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              To my grandfather Edmund 

 

„Bones can break, muscles 

atrophy, glands can loaf, even the 

brain can go to sleep, without 

immediately endangering our 

survival, but when the kidneys fail 

to manufacture the proper kind of 

blood neither bone, muscle, gland 

or brain can carry on.” 

Homer W. Smith, From Fish to Philosopher 
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Abstract 

The secretion and synthesis of renin is regulated by several systemic and local factors. 

Besides salt balance, extracellular volume and blood pressure, different hormones such as 

ANG II, arginine vasopressin and norepinephrine were examined as renin mediators. 

Moreover, endothelins have been hypothesized as negative regulators of renin secretion and 

synthesis in vitro whereas they have been suggested to primarily inhibit the release of renin 

through a high cytosolic Ca2+ concentration in JG cells. The endothelin system consists of 

three peptide hormones Endothelin-1, Endothelin-2 and Endothelin-3 and their G-protein 

coupled receptors ETA- and ETB-receptor. ET-1 has been determined as a strong 

vasoconstrictor in the renal vasculature mainly mediated by ETAR, whereas ETB-receptor, at 

least initially, rather promotes vasodilatation.  

Present thesis aimed to investigate either, if endothelins bind on the ETA- and/or ETB-

receptors following a Ca2+-dependent direct inhibiting effect on renin cells or if different 

systemic factors, e.g. extracellular volume, are affected by endothelins resulting in the 

modulation of the renin system in vivo. In order to characterize the role of endothelins on the 

renin system further, each single ET-receptor could be addressed as general markers for 

renin producing cells. Therefore experiments were performed with renin cell-specific ETAR or 

ETBR isoform knockout animal model (Ren1d+/Cre-ETARfl/fl, Ren1d+/Cre-ETBRfl/fl) and a renin 

cell-specific ETAR and ETBR knockout animal model (Ren1d+/Cre-ETBRfl/fl-ETARfl/fl) to assess 

a potential direct effect in vivo. Afterwards, possible indirect effects of ET-receptors based on 

vascular actions of endothelins were examined. Therefore several mouse models were 

generated additionally: ETAR and/or ETBR knockout model to study systemic effects 

(SMMHC-Cre-ERT2-ETARfl/fl,SMMHC-Cre-ERT2-ETBRfl/fl); stroma derived cell-specific effects 

(FOXD1Cre/+-ETARfl/fl, FOXD1Cre/+-ETBRfl/fl, FOXD1Cre/+- ETARfl/fl-ETBRfl/fl) and general effects in 

vivo (CAGG-Cre-ERT2-ETARfl/fl). 

All mentioned Cre+-animals, revealed normal developed renin producing cells, renin mRNA 

abundance, plasma renin concentration levels, unchanged systolic blood pressure indicating 

that each ET receptor isoform and the combination of both ET receptors located on 

mentioned cells are not of major relevance for renin synthesis and secretion. In addition, all 

Cre+ animals, except of FOXD1Cre/+- ETARfl/fl-ETBRfl/fl displayed via the isolated perfused 

kidney model an inhibition of renin secretion rate through ET-1 in increasing concentrations 

mainly mediated by a decline of the renal blood flow as in controls. Conversely all FOXD1Cre/+- 

ETARfl/fl-ETBRfl/fl animals showed no decline of renin secretion rate and an abolished decline 

of the renal blood flow indicating that these results appeared due to absence of systemic 

effects in this ex vivo situation.  
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However, present findings indicate for the very first time that ETA-and/or ETB-receptor 

isoform located on the renin cell lineage and on stroma derived cells seem to be under 

normal conditions of less relevance for the renin synthesis and secretion in vivo and in vitro 

whereas not yet addressed tubular effects or possible systemic effects are more responsible 

for inhibition of the renin system through endothelins in order to equilibrate general 

homeostasis. In addition, the role of ET-receptors located on renin producing cells in terms of 

renal pathophysiology e.g. renal fibrosis or diabetic nephropathy need to be evaluated 

prospectively further.  
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1 Introduction 

1.1 Renin-Angiotensin-Aldosterone System (RAAS) in the kidney 

The Renin-Angiotensin-Aldosterone system (RAAS) is a key regulator in homeostatic 

processes such as arterial pressure and fluid volume control in the human body.  

Since the discovery of the protease renin over 100 years ago (Tigerstedt and Bergman, 

1898), RAAS became an important target of many studies. Drugs that modulate different 

parts of this system were discovered as pharmacological tools in order to combat high blood 

pressure, myocardial infarctions and diabetic nephropathy (Cagnoni et al., 2010). Renin is a 

proteolytic enzyme which is mainly synthesized in the kidney. It has the ability to catalyze the 

hydrolysis of Angiotensinogen, a glycoprotein which is secreted from the liver into the blood, 

to Angiotensin I (ANG I) and is therefore initiator of a complex cascade of enzymes 

(Hackenthal et al., 1990; Hall, 2003; Persson et al., 2004) (see Fig.1). 

 

 

 

Fig. 1: Schematic representation of Renin-Angiotensin-Aldosterone system (explanation see text) 



Introduction 

7 
 

The Angiotensin-converting enzyme (ACE) is a metalloproteinase, which derives from the 

lung epithelium and transforms the biological inactive decapeptide ANG I into an octapeptide 

termed as Angiotensin II (ANG II). This biological active hormone is the main mediator of the 

system and acts via binding to angiotensin receptors which are located on cells of the 

cardiovascular, endothelial and endocrine system. ANG II acts as a vasoconstrictor and 

causes an increase in vascular resistance and by association rise of systemic blood 

pressure. In addition, ANG II stimulates the release of vasopressin in the posterior pituitary of 

the hypothalamus in order to increase water reabsorption. Furthermore, it mediates the 

intrarenal sodium and water reabsorption in the tubules via angiotensin receptors and by 

increased aldosterone synthesis in the adrenal gland (Hall, 2003; Quinn and Williams, 1988; 

Hackenthal et al., 1990). 

In humans, the activity of RAAS depends on plasma renin concentration (PRC) because the 

hydrolysis of ANG I into ANG II is limited by renin whereas Angiotensinogen and ACE are 

secreted in abundance under healthy conditions. Therefore, synthesis and secretion rate of 

renin are key targets of several negative feedback loops to regulate RAAS. It has been 

shown that increased systemic blood and renal perfusion pressure, increased tubular sodium 

concentration and also increasing amount of ANG II concentration suppresses synthesis and 

secretion of renin (Hackenthal et al., 1990; Kurtz et al., 1986b; Kurtz and Wagner, 1999; 

Vander and Geelhoed, 1965). 

1.2 Synthesis and secretion of renin in the juxtaglomerular epitheloid cell 

apparatus 

In the adult kidney, renin is synthesized in cuboid structured-like cells which are localized in 

the media layer of afferent arterioles close to the vascular pole of glomeruli (Ganten et al., 

1976; Hackenthal et al., 1990; Taugner et al., 1979; Sequeira-Lopez et al., 2015). Due to 

their almost exclusive localization cells are termed as juxtaglomerular (JG) cells (see Fig. 2). 

In humans, unlike in mice, renin is encoded by one single gene. Rodents which are used for 

scientific research can be divided into two groups. Mouse lines which possess one renin 

gene (Ren-1c) (i.e. C57/Bl6, BALB/C) and mouse lines (129 SV, Swiss) which possess two 

genes (Ren-1d and Ren-2). It is assumed that Ren-2 is established through gene duplication 

out of Ren-1 (Abel and Gross, 1990; Dickinson et al., 1984). All renin genes are encoded for 

proteins which are almost homologue on the level of amino acids but differ in glycolization 

(Sigmund and Gross, 1991). Ren-1-proteins can be glycolized to three asparagine residues 

whereas Ren-2 proteins are not known to possess binding sites for glycolization.  

 

 



Introduction 

8 
 

 

Renin is first synthesized as preprorenin with a molecular mass of 48 kDa. After 

transportation into the endoplasmatic reticulum (ER), a pre-sequence is catalyzed and given 

prorenin passes in the Golgi apparatus. There, it can enter one of two further processing 

pathways. Prorenin either can be glycolized via mannose-6-phosphate (M6P) residues, 

transported into tight, lysosomal-like dense core vesicles (DCV) and stored for regulated 

exocytosis or prorenin is not glycolized and secreted constitutively into clear vesicles. 

Glycolization is therefore prerequisite for regulated exocytosis (Morris, 1992; Mullins et al., 

2000). Therefore Ren-2 is exclusively secreted constitutively because it is free from binding 

sites for glycolization and has no function for regulated exocytosis. Only Ren-1 is stored in 

DCV (Sharp et al., 1996; Clark et al., 1997). In those vesicles the 43 amino acid long N-

terminal pro-segment of the protein is catalyzed by a proteolytic mechanism which is mainly 

unknown. Besides prorenin, several proteases such as cathepsin B (Neves et al., 1996), 

proprotein convertase PC5 (Mercure et al., 1996) and kallikrein (Kikkawa et al., 1998) are 

meant to be important mediators for processing of this pathway. The pH-value in vesicles (4-

6) is preferential for proteolysis. Active renin is stored in DCV until controlled release.  

Fig. 2: Schematic representation of glomerulus with detailed description of juxtaglomerular apparatus 

(explanation see text) modified from Dr.Karger 
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1.3 Regulation of renin synthesis and secretion 

1.3.1 Regulation through local and systemic factors 

As mentioned above, the release of active renin leads to high amount of ANG II, which is 

determining for regulation of blood pressure and sodium homeostasis. Therefore, the release 

of renin from JG cells itself is regulated by various local and systemic factors. 

1.3.1.1 Systemic blood pressure  

The concept of an intrarenal, pressure dependent mechanism which regulates the release of 

renin, was first postulated by Skinner et al. (SKINNER et al., 1964). An increase of arterial 

blood pressure leads to an inhibition of synthesis and secretion of renin via a negative 

feedback-loop. Whereas a decrease of blood pressure results into a stimulation of renin 

release (Wagner and Kurtz, 1998a). This effect has also been shown in isolated perfused 

kidneys (Scholz and Kurtz, 1993) and its most presumably a renal baroreceptor involved in 

this mechanism. This physiological key regulator is assumed to be localized in the renin 

producing cells themselves but the identification of this receptor is mostly unknown (Gomez 

and Sequeira Lopez, 2009). Isolation of JG cells causes a pressure dependent regulation of 

renin secretion. In order to stimulate an increased blood pressure, cells were mechanically 

stretched. This caused a reduced renin secretion (Ryan et al., 2000; Carey et al., 1997). The 

pathway itself is mostly unknown but it is hypothesized that a stretched cell membrane lead 

to a higher amount of calcium influx in JG cells through stretch-dependent calcium channels 

and activation of phospholipase C (Ryan et al., 2000). The absence of extracellular calcium 

prevents pressure dependent inhibition of renin secretion (Ichihara et al., 1999). The 

postulation of a calcium dependency in the baroreceptor mechanism was confirmed in 

isolated perfused mice and rat kidneys (Scholz et al., 1994a; Wagner et al., 2007). 

1.3.1.2 Salt balance 

The NaCl-balance of the human body and the salt intake which comes with daily nutrition are 

well-known regulators of RAAS activity and by association of renin synthesis and secretion. 

High concentration of oral salt intake mediates an inhibition of renin secretion and vice versa 

(Wagner and Kurtz, 1998b). Vander and Miller described present chloride concentration in 

the distal tubular structures as an important link in this mechanism (Vander and MILLER, 

1964). In addition, a cluster of specialized endothelial cells of the distal tubulus close to renin 

producing cells termed as macula densa, displays a central function in the regulation of renin 

activity. The macula densa is known to be the sensor of chloride concentration in the distal 

tubulus and therefore leads a current low ion concentration to an increase in renin secretion 

and vice versa (Skott and Briggs, 1987; Schnermann, 1998). Furthermore, specific chloride 

concentration modulates vascular resistance. More precisely, a high concentration of 

chloride concentration results in a vasoconstriction of the afferent arteriole and vice versa. 
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This effect is also termed as the tubuloglomerular feedback (Castrop, 2007; Schnermann 

and Levine, 2003). This feedback prevents loss of salt and contributes to sodium 

homoeostasis in the body. Yet, the precise mechanism remains unknown but there were 

findings which detects the apical based transporter Na+-K+-2Cl- (NKCC2) to be the sensor for 

tubular Cl--ion concentration (Lorenz et al., 1991; Bell and Lapointe, 1997). The macula 

densa cells release ATP when a high Cl--concentration is present and can therefore 

modulate renin secretion. In contrast, a low ion concentration leads to an increase release of 

prostaglandin E2 (PGE2) via COX-2 and nitric oxide (NO) via neuronal NO-synthases 

(nNOS) (Bell et al., 2003; Kurtz and Wagner, 1998; Peti-Peterdi et al., 2003; Yang et al., 

2000). PGE2 and NO are also known to stimulate renin secretion for a short-term basis but 

recent studies identifies, both not essential for salt-dependent regulation of renin secretion 

(Sallstrom et al., 2008; Kim et al., 2007; Castrop et al., 2004; Hoecherl et al., 2002). In 

conclusion, the macula densa mechanism as mentioned above is important for detecting 

spontaneous alterations of tubular Cl- concentration associated by modulation of renin 

secretion. However it still remains unknown if the macula densa cells or which factors do play 

a key role in the long-term mechanism of salt-dependent regulation of renin secretion.    

1.3.1.3 Sympathetic nervous system  

The tubular system, the renal vascular system and the juxtaglomerular apparatus are 

innervated by the sympathetic nervous system (Hackenthal et al., 1990). Boivin et al. could 

localize the β1 adrenoreceptor on JG cells (Boivin et al., 2001), which leads to an increase in 

cAMP production in JG cells when activated through renal nervous system. A higher amount 

of cAMP production is known to stimulate renin secretion (DiBona and Kopp, 1997). In 

addition, a vasoconstrictive effect of afferent arterioles via activation of α adrenoreceptors 

triggers secretion of renin (Ehmke et al., 1989; Kirchheim et al., 1985). But sympathetic input 

of local nerve endings is not essential for modulation of renin secretion while reacting on 

various stimuli. Renin secretion was altered even at complete renal denervation as well as at 

pharmacological inhibition of β adrenoreceptors (Golin et al., 2001; Holmer et al., 1994; 

Holmer et al., 1993). Therefore, β1 adrenoreceptors seem to be essential for providing renin 

synthesis rate, which allows an availability of ready-to-use renin vesicles. This high amount 

of renin vesicles enables the reaction of external stimuli.  

1.3.1.4 Angiotensin II 

Angiotensin II is the effector hormone in the RAAS and mediates its physiological function 

mainly via angiotensin type-1 receptors (AT1 receptors). When circulating in the 

bloodstream, ANG II inhibits renin synthesis and secretion via negative feedback loop 

(Hackenthal et al., 1990; Muller et al., 2002). Experiments display an increase in renin 

synthesis and rate, after inhibiting or blocking AT1 receptor (Castrop et al., 2003; Hoecherl et 

al., 2001) whereas exogenic infusion of ANG II in rats and mice lowers them (Schunkert et 



Introduction 

11 
 

al., 1992). The effect of ANG II on the renin secretion is independent of renal perfusion 

pressure or salt concentration in tubular cells leading to hypothesis of a direct effect on the 

level of renin producing cells. In addition, the expression of AT1 receptors on renin producing 

cells supports this theory (Harrison-Bernard et al., 1997; Kimura et al., 1997). ANG II 

mediates an increase of intracellular concentration of calcium which inhibits the release of 

renin. However, recent experiments could negate the theory of a direct effect. A renin cell-

specific AT1a receptor animal model was generated where no difference either in renin 

mRNA abundance or in plasma renin concentration could be obtained compared to control 

littermates (unpublished data). 

In addition, ANG II is a vasoconstrictor and inhibits renin secretion indirectly through 

enhanced blood pressure where it promotes aldosterone and adrenaline release in the 

adrenal gland and triggers sensation of thirst via stimulation of AT1 receptors in the 

hypothalamus (Hackenthal et al., 1990; Crowley et al., 2005). 

1.3.1.5 Controlling of renin release on cellular level 

The systemic and local factors mentioned above which modulate renin secretion and 

synthesis all result in three main intracellular second messenger systems with following 

signaling molecules: cyclic nucleotides cAMP and cGMP and the intracellular free calcium 

concentration (Schweda and Kurtz, 2004; Castrop et al., 2010; Grünberger et al., 2006).  

Due to a variety of indirect and direct evidences, cAMP is postulated as the central 

intracellular stimulator of renin release. An increase in cAMP stimulates protein kinase A 

(PKA) which induces renin exocytosis. All mentioned extracellular stimulating factors mediate 

Fig. 3: Intracellular signaling pathways controlling renin exocytosis (Castrop et al., 2010) 
(explanation see text) 
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their effect by stimulating intracellular cAMP concentration. The amount of cAMP 

concentration is triggered by either receptor induced activation of adenylyl cyclase or 

inhibition of cAMP phosphodiesterase (PDE). 

