

LagBox – Measuring the Latency of
USB-Connected Input Devices

Abstract

High latency in an interactive system limits its usability.

In order to reduce end-to-end latency of such systems,

it is necessary to analyze and optimize the latency of

individual contributors, such as input devices, applica-

tions, or displays. We present a simple tool for measur-

ing the latency of USB-connected input devices with

sub-millisecond accuracy. The tool, based on a Rasp-

berry Pi 2 microcomputer, repeatedly toggles a button

of a game controller, mouse, or keyboard via an opto-

coupler soldered to the button and measures the time

until the input event arrives. This helps researchers,

developers and users to identify and characterize

sources of input lag. An initial comparison of multiple

input devices shows differences not only in average

latency but also in its variance.

Author Keywords

Latency; input devices; interaction; measurements;

hardware; open-source;

ACM Classification Keywords

H.5.2 User Interfaces: Input devices and strategies

Introduction and Motivation

The amount of latency or lag in human-computer inter-

faces affects how effectively, efficiently, and satisfacto-

rily users interact with a computer system. As shown

by Ng et al. [11], users are able to detect the effects of

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

CHI'18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5621-3/18/04.

https://doi.org/10.1145/3170427.3188632

Florian Bockes

University of Regensburg

Franz-Mayer-Straße 1

93053 Regensburg, Germany

florian.bockes@ur.de

Raphael Wimmer

University of Regensburg

Franz-Mayer-Straße 1

93053 Regensburg, Germany

raphael.wimmer@ur.de

Andreas Schmid

University of Regensburg

Franz-Mayer-Straße 1

93053 Regensburg, Germany

andreas1.schmid@stud.uni-

regensburg.de

latency in a user interface, down to an overall latency

of 2 ms. In practice, a maximum latency of 20 ms for

touch input and 2 ms for dragging actions is desirable

[5]. High latency disproportionally increases task com-

pletion time for pointing tasks by slowing down feed-

back loops [10, 13]. In certain computer games, such

as first-person shooters or real-time strategy games,

the amount of latency a user experiences decides over

virtual life or death [8]. When controlling surgical ro-

bots or vehicles, high latency may cause critical situa-

tions. Thus, finding ways to reduce latency is of great

importance for designers of interactive systems. In

order to reduce the overall latency of a system, it is

necessary to isolate and measure individual sources of

latency. We present an approach for precisely and ac-

curately measuring the latency of common input devic-

es, such as computer mice, keyboards, joysticks and

gamepads. As many of these devices are connected to

a host computer via the Universal Serial Bus (USB)

[15], we focus on them and exclude devices connected

via wireless (Bluetooth) or embedded interfaces (I2C,

SPI). Furthermore, we limit our investigation to the

latency of (binary) button presses and do not measure

latency of non-binary input channels, such as mouse

movement or joystick axes. This makes it easier to

define, measure, and compare latency measurements

for different device classes. For conducting the meas-

urements, we implemented LagBox (Figure 1), a simple

Raspberry-Pi-based tool that measures latency of USB-

connected input devices by repeatedly electrically trig-

gering a button on the device and detecting the input

event on the Raspberry Pi. By automatically conducting

hundreds of latency measurements per input device,

our approach allows for reproducibly collecting more

data in a shorter time period and with higher accuracy

than manual approaches.

In the following, we present an overview of previous

approaches to measuring the latency of input devices,

describe the implementation of LagBox, show initial

measurements, and discuss limitations and future work.

Related Work

Traditionally, researchers and gamers have been em-

ploying two different approaches for measuring the

latency of input devices. Many previously presented

approaches measure end-to-end latency, i.e. the time

difference between an input event (e.g., the user

pressing a button) and an output event (e.g., a change

of screen contents). This is often done using a video

camera. Kaaresoja and Brewster deliver one good ex-

ample for this approach [6]. By varying only one part of

the processing pipeline – such as the input device that

is being used - one may indirectly determine latency

differences caused by these changes.

Teather et al. measured the input latency of eight com-

puter mice, a keyboard, and a response box connected

to a computer via the serial port, PS/2 or USB [13]. An

oscilloscope was used to measure the delay between a

(simulated) button press on the device and a signal

being emitted to the computer. Casiez et al. - who also

give a good overview of related work - present a non-

destructive approach for measuring absolute end-to-

end latency for different computer mice [1]. Further-

more, they developed a low cost method to measure

and characterize the end-to-end latency of a touch

system (tap latency) or an input device equipped with a

physical button [2]. In the method used by Casiez et

al., the time of touch is detected by a vibration sensor,

whereas the time of response is detected by a photodi-

ode affixed to the display. Researchers at Google

measure touch screen latency with a similar approach

using a laser sensor to detect touches [7]. A commonly

Figure 1 – The LagBox measures

latency of input devices by

rapidly closing the electrical

contact of a button on an input

device and measuring the time it

takes for the corresponding USB

packet to arrive from the input

device.

