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CHAPTER 1

Introduction

Solid state physics has been studied for centuries with focus on electrical, mag-
netic or mechanical properties of different materials. During the past decades,
the spotlight increasingly moved towards 2D electron systems, exhibiting unique
phenomena compared to bulk crystals. Two-dimensional electron gases (2DEGs)
are commonly realized in transistor-like semiconductor structures such as MOS-
FETs', HEMTs? or quantum wells, and mobilities can be even higher than
107 cm?/Vs in AlGaAs/GaAs heterostructures [1]. After all, the 2DEG is not
an intrinsic semiconductor property and needs to be formed with gating and
modulation-doping techniques in MOSFET and HEMT structures, respectively.

This changed with the first successful isolation of graphene, a monolayer of
graphite, by Novoselov and Geim [2]. Graphene is a 2D sheet of carbon atoms,
arranged in a honeycomb lattice structure, and features remarkable mechanical
and electronic properties. Since its discovery in 2004, graphene has attracted a
huge amount of attention and the research field as well as the funding has ex-
panded extensively. Many people expect graphene to be a promising material
for a variety of possible applications. One characteristic that can be emphasized
is graphene’s high intrinsic carrier mobility up to room temperature that would
be ideal for transistor devices and could potentially replace the state-of-the-art
Si-technology. However, the lack of a band gap in single-layer graphene is a
major drawback and hinders the utilization of graphene-based structures in this
field. Nevertheless, there might be various applications where the outstanding
properties of graphene can be employed: Among others, graphene can be used
as an integral part of composite materials [3] (similar to carbon-fiber-reinforced

I metal-oxide-semiconductor field-effect transistor
Zhigh-electron-mobility transistor



1. Introduction

polymer), as an electrode for flexible and transparent displays [4], or as material
for supercapacitors [5].

This work focuses on hBN-graphene van der Waals heterostructures and their
investigation via transport experiments. For this purpose, we introduced a dry-
transfer stacking technique for 2D crystals in our lab and fabricated a huge num-
ber of high-quality hBN-graphene hybrid structures. The stacks were analyzed
in magnetotransport experiments and/or superposed with an additional 2D su-
perlattice potential, subsequently. In this way, we could probe and characterize
different commensurability effects stemming from the induced superlattice po-
tential and report their influence on transport properties in graphene.

The first sections of this thesis address the fundamental and inherent prop-
erties of graphene and the advantages of graphene-hBN heterostructures over
prevalently-used graphene on SiO, substrates. Moreover, the moiré superlattice,
resulting from an alignment of graphene and hBN crystals, and the corresponding
recursive Hofstadter spectrum will be discussed. Subsequently, commensurabil-
ity effects in lateral superlattices - well-known and intensively studied in con-
ventional 2DEGs - will be introduced for weak and strong potential modulation
in graphene. Then, the various fabrication steps for the samples, including the
fundamental stacking procedure and the patterning of local graphene gates, and
the experimental setup will be discussed.

Our first goal was to implement the transfer procedure and regularly achieve
high-mobility hBN-graphene heterostructures. In chapter 6, we report some of
our experiments on graphene on hBN and encapsulated graphene that confirm
progress and enhanced sample quality. We routinely observe ballistic transport in
our devices with mobilities exceeding 100 000 cm?/Vs and were able to investigate
interaction-driven quantum Hall effects, such as quantum Hall ferromagnetism
[6, 7] and the fractional quantum Hall effect [8, 9], in several samples.

The encapsulation of graphene between hBN significantly increases the bulk
carrier mobility of graphene, and in chapter 7, we show that any further top-
down patterning step does not necessarily degrade the intrinsic quality of the
graphene sheet. The high sample quality can be preserved in graphene-based
antidot lattices and we successfully probed pronounced commensurability features
in antidot arrays with lattice constants down to 50 nm.

Antidot lattices show a nice realization of classical transport in mesoscopic
systems and commensurability features arise from a correspondence of the pat-
terned array with cyclotron orbits [10, 11]. In chapter 8, we study the interplay
between a moiré and an imposed antidot superlattice potential and discuss their
influence on magnetotransport measurements. Commensurability features can be
characterized at various densities and be assigned to the antidot and the moiré
potential. We observe a suppression of the antidot features by approaching the
satellite Dirac points of the moiré potential, accompanied with a distinct super-



position of the classical features with Shubnikov-de Haas oscillations.

In chapter 9, we discuss a new method for imposing lateral superlattice po-
tentials, employing a local few-layer graphene patterned bottom gate [12]. The
patterned graphene gate can be easily implemented in our stacking procedure,
and by tuning the local bottom gate and the global back gate, we can consis-
tently move between the unipolar and bipolar transport regime. In this way, we
are able to report Weiss oscillations [13] in the weakly modulated unipolar regime
and antidot peaks [14] for strong modulation in a bipolar gate configuration.






CHAPTER 2

Fundamental properties of graphene

Graphene is a 2D monolayer of graphite, arranged in a hexagonal honeycomb lat-
tice of carbon atoms. It has outstanding material properties such as high stiffness
and thermal stability. Additionally, graphene has unique electronic properties
such as a linear dispersion relation of the band structure in the vicinity of the
Dirac points, followed by a quasi-relativistic description of the charge carriers.
Moreover, there are the electric field effect to tune the charge carrier density and
many more interesting features of graphene. Graphene has a high intrinsic mo-
bility due to its potentially nearly defect free lattice structure. But graphene on
Si04 is influenced by various scattering mechanisms and the mobility is limited
to several thousand cm?/Vs. As a consequence, one can change the substrate to
a more suitable one (e.g. hexagonal boron nitride) or even remove the substrate
(suspended graphene), and the mobilities can be enhanced to a few hundred thou-
sand cm?/Vs. After that, the quantum Hall effect and pn-junctions in graphene
will be discussed.

2.1 Allotropes of carbon

There are at least two allotropes of carbon that are quite common and universally
known. On the one hand graphite, whose name stems from its ability to leave
marks on paper and other objects (ancient greek: graphein). Graphite is still a
principal component of modern pencils. On the other hand there is diamond,
which has various applications because of its exceptional properties, e.g. as cut-
ting and polishing tools. Although both materials, graphite and diamond, are
consisting of carbon atoms, they have very different characteristics. In diamond
all p-orbitals are bound, forming a sp3-hybridized crystal without any free elec-
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Figure 2.1: Graphene is a 2D basic building block for other sp?-bonded carbon ma-
terials of different dimensions. It can be wrapped up into 0D buckyballs, rolled into
1D nanotubes and stacked into 3D graphite. Fig. from [15].

trons that could be used for charge transfer. So the electronic conductivity in
diamond is very weak. In graphite, each carbon atom forms covalent bonds to its
three close neighbors, and the additional p,-orbital is perpendicular to the sp?-
hybrid orbitals and forms a m-bond. The sp?-hybridization is the reason for the
significantly higher conductivity of graphite [16]. Graphite is build up by many
2D carbon sheets, stacked on top of each other, which are bound with relatively
weak van der Waals forces to each other.

The first theoretical studies of the bandstructure of 2D carbon layers, named
graphene, were done back in the 1940s by Wallace [17], but it took more than
30 more years to isolate graphene for the first time. FEizenberg and Blakely
managed to get a monolayer of carbon by phase condensation on the surface
of a carbon-doped nickel single crystal. However, the graphene sheet was an
integral layer of a 3D structure. Despite this first breakthrough, the existence
of freestanding, infinitely sized 2D crystals was considered not realistic due to
thermal fluctuations at finite temperatures. This has been the common belief
for several years, because well-established theories showed that the divergent
distribution of thermal fluctuations in low-dimensional crystals can lead to a
displacement of the atoms in the lattice in the order of the magnitude of the
atomic distances [18]. Many different experiments showed exactly this behavior
and so the only way to get graphene was to isolate it as an integral part of 3D
structures with matching lattice constants. Nevertheless, freestanding 2D carbon
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has been a theoretical system for graphene and its allotropes for many years.

This changed when K. S. Novoselov and A. K. Geim isolated graphene by
mechanical exfoliation in 2004 [19]. Since graphite is build up by weakly coupled
graphene layers, monolayer graphene is peeled off by chance with “Scotch tape”
and gently rubbed on a Si/SiOs substrate. From now on, there was the possibility
to explore graphene structures on different substrates, as suspended membranes
or in suspension. For their significant discovery of graphene, Novoselov and
Geim were awarded the Nobel prize in 2010 and started the fast-growing field of
graphene research.

As already mentioned, graphene has been a basic concept for the theoret-
ical description of different allotropes of carbon. Besides 3D graphite and 2D
graphene, there are 0D buckyballs and 1D carbon nanotubes. Buckyballs are
spherical carbon molecules that can be characterized by the number of carbon
atoms. Carbon nanotubes are one-dimensional, tube-shaped carbon structures
with diameters of a few nanometers. One interesting feature of these carbon
structures is that all of them have the same hexagonal lattice structure and can
be built with graphene. For this, graphene can be wrapped up into buckyballs,
rolled into nanotubes and stacked into graphite (see Fig. 2.1). So graphene is
the fundamental structure for all the mentioned carbon allotropes.

2.2 Lattice and band structure of graphene

Monolayer graphene consists of a planar, hexagonal lattice, where each carbon
atom has three nearest neighbors and four valence electrons. This lattice structure
is caused by the sp?-hybridized orbitals in the x —y-plane that bind with an angle
of 120° with their neighbors, the so called o-bond. Only three of the four valence
electrons of carbon form a covalent bond. The p,-orbitals are sticking out of
plane, forming the binding w-band and the antibinding 7*-band. The lateral
overlap of the p.-orbitals leads to a delocalized cloud of electrons, both over
and under the carbon lattice plane. Since the delocalized electrons are extended
laterally across the z — y-plane, graphene really is a two-dimensional electron gas
(2DEG).

The hexagonally arranged carbon atoms, forming the graphene lattice, are
shown in Fig. 2.2. The unit cell (dashed lines in Fig. 2.2a) consists of two
carbon atoms A and B that give rise to two sublattices with their lattice vectors

a; =a(1,0), 32&(— — (2.1)
where a = 2.46 A is the lattice constant. The corresponding reciprocal lattice is
hexagonal, too, featuring the high symmetry points I') M, K and K’ Here, the
Dirac points K and K’ in the corners of the graphene Brillouin zone (BZ) are of
particular interest (see Fig. 2.2b). Wallace calculated the energy bands and the
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(a) (b) M K

.....

Figure 2.2: (a) Lattice structure of graphene with lattice unit vectors ai and a3.
The unit cell (dashed lines) consists of 2 atoms. (b) The reciprocal lattice with high
symmetry points I', K, K’ and M. (c) Each A Atom (red) is surrounded by 3 B neighbors
(blue). The vectors {1, t and t3 connect the A atom with the B atoms of the other
sublattice. Fig. adapted from [20].

corresponding bandstructure of graphene back in 1947 [17]. The bandstructure
and the essential low-energy dispersion can be calculated employing a “tight-
binding approach” [16], where the ecigenfunctions of graphene W;(k,7) (i=1,...,n)
can, similar to other crystalline solids, be written as a linear combination of Bloch
functions @ (k,7) and corresponding coefficients Cyy (k) [20]:

Uik, 7) = Y Coar (k)i (K, 7) (2.2)

Accordingly, eigenenergies of this system can be obtained with the following
ansatz:

W 1w g G
(Wi | @) S 85 (k)C Cliy

33'=1

Ez(lg) = (2.3)

- -

with H;y (k) = (U, | H|¥;) and S;;(k) = (V; | U;). The equation above
needs to be minimized with respect to the coefficient C7;/, resulting in the secular
equation [20]:

det[H — ES] =0 (2.4)
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Energy (eV)

G K M G

Figure 2.3: Band structure of graphene. The left figure shows the band structure of
single layer graphene. Red lines are o-bands and dotted blue lines are m-bands. The
right one is a 3D plot of the electronic energy dispersion in graphene with its cone-like
structure. Fig. from [23, 24].

Consequently, the determinant needs to vanish. As a simple first order approx-
imation, only the next neighbor interaction will be taken into account. So just
Haa, Hgp and Hyp need to be evaluated, where A and B are the two atoms of
the graphene unit cell. After solving the equations above, the energy dispersion
relation of graphene reads as [16]:

- K k k
E(ky, ky) = ﬁ:”m\l 1+ 4cos <\/§2 a) cos <;a> + 4 cos? (;a), (2.5)

where k, and k, are components of the corresponding wavevectors, a = 0.246 nm
is the lattice constant and vy &~ 3.2 €V is the hopping integral [16, 21]. The
resulting band structure is shown in Fig. 2.3.

The energy dispersion of graphene has six points, where valence and conduc-
tion band touch, and the non-equivalent points K and K’ are resulting from the
two basis atoms in the graphene unit cell. For small energies, in the vicinity
of the Dirac points, the energy dispersion is linear in k. This linear low-energy
relationship gives graphene its unique electronic properties [15, 20, 22].

2.3 Dirac fermions and pseudospin

Looking closely at the Dirac points of graphene, the linear dispersion relation
can be described by two cone-like structures that touch at the K- and K’-points
(see Fig. 2.3). For ideal graphene, the Fermi energy is located exactly at the
position of the charge neutrality point. But in realistic graphene devices, the
Fermi energy can significantly differ from the Dirac energy. Furthermore, the
linear dispersion relation only holds for low energy particles with |E| < 1 eV
and can be well-described by the Dirac equation for massless fermions [25, 26].
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The Dirac equation describes quantum particles with spin 1/2 (fermions). States
with positive and negative energies are conjugated, being described by different
components of the same spinor wavefunction [25]. The energy spectrum can be
expressed by the following dispersion relation:

E(k) = +hop|k|, (2.6)

where the sign indicates if the charge carriers are located in the conduction band
(7*-band) or in the valence band (7w-band). vp &~ 10° m/s is the Fermi velocity
for carriers in graphene, replacing the speed of light [15, 2, 27]. The low-energy
Dirac fermions in the vicinity of the K and K’ points can be characterized by the
spectrum of the Dirac-like Hamiltonian:

- 0 ky—ik .
Hy = hop <k:x +ik, 0 Z y) = hvpd -k, (2.7)
i = o (k ! ik, . +OZky> = hurd -k 28)

where ¢ = (0, 0,) is the 2D vector of the Pauli matrices (6* the complex conju-
gate) and k is the wavevector of the quasiparticles [22]. Here, the Pauli matrices
represent the pseudospin that affiliates the charge carriers to one of the sublattices
A and B [24]. The pseudospin in graphene is an additional degree of freedom,
analogous to the spin symmetry [15, 28]. So all in all, graphene has two different
quantum numbers for charge carriers, causing a fourfold degeneracy of states.
The eigenfunctions, as solutions of the Hamilton operators in the vicinity of the
Dirac points, can be written as [24, 29]:

Lo 1 [ e—i0(k)/2 o

lII:i:,K<k7 T) = ﬁ :teig(fc’)/z e ) (29)
L1 eB2 N\

Uy ko (k,7) = ﬁ (ie_ie(fé)/z e (2.10)

where the two-component spinor structure is related to the pseudospin of the
system. Each graphene sublattice is responsible for one of the weakly interacting
valleys of the dispersion and the pseudospin differentiates between the contri-
butions of each sublattice [22, 30]. The projection of the pseudospin on the
momentum p = hk is called chirality. Chirality is a conserved quantity and has
important implications on electronic transport in graphene [31, 32]. In particu-
lar a non-trivial Berry phase ins associated with the rotation of the 1/2-pseudo
spinor. A rotation of the angle in momentum space 6(k) = arctan (ky/k;) by 27
means a phase shift of the wavefunctions by 7, and thus, the spinors will change
sign [29]. This phase shift by 7 is called Berry phase [33].

10
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2.4 Electric field effect in graphene

The ability to manipulate the electronic properties of a material by applying an
external voltage has a huge impact on modern electronic devices. The electric field
effect allows to tune the charge carrier density in a semiconductor structure and
consequently, to change the electric current through it [19]. This effect is equally
important in graphene. One feature that differentiates monolayer graphene from
conventional 2DEG structures is the absence of a band gap. The conduction and
the valence band touch at the K-points of the energy dispersion. So the Fermi
level can be shifted consistently between the valence and the conduction band,
corresponding to hole and electron conduction, respectively. In this way, the
induced carrier density in graphene can easily exceed 10'? cm™2 [15].

This effect can be experimentally utilized in graphene flakes on a Si/SiOy
wafer. The heavily doped Si wafer acts as a global back gate and the SiO, layer
serves as a dielectric between gate and graphene sheet. Hence, the charge carrier
density in the biased graphene flake can be tuned by applying an external po-
tential to the Si back gate. Figure 2.4 shows a characteristic gate response of a
monolayer graphene flake and schematics of the position of the Fermi level. The
electrical resistivity of graphene has a maximum at the Dirac point, where the
carrier density has a minimum (charge neutrality point). For undoped graphene
the Dirac point should be at V, = V,,, = 0, where V}, is the applied back gate
voltage and V,,, the voltage that needs to be applied to get to the charge neu-
trality point. But in most realistic devices, especially in graphene on SiOs, there
is additional intrinsic/ extrinsic doping and V,,, # 0.

The high, but finite resistivity peak at the Dirac point can be explained in
terms of disorder. This means, in the inevitable presence of disorder, caused by
interactions with the substrate or inhomogeneities, regions with electron-rich and
hole-rich puddles will arise. These puddles could explain graphene’s anomalous
non-zero minimal conductivity at zero average carrier density [34]. The carrier
inhomogeneity can be determined by analyzing the broadening of the resistivity
peak. Generally, the disorder-induced carrier density fluctuation is a good indica-
tor for the sample quality, being as low as én ~ 10'° cm~2 in graphene-hexagonal
boron nitride (hBN) heterostructures and dn < 10® cm™2 in suspended graphene
(35, 8, 36].

A simple approximation for the back gate induced charge carrier density in
graphene on SiOy can be given with a standard capacitor model. If the lateral
dimensions of the graphene flake are much bigger than the thickness of the oxide,
the assumption of a plate capacitor is justified. Then, the carrier density on a
300 nm SiO, substrate can be written as [37]:

€o€r

n=-- (Vg = Venp) = 7.2-10° em ™2V~ (V, = V), (2.11)

where ¢y is the electric constant, ¢, = 3.9 is the dielectric constant of SiOs,

11
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Figure 2.4: FElectric field effect in graphene. The left figure shows the ambipolar
electric field effect in graphene: The Fermi level can be shifted upwards or downwards
by applying a positive and a negative gate voltage, respectively. The resistance has a
maximum at the Dirac point, where the charge carrier density has a minimum. The
right figure depicts a color map of the spatial density variations in a graphene flake for
zero average carrier density. The blue regions correspond to holes and the red regions
to electrons. Fig. from [15, 34].

d = 300 nm is the thickness of the SiO, layer and e is the elementary charge.
Using this model, the conductivity of the graphene sheet can be calculated with:

€0€r
0 = ensit = OTN(Vg — Venp) = Cott(Vyg = Venp), (2.12)

where C, = €€, /d is the gate coupling constant and s is the charge carrier
mobility in the sample. The relation above is one possibility to estimate the
mobility of a gated graphene device.

Nevertheless, there are some situations where the plate capacitor model is not
valid. In the previous case, the graphene flake is much larger than the thickness
of the oxide layer and there is a global gate. Consequently, the electric field lines
are parallel to each other and perpendicular to the graphene plane. This is no
longer true for smaller lateral dimensions, such as graphene nanoribbons [38, 39
or locally acting gates [40, 41, 42]. Here, more elaborate simulation techniques
for the estimation of the charge carrier density need to be applied.

2.5 Transport and scattering mechanisms in
graphene

In contrast to theory, realistic graphene structures always contain defects and
impurities [43, 44]. Additionally, the interaction with the underlying substrate in-
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2.5. Transport and scattering mechanisms in graphene

duces edges and ripples [45]. These perturbations strongly influence the electronic
properties of graphene and significantly decrease graphene’s quality by acting as
scattering centers and introducing spatial inhomogeneities [22]. The mentioned
influences to graphene’s transport properties cannot be neglected, and from a
theoretical point of view, two different transport regimes can be considered in
terms of electron mean free path [, and length of the graphene channel L.

On the one hand, there is the ballistic transport regime, where [, > L. Here,
charge carriers can run across the graphene sheet without any scattering event.
In this case, transport can be characterized in terms of the Landauer-Biittiker
formalism and the conductivity reads as [29]:

4e2 [ X
S N 2.13
L= W; (2.13)

where T;, are the transmission probabilities in all available transport modes. This
approach leads to the following expression for the ballistic conductivity as a
function of finite carrier density [46]:

2%,/
or(ns) = 7 (2.14)
Considering evanescent modes in the ballistic regime, this theory leads to a min-
imum conductivity at the charge neutrality point [22, 47]:

4 2
Toin = —— = 4.92.107°Q" (2.15)
7h

On the other hand, for [, < L, carrier experience elastic and inelastic scatter-
ing and enter the diffusive transport regime. In this case, the carrier density ng
in graphene is much larger than the inherent impurity density n; and the system
is homogeneous. Accordingly, diffusive transport can be described by the semi-
classical Boltzmann theory, where scattering off various impurities is taken into
account. At low temperatures the conductivity can be written as a function of
the total relaxation time 7 [30]:

evpT m,

h T’
where 7 depends on the dominant scattering mechanisms in the sample. The
most prominent and common ones include Coulomb scattering at charged impu-
rities, short-range scattering at defects, and electron-phonon interactions. In the
following part, I want to discuss some relevant scattering processes in graphene.

op —

(2.16)

2.5.1 Phonon scattering

At finite temperatures, electron-phonon interactions are a dominant scattering
mechanism in graphene structures. Phonons can be considered as an intrinsic
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scattering source, limiting the mobility even in absence of extrinsic scattering. In
3D bulk materials, we differentiate between two regimes in terms of temperature.
On the one hand high temperatures 7" > ©p, where the resistivity scales as
p(T) < T, and on the other hand p(T) o T° for T < Op. Since the Debye
temperature ©p, the temperature scale where all phonon modes are populated,
is approximately 2300 K in graphene, we would expect a T° dependence of the
resistivity in our experimental range.

But this is not the case for graphene, where the Fermi surface is substantially
smaller than in metals, and only a small fraction of acoustic phonons with mo-
menta ky, < 2kp can scatter with electrons [48]. Thereby phonon energies hw,y,
are small in comparison to the Fermi energy of the electrons Er, and scattering
events can be considered as quasi-elastic. This restriction leads to a new temper-
ature scale for electron-phonon scattering, the Bloch-Griineisen temperature:

@BG = 2hvphk’p/k‘3 < @D‘ (217)

With the sound velocity v,;, and the Fermi wave vector kr = /ns7, ©pg can be
determined as

Opc = 54/n;, K, (2.18)

where n; is the carrier density in units of 10'? cm™2 [49).

