original reaction 

mixture) was purified by column chromatography on silica gel (mixtures of hexanes:EtOAc 

5:1 to 3:1, Rf = 0.57 in hexanes:EtOAc 3:1) to afford 125p as a colorless oil (58.5 mg, 60% 

yield). IR (neat, cm-1) 3032, 2929, 2847, 1655, 1599, 1523, 1506 (vs), 1457, 1349, 1162, 

1133, 1021, 980, 949, 816, 734. 1H-NMR (300 MHz, CDCl3)  7.64 (d, J = 8.3 Hz, 2H), 7.36 – 

7.30 (m, 2H), 5.48 – 5.35 (m, 1H), 3.93 (dd, J = 14.4, 9.1 Hz, 1H), 3.40 (dd, J = 14.4, 6.3 Hz, 

1H), 2.82 (s, 3H), 2.44 (s, 3H). 13C-NMR (151 MHz, CDCl3)  145.5 (d, JC-F = 252.7 Hz), 

144.2, 141.9 (d, JC-F = 256.8 Hz), 137.8 (d, JC-F = 252.9 Hz), 134.2, 130.0, 127.5, 112.5 (td, 

JC-F = 14.5, 3.8 Hz), 55.0, 48.1, 37.0, 21.6. 19F-NMR (282 MHz, CDCl3)  -140.8 (d, J = 

20.9 Hz), -152.4 (tt, J = 21.1, 2.8 Hz), -161.3 (td, J = 21.9, 8.1 Hz). HRMS (ESI): m/z 

calculated for C16H14ClF5NO2S [MH+]: 414.0348, found 414.0351. 

  

                                                
19 The NMR spectra of this compound were measured by the Central Analytic Department of the University of 
Regensburg. 
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N-(2-chloro-3-phenylpropyl)-N,4-dimethylbenzenesulfonamide (127a) 

According to general procedure, 127a was prepared from allylbenzene (126a) (40 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.08) to afford 127a as a colorless 

oil (8.3 mg, 10% yield). IR (neat, cm-1) 3064, 3030, 2922, 2855, 1599, 1495, 1454, 1342, 

1159, 1088, 943, 816, 738, 701. 1H-NMR (400 MHz, CDCl3)  7.62 (d, J = 8.2 Hz, 2H), 7.38 – 

7.25 (m, 5H), 7.26 – 7.23 (m, 2H), 4.30 (dtd, J = 9.0, 6.6, 4.8 Hz, 1H), 3.46 (dd, J = 14.4, 

6.4 Hz, 1H), 3.28 (dd, J = 14.4, 4.8 Hz, 1H), 3.09 (dd, J = 14.3, 7.0 Hz, 1H), 2.94 (dd, J = 

14.4, 9.0 Hz, 1H), 2.85 (s, 3H), 2.43 (s, 3H). 13C-NMR (101 MHz, CDCl3)  143.8, 137.3, 

134.4, 129.9, 129.5, 128.6, 127.6, 127.1, 61.1, 56.8, 42.1, 37.3, 21.7. HRMS (ESI): m/z 

calculated for C17H21ClNO2S [MH+]: 338.0976, found 338.0981. 

 

 

 

 

N-(2-chloro-2-methylcyclohexyl)-N,4-dimethylbenzenesulfonamide (127b) 

According to general procedure, 127b was prepared from 1-methylcyclohex-1-ene (126b) 

(107 L, 0.90 mmol, 1.0 equiv) in DCE (18.0 mL) using [Ir(ppy)2(dtbbpy)]PF6 (8.2 mg, 

0.009 mmol, 1.0 mol%) as a catalyst and N-chloro-N,4-dimethylbenzenesulfonamide (120a) 

(296.6 mg, 1.35 mmol, 1.5 equiv). The crude product (17.0 mL of the original reaction 

mixture) was purified by column chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 

0.19) to afford 127b as a white solid (49.0 mg, 18% yield of Z-isomer). IR (neat, cm-1, Z-

isomer) 3068, 2997, 2930, 2863, 1595, 1495, 1446, 1338, 1163, 973, 928, 865, 775. 1H-NMR 