Figure 2 – Simplified circuit

diagram of the lagbox.

used approach used by hobbyists is to measure the

difference in latency of two computer mice by smashing

both together so that their mouse buttons are clicked at

the same time. Software running on a PC captures the

timestamps of the two button events and prints out the

difference [14].

Deber et al. [4] present Hammer Time, a tool for

measuring the latency of capacitive touch screens.

Their approach allows for rapidly generating touch

events and measuring system response using a light

sensor. While the tool offers high precision due to re-

peated measurements, it is only capable of measuring

end-to-end latency, too.

In summary, common approaches for measuring laten-

cy are: 1) measuring end-to-end latency by visual

means, 2) building custom circuits to capture touch

input and system response, and 3) simultaneously

pressing buttons on two input devices in order to

measure the difference in their latencies. The first two

approaches only allow capturing end-to-end latency,

thereby hiding the partial latencies of individual com-

ponents. The latter approach is inherently imprecise

and does not scale.

Implementation

With LagBox we contribute an approach that allows for

conducting rapid, repeated measurements of the laten-

cy of USB-connected input devices. In order to simplify

device design and make the device affordable for a

wide audience, we use a Raspberry Pi 2 (abbreviated

RPi2 in the following) as the core of LagBox. As button

mechanics make it inherently hard to define a precise

point in time for the input, we define the start time as

the point of time when electrical connection is made by

the button. Therefore, all USB devices under test have

to be prepared by soldering two wires to one of the

button pads on the device. These wires are then con-

nected via a 3.5mm audio jack to the phototransistor

side of an LTV817 optocoupler (Figure 2). The optocou-

pler is connected to one GPIO pin and ground on the

RPi2. A resistor protects the optocoupler’s LED against

overcurrent (Figure 2). When the GPIO pin is activated,

the optocoupler electrically connects both wires, there-

by simulating a button press on the tested device. A

low-latency C application running on the RPi2 repeated-

ly triggers the optocoupler and measures the time it

takes for an USB packet to arrive from the device. The

inherent latency of our measurement setup is in the low

microseconds range and therefore has little effect on

the measured device latencies which are in the milli-

seconds range.

Limitations

Currently, the system is limited to reading input events

from the Linux kernel’s device interface instead of di-

rectly detecting USB traffic. As USB devices are polled

by the host computer in intervals of 1, 2, 4, 8, etc.

milliseconds – depending on the configuration they

report – polling rate has a major effect on actual laten-

cy. First measurements where we enforced a higher

polling rate, indicate that some devices do offer signifi-

cantly lower latency in this case. A further limitation of

our current approach is that it currently requires physi-

cally modifying an input device. While the wires can be

desoldered again from the device, our approach is not

suitable for testing devices e.g., in a store. Extending

our system so that it mechanically presses buttons

would allow non-invasive measurements.

First results and discussion

To validate our prototype, several experiments were

conducted during the development process where we

tested a small number of input devices. The following

devices were tested: three gamepads (Logitech Wing-

man and two different no-name gamepads using the

same DragonRise controller IC), two keyboards

(Logitech G15 and Gembird Mini USB Keyboard), and

three mice (Logitech G5, G300, and RX250). For each

device, we collected 5000 samples. Delays between

individual measurements were randomized between 0.1

and 10 ms with an even distribution in order to avoid

accidental synchronization between measurement in-

terval and USB polling interval. Great differences exist

between devices regarding both latency and consisten-

cy (Table 1). Moreover, plotting the kernel density es-

timates for the latency distributions reveals further

peculiarities of certain devices (Figure 3). For example,

the Logitech G15 keyboard has a bimodal distribution of

latencies.

Device Type Polling

rate

Median ±

SD (ms)

Logitech G5 Mouse 1000 Hz 13.3 ± 2.8

Logitech RX250 Mouse 125 Hz 2.2 ± 0.3

Logitech G300 Mouse 1000 Hz 29.0 ± 2.5

Gembird Mini Keyboard

K

125 Hz 25.8 ± 4.9

Logitech G15 Keyboard 1000 Hz 3.9 ± 0.7

Logitech Wingman Gamepad 125 Hz 5.6 ± 2.3

DragonRise (green) Gamepad 125 Hz 17,3 ± 4.5

DragonRise (black) Gamepad 125 Hz 17.5 ± 4.3

Table 1 – Results of initial latency measurements.