Pharmacological stimulation of β adrenoreceptors stimulates cAMP concentration via 

activation of adenylyl cyclase which in turn increases renin secretion (Keeton and Campbell, 

1980; Vandongen et al., 1973; Weinberger et al., 1975). In addition, the direct activation of 

adenylyl cyclase activity by forskolin, a labdane diterpene, increases cAMP levels and renin 

release in JG cells (Castrop, 2007; Kurtz et al., 1984; Grünberger et al., 2006). For cAMP 

production in renin juxtaglomerular cells one of the main adenylyl cyclases isoforms are AC-5 

and AC-6 (Grünberger et al., 2006; Ortiz-Capisano et al., 2007b, 2007c). 

As mentioned above, intracellular cAMP levels are also determined by cAMP hydrolysis to 5‘-

AMP through the activity of cAMP PDEs. A nonselective inhibition of PDE activity using 3-

isobutyl-1-methylxanthine (IBMX) stimulates renin release. Studies with selective blockers of 

PDE-1,-3 and -4 isoforms displayed similar results (Chiu et al., 1996; Chiu and Reid, 1996; 

Chiu et al., 1999; Castrop, 2007) (see Fig.3). 

Although, a variety of studies could indicate that cAMP is the main stimulator of renin 

release, the complete mechanisms how cAMP mediate renin exocytosis remains unknown. 

The release of renin by cAMP involves a PKA-dependent step, but phosphorylation targets of 

PKA in JG cells are still unknown (Friis et al., 2002; Castrop, 2007; Kurtz et al., 1998b).  

In contrary to cAMP, the effects of cGMP are able to either stimulate or inhibit renin secretion 

in JG cells. Low cGMP concentration in those cells seems to stimulate renin secretion 

whereas high concentration rather mediates an inhibiting effect. Whereas stimulating and 

inhibiting cGMP signaling pathways seem to be localized in different parts of the cell.   

It has been shown that decreased concentration of cGMP mediates an inhibiting effect on 

PDE-3 synthesis which leads to an increased cAMP concentration and a strong renin 

exocytosis (Kurtz et al., 1998b; Kurtz and Wagner, 1998; Beierwaltes, 2006). This so called 

cAMP-cGMP interaction was confirmed in both patch-clamp experiments on single JG cells 

and in vivo (Friis et al., 2002; Beierwaltes, 2006). Additionally, cGMP-inhibited PDE-3 plays a 

mediator role in the stimulation of renin release by nitric oxide (NO). The activated soluble 

guanylate cyclase (sGC) which is activated by NO as well as PDE-3 is localized in the 

cytosol. Therefore, cGMP produced by sGC inhibits PDE-3 which could explain the 

stimulating effect of NO on renin secretion (Kurtz et al., 1988; Kurtz et al., 1998a). In contrast 

to sGC, the membrane-bound particulate guanylate cyclase (pGC) is located next to vesicles 

which are associated with cGMP-dependent proteinkinase II (cGKII) and it has been shown 

to be activated by atrial natriuretic peptide (ANP). ANP is known to inhibit renin exocytosis, 
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which could be explained by produced cGMP from pGC which in turn inhibits cGKII and by 

implication renin release (Vandongen et al., 1973; Kurtz et al., 1986a; Wagner and Kurtz, 

1998b) (see Fig.3). 

In contrast to cAMP and cGMP signaling control on renin release, free cytosolic Ca2+ 

concentration is considered as the primary inhibitor (Castrop et al., 2010). Therefore, an 

increased intracellular Ca2+ concentration in JG cells mediates an inhibition of renin secretion 

and a low concentration enhances renin secretion out of the vesicles. But in all other 

secretory cells, except parathyroid gland cells, an increased cytosolic Ca2+ concentration 

initiates and supports renin exocytosis (Cohen et al., 1997). This phenomenon in JG cells 

has been termed as the “calcium paradoxon” of renin release. Many hormones, for example, 

ANG II and arginine vasopressin are suggested to mediate their inhibiting effect in JG cells 

via an increase of cytosolic Ca2+ concentration (Ichihara et al., 1995; Kurtz et al., 1986b; van 

Dongen and Peart, 1974). Further, the usage of BAPTA, an intracellular Ca2+ chelator, 

reduces cytosolic Ca2+ concentration and stimulates renin secretion (Ortiz-Capisano et al., 

2007a; Ortiz-Capisano et al., 2007c).  

Not only intracellular Ca2+ concentration, but also extracellular concentration of Ca2+ is known 

to modulate renin secretion. Several studies on isolated JG cells, glomeruli, kidneys and also 

on single kidney sections demonstrated an increased renin secretion after reducing 

extracellular Ca2+ concentration (Moe et al., 1991; Scholz et al., 1994b; Baumbach et al., 

1976; Ortiz-Capisano et al., 2007c; Kurtz and Wagner, 1999). Presumably, low extracellular 

Ca2+ -concentration turns into low transmembrane Ca2+ influx which results in menial amount 

of Ca2+ ions in the cytosolic area. In addition, these parallel changes in the extra- and 

intracellular Ca2+ concentrations, the Ca2+-sensing receptor, which also controls the release 

of the parathyroid hormone in a Ca2+-dependent manner, may participate in the regulation of 

renin release by the extracellular ion concentration (Ortiz-Capisano et al., 2007a; Kurtz and 

Wagner, 1999; Castrop et al., 2010). 

However, the specific mechanisms behind the suppression of renin release in response to an 

increasing concentration of cytosolic Ca2+ remain unknown and need to be investigated 

further. Recent studies focused on a further downstream target of Ca2+, specifically, the Ca2+-

inhibited adenylyl cyclases AC5 and AC6 (Kurtz and Penner, 1989; Hackenthal et al., 1990; 

Castrop et al., 2010; Schweda and Kurtz, 2004; Grünberger et al., 2006; Ortiz-Capisano et 

al., 2007c). High Ca2+ concentration inhibits both cyclases which turns into decreased cAMP 

concentration and suppression of renin secretion (Ortiz-Capisano et al., 2007c; Grünberger 

et al., 2006).  
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Further, evidences suggest that the suppression of renin release by Ca2+ involves 

Ca2+/calmodulin-dependent processes or activation of proteinkinase C (Castrop, 2007; 

Hackenthal et al., 1990; Kurtz and Wagner, 1999; Schweda and Kurtz, 2004).  

1.3.2 Endothelins as potential regulators of RAAS 

A variety of in vitro studies and one in vivo study using dogs have examined endothelins 

(ETs) as negative regulators of renin synthesis and secretion out of the cell, mediating their 

direct effect through an increase in cytosolic Ca2+ concentration (Berthold et al., 1999; Scholz 

et al., 1995; Ritthaler et al., 1995; Ritthaler et al., 1996). However it still remains unknown to 

what extend the inhibiting direct effect becomes relevant in vivo. 

1.3.2.1 General characterization of the endothelin system 

In 1988, a 21-amino acid vasoconstricting factor termed endothelin was isolated from 

cultured porcine aortic endothelial cells (Yanagisawa et al., 1988). ETs are a family of 

naturally occurring peptides with well-established growth-promoting, vasoactive and 

nociceptive properties that affect the function of a number of tissues and systems. The 

endothelin system consists of endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-

3). 

ET-1 is a 21-amino-acid peptide with a hydrophobic C-terminus and two cysteine bridges at 

the N-terminus. In addition, two structurally related peptides differing by two and six amino 

acids were identified and termed as ET-2 and ET-3 shortly after (Yanagisawa and Masaki, 

1989). In humans, endothelin represents the most potent and long-lasting vasoconstrictor 

known, being 100 times more potent than noradrenaline (Yanagisawa et al., 1988; Luscher 

furin-like protease

preproET-1 preproET-2 preproET-3

big ET-1 big ET-2 big ET-3

ET-1 ET-2 ET-3

furin-like protease furin-like protease

ETA receptor ETB receptor

Gq, Gs, … Gq, Gi, …

ECE-1,ECE-2 ECE-1,ECE-2 ECE-1,ECE-2

Fig. 4: Schematic representation of the endothelin pathway (adapted from Kedzierski and 

Yanagisawa, 2001) preproET: preproendothelins; ECEs: endothelin-converting enzymes; Gx: various G 

proteins 
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and Barton, 2000; Maguire and Davenport, 2002; Hillier et al., 2001; Davenport et al., 2016). 

ET-1 is suggested as the predominant isoform and the biologically most relevant (Luscher 

and Barton, 2000; Kedzierski and Yanagisawa, 2001) and is produced by smooth muscle 

cells, vascular endothelial cells, macrophages, fibroblasts and brain neurons among others 

(Ortmann et al., 2005; Luscher and Barton, 2000; Kedzierski and Yanagisawa, 2001). ET-2 

expression is found in the ovary and in intestinal epithelial cells such as in lung 

alveolarization. ET-3 can be determined in endothelial cells, brain neurons, and renal tubular 

epithelial cells rather mediating the release of vasodilators, including NO and prostacyclin 

(Kedzierski and Yanagisawa, 2001). In the kidney, ET-1 is synthesized by endothelial cells of 

vessels and ET-1 such as ET-3 are exclusively expressed in epithelial cells of medullary and 

cortical collecting ducts (Kohan, 1991; Karet and Davenport, 1996). 

The endothelin precursors are processed by two proteases to create the mature active form. 

The so called preproendothelins are cleaved at dibasic sites via furin-like proteases and form 

physiological inactive 37-41-amino acid long peptides termed big endothelins. Big ETs are 

cutted via endothelin-converting enzymes (ECEs) at the Trp-Val of ET-1 and ET-2 at the Trp-

Ile of ET-3 to build the final peptides (Inoue et al., 1989; Kedzierski and Yanagisawa, 2001).  

In mammals, all three peptides mediate their actions via two 7-transmembrane domain, G-

protein coupled receptors. They have been identified and termed as Endothelin-A and 

Endothelin-B (ETAR,ETBR) receptor (Masaki et al., 1994; Davenport, 2002; Arai et al., 1990; 

Sakurai et al., 1990). Whereas ETAR has been determined to display similar affinities for ET-

1 and ET-2 signaling and 100-fold lower affinity for ET-3 (Barton and Yanagisawa, 2008; 

Kedzierski and Yanagisawa, 2001). ETBR receptor shows equal affinities for all ETs (Barton 

and Yanagisawa, 2008). (see Fig.4) 

1.3.2.2 Role of endothelin system in the kidney 

In the kidney, all ETs have been shown to equipotently inhibit cAMP-stimulated renin 

secretion in a Ca2+-dependent fashion from cultured renal JG cells in vitro  but it still remains 

unknown wether ETAR and/or ETBR is involved in this mechanism (Ritthaler et al., 1995; 

Ritthaler et al., 1996) and if the effects are reproducible in vivo. ETAR and ETBR are widely 

distributed in the kidney whereas one single cell can express one or both receptor isoforms 

(Kohan et al., 2011a). In general, ETAR has been shown to be localized in vascular smooth 

muscle, mesangial cells, pericytes, collecting duct and thick ascending limb, while ETBR 

predominates on endothelial cells and renal tubules (Kohan et al., 2011a). ET receptors 

activate a host of signaling systems that vary on the cell type and mediate therefore often 

different biological effects (Kohan, 2010). ET receptors connect to different members of the 

G protein family (see Fig. 4) where actions result in a variety of signaling cascades, including 

adenylyl cyclases, cyclooxygenases (COX), nitric oxide synthase (NOS) and others (Kohan 
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et al., 2011b). The ETAR receptor has been considered as the primary vasoconstrictor and 

growth promoter whereas ETBR rather has been suggested, at least initially, to cause 

vasodilatation and inhibit cell growth (Kohan et al., 2011a; Kohan, 2010; Kohan et al., 2011b; 

Barton and Yanagisawa, 2008; Yanagisawa et al., 1988). In addition, various studies 

hypothesized endothelins as regulators of several aspects of kidney physiology since ET-1 

could be determined to be synthesized in almost every cell type within the organ (Kohan et 

al., 2011b). Further, ETAR and ETBR could be localized in kidney tissue, as mentioned 

above, in abundance, the endothelin system has been postulated to be a potential regulator 

of renal blood flow, glomerular filtration rate and transport of sodium, water, protons and 

bicarbonate (Kohan et al., 2011a). Administration of ET-1 in anesthetized rabbits reduced 

cortical perfusion, urinary flow, sodium excretion, cortical perfusion and glomerular filtration 

rate (Evans et al., 1998). Further, ET system has emerged as being of importance in 

mediating renal injury and/or disease progression in a variety of pathological conditions 

including hypertension, ischemia, congestive heart failure, stroke, diabetic retinopathy and 

nephropathy as acute and chronic renal failure (Rubanyi and Polokoff, 1994; Kohan, 2010). 

ETs derived from individual renal cells act primarily in an autocrine or paracrine fashion; thus 

the renal ET system must be viewed within the context of the local microenvironment. 

Several studies administered key ET agonists and antagonists to get a closer focus on the 

role of renal ET in the regulation of blood pressure and sodium homeostasis (Maguire and 

Davenport, 2015). The cyclic pentapeptide BQ-123 (D-Asp-L-Pro-D-Val-Leu-D-Trp-) and a 

linear tripeptide termed as FR139317 (N-[N-[N-[(Hexahydro-1H-azepin-1-yl)carbonyl]-L-

leucyl]-1-methyl-D-tryptophyl]-3-(2-pyridinyl)-D-alanine) are well-known highly selective ETA-

receptor antagonists in mammals which have been used in Research and Clinical Studies 

(Ihara et al., 1992; Aramori et al., 1993; Maguire and Davenport, 2015). Thereby, ET-1 was 

shown to mediate renal vasoconstriction most presumably via ETA receptor signaling 

pathway, although it is not apparent from the studies, if ETA-receptor antagonists are able to 

prevent ET-1 induced vasoconstriction (Schmetterer et al., 1998). Still, medical studies 

examined that BQ123 inhibited the ET-1 mediated increase in renal vascular resistance of 

human patients promoting further ETAR as being the main vasoconstrictor (Kaasjager et al., 

1997; Bohm et al., 2003). The usage of BQ788, a highly selective ETBR antagonist, supports 

hypothesis of ET-1 actions in renal vascular system (Bohm et al., 2003; Maguire and 

Davenport, 2015). In addition, the ET receptor subtype B has been shown to rather play an 

important role in the clearance of exogenous ET-1, which could be shown in administration of 

BQ788 in endothelial cell-specific knockout rats (Kelland et al., 2010; Fukuroda et al., 1994).  

In summary, endothelin is an important proven inhibiting factor of the renin system in vitro 

and has emerged as a crucial regulator in a variety of renal pathologies (Kedzierski and 

Yanagisawa, 2001; Davenport et al., 2016; Palmer, 2009; Patel and McKeage, 2014; 
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Sidharta et al., 2015). Regarding the renin system, endothelin is thought to exert its effect 

through vasoconstriction in the renal vascular system and/or a potential direct inhibitory 

effect on renin producing JG cells. Among the two present ET receptor subtypes, it remains 

unknown if ETAR and/or ETBR are localized on renin producing JG cells and if the inhibiting 

effect of endothelins on renin synthesis and secretion is a direct effect on the level of those 

cells in vivo. 
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1.4. Aim of thesis 

The protease renin is considered as a central regulatory factor of the renin-angiotensin-

aldosterone system. It is synthesized primarily from juxtaglomerular epitheloid cells in the 

kidney and stored until release in secretory vesicles. Exocytosis and synthesis of renin from 

JG cells itself is regulated by different systemic and local factors.  

Synthesis and secretion of renin is stimulated through cAMP signaling pathway and is, while 

focusing on local factors, primarily inhibited by an increase cytosolic concentration of Ca2+ in 

JG cells. A large number of vasoconstrictor hormones such as ANG II and arginine 

vasopressin have been shown to inhibit renin release from juxtaglomerular epithelial cells in 

the kidney.  

In addition, endothelins have been suggested as negative regulators of renin secretion and 

synthesis. The endothelin system consists of three peptide hormones Endothelin-1, 

Endothelin-2 and Endothelin-3 and their G-protein coupled receptors ETA- and ETB-

receptor. ET-1 has been determined as a strong vasoconstrictor in the renal vascular system 

mainly mediated by ETAR, whereas ETB-receptor rather promotes vasodilatation. 

Concerning the contribution of endothelins on the regulation of the inhibition of renin 

exocytosis and synthesis, it still remains unknown either if endothelins bind on their receptors 

following a Ca2+-dependent direct inhibiting effect on renin cells or if different systemic 

factors, e.g. extracellular volume, are affected by endothelins resulting in modulating RAAS. 