(300 MHz, CDCl3, Z-isomer)  7.66 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.9 Hz, 1H), 3.79 (dd, J = 

12.2, 3.6 Hz, 1H), 2.86 (s, 3H), 2.43 (s, 3H), 2.08 – 1.96 (m, 1H), 1.78 – 1.65 (m, 7H), 1.59 – 

1.49 (m, 1H), 1.29 – 1.23 (m, 1H), 1.01 – 0.89 (m, 1H). 13C-NMR (101 MHz, CDCl3, Z-

isomer)  143.4, 136.1, 129.8, 127.3, 76.3, 63.6, 43.1, 31.4, 31.1, 26.0, 25.6, 21.7, 21.7. 

HRMS (ESI, Z-isomer): m/z calculated for C15H23ClNO2S [MH+]: 316.1133, found 316.1138. 

mp: 76 - 81 °C.  
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Suitable crystals for X-ray analysis of 127b were obtained by liquid diffusion of Et2O into a 

hexanes solution. 

 

 

 

 

N-(2-chlorooctyl)-N,4-dimethylbenzenesulfonamide (127c) 

According to general procedure, 127c was prepared from distilled 1-octene (126c) (47 L, 

0.30 mmol, 1.0 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.32) to afford 127c as a colorless 

oil (28.3 mg, 35% yield). IR (neat, cm-1) 2957, 2930, 2859, 1599, 1494, 1457, 1341, 1159, 

1088, 973, 932, 816, 738. 1H-NMR (400 MHz, CDCl3)  7.68 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 

7.9 Hz, 2H), 4.11 – 4.00 (m, 1H), 3.37 (dd, J = 14.2, 6.7 Hz, 1H), 3.08 (dd, J = 14.2, 6.8 Hz, 

1H), 2.83 (s, 3H), 2.43 (s, 3H), 1.96 – 1.86 (m, 1H), 1.69 – 1.53 (m, 2H), 1.46 – 1.26 (m, 7H), 

0.92 – 0.87 (m, 3H). 13C-NMR (101 MHz, CDCl3) 143.8, 134.6, 129.9, 127.6, 61.0, 57.0, 

37.1, 35.5, 31.8, 28.9, 26.2, 22.7, 21.7, 14.2. LRMS (ESI) (relative intensities): m/z 332.15 

(100) [MH+], 296.17 (36) [MH+, -HCl]. The data are in accordance with the data reported in 

the literature.[156] 

 

 

 

 

6-(tert-butyl) 3-methyl (1S,3S,4R,5R,6S)-3-chloro-4-((N,4-dimethylphenyl)sulfonamido)-

2-oxabicyclo [3.1.0]hexane-3,6-dicarboxylate (127d) 

According to general procedure, 127d was prepared from 6-(tert-butyl) 3-methyl (1S,5S,6S)-

2-oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylate (126d) (72.1 mg, 0.30 mmol, 1.0 equiv) using 

[Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The crude product (4.8 mL of the 

original reaction mixture) was purified by column chromatography on silica gel (hexanes:Et2O 
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1:1, Rf = 0.32) to afford 127d as a white solid (43.7 mg, 40% yield). The assignment of the 

stereochemistry is preliminary. IR (neat, cm-1) 3071, 2978, 2933, 1759, 1715, 1596, 1495, 

1456, 1439, 1401, 1370, 1353, 1320, 1297, 1167, 1115, 1096, 943, 872, 840, 723. 1H-NMR 

(400 MHz, CDCl3)  7.70 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.32 (s, 1H), 4.60 (dd, 

J = 5.2, 1.1 Hz, 1H), 3.88 (s, 3H), 3.00 (dd, J = 4.0, 1.1 Hz, 1H), 2.63 (s, 3H), 2.43 (s, 3H), 

1.66 (dd, J = 5.2, 4.0 Hz, 1H), 1.43 (s, 9H). 13C-NMR (101 MHz, CDCl3)  168.7, 165.0, 

144.3, 135.0, 130.1, 127.5, 104.1, 82.3, 69.9, 68.0, 54.1, 30.3, 28.2, 24.6, 23.5, 21.7. HRMS 

(ESI): m/z calculated for C20H27ClNO7S [MH+]: 460.1191, found 460.1196. mp: 122 - 124 °C. 