Figure 3 – Latency distribution for various USB-connected

mice, gamepads and keyboards measured by our implementa-

tion

Conclusion and outlook

In summary, we have presented a versatile open-

source system which currently supports an automat-

ed/destructive mode for measuring latency of USB

devices, such as mice, keyboards, and game control-

lers. It can be augmented with non-destructive meas-

urement modes. For example, using an accelerometer

similar to Google WALT [7] supplementary to or instead

of a force-sensitive resistor might offer greater flexibil-

ity. In the future we want to add the approach demon-

strated by Casiez et al. [2] and furthermore measure

exact timing of “button-pressed” events with a piezoe-

lectric sensor. A mechanical actuator for pressing but-

tons would allow for automated standardized testing.

The preliminary results indicate that devices differ not

only in average latency, but that also great differences

in the latency distributions exist. These might warrant

further investigation.

Acknowledgements

Simon Fürnstein, Oliver Pieper, and Mark Engerißer

implemented earlier versions of the prototype and con-

ducted initial latency measurements for their bachelor’s

theses.

This project is funded by the Bavarian State Ministry of

Education, Science and the Arts in the framework of the

Centre Digitisation.Bavaria (ZD.B)

References

[1] Casiez, G., Conversy, S., Falce, M., Huot, S. and

Roussel, N. 2015. Looking through the eye of the

mouse: A simple method for measuring end-to-end

latency using an optical mouse. In Proc. UIST ‘15, 629–

636.

[2] Casiez, G., Pietrzak, T., Marchal, D., Poulmane, S.,

Falce, M., & Roussel, N. (2017). Characterizing Latency

in Touch and Button-Equipped Interactive Systems. In

Proc. UIST’17 29–39. New York, NY, USA: ACM.

[3] Damian, M.F. 2010. Does variability in human per-

formance outweigh imprecision in response devices

such as computer keyboards? Behavior Research Meth-

ods. 42, 1 (2010), 205–211.

[4] Deber, J., Araujo, B., Jota, R., Forlines, C., Leigh,

D., Sanders, S., and Wigdor, D. 2016. Hammer time!:

A low-cost, high precision, high accuracy tool to meas-

ure the latency of touchscreen devices. In Proc. CHI

’16. 2857-2868. ACM.

[5] Jota, R., Ng, A., Dietz, P. and Wigdor, D. 2013. How

fast is fast enough? : A study of the effects of latency in

direct touch pointing tasks. In Proc. CHI ’13, 2291–

2300.

[6] Kaaresoja, T. and Brewster, S. 2010. Feedback is…

Late: Measuring multimodal delays in mobile device

touchscreen interaction. International conference on

multimodal interfaces and the workshop on machine

learning for multimodal interaction (2010), 2.

[7] Koudritsky, M., Jahin, S., Quinn, P. and Fair, B.

(2017). WALT latency timer. Retrieved from:

https://github.com/google/walt [13.1.2018]

[8] Lampe, U., Wu, Q., Hans, R., Miede, A. and

Steinmetz, R. 2013. To frag or to be fragged-an empiri-

cal assessment of latency in cloud gaming. CLOSER

(2013), 5–12.

[9] Luu, D. 2017. Keyboard Latency. Retrieved from:

http://danluu.com/keyboard-latency/ [15.1.2018]

[10] MacKenzie, I.S. and Ware, C. 1993. Lag as a de-

terminant of human performance in interactive sys-

tems. In Proc. INTERACT ’93 and CHI ’93, 488–493.

[11] Ng, A., Lepinski, J., Wigdor, D., Sanders, S. and

Dietz, P.2012. Designing for low-latency direct-touch

input. Proceedings of the 25th annual ACM symposium

on user interface software and technology (2012), 453–

464.

[12] Plant, R.R., Hammond, N. and Whitehouse, T.

2003. How choice of mouse may affect response timing

in psychological studies. Behavior Research Methods,

Instruments, & Computers. 35, 2 (2003), 276–284.

[13] Teather, R.J., Pavlovych, A., Stuerzlinger, W. and

MacKenzie, S.I. 2009. Effects of tracking technology,

latency, and spatial jitter on object movement. 3D user

interfaces, 2009. 3DUI 2009. IEEE symposium on

(2009), 43–50.

[14] The measurement of gaming mouse button lag.

2013. Retrieved from:

http://web.archive.org/web/20160224102835/https://

utmalesoldiers.blogspot.de/2013/02/114.html

[15.1.2018]

[15] USB Implementers Forum 2000. Universal serial

bus specification rev. 2.0. (2000).