Endothelins can modify blood pressure through their vasoconstrictive and vasodilatory 

characteristic or through effects located on the tubular system which regulates for example 

the extracellular volume.  

Previous in vitro studies have shown that endothelins, focusing on ET-1 inhibit the renin 

synthesis and secretion (Ritthaler et al., 1995; Ritthaler et al., 1996; Berthold et al., 1999; 

Scholz et al., 1995; Ackermann et al., 1995) The work at hand concentrates on in vivo 

investigations which mechanisms mentioned above play a central role and moreover which 

ET-receptors are relevant.  

In order to characterize the role of endothelins on the renin system, the first part of present 

thesis, focusses on the localization of each ET-receptor isoform in the adult murine kidney. 

With the help of immunohistochemistry and in situ hybridization assay both ET-receptors 

were determined in different localization sites of the kidney.  

The second part of this study concentrates on the relevance of renal ETA-receptor isoform 

as well as ETBR receptor isoform for renin synthesis and secretion in vivo and in vitro. 
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In the beginning, it was ineluctable to investigate a potential direct effect on the level of renin 

producing cells. Therefore, the generation of a renin cell-specific ETAR as well as an ETBR 

knockout model was necessary (Ren1d+/Cre-ETARfl/fl, Ren1d+/Cre-ETBRfl/fl).  

Afterwards, possible indirect effects of ET-receptor isoforms based on vascular actions of 

endothelins were examined. Thereby the generation of additional cell-specific animal models 

of single ET-receptors were provided: α-sma-ETAR or ETBR knockout model to study 

systemic effects on the renin system (SMMHC-Cre-ERT2-ETARfl/fl, SMMHC-Cre-ERT2-

ETBRfl/fl); a stroma derived ETAR or ETBR knockout model in order to study if ET-receptors 

located on stroma derived cells are involved in the renin synthesis and secretion (FOXD1Cre/+-

ETARfl/fl, FOXD1Cre/+-ETBRfl/fl) and a conditional ETAR knockout model (CAGG-Cre-ERT2-

ETARfl/fl) to investigate if general ETAR expression is relevant for the regulation of the 

inhibition of renin synthesis and secretion. 

In the last few years, theories of potential ET-receptor interactions have been discussed. 

Therefore, third part of present thesis focusses on the importance of both renal ET-receptors 

for the renin synthesis and secretion in vivo and in vitro. To investigate if both ET-receptors 

mediate the renin system through a direct effect in vivo and in vitro, a renin cell-specific ET-

receptor “double-knockout” model (Ren1d+/Cre-ETARfl/fl-ETBRfl/fl) was used for further 

experiments. In addition, to answer the question if both ET-receptors located on stroma 

derived cells are relevant for the regulation of the renin system, a stroma derived ET-

receptors “double knockout” animal model was provided (FOXD1Cre/+-ETARfl/fl-ETBRfl/fl). 

Altogether, by means of different parts of investigations this work contributes to research on 

possible factors which modulate renin synthesis and secretion out of secretory vesicles, 

concentrating on negative regulators of renin release. The ET system, primarily ET-1 has 

been shown to inhibit renin release in vitro whereas the characterization if this inhibition is 

controlled by a possible direct effect on renin producing cells or a potential indirect effect 

through ET-1/ETA and/or ETBR has yet to be resolved and has been considered as one of 

the main approaches of present thesis.  
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2 Material and Methods 

2.1 Material 

2.1.1 Appliances 

APPLIANCE COMPANY 

agarose gel 

electrophoresis Compact M, Biometra, Göttingen 

autoclave DX-23, Systec, Linden 

blood pressure 

measuring monitor 

blood pressure measuring Monitor, 9001-series; TSE 

Systems, Bad Homburg 

camera 

AxioCam MRm, Zeiss, Jena 

Axiocam 105 color, Zeiss, Jena 

centrifuges 

Labofuge 400, Heraeus, Hanau 

centrifuge 5415C, Eppendorf, Hamburg 

computer Precision 690, Dell, Frankfurt am Main 

cryostat CM 3050S, Leica, Wetzlar 

filter sets 

TRITC-Filter: 

excitation 533-558 nm 

emission 570-640 nm 

Cy2-Filter: 

excitation 450-490 nm 

emission 500-550 nm 

 

filter set 43 DsRed, Zeiss, Jena 

 

 

filter set 38 HE, Zeiss, Jena 
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Cy5-Filter: 

excitation  625-655 nm 

emission 665-715 nm 

DAPI-Filter: 

excitation  335-383 nm 

emission 420-470 nm 

filter set 50, Zeiss, Jena 

 

 

filter set 49, Zeiss, Jena 

fluorescent lamp Colibri.2, Zeiss 

heat block 

Thermomixer, Eppendorf, Hamburg 

Thermomixer 5436, Eppendorf, Hamburg 

heat chamber Memmert, Schwabach 

heat plate HI 1220, Leica, Wetzlar 

heating bath 

Modell W13, Haake, Karlsruhe 

1083, GFL, Burgwedel 

homogenizer Ultra-Turrax T25, Janke & Kunkel, Staufen 

ice machine Ziegra Eismaschinen, Isernhagen 

incubator 

Model B6200, Heraeus, Hanau 

Modell 300, Memmert, Schwabach 

magnetic mixer 

MR 80, Heidolph, Schwabach 

MR 3001 K, Heidolph, Schwabach 

microscope Axio Observer Z1, Zeiss, Jena 

microtome rotary microtome RM2165, Leica, Wetzlar 
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microwave Sharp, Osaka 

PCR-cycler 

Labcycler, Sensoquest, Göttingen 

Lightcycler LC480, Roche, Mannheim 

perfusion pump 323, Watson Marlow, Wilmington, USA 

pH electrode Hanna Instruments, Vöhringen 

photometer NanoDrop 1000, Peqlab, Erlangen 

pipettes 

Pipetman P10, P20, P100, P200, P1000, 

Gilson, Middleton, USA 

pure water system MilliQ Plus PF, Millipore, Schwalbach 

refrigerator/freezer 

Santo refrigerator, AEG, Nürnberg 

Comfortplus freezer, Liebherr, Ochsenhausen 

Ultra-low-freezer -85°C, New Brunswick Scientific 

RNAscope® heat oven 
HybEZ Oven, Advanced Cell Diagnostics (ACD), 

Hayward, USA 

scales 

Scale ABT 120-5DM, kern, Balingen-Frommern 

EMS, Kern, Balingen-Frommern 

scan table Marzhäuser Sensotech GmbH, WTzlar 

shaker 

GFL, Burgwedel 

Rotamax, Heidolph, Schwabach 

UV dark chamber Fusion FX7, Vilber, Eberhardzell 

UV light table fluorescent tables, Renner, Dannstadt 
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2.1.2 Consumable material 

vortex mixer USA REAX1, Heidolph, Schwabach 

water bath 

Aqualine, AL12, Lauda, Lauda-Königshofen 

1083, GFL, Burgwedel 

PRODUCT COMPANY 

cover slips Roth, Karlsruhe 

dissecting set Hammacher, Solingen 

falcon 15 ml, 50 ml Sarstedt, Nümbrecht 

filter Schleicher & Schuell, Dassel 

glassware 

Roth, Karlsruhe 

Schott, Mainz 

gloves neoLab Migge GmbH, Heidelberg 

hematocrit capillaries Sanguis Counting, Nürnbrecht 

hematocrit sealing kit Brand, Wertheim 

light cycler multiwell plates 96 Sarstedt, Nürnbrecht 

liquid blocker pen 

Super PAP-Pen, Science Services, 

Munich 

ImmEdge Pen, Vector Laboratories, 

Burlingame, USA 

low salt chow 0.02 % NaCl 

high salt chow, 5 % NaCl 

Ssniff, Soest 
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2.1.3 Chemicals, Enzymes, Kits 

microscope slides, Superfrost Plus Menzel-Gläser, Braunschweig 

mold (silicone rubber) Roth, Karlsruhe 

needles Becton Dickinson, Franklin Lakes, USA 

paraffin wax Sarstedt, Nümbrecht 

parafilm Bemis, Neenah, USA 

pasteur pipettes VWR, Darmstadt 

pipette tip (filter or no filter) 

Sarstedt, Nümbrecht 

Biozym Scientific, Hessisch Oldendorf 

neoLab Migge GmbH, Heidelberg 

serological 5 ml, 10 ml, 25 ml 

pipettes 
Sarstedt, Nürnbrecht 

surgical blade Feather, Köln 

tissue embedding cassettes Roth, Karlsruhe 

tubes, 0.5 ml, 1.5 ml, 2.0 ml Sarstedt, Nümbrecht 

PRODUCT COMPANY 

agarose Biozym, Oldendorf 

ammonium hydroxide solution Sigma-Aldrich, Munich 

bovine serum albumin (BSA) Sigma-Aldrich, Munich 

Dulbecco’s PBS Sigma-Aldrich, Munich 
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chloroform Merck, Darmstadt 

diethyl pyrocarbonate (DEPC) Fluka, Neu-Ulm 

DNA ladder: gene ruler 
Gene Ruler™ 100bp plus DNA ladder, 

Thermo Scientific, Waltham, USA 

ELISA-kit (ANG I) PRA IBL International, Hamburg 

enalapril Sigma, Deisenhofen 

ethanol p.a. Honeywell, Morris Plains, USA 

Ethylendiamintetraacetate (EDTA) Merck, Darmstadt 

formaldehyde solution (37 %) Merck, Damrstadt 

glycergel Mounting Medium (IHC) Dako Cytomation, Glostrup, Dänemark 

glycerol 87 % AppliChem, Darmstadt 

goTaq DNA Polymerase, 5 U/μl Promega, Mannheim 

GoTaq Reaction Buffer Green, 5x bzw. 

Colorless, 5x 
Promega, Mannheim 

HCl 1N Merck, Darmstadt 

hematoxylin Gill Nr.1, Sigma Aldrich, Munich 

heparin Liquemin® 25000 (5000 I.E./ml) Roche, Mannheim 

horse serum 
Gibco, Life technologies, Grand Island, 

USA 

isopropyl alcohol Merck, Darmstadt 
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isopropyl alcohol (p.a.) AnalaR Normapur, VWR, Radnor, USA 

isotonic NaCl solution 0.9 % B. Braun, Melsungen 

K2HPO4 x 3 H2O Merck, Darmstadt 

KCl Merck, Darmstadt 

ketamine 10 % Bela-pharm, Vechta 

KH2PO4 Merck, Darmstadt 

methanol Merck, Darmstadt 

MgCl2 Merck, Darmstadt 

M-MLV reverse transcriptase, 200 u/µl Invitrogen, Karlsruhe 

Na2HPO4 Sigma-Aldrich, Munich 

Na2HPO4 x 2 H2O Merck, Darmstadt 

NaCl Merck, Darmstadt 

NaH2PO4 Sigma-Aldrich, Munich 

NaOH 1N Merck, Darmstadt 

nonfat dry milk Biorad, Munich 

nuclease-free water GibcoBRL, Eggenstein 

Oligo(dT)15 Primer, 0.5 μg/μl Thermo Scientifix, Waltham, USA 

paraformaldehyde Roth, Karlsruhe 

Paraplast-Plus paraffin Sherwood, St. Louis, USA 

PCR nucleotide mix Promega, Mannheim 
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2.1.4 Buffer and solutions 

So far as not mentioned further, chemicals for buffer and solutions were dissolved in 

H2Obidest..  

 

(dATP, dCTP, dGTP, dTTP, je 10 mM) 

RNAscope® 2.5 HD detection reagents ACD, Hayward, USA 

RNAscope® H2O2 & protease plus 

reagents 
ACD, Hayward, USA 

RNAscope® Target retrieval reagents ACD, Hayward, USA 

RNAscope® washing buffer ACD, Hayward, USA 

Roti®-safe gel stain Roth, Karlsruhe 

SYBR® Green PCR Kit Roche, Mannheim 

tamoxifen chow (400 mg tamoxifen 

citrate/kg) 

Harlan Laboratories, NM Horst, 

Niederlande 

Tissue-TeK® Sakura, NL 

Tris(hydroxymethyl)aminomethane 

(TRIS) 
Affymetrix, Cleveland, USA 

PeqGold TriFast™ Peqlab, Erlangen 

VectaMount™ Vector, Laboratories 

xylazine, 2 % Serumwerk, bernburg 

xylol 

xylol (p.a) for ISH 

Merck, Darmstadt 

AppliChem, Darmstadt 
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2.1.4.1 Immunohistochemistry and in situ hybridization 

 

Fixation for perfusion (IHC), pH 7,4 

 PBS (Phosphate Buffered Saline) buffer Dulbecco 

 Paraformaldeyde     3 % 

Fixation for perfusion (RNAscope®/BASEscope® ISH) pH 7 

 Formaldehyde solution    25 ml 

 Na2HPO4      1.625 g/l 

 NaH2PO4      1 g/l 

 H2O Millipore      225 ml 

PBS-(Phosphate Buffered Saline) Buffer 

 NaCl       136 mM 

 KCl       2.7 mM 

 Na2HPO4 x 2H2O     10.1 mM 

 KH2PO4      1.8 mM 

PBS-Otto-Buffer, pH 7,4 

 K2HPO4 x 3H2O     10 mM 

 NaCl       140 mM 

 KH2PO4      10 mM 

Blocking solution A 

 dry milk powder     5 % 

 PBS buffer 

Blocking solution B 

 BSA (Bovine Serum Albumin)   1 % 

 HS (Horse Serum)     10 % 

 PBS buffer 

2.1.4.2 Molecular biology 

 

Agarose gel 

TAE 
agarose       2 % 
Roti®-gel stain 
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DEPC-H2O 

1/1000 Vol. DEPC diluted in ddH20, agitate, 

leave open under hood overnight, autoclave afterwards 

 

NaOH for gDNA-Extraction 
 

NaOH       25mM 
 

10x TAE (Tris-acetic-EDTA), pH 8,5 
 

Tris        40 M 
Acetic acid      20 M 
EDTA        1 M 
 
 

Tris HCl for gDNA-Extraction, pH8,0 
 

Tris HCl       1 M, pH 8 

 

2.1.5 Oligonucleotides 

Oligonucleotide-Primer were synthesized and sent in a lyophilized manner by Eurofins 

MWG®. After adding nuclease-free water a concentration of 100 pmol/µl was calculated.  