Again, we need to consider two different regimes, the high and the low tem-
perature regime. A related experiment by Efetov et al. can be seen in Fig. 2.5
[48]. For T > Opq, we are in the equipartition limit and the Bose-Einstein dis-
tribution function for phonons is Ny, ~ kT /hwyy. As a result, there is a linear
dependence of the scattering rate on 7', and hence, the resistivity p is linear in 7'
[49]. On the other hand, there is the low temperature (Bloch-Griineisen) regime
T < Opg, where hw,y, =~ kgT'. Here, the scattering rate is strongly reduced by
the more complicated occupation factor of the phonons. However, in the low
temperature limit 7' < Opg, a p o< T relation can be obtained [49).

2.5.2 Coulomb scattering

Coulomb scattering stems from long-range interactions of charge carriers and
charged impurities close to the graphene sheet. In this context, charged impu-
rities can be trapped ions in the underlying substrate, fabrication residues, or
intentionally deposited adatoms. Employing a semiclassical approach using the
Boltzmann equation, one can estimate the influence of charged impurity scatter-
ing on transport characteristics in graphene. It was predicted that the backscat-
tering probability is proportional to \/n,/n;, where n, is the charge carrier density
and n; is the charge impurity density in graphene [50]:

7o YT (2.19)

(A
Avpn,m3/2
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Considering this relation, the conductivity at high carrier densities (ns > n;) can
be written as:

Ce?n,
o, = ———
i n ni7

where C'is a dimensionless parameter characterizing the scattering strength [22].
This formula suggests a linear increase of conductivity with charge carrier density
for a transport regime mostly influenced by Coulomb scattering. The linear
behavior was observed in various experiments on graphene on SiOs, confirming
charged impurities as dominant scattering source [15, 43].

Chen et al. obtained a factor of C' ~ 20 in their experiments, considering
dielectric screening from the substrate and random-phase approximation. They
conducted a systematic study on Coulomb scattering in graphene by depositing
a variable amount of adatoms (potassium) onto a initially clean graphene surface
in ultrahigh vacuum (UHV) [43]. Fig. 2.6a illustrates conductivity versus gate
voltage for a pristine sample and three different potassium doping concentrations
taken at T'= 20 K in UHV. A striking result of this experiment is the shift of the
Dirac Point with variation of the adatom concentration. The back gate position
of the charge neutrality point becomes more negative with increasing doping, be-
cause of the shift of the Fermi level induced by the K adatoms. Additionally, the
conductivity as a function of the gate voltage becomes more linear for increasing
impurity concentration, which is is good agreement with equation 2.20 for dom-
inant Coulomb scattering. At the same time, there is a noticeable broadening
of the width of the minimum conductivity region, indicating a reduction of the
sample quality. This decrease in mobility is highlighted in Fig. 2.6b, where the

(2.20)
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Figure 2.6: Charged impurity scattering in potassium doped graphene. (a) The
conductivity o as a function of gate voltage V; for pristine graphene and three different
doping concentrations taken at 20 K in UHV. The lines are fits according to equation
2.20 and their crossing defines the points of residual conductivity and the gate voltage
at minimum conductivity. (b) Inverse of electron mobility 1/u. and hole mobility 1/,
as function of doping time. Inset: Ratio of pe to up versus doping time. Fig. from [43].

authors found an inverse dependence of the carrier mobility on the density of
charged impurities for electrons and holes.

2.5.3 Short-range scattering

Another source of perturbation in graphene are short-range defects such as va-
cancies, cracks, step edges and any other topographic defects [51]. Stauber et
al. proposed an additional scattering mechanism involving midgap states, which
is introduced by these defects. Vacancies lead to a similar k dependence of the
relaxation time as charged impurities and the conductivity is roughly linear in n,
22, 52]:

04 = ——In*(\/7n,R), (2.21)

where ny is the defect density and R is the radius of the defect in this model.
This formula is in close analogy to the equation derived for Coulomb scattering
(equation 2.20), with an additional logarithmic dependence on n,. The almost
linear relation between conductivity and carrier density and the inverse scaling
of mobility with defect density could be proved in experiments in graphene on

Si0, [44].

16



2.6. Introduction to Quantum Hall effect

-SUBSTRATE
UplmV | Upp IV ” ' HALL PROBE
DRAIN
25125 ._| - q
H n‘
SOURCE GATE
20420
POTENTIAL PROBES
15415
L
—Upp
10110
Figure 2.7: Original QHE exper-
5105 iment in the inversion layer of a
e Y MOSFET: The graph shows the Hall
voltage Uy and the voltage drop be-
O H T T T T — 1
o £ p” ] = s tweeg the potential probes Upp as a
= =0 net ; ne2 i function of gate voltage V, at T' =
Vg IV 1.5 K and B = 18 T. Fig. from [54].

2.6 Introduction to Quantum Hall effect

More than 130 years ago, Edwin Hall interpreted the influence of a magnetic field
on a conducting material [53]. The classical Hall effect describes the creation of
a potential difference across a conductor, transverse to an electric current, in the
presence of a magnetic field. Using this effect, it is possible to determine the
density and the sign of of the charge carriers in a bulk material.

Almost exactly 100 years later, Klitzing et al. observed a quantization of the
Hall resistance in 2DEG systems [54]. Since its discovery, the so called Quan-
tum Hall effect (QHE) has created great interest in the experimental study of
the properties of low-dimensional systems [22]. In their experiments at low tem-
peratures and high magnetic fields, Klitzing and coworkers found a quantization
of the Hall resistivity ps,, corresponding to the value h/Ne? (with N being an
integer), and a simultaneous modulation of the longitudinal resistivity p,, as a
function of the the carrier density (see Fig. 2.7). The oscillations of the longi-
tudinal resistance, the so called Shubnikov-de Haas oscillations (SAHOs), were
analyzed precisely and p,, was going down to zero over the range of each plateau
of the quantized Hall resistance. The plateaus can be assigned to integer filling
factors v = nsh/eB, where n; is the sheet carrier density [55].

The quantization and oscillation of p,, and p,,, respectively, is universal to
all 2D electron systems. In the following part, I want to introduce the integer
QHE in conventional 2DEGs and discuss the formation of Landau levels (LLs),
the existence of edge states and the role of disorder. For a 2DEG sample with
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Figure 2.8: Schematics of edge states and broadening of LLs in the QHE: (a) A finite
2DEG under a perpendicular magnetic field B. A large area is quantized at n =1 while,
due to potential difference, a small n = 2 LL is formed in the middle of the sample.
Grey circles with arrows indicate the cyclotron motion. (b) Formation of edge channels
in the LLs. (c) Density of states with broadened LLs. Fig. from [55].

finite dimensions, exposed to a magnetic field B (see Fig. 2.8a), we can approach
the energy spectrum and the quantization of the LLs by solving the Schrodinger
equation of a single particle [56]:

1 —

5+ eA(P)? +V(2)| ¥ (F) = BEY(F), (2.22)
m

where A is the vector potential of the magnetic field B and V (z) is the quantized

potential along the 2-direction. The solution of the Schrodinger equation gives

the quantized, equidistant Landau levels:

1
B, = hwe(n+ 3) with n=0,1,2,3, ..., (2.23)

where w, is the cyclotron frequency of the electrons. For the integer Quantum
Hall effect, the transverse conductivity can be written as:

62

o2
Oy =V = fnﬁ, (2.24)
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where n is the number of filled LLs and f = 2 is the spin degeneracy in the 2DEG
system.

The quantized Hall resistance and the SAHOs can be explained with 1D con-
ducting edge channels, originating from the LL bending. Fig 2.8b shows the LLs
and the formation of channels along the edges of the sample. Considering the
edge boundary condition W(z = 0, W) = 0 and the approximately parabolic band
structure of the band edges in momentum space, the energy of the LLs increases
as they approach the edges [55]. The only states that carry the current are the
edge states at the Fermi level Er. Filling factor v = N implies, there are N
conducting edge states, coinciding with a quantized Hall resistance p,, = h/Ne?
[57]. The currents on each edge are running in opposite directions, due to the
cyclotron motion in the perpendicular magnetic field. Thus, the only source of
backscattering would be electrons going from one edge to the other. In this way,
the onset of interaction between the two sets of edge states leads to deviations
from exact quantization and eventually to a breakdown of the quantum Hall
regime [57]. Otherwise, the suppression of backscattering in the QHE regime
leads to a vanishing p,, and induces dissipationless transport.

Nevertheless, the model of conducting edge channels does not explain the
Fermi level pinning between the LLs. Here, we need to consider vacancies and
impurities that cause the broadening of the density of states (DOS) and the
formation of localized states at its slopes (see Fig. 2.8¢c). The charge carriers
cannot scatter into the localized states and the Fermi energy gets pinned, resulting
in the experimental observation of QHE plateaus with finite width [22].

2.6.1 Quantum Hall effect in graphene

Since graphene is a 2D material, one of the first and most important experimental
results was the observation of the quantum Hall effect (see Fig. 2.9) [2, 27]. Con-
sidering its unique properties regarding lattice and band structure, the quantum
Hall effect in graphene is significantly different than in conventional 2DEG struc-
tures. Graphene’s sublattice symmetry adds an additional degree of freedom, so
the charge carriers have a fourfold degeneracy (two spin, two pseudospin). Thus,
the resulting energies of the LLs are no longer equidistant, but have a square root
dependence on the magnetic field B:

E, = +1/2ehv% |n| B with |n|=0,1,2,3, ... 2.25
F

Here, n > 0 and n < 0 are for electron-like and hole-like Landau levels, respec-
tively. This energy spectrum results in an unconventional, half-integer sequence
of energy levels with the presence of a distinctive LL at E, = 0 [58, 59]. The
n = 0 LL is formed with degenerate electron and hole states, leading to a half-
integer shift in the number of flux quanta needed to fill an integer number of LLs
(see Fig. 2.9) [55].
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Figure 2.9: Quantum Hall effect and density of states in graphene. (a) Hall conduc-
tivity o,y and longitudinal resistivity p,, as a function of carrier density n at B = 14 T
and T = 4 K in monolayer graphene. The minima of the SAHOs follow the half-integer
plateaus in o,,. (b) DOS of graphene with the zero-energy LL and (c) DOS of a
conventional 2DEG with equidistant LLs. Fig. from [2].

As a consequence of the half-integer quantization of the energy levels, the
quantum Hall conductivity is shifted with respect to the standard QHE sequence
by 1/2 and reads as follows:

e?  4e?

Since the energy difference between the first and the second LL AE = /2ehv% B =
200 meV (at B = 30 T) is significantly higher than the thermal energy at room
temperature, the quantum Hall effect in graphene can even be observed at high
temperatures (and high magnetic fields) [60].

2.6.2 Quantum Hall ferromagnetism in graphene

Two different kinds of massless Dirac particles, centered on the two inequivalent
valleys, can be described in a low-energy effective theory of graphene. In high
magnetic fields, the valley and electron spin degeneracy lead to the anomalous
graphene quantum Hall sequence (Equation 2.17). Many different broken sym-
metry states can appear in electronic systems with multiple degenerate degrees of
freedom [61]. Strong Coulomb interactions and a fourfold spin-valley degeneracy
cause a SU(4) isospin symmetry in graphene Landau levels [62, 6]. At partial
filling of these LLs, exchange interactions can break this symmetry and polarize
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Figure 2.10: Symmetry broken integer quantum Hall effect in graphene. (a) Devel-
opment of the v = 0 insulating state. Inset: Arrhenius plot for ¥ = 0 as a function
of B. (b) Temperature dependence of R;, minima and plateaus in R, of symmetry
broken IQHE. Inset: Arrhenius plot for v = 4 as function of B. Fig. adapted from [6].

the ground state ferromagnetically. This fact is manifesting as additional quan-
tum Hall plateaus beside the normal integer sequence in high-quality graphene
samples (see Fig. 2.10b) [6, 63, 7].

The SU(4) polarization of graphene is influenced by the interplay between
anisotropies arising from the Zeeman effect, disorder, and lattice scale interac-
tions. The large activation gaps confirm the Coulomb origin of all broken symme-
try states, but the order strongly depends on the LL index [6]. Different groups
observed the ferromagnetic polarization of the QHE in graphene [63, 64, 65, 66],
featuring broken symmetry states beside the normal sequence, but there was an
ongoing controversial debate about its origin [61, 67, 68].

In order to explore the origin of the lifted degeneracy, Young et al. per-
formed magnetotransport measurements on graphene-hBN heterostructures in
tilted magnetic fields [6]. Since graphene is a monolayer, the in-plane magnetic
field can only couple to the electron spin of the system. By changing the tilt
angle, they could examine the variation of the energy gaps of different quantum
Hall states as a function of the in-plane magnetic field. The perpendicular mag-
netic field remained constant during these measurements. In this way, they were
able to explore the spin structure of the broken symmetry states.

One essential result is the different influence of exchange interactions on the
n = 0 and the n > 0 LLs . Large activation gaps prove the Coulomb origin
of all broken symmetry states, but the order depends critically on the Landau
level index [6, 69]. The zero energy LL is half-filled at ¥ = 0 and an isolating
state is emerging at higher fields (Fig. 2.10a) [9, 70]. The resistance of this
state decreases with increasing in-plane magnetic field, indicating broken val-
ley symmetry. On the contrary, the energy gap of half-filled higher LLs (e.g.

21



2. Fundamental properties of graphene

v =4,812,...) is increasing with in-plane field, suggesting a spin polarization of
the ground state. Further measurements reveal a spin polarization of » = 1 and
a valley polarization of higher quarter filled LLs (v = 3,5,7,...). The origin of
this behavior is not really understood, yet. One possible reason for the difference
between n = 0 and n > 0 LLs could be the different influence of the magnetic
field on the symmetry breaking effects: The Zeeman energy scales proportionally
with B, but the Coulomb interactions scale with v/B [69].

Due to the 2D confinement of electrons in graphene, many-body interactions
between electrons are expected to be strongly enhanced. Sufficient electron-
electron interaction in the SU(4) isospin symmetry can manifest in fractional
quantum Hall states in high-quality graphene [71, 72|, where additional Hall
plateaus with rational filling factors v appear. Fractional quantum Hall states
can be considered as realization of the IQHE for weakly interacting quasipar-
ticles, named composite fermions [22, 73]. The huge improvements in sample
quality, employing suspended graphene or graphene-hBN heterostructures, gave
the possibility to observe the fractional quantum Hall effect in graphene devices

8, 9, 74, 65).

2.7 pn-junctions in graphene

Graphene can be tuned between the hole (p—) and electron (n—) regime by using
the electric field effect. So regions with different potential V' can be achieved by
locally gating the graphene sheet. Thus, pn-junctions in graphene are created
artificially with local gates, imposing a negative and positive potential (with
respect to the Dirac point) to two regions next to each other. Additionally, pn-
transitions play an important role in the low-density regime, where transport
properties are dominated by electron-hole puddles [75]. Considering electron
optics, where the charge carriers can be guided and lensed analogous to light rays
across an optical boundary, the negative refraction and the angular dependence of
transmission in a pn-junction are equally important [76, 77]. These mechanisms
and their influence on transport experiments will be discussed by introducing
Snell’s refraction law and Klein tunneling in graphene.

2.7.1 Snell’s law in graphene

Ballistic electrons in graphene behave in close analogy to light. When transmitted
across a boundary, located between two separate regions of different potential,
charge carriers get refracted, similar to light rays crossing a boundary between
two materials of different optical index [76]. In this way, mirrors, lenses, splitters,
and other optical manipulators can be realized in graphene.

In graphene devices, where the parallel momentum at an interface needs to be
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conserved, the Fermi level is responsible for the refractive index. Snell’s law for
refraction in graphene structures can be written as:

El . Sin(@l) = ET : sin(@r) (227)

Here, E; and E, are the Fermi energies on the left and on the right side, respec-
tively, and 6;, 6, are the corresponding refraction angles. Snell’s law is depicted in
Fig. 2.11 for incident electrons on an unipolar (nn'-) and a bipolar (np-) junction.
The former is shown in Fig. 2.11a, where the Fermi level on the left side in higher
than the right one. This discrepancy in Fermi energy causes a different k-circle
at the Fermi level for the right and the left area. Considering the conservation of
the parallel momentum £k, at the interface, this situation will lead to a refraction
towards the junction.

The latter situation, where a electron runs into a pn-junction, is illustrated
in Fig. 2.11b. Since the momentum £, needs to be conserved, the angle of back-
reflection is 6, = 6;. However, the situation for the transmitted electron is slightly
different. This electron needs a positive group velocity ¢ in x-direction, and since
¥ is anti-parallel to k, ky; = —k,, for a symmetric pn-junction [77].

The negative refraction index in graphene pn-junctions, defined by equation
2.27, is the basic principle for Veselago lenses. There, charge carriers can be fo-
cused from a point-like injector to a point-like detector, employing a pn-interface
for lensing (see Fig. 2.11c) [78, 79]. In order to transmit and focus trajecto-
ries with large angles of incidence, these lenses need sharp and symmetric pn-
interfaces. Figure 2.11d shows the electron trajectories for an asymmetric case,
where |n;| < |p,|. In this situation the focus point is blurry and forms a caustic
pattern [77].

2.7.2 Chiral Klein tunneling in graphene

The Klein paradox, proposed by Oskar Klein in 1929 [80], describes a tunneling
process of relativistic particles penetrating a potential barrier if its height Vj ex-
ceeds the electron’s rest energy mc? [81]. This tunneling mechanism is in stark
contrast to conventional quantum mechanics for non-relativistic particles, where
the tunneling probability depends on the barrier height V5. The Klein para-
dox refers to perfect tunneling of normally incident relativistic particles through
a sharp potential barrier of sufficient height. But it is also true for a gradually
changing potential V' (x), where the change in potential occurs on a smaller length
scale d than the Compton wavelength A\. = h/mc [82].

For many years, the Klein paradox has only been relevant in very special sit-
uations, such as positron production around super-heavy nuclei or evaporation
of black holes [83]. This changed with the discovery of graphene, where Klein
tunneling could be studied experimentally [41, 84, 85]. The charge carriers in
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Figure 2.11: Tllustration of Snell’s law in graphene. (a) Snell’s law for a unipolar nn’-
junction with angle of incidence ; and transmission angle 6,.. (b) pn-interface, where
the incident electron gets reflected under ;" or transmitted under 6,. (c) Considering
the negative refraction index at the pn-interface, electrons can get focused from one
point to another with a straight lens (Veselago lens). (d) The focal points becomes
blurry for asymmetric doping. Fig. from [77].

graphene act as relativistic, massless Dirac fermions, and graphene’s gapless dis-
persion relation allows to observe the Klein paradox. A sufficiently high potential
barrier can be easily created by electrostatic gating, forming regions of electron
(n) and hole doping (p) next to each other [86].

Klein tunneling in graphene can be explained with the absence of backscat-
tering due to the conservation of chirality and can be experimentally realized
with a rectangular shaped npn-junction, as shown in Fig. 2.12a. For normally
incident electrons with k = k:_;r7 backscattering is forbidden due to pseudo-spin
conservation [87]. Additionally, the parallel momentum k, needs to be preserved,
because of the symmetry of the potential barrier. As a consequence, there is
perfect transmission for normally incident carriers (0 = 0) [77, 81]:

(0 =0)° = 1. (2.28)

During the tunneling process, chirality is conserved since the pseudospin is par-
allel to k in the conduction band and anti-parallel in the valence band. In this
picture, an incident electron in the conduction band with momentum k. and
energy F tunnels into the valence band with momentum —k, and energy —F
inside the barrier. Due to chirality, the group velocity stays the same during the
interband transition and the incident electron is perfectly transmitted. So Klein
tunneling is not a genuine quantum tunneling effect as it does not necessarily
rely on evanescent waves [87].
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Figure 2.12: Tunneling through a potential barrier in graphene. (a) Sketch of the
spectrum of quasiparticles in monolayer graphene. The bottom picture shows a incident
electron with momentum & and energy F on a potential barrier with width D and
height V4. The upper one depicts the corresponding spectrum of the quasiparticles.
The blue areas are occupied states within the linear spectrum, and the red and green
lines emphasize the pseudospin &. (b) Angular dependence of the transmission in a
smooth pn-junction. d is the length scale of the potential variation and [ the turning
point at the interface. Fig. from [83, 88].

In the following part, the angular dependence of the transmission probability ¢
at a symmetric and rectangular pn-junction will be discussed. For the situation of
oblique incidence of carriers on the potential barrier, backscattering is no longer
forbidden and ¢t decreases. The angular dependence of ¢ can be obtained by
matching the real-space wavefunctions on both sides of the pn-junction and can
be written as [88]:

t(0)] = cos*(6). (2.29)

This simple relation gives a 50% transmission and reflection probability for § =
45°.

In real devices, the assumption of perfectly sharp and rectangular interfaces
is not valid. They vary gradually from p- to n-type on a length scale d [88]. Here,
the junction is considered smooth if kpd > 1. A rather simple potential profile
for a smooth and symmetric pn-junction is:

=V/2 , <0
V(z) = Frz , 0<z<d , (2.30)
V/i2 | x>d

where £V/2 is the Fermi potential in the outer areas and F' = V/d = hvg/d is
the electric field created by the changing potential [77]. Now the transmission
probability shows an exponential decay for 8 # 0 (and 6 not too close at 7/2)
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88]:

#(0)] = ¢~ krd) - sin() (2.31)

By deriving the results in equations 2.29 and 2.31, we can determine the con-
ductance per unit length of a broad and smooth junction, where only carriers,
approaching within a small angle 6 < 6y = (tkpd)~'/2, are selectively transmitted

[88]:

T =\

The exponential decay of ¢ as a function of # in equation 2.31 can be understood
with the decline of the potential in the immediate vicinity of the pn-junction, at
the turning point | = vpp,/F (see Fig. 2.12b). There, the trajectories entering
the smooth region of the potential, are gradually diverting from the interface due
to the additional electric field F'. This situation is quite similar to the exponential
decay of ¢ for massive relativistic particles described by Sauter [82], where the
only difference would be the replacement: vy — ¢, A\p — A, and sin(6) — m.
Nevertheless, this gradually smooth and symmetric model is not realistic for a
potential induced by electrostatic gating. In this case, a non-linear potential pro-
file would be created, and therefore, the modeling of the transmission probability
needs a more elaborate simulation technique, such as tight-binding theory [89].

(2.32)

2.7.3 pn-junctions in a magnetic field

The presence of a magnetic field substantially changes the electronic transport
properties of a conductor. Lorentz forces are acting on the charge carriers, bend-
ing their trajectories and constraining them onto cyclotron orbits in a quasi-
classical picture. At moderate magnetic fields charge carriers are not localized at
the boundaries of the conducting channel and can propagate via so-called skipping
orbits [77]. This effect also influences the propagation of electrons encountering
pn-interfaces in the presence of magnetic fields. It was predicted that a relatively
small magnetic field will suppress the conductance of a pnp-junction below the
series conductance of the individual interfaces by bending the trajectories away
from normal incidence [88, 91]. This mechanism, induced by the angular depen-
dence of the transmission, can be seen in Fig. 2.13a, where the left trajectory
is transmitted for zero magnetic field and the right one is reflected in a small
magnetic field.