 

 

 

 

N-(2-chloro-2-phenylethyl)-N-methyl-4-nitrobenzenesulfonamide (129b) 

According to general procedure, 129b was prepared from distilled styrene (124e) (34 L, 

0.30 mmol, 1.0 equiv) and N-chloro-N-methyl-4-nitrobenzenesulfonamide (128b) (112.8 mg, 

0.45 mmol, 1.5 equiv) using [Cu(dap)2]Cl (2.7 mg, 0.003 mmol, 1.0 mol%) as a catalyst. The 

crude product (4.8 mL of the original reaction mixture) was purified by column 

chromatography on silica gel (hexanes:EtOAc 15:1, Rf = 0.09) to afford 129b as a light yellow 

oil (79.2 mg, 93% yield). IR (neat, cm-1) 3105, 3034, 2930, 2868, 1606, 1528 (vs), 1454, 

1349, 1311, 1163, 1088, 932, 857, 758, 742, 697. 1H-NMR (400 MHz, CDCl3)  8.34 (d, J = 

8.7 Hz, 2H), 7.93 (d, J = 8.7 Hz, 2H), 7.48 – 7.32 (m, 5H), 5.10 (t, J = 7.3 Hz, 1H), 3.66 (dd, J 

= 14.6, 7.6 Hz, 1H), 3.51 (dd, J = 14.5, 7.1 Hz, 1H), 2.73 (s, 3H). 13C-NMR (101 MHz, CDCl3) 

 150.3, 144.0, 138.3, 129.3, 129.1, 128.6, 127.6, 124.6, 61.0, 58.1, 36.9. HRMS (ESI): m/z 

calculated for C15H16ClN2O4S [MH+]: 355.0514, found 355.0517. The data are in accordance 

with the data reported in the literature.[156] 
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N-(2-(1,3-dioxoisoindolin-2-yl)-1-phenylethyl)acetamide (138) 

An oven dried pressure tube (25 mL size) equipped with a magnetic stir bar was charged 

with N-(trifluoromethyl)acyloxyphthalimide (130) (233.2 mg, 0.90 mmol, 1.5 equiv), fac-

Ir(ppy)3 (3.9 mg, 0.006 mmol, 1.0 mol%) and anhydrous acetonitrile (12.0 mL). The mixture 

was degassed using three freeze-pump-thaw cycles. Distilled styrene (124e) (69 L, 

0.60 mmol, 1.0 equiv) was added under a slight nitrogen overpressure and the tube was 

equipped with a light emitting LED-stick and sealed. The reaction mixture was irradiated at 

room temperature with a blue LED (max = 455 nm) while being stirred and the reaction 

progress was monitored by TLC. After 18 h, the reaction was stopped by switching off the 

light source and a sample of 0.20 mL of the crude reaction mixture was taken for 

measurements. For determining the yield by NMR, another sample of 1.00 mL was taken 

and 2-nitropropane was added as an internal standard. The remaining 10.80 mL of the crude 

reaction mixture were concentrated and the remaining brownish solid was diluted with 25 mL 

of saturated NaHCO3 solution. The aqueous phase was extracted with EtOAc (3 x 25 mL). 

The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuum. 

Purification by column chromatography on silica gel (mixtures of hexanes:EtOAc 2:1 to pure 

EtOAc, Rf = 0.37 in hexanes:EtOAc 1:3) afforded 138 as a white solid (65.0 mg, 39%). IR 

(neat, cm-1) 3310, 3060, 2937, 1774, 1707, 1648, 1539, 1428, 1394, 1372, 1297, 1118, 1040, 

957, 723, 701. 1H-NMR (400 MHz, CDCl3)  7.85 (dd, J = 5.5, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 

3.0 Hz, 2H), 7.41 – 7.31 (m, 4H), 7.33 – 7.27 (m, 1H), 6.51 (d, J = 7.7 Hz, 1H), 5.34 (ddd, J = 

9.6, 8.0, 4.2 Hz, 1H), 4.05 – 3.93 (m, 2H), 1.94 (s, 3H). 13C-NMR (75 MHz, CDCl3) 170.0, 