 

name species orientation sequence from 5‘ to 3‘ 

genotyping 

ETAR mus musculus 

fw 
CCT CAG GAA GGA AGT 

AGC AAG 

rev 
ACA CAA CCA TGG TGT 

CGA 

 

ETBR 

WT 

 

mus musculus 

fw 
CTG AGG AGA GCC TGA 

TTG TGC CAC 

rev 
CGA CTC CAA GAA GCA 

ACA GCT CG 
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ETBR KO mus musculus 

fw 
TGG AAT GTG TGC GAG 

GCC 

rev 
CAG CCA GAA CCA CAG 

AGA CCA CCC 

RenCre mus musculus 

653 Ren1d 
GAA GGA GAG CAA AAG 

GTA AGA G 

468 Ren1d 
GTA GTA GAA GGG GGA 

GTT GTG 

400 Cre 
TTG GTG TAC GGT CAG TAA 

ATT GGA C 

SMMHC-

Cre-ERT2 
mus musculus 

SMWT1 
TGA CCC CAT CTC TTC ACT 

CC 

SMWT2 
AAC TCC ACG ACC ACC 

TCA TC 

phCREAS1 
AGT CCC TCA CAT CCT CAG 

GTT 

FoxD1-

Cre 
mus musculus 

FOXD1-Cre s 

TCT GGT CCA AGA ATC 

CGA AG 

FOXD1-Cre as 
GGG AGG ATT GGG AAG 

ACA AT 

FOX-D1-Cre WT s 
CTC CTC CGT GTC CTC 

GTC 

CAGG-

Cre-ERT2 
mus musculus 

mCAGG s geno 
CTC TAG AGC CTC TGC TAA 

CC 

mCAGG as geno 
CGC CGC ATA ACC AGT 

GAA AC 

mRNA-studies 

GAPDH mus musculus 

GAPDH fw 
ATG CCA TCA CTG CCA 

CCC AGA AG 

GAPDH rev ACT TGG CAG GTT TCT CCA 
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GGC 

renin mus musculus 

Renin fw 
ATG AAG GGG GTG TCT 

GTG GGG TC 

Renin rev 
ATG CGG GGA GGG TGG 

GCA CCT G 

ETAR mus musculus 

fw 
AGG AAC GGC AGC TTG 

CGG AT 

rev 
AGC AAC AGA GGC AGG 

ACT GA 

ETBR mus musculus 

fw 
GAA GAG CGG TAT GCA 

GAT TG 

rev 
TAT TGC TGG ACC GGA 

AGT TG 

Table 1: Oligonucleotide sequence for PCR and quantitative real-time RT-PCR; fw = forward, rev = 
reverse; 

2.1.6 Antibodies and hybridization probes (ISH) 

 

first 

antibody 
clonality company dilution 

chicken anti-

renin-IgG 
polyclonal 

Davids Biotech, 

Regensburg 
1:400 

mouse-anti-

smooth-muscle 

actin-IgG 

polyclonal Abcam, Cambridge, 

UK 

1:400 

rabbit-anti-

ETAR-IgG 
polyclonal Alomone Labs, Israel 1:100 

mouse-anti-

calbindin-D28K-

IgG 

monoclonal SWANT, Marly 1:200 
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goat-anti-α-

integrin8-IgG 
polyclonal 

R&D systems, 

Wiesbaden 
1:200 

goat-anti-

aquaporine2-

IgG (C-17) 

polyclonal 
Santa Cruz, 

Heidelberg 
1:200 

goat-anti-CD31-

IgG 
polyclonal 

R&D systems, 

Wiesbaden 
1:200 

second 

antibody 
conjugation company dilution 

donkey anti-
chicken-IgY 

rhodamin-(TRITC) Dianova, Hamburg 1:400 

donkey anti-
chicken-IgY 

Cy2 Dianova, Hamburg 1:400 

donkey anti-
mouse-IgG 

Cy2 Dianova, Hamburg 1:400 

donkey anti-
mouse-IgG 

Cy5 Dianova, Hamburg 1:400 

donkey anti-
rabbit-IgG 

rhodamin-(TRITC) Dianova, Hamburg 1:400 

probes (ISH)  company  

RNAscope® 
negative control 
probe –DapB 

 ACD, Hayward, USA  

RNAscope® 
positive control 

probe –mM-
PPIB 

 ACD, Hayward, USA  
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RNAscope® -
mM-ETBR-C1 

 ACD, Hayward, USA  

BASEscope®-
mM-ETBR-C1 

 ACD, Hayward, USA  

2.2 Methods 

2.2.1 Animals 

All Animals were treated in conformity with ‘National Institute of Health guidelines for the care 

and use of animal research’ and were approved by the local commission of ethics 

(temperature 23°C ± 2°C, relative humidity 55% ± 5%, light/dark interval 12h, food and water 

ad libitum). 

In order to generate a renin cell-specific ETAR-deleted animal model, the established 

Cre/loxP-recombinase system was used for present experiments. ETARflox/flox animals (with 

kind permission of Mr. Yanagisawa, University of Texas Southwestern medical Center at 

Dallas) were initially paired with CreRen1d (with kind permission of Ariel Gomez, University of 

Virginia). The offspring was genetically determined either as ETARflox/flox/RenCreHet or 

ETARflox/flox and ETARflox/flox/RenRen. Whereas ‘RenCreHet’ signifies, that animals possess 

both an active Ren1d-gene and additionally activated CreRen1d-recombinase: Ren1d+/Cre-

ETARfl/fl. ETARflfl/RenRen represents the control littermates where no Cre-recombinase is 

active (ETARfl/fl). 

ETBRflox/flox animals (with kind permission of Miles L. Epstein, University of Wisconsin, 

Madison) were initially paired with CreRen1d. Therefore Ren1d+/Cre-ETARfl/fl was genetically 

determined as knockout mouse with active Cre-recombinase as well as active Ren1d-gene 

and ETBRfl/fl signifies control littermates. 

Further ETARflox/flox and ETBRflox/flox animals were also paired with FoxD1-Cre to activate 

recombinase in stroma-derived cells (commercially acquirable at The Jackson Laboratory, 

Maine USA). In addition both ET-receptors loxP strains were paired, in addition with 

SMMHC-CreERT2 (with kindly permission of Stefan Offermanns, University of Heidelberg) 

where a fusion protein is expressed under the control of the SMMHC-promotor consisting of 

of the Cre-recombinase and a modified estrogen binding site: SMMHC-CreERT2- ETARfl/fl 

and SMMHC-CreERT2- ETBRfl/fl 

ETARflox/flox animals were also paired with CAGG-Cre-ERT2 (commercially acquirable at The 

Jackson Laboratory, Maine USA) where recombinase is active through induction with 
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tamoxifen chow ubiquitous under the control of β-actin promoter/enhancer coupled with the 

cytomegalovirus immediate-early enhancer (CAGG-Cre-ERT2): CAGG-Cre-ERT2-ETARfl/fl-

mice, in order to study if general ETAR expression is involved in the regulation of renin 

synthesis and secretion. All animals possessed a mixed genetic background of 129Sv and 

C57Bl/6.  

Animal strains used for present thesis: 

strain genetic background origin 

C57/Bl6 C57/Bl6 Charles River, Sulzfeld 

CAGG-
Cre-ERT2 

C57/Bl6 Jackson Laboratories 

ETAR 
loxP 

129/SV Masashi Yanagisawa 

ETBR 
loxP 

129/SV Miles L. Epstein, University of Wisconsin 

FoxD1-
Cre 

Bl6/129SV Jackson Laboratories 

Ren-Cre Bl6/129SV 
R. Ariel Gomez, University of Virginia School 

of Medicine 

SMMHC-
Cre-ERT2 Bl6/129SV Stefan Offermanns, University of Heidelberg 

 

2.2.2 In vivo studies 

Mice used for molecular biological and histological experiments were 90-120 d of age.  

High salt and low salt diet 

In order to modulate RAAS, animals were treated for 14 d with either a high-salt diet (4 % 

NaCl; Ssniff) or a low salt diet (0.02 % NaCl; Ssniff). Low salt diet was in combination with 

the ACE-inhibitor enalapril (10 mg kg-1 day-1; Sigma-Aldrich, St. Louis, MO) dissolved in 

drinking water bottle. Controls were maintained on standard rodent chow (0.4 % NaCl; Ssniff)  

Extraction of kidneys for molecular and histological experiments 

One kidney was used for histological work and therefore a retrograde arterial perfusion was 

performed with 3 % paraformaldehyde in PBS in order to fixate the kidney. Second kidney 

was used for mRNA-studies and subsequently stored immediately at -80° C after cording up 

arteriae renales with a polyglactin suture (Vicryl) to avoid flushing kidney with fixing medium. 
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Retrograde arterial perfusion for IHC 

For this procedure mice were first anesthetized with a solution of ketamine and xylazine (80 

mg/kg BW; i.p.). After opening abdomen, displaced abdominal aorta was clamped 

underneath the outlet of arteriae renales in order to avoid disturbances of blood circulation of 

the kidney. On the next step, catheter of perfusion was inserted distal to the clamp and fixed 

in this position. For pressure equalization, vena cava inferior was opened with the help of a 

scissor. Fixed clamp was then removed and via catheter, 20 ml of isotonic NaCl-solution with 

heparin were perfused retrograde. Afterwards, fixation was performed with 3 % 

Paraformaldehyde in PBS with a constant flow of 50 ml/3 min. Dissected and perfused 

kidneys were stored at 4°C in 70% methanol until paraffin embedding for histological 

experiments.  

Retrograde arterial perfusion for in situ hybridization (RNAscope®): 

Procedure of perfusion for ISH is similar to retrograde arterial perfusion for IHC except 

solution for fixation. Instead of 3 % Paraformaldehyde in PBS a solution based on formalin 

was used for this experiment. Animals were fixated with a constant flow of 50 ml/3 min. After 

dissection of kidneys, organs were stored in this fixation solution for 24 h before proceeding 

ISH (RNAscope®) protocol. 

Solution for fixation (3 animals):  

 25 ml formalin 

 225 ml H20 

 1 g/l NaH2PO4 

 1,625 g/l Na2HPO4 

2.2.3 In vitro/Ex vivo studies 

Isolated perfused mouse kidney model (IPMK) 

The isolated perfused mouse kidney is an important tool for experimental nephrology 

(Schweda et al., 2003; Czogalla et al., 2016) where one can study organ function in the 

absence of systemic influences such as blood pressure, autonomic nervous system or 

several hormones . The combination of in vitro and in vivo (ex vivo) has the ability to examine 

physiological, pharmacology or biochemical aspects of renal function. Therefore kidneys are 

dissected and perfused in a heated moist chamber through renal artery with a constant 

pressure (80-100 mmHg). The perfusate solution is collected through the renal vein for 

measuring renin activity. The perfusate solution is a modified Krebs-Henseleit solution 

containing BSA (6 g/100ml) and human erythrocytes (10 % hematocrit). In order to 
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investigate the effects of ET-1 on the renin secretion rate with different ET-receptor animal 

models, the IPMK is a perfect tool. 

Protocol (after Czogalla et al., 2016): 

1. Buffer Preparation:  

 Prepare the dialysis buffer: 

Solution 1 (10x concentrated): 

NaCl   126 g  107.8 mM 

NaHCO3  46 g  27.4 mM 

KCl   6.6 g  4.42 mM 

Urea   7.3 g  6 mM 

Creatinine  0.5 g  0.132 mM 

Ampicillin  0.3 g 

MgCl2 * 6H20  4 g  1 mM 

add dH20 to a final volume of 2l 

 

Solution 2 (10x concentrated): 

Glucose  15 g  8.32 mM 

Add dH20 to a final volume of 2l 

 

Solution 3 (10x concentrated): 

CaCl2 * 6H20  2.6 g  0.935 mM 

Add dH20 to a final volume of 1l 

 

Solution 4 (10x concentrated): 

NaH2PO4  0.4 g  2.88 mM 

Na2HPO4  1.2 g  0.66 mM 

Add dH20 to a final volume of 1l 

 

Antidiuretic hormone (ADH) solution: 

1µg 

 

Dialysis buffer (composition) 

Solution1  500 ml 

Solution2  500 ml 

Solution3  500 ml 

Solution4  500 ml 
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Aminoplasmal  83 ml 

ADH solution  0.5 ml 

Na-Pyruvate  165 mg 0.3 mM 

Na-Glutamate  262 mg 0.31 mM 

Na-Malate  281 mg 1.15 mM 

α-ketoglutarate 1133 mg 1.2 mM 

Na-Lactate  1176 mg 2.1 mM 

FITC-Inulin  25 mg 

Add dH20 to a final volume of 5l: adjust pH 7.7 

 

Perfusion buffer for one mouse: 

Dialysis buffer  400 ml 

Human erythrocytes to hct of 10 % 

 

 Erythrocyte preparation: dilute 250 ml of human erythrocyte concentration 

(tested material obtained from the local blood bank) to 500 ml with dialysis 

buffer. Centrifuge at 2.000 x g for 8 min. Remove the buffer, being careful not 

to remove any erythrocytes. Repeat 3x 

 Prepare the albumin (BSA) buffer: in 200 ml of dialysis buffer, dissolve 44 g of 

BSA using a stir bar. Filter the solution with filter paper 

 Prepare the perfusate: filter the erythrocytes through filter paper into the BSA 

buffer. Fill up to a total volume of 800 ml with dialysis buffer: Note: the 

hematocrit should be now between 8-12 %. It can be stored for 12hr at 4 °C. 

 

 

2. Initiating dialysis and oxygenation: (Fig. 5) 

 Turn on the water bath surrounding the larger buffer reservoir, smaller buffer 

reservoir and the moist chamber to 37 °C. 

 Fill the larger buffer reservoir with the dialysis buffer and the smaller reservoir 

with the perfusate 

 Turn on 5% CO2/95% O2 gas inflow to the dialysis buffer 

 Switch on continuous dialysis of the perfusate against the dialysis buffer.  
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3. Surgical procedure (part 1) (see Fig.6) 

 Anesthetize mouse with 10 µl/g of body weight, 20mg/ml ketamine and 1 

mg/ml xylazine dissolved in 0.9 % NaCl 

 Fix mouse in the moist chamber. Place a 1 ml syringe below the spine to 

elevate the lumbar vessels 

 Perform a median laparotomy from the pubic crest to the sternum opening first 

the skin, then the abdominal muscles, with scissors 

 Remove the intestine and place it on the left side of the mouse lateral from the 

abdomen 

 Free the bladder from connective tissue and explore both ureters and urethra 

 Place and close ligature I 

 Place and close ligature II 

 Place ligature III 

 Incise the bladder (1 mm) 

 Cannulate the opening with 2 cm PE 50 tubing  

 Close  ligature III around the tubing 

 Cut the left ureter and urethra distal from the ligatures. The bladder is now 

attached to the right ureter only and freely moving 

 Clear the abdominal aorta of connective tissue and fat 

 Place an abdominal mid-aorta ligature (ligature IV) 

 Place a ligature around the aorta below the diaphragm between the superior 

mesenteric artery and the coeliac trunk (lig.V) 

 Place a ligature around the superior mesenteric artery (lig.VI) 

 Place an aortic ligature directly below the right and above the left renal artery 

(lig.VII) 

Fig. 5: Schematic drawing of the perfusion circuit and the direction of buffer flow 

(Czogalla et al., 2016):all components surrounded by blue are kept at 37 °C with a water 

bath (1) dialysis buffer with continuously 95% O2/5% CO2 (2) dialysis tube with roller pump 

to continuously dialyze dialysis buffer and perfusion buffer against each other (3) perfusion 

buffer is enriched with 9% O2/5% CO2 and electrolyte levels are kept constant throughout 

perfusion (4) a roller pump connects perfusion buffer towards the kidney (5) windkessel 

removes peristaltic waves and traps bubbles (6) pressure transducer (7) kidney remains in 

the moist chamber  
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 Place a ligature around the caudal vein package (lig.VIII) 

 

 

 

 

 

 

 

 

 

 

 

 

4. Priming of the perfusion circuit 

 Start the rotary pump and fill the tubing with perfusate. Remove all air bubbles 

 fill the windkessel device to approximately mid-level with perfusate 

 Calibrate the pressure transducer to 0 mmHg when all tubing is filled and flow 

is 0. Keep the perfusion needle at the kidney level during this time 

 Keep flow at constant minimal level (0.6 ml/min) and proceed further 

5. Surgical procedure (part 2) 

 Place a clamp between lig.IV and the branching of the left renal artery 

 Make a small incision in the aorta caudal of lig.IV, do not cut the dorsal wall 

 Dilate the opening in the aorta with a vessel dilator 

 Cannulate the aorta with a needle (ca. 2 cm long, pulled PE 50), pushing the 

tip just to the clamp 

 Open the clamp 

 Push the tip of the needle cranially until it reaches the junction of the right 

kidney artery and the aorta 

 Close lig.VII 

Fig. 6: Schematic drawing of the ligatures placed during surgery 

(Czogalla et al., 2016) 
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 Close lig. IV 

 Open the chest with scissors by dissecting the diaphragm. With a single cut, 

separate the aorta, vena cava, heart and vegetative nerves. 

 Start pressure control of the perfusion pump. Maintain the mean pressure 

between 80-100 mmHg 

 Close lig.V 

 Close lig.VI 

 Close lig.VIII 

 Free the right kidney from connective tissue and its embedding into the adipose 

capsule with scissors 

 Cut the aorta proximally to lig.V 

 Cut the superior mesenteric artery distally to lig.VI 

 Cut the kidney-supporting vessel bundle out, do not cut into the vessels 

themselves 

 Cut the liver at the connection to the kidney. Take care to free the kidney, but 

leave a small part of the liver adherent to it, so that the vena cava is kept open by 

it 

 Take the kidney bundle out of the mouse. Remove the mouse from the moist 

chamber 

 Place ligature around the connection of liver and kidney (lig.IX) 

 Cannulate the vena cava with a venous line (2 cm PE 50) 

 Clos lig.IX. venous outflow through the venous line should immediately start 

 Close the moist chamber 

 

6. Downstream analysis: 

During the following hour, monitor blood flow and intravascular pressure. Collect 

venous outflow which is used for renal renin release 

The renal function is therefore sustainable for at least 1h: 

General results: 

 Vascular resistance, perfusate flow remain steady 

 e.g. glomerular filtration rate: 130 µl/min*g kidney weight 

 fractional sodium and potassium resorption are unchanged 

 all segments of the kidney show no signs of organ damage 
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For present study, this tool allows studying changes regarding renin secretion as reaction to 

ET-1 in increasing concentrations (30,100,300 pM and 1 nM). Every 2 min samples are 

collected for evaluation of renin secretion rate and the activity of renin was measured via 

ANG I ELISA assay afterwards (2.4.4). The rate of renin secretion (ng ANG I/ml*h-1) is 

defined as the activity of renin (ng ANG I/h x min x g) multiplied by renal blood flow 

(ml/g*organ weight*min-1).  