Rickhaus et al. describe the evolution of electron states in a graphene pn-
junction for increasing perpendicular magnetic fields with the sketches depicted
in Fig. 2.13b-e [90]. At low magnetic fields (Fig. 2.13b) transport is dominated by
Fabry-Pérot oscillations with slightly bent trajectories [41]. The cyclotron orbits
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Figure 2.13: pn-junctions in the presence of a magnetic field. (a) Electron trajectories
in a pnp-junction: the left one (transmitted) in zero B and the right one (reflected)
in small non-zero B. (b) Two-terminal graphene device with p- and n-region. By
applying a weak field, the electron trajectories are bent, manifesting in Fabry-Pérot
oscillations. (c) The field is increased until the cyclotron orbit becomes comparable to
the cavity size, where resonant scar states can occur. (d) The field is further increased
and transport is described by quasi-classical cyclotron orbits forming snake states along
the interface. (e) Finally, quantum Hall edge states propagate in opposite direction in
the p- and n-region at higher B. Figures adapted from [88, 90].

are increasing with magnetic field until the cyclotron orbits become comparable
to the cavity size. Here, resonant scar states (Fig. 2.13c) may occur [92]. At
higher fields snake states, propagating along the pn-interface, are governing the
transport properties (Fig. 2.13d) [90], and finally counter-propagating quantum
Hall edge states in the p- and n-region are formed (Fig. 2.13e).

Shytov et al. report calculations for a single pn-junction, where they claim
a strong dependence of quantum transport on the magnitude of the magnetic
field [93]. The angle of perfect transmission is shifted to a non-zero angle 6,4, =
arcsin(B/B,) in the presence of a moderate magnetic field (see Fig. 2.14), and
the transmission 7'(f) can be written as:

T(f) = e~ (sm0-B/B.)* (2.33)

where @ = m(d/A\r)? and v = 1/4/1 — B with boost parameter § = —vpB/cE =
—B/B.. At the critical field

h kg
e d
the cyclotron radius Rc = hkp/eB becomes comparable to the width of the

interface d. When the magnetic field exceeds a critical value of B > B,, the
junction is pinched off by the Landau level formation and no transmission is

B, = (¢/vp)E ~ (2.34)
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Figure 2.14: Angular dependence of transmission for different magnetic field values,
plotted according to Eq. 2.33, for a = m(d/Ap)? = 20. Transmission reaches unity at
a field-dependent angle fp = arcsin B/B,. Fig. adapted from [93].

possible through the pn-interface. In this case charge carriers propagate parallel
to the interface [91, 94].
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CHAPTER 3

Graphene-boron nitride heterostructures

The characteristics of graphene devices are significantly influenced by the un-
derlying substrate. Standard SiO, substrates are highly disordered and strongly
decreasing graphene’s quality by scattering from charged surface states and im-
purities, substrate roughness and surface phonons [43, 50, 7]. Additionally, the
substrate-induced disorder forms electron-hole pairs in the vicinity of the charge
neutrality point [34, 75].

One approach to avoid these limitations is removing the substrate and sus-
pending the graphene layer. While the quality of suspended graphene is sub-
stantially increased and carrier mobilities are more than one order of magnitude
higher than on SiO; [95], the absence of a supporting substrate imposes serious
restrictions in functionality and device architecture [35]. Therefore, there was an
extensive search for other, more suitable substrates that retained the function-
ality of SiO, and the quality of a suspended device. One appealing substrate
that came up was hexagonal boron nitride (hBN), an insulating isomorph of
graphene, and since 2010, hBN-graphene heterostructures have triggered a new
field for high-quality graphene research. This chapter focuses on the properties
of hBN and the advantages of hBN-graphene heterostructures, fabricated with a
dry-transfer method. I will discuss the influence of the supporting hBN layer and
the effect of potentially arising superlattice structures.

3.1 Hexagonal boron nitride

Hexagonal boron nitride is an interesting insulating isomorph of graphite with
boron and nitrogen atoms occupying the A and B sublattices. Thus, hBN has a
crystalline, layered structure and an atomically flat surface. Similar to graphene,
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Figure 3.1: Lattice structure of graphene and hBN and a optical micrograph of an
exfoliated hBN flake. The structure of both crystals is very similar, forming a planar,
hexagonal lattice. Instead by carbon atoms for graphene, hBN is build up by boron
and nitrogen atoms (red and black). The lattice mismatch of graphene and hBN is
only 1.7 %. The right picture shows an exfoliated hBN crystal on a Si/SiOs wafer. Fig.
on the left from [101].

the atoms in each layer are covalently bound, but the different layers are held
together by van der Waals forces. Due to weak interlayer van der Waals forces,
hBN can be exfoliated in the same way as graphene and we can get few tens of
micrometer large flakes with a thickness down to monolayers. Resulting from the
different onsite energies of the boron and nitride atoms, hBN has a large band
gap (5.97 eV) and a small lattice mismatch (1.7 %) with graphene [7, 96]. The
lattice structure of hBN, compared to graphene, and an exfoliated hBN crystal
are illustrated in Fig. 3.1. Because of its strong in-plane bonding in the hexagonal
lattice structure, hBN is relatively inert and the smooth surface is free of dangling
bonds and charge traps [97].

The insulating behavior of hBN is providing great potential for an application
as substrate, encapsulating layer, dielectric buffer layer, or tunneling barrier [35,
98, 99, 100]. Here, the dielectric properties of hBN (€ ~ 3, Vireakdown = 0.7 V/nm)
excel those of SiO,, making hBN a favorable gate dielectric. Additionally, surface
optical phonon modes in hBN have energies two times larger than similar modes
in SiO,, paving the way for improved high-temperature and high-electric field
performance of hBN-graphene heterostructures [7].

3.2 Advantages of hBN-graphene stacks

The atomically flat surface of hBN is probably its greatest advantage over ther-
mally grown and amorphous SiOs substrates. Since graphene tends to conform
to its substrate, ripples and surface roughness are strongly influenced by the
supporting substrates. Due to the atomically smooth surface of hBN crystals,
hBN-graphene heterostructures are expected to have a significantly reduced sur-
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Figure 3.2: Topography comparison of graphene on hBN and SiOy. (a) STM to-
pographics image of graphene on SiOs showing pronounced surface corrugations. (b)
STM topographics image of graphene on hBN showing significantly reduced corruga-
tions. (c) Histogram of height distributions for graphene on hBN (red) and graphene
on SiO2 (blue) along with Gaussian fits. Fig. from [97].

face roughness compared to graphene devices on SiO,. This can be clearly seen in
experiments by Xue et al., where the authors conducted STM topography mea-
surements of graphene on hBN and compared the results to graphene on SiO,
(see Fig. 3.2) [97]. There is a striking difference between the obtained histograms
resulting from the supporting substrates. Both curves are well fit by a Gaussian
distribution, yielding standard deviations of 225 pm for SiO, and 30 pm for hBN.
Since the roughness of graphene on hBN is similar to graphene on HOPG (Highly
Oriented Pyrolytic Graphite), we can expect it to be at the ultimate limit of flat-
ness [69]. The increased flatness leads to a suppression of rippling and thus to
a reduction of electron-hole puddles in graphene. Local spectroscopy measure-
ments demonstrated that, employing hBN substrates, the electron-hole charge
fluctuations can be reduced by two orders of magnitude compared to standard
Si0,. Hence, the charge fluctuations are as small as in suspended devices, giving
the opportunity to examine very low densities in the vicinity of the charge neu-
trality point without the challenges and limitations of a freestanding flake [97].

Another interesting experimental observation is the perfect local stacking
of graphene and hBN (see Fig. 3.3a,b) [102]. Obviously hBN-graphene het-
erostructures often exhibit different kinds of bubbles and wrinkles, originating
from trapped residues between the layers. Nevertheless, there are large areas
where the different layers of the stack are free of contaminants and lying per-
fectly on top of each other. Figure 3.3c shows an AFM amplitude error image
of one of our heterostructures, exhibiting several bubbles and wrinkles, as well
as plain areas of perfect stacking. The reason for such behavior is the so-called
“self-cleansing” mechanism, where the residues between the layers are pushed
away and congregating in separate pockets. This effect can be understood in
terms of energy, where the energetically favorable situation is when the two crys-
tals have the largest possible common interface [103, 104].
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Figure 3.3: STEM image of a hBN-graphene heterostructure consisting of several
bilayers. (a) Bright-field cross sectional STEM of the stack with the specific layer
sequence shown on the left. (b) HAADF STEM image of the same structure, showing
the perfect stacking of the layers with no residues or adsorbates in between. (c¢) AFM
amplitude error image of an encapsulated graphene device with several bubbles and
wrinkles. The dashed black line encircles the graphene flake and scale bar is 5 ym. Fig.
a,b adapted from [102].

For the fabrication of these heterostructures, hBN and graphene are stacked
and put on a Si/SiO, wafer. Similar to graphene on SiOg, the charge carrier
density can be tuned by varying the voltage applied to the highly-doped Si back
gate. Since there is an additional dielectric material between graphene and the
back gate, we also need to take into account the hBN flake. As a simple approach,
the capacitive gate coupling can be considered as two serial plate capacitors:

dg; d !
Cg:( Si0y | hBN) 7 (3.1)

€0€5i04 €0€ERLBN

where the corresponding dielectric constants for SiO, and hBN are €g;0, ~ 3.9
and €,5n ~ 3. Using this equation, one can estimate the carrier density induced
by the global back gate. Obviously the formula can be modified for top gate or
bottom gate structures, separated from graphene by hBN flakes. But it can be
only a first approximation for the induced carrier density, and more advanced
gate geometries need more elaborate simulation techniques.

Another important improvement in sample quality came with the encapsula-
tion of graphene between two layers of hBN. Although there were some device
geometries with encapsulated graphene [99, 100], one drawback was the require-
ment to transfer and pattern each crystal separately in order to contact the
sandwiched graphene. So for example we needed to start with a suitable hBN
flake and transfer graphene on top of it. Subsequently, we etched graphene in
Hall bar shape and deposited metallic contacts. In a last step, another hBN flake
was put on the stack and the encapsulated graphene heterostructure was finished.
Of course, the different processing steps left a significant amount of fabrication
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residues on graphene and between each layer of the vertical heterostructure, lead-
ing to a strongly reduced device quality.

This problem could be solved by Wang et al., who introduced a new sample
design, employing a dry transfer technique and 1D edge contacts to graphene [98].
Thus, the stack could be assembled right away, and after that, further fabrication
steps such as etching Hall bars and evaporating contacts were carried out. In that
way, graphene is protected from any environmental influences such as fabrication
residues and other adsorbates. With this, mobilities can be considerably increased
with encapsulated graphene, exceeding a million cm?/Vs in the best samples [105].
These numbers are in the same order of magnitude as for suspended graphene,
with the advantages of heterostructures discussed before.

Recently, 2D materials and their novel van der Waals heterostructures got
more and more attention and a huge amount of research focused on them. Be-
sides graphene and hBN, there is a growing zoo of new 2D materials, covering
a very broad range of properties [103, 106]. Combining them opens an exciting
playground and gives the opportunity to tailor heterostructures with controlled
and unique properties [107].

3.3 Moiré superlattice and Hofstadter butterfly
in graphene

The unique electronic properties of graphene, caused by massless Dirac fermions,
have motivated several theoretical simulations, investigating its behavior in peri-
odic superlattice potentials [108, 109, 110]. In contrast to the Schrodinger equa-
tion for nearly free electrons subjected to a periodic potential, the Dirac equation
for graphene’s chiral particles does not predict the opening of a band gap [108].
Instead, periodic potentials are expected to cause an anisotropic particle propa-
gation and generate additional Dirac points at energies £ = thvp ‘é ’ /2, where
electron and hole bands touch [109, 111]. Here, the energy is given by the recip-
rocal superlattice vector G and the Fermi velocity vp.

Originally, hBN-graphene heterostructures have been used because of their far
superior electronic qualities compared to graphene on SiO,. Owing to the similar
hexagonal lattice structure of hBN and graphene and their lattice mismatch of
only 1.8 %, stacks of both materials exhibit a rotation-dependent moiré pattern.
Scanning tunneling microscopy (STM) experiments suggest that the arising su-
perlattice moiré structure is causing an effective periodic potential to graphene
and confirm the formation of new Dirac points at the expected energies near
the edges of the superlattice Brillouin zone (SBZ) [111]. Considering the lattice
mismatch 0 between hBN and graphene, the relative rotation angle ¢ between
the lattices and the graphene lattice constant a, the moiré wavelength A can be
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Figure 3.4: Moiré superlattices in hBN-graphene heterostructures. (a) - (c¢) STM
images of different hBN-graphene superlattices with corresponding moiré wavelength
A. (d) Superlattice wavelength (black) and rotation (red) as a function of the angle
between graphene and hBN lattices. (e) One of the theoretically proposed scenarios
for the low-energy band structure. Fig. from [111, 112].
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determined as
5= (1+0)a
\/2(1 +0)(1 — cos¢) + &2

Accordingly, the relative rotation angle 6 between the moiré pattern and the
graphene lattice can be written as

(3.2)

stng

(14+9) — coso
Fig. 3.4a-c shows STM topography images of three aligned hBN-graphene stacks
with rotation angles ¢ < 3° and the corresponding moiré wavelength A\ [111].
The arising moiré superlattice pattern is nicely resolved and the different length
of A can be easily understood. The relation between rotation angles ¢, ¢ and
wavelength A\, described by the equations above, is plotted in Fig. 3.4d. Owing
to the lattice mismatch between hBN and graphene, there is a moiré pattern for
any rotational alignment of the two layers. But the wavelength has a maximum
of A & 14 nm and is strongly decreasing with increasing rotation angle.

Moreover, assuming a filled band model, we can deduce the moiré wavelength
A from gate sweep experiments according to [113]

tand =

(3.3)

Nsat
o

= gSgU? (34)

where ng, is the field effect density at the satellite peak position, ng = 1/A
(A = /3a%/2) is the unit cell area of the moiré pattern, and g, and g, are
the spin and valley degeneracy, respectively. ng, can be calculated following a
standard plate capacitor model with ns, = Cy(Vser — Venp) /e and the solution for
the moiré wavelength can be written as

N 8e
\/§Cg(‘/sat - ‘/cnp)

(3.5)

The bandstructure in a hBN-graphene superlattice is quite complicated and
different from pure graphene. One of the theoretically calculated scenarios for the
low-energy bandstructure can be seen in Fig. 3.4e, where the second-generation
Dirac cones are singly and triply degenerate for the valence and conduction bands,
respectively [112]. Nevertheless, there is an ongoing debate about the exact shape
of the superlattice dispersion, especially in the vicinity of the charge neutrality
point [114]. Some transport experiments propose a gap of decreasing size with
reducing moiré wavelength [115, 116], while other groups cannot observe any gap
[117].

As an explanation, Woods et al. found the presence of a gap being depen-
dent on the encapsulation of the graphene layer. They only observed gaps for
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Figure 3.5: Hofstadter’s butterfly with energy levels E of Bloch electrons in a magnetic
field. Graph shows the limit of weak modulation, where the inverse magnetic flux ratio
@y /P determines the internal structure of a Landau band. The spectrum was calculated
for a square lattice potential with the same energy modulation amplitude Vj along x
and y directions [121].

non-encapsulated hBN-graphene heterostructures and attributed this aspect to
a difference between a commensurate and incommensurate state of the moiré
superlattice [118]. However, Gorbachev et al. saw a band gap in both encap-
sulated and non-encapsulated devices by probing the valley Hall effect at zero
magnetic field [119]. They explain this experimental discrepancy by two routes.
First, inhomogeneity in the system causes electron-hole puddles, and by tuning
the Fermi energy, the small gaps will be covered by this fluctuations [34]. Alter-
natively, edge states could short the gap and decrease its visibility [120].

The Hofstadter butterfly represents one of the first quantum fractals dis-
covered in physics and results from the interplay of a periodic potential and a
magnetic field on 2D charge carriers [122]. On the one hand, 2D electrons moving
in a periodic lattice potential, called Bloch electrons, are developing a quantized
spectrum of discrete energy bands. On the other hand, electrons in 2D devices
subjected to a magnetic field, develop degenerate Landau levels. Now, the inter-
play between both fields leads to a development of energy levels when the ratio
of magnetic flux ® through the lattice unit cell to the magnetic flux quantum ®,
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Figure 3.6: Hofstadter butterfly in graphene. (a) Magnetoconductance of a graphene-
hBN heterostructure with almost perfect rotational alignment. Landau fans originate
from the main Dirac point as well as from the superlattice Dirac points. (b) Corre-
sponding theoretical calculation, where black lines represent gaps requiring no broken
symmetry, and blue and red lines are broken symmetry states of the main and the
satellite Landau fans, respectively. Fig from [115].

is a rational number [123]:

®/®y = Ba’e/h = a®/271* = p/q (3.6)

As a result, there is a quasi-continuous distribution of incommensurate quantum
states with a self-similar recursive structure, where electron bands split into p
sub-bands when the flux Ba? through one unit cell is a rational multiple of the
flux quantum h/e [113, 124].

The resulting fractal energy spectrum for a square lattice, calculated by Dou-
glas Hofstadter, is plotted in Fig. 3.5 [122]. However, as the unit cell in typical
crystals is very small, and consequently the magnetic fields required for one flux
quantum per unit cell are very high, experimental studies of the Hofstadter but-
terfly were restricted to artificial superlattice structures in 2DEGs [125, 126].

In carefully aligned hBN-graphene heterostructures, the properties of graphene
are strongly modified by a hexagonal superlattice potential stemming from the
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hBN substrate, and the superlattice wavelength can be as large as A &~ 14 nm.
The significantly larger superlattice unit cell compared to graphene allows the
experimental exploration of the Hofstadter energy spectrum for Dirac-type elec-
trons. Thus, replicas of the main Dirac spectrum appear at the edges of the
superlattice Brillouin zones, and the secondary Dirac cones can be accessed via
electric field doping [112]. Exposing moiré heterostructures to magnetic fields
gives rise to self-similarity in the form of many replicas and their quantization
leads to the fractal pattern of Landau levels, characteristic for the Hofstadter
butterfly.

Transport experiments showed Landau fans originating from both the original
and the superlattice potential (see Fig. 3.6a) [115, 117, 113]. At low magnetic
fields the satellite Landau fans can only be accessed by tuning the carrier den-
sity via back gate. However at higher fields, Landau levels originating from the
original and the extra Dirac points cross for ®/®, = 1/¢, proving the expected
recursive spectrum. Fig 3.6b depicts a simulation according to Wannier’s theory,
where energy gaps in the Hofstadter spectrum are constrained to linear trajec-
tories ®/®y = (n/ng — s)/t in the density-field diagram [127]. Here are s and
t integers denoting the Bloch band filling index and the quantized Hall conduc-
tance of the gapped state, respectively [115]. This plot allows to identify the
origin of the different broken symmetry states in the experimental data.

Recently, Chen et al. reported the emergence of tertiary Dirac points in mag-
netotransport experiments on graphene moiré superlattices [128]. This set of
further Dirac points gives rise to additional sets of Landau levels in a magnetic
field, which proves the emergence of a miniband. By analyzing the Zak oscilla-
tions [113, 117] (magnetic flux penetrates the unit cell area of the superlattice
in unit fractions with periodicity 1/Bgq) at the tertiary Dirac points, the authors
estimated a superlattice wavelength of over 21 nm, which was about /3 times
larger than the moiré wavelength A. This observation suggests the formation of
an additional superstructure on top of the moiré superlattice in highly-aligned
hBN-graphene heterostructures [128].
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CHAPTER 4

Commensurability features in lateral superlattices

Lateral superlattices in conventional semiconductor heterostructures have been
studied intensively and revealed several novel phenomena in mesoscopic trans-
port. Commensurability features, arising from the interplay of the magnetic
miniband structure and the periodic electrostatic modulation, were probed in var-
ious experiments employing 1D [13, 129] and 2D superlattice potentials [14, 130].
Recent advances in fabrication techniques and sample quality allowed the ob-
servation of commensurability features in 2D etched graphene antidot lattices
[10, 131].

The recursive spectrum of the Hofstadter butterfly, discussed in the section
before, is one feature generated by a commensurate relation of magnetic field and
2D periodic potential. In this chapter, additional commensurability features,
arising in magnetotransport experiments on potential-modulated 2DEGs, will
be introduced. Overall, two different regimes can be classified by the imposed
superlattice potential V. We will discuss transport characteristics of weakly
perturbed systems V, < FEr, exhibiting distinct commensurability oscillations,
and of antidot lattices, featuring dominant commensurability peaks for strong
potential modulation Vy > Fp.

4.1 Weiss oscillations for weak 1D modulation

Originally, Weiss et al. reported a new set of magnetoresistance oscillations in
semiconductor 2DEGs with an induced 1D periodic potential [13]. The novel
oscillations, known as Weiss oscillations, were periodic in 1/B and could be ob-
served in weakly modulated 2DEGs with sufficiently high electron mean free paths
(see Fig. 4.1). The authors used a L-shaped sample geometry and could probe
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Figure 4.1: Weiss oscillations in a
weakly modulated 2DEG. (a) Mag-
netoresistance traces of a sample
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the magnetoresistance perpendicular and parallel to the imposed 1D potential
modulation in the system. In addition to the Shubnikov-de Haas oscillations at
higher fields, they observed another set of 1/B-periodic oscillations at low fields.
The minima of the Weiss oscillations in p,,, perpendicular to the modulation,
could be characterized with the commensurability condition for cyclotron radius
R and potential period a [123]:

1
2Rc = (A — 1)@ A=1,2,.. (4.1)
which gives a periodicity for the oscillations of:
Al _ @ (4.2)

B 2hy\2mng

Here, A(1/B) is the distance between two neighboring minima. A similar con-
dition holds for the minima in py,, parallel to the stripes. The only remarkable
difference is a shift by half a period: 2Rc = (A + 1/4)a.

The origin of the commensurability oscillations can be explained with mod-
ifications of the Landau level energy spectrum [133]. Winkler et al. [129] and
Gerhardts et al. [132] proposed that Weiss oscillations are a result of the oscillat-
ing bandwidth of modulation-broadened Landau levels. Hence, the arising group
velocity leads to a strongly anisotropic, oscillatory Landau band-conductivity in
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the modulated 2DEG.