168.8, 138.9, 134.4, 131.8, 129.0, 128.1, 126.5, 123.7, 53.6, 43.0, 23.5. HRMS (ESI): m/z 

calculated for C18H17N2O3 [MH+]: 309.1234, found 309.1236. mp: 202 - 207 °C. 
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5.4 Absorption Spectra 

 

 
All compounds were measured in concentrations used for the standard reaction conditions. Product 
125c was measured in a lower concentration of 12.5 mmol/L corresponding to a theoretical yield of 
25%. 

Figure 27. UV-Vis absorption spectra of N-chlorosulfonamide 120a (TsNMeCl, black line), 4-
methylstyrene (124c) (blue triangles), degassed reaction mixture of compound 125c before 
irradiation with blue LED (455 nm) (red dots) and product 125c (black squares) in DCE. 

 

 

 
Mixture of TsNMeCl (120a) (75 mM) and 4-methylstyrene (124c) (50 mM) in DCE. Conditions: mixture 
exposed to air, no light irradiation (green squares); degassed mixture before light irradiation (red dots); 
degassed mixture after irradiation with blue LED (455 nm) for 1 h (blue triangles); degassed mixture 
after irradiation with blue LED for 2 h (black triangles). 

Figure 28. UV-Vis absorption spectra of the reaction mixture of compound 125c under 
different conditions.  
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5.5 Quantum Yield Determination 

The quantum yield  of the visible light driven chloramination of various substituted styrenes 

with N-chloro-N,4-dimethylbenzenesulfonamide (120a) was determined using a method 

developed by E. Riedle et al.[181] For irradiation, a blue LED (950 mA operating current, max = 

455 nm, OSRAM LD-CQ7P-1U3U) was used. The radiant power was measured with a 

commercial power meter (PowerMax USB - PS19Q Power Sensor from Coherent) using 

computer-aided read out with PowerMax software. 

 

An oven-dried pressure tube was charged with N-chloro-N,4-dimethylbenzenesulfonamide 

(120a) (66.0 mg, 0.30 mmol, 1.5 equiv) and [Cu(dap)2]Cl (1.8 mg, 2.0 mol, 1.0 mol%) under 

nitrogen atmosphere. Anhydrous 1,2-dichloroethane (4.00 mL) was added and the reaction 

mixture was degassed by three pump-freeze-thaw cycles. Styrene derivative 124 

(0.20 mmol, 1.0 equiv) was added under a slight nitrogen overpressure. An oven dried 

fluorescence cuvette equipped with a magnetic stir bar and a septum was flushed with 

nitrogen. Immediately prior to the quantum yield measurement, 2.00 mL of the reaction 

solution (corresponding to 0.10 mmol of styrene derivative) was transferred to the measuring 

cuvette under a nitrogen atmosphere. In order to minimize ambient light, the measurement 

was accomplished in a dark room. The radiant power of light transmitted by the cuvette with 

a blank solution (Pref) was measured. The cuvette with the blank solution was exchanged by 

the cuvette containing the reaction mixture and the transmitted radiant power (Psample) was 

determined. The transmitted radiant power was monitored during the whole irradiation and 

remained constant. The sample was irradiated for the indicated time while being stirred (cf. 

Table 29) and the yield was determined by 1H-NMR analysis using 2-nitropropane as internal 

standard. It should be noted that the light power at the sample was significantly lower than in 

the standard reaction setup with the irradiation via LED-stick. 