2.3 Histological methods 

2.3.1 Immunohistochemically staining of paraffin embedded kidney sections 

In order to avoid autocatalytic mechanisms and to have a better quality of the sample, kidney 

tissue was fixed before dissection through PFA-retrograde arterial perfusion (see. 2.2.2). 

For the beginning of tissue embedding with paraffin, perfused kidneys were dehydrated with 

an ascending methanol series [2x (70 %, 80 %, 90 % and absolute) for 30 min]. Afterwards, 

kidneys were washed in absolute isopropyl alcohol 2x 30 min at room temperature and 

additionally stored in an isopropyl alcohol/paraffin- composite (1:1; 55°C) for another 30 min. 

Subsequently, kidneys were incubated for 2x24 h at 60°C in paraffin and then transferred 

into silicon-rubber- embedding forms where they cured overnight.  

With the help of a rotation microtome, paraffin slices were cut (5 µm), transferred in a 40 °C 

water bath and taken up by a microscope slide. In the end, paraffin slides were dried for 12 h 

in a dry chamber (40°C). 

When performing immunofluorescent staining, deparaffining steps were necessary after 

protocol in advance: 

 2 x xylol 10 min 

 2 x isopropyl alcohol absolute; 5 min 

 isopropyl alcohol 96 %; 5 min 

 isopropyl alcohol 80 %; 5 min 

 isopropyl alcohol 70 %; min 

2.3.2 Immunofluorescent staining 

After paraffin embedding of the tissue, kidney slides were stained with the help of indirect 

immunofluorescence. This method uses the specificity of antibodies to their antigen to target 

fluorescent dyes to specific targets, and therefore allows visualization of the target molecule. 

An unlabeled first antibody is used for binding specifically to the target molecule and the 

second antibody carries the fluorophore, recognizing the first antibody and binds to it. It 
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should be noted the second antibody complies with antigen sequences of host from first 

antibody. 

Protocol for immunofluorescent staining of tissue (paraffin): 

 wash slides with kidney sections 3 x for 5 min with PBS 

 according to requirements of antibody: unmasking tissue while incubating with 

Tris/EDTA for 45 min at 97 °C in water bath 

 2 x washing with PBS for 5 min each 

 Incubate with blocking solution 4 % milk powder in PBS  for weakening unspecific 

binding: 1 h at RT 

 Incubate with first antibody (diluted in blocking solution) in a moist chamber over night 

at 4°C 

 3 x washing with 4 % milk powder in PBS for 5 min each 

 Incubate with second antibody (flurophore conjugated antibody; 1:400): 90 min at RT 

in a moist chamber (dark surrounding)  

 3 x washing with PBS for 5 min each 

 Embedding sections with glycergel mounting medium 

 Overview: 

staining ETAR, renin, α-sma 

tissue paraffin sections 5 µm 

demasking TrisEDTA, pH8.5, 1h, 95°C 

blocking solution 5% Milk powder in PBS, 1h, RT 

first antibodies (ON) 

rabbit anti-ETAR 

(1:100) 

chicken anti-renin 

(1:400) 

mouse anti-α-sma 

(1:400) 

diluted solution 5% milk powder in PBS 

second antibodies (90 min) 

Cy2 donkey anti-rabbit 

TRITC donkey anti-chicken 

Cy5 donkey anti mouse 

(1:400) 
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2.3.2 Microscopy 

Acquisition of fluorescent stainings was provided with Colibri.2 and Axio Observer Z1 

microscope with motorizing object holder from Zeiss. With the help of Zen software from 

Zeiss (Zen 2012), pictures were digitalized and edited. In order to avoid weakening of quality, 

TIFF format was used for present thesis. 

2.4 Molecular biology 

2.4.1 Polymerase chain reaction assays for genotyping 

With the help of the polymerase chain reaction used mice were tested for positive 

transgenical allele. Therefore 0.5 cm of the mouse tail were digested for 1 h with 100 µl 25 

mM NaOH solution and deactivated with 10 µl of 1 M of Tris-HCl solution 

PCR-approach (25 µl) 

10x buffer 5 µl 

Tag Polymerase 0.3 µl 

dNTPS 2 µl 

sense primer (10pmol/µl) 1 µl 

antisense primer (10pmol/µl) 1 µl 

dd H20 13.7 µl 

DNA-template 2 µl 

∑ 25 µl 

  Table 2: PCR approach (25 µl) 

 

 

program for cycler 

step temperature duration repeat 

1. Initial Denaturation 94 °C 5 min  
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2. Denaturation 94 °C 30 sec  
 
         36 x 3. Annealing variable 30 sec 

4. Elongation 72 °C 1 min 

5. Final Elongation 72 °C 5 sec 

6. Hold 15 °C ∞  

 Table 3: PCR program 

 

PCR: Annealing temperature for different genotype PCR 

ETAR loxP 60 °C 

ETBR loxP 66 °C 

FoxD1-Cre 58 °C 

Ren-Cre 56 °C 

SMMHC-Cre 62 °C 

CAGG-Cre 
(TamCre) 

65 °C/ 55 °C 

Table 4: Annealing temperature of different PCR approaches 

2.4.2 Gel electrophoreses 

After running the polymerase chain reaction (PCR) the size of the resulting amplicon could 

be determined through gel electrophoresis.  

Therefore 1 g of agarose was completely dissolved in 100 ml 1x TAE-Buffer through cooking 

in a microwave for 3 min. After cooling down to 60 °C, 3 µl of a non-toxic stain solution 

(Roti®-GelStain) were added to the approach. The electrophoresis chamber was filled up 

with 1x TAE-Buffer after gel was cured. Present samples were applied on the gel and 

electrophoreses could be performed for 45 min on 130 V. After fractionation of DNA, gel was 

removed out of the chamber and monitored with a camera system under UV-light irradiation 

in a trans illuminator. 

2.4.3 Expression studies 

In order to examine the potential role of ETAR and/or ETBR through ET-1 on the renin 

system in vivo, expression studies were implemented via quantitative real-time RT-PCR-

analyses of kidneys from different animal models. After harvesting kidneys from animals, 
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next step was to isolate whole RNA from tissue first. In addition, transformation into cDNA 

and subsequently quantitative real-time RT-PCR was performed. 

2.4.3.1 Isolation of RNA from tissue 

After harvesting the kidneys out of the rodents, organs were stored in peqGOLD TriFastTM-

reagent (Trizol) in order to macerate tissue. With the help of a homogenizer, organs were 

homogenized. Trizol is a monophasic solution with guanidinium thiocynate and phenol. By 

the use of chloroform, present homogenized suspension is separated into three parts: A red 

phenol-chloroform-part on the bottom of the cup, a white interphase and a colorless aqueous 

part on the top. The RNA appears exclusively in the top part und can be precipitate with 

isopropyl alcohol. 

Protocol for RNA-Isolation with TriFastTM-reagent 

 1000 µl (for ½ kidney) TriFastTM reagent 

 homogenize tissue for 30 sec 

 adding 200 µl chloroform, shake gently 

 10 min incubate at room temperature 

 centrifuge samples for 15 min at 12.000 g (4°C) 

 transfer colorless aqueous part on the top into new cup 

 adding 500 µl isopropyl alcohol, vortex 

 centrifuge samples for 10 min at 12.000 g (4°C);  remove supernatant 

 washing pellet with 1 ml 75 % ethanol (2 x) 

 centrifuge samples for 10 min at 12.000 g (4°C) 

 dry pellet for 20 min under hood 

 solve pellet in 300 µl DEPC-water (for ½ kidney) 

 2 min on shaker, 65 °C 

 measure concentrations with NanoDrop (1 µl); storage at -80°C  

The concentration of isolated RNA was measured with a photometer. To determine the 

clearance of each sample, extinction value at 260 and 280 nm wavelengths against RNAase 

free water was ascertained. The reference range from E260/280 was defined between 1.80 and 

2.00.  

 

 

 

http://www.dict.cc/englisch-deutsch/aqueous.html
http://www.dict.cc/englisch-deutsch/aqueous.html
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2.4.3.2 cDNA synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA can be transformed into cDNA with the help of the enzyme reverse transcriptase. In 

order to transcribe primarily mRNA with a polyA-tail, oligo-dT-chains were used for this 

procedure. 

The cDNA-synthesis proceeds at 37 °C. Inactivation of reverse transcriptase expires at 

85 °C. Present cDNA was stored at -20 °C for quantitative real-time RT-PCR-analyses. 

2.4.3.3 Quantitative real-time RT-PCR 

The complementary DNA (cDNA) serves as a raw material for established quantitative real-

time RT-PCR. It is first synthesized over reverse transcriptase out of mRNA.  In order to 

amplify a prospecting transcript, normal PCR-program with specific primers is implemented. 

To quantify the expression of certain transcripts, the exponential enhancement of the product 

is measured continuously and fluorescent based. A fluorescent dye (SYBR-Green) is used, 

which can intercalate into the PCR-products and is innervated by a laser. The intensity of the 

emitted fluorescence is ascertained by a detector. This so-called fluorescent intensity is 

approach  

1 µg RNA var. 

oligo-dT 1 µl 

nuclease-free water add to 10 µl 

5 min, 65 °C 
thermocycler 

 

approach 12 µl/sample 

dNTP (2.5 mM) 4 µl 

5x Buffer 4 µl 

reverse transcriptase 1 µl 

nuclease-free water 3 µl 

1 h 37 °C, 2 min 
95 °C, ice 

 

Table 5: RT-PCR approach 
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adequate to the present amount of DNA because the fluorescent dye embeds exclusively 

into double-stranded DNA and when uncombined it achieves a weak fluorescent signal. 

Therefore the amount of products can be traced during running of the program.  

The cT-value (cycle threshold) states the number of cycles where fluorescence exceeds 

above the background. At this point the exponential increase of the product is able to be 

monitored. In addition the cT-value is dependent on applied cDNA concentration of the 

examined gene. A quantitative evaluation of the original mRNA amount is therefore possible. 

After amplification, a melting curve is created to delimit possible primer dimers from specific 

product.   

The target gene is set on ratio to a reference gene in terms of the relative quantification. 

Typical constitutive ‘housekeeping genes’ are expressed in all cells of an organism and 

relatively constant in their level of expression.  

2.4.3.4 Running the quantitative real-time RT-PCR 

Expression studies were performed with different kidneys from existing animal models via 

quantitative real-time RT-PCR. The analysis was carried out by the Lightcycler LC480, 

Roche Detection System with common 96-well-plate system. In order to detect dsDNA from 

each specific transcript, a fluorescent-dye (SYBR Green) was used for samples.  

For relative quantification and therefore normalizing the amount of cDNA, GAPDH and 

RPL32 were used as reference genes.  

Master-Mix approach per well 

SYBR Green MM 5 µl 

Primer Forward (10mM) 0.5 µl 

Primer reverse 0.5 µl 

H20 (RNase free) 3 µl 

cDNA 1 µl 

 ∑ 10 µl 

                                 Table 6: Approach quantitative RT-PCR 

The 96-well-plate was sealed with a special film and centrifuged for 2 min with 2500 g before 

running RT-PCR. 
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Step Number of cycles Temperature Time 

Activation 11 95 °C 15 min 

Denaturation 

Annealing 

Elongation 

 

40 

95 °C 

58 °C 

72 °C 

15 s 

20 s 

20 s 

 Table 7: Program for quantitative RT-PCR 

Data was collected with LightCycler 480 SW 1.5 software and evaluated with Microsoft Office 

Excel. Relative cDNA levels X regarding the Target gene were normalized to the cT-value of 

the reference gene and to the standard conditions.  

2.4.4 ELISA assay for plasma renin concentration (PRC) 

The transformation of Angiotensinogen into ANG I is catalyzed by renin. The amount of renin 

is proportional to emerging amount of ANG I. Therefore a direct Enzyme-linked 

Immunosorbent Assay (ELISA-kit) of ANG I was performed to determine quantitatively the 

plasma renin concentration.   

The kit measures plasma renin activity (PRA) in terms of mass of Ang-I generated per 

volume of mouse plasma in unit time (ng/ml). All solutions needed for present methods are 

included in given kit. 

Before running assay procedure, required amount of blood need to be collected from animals 

in plastic-hematocrit-capillaries coated with EDTA in order to avoid hemostasis.  

ELISA-method in general involves at least one antibody with specificity for a particular 

antigen. Each sample with an unknown amount of antigen is transferred on the surface of a 

polypropylene test tube. During the first incubation unlabeled ANG-I compete with 

biotinylated Ang-I to bind to the anti-Ang-I antibody. In the second incubation the labelled 

Streptavidin-HRP conjugate, binds to immonilized Ang-Biotin. Unbound material is removed 

with various washing steps. The colorimetric HRP substrate is added and after stopping the 

color development reaction, the light absorbance (OD) is measured with a microtiter plate 

reader. The absorbance values are inversely proportional to the concentration of Ang-I in the 

sample. In order to plot a standard curve a set of calibrators is used.  

Protocol for Ang-I ELISA (PRA): 

 collect blood in plastic-hematocrit-capillaries coated with EDTA 

 centrifuge capillaries for 4 min at room temperature at 8000 rpm 

 transfer plasma sample to cup at room temperature 

 dilute samples in Maleate buffer 1:50 
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 add PMSF (1:100), renin substrate and generation buffer (1:10) 

 divide samples into cold- and warm value:  

warm value: 90 min at 37°C 

cold value: 90 min on ice (4°C) 

 45 µl of each sample and standard solutions transfer into 96-well plate 

 add 100 µl of Biotin-conjugate solution into each well, incubate 1 h at RT (200 rpm 

with shaker) 

 5 x washing step with washing buffer 

 add 150 µl of Streptavidin-HRP in each well, incubate 30 min at RT (200 rpm) 

 5 x washing step with washing buffer 

 add 150 µl of TMB-substrate in each well, incubate for 15 min at RT 

 add 50 µl of stop solution, measurement of samples at 450 nm 

2.4.5 In situ hybridization RNAscope® and BASEscope® 

In situ hybridization was realized by RNAscope® Reagent Kit (brown) and BASEscope® 

Detection Reagent Kit (red) and RNAscope® 2.5 Duplex Detection kit from Advanced Cell 

Diagnostics. Therefore a retrograde arterial perfusion was performed after protocol (see 

2.2.2) and kidneys were dissected afterwards. ISH-assays are able to detect nucleic acids on 

the tissue. Due to lack of working antibody for ETBR, we could detect ETBR mRNA signal in 

kidney slides of different animal models. 

Solution for Fixation (FFPE sample preparation):  

 25 ml formalin 

 225 ml H20 

 1 g/l NaH2PO4 

 1.625 g/l Na2HPO4 

Paraffin embedding procedure of kidneys after following protocol: 

 2x 70 % EtOH p.a. 

 2x 80 % EtOH p.a. 

 2x 90 % EtOH p.a. 

 1x 100 % EtOH p.a. 

 1x 100 % isopropyl alcohol 

 1x 100 % isopropyl alcohol (45 °C); 45 min 

 1x 1:1 Isopropyl alcohol/paraffin-composite (60 °C; 45 min) 

 2x 24 h incubate in paraffin (60 °C) 

 

30 min on shaker 
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With the help of a rotation microtome, paraffin slices were cut (5/7 µm), transferred in a 40 °C 

water bath and taken up by a microscope slide. In the end, paraffin slides were dried for 12 h 

at RT. 