The following discussion on Weiss oscillations for a weak superlattice poten-
tial will be mostly referring to the derivations given in references [134, 132]. For
a weak, cosine-type potential modulation V[ < EF along the x-axis and a uni-
form magnetic field in z-direction, the one-electron Schrodinger equation can be
written as:

oo\ [0 ’
— — —eB
2m* <28x> * (iay ‘ :z:)
where K = 2m/a is the wavevector of the potential modulation. Without the

potential term, the formula would give a series of Landau levels E,, = hw.(n+1/2)
with a degeneracy 1/27l? regarding the guiding center coordinate zo = —k, /12, for

+ Vo COS(Kﬂf)} U(x,y) = En(x,y), (4.3)

each of them. Here, [ = \/h/eB is the magnetic length. However, the presence of
a potential lifts the degeneracy of the Landau levels and generates Landau bands.
The subband dispersion may be derived perturbatively:

E,(ky) = hwe(n + 1/2) + (nxo| Vo cos(Kx)|nxo)

~ hw.(n +1/2) + Vo Jo(K Rc) cos(K ), (44)

where Re = hkp/eB is the cyclotron radius at the Fermi level and kp is the
Fermi wavevector. Now, the Landau band dispersion vanishes at zeros of the
asymptotic Bessel function

Jo(KR¢) = \/2/mTKR¢ cos(KRe — m/4), (4.5)

which can be approximated as

2Rc = (A — 1/4)a, A=1,2,... (4.6)

This is the commensurability condition for cyclotron radius and potential period,
which was observed experimentally [13]. The dependence of the Landau level
width on the center-coordinate xy (a) and the magnetic field (b) is depicted in
Fig. 4.2. Broad and narrow bands are alternating for different quantum numbers
n and the density of states oscillates over a large energy scale compared to the
cyclotron separation hw, [135]. This behavior is resulting in a strong temperature-
robustness of the Weiss oscillations compared to Shubnikov-de Haas oscillations
[13, 136]. Whenever the commensurability condition is fulfilled, the Fermi bands
become flat, the density of states becomes maximum and the electron velocity at
the Fermi level vanishes [134]. On the contrary, an increasing dispersion (width)
of the Landau bands results in a smaller density of states. The correlated os-
cillating band-conductivity can be calculated based on Kubo’s formulas, where
the conductivity of a periodically modulated 2DEG depends on the square of the
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Figure 4.2: Landau band dispersion in a weak periodic potential. (a) Landau band
dispersion for B = 0.5 T, Vj = 1.5 meV, and a = 100 nm according to equation 4.4.
The flat band situation is marked by the dotted lines. (b) Band width oscillations as
function of B « hw.. Fig. adapted from [132, 135].

DOS at the Fermi energy [137].

Another explanation for the appearance of Weiss oscillations in weakly modu-
lated 2DEGs can be given in a semi-classical picture, proposed by Beenakker and
van Houten [138, 139]. This is a valid approach, as long as the Fermi wavelength
Ar = 27 /kp is small compared to the potential period a, and consequently, the
electrons can be treated semi-classically [123]. The authors report a classical ana-
logue of the band-conductivity, which they call “guiding center drift resonance”.
In this picture, the commensurability oscillations can be explained by an average
E x B-drift of the center-coordinate of the cyclotron motion, where E is the
periodic potential in x-direction and B the perpendicular magnetic field. The
center of the cyclotron orbits drifts along the y-direction and the drift velocity vy
vanishes only for the 2Rc = (A —1/4)a. The experimentally observed oscillations
of the longitudinal resistivity p,. can be explained according to a Boltzmann
transport picture for an oscillating drift velocity vg.
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Figure 4.3: Magnetotransport in a weak, 2D-periodic potential. First, a 1D-periodic
modulation is probed, featuring Weiss oscillations with minima for flat bands. Subse-
quently, a second illumination with a 90° rotation is performed and the magnetotrans-
port trace features weak maxima for the commensurability condition in equation 4.6.
Fig. adapted from [133].

4.2 Commensurability features for weak 2D
modulation

The energy spectrum becomes even more complicated for 2D superlattice mod-
ulation [122, 140]. As discussed in section 3.3, a weak 2D-periodic potential
modulates the Landau level spectrum, depending on the flux ¢ = Ba? per unit
cell, and the Landau bands split into p subbands for

¢/po = a* /27> = p/q, (4.7)

This equation is an additional commensurability condition and the corresponding
energy spectrum is known as the Hofstadter butterfly.

The Landau level width, however, is modulated in a very similar way as in the
1D-periodic case (equation 4.4). In this way, the flat band condition is the same
for 1D and 2D modulation [141, 133].

Fig. 4.3 depicts an experiment of Weiss et al. on 2D-periodic potentials
(Vo < EF), created by successive holographic illumination of a high-mobility
GaAs-AlGaAs heterostructure. Again, the illumination (1D in a first step) pro-
duces additional magnetoresistance oscillations at low magnetic fields due to an
additional band-conductivity. The dashed-dotted trace in the graph displays min-
ima for the flat band condition (positions marked by arrows). Subsequently, a
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4. Commensurability features in lateral superlattices

second illumination pattern is rotated by 90° and the obtained results are plotted
in the lower trace for the 2D grid. The magnetoresistance for 2D modulation is
considerably decreased, but there is still a weak oscillating behavior according
to the commensurability condition in equation 4.6, manifesting in maxima for
flat bands. Therefore one can conclude that the band-conductivity oscillations
are considerably suppressed in the 2D-periodic case, and the observed maxima
are induced by scattering rate oscillations, displaying maxima for the flat band
condition [141, 133].

However, this mechanism seems only valid for 2D-periodic modulation in high-
mobility 2DEGs. Several different groups observed 1/B-periodic oscillations with
minima for 2Rc = (A — 1/4)a in 2D modulated samples [142, 143]. Similar
to 1D modulation, these contributions can be attributed to band-conductivity
oscillations. So commensurability oscillations in a weak 2D-periodic potential
can feature maxima or minima for the flat band condition, depending on the
mobility of the structures [123].

4.3 Strong Modulation: Antidot lattices

Several novel phenomena have been observed in antidot lattices in perpendicu-
lar magnetic fields, including quenching of the Hall effect and commensurability
peaks in the magnetoresistance [14, 144, 145]. At the magnetic fields corre-
sponding to the magnetoresistance peaks, the classical cyclotron orbit becomes
commensurate to the antidot period and encircles a specific number of antidots
and get pinned [146]. Additionally, fine quantum oscillations, superposed to the
classical features were observed in some experiments [147, 148].

Antidot lattices are a periodic array of nanometer-sized discs, etched into a
2DEG. Initially, antidot lattices have been studied intensively in high-mobility
semiconductor structures. The observation of antidot features in magnetotrans-
port experiments requires a sufficiently large electron mean free path [, compared
to the superlattice period a. Then, electron transport in the antidot array is bal-
listic and scattering is essentially induced by scattering at the etched holes rather
then impurities. A sketch of the antidot lattice and the corresponding periodic
potential landscape is depicted in Fig. 4.4. Etched antidot arrays are represent-
ing a strong superlattice potential with V, > Ep and electrons moving at the
Fermi surface are responsible for the magnetoresistance peaks.

Weiss et al. conducted measurements on GaAs-AlGaAs heterostructures,
where they compared magnetotransport traces of patterned and unpatterned
sample areas (see Fig. 4.5) [14]. There is an obvious influence of the antidot
potential on the transport properties. The most important features arise at low
magnetic fields, where two prominent peaks appear in p,,. Correspondingly, sev-
eral step-like, non-quantized features are present in the Hall resistance, similar
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4.3. Strong Modulation: Antidot lattices

Figure 4.4: Schematic of an etched antidot array. (a) Sketch of an antidot array
consisting of periodically arranged holes, etched into the heterostructure. (b) Corre-
sponding potential landscape, probed by the electrons. Electrons moving at the Fermi
energy, depicted by a semitransparent plane, are responsible for the commensurability
features. Fig. adapted from [149].
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Figure 4.5: Magnetotransport in an antidot superlattice. (a) Magnetoresistance and
(b) Hall resistance in patterned (solid line) and unpatterned (dashed line) sample
segments at 7' = 1.5 K. The arrows mark magnetic field positions where R¢/a ~ 0.5
and 1.5. Inset of (a) shows the etched antidot array. Insets of (b) depict a sketch of
the sample geometry and a magnification of the quench in p,, around B = 0. Adapted
from [14].
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4. Commensurability features in lateral superlattices

to the unpatterned device. Thus, the high intrinsic mobility of the 2DEG is
preserved, despite the relatively small antidot period of a = 300 nm. At zero
field, however, the mobility is limited by scattering off the antidots [149]. Each
peak in the magnetoresistance trace can be attributed to a commensurate orbit
around a specific number of antidots. Nevertheless, the number of peaks in the
experiment critically depends on the effective diameter d and the period a of
the potential. The larger the ratio d/a the fewer peaks are observable in the
longitudinal resistance.

Commensurability peaks are emerging at magnetic fields, where the cyclotron
orbits with radius Rc = hv/27n,/eB are matching the imposed antidot lattice.
Therefore, the most dominant peak, the so-called fundamental antidot peak, is
for 2Rc = a. However, at higher fields, where the cyclotron orbits are smaller
than the neck width a —d of the square antidot lattice, the longitudinal resistivity
drops rapidly and quantum Hall features arise.

As an explanation, the authors proposed a model based on “pinned orbits”,
where electrons running on commensurate orbits around one or several antidots
do not contribute to charge transport, and hence, peaks in the magnetoresistance
appear. This chaotic pinball model, where electrons are non-interacting spheres,
scattered by a periodic array of columns of infinite strength, is closely related to
the so-called Sinai billiard [150].

The approximation, given above, is a good one, as long as the effective po-
tential steepness is very high. Otherwise the pinball model has some weakness
in explaining specific aspects of the antidot system, e.g. the peak correspond-
ing to n = 4 antidots [151]. Numerical simulations based on classical transport
suggested that chaotic motion of electrons as an origin of the commensurabil-
ity peaks (FGK model) is more important [152]. Fleischmann et al. suggested
that not primarily pinned regular orbits, but chaotic orbits with a character close
to the periodic orbits give the largest contribution to the peaks. Actually, the
change in the volume of the pinned orbits in the phase space is not enough to
induce the pronounced antidot peaks.

Additionally, trajectories skipping regularly from antidot to antidot in the
same direction, so-called “run-away” trajectories, can contribute to the formation
of antidot features [153].
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CHAPTER b

Sample fabrication and experimental setup

The transport characteristics of graphene can be significantly improved by em-
ploying heterostructures with hexagonal boron nitride, and thus, novel phenom-
ena can be experimentally explored.

In this chapter, we want to show the key elements of the fabrication meth-
ods and subsequent patterning techniques for graphene based heterostructures.
Starting with the standard “Scotch tape” exfoliation method and characteriza-
tion of suitable graphene and hBN flakes, the main focus of this chapter will
be on the dry-transfer process we used for the fabrication of the van der Waals
heterostructures for our devices. Therefore, the transfer procedure will be intro-
duced and the advantages will be compared to the former wet-transfer method.
Additionally, we will discuss different patterning techniques that can be imple-
mented in this process and the influence of thermal annealing on the assembled
stacks. We report the advantages and versatility of few-layer graphene patterned
bottom gates, which were also published in reference [12]. In the end, the used
measurement setup will be introduced.

5.1 Mechanical exfoliation of graphene and hBN

As a first step towards hBN-graphene heterostructures, flakes of both crystals
need to be prepared and characterized. In order to get suitable flakes from both
materials, we need to employ mechanical exfoliation or chemical vapor deposition
(CVD). For a long time, CVD-grown graphene gave the possibility for large scale
applications, but its quality was limited due to defects and grain boundaries. So
exfoliated, single-crystalline graphene flakes were the material of choice for de-
vices with the highest electronic quality. Although this general statement is no
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Figure 5.1: Exfoliated graphene and hBN crystals on a Si/SiO9 substrate. (a) Optical
micrograph of a hBN flake with a thickness of several tens of nm. The Cr/Au markers
are deposited for easier identification and subsequent handling. (b) Microscope image
of graphene flakes of different thicknesses. The lowest optical contrast is for monolayer
graphene flakes.

longer true and the quality of CVD-based graphene has considerably improved
[105, 154], exfoliated graphene is still more practical and common for small scale
and customized devices. Mechanical exfoliation is based on micromechanical
cleavage of 2D bulk crystals such as graphite, hBN, MoS,, or NbSe;. The most
important requirement for the materials is a strong in-plane and a weaker out-
of-plane binding.

All heterostructures in this work were assembled with exfoliated crystals ob-
tained from natural graphite or HOPG (Highly Oriented Pyrolitic Graphite) and
hBN single-crystals, provided by T. Taniguchi and K. Watanabe [155]. There-
fore, individual layers of the material can be cleaved and put on an appropriate
substrate. As substrates for exfoliation and subsequent analysis, Si/SiOy wafers
with a specific oxide thickness (e.g. 285 nm) are commonly used. Here, the thick-
ness of the SiO, layer is critical for the optical contrast of the exfoliated crystals
and needs to be tuned properly for the observation and identification of few-layer
flakes [156]. Additionally, we use different band pass filters for the enhancement
of the contrast of thin hBN flakes.

For the exfoliation of the crystals, we start with an adequate tape (ELP BT-
150ECM, Nitto Denko Corp.), cleave the bulk crystal several times and press it on
the Si/SiO, substrate. After suitable force for enhancing the attachment between
flakes and substrate, the tape will be peeled off and leave flakes of different
thickness on the target substrate. The lateral size of the exfoliated crystals can
be as large as one millimeter for thick and hundreds of micrometers for monolayer
flakes. Fig. 5.1 shows exemplary exfoliated hBN and graphene flakes on Si/SiOs
wafers. Some of the substrates we use are pre-patterned with an array of Cr/Au
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Figure 5.2: Schematic of mechanical dry-transfer process for van der Waals het-
erostructures. A hBN flake on a freestanding PMMA membrane is brought into contact
with a graphene flake on a Si/SiO9 substrate. Strong van der Waals forces between the
2D materials allow to lift the graphene crystal, and once again, the stack is put onto a
hBN flake. Subsequently, the PMMA layer is dissolved and the encapsulated graphene
structure is finished.

markers in order to simplify the identification and the further processing of the
devices. Obviously, the markers are limiting the lateral size of the exfoliated
flakes, so we only use them for the bottom flake of any heterostructure. In this
way, we take advantage of the markers, but aren’t restricted to smaller flake sizes
in the following transfer process.

5.2 Transfer methods and 1D edge contacts

The most important point for assembling van der Waals heterostructures is to
stack the layers with the least possible contamination. Overall, there are many
different transfer techniques, utilizing various polymers, but generally we can
distinguish between a wet transfer and a dry transfer method.

During a wet transfer, the flakes will get exposed to water or solvents, which
can cause contamination and strongly decrease the properties of graphene. One
example for this process is spinning PMMA on graphene on Si/SiOy and sub-
sequent etching of the supporting substrate with KOH. After that, the PMMA
layer with graphene is floating on top of KOH and can be transferred on top of
another crystal.

Another method is the layer-by-layer transfer, which allows to stack one layer
after another, and processing of each of them can be done sequentially. On the
one hand, this approach offers a high flexibility in device geometries, but on the
other hand it is very time-consuming, and even worse, all layers of the hybrid
structure get exposed to polymers during stacking and patterning.

Obviously, these stacking methods are not perfect and most groups are using
a dry van der Waals transfer technique, yielding higher sample quality, now. In
our case, we use a co-laminating and restacking method for the assembly of our
devices. The general idea is to exfoliate the upper flake of the future heterostruc-
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Figure 5.3: Transfer setup for heterostructures and assembled hBN-graphene-hBN
stack. (a) - (c) One of our transfer setups that can be easily integrated in an optical
microscope. Fig. adapted from [157]. (d) Optical micrograph of the first transfer step,
showing the top hBN crystal on PMMA in contact with graphene on a Si/SiOy wafer.
(e) Microscope image of a graphene stack, encapsulated between hBN, on Si/SiOs.
The black line is highlighting the graphene area.
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5.2. Transfer methods and 1D edge contacts

ture onto a stack of polymers consisting of a sacrificial layer (PMGI in our case)
and a PMMA transfer layer. Using this stack, we can pick-up further crystals.
The transfer process is depicted in Fig. 5.2. First, we search for suitable hBN
flakes on the polymer stacks with optical microscopy and band pass filters for
enhanced contrast. Accordingly, we identify proper graphene and bottom hBN
flakes, exfoliated on a Si/SiO, wafer. Since we want to avoid adsorbates such as
water on our crystals, it is very important to start the transfer procedure right
after cleaving the graphene and hBN flakes.

Starting with the top hBN on the polymer stack, we dissolve the sacrificial PMGI
layer in photoresist developer. The highly hydrophobic PMMA layer is then
floating on top of the water bath. After fishing the film with a glass slide, the
suspended PMMA /hBN stack is inverted and mounted on an optical microscope.
By using the micro manipulator of the microscope, the position of the hBN flake
can be located and precisely aligned with respect to the graphene crystal located
right beneath the glass slide. The graphene chip is heated up to approximately
80 °C during the transfer in order to support the adhesion of the PMMA, and
alignment precision can be as good as a few pum. After attaching the crystals
to each other, the PMMA layer is slowly peeled off the Si/SiOy chip and due
to strong van der Waals forces between the two flakes, graphene can be lifted
from the substrate. Similar to before, we repeat the procedure by lowering the
hBN /graphene stack on the PMMA layer to a target hBN flake.

The assembled stack is heated up once more, and the PMMA layer is cut from the
supporting glass slide, leaving the encapsulated graphene heterostructure and the
polymer on top of the target wafer. Finally, the PMMA film is dissolved in ace-
tone and the sample is annealed in flowing forming gas (Ny/Hsy) at 320 — 400 °C
for several hours to remove resist residues and relax strain in the hybrid structure.
One of our microscope-based transfer setups and the stacking of hBN-graphene
hybrid structures, described above, can be seen in Fig. 5.3.

As discussed in section 3.3, hBN and graphene can form a rotation-dependent
moiré pattern in heterostructures with well-aligned crystals. Unfortunately, it is
often really hard to achieve very small rotation angles, and we needed several
attempts to get a few stacks that were showing the moiré superlattice struc-
ture. In many cases it is difficult to identify crystallographic edges of hBN and
especially of graphene, and without more complicated techniques (e.g. Raman
spectroscopy), we cannot clearly distinguish between zigzag and armchair edges
of hexagonal crystals.

Fig. 5.4a,b depicts the transfer of a hBN-graphene-hBN structure with almost
perfect rotational alignment of two crystals (¢ < 1°).

After the transfer procedure, the stacks undergo further fabrication steps.

Considering the encapsulation of graphene between two hBN flakes, any environ-
mental influences, such as residues from patterning, can be avoided. While the
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Figure 5.4: Micrographs of a hBN-graphene heterostructure with crystallographic
alignment of two flakes. (a) Van der Waals pick-up of graphene with a hBN flake on
PMMA. The black highlighted edges form angles of 120° and follow the crystallographic
edges of the hBN flake. One edge of the graphene flake (red) is aligned to an edge of
the hBN crystal (see inset). (b) Assembled heterostructure, with graphene aligned to
the top hBN flake and randomly rotated with respect to the bottom hBN. (c¢) Finished
hybrid structure after stacking, etching of the Hall bars and metallization of the 1D
side contacts.
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5.3. Thermal annealing of van der Waals heterostructures

van der Waals pick-up allows a fast and convenient assembly of hybrid structures,
the subsequent etching and contacting methods are highly non-trivial. Wang et
al. reported a novel contact geometry in which they metalized 1D edge contacts
to the 2D graphene sheet [98]. Therefore, a hard mask for etching is prepared and
the whole hBN-graphene-hBN stack is submitted to CHF3/O5 or SF¢ based reac-
tive ion etching (RIE). The profile of the stack is sloped because of the isotropic
plasma etching, and subsequently, reliable 1D side contacts (Cr/Au) can be evap-
orated at the edges of the heterostructures. An equivalently patterned stack with
two Hall bar structures can be seen in Fig. 5.4c.

Obviously this method is a huge improvement, allowing to separate the layer
assembly and the further patterning steps for high-quality graphene structures.
However, there are also some disadvantages of this method, such as limits for top
and bottom gate geometries.

5.3 Thermal annealing of van der Waals
heterostructures

Any exfoliation, transfer or patterning step for hBN-graphene hybrid devices in-
evitably introduces contaminants on their surfaces, and we found electron beam
lithography and reactive ion etching to be the most critical fabrication steps. The
residues cannot be simply removed by standard solvents such es acetone and iso-
propanol, and are obstinately remaining on the samples. As discussed before, this
describes a problem for non-encapsulated hBN-graphene stacks, where graphene
is exposed to any environmental influences.

A commonly used attempt to remove organic fabrication residues is heat treat-
ment at moderate temperatures of 300 - 350 °C in Ar/Hy or No/H, atmosphere
[35]. However, we found this recipe to be ineffective at removing residues for
many of our assembled heterostructures. This observation is in line with re-
ports of other groups that performed Raman spectroscopy before and after the
annealing cycles [158; 159].

Garcia et al. observed a clear evidence that annealing in Ar/H, atmosphere
at 350 °C effectively removes adhesive residues from exfoliation, but organic con-
taminants remain virtually untouched . They used different atmospheres in their
experiments and claimed that the annealing process is purely thermal at these
temperatures and does not involve chemical reactions, introduced by the gaseous
environment. However, at more elevated temperatures (500 °C), they see a strong
influence on the atmosphere, with significantly better results for Ar/O, treatment
[158].

Similar to this observation, Gong et al. report selective etching of polymer
residues in oxidative atmospheres. In their experiments CO, annealing at 500 °C
outperforms other commonly used recipes, because of its moderate oxidative
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strength to remove organic contaminates, while preserving the quality of the
underlying graphene sheet [159].

Contamination of graphene can be mostly eliminated by employing the van
der Waals stacking method for encapsulation of graphene. Nevertheless, anneal-
ing is an important fabrication step, performed right after the assembly of the
heterostructure. While heat treatment cannot remove residues from the interfaces
of the crystals, we often see a congregation of sparsely distributed contaminants
after annealing. A heat treatment of 350 - 400 °C for several hours is support-
ing the self cleansing mechanism of the stack, forming larger pockets of trapped
residues and wide areas of perfectly clean interfaces [104]. We cannot make a
positive statement on the influence of annealing on the distribution of strain in
our heterostructures, but we often observe a movement or extinction of wrinkles
in the hybrid structure during heat treatment.

In addition to the improvement in quality, the annealing procedure can induce
further alterations to a hBN-graphene heterostructure. Annealing can cause a
thermally induced rotation of graphene on hBN, where twisting angles of ¢ = 0°
and ¢ = 30° are two thermally stable configurations [160]. This method is a
convenient approach for the fabrication of hybrid structures with imposed moiré
superlattice. However, the cleanliness of the interface, the amount of trapped
residues, and the flake sizes are influencing the thermally induced rotation.

5.4 Fabrication of graphene patterned bottom
gates

In graphene, a local potential modulation can be imposed by various approaches,
including chemical gating [161], geometrical variation [162], or patterned gate
electrodes. Local gating can induce pn-junctions in graphene and generate unique
effects such as Klein tunneling [83], Klein collimation [88], and lensing behavior
[79].