 

The quantum yield  was calculated as follows: 

 Φ = N୮୰୭ୢN୮h,ୟୠୱ = n୮୰୭ୢ ∗ NA ∗ h ∗ cPୟୠୱ ∗ ∆t ∗ λ = n୮୰୭ୢ ∗ NA ∗ h ∗ c(P୰ୣ୤ − Pୱୟ୫୮୪ୣ) ∗ f ∗ ∆t ∗ λ 
 

Here,  is the quantum yield, Nprod is the number of molecules created, Nph, abs is the number 

of photons absorbed, NA is Avogadro´s constant in mol-1, nprod is the molar amount of product 

molecules created in mol, Pabs is the radiant power absorbed in Watt, t is the irradiation time 

in seconds, h is Planck´s constant in Js, c is the speed of light in ms-1,  is the wavelength of 

the irradiation source in meters, Pref is the radiant power transmitted by a blank cuvette in 
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Watt, Psample is the radiant power transmitted by the cuvette with the reaction mixture in Watt 

and f is a correction factor. The correction factor f depends on the reflection coefficient R of 

the air-glass-interface. Neglecting second order effects, f can be calculated from: 

 

f = ͳ + R ∗ Pୱୟ୫୮୪ୣP୰ୣ୤ͳ − R  

 

For a fused silica cuvette and  = 443 nm, R = 0.0357. 

 Pୟୠୱ = (P୰ୣ୤ − Pୱୟ୫୮୪ୣ) ∗ f 
 

Example using the data of entry 1, Table 29: 

 

f = ͳ + R ∗ Pୱୟ୫୮୪ୣP୰ୣ୤ͳ − R = ͳ + Ͳ.Ͳ͵ͷ͹ ∗ ͻͻ.ͻmWͳͲͲ.ͷmWͳ− Ͳ.Ͳ͵ͷ͹ = ͳ.Ͳ͹͵ͺ 

 Φ = n୮୰୭ୢ ∗ NA ∗ h ∗ c(P୰ୣ୤ − Pୱୟ୫୮୪ୣ) ∗ f ∗ ∆t ∗ λ = 

 = Ͳ.Ͳ͵Ͳ ∗ ͳͲ−ଷmol ∗ ͸.Ͳʹʹ ∗ ͳͲଶଷmol−ଵ ∗ ͸.͸ʹ͸ ∗ ͳͲ−ଷସJs ∗ ʹ.ͻͻͺ ∗ ͳͲ଼ms−ଵሺͳͲͲ.ͷ − ͻͻ.ͻሻ ∗ ͳͲ−ଷJs−ଵ ∗ ͳ.Ͳ͹͵ͺ ∗ ʹͳ͸ͲͲs ∗ Ͷͷͷ ∗ ͳͲ−ଽm = Ͳ.ͷ͸͹ 
 ≅ ͷ͹% 
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Table 29. Results of quantum yield measurements. 

 

Entry Product Catalyst t / h 
Pref 

/ mW 
Psample 
/ mW 

Pabs 

/ mW 
NMR 
Yield 

1 

 
125c 

no 6 100.5 99.9 0.64 30% 57% 

2 [Ir] 1 97.6 7.6 93.6 39% 3% 

3 [Cu] 1 96.6 6.2 94.0 41% 3% 

         
         
4 

 
125k 

no 6 102.0 99.8 2.36 4% 2% 

5 [Ir] 1 99.7 6.4 97.0 27% 2% 

6 [Cu] 1 99.6 6.1 97.2 34% 3% 

         
         
7 

 
125o 

[Ir] 1 99.7 6.1 97.3 9% 0.7% 

8 [Cu] 1 99.4 7.6 95.5 18% 1.4% 

Reaction conditions: N-chloro-N,4-dimethylbenzenesulfonamide (120a) (1.5 equiv, 0.15 mmol), 
catalyst (1.0 mol%), anhydrous DCE (2.00 mL), degassed solution, alkene (0.10 mmol, 1.0 equiv), rt, 
irradiation with blue LED (455 nm), stirred reaction mixture. The NMR yields were determined by 1H-
NMR using 2-nitropropane as internal standard. Used catalysts: [Cu(dap)2]Cl ([Cu]), 
[Ir(ppy)2(dtbbpy)]PF6 ([Ir]) or no catalyst (no). 
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5.6 NMR and IR Spectra 

N-chloro-N,4-dimethylbenzenesulfonamide (120a): 1H-NMR 

 

 
13C-NMR 
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N-chloro-N-methyl-4-nitrobenzenesulfonamide (128b): 1H-NMR 

 