Deparaffine and preparation for ISH RNAscope® and BaseScope® method: 

 Microscope slides with paraffin slices for 1 h in dry oven at 60 °C 

 2 x 10 min in Xylol at RT 

 2 x 2 min in EtOH p.a. at RT 

 air dry slides for 5 min at RT 

 prepare 1 x RNAscope® Target Retrieval Reagents  

 apply RNAscope® Hydrogen Peroxide on slides (10 min) 

 2 x H20 RNase free washing step 

 apply RNAscope® Target Retrieval Reagents (15 min) 

 2 x H20 RNase free washing step 

 1 x 2 min in EtOH p.a. at RT 

 air dry slides ON at RT 

 draw barrier around each section with hydrophobic barrier pen 

RNAscope® 2.5 assay 

 prepare all materials after manual guideline (oven, water bath, target probes,washing 

buffer) 

 apply RNAscope® Protease Plus (30 min) at 40°C in oven 

 wash with H20 RNase free 

 apply RNAscope® Target probe  (mM-ETAR, mM-ETBR) for 2 h at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 1) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 2) for 15 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 3) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 4) for 45 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 5) for 30 min at RT 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 6) for 30 min at RT 
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 Detection of signal with DAB-A and DAB-B solution after manual guidelines (1:1; 10 

min) 

 2 x 2 min 50 % hematoxylin staining solution (Gill’s hematoxylin) 

 3 x washing step with H20 RNase free until slides are clear 

 1x 10 sec 0.02 % ammonium hydroxide-solution  

 3-5 times with H20 RNase free washing step 

 mount slides and place coverslip over the section (air dry > 5 min) 

BASEscope® Detection Regant Kit-Red 

 prepare all materials after manual guideline (oven, water bath, target probes,washing 

buffer) 

 apply BASEscope® Protease III (30 min) at 40°C in oven 

 wash with H20 RNase free 

 apply BASEscope® Target probe  (mM-ETBR) for 2 h at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 0) for 30 min at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 1) for 15 min at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 2) for 30 min at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 3) for 30 min at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 4) for 15 min at 40°C 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 5) for 30 min at RT 

 2 x 2 min washing step with BASEscope® washing buffer 

 Hybridize signal amplification molecule (AMP 6) for 15 min at RT 

 Detection of signal with RED-A and RED-B solution after manual guidelines (1:60;10 

min) 

 2 x 2 min 50 % hematoxylin staining solution (Gill’s hematoxylin) 

 3 x washing step with H20 RNase free until slides are clear 

 1x 10 sec 0.02 % ammonium hydroxide-solution  

 3-5 times with H20 RNase free washing step 

 Incubate for 15 min in dry oven at 60 °C 

 Mount slides and place coverslip over the section (air dry > 5 min) 
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RNAscope® 2.5 Duplex Detection kit: 

 prepare all materials after manual guideline (oven, water bath, target probes, washing 

buffer) 

 apply RNAscope® Protease Plus (30 min) at 40°C in oven 

 warm probes for 10 min at 40°C; mix 1:50 ratio of C2 (PDGFRβ) probe to C1 (ETBR) 

probe 

 put mixture for 2 h at 40°C in the oven 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 1) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 2) for 15 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 3) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 4) for 15 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 5) for 30 min at RT 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 6) for 15 min at RT 

 2 x 2 min washing step with RNAscope® washing buffer 

 Detection of RED Signal (1:60 Red-B to Red-A); 10 min at RT on slides 

 Hybridize signal amplification molecule (AMP 7) for 15 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 8) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 9) for 30 min at 40°C 

 2 x 2 min washing step with RNAscope® washing buffer 

 Hybridize signal amplification molecule (AMP 10) for 15 min at RT 

 2 x 2 min washing step with RNAscope® washing buffer 

 Detection of Green Signal (1:50 Green-B to Green-A); 10 min at RT on slides 

 2 x 2 min 50 % hematoxylin staining solution (Gill’s Hematoxylin) 

 3 x washing step with H20 RNase free until slides are clear 

 1x 10 sec 0.02 % ammonium hydroxide-solution  

 3-5 times with H20 RNase free washing step 

 incubate for 60 min in dry oven at 60 °C 



Material and Methods 

53 
 

 mount slides and place coverslip over the section (air dry > 5 min) 

 

For additional staining (IHC) with antibodies after RNAscope® 2.5 assay and BASEscope® 

assay 

 after last washing step with H20 RNase free; slides were incubated for 3 x 10 min in PBS 

 incubate with blocking solution (10 % horse serum in 1 % BSA/PBS-Otto) for 1 h at RT 

 incubate with first antibody (diluted in blocking solution) in a moist chamber over night at 

4°C 

 3 x washing with 1 % BSA/PBS-Otto for 5 min each 

 incubate with second antibody (fluorophore conjugated antibody; 1:400): 90 min at RT in 

a moist chamber (dark surrounding)  

 3 x washing with PBS-Otto for 5 min each 

 embedding sections with glycergel mounting medium 

2.5 Analyzing and statistics 

The program Microsoft® Excel (Microsoft® Corporation, Redmond, USA) was used for 

analyzing numeric data. General ‘Students T-Test’ was performed for statistical analysis 

whereas significant differences were presumed as p < 0.05 (*) and highly significant 

differences as p < 0.01 (**). Statistical difference compared to controls was marked directly 

above SEM (standard error of the mean)-bar. The software GraphPad Prism 5 was used for 

all presented graphs. 
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3 Results 

3.1 Localization of ETA- and ETB-receptor in the adult murine kidney  

In order to study the potential role of ETA- and/or ETB-receptor for the renin synthesis and 

secretion in vivo and in vitro localization of ET receptors in the mouse kidney was provided 

by immunofluorescence staining for ETAR and due to the lack of a working antibody by in 

situ hybridization RNAscope/BASEscope® assay for the ETBR (protocol 2.3 and 2.4.5).  

ETAR expression was localized on renin producing cells (Fig.7A) regardless of whether renin 

cells were localized in classical juxtaglomerular or in recruited or ectopic position (Fig.7B,C). 

These findings indicate ETAR as a general marker of renin producing cells in the kidney. 

Furthermore, slight ETAR expression could be detected on mesangial cells (Fig.8B) whereas 

smooth muscle cells (Fig.8A), distal tubular structures (Fig.8C) and collecting duct cells 

(Fig.8D) (Table 8) show strong expression for ETAR. 

 

 

Fig. 7: ETA receptor localization on renin cells 
of adult murine kidney (A) ETAR expression co-
localized on rpcs, scale bar = 10 µm, renin, WT (B) 

ETAR expression co-localized on recruited rpcs 
(renin) alongside afferent arteriole; after 2 weeks of 
low salt/enalapril diet, scale bar = 20 µm, WT (C) 

ETAR expression co-localized on ectopic expressed 
rpcs (renin), Cx40

-/-
x Aldo

-/-
, scale bar = 20 µm 
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In order to localize the expression of ETBR in the adult murine kidney, experiments with ISH 

RNAScope/BASEscope® assay from ACD were performed (Fig.9,10). ETBR mRNA signals 

could be localized not only on renin producing JG cells (Fig.9A), but additionally on recruited 

renin producing cells as shown in Fig.9B. Similar to ETAR, the ETB-receptor seems to be a 

general marker for renin positive cells, too. 

 
Fig. 9: Localization of ETBR on renin cells of adult murine kidney of WT kidney sections with ISH 

technique RNAscope® and Basescope®; ETBR mRNA signal detection co-localized on (A) rpcs (renin), 

scale bar = 10 µm (B) recruited renin positive cells (renin) after 2 weeks of low salt/enalapril diet; scale bar = 

10 µm 

Fig. 8: ETA receptor localization in the adult murine kidney (A) ETAR expression co-localized on smooth 

muscle cells (α-sma), scale bar = 20 µm (B) ETAR expr. co-localized on mesangial cells (α-integrin-8), scale bar 

= 10 µm, WT) ETAR expression co-localized on distal tubular structures (calbindin), scale bar = 50 µm, WT (D) 

ETAR expr. co-localized on collecting duct cells (AQP2), scale bar = 50 µm, WT  
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Moreover, ETB-receptor is known to be widely distributed in the kidney. ETB receptor mRNA 

signal could be detected on mesangial cells (Fig.10A), distal tubular cells (Table 8), proximal 

tubular cells (Table 8), cortical and medullary endothelial cells (Fig.10C,D), cortical and 

medullary collecting duct cells (Table8), smooth muscle cells (Table 8) and interstitial cells 

(Fig.10B) on mouse kidney sections.  

As mentioned above, ETBR mRNA signal could also be detected in cortical and medullary 

interstitial cells. Co-localization analysis with RNAscope® DUPLEX assay could detect ETBR 

expression widely distributed on PDGFRβ+ cells, a marker for pericytes (Fig.10B). However, 

it should be noted at this juncture, that not all renal PDGFRβ+ cells express ETBR signal and 

vice versa. 

 

 

 

 

Fig.10: Localization of ETBR in the adult murine kidney of WT kidney sections with ISH technique 

RNAscope® and Basescope®; ETBR mRNA signal detection co-localized on (A) mesangial cells (integrin-8), 

scale bar = 20 µm (B) Duplex Assay RNAscope® ISH; ETBR mRNA signal on interstitial cells (PDGFRβ), scale 

bar = 20 µm (C) cortical endothelial cells (CD31), scale bar = 10 µm (D) medullary endothelial cells (CD31), 

scale bar = 20 µm  

 

 

glom 
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The location as well as the quantity of ETA- and ETB-receptor expression in the murine 

kidney is summarized in Table 8. 

Table 8: Localization and quantity of ETA- and ETB-receptor expression in the adult murine kidney after 
analysis; immunohistochemistry and in situ hybridization RNAscope/BASEscope technique assay; ++ 
strong expression; + weak expression 

 

3.2 Role of ETA-receptor isoform on renin synthesis and secretion in 

vivo 

3.2.1 Verification of renin cell-specific deletion of ETAR (Ren1d+/Cre-ETARfl/fl)  

In order to study the potential direct effect of ET-1/ETA-receptor pathway for the renin 

synthesis and secretion it was necessary to generate a renin cell-specific ETAR animal 

model with the help of the Cre/loxP system (ETAR loxP animals used for present study with 

kind permission of Yanagisawa M. from Howard Hughes Medical Institute, University of 

Texas Southwestern Medical Center, Dallas USA; Ren1d+/Cre animals were used with kind 

permission of Gomez RA from University of Virginia, Charlottesville, USA). Due to the strong 

expression of ETA-receptor on renin producing JG cells and the fact that ET-1 inhibits renin 

in a Ca2+-dependent manner, it was inevitable to hypothesize a potential direct inhibiting role 

of ETAR on renin synthesis and secretion. Therefore, mice genotyped as Ren1d+/Cre-ETARfl/fl 

were considered as knockout animals with loss of ETAR exclusively on renin producing cells. 

Whereas mice with no active Cre-recombinase were determined as control animals (Ren1d+/+-

renal cells ETA-receptor 
ETB- 

receptor 

renin producing JG cells ++ ++ 

smooth muscle cells ++ + 

mesangial 
cells 

extraglomerular + - 

intraglomerular + ++ 

endothelial cells - ++ 

proximal tubular cells - + 

distal tubular cells ++ + 

collecting duct 
cortical ++ ++ 

medullary + + 

interstitial cells 
cortical - + 

medullary - ++ 
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ETARfl/fl or ETARfl/fl). In order to proof present deletion on renin producing cells, IHC with 

given antibodies was performed on paraffin embedded kidney sections (Fig.11). The efficacy 

of deletion could be verified after analyzing the section with the fluorescent microscope. The 

ETAR expression only lacked on renin producing juxtaglomerular cells in Ren1d+/Cre-ETARfl/fl 

animals compared to control littermates (ETARfl/fl) (Fig.9), whereas it was maintained on 

smooth muscle cells, mesangial cells and tubular structures.  

 

3.2.2 Characterization of potential direct effect of ETAR on renin synthesis and 

secretion in vivo  

In order to study a potential direct effect of ETAR on the level of renin producing cells on the 

renin synthesis and secretion in vivo, relative mRNA abundance, plasma renin concentration 

levels and systolic blood pressure was detected under basal conditions first. The results 

showed that relative renin mRNA abundance (Fig.12A) and plasma renin concentration 

(Fig.12B) were unchanged in Ren1d+/Cre-ETARfl/fl compared to control littermates. In addition, 

Ren1d+/Cre-ETARfl/fl had normal systolic blood pressure values (144 ± 1.920) relative to 

ETARfl/fl animals (139.1 ± 1.818) (Fig.10C) and as mentioned in 3.2.1 normal developed 

juxtaglomerular cells under basal conditions after performing immunohistochemistry on 

kidney sections.  

 

 

A. 
C. 

Fig. 11: Verification of renin cell-specific deletion of ETAR on kidney sections (A) ETAR
fl/fl 

 as controls; with 

ETAR, renin, scale bar = 10 µm (B) Ren
1d+/Cre

-ETAR
fl/fl

;ETAR, renin, scale bar = 10 µm after a two week low salt + 

enalapril diet; ETAR expression only lacks on rpcs 
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In order to investigate the role of ETA-receptor on the physiological regulation of the renin 

system, Ren1d+/Cre-ETARfl/fl animals got a two week low salt diet (0.02 % NaCl) with ongoing 

enalapril intake to stimulate renin expression and therefore RAAS. A diet with low 

concentration of sodium leads to a stimulation of RAAS and therefore to a retrograde 

recruitment of renin producing cells along the afferent arteriole and an increased number of 

renin positive cells. In order to study the role of ETA-receptor on the suppression of RAAS, 

Ren1d+/Cre-ETARfl/fl mice got a 2 week high salt diet (4 % NaCl).The chronic modulation of the 

renin system (Fig.13 A,B) , especially feeding animals with a low salt diet increased renin 

mRNA abundance 4-fold and PRC 12-fold, without any difference between controls and 

Ren1d+/Cre-ETARfl/fl. Whereas feeding a high salt diet lowered PRC values by 69% without any 

Fig.12: Characterization of potential role of ETAR isoform expressed on rpcs on renin system in vivo 

(A) relative renin mRNA abundance, (B) plasma renin concentration and (C) blood pressure measurement 

via tail cuff method was unchanged in Ren
1d+/Cre

-ETAR
fl/fl

 compared to controls (ETAR
fl/fl

) under basal 

conditions; n=5 
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difference between the two genotypes (Fig.13 A,B). Untreated adult Ren1d+/Cre-ETARfl/fl mice 

had similar renin mRNA and PRC levels compared to controls.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Role of ETA-receptor on the renin cell lineage for renin secretion in vitro 

With respect to previous findings, the ETA-receptor has no essential role on the renin 

synthesis in vivo. Therefore it was inevitable to further investigate the role of ETAR located 

on renin producing cells for renin secretion in vitro. 

In the isolated perfused kidney model (2.2.3) of control animals (ETARfl/fl ) ET-1 was added to 

the ex situ system with increasing concentrations (30 pM, 100 pM, 300 pM and 1 nM ET-1), 

Fig. 13: Characterization of potential role of ETAR isoform expressed on rpcs on stimulated and 

suppressed renin system in vivo (A) relative renin mRNA abundance, (B) plasma renin concentration and was 

unchanged in Ren
1d+/Cre

-ETAR
fl/fl

 compared to controls (ETAR
fl/fl

) under basal conditions and under low and high 

salt diet for two weeks; a low salt diet lead to an significantly increase of renin mRNA abundance and PRC levels 

with no difference in both groups; whereas a high salt diet leads to an slightly decrease of renin mRNA and PRC 

level in both genotypes; p<0.05;n=5 
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resulting in an inhibition of renin secretion (Fig.14A). It should be mentioned at this juncture 

that the renin secretion is the product of renal blood flow and renin concentration (data not 

shown).The inhibition of renin secretion is mainly mediated through a reduction of renal blood 

flow (ml/g*organ weight*min-1) (Fig.14B). In adult Ren1d+/Cre-ETARfl/fl animals, similar effects 

could be determined. The deletion of ETAR on renin producing JG cells did not markedly 

influence the inhibition of renin secretion through ET-1. Whereas renin secretion rate was 

declined to 80 % in Ren1d+/Cre-ETARfl/fl compared to a decrease of 90 % in controls. Further, 

the inhibition of renin secretion was mainly mediated by a decline of the renal blood flow. The 

flow decreases through ET-1 from nearly 10 ml/min*g to 2 ml/min*g organ weight. Whereas 

renin concentration (ANG I/ml*h) was unchanged in both genotypes after adding ET-1 to the 

system (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Characterization of renal ETA-receptor isoform and its potential indirect 

effects on renin synthesis and secretion in vivo 

All measured in vivo parameters mentioned in 3.2 indicate for the first time that ETAR seems 

to be of less relevance for the physiological relevance of renin synthesis and secretion in 

vivo. Furthermore, this study suggests rather no essential direct effect of ETAR isoform on 

Fig. 14: Isolated perfused kidneys of 

Ren
1d+/Cre

- ETAR
fl/fl

 and controls 

displayed an inhibition of (A) renin 

secretion via adding ET-1 in increasing 

concentrations  (B) decline of renal blood 

flow due to ET-1;flow mainly mediates 

inhibition of renin secretion; iso = 

isoproterenol; experiment was performed 

on constant perfusion pressure 

A. 

B. 
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the level of renin positive cells in vivo and due to results in the isolated perfused kidney in 

vitro. Therefore, it was necessary to further study a potential indirect effect of renal ETA 

receptor isoform for renin synthesis and secretion in vivo.  

Besides the renin producing JG cell area at the vascular pole of the glomerulus, the ETAR is 

suggested to be also expressed on smooth muscle cells, distal tubular cells, collecting duct 

cells and mesangial cells in the kidney (as already mentioned in 3.1.1). In order to study a 

potential general indirect effect of ETAR on the renin system in vivo, additional mouse 

models were generated a priori to further understand the crucial role of renal ETAR 

expression on the renin system. 