Many of the early experiments with density-modulated graphene were rely-
ing on metallic top gates, separated from graphene by an evaporated insulating
layer such as alumina. However, the electronic quality of graphene was signifi-
cantly decreased by the deposited dielectric, fabrication residues and impurities
(163, 12]. All these factors became negligible with the introduction of encap-
sulated hBN-graphene heterostructures. Nevertheless, the fabrication of metal
top gates remained challenging, because usually the heterostructures require ad-
ditional side-passivation steps to prevent shortcuts between the bare graphene
edges and the metallic top gate. Furthermore, the stability and reproducibility
of stripe-like metallic gates strongly depends on their dimensions, especially on
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Figure 5.5: Few-layer graphene patterned bottom gate and subsequent stacking of
the device. (a) Schematic of the fabrication steps for a device employing a multilayer
graphene PBG. First, the few-layer graphene on the Si/SiOs wafer gets patterned
with a hole array, using standard EBL and RIE. After that, an encapsulated graphene
structure is transferred on top of the structured graphene, and further patterning steps
are done. In this geometry, both gates, the global Si and the local graphene gate, can
be independently contacted and tuned. (b) AFM image of a graphene PBG with a
period of @ = 150 nm and diameter d = 75 nm of the 2D hole array. Scale bar is 1 pm.

95



5. Sample fabrication and experimental setup

their widths. While relatively wide stripes (in the micrometer scale) are stable,
narrow stripes in the range of a few tens of nanometers width tend to move on
the chemically inert hBN surface, or even rip, when deposited over the edges of
the mesa [12].

A convenient alternative for metallic top gates are local bottom gates, and
different geometries, using metals, or planar and step-like graphite, have been
reported [76, 115, 164]. While step-like metallic bottom gates are perfect for
suspended graphene devices [42, 165], their finite height induces strain to van der
Waals heterostructures, transferred on top.

Our method relies on the atomic flatness, negligible height and distinct sta-
bility of few-layer graphene as a versatile material for locally acting bottom gates
[12]. Graphene gates can be easily implemented in the commonly used transfer
methods and can be patterned to create any 1D or 2D periodic potential land-
scape, providing sharp potential steps. Furthermore, it was shown that graphite
or few-layer graphene gates provide an improvement in sample quality compared
to encapsulated graphene on SiO, by quenching the disorder potential as a screen-
ing gate. In this geometry, charged impurities at the surface of SiO, are expo-
nentially suppressed over a few Thomas-Fermi screening lengths (a few A) in the
bottom gate, and cannot influence the graphene sheet [98, 166].

Fig. 5.5a depicts a sketch of the fabrication of a device employing a 2D
periodically patterned graphene bottom gate. For the preparation of the few-
layer graphene gates, we select graphene flakes consisting of only a few layers to
minimize spatial perturbation, but to assure full screening of the global back gate
electric field. First, the multilayer graphene on the Si/SiO, wafer gets patterned
with a hole array, using standard EBL and RIE (see also Fig. 5.5b). After that, an
encapsulated graphene structure is transferred on top of the structured graphene
gate and further fabrication steps such as etching of the Hall bar and evaporation
of the contacts are performed. Similar to commonly used top gate geometries, the
structured bottom gate and the global back gate can be independently contacted
and tuned, in order to induce local potential modulation to the system.

5.5 Measurement setup

The transport measurements for our experiments were acquired in a four-terminal
geometry, using standard AC lock-in technique at low frequencies. A schematic
of the measurement setup can be seen in Fig. 5.6. The blue lock-in amplifier is
used as a voltage source and the series resistor (1 - 10 M), connected between
lock-in and sample, ensures a relatively constant AC current for the experiment.
In order to prevent Joule-heating and to preserve low electron temperatures in the
device, we apply a current of 10 nA to the Hall bar structure. Additional lock-in
amplifiers (green) can be used to independently probe the longitudinal (4-point)
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Figure 5.6: AC measurement setup for longitudinal and transverse voltage at a hBN-
graphene heterostructure in Hall bar geometry, patterned on a Si/SiO9 wafer.

Lock-in Amp.

and transverse voltage drop in the experiment. Thus, a Hall bar structure is the
perfect geometry to examine transport properties, especially in applied magnetic
fields. Typically, we use another lock-in for acquiring the 2-point voltage, but of
course the setup can be adjusted to the specific needs of each measurement. In
our experimental setups, we work with Signal Recovery 7265 lock-in amplifiers.
The charge carrier density of graphene can be tuned with a source meter unit
(Keithley 2400) by applying a DC-voltage to the global Si back gate.

For the transport experiments, we used two different *He-cryostats from Ox-
ford Instruments, which provide magnetic fields up to 14 T along the z-axis. The
cryostats are equipped with a variable temperature insert (VTI), connected to the
bath with a needle valve. Usually, the sample is not surrounded by liquid helium
and the base temperature of the system is depending on the gas pressure in the
VTI (T ~ 1.3 K). An integrated heater can be used to increase the temperature
up to 200 K.
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CHAPTER 6

Ballistic transport in hBN-graphene heterostructures

The quality of a graphene sheet is significantly influenced by the supporting
substrate and considerably limited on commonly used Si/SiOy wafers. However,
many novel transport experiments require high mobilities and large electron mean
free paths. Some interesting phenomena in high-mobility graphene include inter-
action driven quantum Hall effects, such as spin and valley quantum Hall ferro-
magnetism [6, 63, 7] and the fractional quantum Hall effect [8, 9] (see chapter
2.6.2). In graphene, strong Coulomb interactions and a fourfold spin-valley de-
generacy cause a SU(4) isospin symmetry within its Landau levels. At partial
filling of these LLs, exchange interactions can lift the degeneracy and polarize the
ground state ferromagnetically, manifesting in all integer LL filling factors outside
of the normal sequence [61]. At higher magnetic fields, quantized Hall plateaus
at fractional filling factors appear that can be associated with the formation of a
quantum liquid with topological order [21, 167].

In order to improve sample quality, we focused on hBN-graphene hybrid struc-
tures and introduced the associated transfer procedure in our lab [168]. Here, we
want to report some of our experiments on graphene on hBN and encapsulated
graphene that confirm the enhanced sample quality. We regularly observe mobil-
ities exceeding several tens of m?/Vs, giving us the possibility to examine ballistic
transport features in graphene.
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Figure 6.1: Graphene-hBN heterostructure. (a) False-color AFM image of a
graphene-hBN hybrid structure with Ti/Au contacts. (b) Resistance versus gate volt-
age of monolayer graphene at T'= 1.4 K and T' = 77 K measured in 4-probe geometry.
The inset depicts the corresponding sheet conductivities.

6.1 Improved transport properties of graphene
on hBN

Initially, we started with a wet transfer technique for the assembly of graphene-
hBN heterostructures, as described in chapter 5.2. While the mobilities were
consistently higher than on SiO,, there were many crucial fabrication steps that
had a severe impact on graphene’s quality [169, 170]. Especially reactive ion
etching leaves residues on the graphene surface and limits its mobility. So we
started to fabricate some hBN-graphene heterostructures without the critical
etching procedure, and just put contacts on top of a stripe-like graphene flake.
An exemplary device can be seen in the false-color AFM image in Fig. 6.1a. The
surface of the graphene sheet is almost free of any residues and wrinkles, and
indicates a good quality of the hBN-graphene hybrid structure.

This first impression from the AFM images can be confirmed by the evaluation
of the back gate response in our sample. Fig. 6.1b shows the 4-probe resistance
as a function of the back gate at 7' = 1.4 K and 77 K, and the inset depicts
the corresponding sheet conductivities o,. There is virtually no difference in oy
between the two curves and the carrier mobility is around 190 000 cm?/Vs. Thus,
we cannot see any temperature dependence of the mobility, at least below 77 K.
The charge neutrality point around V;, = —2.5 V and the narrow peak with a
charge carrier inhomogeneity as low as én ~ 3-10'° cm~2 indicate relatively low
residual doping and high sample quality.

If we keep the carrier density constant and sweep the perpendicular mag-
netic field, we observe clearly developed quantum Hall states in magnetotransport
measurements (Fig. 6.2a). In addition to the ordinary quantum Hall states of
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Figure 6.2: Quantum Hall ferromagnetism in graphene on hBN. (a) Magnetotrans-
port measurement at n, = 5.4-10" em™2 and T' = 1.3 K. Landau level filling factors
are labeled in blue. (b) Magnetoresistance (black) and Hall resistance (red) versus gate
voltage of the same sample. Symmetry broken quantum Hall states can be observed at
B>5T.

monolayer graphene at filling factors v = +2, +£6, £10, ..., we can report minima
in the longitudinal resistance R, and related plateaus in the Hall resistance R,,
that can be assigned to filling factors of v = +3,+4, +5. So we achieve a com-
plete symmetry breaking of the n = 1 LL at low temperatures. The symmetry
breaking of quantum Hall states starts at magnetic fields less than B = 5 T. At
B = 5T, our experiment shows pronounced dips in the magnetoresistance and
plateaus in the Hall resistance corresponding to all integer filling factors between
v =1and 6 (Fig. 6.2b).

A detailed classification of the interaction-induced IQHE states according to
their real spin structure via tilted magnetic field experiments has been done
by Young et al. [6]. They performed activation gap measurements and re-
ported an absence of an universally dominant anisotropy in graphene quantum
Hall isospin ferromagnetic states. In their experiments they observed real spin-
polarized states supporting Skyrmionic excitations, charge- or spin-density order,
and valley textured excitations for different filling factors [21].

6.2 Magnetotransport in high-mobility encap-
sulated graphene structures

One approach to increase sample quality and mobility even further is the encap-
sulation of a graphene sheet between two flakes of hBN. On the one hand, full
encapsulation of graphene provides screening from any negative environmental
influences, but on the other hand, there is still the requirement of producing
reliable contacts to graphene. This issue has been solved by Wang et al. with
their proposal of 1D edge contacts to an encapsulated graphene flake [98]. Em-
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Figure 6.3: High-mobility encapsulated graphene structure. (a) Schematic and op-
tical micrograph of an encapsulated graphene device with 1D side-contacts. Scale
bar is 20 ym. (b) Magnetotransport experiment for n, = 7-10" em™2 at 7' = 1.5 K,
featuring broken symmetry integer and fractional quantum Hall effect (blue). (c) Mag-
netoresistance and Hall conductivity as a function of gate voltage. Several fractional
states can be observed in the n = 1 LL between v =2and 5at T =1.4 K and B=14T.
(d) 4-point resistance R4yt and sheet conductivity o, measured at zero magnetic field.
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ploying this method, the layer assembly of the heterostructure can be completely
separated from the contact metallization process and most of the residues stem-
ming from processing can be avoided. Following this approach, we introduced a
dry-transfer procedure to our lab, where we started with stacking the device and
subsequently performed any further patterning steps such as lithography, reac-
tive ion etching and metal evaporation. Figure 6.3a depicts a sketch as well as an
optical micrograph of an encapsulated graphene structure with 1D edge contacts
located on a Si/SiO, wafer.

Gate sweeps at low temperatures and in the absence of magnetic fields prove
the exceptional quality of the encapsulated graphene device (see Fig. 6.3d). We
can extract a field effect mobility of x4 > 300000 ¢cm?/Vs and a carrier inhomo-
geneity of én < 3-10'° cm~2 at T = 1.4 K. The high mobility of the sample can
be confirmed with magnetotransport measurements at relatively low densities
(ns &~ 7-10" cm™2), where we get mobilities exceeding 350 000 cm?/Vs (see Fig.
6.3b). In this graph, we observe pronounced interaction-induced IQHE states
with full lifting of the four-fold degeneracy between v = 3 and 8, similar to the
experiments discussed in the section before. But what is new in this experiment,
is the development of minima in the magnetoresistance R,, in the n = 1 LL at
fractional filling factors v = % and %.

We report more fractional states in the n = 1 LL over a wide range of charge
carrier density (see Fig. 6.3c). This experiment reveals further FQHE states at
most multiples of v = % between v = 2 and 5 at 7' = 1.5 K and a perpendicular
magnetic field B = 14 T. There are pronounced dips in the longitudinal resistance
R,, at the mentioned fractional values of the Hall conductivity o, in units of
e?/h. Besides the QHE states in the n = 1 LL, we could observe indications of
fractional states in the n = 0 LL at v = % and %, but these states are not fully
developed and do not show exact quantization at the experimentally employed
temperatures and magnetic fields.

The fractional quantum Hall effect in a 2D electron gas with multiple degrees
of freedom gives the opportunity to examine the interplay between symmetry
breaking and emergent topological order. However, the four-fold isospin symme-
try and the unique valley anisotropies modify the FQHE in graphene and result
in an unconventional sequence of fractional quantum Hall states. The observation
of the FQHE in high-mobility monolayer graphene has been reported and exten-
sively described by several groups, providing insight into the interplay between
the electronic correlations and the inherent symmetries of graphene [8, 65, 9, 74].
As a consequence of the strong Coulomb interactions in graphene, the measured
energy gaps in the n = 0 and especially in the n = 1 LL are up to 10 times larger
than those reported in the cleanest conventional systems [8], and thus, are acces-
sible in conventional *He cryostats available in most labs. Finally, the appearance
of fractional quantum Hall states at moderate temperatures and magnetic fields
underlines the exceptional device quality of graphene encapsulated between hBN.
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Figure 6.4: Transverse magnetic focusing (TMF) in graphene. (a) TMF spectra
for T = 1.6 K and 80 K. For negative magnetic fields, electrons can be focused into
the detector probe, resulting in peaks in the collector resistance R.. For positive B,
electrons are moving in the other direction, eventually resulting in SAHOs at higher B.
(b) TMF spectrum at 7' = 80 K, where peaks can be assigned to first (blue), second
(green) and third (red) modes. The vertical red lines depict the expected positions
of the peaks and the top inset shows the trajectories of the corresponding modes.
(c) Schematic of TMF experiment, showing injector and collector geometry and three
different focusing modes.

Another experiment that proves ballistic transport and highlights the quality
of hBN-graphene heterostructures is transverse magnetic focusing (TMF). This
mesoscopic phenomenon, where a transverse magnetic field is used to focus elec-
trons from one probe into another one, has been employed to examine the Fermi
surface of semiconductor heterostructures [171], to study spin-orbit interaction
[172], or to detect composite fermions [173]. Taychatanapat et al. performed
TMF experiments in high-mobility graphene, where they continuously tuned the
charge carrier density from the hole to the electron regime at temperatures up to
T = 300 K [174].

The concept of TMF can be understood with Fig. 6.4c, where electrons
are injected into the 2DEG at the injector probe and can be detected at the
collector probe. In the presence of a perpendicular magnetic field B, electrons
are constrained to cyclotron orbits with radius R¢, and reflections at the edge
of the 2D system result in skipping orbit motion with focal points at integer
multiples of the 2Rc. Thus, the magnetic field By, needed to focus electrons at
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a distance L, can written as
2hk 2h\/Tng
Bf:< F)pz () P, (6.1)

where p — 1 is the number of reflections at the edge, kr is the Fermi momentum
and ng is the carrier density [174].

We use this experimental geometry to examine TMF in high-mobility en-
capsulated graphene devices. Transport measurements employing this setup are
depicted in Fig. 6.4a for T" = 1.6 K and 80 K. In this graph, we plotted the
resistivity of the collector R, which is the collector voltage V. normalized by the
injected current I; = 100 nA, as a function of the magnetic field at a carrier den-
sity of ng = 2.7-10'2 cm~2. For negative magnetic fields, the charge carriers are
focused by cyclotron motion from the injector probe to the collector probe (see
left inset), and we observe several pronounced peaks that do not match a poten-
tial sequence of SAHOs. The peaks are decreasing as the temperature increases,
potentially induced by an enhanced scattering mechanism at longitudinal acous-
tic phonons [49, 174]. If we reverse the direction of the perpendicular magnetic
field, the direction of the cyclotron motion and its skipping orbits is reversed (see
right inset), and we cannot detect a similar signal in R.. However, we observe
SdHOs for B > 1.5 T at T = 1.6 K, as expected in a longitudinal resistance
measurement. The SAHOs are no longer present at the elevated temperature of
T = 80 K (Fig. 6.4b), but the peaks originating from TMF into the collector
probe are more robust in temperature and remain clearly visible. Whenever the
injected electrons are focused into the collector probe, V. builds up, and we can
assign the TMF peaks to different modes according to the formula for By, shown
above. The first and most dominant peak (blue) corresponds to p = 1, where
electrons are directly focused from the injector to the collector, whereas the sub-
sequent peaks highlighted in green and red are reflected once and twice off the
graphene edge, respectively. Here, the amplitude of each peak is lower than the
last one by the probability of diffuse scattering. The vertical red lines in the
graph mark the expected magnetic field position B of the different TMF modes
and are nicely matching the experimental data. Considering the carrier mobility
of i > 200000 cm?/Vs at the relevant density, we can deduce an electron mean
free path of l,,r, > 3.5 pm, which is in line with the observation of TMF modes
in our experiment.

6.3 Conclusion

All in all, we showed that our stacking procedure for hBN-graphene heterostruc-
tures is mature and consistently yields high-quality devices with considerably
enhanced properties compared to graphene on Si/SiOs substrates. We examined
the symmetry-broken integer as well as the fractional quantum Hall effect in our
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magnetotransport experiments at 7' = 1.4 K. Moreover, we observed several ro-
bust TMF peaks in our measurements on high-mobility graphene at 7" = 1.6 K
and 80 K that indicate ballistic transport in the range of a few micrometers, and
validate the high quality and low inhomogeneity of encapsulated hBN-graphene
hybrid structures.
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CHAPTER [/

Magnetotransport in graphene antidot lattices

Graphene nanostructures have been studied intensely over the last years and
enormous experimental progress has been achieved. However, while the bulk
carrier mobility in graphene was significantly improved by the introduction of
graphene-hBN heterostructures, any subsequent nanopatterning procedure can
add extra damage to graphene and drastically degrade its intrinsic properties.

In this chapter and reference [10]*, we show that full encapsulation of graphene
by hBN protects the graphene sheet in a top-down nanofabrication scheme. We
demonstrate the high sample quality by preparing graphene-based antidot lat-
tices, which exhibit a nice realization of classical dynamics in the probed magne-
toresistance. We report pronounced commensurability features stemming from
ballistic orbits around one or several antidots in etched lattices with periods
down to 50 nm. Unique to graphene nanostructures, the regime of very small
scale modulation is accessible. This fact allows us to explore the boundary be-
tween the classical and the quantum transport regime, as the Fermi wavelength
of the electrons approaches the smallest length scale of the artificial potential.

In the end, we go beyond our publication [10] and discuss related theoreti-
cal studies for ballistic transport in graphene antidot lattices and their explicit
consistence with our experimental results [151, 11].

! Most of the experiments and the relevant discussion shown in sections 7.1 - 7.3 were adapted
from our publication: A. Sandner et al., Nano Lett. 15 (2015)
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Figure 7.1: Graphene-hBN heterostructure with EBL-patterned antidot lattice. (a)
Optical micrograph of a finished Hall bar structure, etched out of a hBN/graphene/hBN
heterostructure and contacted with Cr/Au leads. Scale bar is 5 pm. (b) False-color
scanning electron micrograph of a stack with imposed antidot period ¢ = 100 nm. Scale
bar is 500 nm. (c) Sketch of the antidot lattice in an encapsulated graphene structure.
The lattice period a ranges from 50 to 250 nm, and the antidot diameter d is about
25 — 30 nm. (d) The most prominent cyclotron orbits fitting into the antidot lattice.

7.1 Sample fabrication and architecture

As shown in the chapter before, graphene samples can have a very high carrier
mobility when influences from the substrate and the environment are minimized.
Employing hBN-graphene heterostructures [175] was shown to improve the car-
rier mobility [7], allowing the observation of ballistic transport [174, 176], the
symmetry-broken integer [6] or the fractional quantum Hall effect in graphene
[8]. However, nanopatterning graphene can add extra damage and drastically re-
duce sample mobility by edge disorder [177, 178, 179]. Preparing etched graphene
nanostructures on top of a hBN substrate instead of SiO, is no remedy, as trans-
port characteristics are still dominated by edge roughness [180]. While chemically
prepared graphene nanostructures [181, 182, 183] are a potential route for certain
applications, the high flexibility of a top down patterning approach is extremely
desirable.

Recently, a dry stacking technique was introduced, which allows complete
encapsulation of graphene into layers of hBN and excludes any contamination
from process chemicals such as electron beam resist [98]. Here, we show that
etching fully encapsulated graphene on the nanoscale is a convenient and gentle
approach and high mobilities can be preserved.
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To obtain embedded graphene samples, hBN /graphene /hBN stacks were pre-
pared using the dry stacking technique, patterned into Hall bar shape, and
contacted using Cr/Au [98]. In hBN/graphene/hBN samples prepared by this
method, we routinely obtained carrier mobilities in excess of g = 100 000 cm?/Vs,
showing all integer quantum Hall states starting from a few Tesla. A few samples
with mobilities of 1 ~ 300000 cm?/Vs also showed the fractional quantum Hall
effect at 7' = 1.4 K (see chapter 6). This shows that our fabrication procedure
is mature and consistently yields high sample qualities. Moreover, the samples
presented in this study had no imposed moiré superlattice potential [117, 113].
Subsequently, an antidot lattice was patterned using electron beam lithography
and CHF3-based reactive ion etching.

Fig. 7.1 shows an optical micrograph of a finished sample and a false-color
scanning electron micrograph of a sample after measuring. A sketch of the
square antidot lattice, etched into the hBN-graphene-hBN hybrid structure, is
also shown. The antidot lattice period a was varied between 50 nm and 250
nm. The antidot diameter d was lithographically defined to be about 40 nm, but
due to the conical etching profile, the actual diameter in the graphene plane is
smaller. Using SEM inspection, we estimate it to be about 25...30 nm.

7.2 Commensurability peaks in graphene
antidot arrays

Antidot lattices show a beautiful realization of classical transport in mesoscopic
systems. Furthermore, graphene antidot lattices can help circumventing the prob-
lem of the missing band gap in transistor applications [184, 185], and were even
predicted to serve as the technological basis for spin qubits [186].

To this end, we prepared antidot lattices [14] in graphene, where we observe
magnetotransport features stemming from ballistic transport. We performed ex-
periments on graphene antidot lattices [187, 188] etched into hBN /graphene/hBN
heterostructures with lattice periods going down to @ = 50 nm. In a related work,
Yagi et al. report on the observation of commensurability peaks in triangular an-
tidot lattices in graphene on hBN [131]. While they used a different patterning
scheme for non-encapsulated devices, and thus, their apparent mean free path
was smaller, they see antidot peaks in magnetotransport experiments.