 
13C-NMR 
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N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125a): 1H-NMR 

(CDCl3) 

 

 
13C-NMR (CDCl3) 
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1H-NMR (DMSO-d6) 

 

 

COSY (DMSO-d6) 
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IR Spectrum 
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N-(2-chloro-2-(2-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125b): 1H-NMR 

 

 
13C-NMR and DEPT-135 

 

  



F. Experimental Part 

174 

N-(2-chloro-2-(p-tolyl)ethyl)-N,4-dimethylbenzenesulfonamide (125c): 1H-NMR 

 

 
13C-NMR 
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N-(2-chloro-2-(o-tolyl)ethyl)-N,4-dimethylbenzenesulfonamide (125d): 1H-NMR 

 

 
13C-NMR and DEPT-135 

 

  



F. Experimental Part 

176 

N-(2-chloro-2-phenylethyl)-N,4-dimethylbenzenesulfonamide (125e): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(1-chloro-2,3-dihydro-1H-inden-2-yl)-N,4-dimethylbenzenesulfonamide (125f): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(naphthalen-2-yl)ethyl)-N,4-dimethylbenzenesulfonamide (125g): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(1-chloro-1-phenylprop-1-en-2-yl)-N,4-dimethylbenzenesulfonamide (125h): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(4-fluorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125i): 1H-NMR 

 

 
19F-NMR 
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13C-NMR and DEPT-135 
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N-(2-chloro-2-(3-methoxyphenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125j): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(4-chlorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125k): 1H-NMR 

 
 

13C-NMR and DEPT-135 
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N-(2-(4-bromophenyl)-2-chloroethyl)-N,4-dimethylbenzenesulfonamide (125l): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(3-chlorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125m): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(4-cyanophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125n): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-(4-nitrophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125o): 1H-NMR 

 
 

13C-NMR and DEPT-135 
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N-(2-chloro-2-(perfluorophenyl)ethyl)-N,4-dimethylbenzenesulfonamide (125p): 1H-NMR 

 

 
19F-NMR 
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13C-NMR and DEPT-135 
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N-(2-chloro-3-phenylpropyl)-N,4-dimethylbenzenesulfonamide (127a): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chloro-2-methylcyclohexyl)-N,4-dimethylbenzenesulfonamide (127b): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-chlorooctyl)-N,4-dimethylbenzenesulfonamide (127c): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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6-(tert-butyl) 3-methyl (1S,3S,4R,5R,6S)-3-chloro-4-((N,4-dimethylphenyl)sulfonamido)-2-

oxabicyclo[3.1.0] hexane-3,6-dicarboxylate (127d): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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NOESY 
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N-(2-chloro-2-phenylethyl)-N-methyl-4-nitrobenzenesulfonamide (129b): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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N-(2-(1,3-dioxoisoindolin-2-yl)-1-phenylethyl)acetamide (138): 1H-NMR 

 

 
13C-NMR and DEPT-135 
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5.7 X-ray 

N-(2-chloro-2-methylcyclohexyl)-N,4-dimethylbenzenesulfonamide (127b) 

 

 

 

 

Formula  C15H22ClNO2S  

Dcalc./ g cm-3 1.341 
/mm-1

  3.414  
Formula Weight  315.84  
Color  clear colorless  
Shape  plate  

Size/mm3  0.45×0.16×0.07  
T/K  123.02(10)  
Crystal System  orthorhombic  
Space Group  Pbca  
a/Å  16.7808(3)  
b/Å  9.47060(16)  
c/Å  19.6889(3)  
/°  90  
/°  90  
/°  90  

V/Å3 3129.04(9)  
Z  8  
Z'  1  
Wavelength/Å  1.54184  
Radiation type  CuKa  
min/

°
  4.491  

max/
°
  76.251  

Measured Refl.  20844  
Independent Refl.  3275  
Reflections Used  3033  
Rint  0.0306  
Parameters  184  
Restraints  0  
Largest Peak  0.388  
Deepest Hole  -0.394  
GooF  1.043  
wR2 (all data)  0.0867  
wR2  0.0844  
R1 (all data)  0.0338  
R1  0.0312  
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