3.2.4.1 The potential indirect role of renal ETA-receptor isoform on renin 

synthesis and secretion in vivo 

To investigate, if the potential role of ETAR for the control of renin synthesis and secretion is 

based on stroma derived cells in the kidney, ETAR loxP mice were paired with animals 

holding Cre activation under the control of FoxD1 promotor. All stroma derived cells possess 

this specific promotor including renin positive JG cells, fibroblasts, pericytes, smooth muscle 

cells and mesangial cells. Due to renal ETA-receptor isoform expression, FOXD1Cre/+- ETARfl/fl 

kidneys immunoreactivity of ETAR was lacking on renin producing cells, smooth muscle cells 

and mesangial cells only compared to controls (ETARfl/fl) (Fig. 15A). 

In order to examine, if the potential role of ETAR expressed in the vasculature system for 

renin synthesis and secretion is regulated by systemic factors such as the blood pressure, 

mice with inducible Cre-ERT2 activation under the control of smooth muscle myosin (Myh11) 

promotor were paired with ETAR loxP animals in order to generate SMMHC-Cre-ERT2- 

ETARfl/fl mice. All Cre-ERT2 kidneys showed ETAR immunoreactivity lacking on smooth 

muscle cells only (Fig. 15B) 
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All FOXD1Cre/+- ETARfl/fl animals displayed normal developed renin producing JG cells, 

unchanged renin mRNA abundance, PRC levels as well as similar systolic blood pressure 

values compared to controls (Fig. 16). These given results indicate, that deletion of ETAR on 

renin producing cells, mesangial cells, smooth muscle cells has no significant indirect effect 

on the regulation of renin synthesis and secretion.  

All SMMHC-Cre-ERT2- ETARfl/fl kidneys showed ETAR immunoreactivity lacking in smooth 

muscle cells only (Fig. 15B). In addition, all SMMHC-Cre-ERT2- ETARfl/fl animals showed 

normal developed JG cells, slightly decreased renin mRNA abundance and unchanged 

systolic blood pressure values and PRC levels (Fig. 16) compared to controls (ETARfl/fl). 

 

 

 

 

 

Fig. 15: Verification of cell-specific deletion of ETAR on (A) FoxD1-stroma derived cells (FOX
D1Cre/+

- 
ETAR

fl/fl
); scale bar = 50 µm, ETAR, renin actin (B) vascular smooth muscle cells (SMMHC-Cre-ER

T2
- 

ETAR
fl/fl

 );scale bar = 10 µm;ETAR, renin actin  
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To investigate if further ETA-receptor expression locations have a crucial effect on the renin 

system in general, mice with conditional CAGG-Cre-ERT2 recombinase were paired with 

ETAR loxP animals in order to decrease ETAR expression under the control of β-actin 

promoter/enhancer coupled with the cytomegalovirus immediate-early enhancer. All CAGG-

Cre-ERT2-ETARfl/fl kidneys showed a reduction of ETA-receptor expression of 62 % after 3 

weeks of tamoxifen chow induction (Fig.17A) compared to controls (ETARfl/fl). In addition, 

IHC studies on kidney paraffin sections showed a decrease of ETAR expression widely 

distributed in the kidney compared to controls (Fig 17B).  

Moreover, all CAGG-Cre-ERT2- ETARfl/fl displayed normal developed renin positive JG cells 

as well as unchanged renin mRNA levels, PRC values and systolic blood pressure levels 

compared to controls (Fig.18A,B,C).  

Fig. 16: Characterization of ETA receptor 

isoform expressed on FOXD1 stroma derived 

cells and on vascular smooth muscle cells 

for renin synthesis and secretion (A) relative 

renin mRNA abundance, (B) plasma renin 

concentration (C) and blood pressure 

measurement via tail cuff method was not 

essentially changed in FOX
D1Cre/+

- ETAR
fl/fl

 and 

in SMMHC-Cre-ER
T2

-ETAR
fl/fl

 compared to 

controls; n=10 except bpm n=3 each group 
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Fig. 17: Verification of reduced expression of ETAR in the kidney due to conditional deletion (A) 

decline of ETAR expression after tamoxifen induction diet for 3 weeks of 62%; n= 8 each group; p= 0.0044 

(**) (B) IHC of CAGG-Cre-ER
T2

-ETAR
fl/fl

 kidney section, ETAR, renin actin,scale bar = 50 µm, ETAR 

expression staining with antibody was remarkably reduced on kidney sections 

Fig. 18: Characterization of ETA 

receptor isoform on the renin 

system in CAGG-Cre-ER
T2

-ETAR
fl/fl

 

(A) relative renin mRNA abundance, 

n=10 (B) plasma renin concentration, 

n=10 (C) blood pressure 

measurement via tail cuff method 

was unchanged in CAGG-Cre-ER
T2 

compared to controls; n=3 each 

group 

A B 
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3.2.4.2 The role of ET-1 after cell specific deletion of ETAR on the renin 

secretion in vitro 

After studying the direct effect of ET-1 through ETAR expressed on renin producing JG cells 

for the renin synthesis and secretion (3.2.3) it was necessary to examine potential indirect 

effects of ET-1/ETAR signaling pathway on RS in addition. All Cre+ strains mentioned and 

verified in 3.2.4 displayed in the isolated perfused kidney model an inhibition of renin 

secretion via ET-1 whereas it should be noted that differences occurred between groups with 

no essential changes compared to controls (Fig.19A). All groups resulted in an inhibition of 

nearly 80-90 % at 1 nM ET-1.The inhibition is mainly determined through a reduction of renal 

blood flow (Fig.17B; ~5 ml/g x min-1 or below at 1 nM ET-1) and not due to a changes in renin 

concentration (data not shown). All experiments were performed under same conditions with 

constant pressure and all animals had similar bodyweights (20 g – 25 g). After adding an 

increasing concentrations (10 pM, 30, 100, 300 pM and 1nM ) of ET-1 to the system, all 

groups showed a decrease in renin secretion rate. There was no significant change to the 

controls (ETARfl/fl).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Isolated perfused kidneys of 

cell-specific animal models 

(FOX
D1Cre/+

- ETAR
fl/fl

, SMMHC-Cre-ER
T2

-

ETAR
fl/fl

, CAGG-Cre-ER
T2

-ETAR
fl/fl

) and 

controls (ETAR
fl/fl

) displayed an 

inhibition of (A) renin secretion via 

adding ET-1 in increasing concentrations 

over (B) renal blood flow declined due to 

ET-1; flow mainly mediates inhibition of 

renin secretion; iso = isoproterenol; 

experiment was performed on constant 

perfusion pressure 

A. 

B. 
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To summarize the first chapter of the present study, given results show no significant indices 

for a direct inhibiting effect of ET-1/ETAR signaling pathway on the level of renin positive 

cells for renin synthesis and secretion in vivo. In addition, all adult Ren1d+/Cre-ETARfl/fl animals 

showed normal developed renin positive JG cells, similar systolic blood pressure and PRC 

values as well as no essential change in renin mRNA abundance compared to controls. 

Moreover, first results suggest that the deletion of ETAR isoform on smooth muscle cells, 

stroma derived cells as well as the significant reduction of ETAR expression (SMMHC-Cre-

ERT2- ETARfl/fl, FOXD1Cre/+- ETARfl/fl, CAGG-Cre-ERT2-ETARflf) seem to have no essential 

effect on the renin mRNA abundance, systolic blood pressure values and PRC-levels. The 

renal ETA-receptor isoform is suggested to be of less relevance for renin synthesis and 

secretion in vivo and in vitro. 

 

3.3 Role of ETB-receptor isoform on renin synthesis and secretion in 

vivo  

3.3.1 Verification of renin cell-specific deletion of ETBR (Ren1d+/Cre-ETBRfl/fl) 

Previous shown results indicate that ETA-receptor isoform localized on renin producing cells 

has no essential direct effect on the level for renin and synthesis. The following chapter 

concentrates on the potential role of ETB receptor isoform located on renin producing cells 

for renin synthesis and secretion. It should be mentioned at this juncture ETBR mRNA signal 

could also be detected on renin producing cells as shown in 3.1. Therefore a renin cell-

specific ETBR animal model via Cre/loxP system (ETBR loxP animals with kindly permission 

of Miles L. Epstein from Department of Anatomy, School of medicine and Public Health, 

University of Wisconsin, Madison, USA) was generated. Mice which were genotyped as 

Ren1d+/Cre- ETBRfl/fl, were considered as knockout animals with a loss of ETBR exclusively on 

renin producing cells, whereas mice, analyzed as Ren1d+/+-ETBRfl/fl (or ETBRfl/fl) with no active 

Cre-recombinase were determined as control animals. The efficacy of ETBR deletion was 

verified by ETB-receptor in situ hybridization BaseScope® assay from ACD on adult kidney 

sections due to lack of working antibody. In control kidneys (ETBRfl/fl) ETB-receptor mRNA 

signal was found on vascular smooth muscle cells, endothelial cells, proximal tubular cells, 

collecting duct, mesangial cells, interstitial cells and renin producing JG cells (Table8 and 

Fig.9,10). In Ren1d+/Cre-ETBRfl/fl kidneys ETBR mRNA signal was lacking on renin producing 

cells only (Fig.20B) compared to ETBRfl/fl mice (Fig.20A).  

C. 
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3.3.2 Characterization of renal ETB-receptor isoform and its potential direct 

effect on renin synthesis and secretion in vivo 

In order to study a potential direct effect of ETBR pathway on the level of renin producing 

cells on the renin system, more precisely on renin synthesis and secretion in vivo, it was 

necessary to study relative renin mRNA abundance, plasma renin concentration as well as 

systolic blood pressure under basal conditions first.  

All Ren1d+/Cre- ETBRfl/fl animals showed unchanged relative renin mRNA abundance and 

plasma renin concentration compared to controls. In addition, Ren1d+/Cre-ETBRfl/fl mice had 

normal systolic blood pressure values (139.8 ±4.897) relative to ETBRfl/fl animals (134.8 ± 

1.001) (Fig.21) and normal developed juxtaglomerular renin positive cells after performing 

immunohistochemistry on kidney sections. These results indicate that ETB-receptor located 

on renin producing cells seems to be of less relevance for renin synthesis and secretion in 

vivo.  

 

 

 

 

Fig. 20: Verification of renin cell-specific deletion of ETBR via BaseScope® ISH assay with (A) kidney 

section of ETBR
fl/fl

 after chronic stimulation with low salt diet/enalapril intake for three weeks; ETBR mRNA 

signal with renin; scale bar = 10 µm (B) kidney section of Ren
1d+/Cre

-ETBR
fl/fl

 after chronic stimulation with low 

salt diet/enalapril intake for three weeks; ETBR mRNA signal lacked on renin producing cells only; renin; scale 

bar = 10 µm 
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In order to study if ETBR expressed on renin producing cells is directly involved on the 

regulation of the renin system, Ren1d+/Cre- ETBRfl/fl were treated with either a high salt (4 % 

NaCl ) or low salt (0.02 % NaCl) diet with ongoing enalapril intake for three weeks. (Fig.22). 

Feeding a low salt/enalapril diet increased renin mRNA abundance 16-fold and PRC 62-fold, 

without differences between controls and Ren1d+/Cre-ETBRfl/fl. However, feeding a high salt 

diet reduced renin mRNA abundance slightly in controls whereas renin levels were 

significantly decreased in Ren1d+/Cre-ETBRfl/fl mice compared to ETBRfl/fl after normal salt 

(p=0.0012) and high salt diet (p=0.006) (Fig.22A). Moreover, Ren1d+/Cre-ETBRfl/fl showed 

unchanged PRC-levels after high salt diet compared to controls (Fig.22B).  

 

Fig.21: Characterization of potential role 

of ETBR on renin system in vivo (A) 

relative renin mRNA abundance was 

unchanged compared to controls under basal 

conditions and (B) plasma renin 

concentration was unchanged in both 

models, n=5; (C) systolic blood pressure 

measurement was unchanged in both groups 

(ETBR
fl/fl

: 134.8 ± 1.001; Ren
1d+/Cre

-ETBR
fl/fl:

 

139.8 ±4.897); n=4 
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3.3.3 Role of ETB-receptor isoform on the renin cell lineage for renin secretion 

in vitro 

To further study the potential role of the ET-1/ETBR pathway on renin secretion, isolated 

perfused kidney experiments were performed in adult Ren1d+/Cre-ETBRfl/fl animals (2.2.3 and 

for protocol and setup). The renin cell-specific deletion of ETBR did not influence the 

inhibition of renin secretion through ET-1 (Fig.23). After adding ET-1 ( 30 pM, 100 pM, 300 

pM and 1 nM ET-1) in increasing concentrations to the ex situ system, Ren1d+/Cre-ETBRfl/fl 

kidneys displayed an inhibition of renin secretion. (Fig.23A) mainly mediated through a 

reduction of renal blood flow (ml/ g x min-1) as in controls (Fig.23B; <5 ml/min x g). All 

Fig. 22: Characterization of potential role of ETBR on the physiological control of the renin 

system in vivo (A) relative renin mRNA abundance was unchanged compared to controls under 

basal conditions and after 3 week of LSE in both genotype groups; relative renin mRNA levels were 

significantly decreased in Ren
1d+/Cre

-ETBR
fl/fl

 after high salt diet compared to NS-controls 

(p=0.0012) and HS-controls (p=0.006), n=5 (B) plasma renin concentration was unchanged in both 

models under basal conditions and after 3 week of LSE and HS relative renin mRNA levels were 

significantly increased after LSE (p<0.05); n=5; 
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A. 

B. 

experiments were performed under same condition with constant pressure and all animals 

had similar bodyweights (20 g – 25 g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With respect to results of the second chapter of present study, it can be concluded that there 

are no essential indices for a direct involvement of ETBR isoform located on the level of renin 

positive cells for renin synthesis or secretion and in addition on the physiological regulation of 

the renin system in vivo. Moreover, all adult Ren1d+/Cre-ETBRfl/fl animals showed normal 

developed renin positive JG cells, similar systolic blood pressure and PRC values as well as 

no essential change in renin mRNA abundance compared to controls. The inhibition of renin 

secretion in Ren1d+/Cre-ETBRfl/fl isolated perfused kidneys is primarily mediated by the renal 

blood flow as shown in Ren1d+/Cre-ETARfl/fl experiments (3.2.3). 

Fig. 23: Isolated perfused 

kidneys of Ren
1d+/Cre

-

ETBR
fl/fl

 and controls 

displayed an inhibition of 

(A) renin secretion via 

adding ET-1 in different 

concentrations (B) renal 

blood flow declined due to 

ET-1;flow mainly mediates 

inhibition of renin secretion; 

iso = isoproterenol; 

experiment was performed 

on constant perfusion 

pressure 
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3.4 Role of ETA and ETB-receptors on renin synthesis and secretion in 

vivo 

Previous shown results indicate that ETA- and ETB-receptor isoforms located on renin 

positive JG cells, are of less relevance for the physiological control of renin synthesis and 

secretion in vivo. In order to exclude possible ET-receptors interactions, it was necessary to 

further study a potential direct influence of both ET-receptors for renin synthesis and 

secretion in vivo.  

3.4.1 Verification of renin cell-specific deletion of both ET receptors (Ren1d+/Cre-

ETARfl/fl-ETBRfl/fl) 

In order to study the potential role of both ET-receptors on the level of renin producing cells 

for renin synthesis and secretion, it was necessary to generate a renin cell-specific ETAR 

and ETBR animal model via Cre/loxP system. Mice which were genotyped as Ren1d+/Cre-

ETBRfl/fl-ETARfl/fl, were considered as knockout animals with a loss of ETAR and ETBR 

exclusively on renin producing cells. Whereas mice, analyzed as Ren1d+/+-ETBRfl/fl-ETARfl/fl 

(or ETBRfl/fl-ETARfl/fl) with no active Cre-recombinase were determined as control animals. 

The efficacy of ETAR and ETBR deletion was verified by either ETAR immunohistochemistry 

(Fig.24A) or ETB-receptor in situ hybridization BaseScope® assay from ACD (Fig.24B) on 

adult kidney sections. In control kidneys both receptors were present on renin producing JG 

cells. 