In contrast to previous work on graphene on SiC [188], we can determine and
control the carrier density n, on samples with different lattice periods. Thus, we
can assure unambiguously that magnetotransport on our samples shows commen-
surability features stemming from ballistic orbits around one or several antidots.
This allows us to prove that the high carrier mobility is preserved in the nanopat-
terning step even though the zero field resistance is dominated by scattering on
the artificial nanopattern, giving an apparent reduction of the mobility.
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Figure 7.2: Transport measurements on a hBN-graphene stack with an antidot pe-
riod of 200 nm. (a) Sheet conductivity as a function of the charge carrier density at
T = 1.4 K. The linear fit gives an apparent mobility of 35000 cm?/Vs. (b) Magneto-
transport experiment. The arrows correspond to the expected magnetic field positions
of the orbits sketched in Fig. 7.1d. The fine structure in the magnetoresistance R,
is stemming from phase-coherent oscillations visible at low temperatures. (c) Gate
dependence of R, and R;, at B = 14 T, showing a pronounced v = 1 quantum Hall
plateau. (d) Magnetic field positions of the three antidot peaks scale with the square
root of the carrier density ng, confirming the classical origin of those peaks.

The small feature size of our samples also allows us to approach the region where
the classical picture of cyclotron orbits no longer applies. This classical to quan-
tum crossover is governed by the ratio between the Fermi wavelength \r of the
carriers and the dimensions of the nanopattern.

In Fig. 7.2, we show data for a sample with a lattice period of a = 200 nm.
From the gate response of the conductivity at a magnetic field B = 0, shown in
Fig. 7.2a, we extract an apparent field effect mobility of z = 35000 cm?/Vs. At
a carrier density ny = 2.3-10'2 cm™2 this corresponds to an apparent mean free
path of about [,,,5, = %\/ﬂ_ns,u = 620 nm.

Ishizaka and Ando [189] discuss the total mean free path /,,,f, in an antidot
sample with intrinsic mean free path [, and a square antidot lattice with period a
and antidot diameter d. For hard-wall antidots, they calculate the scattering cross
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section of a single antidot and evaluate the scattering length [, due to scattering
at the antidot lattice only, at B = 0: I, = 3a?/(4d). Using Matthiessen’s rule,
the total mean free path can be written as:

R -
lngp  lsc e
We estimate the antidot diameter to be d = 25...30 nm and obtain a scatter-
ing length [,. = 1000...1200 nm for the sample shown in Fig. 7.2 (a = 200
nm). Considering the measured total mean free path of [,,r, = 620 nm, we can
deduce an intrinsic electron mean free path of [, = 1300. .. 1600 nm in our system.

Magnetotransport traces of this device (see Fig. 7.2b) show pronounced peaks
2h

at field values where the cyclotron diameter 2Rc = Z5./7n, is commensurate to
the square antidot lattice. The peak belonging to 2Rs = a, the fundamental
antidot peak, is most prominent. Additional peaks appearing at lower fields cor-
respond to orbits encircling 2 and 4 antidots [14] (see Fig. 7.1d), confirming a
mean free path which spans several lattice periods. While in a simple picture only
the unperturbed orbits encircling the antidots are responsible for the magneto-
transport features, a more detailed analysis based on the Kubo formula shows
that velocity correlations in the chaotic trajectories, which occupy the largest
part of the phase space, result in the magnetoresistance peaks [152, 190]. Most of
the orbits therefore hit the antidot edges several times within a mean free path.
Hence, the visibility of the antidot peaks not only proves a high bulk mobility,
but also shows that scattering at the edges does not cut off the trajectories and
we can conclude that the high carrier mobility also survives after nanopatterning.

At higher fields, the cyclotron diameter 2R is reduced below the neck width
a — d in between the antidots. We can observe Shubnikov-de Haas oscillations,
eventually resulting in a well-defined quantum Hall effect. At B = 14 T we
clearly observe the v = 1 plateau, which again shows the high sample quality
(Fig. 7.2c). We evaluated the carrier density dependence of the magnetoresis-
tance peaks corresponding to orbits around 1, 2 and 4 antidots (Fig. 7.2d) and
found that the peaks were always well described by a square root dependence
of the cyclotron diameter on the carrier density down to n, = 3.2-10* cm™2.
Quantitatively, we confirmed the formula for the cyclotron diameter for graphene
given above, which contains spin and valley degeneracy.

Fig. 7.3a shows the magnetoresistance of a sample with ¢« = 100 nm at a
carrier density of ny = 2.8-10'2 cm~2. The apparent Hall mobility at this density
is about = 8000 cm?/Vs. Again, scattering at the antidot potential limits the
apparent mobility [189], but the intrinsic mobility is higher as we clearly observe
magnetoresistance peaks for n = 1,2, 4 antidots. Also, the v = 1 quantum Hall
state is visible in this sample, again indicating a higher intrinsic mobility. Ishizaka
and Ando studied how the visibility of the higher order antidot peaks depends
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Figure 7.3: Magnetotransport data taken on a sample with ¢ = 100 nm. (a) The
three pronounced peaks in R, correspond to electron orbits around 1,2 and 4 antidots.
(b) Magnetoresistance measured at similar electron and hole density at 7' = 80 K. Both
graphs are virtually identical, proving the identical potential profile for electrons and
holes.

on the mobility [190]. From their data, we estimate that the intrinsic mean free
path must be at least 400 nm, well in excess of the apparent mean free path of
160 nm.

The good visibility of the n = 2 peak confirms the small aspect ratio d/a < 0.3
[190], in agreement with our SEM analysis and also with the onset of the well-
defined Shubnikov-de Haas oscillations in our magnetotransport data. All these
approaches give an antidot diameter of d = 25...30 nm.

In experiments in GaAs based antidot lattices it was found that due to deple-
tion at the antidot boundaries, the potential can be very soft and small lattice
periods are hard to realize. In our case the data compares well to hard-wall po-
tential lattices in GaAs, which could be realized in GaAs only at much larger
lattice periods [14]. We also compared data for similar carrier densities in the
electron and hole regime in Fig. 7.3b and found the graphs to be virtually iden-
tical. This proves that there is no edge doping at the antidot boundaries, which
would have led to different potential shapes in the electron and hole regime due
to Fermi level pinning at the edges.
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7.3 'Transport characterization of the low
density regime

Now let us discuss the transition between the quantum and the classical transport
regime at low carrier densities. In GaAs-based heterostructures, the smallest
lattice period realized so far was a = 80 nm, and required critical tuning of the
etch depth [191]. In contrast, due to the lack of a depletion region in graphene,
the fabrication of samples with a very small lattice period is less critical, and
the carrier density is widely tunable. Also, due to valley degeneracy, the Fermi
wavelength in graphene A\p = 2\/7% is a factor of v/2 larger than in GaAs based

2DEGs at the same carrier density. Thus, we can explore the transition from
the semi-classical to the quantum regime [192], where a description in terms of
classical orbits is no longer justified. In the samples with a < 100 nm we are able
to study this transition. Fig. 7.4a shows the disappearance of the main antidot
peak in a sample with a = 75 nm as the carrier density is lowered, making Ag
longer. We find that this peak is only visible at densities above n, = 4.3-10'!
cm ™2, corresponding to A\r = 54 nm. Also, in two samples with @ = 100 nm,
we observe that the main antidot peak becomes visible for densities larger than
ns = 2.2x 10" em™2, which corresponds to Ap = 75 nm. In a sample with a = 50
nm, we observed a weak antidot peak only at ny = 2.5 X 10 ecm™2 (\p = 22
nm). To be in the classical limit of a quantum system, the Fermi wavelength must
satisfy a condition ’Q\—f; < [ [193], where [ is a typical dimension of the system.
In our case, the neck width a — d of the constriction between the antidots is the
shortest length scale in the problem, and we find that when A\p ~ a — d the
classical regime sets in and the antidot peak becomes visible.

The fact that the antidot peaks disappear at low densities can not be at-
tributed to a relative increase of disorder such as deviation of the position and
diameter of the antidots in our system, since we see well defined features with-
out any deviation at higher densities. The suppression of the commensurability
peaks can be either due to a limited mean free path or the breakdown of the
classical picture. In Fig. 7.2d (lattice period a = 200 nm) all the antidot peaks
disappear at roughly the same magnetic field, B ~ 0.5 T (where uB exceeds
some constant), but different carrier density. This behavior is clearly governed
by a limited mean free path. In contrast, in the sample of Fig. 7.4a (a = 75 nm),
we find that the classical features at both B~ 1T and B =~ 2.5 T disappear at
the same carrier densities, making a Ap-driven scenario more realistic.

Finally, at low densities, we can observe a weak localization (WL) feature at
low temperatures: a peak in the magnetoresistance at B = 0 (see Fig. 7.4b).
Using a standard analysis for WL in graphene [194] that we employed in earlier
work on graphene antidot lattices on SiO9 [187], we extracted the phase coherence
length Ls. For the sample with ¢ = 100 nm (same as in Fig. 7.3a) we found it
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Figure 7.4: Transition between classical and quantum regime at low densities. (a)
R,, data of a device with ¢ = 75 nm at very low densities, at the transition into the
regime of classical transport. The densities are given in units of 10 e¢m™2, shown
next to the corresponding graphs. The expected position of the fundamental antidot
peak is marked with a triangle for each density. As the carrier density is decreased,
the antidot peaks disappear. Inset: Sketch of the Fermi wavelength corresponding to
ns = 4.3-101 em~2. (b) Weak localization (WL) peak in a sample with a = 100 nm,
taken at ng = 1.3-10'" cm™2. There is no commensurability peak visible. (c) Phase
coherence length L, extracted from the WL fits of a sample with ¢ = 100 nm at
different low densities and 7' = 1.4 K. The phase coherence length exceeds the lattice
period, indicating that the etched boundaries do not induce severe phase-breaking.

to be between 120 nm and 300 nm (see Fig. 7.4c). It clearly exceeds the lattice
period, unlike in graphene antidot samples on SiOy where L, was significantly
below a [187]. We therefore again conclude that nanopatterning of embedded
graphene leads to greatly reduced scattering at the sample edges.

7.4 Discussion of related simulations for graphene
antidot lattices

The experimental observations in graphene antidot lattices, discussed in the sec-
tions before, were reproduced with two different theoretical approaches by Power
et al. [11] and Datseris et al. [195], exhibiting a striking agreement with our
results.

Power and coworkers performed large-scale quantum mechanical transport
simulations of graphene antidot devices, employing a fully atomistic approach,
and explain the mechanisms standing behind the commensurability features [11].
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Figure 7.5: Comparison of our experiment with a simulation by Power et al. (a) Ry,
versus magnetic field B, normalized by the magnetic field position of the fundamental
peak By, from a Hall bar simulation for a size-reduced graphene antidot system with
antidot diameter d =~ 10 nm and separation ¢ ~ 26 nm at A\p =~ 3 nm < a,d. The
three modified commensurability peaks (C1 2 3) and the modified quantum Hall regime
(M) are marked with red arrows. (b) Our experimental results for a lattice period of
d = 100 nm, similar to the data shown in Fig. 7.3a. An excellent match of both graphs
can be noted. Fig. adapted from [11].

Therefore they considered a six probe Hall bar structure, built by a 100 nm
wide graphene zigzag nanoribbon and six external leads consisting of semi-infinite
graphene nanoribbons. The reduced size, compared to our experiment, is also
reflected in the smaller lattice period of a ~ 26 nm and an antidot diameter of
d = 10 nm, and is necessary to conduct the simulations (=~ 750000 — 950 000
atoms). In this way, they could map the longitudinal and the Hall resistances in
the composed multi-terminal Hall bar system. A transport simulation with an
exceptional agreement of the commensurability peak positions (C}233), as well as

their relative magnitudes with our experimental results (same data as shown in
Fig. 7.3a) is depicted in Fig. 7.5.

By examining the local current flow in the system, they are able to explain the
appearance and the mechanisms behind the commensurability peaks in the mag-
netoresistance. On the one hand, the two highest field peaks around n = 1 and
2 antidots are induced by scattering between localized states around individual
antidots, following a generalized picture of skipping orbits. On the other hand,
higher order peaks can be understood with the migration between quasi-pinned
orbits around groups of antidots, where scattering at neighboring antidots plays
an important role.

Datseris et al. follow a different approach, establishing a classical transport
theory of chaotic trajectories in the present antidot lattice [195]. They numer-
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Figure 7.6: Comparison of resistance simulations R by Datseris et al. with our
experimental results R(€) for a graphene antidot lattice with ¢ = 100 nm (same data
as plotted in Fig. 7.3a). There is a striking agreement of simulation and experiment,
featuring distinct commensurability peaks. By = 3.7 T. Fig. adapted from [195].
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Figure 7.7: Potential contour plot of an antidot system with different kinds of orbits.
(a) Unperturbed system and (b) antidot system with boundary roughness. Black (an-
tidots) being a potential U > 1 and dashed lines being U = 0. Numerically integrated
orbits (chaotic, skipping, trapped) for B = By and pinned orbits for commensurate
fields are sketched in the antidot lattice. Fig. adapted from [195].
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ically reproduced our experiment with ¢ = 100 nm (depicted in Fig. 7.3a),
using suitable quasi-classical electron dynamics. The authors report a striking
agreement of their calculations with our experimental data, featuring surpris-
ingly robust commensurability peaks at low magnetic fields (see Fig. 7.6). These
magnetoresistance simulations are using the employed experimental geometry, a
rather smooth antidot potential (¢ = 0.2) and a short impurity scattering time
7; = 2.5. Fig. 7.7 shows a potential contour plot for an unperturbed antidot sys-
tem and a system with boundary roughness. Different trajectories are sketched in
this graph, corresponding to pinned orbits around a certain number of antidots,
skipping orbits and trapped, chaotic orbits. Datseris and coworkers found that
details of the exact potential shape along with possible boundary roughness do
not play an important role for formation of the antidot peaks.

Moreover, chaotic dynamics and nonlinear resonances in the phase space are
accounted for the formation of distinct antidot peaks, although the mean free
time due to impurity scattering is short compared to the fastest time-scales of
the chaotic dynamics. The distinguished robustness of the antidot features can
be explained in terms of a reduced collision time, induced by nonlinear resonances
in the chaotic phase space [195].

7.5 Conclusion

In summary, we prepared antidot lattices in stacks of hBN/graphene/hBN and
observed well-developed commensurability features in samples with lattice peri-
ods from a = 50 nm to 250 nm. This proves that the etching procedure preserves
the high sample quality. In the short-period graphene samples, we could observe
the disappearance of classical features when the Fermi wavelength \rp exceeds
a — d, marking a classical to quantum transition. Moreover, our experimental
results were nicely reproduced by two different theories by Datseris et al. and
Power et al., employing a quasi-classical [195] and a fully atomistic approach [11],
respectively.

Our experiments pave the way for well-controlled, high-quality nanodevices
for the investigation of novel phenomena in graphene. For example, the recursive
Hofstadter spectrum and magnetic band gap closing were predicted for triangular
antidot lattices in graphene [196, 197] and are experimentally accessible, now.
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CHAPTER 8

Interplay between moiré and antidot superlattice potentials

Antidot lattices exhibit a beautiful realization of classical transport in mesoscopic
systems, where commensurability features arise from the correspondence between
nano-patterned feature size and electron cyclotron orbits [11]. Recent progress in
fabrication procedures allowed the observation of pronounced commensurability
peaks in hBN-graphene antidot lattices [10, 131].

However, graphene coupled to hBN exhibits a rotation-dependent moiré pat-
tern, acting as a lateral superlattice structure with unusual electronic dispersion
and high electron mobility in highly-aligned hBN-graphene van der Waals het-
erostructures. The electronic spectrum in these hybrid structures can be explored
by tuning the carrier density, approaching moiré miniband edges and saddle-point
van Hove singularities (VHSs) [198, 199].

In this chapter, we study the interplay between a moiré and an imposed anti-
dot superlattice potential and their influence on magnetotransport experiments.
We characterized several highly-aligned moiré superlattices prior to the antidot
patterning and compare the results to measurements achieved for the same stacks
after the antidot etching procedure. We observe a gradual suppression of the clas-
sical commensurability features by approaching the satellite Dirac points of the
moiré potential. There is a breakdown of cyclotron motion near the VHSs and we
do not see a recurrence of the commensurability peaks at even higher densities,
beyond the singularities. Moreover, the classical features in our experiments are
considerably superposed with 1/B-periodic oscillations, a phenomenon which has
not been reported for antidot lattices in graphene or conventional 2DEGs.

79



8. Interplay between moiré and antidot superlattice potentials

8.1 Design and device preparation

Employing fully encapsulated graphene was shown to improve the carrier mobility
[98], and subsequent nanopatterning steps in a top-down fabrication scheme do
not drastically degrade the sample quality (see chapter 7). Moreover, etching en-
capsulated graphene on the nanoscale is a convenient and gentle approach where
high mobilities can be preserved [10]. For the assembly of our hBN-graphene het-
erostructures we used a dry transfer technique inspired by Dean et al. and Wang
et al. [7, 98] (see section 5.2 for more details). Since we wanted to prepare hBN-
graphene heterostructures with imposed moiré superlattice [111, 115, 117], an
adequate choice of exfoliated flakes and an appropriate alignment of the different
crystals during the stacking procedure was indispensable. In order to succeed, we
used hBN and graphene flakes with straight edges and aligned them with respect
to each other, guessing they were following crystallographic edges. Next, the as-
sembled stacks were patterned into Hall bar shape and contacted with 1D Cr/Au
side contacts. For the confirmation of an imposed moiré potential, we conducted
preliminary transport experiments and excluded all stacks without superlattice.
All the other structures were patterned with an additional antidot array, using
EBL and RIE [10]. This fabrication sequence could be justified by the relatively
low yield of stacked heterostructures featuring a distinct moiré potential. All in
all, we prepared four samples with moiré and antidot lattices and examined the
interplay between both superlattice potentials in magnetotransport experiments.

Fig. 8.1a depicts a sketch of the device layout, featuring a moiré as well as
an antidot superlattice, and Fig. 8.1b shows an optical micrograph of a finished
sample, etched into Hall bar geometry and contacted with Cr/Au leads. The
antidot lattice period a in our experiments was varied between 60 nm and 250 nm
and the diameter d could be estimated to be about 25...30 nm.

a moiré and antidot

Figure 8.1: Device geometry of a sample with moiré and antidot superlattice.

(a) Sketch of the sample layout with etched antidot array in a hBN-graphene-hBN
heterostructure with moiré potential. (b) Optical micrograph of such a finished hBN-
graphene-hBN hybrid structure with Cr/Au metallization.
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8.2 Transport measurements on graphene with
moiré and antidot potential

Lateral periodic superlattices were shown to generate a quantized energy spec-
trum consisting of discrete bands. The lateral potential induces a Landau band
dispersion over a reduced Brillouin zone and interesting transport phenomena
can be experimentally observed. Artificial superlattice structures, subjected to a
magnetic field, have been studied intensively in semiconductor heterostructures
[13, 14] and recently in graphene [10, 131]. These experiments revealed pro-
nounced commensurability features arising from the interplay of the magnetic
miniband structure and the periodic superlattice potential.

However, graphene-hBN heterostructures give the possibility for another, well-
defined and periodic superlattice potential. Primarily, hBN has been used as a
supporting substrate for high-mobility graphene structures [7], but scanning tun-
neling experiments on highly-aligned hybrid structures suggested the formation
of a superlattice structure [97, 200]. The periodic potential, imposed to the elec-
trons in graphene, is generated by the hexagonal moiré pattern resulting from
incommensurability and misalignment of both crystals [199, 198, 118]. Several
groups conducted magnetotransport measurements, employing moiré superlat-
tice potentials in graphene heterostructures [117, 113, 115] and experimentally
approached the Hofstadter butterfly [122]. In 1976 Douglas Hofstadter theoreti-
cally considered electrons, subjected to a periodic electrostatic potential as well
as a quantizing magnetic field, and his calculations led to a self-similar recursive
spectrum, known as the Hofstadter butterfly (see section 3.3).

Here, we want to discuss the interplay between an artificially patterned, rect-
angular antidot potential and a hexagonal moiré superlattice structure and report
their influence on transport properties in graphene. Since the potential period-
icity of the moiré (A ~ 12...14 nm) and the antidot lattice (a = 60...250 nm)
differ significantly, we expect commensurability features that can be assigned to
one of both potentials. All heterostructures were probed in a *He cryostat at low
temperatures, employing a standard Lock-in setup at low frequencies.

8.2.1 Characterization before the antidot etching

Before the patterning procedure of the antidots, we performed a preliminary anal-
ysis of the transport properties of the assembled stacks. An easy and convenient
way to assure an imposed moiré potential is conducting a back gate sweep. By
tuning the carrier density one can move through the superlattice spectrum and
approach additional satellite Dirac points in the case of a sufficiently large moiré
wavelength .

Fig. 8.2 shows the low-temperature gate response of one of our highly-aligned
hBN-graphene-hBN heterostructure and a candidate scenario for a corresponding
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Figure 8.2: Device characterization of a graphene moiré superlattice. (a) Gate re-
sponse of the longitudinal resistivity R4y with the main and secondary Dirac peaks for
a moiré superlattice in graphene at 7' = 1.3 K. We calculate a rotation angle of ¢ < 1°
between the hBN and graphene lattice. (b) Miniband structure of a graphene-hBN
superlattice, as calculated in [198, 199]. Equipotential contours are shown and the
dashed contours are the energy levels of saddle-point VHSs. Fig. (b) adapted from
[199].

miniband structure [198], adapted from reference [199]. In this sketch relevant
minibands in the conduction and valence band are labeled and equipotential
contours are shown. The satellite peaks in the gate sweep are consistent with
a decrease in the density of states at the superlattice Brillouin zone band edge
[113, 111]. Assuming a filled band model, where one miniband contains four
electrons per unit cell (two-fold spin and valley degeneracy), we can deduce the
moiré wavelength A and the rotation angle ¢ between the graphene and the hBN
crystal from the gate sweep experiment (see equation 3.5). Using this assumption,
we extract A = 13.7 nm and ¢ < 1° for our sample.

The evolution of the magnetoresistance Ry, as a function of the magnetic field
B and the back gate voltage V, is plotted in Fig. 8.3. Here, Fig. 8.3a is depicting
the experiment for the moiré superlattice before patterning of the antidots. In a
conventional graphene quantum Hall system the Landau fan originates from the
Dirac point and follows straight lines, tracking minima in the longitudinal resis-
tance and plateaus in the Hall resistance [113]. This behavior can be observed in
our experiments, too. However, the imposed moiré potential induces secondary
Dirac points (ns = £ng, where ng = 4/A corresponds to 4 charge carriers per
moiré unit cell) and secondary Landau fans emerge. Intersections of the Landau
levels result in third-generation neutrality points at finite fields [115, 201].
Several groups have intensively studied magnetotransport traces in moiré super-
lattices at high fields [117, 115, 113] and reported a series of additional, anoma-
lous QHE states besides the usual sequence. The anomalous quantum Hall fea-
tures were precisely characterized and associated to spectral gaps in the fractal
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Hofstadter-like spectrum.

8.2.2 Characterization after the antidot patterning

Fig. 8.3b shows the corresponding color plot of the magnetoresistance Ry, for
the same sample after etching of the antidot lattice (¢ = 100 nm). Both graphs
look very similar and the Landau fans, originating from the main and secondary
Dirac points, are clearly visible. The main difference, resulting from the etching
procedure of the antidots, is the blurring of the quantum Hall features. For
comparability, both plots use the same scaling for R4,. The etched voids in the
graphene plane are acting as additional scatterers and the longitudinal resistance
is increased. However, the used scaling and the interpolation procedure does not
allow us to report any indications for commensurability features arising from the
antidot lattice.

Hence, we want to focus on selected magnetotransport traces and discuss the
influence of the moiré as well as the antidot superlattice potential on the trans-
port properties in our experiment. Fig. 8.4a compares magnetoresistance traces
of a device with moiré potential and one without for a similar carrier density of
ns = 2.0-10'2 cm~2. Both samples were patterned with a rectangular antidot
array with a = 100 nm. The blue curve for the device without moiré superlattice
shows distinct commensurability features and we can assign the antidot peaks
to electron orbits around n = 1,2 and 4 antidots. At higher fields, where the
cyclotron diameter 2Rs = f—g mn, is reduced below the neck width ¢ — d in be-
tween the antidots, we observe pronounced quantum Hall features [10]. However,
things seem to be different for the sample with moiré potential (black curve). We
can still identify a maximum in R,, that we can attribute to n = 1 and probably
there is a weak one for n = 4 at lower fields. But obviously, the commensurability
peaks are superposed with additional 1/B-periodic oscillations. An analysis of
the periodicity and the density-dependence of these oscillations suggests emerging
Shubnikov-de Haas oscillations (see appendix C for details). Most likely, SAHOs
are present down to low fields and superposed to the semiclassical features.

The same observation can be made in Fig. 8.4b, where low temperature
magnetotransport experiments for a sample with antidot and moiré potential
are depicted. For the relatively low density related to a back gate voltage of
Vy = +10 V, we see a pronounced fundamental antidot peak for 2R = a and
a set of weak SAHOs at fields even below the peak. Similarly, there are com-
mensurability peaks for n = 1 and 4 in the measurement with V;, = +25 V (see
arrows marking the expected field positions). However, the additional oscilla-
tions are more prominent and considerably covering the semiclassical features.
We recognize a distinct density-dependence of the 1/B-periodic oscillations in
this graph, making a Brown-Zak-type (BZ) origin unlikely [202, 203]. BZ oscilla-
tions feature a 1/B-periodicity independent of the carrier density ns and emerge
most profoundly at high 7" [201]. The minima in the magnetoresistance R,, can
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Figure 8.3: Color plot of the magnetoresistance Ry, as a function of magnetic field B
and gate voltage V; for a graphene moiré superlattice before and after antidot pattern-
ing. (a) Experiment before antidot etching. Scaling from white to red; gaps appear as
white/bright lines. We observe the fractal spectrum with the main Landau fan in the
middle and two additional ones originating from the satellite Dirac points. (b) Similar
experiment on the same device after patterning of a rectangular antidot array with
lattice constant ¢ = 100 nm. The color plot is blurred compared to the one without
antidots, but we can still identify the different Landau fans. For comparability, we used

the same scaling for R4y, in both graphs.
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Figure 8.4: Magnetotransport experiments in graphene with moiré and antidot super-
lattice potentials. (a) Magnetoresistance traces of one device with moiré superlattice
and one without. Both samples were patterned with a rectangular antidot lattice
with ¢ = 100 nm. The experiments were performed with the same carrier density of
ns ~2.0-102 cm™2 at T = 1.4 K. The arrows mark the expected magnetic field posi-
tions for the different commensurability peaks. We observe a strict separation between
the classical and the quantum Hall regime for the sample without moiré potential, but
with moiré, we see SAHOs superposed to the classical features. (b) Magnetotransport
experiment for a sample with moiré and antidot potential (¢ = 100 nm). As we in-
crease the carrier density and approach the satellite Dirac points, the superposition
of the quantum Hall regime on the classical features increases. For V, = +10 V, we
observe a pronounced fundamental antidot peak, but for V, = +25 V, the SdHOs are
more prominent and covering the antidot peaks. The inset of the graph depicts the
sheet conductivity o, versus gate voltage V;, and the arrows are marking the densities
shown in the graph.

be found at ¢/¢y = p/q, indicating the same periodicity as the Hofstadter but-
terfly spectrum. Nevertheless, BZ oscillations are a phenomenon independent of
the spectral gaps of the Hofstadter butterfly and induced by the formation of
BZ minibands for several unit fractions of ¢ [201]. In this way, the Hofstadter
spectrum can be regarded as a collection of Landau levels that originate from
numerous BZ minibands in an effective magnetic field By = B — ¢o(p/q)/A (A
being the area of the moiré superlattice unit cell) [112, 113].

There is a clear relation between the charge carrier density in our system and
the magnitude of the Shubnikov-de Haas oscillations, superposed to the commen-
surability features. As we increase the carrier density and approach the satellite
Dirac points, the superposition of the quantum Hall regime on the classical fea-
tures increases. The inset of Fig. 8.4b illustrates the sheet conductivity o versus
gate voltage Vj, and the arrows clarify the probed densities with respect to the
secondary Dirac points.

A prominent superposition of the antidot features with SAHOs has been re-
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ported neither in conventional 2DEGs [14] nor in graphene [10, 131]. All ex-
periments demonstrated a separation between the classical “antidot regime” at
low fields and a distinct quantum Hall regime, featuring SAHOs at higher fields.
Since we observe the mixing of both regimes in several samples with moiré and
antidot potentials, we can exclude fabrication issues such as insufficient etching
depth of the antidots, etc. We assign this phenomenon to the presence of a moiré
superlattice and its interplay with the antidot potential.

A related experiment on a different graphene moiré superlattice with etched
antidots (¢ = 250 nm) can be seen in Fig. 8.5. It features measurements obtained
at various carrier densities, approaching one of the secondary Dirac points. Fig.
8.5e shows the sheet conductivity o, versus gate voltage V, with minima at the
main and the secondary Dirac points. Here, the carrier densities corresponding to
the graphs (a)-(d) are marked with color-coded arrows. Similar to before, the ex-
periments with V;, = +15 V and +20 V demonstrate a pronounced antidot peak,
superposed with Shubnikov-de Haas oscillations. However, the commensurability
peak is severely suppressed in the measurements for V, = +25 V and +30 V, in
the vicinity of the satellite Dirac point. The black arrows mark the calculated
B-field position of the fundamental antidot feature, but we cannot report any fea-
tures besides SAHOs for these gate voltages. Though, the features related to the
moiré superlattice, such as R,, minima emanating from the main and secondary
Landau fans and strong magnetoresistance around zero field, remain prominent.
Fig. 8.6 shows these characteristics in more detail, where the blue curve is from
a device with moiré and antidot potential (same as depicted in Fig. 8.5d), and
the black curve stems from a sample with similar moiré wavelength A\ ~ 14 nm,
but without antidots. There is a striking conformity of both curves, highlighting
the dominance of moiré features in the experiment.

We explain the suppression of the classical antidot features in our experi-
ments by an orbital switching of the cyclotron motion near van Hove singularities
(VHSs), bearing some resemblance to a magnetic breakdown [204, 205]. Lee et
al. reported a similar observation in transverse magnetic focusing (TMF) experi-
ments on graphene moiré superlattices [199], where the classical TMF oscillations
abruptly terminated at densities around saddle-point VHSs. Fig. 8.2b shows a
simulated moiré bandstructure, as calculated in reference [198]. The dashed con-
tours, marked with arrows, are depicting the energy levels of the VHSs, where
the miniband dispersion percolates across all repeated Brillouin minizones [199].
At these saddle points near the edges of minibands, electrons do not run on cir-
cular orbits, but follow “run-away” trajectories. In this way, we cannot observe
commensurability features arising from the antidot lattice around the satellite
Dirac points.

However, in contrast to the TMF experiment by Lee and coworkers, the clas-
sical features in our measurements do not recur at higher densities beyond the
VHSs. We performed experiments with gate voltages up to V; = 90 V for one
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Figure 8.5: Commensurability peaks in a moiré superlattice with an antidot period-
icity of @ = 250 nm. Magnetotransport traces of the graphene device for different back
gate voltages with arrows marking the expected positions of the antidot peaks. We
observe a pronounced fundamental antidot peak for V, = +15 V (a) and +20 V (b),
partially superposed with SAHOs. (c)+(d) For higher gate voltages, approaching the
satellite Dirac point, the commensurability features vanish and only the SAHOs from
the main and the secondary Dirac peaks survive. (e) Sheet conductivity os versus gate
voltage V,; with minima at the main and the secondary Dirac points, depicting the
examined densities with color-coded arrows.
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Figure 8.6: Magnetotransport traces in the vicinity of the extra DP. Comparison of
an experiment with etched antidot lattice an one without for the same density. Both
stacks had a moiré wavelength of A =~ 14 nm. The strong magnetoresistance at low
fields is characteristic for the moiré potential, not the antidots.
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Figure 8.7: Magnetotransport experiments on a moiré device with antidot period
a = 150 nm, performed at high densities, beyond the sat. Dirac point. (a) R;, and
Ry, for V; = —85 V. There is no indication of antidot features (see position of arrow),
but several pronounced BZ oscillations can be reported. The dashed vertical lines
correspond to B = ¢/qA, featuring minima in R,,. (b) Set of curves for different
carrier densities, proving stability and independence on the carrier density of the BZ
oscillations.
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stack (Vi &= +40 V), but cannot present any reappearing antidot peaks. Fig.
8.7a illustrates a measurement at V, = —85 V, where the black arrow marks
the expected position of the fundamental antidot peak beyond the VHS. But we
cannot observe a distinct commensurability feature. There is a prominent mag-
netoresistance at low fields and some oscillations in R,, and R,, at higher fields.
The minima in the longitudinal resistance R,, can be assigned to Brown-Zak
oscillations at ¢g/¢ = ¢ (¢ being an integer). Simultaneously, the Hall resistance
R, is undergoing a transition, tending towards zero. The carrier independence of
the apparent BZ oscillations can be proved with the graph depicted in Fig. 8.7b,
where the magnetoresistance minima appear at B = ¢o/qA for several different
carrier densities. The reason for the relatively high temperature 7' = 30— 50 K in
the experiment is our interest in semiclassical antidot features and BZ oscillations,
both being more robust to temperature than SAHOs [10, 201]. Nevertheless, we
cannot exclude that weakly pronounced commensurability peaks are present, but
covered with the evident moiré features.

Because of gate breakdown issues, we were not able to repeat this measure-
ment at very high densities for any of our other heterostructures. All other
experiments were limited to V, ~ 450 V, several volts beyond the secondary
Dirac points, featuring moiré transport characteristics without a hint for recur-
ring antidot peaks.

8.3 Conclusion

In conclusion, we fabricated several graphene moiré devices and characterized
their transport properties before and after patterning of an additional square an-
tidot lattice. We were able to observe commensurability features, stemming from
the moiré as well as the antidot superlattice potential in our experiments and
studied the interplay between both modulations. At moderate carrier densities,
we reported distinct commensurability peaks, which get progressively suppressed
as we increase the carrier density and approach the satellite Dirac points. We can
explain this extinction in terms of an orbital switching of the cyclotron motion in
the vicinity of the VHSs, but we cannot examine any recurring antidot features
at higher densities beyond the VHSs. Moreover, we see additional 1/B-periodic
oscillations in our experiments. While the features at high densities can be iden-
tified as Brown-Zak oscillations, the superposed oscillations at moderate densities
below the extra Dirac points can be most likely assigned to Shubnikov-de Haas
oscillations. However, the anomalous mixing of the quantum Hall and the classi-
cal antidot regime in form of a superposition of the classical features with SAHOs
remains unclear and requires further studies.
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CHAPTER 9

hBN-graphene heterostructures with patterned bottom gates

Embedding graphene into a heterostructure with hexagonal boron nitride was
shown to be an efficient way of achieving a high bulk mobility. The encapsu-
lated graphene is protected in any further top-down fabrication procedure and
pronounced commensurability peaks could be observed in 2D antidot lattices
[10, 131].

In this chapter and in reference [12]', we introduce a new method for period-
ical modulation of the carrier density, employing a few-layer graphene patterned
bottom gate (PBG). The bottom gate is defined by etching a 2D hole array
into the few layer graphene and adapts perfectly to the commonly used stacking
method for van der Waals heterostructures. By tuning the local patterned bot-
tom gate and the global back gate voltage, we can consistently switch between
the unipolar and bipolar transport regime, and erase or enhance the induced
potential modulation in our system.

We fabricated graphene patterned bottom gates with square lattice periods
down to a = 100 nm and observe commensurability features in magnetotrans-
port experiments, stemming from weak or strong potential modulation in the
unipolar and bipolar regime, respectively. The commensurability peaks in the
bipolar regime can be nicely compared to experiments with hard-wall graphene
antidot lattices and the commensurability oscillations in the unipolar regime can
be attributed to Weiss oscillations in a weakly modulated 2D system [13, 129]. A
variation of the induced modulation strength strongly influences the carrier mo-
bility in graphene, with a fluctuation of almost one order of magnitude between
unipolar and bipolar case in some samples. Moreover, our measurements indicate

!Some details of device fabrication and zero-field characterization, reported in this chapter,
are adapted from our publication: M. Drienovsky, A. Sandner et al., arXiv:1703.05631 (2017)
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9. hBN-graphene heterostructures with patterned bottom gates

a strong robustness of the commensurability features in graphene with respect to
temperature.

9.1 Device geometry and characteristics

To assure full screening of the global back gate electric field, we select multilayer
graphene flakes consisting of 2-5 layers for the bottom gates in our experiments.
Additionally, the minimal height of the few-layer graphene flake allows us to
neglect any spatial perturbation of the heterostructure transferred on top of the
graphene gate structure [12]. Moreover, the graphene PBG adapts perfectly to
the commonly used stacking method for van der Waals crystals [7, 98], and in
combination with hBN, sharp potential steps on a nanoscale can be created. The
few-layer graphene is patterned via electron beam lithography and oxygen plasma
reactive ion etching and features a 2D periodic array of holes. Subsequently,
a hBN-graphene-hBN hybrid structure is put on top of the PBG and further
patterning steps are conducted. Fig. 9.1c depicts a finished stack with a purple
few-layer graphene PBG, independently contacted from both Hall bar structures.
A more detailed description of the fabrication procedure is given in section 5.4.

We successfully fabricated and measured transport properties of encapsulated
graphene on patterned gates with lattice constants of @ = 100...300 nm and hole
diameters of d = 50...150 nm. Fig. 9.1a shows a semi-transparent sketch of an
encapsulated graphene structure with a few-layer graphene PBG on a Si/SiOs
wafer. The lateral modulation of the charge carrier density in this setup can be
influenced by the interplay between the global Si back gate and the local graphene
PBG. The Si back gate only affects the graphene areas above the holes and the
rest of the biased graphene sheet is screened by the PBG (see Fig. 9.1b). Using
ultra-thin hBN as an insulating substrate between the PBG and the graphene
layer, stray fields can be significantly reduced and sharp potential profiles can
be created. The most interesting feature of this device design is the possibility
to tune between the unipolar and bipolar transport regime, i.e. generating a 2D
array of pn-junctions.

We probed the sheet conductivity as a function of the voltage applied to the
PBG V, for different global back gate voltages V, for a sample with a = 300 nm
and d = 150 nm (see Fig. 9.1d). The interplay between the two gates has a clear
influence on the transport properties of the device. While the curve for V, =0V
is quite narrow and symmetric, this is no longer true for measurements with
applied V,. There, we see a difference in the o,(V},)-curves between the unipolar
(e.g. Vg, V, > 0) and the bipolar case (e.g. V, > 0,V,, < 0). If we extract the
corresponding charge carrier mobilities from the slopes, we get x ~ 10000 cm?/Vs
in the bipolar and p ~ 40000 cm?/Vs in the unipolar regime, which is essentially
the same as in the case of V;, = 0 V. While the mobility in the bipolar regime is
considerably decreased by reflections and scattering at the imposed pn-junctions
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Figure 9.1: Sample layout, electrostatics and characterization of both gates.

(a) Semitransparent sketch of the sample architecture for a hBN-graphene-hBN het-
erostructure with a multilayer graphene patterned bottom gate (PBG) and a global
Si back gate. First, the hole array for the multilayer graphene bottom gate is fabri-
cated, and subsequently, the hBN-graphene heterostructure is transferred on top and
patterned (see chapter for details). (b) Cross section shows the different layers and the
field lines of the gate electrodes. The global Si back gate is acting on the graphene ar-
eas above the holes of the patterned graphene gate, and the remaining area is screened
by the few-layer graphene gate. Employing this design, we can tune both gates inde-
pendently and generate different density profiles n(x), e.g. bipolar (npn) for different
polarities of both gates (as shown in this figure). (c) Optical micrograph of a finished
sample. The large purple multilayer graphene PBG is contacted independently from
the two Hall bar structures. (d) Sheet conductivity o as a function of the PBG voltage
V), for different global back gate voltages V, at T'= 1.4 K.
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9. hBN-graphene heterostructures with patterned bottom gates

in the graphene layer, this effect seems to be much weaker in the unipolar case.

9.2 Magnetotransport experiments with tunable
superlattice potential modulation

Lateral superlattices on 2DEGs have been studied intensively and revealed several
new effects stemming from a commensurability of the imposed potential period a
and the magnetic length [ [14, 13, 129]. An important parameter for experiments
with imposed superlattice structures is the strength of the potential modulation
Vo compared to the Fermi energy Er of the 2DEG [206]. Commensurability
oscillations, so-called Weiss oscillations [14, 121], are dominating the magnetore-
sistance for weak potential modulation, Vj < Er. In a semi-classical picture,
the commensurability oscillations can be explained by an average drift of the
center of weakly perturbed cyclotron orbits in the system [139]. In the strongly
modulated system, however, electrons are classically excluded from “islands” in
the Fermi sea and the magnetoresistance peaks [130, 206, 207] are resulting from
pinned orbits induced by nonlinear resonances in a prevalent chaotic phase space
(152, 189, 208].

One advantage of monolayer graphene over conventional 2DEGs is the ability
to continuously tune its Fermi energy EFr from electron to hole regime without
crossing any gap. This allows us to induce pn-junctions in graphene via local
electrostatic gating [41, 42, 209] and move from a unipolar (nn'n or pp'p) to a
bipolar transport regime (pnp). In this way, we can approach the extreme mod-
ulation regimes in the unipolar and bipolar case (weak and strong modulation,
respectively) and the transition in between, just by tuning the local PBG and
the global back gate [12].

In the following parts, we show experimental data of encapsulated graphene
on a multilayer graphene PBG with a 2D hole array of periodicity ¢ = 300 nm and
diameter d = 150 nm. All the measurements were performed in a *He cryostat
at low temperatures, using a standard Lock-in setup at low frequencies.

9.2.1 Experiments with zero back gate voltage

Fig. 9.2 depicts a magnetotransport trace for V, = 0 V and V,, = +3.0 V. The po-
tential modulation in the biased graphene sheet is induced by the graphene PBG
and the areas above the holes are fixed to zero potential by the back gate. This
situation can be seen in the sketch on the right hand side, depicting the carrier
density distribution n(z,y) and matching electron orbits for an idealized case of
sharp potential steps. We can see two pronounced commensurability peaks at
low magnetic fields (positive and negative B), corresponding to the fundamental
antidot peaks around the depleted “antidot zones” in our system. The dominant
commensurability peaks indicate a strong potential modulation in the graphene
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Figure 9.2: Magnetotransport with V; = 0 V. Potential modulation is induced by
graphene PBG (hole array with a = 300 nm and d = 150 nm). The areas above the holes
of the PBG are fixed to zero potential. Electrons are orbiting around almost depleted
“antidot zones” in this setup, and we observe a pronounced commensurability peak at
low magnetic fields, indicating strong potential modulation. The red arrows show the
expected B-field position of the fundamental commensurability features. The sketch
on the right hand side is depicting the carrier density distribution n(z,y) and matching
electron orbits for an idealized case with sharp potential junctions and depleted zones.

device, and the red arrows in Fig. 9.2 mark the expected B-field position ac-
cording to the commensurability condition, where the cyclotron diameter at the
Fermi energy 2Rs = 3—; m™ns is commensurate to the square antidot lattice.
The magnetic field values are fitting well and we can compare our experimen-
tal situation with V;, = 0 V and V,, # 0 V to hard-wall antidot lattices, where
the fundamental antidot peak belonging to 2R¢c = a is most prominent [10, 14].
Therefore, the exact shape [210, 211] of the depleted regions and the steepness
of the induced potential profile is not so important. The voids act as an array
of artificial scatterers, similar to an antidot lattice, and chaotic dynamics along
with nonlinear resonances in the phase space are responsible for the appearance

of robust commensurability peaks in magnetotransport experiments [152, 195].

We estimate a charge carrier density of n, = 1.0 - 10'% cm =2 from the Shubnikov-
de Haas oscillations at higher fields and deduce an apparent mobility of around
p = 48000 cm?/Vs for this density. Still, scattering at the potential steps limits
the apparent carrier mobility [189], and the intrinsic electron mean free path [,
might be well above the supposed mean free path of l,,¢, = %\/W_ns,u = 560 nm.

Moreover, we conducted magnetotransport experiments for several different
gate voltages V, # 0 V (and V, = 0 V) and observe commensurability peaks at
carrier densities down to ng = 3- 10" cm™2.
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9. hBN-graphene heterostructures with patterned bottom gates

9.2.2 Commensurability peaks for strong modulation in
the bipolar regime

Now, we want to discuss the bipolar transport regime, e.g. negative V, and
positive V,,. This situation is depicted in Fig. 9.3 for the same sample as before
(a = 300 nm, d = 150 nm). Fig. 9.3a shows an experiment with back gate
voltage V;, = —30 V and patterned gate voltage V,, = +3.5 V. Again, we observe a
commensurability peak at low fields, matching the expected position, and SAHOs
at higher B, eventually resulting in a well-defined quantum Hall effect, similar
to measurements on etched antidot lattices. In comparison to the experiments
with V;, = 0 V (Fig. 9.2), the fundamental antidot peaks are enhanced and
more dominant. On the right hand side, next to the measurement graph, is
the corresponding carrier density map n(x,y) for the applied gate voltages (see
Fig. 9.3b)%. These maps are visualizing the induced carrier densities in the biased
graphene sheet and the transitions between the differently gated areas. The red
circles are representing pn-junctions in the system.

If we decrease the PBG voltage to V,, = +1.5 V for the same V;, = =30 V
(Fig. 9.3c), we increase the gate-induced potential modulation and the funda-
mental antidot peaks are becoming more evident. We can extract an apparent
mobility of around 30 000 cm?/Vs from this measurement, which is a further de-
crease compared to the experiment for V;, = 0 V, shown in Fig. 9.2. The strongly
enhanced potential modulation can be noticed in the complementary density map
(Fig. 9.3d). Even if both simulations for the bipolar configurations are looking
similar, the essential parameter is the different scaling of the maps.

What is new in our experiment, compared to etched antidot lattices, is the
ability of electrons to perform Klein tunneling at the boundaries of the imposed
pn-junctions. In addition to chaotic and pinned orbits in the superlattice struc-
ture [152], this mechanism can considerably influence the formation of commen-
surability peaks. There is an angle dependent transmission at the pn-transitions
where not all of the incident carriers are reflected. Some charge carriers might
tunnel through the “islands” or get trapped inside of them. What makes the
situation even more complicated is the magnetic field dependence of the angular-
dependent transmission [88, 93]. Thus, Klein tunneling at the imposed “antidot”
definitely influences transport characteristics and commensurability features in
our experiment. However, the exact mechanism and its impact on the formation
of distinct antidot peaks remains unclear and requires substantial calculations.

2all simulations for the density maps were provided by Ming-Hao Liu, NCKU Taiwan
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Figure 9.3: Transport experiments in the bipolar regime. The global back gate
voltage is V;, = —30 V and a positive voltage is applied to the multilayer graphene
PBG (a = 300 nm, d = 150 nm). (a) Experiment with V,, = +3.5 V. We observe
additional commensurability peaks in R,, and their B-field position is matching the
classical orbits known from hard-wall antidot lattices (see arrows for expected position).
(c) Enhanced potential modulation for V,, = +1.5 V. The commensurability peak is
sharp and pronounced, indicating strong potential modulation similar to etched antidot
arrays. (b)+(d) Corresponding carrier density maps n(x,y) for the experimental traces
depicted in (a) and (c), respectively. Bipolar junctions (circles of zero density) are
shown in red and dotted circles are depicting the geometrical positions of the holes in
the PBG. The simulations were provided by Ming-Hao Liu, NCKU Taiwan.
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9. hBN-graphene heterostructures with patterned bottom gates

9.2.3 Weiss oscillations in a weakly modulated unipolar
regime

The situation changes drastically for transport experiments in the unipolar regime.
Similar to before, we fixed the global back gate voltage to V, = —30 V and var-
ied the voltage applied to the PBG V,. Fig. 9.4a depicts a magnetotransport
trace for V, = —2.5 V and we can not observe any commensurability feature at
low magnetic fields. Moreover, the measurement is comparable to experiments
in high-mobility graphene without superposed potential modulation, exhibiting a
distinct quantum Hall regime down to fields below B < 1 T. An explanation for
this behavior can be given with the connected carrier density map on the right
hand side. The simulation supposes a lateral variation of the charge carrier den-
sity between the hole areas and remaining graphene plane of less than 10%. Thus,
the superlattice potential, induced with this gate combination, is not sufficiently
developed for the appearance of commensurability features in magnetotransport
experiments.

An enhancement of the modulation strength by decreasing the PBG voltage to
Vp, = —1.5 V was done for the measurement illustrated in Fig. 9.4c. The modeling
in Fig. 9.4d gives a stronger lateral alteration of the carrier density n across
the graphene sheet of roughly 30%. Again, the corresponding magnetotransport
experiment features distinct SAHOs along a wide magnetic field range, but at low
fields, we observe 1/B-periodic commensurability oscillations, known as Weiss
oscillations [13]. Weiss oscillations are a well understood phenomenon in 2DEGs
submitted to a weak superlattice potential, reflecting the commensurability of
cyclotron diameter 2R at the Fermi energy and the modulation period a. The
appearance of Weiss oscillations in our magnetotransport experiment proves the
ability to tune the superlattice potential from a quite homogeneous modulation
to a weakly modulated regime in a unipolar gating setup. The minima of these
oscillations can be expressed with the commensurability condition

2Rc = (A — i)a A=1,2, .. (9.1)
In a quantum mechanical context, Weiss oscillations are a result of the oscillatory
dependence of the bandwidth of modulation-broadened Landau levels on the
band index, and thus, the arising group velocity leads to a strongly anisotropic
oscillatory Landau band conduction [129, 132]. The band-conductivity can be
calculated employing a Kubo formalism [121, 212]. Equation 9.1 is the flat band
condition for the Landau bands of oscillating width.

In the case of V, = —2.5 V (Fig. 9.4a) the superlattice-induced potential
modulation is just to weak to prevent the resolution of individual subbands, and
distinct Landau bands with an oscillating miniband conductivity are not formed,
yet. A simple approximation of the modulation amplitude
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Figure 9.4: Magnetoresistance R, in the unipolar regime. The global gate voltage
is V; = —30 V and a negative voltage is applied to the multilayer graphene PBG
(a =300 nm, d = 150 nm). (a) Experiment with V,, = —2.5 V. There is no indication
of additional commensurability features. The magnetotransport trace is similar to
measurements in high-mobility graphene without any modulation. (b) Corresponding
carrier density map n(x,y) for the experiment in (a). The density variation between the
hole areas and remaining graphene plane is less than 10% and we achieve an almost
homogeneous potential modulation. (c) Measurement for V,, = —1.5 V in a weakly
modulated system. We observe two well pronounced commensurability oscillations
A = 1,2 in R,;, where the cyclotron diameter satisfies a flat band commensurability
condition involving the lattice constant. (d) Relevant density map for the experiment
in (¢). The system shows a weak potential modulation with a density variation of
around 30% across the graphene plane. The simulations were provided by Ming-Hao
Liu, NCKU Taiwan.
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Figure 9.5: Temperature dependence of the commensurability features for weak and
strong potential modulation. (a) Experiment for strong modulation in the bipolar
regime (V; = =30 V, V, = +3.5 V). (b) Experiment for a weak superlattice potential
in the unipolar regime (V, = —30 V, V, = —1.25 V). The commensurability features in
both graphs are more robust to temperature than the Shubnikov-de Haas oscillations
at higher fields, proving the semiclassical origin from cyclotron trajectories.

‘/0 = AL = \/Eh'UF(\/ns,max - \/ns,min) (92)

for this gate configuration gives V5 ~ 6 meV. If we compare this value to the
global Fermi level of our experiment, we can deduce a relatively weak induced
superlattice modulation of Vy/Er < 5%, which explains the absence of commen-
surability features in our measurement. Doing the same valuation for the experi-
ment with enhanced modulation corresponding to V,, = —1.5 V (Fig. 9.4c) results
in a relative modulation of Vy/Er ~ 15%. The considerably stronger superlattice
modulation is sufficient to enter the weak modulation regime, accompanied with
Weiss oscillations in magnetotransport experiments.

9.2.4 Temperature dependence of the commensurability
oscillations

Commensurability features exhibit a clearly different temperature dependence
than quantum oscillations. Fig. 9.5 depicts temperature-dependent experiments
in the bipolar and unipolar regime, featuring commensurability peaks and Weiss
oscillations, respectively. In the bipolar case (Fig. 9.5a) at T' = 1.4 K, we ob-
serve dominant magnetoresistance peaks at low fields and distinct SAHOs in the
quantum Hall regime at higher B. However, increasing temperature leads to a
extinction of the SAHOs, while the commensurability peaks remain clearly vis-
ible. The same behavior can be reported for the weakly modulated unipolar
regime in Fig. 9.5b, where Weiss oscillations are more robust to temperature
and can be observed up to T = 100 K. We ascribe the different T-dependence
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of the commensurability features to the semi-classical origin from cyclotron or-
bits in a magnetic field. In the case of strong modulation, the peaks can be
explained in terms of pinned orbits and chaos, and experiments on hard-wall an-
tidot lattices showed a similar T-dependence [123]. At very low temperatures,
commensurability and Shubnikov-de Haas oscillations can be superposed with
quantum oscillations, e.g. Aharanov-Bohm type oscillations [148, 147]. Increas-
ing the temperature results in thermal smearing of the cyclotron orbits at the
Fermi energy and quantum oscillations vanish. The relevant energy scale for the
SAHOs is the Landau level spacing AF,, and quantum Hall features disappear
for kg T > AE,. Commensurability features can be still observed at even higher
temperatures, and experiments by Heremans et al. on semiconductor 2DEGs
propose a combination of thermal smearing and increasing electron-scattering
rate as reason for the reduction of the amplitudes of the commensurability peaks
with increasing temperature [213].

Beton et al. give a similar classical argument for the fading of the commen-
surability oscillations in a weakly modulated 2DEG [136]. The thermal smearing
of the cyclotron diameter A2Rc needs to be smaller than the superlattice po-
tential period a. Otherwise the commensurability features get suppressed. This
energy scale, where the classical features can be resolved, is typically considerably
larger than the cyclotron energy hw. for SAHOs in semiconductor heterostruc-
tures. Since the critical temperature, where the semi-classical features vanish, is
proportional to the Fermi velocity in graphene, commensurability features should
be observable at even higher temperatures than in conventional 2DEGs [214].

9.3 Experiments on further devices

Moreover, we performed similar experiments on stacks with different patterned
bottom gate periodicities a and diameters d. Overall, the observations are com-
plimentary to the measurements on stack 38, shown in the sections before. Fig.
9.6 shows low-temperature magnetotransport traces of a stack with a hole array
of a =200 nm and d = 50 nm, etched in the multilayer graphene PBG.

The left graph depicts an experiment in the unipolar transport regime for
Vg = +20 V and V, = +2.5 V. We report no indication of commensurability
features in this measurement. In fact, the superlattice potential modulation is
very weak and almost as homogeneous as we can get. This fact reflects in the
high apparent Hall mobility of u = 150000 cm?/Vs in this experiment.

On the other hand, there are prominent commensurability peaks in the bipo-
lar regime for V; = 420 V and V, = —2.5 V (see Fig. 9.6b). We see a rich
magnetotransport structure and can identify pronounced commensurability peaks
corresponding to orbits around n = 1 and 2 gate-induced “islands” at low fields.
Furthermore, the apparent mobility for this bipolar configuration is limited to
p = 25000 cm?/Vs. So our experimental device layout, employing two interact-
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Figure 9.6: Magnetotransport experiments in the unipolar and bipolar regime for
a device with a multilayer graphene PBG with ¢ = 200 nm and d = 50 nm. (a)
Experiment for a quite homogeneous potential distribution in a unipolar case, induced
by the PBG and the global back gate. We do not observe any commensurability
features, and the carrier mobility is as high as u = 150000. (b) Experiment for strong
potential modulation in the bipolar regime. We see two commensurability peaks that
we can assign to electron orbits around n = 1 and 2 induced “holes” in the graphene
plane.

ing gates, allows us to efficiently tune the carrier mobility over a wide range in
our system.

9.4 Conclusion

In conclusion, we showed that employing graphene patterned bottom gates is a
versatile approach for the investigation of lateral superlattice effects in graphene
heterostructures. The PBG can be customized for any experiment, easily imple-
mented in the commonly used van der Waals stacking method, and offers several
advantages over conventional metal top gates. Our geometry allowed us to tune
the PBG and the global back gate independently and thus, to move from a ho-
mogeneous to a unipolar and bipolar potential distribution. In this way, we could
probe commensurability features in the unipolar (Weiss oscillations) and bipo-
lar regime (antidot peaks), induced by weak and strong potential modulation,
respectively. The experimental results can be nicely compared to similar mea-
surements on conventional 2DEGs with the distinct discrepancy resulting from
Klein tunneling in bipolar graphene. However, the impact of present Klein tun-
neling in our magnetotransport experiments remains unclear. Furthermore, we
demonstrated the ability to tune the apparent carrier mobility in this experiment
over the wide range of almost one order of magnitude.
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CHAPTER 10

Conclusions and outlook

The first aim of this work was the successful implementation and optimization of
the transfer process in our lab. High-mobility graphene devices were indispens-
able for our intention to investigate superlattice effects. In the beginning, we
started with a wet, layer-by-layer stacking method that provided only marginally
improved samples compared to conventional graphene structures on SiO,. How-
ever, the subsequent employment of a dry van der Waals pick-up procedure and
the fabrication of 1D edge contacts significantly improved sample quality and
regularly yielded graphene heterostructures with mobilities exceeding 100000
cm? /Vs.

The considerably enhanced sample quality could be proved in magnetotrans-
port experiments on encapsulated hBN-graphene hybrid structures, where we
observed symmetry-broken quantum Hall states at fields down to only a few T,
accompanied with several fractional quantum Hall states at higher fields. Another
confirmation for the high quality was the experimental observation of transverse
magnetic focusing in our encapsulated devices.

So, the bulk mobility of graphene could be improved with the introduction
of hBN-graphene heterostructures, but any further nanostructuring procedure
could potentially degrade graphene’s intrinsic properties. In this work, we showed
that an encapsulation of graphene between hBN protects and conserves the high
quality of graphene in subsequent patterning steps. Accordingly, magnetotrans-
port experiments on graphene antidot lattices displayed several commensurability
peaks that could be assigned to electron orbits around one or several etched anti-
dots. In our experiments, we could approach the transition between the classical
and the quantum transport regime at low carrier densities, where the semiclassical
commensurability peaks vanish if the Fermi wavelength exceeds the neck width of
the constrictions in between the antidots of the rectangular lattice. Moreover, our
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experimental results were nicely reproduced by theoretical simulations of Power
et al. [11] and Datseris et al. [195].

The same fabrication scheme can be used for encapsulated graphene moiré
samples, where we studied the interplay between the moiré and an addition-
ally imposed antidot potential. For this purpose, we fabricated several graphene
moiré devices and characterized them via transport measurement before and af-
ter patterning of the additional antidot array. The moiré superlattice potential
leads to a suppression of the antidot features at higher densities, approaching
the satellite Dirac points. This phenomenon can be understood in terms of an
orbital switching of the cyclotron motion in the vicinity of van Hove singularities
of the moiré dispersion, manifesting in “run-away” orbits instead of closed orbits.
Another observation, induced by the moiré potential, is the superposition of the
classical antidot features with Shubnikov-de Haas oscillations. This behavior has
not been reported for antidot lattices in conventional 2DEGs nor in graphene,
and the origin of this effect is not totally understood, yet.

Another interesting geometry for superlattice potential modulation is the uti-
lization of patterned graphene bottom gates. In combination with the global Si
back gate of our wafers, we can consistently tune the potential distribution in
the biased graphene sheet from unipolar to bipolar, and examine the resulting
commensurability effects in the respective transport regimes. We reported well-
developed Weiss oscillations in the unipolar case, for weak potential modulation,
and distinct antidot peaks for strong modulation, in the bipolar regime, for a
graphene gate with a 2D array of holes. Furthermore, our measurements showed
a clear dependence of the carrier mobilities in our samples on the magnitude of
the superlattice potential, strongly decreasing with an enhancement of the po-
tential strength.

All in all, we were able to investigate 2D superlattices on high-mobility
graphene heterostructures, employing different geometries and sample layouts.
We proved that our approach of nanopatterning encapsulated graphene struc-
tures is convenient and encouraging for a multitude of experiments and gives
the chance to experimentally access interesting physics such as the Hofstadter
butterfly in graphene antidot lattices with very small lattice constants. Further-
more, patterned graphene gates provide the possibility to fabricate complex gate
structures and superlattice potential profiles, which can be used to examine com-
mensurability features in transport experiments or for lensing electron beams in
graphene electron optics experiments [215].
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APPENDIX A

List of Symbols and Abbreviations

1D, 2D, 3D  One-, two-, three-dimensional

2DEG Two-dimensional Electron Gas
a Antidot lattice period

AC Alternating current

AFM Atomic Force Microscopy

AD Antidot

B Magnetic field

By Normalized magnetic field (B/By = 1 for fundamental AD peak)
BZ Brown-Zak

Cy Capacitive gate coupling

COs Commensurability Oscillations
CVD Chemical vapor deposition

d Diameter of the antidots

DC Direct current

DOS Density of states

DP Dirac point

€ Dielectric constant

e Elementary charge

EBL Electron Beam Lithography
Er Fermi energy

E, Landau level energy

?, o Magnetic flux, flux quantum

h = 27h Planck constant

hBN Hexagonal Boron Nitride
HOPG Highly-Oriented Pyrolitic Graphite
kg Boltzmann constant
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N

PBG
PMMA
(F/T)QHE

Moiré superlattice wavelength, index of Weiss oscillations
Fermi wavelength

Magnetic length

Intrinsic mean free path, apparent mean free path
Landau level

Charge carrier mobility

Filling factor

Landau quantum number, index of antidot peaks
Charge carrier density

Patterned bottom gate

Polymethyl methacrylate

(Fractional /Integer) Quantum Hall effect
Cyclotron radius

Reactive Ion Etching

Sheet conductivity

Superlattice Brillouin zone

Scanning electron microscope

Shubnikov-de Haas oscillations

Scanning Tunneling Microscopy

Special Unitary group

Temperature

Transmission probability

Transverse magnetic focusing

Ultra-high Vacuum

Potential modulation

Fermi velocity

Global gate voltage

Van Hove Singularity

Patterned gate voltage

Weak localization



APPENDIX B

Fabrication details and recipes

Exfoliation of graphene

e Cleaning of the p**-doped Si/SiOy substrates with sonication in acetone
and isopropanol

e Plasma asher: Pressure 2.0 mbar, power: 30 %, 4 min

e Mechanical exfoliation of graphene, using HOPG or natural graphite and
Nitto tape ELP BT- 150ECM (Nitto Denko Corp.)

Exfoliation of hBN

e Cleaning procedure is similar to graphene

e Mechanical exfoliation of hBN, using hBN single crystals provided by
Taniguchi and Watanabe and Nitto tape ELP BT- 150ECM

Fabrication of PMGI/PMMA stacks as for transfer

e Cleaning of the p™* doped Si/SiO5 substrates (90 nm SiO3) with sonication
in acetone and isopropanol

e Plasma asher: Pressure 2.0 mbar, power: 40 %, 4 min

e Spincoating PMGI SF6 (Microchem):
first layer: 4500 rpm 30 s, hotplate 90° C 4 min
second layer: 3000 rpm 5 s and 6000 rpm 30 s, hotplate 90° C 8 min

e Spincoating PMMA 950k A5 (5% in chlorbenzene):
first layer: 2000 rpm 35s, hotplate 90° C 4 min
second layer: 3000 rpm 5 s and 6000 rpm 30 s, hotplate 90° C 8 min
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Fabrication of Hall bar structures in hBN-graphene-hBN
heterostructures

Annealing of the transferred hBN-graphene hybrid structure at 320-400° C
for several hours (in forming gas atmosphere)

AFM characterization of the stack for identification of suitable areas

Spincoating PMMA 950k A5: 3000 rpm 5 s and 6000 rpm 30 s, hotplate
150° C 6 min

EBL for Hall bar etching (with Supra SEM): EHT 30 kV, aperture 30 um,
area dose 310 pC/cm?

Developing: MIBK /isopropanol (1:3) 80 s + isopropanol 30 s

RIE etching of Hall bar: CHF3 40 sccm + Oy 6 sccm, 55 mTorr, 35 W,
etching rate for hBN is approximately 0.8 nm/s

Spincoating PMMA 200k A9: 3000 rpm 5 s and 6000 rpm 30 s, hotplate
150° C 4 min + PMMA 950k A5: 3000 rpm 5 s and 6000 rpm 30 s, hotplate
150° C 6 min

EBL for contacts (with Supra SEM): EHT 30 kV, aperture 30+120 pum,
area dose 450 pC/cm?

Developing: MIBK /isopropanol (1:3) 80 s + isopropanol 30 s
RIE etching of contact areas: Oy 20 sccm, 27 mTorr, 20 W, 30 s
Metal e-beam evaporation (Univex B): 4 nm Cr and 80 nm Au

Lift-off in warm acetone for 60 min

Patterning of antidot lattices

Start with a finished hBN-graphene heterostructure with etched Hall bar
and contact metalization

Spincoating PMMA 950k A2: 3000 rpm 5 s and 6000 rpm 30 s, hotplate
150° C 6 min

EBL of antidots (with Auriga REM): EHT 30 kV, aperture 30 pum, point
dose 3.5 fC

Developing: MIBK /isopropanol (1:3) 80 s + isopropanol 30 s

RIE etching of antidots: CHFj3 40 sccm + Oy 6 scem, 55 mTorr, 60 W,
etching rate for hBN is approximately 1.2 nm/s
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Fabrication of few layer graphene patterned bottom gates

Start with a suitable few-layer graphene flake (3-5 layers)

Spincoating PMMA 950k A5: 3000 rpm 5 s and 6000 rpm 30 s, hotplate
150° C 6 min

EBL for patterned gate (with Auriga REM): EHT 30 kV, aperture 30 um,
area dose 350 pC/cm?

Developing: MIBK /isopropanol (1:3) 80 s + isopropanol 30 s
RIE etching of the flake: Oy 20 scem, 30 mTorr, 20 W, 75 s






APPENDIX C

Analysis of SAHOs in moiré and antidot superlattices

In this chapter we will give a detailed analysis of the Shubnikov-de Haas oscil-
lations in our magnetotransport experiments on graphene moiré devices with an
etched antidot array. As discussed in chapter 8, we observe a superposition of
the commensurability features with 1/B-periodic oscillations as we approach the
satellite Dirac points in the moiré potential. Here, we will show that these oscil-
lations are most likely SAHOs with the same periodicity from high fields down to
low fields, well below the antidot peaks. Fig. C.1 and C.2 depict the correspond-
ing graphs of magnetotransport experiments at different carrier densities and
some analysis of the SAHOs. Both figures are similar, with antidot periodicities
of a = 250 and 100 nm for Fig. C.1 and Fig. C.2, respectively. Graphs (a)-(c) are
illustrating measurements and the vertical dashed lines are marking the positions
of the SAHOs at the particular density. The expected positions are matching the
minima in R,,, proving the same origin of all 1/B-periodic oscillations, even of
those below the antidot peaks (marked with arrows). This observation is in line
with the evaluation of the R,, minima as function of 1/B, shown in graphs (d).
The squares and dots correspond to SAHOs at fields higher and lower than the
n = 1 antidot peak, respectively, and are linear in 1/B. Moreover, we see a pro-
nounced dependence of the additional oscillations on the carrier density, similar
to the expected behavior of Shubnikov-de Haas oscillations in graphene, and the
extracted densities n, are matching the induced carriers by the capacitive gate
coupling (according to equation 3.1).
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Figure C.1: Analysis of the periodicity of the SAHOs for a moiré device with a =
250 nm. (a)-(c) Same experiments as shown in Fig. 8.5 with vertical dashed lines for
the expected positions of the SAHOs for the extracted carrier densities. (d) Analysis
of the periodicity of the R,,-minima in our curves, showing the same 1/B-periodicity
at higher fields above the fundamental antidot peak (squares), and below (circles).
(e) Sheet conductivity o, versus gate voltage V, with minima at the main and the
secondary Dirac points, depicting the examined densities with color-coded arrows.
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Figure C.2: Analysis of the periodicity of the SAHOs for a moiré device with a =
100 nm. (a)-(c) Magnetotransport experiments with vertical dashed lines for the
expected positions of the SAHOs for the extracted carrier densities. (d) Analysis of
the periodicity of the Ry ;-minima in our curves, showing the same 1/B-periodicity
at higher fields above the fundamental antidot peak (squares), and below (circles).
(e) Sheet conductivity o, versus gate voltage V, with minima at the main and the
secondary Dirac points, depicting the examined densities with color-coded arrows.
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