 

Fig. 24: Verification of renin cell-specific deletion of (A) ETAR and (B) ETBR of Ren
1d+/Cre

-ETAR
fl/fl

-

ETBR
fl/fl

; (A) IHC with ETAR, renin ,scale bar = 20 µm; ETAR lacked exclusively on rpcs of Ren
1d+/Cre

-ETAR
fl/fl

-

ETBR
fl/fl

 (B) ETBR BASEscope® assay of Ren
1d+/Cre

-ETAR
fl/fl

-ETBR
fl/fl 

with additional IHC with renin; scale bar 

= 20 µm; ETBR lacked on rpcs of Ren
1d+/Cre

-ETAR
fl/fl

-ETBR
fl/fl
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3.4.2 Investigations to study a potential direct effect of ETA and ETB receptors 

expressed on renin producing juxtaglomerular cells for renin synthesis and 

secretion in vivo and in vitro 

After verification of ETA- and ETB-receptor renin cell-specific knockout animal model with in 

situ hybridization BASEscope® from ACD and IHC (Fig.24), it was necessary to study the 

potential effect on the renin system further. Mice which were genotyped as Ren1d+/Cre-

ETARfl/fl-ETBRfl/fl were considered as knockout animals with a complete loss of ET-receptors 

on renin producing cells. Whereas mice, analyzed as Ren1d+/+-ETARfl/fl-ETBRfl/fl (or ETARfl/fl-

ETBRfl/fl) with no active Cre-recombinase were determined as control animals. All Ren1d+/Cre-

ETARfl/fl-ETBRfl/fl animals displayed normal renin mRNA abundance (Fig.25A) and normal 

systolic blood pressure values (Fig.25C) as in controls under basal conditions. In addition, 

plasma renin concentration levels were reduced in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl animals 

compared to control littermates (Fig.25B) but showed no significant difference in both groups. 

All in vivo experiments were performed with adult mice only. Histological staining on kidney 

sections revealed normal developed renin positive cells at the juxtaglomerular cell apparatus 

in the kidney (Fig.24). 

 

 

 

 

 

 

 

 

 

A. 

Fig. 25: Characterization of potential effect of 

both ET receptors on the renin synthesis and 

secretion (A) relative renin mRNA abundance 

was unchanged in Ren
1d+/Cre

-ETAR
fl/fl

-ETBR
fl/fl

 

compared to controls (ETAR
fl/fl

-ETBR
fl/fl

),(B) 

plasma renin concentration was not significantly 

changed in Ren
1d+/Cre

-ETAR
fl/fl

-ETBR
fl/fl

 

compared to controls (C) no difference in systolic 

blood pressure values of both groups; (A),(B) 

n=6 each group; (C) n=3 for controls, n=4 for 

“double knockout” 
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A.
.. 

B. 

In order to study the potential role of ET-1/ET-receptors pathway on renin secretion further, 

isolated perfused kidney was performed in adult Ren1d+/Cre-ETARfl/fl-ETBRfl/fl mice (2.2.3 for 

protocol and setup). The renin cell-specific deletion of both ET-receptors did not influence the 

inhibition of renin secretion through ET-1 (Fig.26). After adding ET-1 (30 pM, 100 pM, 300 

pM and 1 nM ET-1) in increasing concentrations to the ex situ system, Ren1d+/Cre-ETARfl/fl-

ETBRfl/fl kidneys displayed an inhibition of renin secretion (Fig.26A) mainly mediated through 

a reduction of renal blood flow (ml/g x min-1) (Fig.26B) as in controls. All experiments were 

performed under same condition with constant pressure and all animals had similar body 

weights (20 g – 25 g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26: Isolated perfused kidneys of Ren
1d+/Cre

-ETAR
fl/fl

-ETBR
fl/fl

 and controls displayed an 

inhibition of (A) renin secretion via adding ET-1 in different concentrations over (B) renal blood 

flow decline due to ET-1;flow mainly mediates  inhibition of renin secretion; iso=isoproterenol; 

experiment was performed on constant perfusion pressure 
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Fig. 27: Verification of stroma derived cell-specific deletion of ETAR in FOX
D1Cre/+

- ETAR
fl/fl

-

ETBR
fl/fl

 (A) WT kidney section, IHC with ETAR, renin and α-sma, scale bar = 10 µm, ETAR was 

expressed on rpcs, smooth muscle cells and mesangial cells (stroma derived cells) of ETAR
fl/fl

-

ETBR
fl/fl

 (B) IHC of FOX
D1Cre/+

- ETAR
fl/fl

-ETBR
fl/fl

 kidney section with ETAR, renin and α-sma scale bar 

= 20 µm; ETAR lacked on rpcs, smooth muscle cells and mesangial cells 

 

Thus, the results of present chapter suggests, that renin cell-specific deletion of both ET 

receptors has no significant direct effect on renin synthesis and secretion, moreover on the 

renin system in vivo and in vitro.  

3.4.3 Characterization of renal ETA- and ETB-receptors expressed on stroma 

derived cells on renin synthesis and secretion in vivo and in vitro 

Previous shown results indicate that the crucial role of ET-receptors expressed on renin 

producing cells seems to be of less relevance for the renin synthesis and secretion in vivo. In 

addition, neither ETA-receptor nor ETB-receptor isoform expressed on stroma derived cells 

seem to have no effect on the renin system. Further experiments should investigate if there 

is an effect of both ET receptors based on stroma derived cells on the renin synthesis and 

secretion. 

Therefore it was necessary to generate an ET-receptor stroma derived cell-specific “double 

knockout” animal model (FOXD1Cre/+- ETARfl/fl-ETBRfl/fl). The efficacy of deletion was verified 

by IHC for ETAR (Fig. 27) and ISH BASEscope® assay for ETBR (Fig.28). In FOXD1Cre/+- 

ETARfl/fl-ETBRfl/fl animals, both ET-receptors expression lacked exclusively on renin 

producing cells, mesangial cells, vascular smooth muscle cells as well as interstitial cells.  
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Fig. 28: Verification of stroma derived cell-specific deletion of ETBR in FOX
D1Cre/+

- ETAR
fl/fl

-

ETBR
fl/fl

 with ISH BaseScope® assay and IHC (A) WT (ETAR
fl/fl

-ETBR
fl/fl

) kidney section, ISH with 

ETBR and additional IHC with renin, ETBR is expressed on rpcs (B) in FOX
D1Cre/+

- ETAR
fl/fl

-ETBR
fl/fl

 

kidneys ETBR lacks on renin producing cells, ISH BaseScope with IHC renin (C) WT kidney section, 

ISH and IHC with α-sma, ETBR is expressed on smooth muscle cells (D) in FOX
D1Cre/+

- ETAR
fl/fl

-

ETBR
fl/fl

 kidneys ETBR lacks on smooth muscle cells, ISH with IHC with α-sma, (E) WT kidney 

section, ISH with EBTR and α-integrin-8, ETBR is epressed on mesangial cells (F) in FOX
D1Cre/+

- 

ETAR
fl/fl

-ETBR
fl/fl

 kidneys ETBR lacks on mesangial cells, ISH with IHC α-integrin-8, (A)-(F) scale bar 

=  5 µm 
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Fig. 29: Characterization of potential 

indirect kidney effect of both ET receptors 

on renin synthesis and secretion in vivo 

(A) relative renin mRNA abundance was not 

significantly changed in FOX
D1Cre/+

- ETAR
fl/fl

-

ETBR
fl/fl

 compared to controls (ETAR
fl/fl

-

ETBR
fl/fl

) n=4,(B) plasma renin concentration 

was not significantly changed in FOX
D1Cre/+

- 

ETAR
fl/fl

-ETBR
fl/fl

 compared to controls n=2  

(C) no difference in systolic blood pressure 

values of FOX
D1Cre/+

- ETAR
fl/fl

-ETBR
fl/fl

 (n=2) 

compared to controls n=3 

In order to study a potential stroma derived cell-specific indirect effect of renal ET-receptors 

on the renin system more precisely on renin synthesis and secretion in vivo, it was necessary 

to study relative renin mRNA abundance, plasma renin concentration as well as systolic 

blood pressure under basal conditions prospectively after verification of deletion. 

All FOXD1Cre/+- ETARfl/fl-ETBRfl/fl animals showed no significant difference in relative renin 

mRNA abundance and plasma renin concentration compared to controls under basal 

conditions (Fig.29). PRC level were slightly diminished in FOXD1Cre/+- ETARfl/fl-ETBRfl/fl 

compared to controls (ETARfl/fl-ETBRfl/fl) In addition, FOXD1Cre/+- ETARfl/fl-ETBRfl/fl mice had 

normal systolic blood pressure values (128.5 ±1.109) relative to ETARfl/fl-ETBRfl/fl control 

littermates (130 ± 1.048) (Fig.29) and as shown in Fig.27/28 normal developed 

juxtaglomerular renin positive cells after performing immunohistochemistry and in situ 

hybridization (BASEScope® assay) on kidney sections. These results indicate that both ET 

receptors expressed on stroma derived cells in the kidney seem to be of less relevance for 

renin synthesis and secretion in vivo. 
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B. 

A.
. 

In the isolated perfused kidney (setup and protocol 2.2.3) all FOXD1Cre/+-ETBRfl/fl and 

FOXD1Cre/+-ETARfl/fl displayed an inhibition of renin secretion mainly mediated by the decline 

of renal blood flow via ET-1. However renin secretion did not show an inhibition in FOXD1Cre/+- 

ETARfl/fl-ETBRfl/fl through ET-1 (Fig 30A). Moreover, in FOXD1Cre/+-ETARfl/fl renin secretion 

showed inhibition down to 60 % whereas FOXD1Cre/+-ETBRfl/fl isolated kidneys declined down 

to 92 %.  

The effect of FOXD1Cre/+-ETBRfl/fl and FOXD1Cre/+-ETBRfl/fl was mainly mediated by a reduction 

of the renal blood flow (<5 ml/g x min-1) whereas decline of renal blood flow in FOXD1Cre/+- 

ETARfl/fl-ETBRfl/fl was attenuated rapidly (20 ml/g x min-1) by 10 pM ET-1 to 14 ml/g x min-1 by 

1 nM ET-1 ) (Fig.30B). The renal blood flow of FOXD1Cre/+- ETARfl/fl-ETBRfl/fl was nearly in a 

steady state compared to ET-receptor isoform knockout kidneys. In summary, the deletion of 

both ET-receptors in stroma derived cells did not inhibit renin secretion compared to single 

receptor isoform deletion whereas it seems not to be mediated by a decline of the renal 

blood flow because the flow could be detected nearly in a steady state in FOXD1Cre/+- ETARfl/fl-

ETBRfl/fl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.30: Isolated perfused 

kidneys of FOX
D1Cre/+

- ETAR
fl/fl

-

ETBR
fl/fl

 , FOX
D1Cre/+

-ETAR
fl/fl

 

FOX
D1Cre/+

-ETBR
fl/fl

 (A) renin 

secretion was inhibited through 

ET-1 in FOX
D1Cre/+

-ETBR
fl/fl

 and 

FOX
D1Cre/+

-ETAR
fl/fl

; whereas in  

FOX
D1Cre/+

- ETAR
fl/fl

-ETBR
fl/fl

 

isolated kidneys showed no 

inhibition of renin secretion after 

ET-1 (B) renal blood flow was 

reduced in FOX
D1Cre/+

-ETBR
fl/fl

 

and FOX
D1Cre/+

-ETAR
fl/fl

 through 

ET-1 but decline was attenuated 

in FOX
D1Cre/+

- ETAR
fl/fl

-ETBR
fl/fl

; 

iso=isoproterenol; experiment 

was performed on constant 

perfusion pressure n= 2 each 

group 
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4 Discussion 
Renin is the central regulatory factor of the Renin-Angiotensin-Aldosterone system. It is 

mainly synthesized in the kidney from juxtaglomerular epitheloid cells and is stored in 

secretory vesicles until release. The release of renin is stimulated by cAMP signaling 

pathway and inhibited by an increase in cytosolic Ca2+ concentration. Renin synthesis and its 

release from JG cells are regulated by various local and systemic factors. Several 

vasoconstrictor hormones such as ANG II and arginine vasopressin have been shown to 

inhibit renin release from juxtaglomerular cells. In addition, different in vitro studies and one 

in vivo study on dogs have suggested endothelins as negative regulators of renin expression 

and secretion (Berthold et al., 1999; Scholz et al., 1995; Ritthaler et al., 1995; Ritthaler et al., 

1996). The endothelin system consists of three peptide hormones Endothelin-1, Endothelin-2 

and Endothelin-3 and their G-protein coupled receptors Endothelin-A and Endothelin-B 

receptor. Previous studies displayed Endothelin-1 as a potent vasoconstrictor in the renal 

vascular system and as an inhibitor of the synthesis and secretion of renin from 

juxtaglomerular epitheloid cells in vitro whereas ETAR is suggested to act as the main 

receptor (Kaasjager et al., 1997; Bohm et al., 2003). The work at hand aimed to examine the 

relevance of endothelins focusing on ET-1/ETA-receptor and/or ETB-receptor signaling 

pathway for the physiological regulation of renin synthesis and secretion in vivo. Moreover, 

we tried to investigate if the proven inhibiting effect on the renin system via ETAR and/or 

ETBR signaling pathway is accompanied by a direct effect on the level of renin producing 

juxtaglomerular cells in the kidney or if the effect of renal ET receptors on the renin system is 

systemic, general or regulated by ET receptors expressed on stroma derived cells in the 

kidney.  

4.1 ET-receptor localization in the adult murine kidney 

It was inevitable to study the expression pattern of both receptors in the adult murine kidney 

first. The ETA- and ETB-receptor isoforms were localized on mouse kidney sections with co-

localization (IHC, ISH) analysis on renin producing JG cells for present study. Moreover, both 

ET-receptors are suggested as general markers for renin producing cells because they could 

be located on recruited, ectopic expressed and fetal renin producing cells, too.  

In addition, both receptors could be detected on smooth muscle cells, but only ETBR 

expression was found on endothelial cells of vascular structures. Similar results could be 

demonstrated by Wendel et al. in the rat kidney, whereas they noted, a weak immunostaining 

for ETB receptor on endothelial cells (Kohan et al., 2011a; Wendel et al., 2006).The ETA 

receptor could also be detected on collecting duct cells, mesangial cells and distal tubular 

structures showing no signal on podocytes and proximal tubular structures whereby Garvin 
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and Sanders and Wendel et. al. published similar results using rats in their experimental 

approaches (Garvin and Sanders, 1991; Wendel et al., 2006). With the help of ISH 

technique, expression of ETB-receptor mRNA signal was detected further on interstitial cells, 

mesangial cells, proximal tubular cells and collecting duct cells (cortical and medullary) which 

was also shown by Wendel et al. whereas their study did not focus on ETBR expression in 

renal interstitial cells (Wendel et al., 2006). 

It has been shown, that ETA and ETB receptors are widely expressed in the kidney and 

some specific cells are able to express both receptor isoforms (Kohan et al., 2011b). Taken 

together, both ET-receptor isoforms are co-expressed on renin producing cells, smooth 

muscle cells, mesangial cells, distal tubular structures and collecting duct cells. The renal 

ETBR is suggested as the predominant isoform in the kidney (Kedzierski and Yanagisawa 

2001) which could be affirmed in present thesis. 

Endothelin receptors are known to be present on plasma membrane of each cell where ETs 

can bind to its receptors causing a variety of different but often similar biological effects 

based on various signaling cascades, including cyclooxygenases, cytochrome P-450, nitric 

oxide synthase and adenylyl cyclases and others (Kohan et al., 2011b; Sorokin and Kohan, 

2003; Kohan, 2010). It should also be mentioned that the relative expression pattern of both 

receptors differs between animal models and humans, possibly reflecting regional 

differences within the kidney (Kohan et al., 2011b). With respect to present findings, all 

experiments were performed with adult mice.  

4.2 The ET receptor isoforms and its potential role on the renin synthesis 

and secretion in vivo 

Focusing on the localization of both ET receptors on renin producing JG cells to study a 

potential role on the renin system it was necessary to generate a renin cell-specific model in 

which either ETA- (Ren1d+/Cre- ETARfl/fl) or ETB-receptor (Ren1d+/Cre- ETBRfl/fl ) isoform was 

deleted. The efficacy of deletion was determined by IHC or ISH technique, whereby in all 

Cre+ kidney sections ET-receptor immunoreactivity or mRNA detection signal was lacking on 

renin producing cells only. Therefore all used Cre+-models were distinct to study the role of 

ET receptors further.  

4.2.1 The potential role of ETAR located on the renin cell lineage for renin 

synthesis and secretion in vivo 

Besides all three peptides, ET-1 is the most potent and has been shown to primarily act as a 

vasoconstrictor via ETA-receptor in the kidney (Kaasjager et al., 1997; Bohm et al., 2003; 

Maguire and Davenport 2011). In addition, in vitro studies have shown that ET-1 is able to 

inhibit renin release from juxtaglomerular cells through a Ca2+ dependent mechanism 
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(Matsumura et al., 1989; Rakugi et al., 1988; Takagi et al., 1988; Kohan et al., 2011b). The 

ETAR expressed in the kidney has been shown to play a crucial role in a variety of renal 

physiological and pathological functions in vivo, whereas its role, primarily through ET-1, 

focusing on the level of renin producing cells and the potential direct effects on the renin 

synthesis and exocytosis are still unknown.  

Ren1d+/Cre-ETARfl/fl animals showed normal renin mRNA levels, PRC values and normal 

systolic blood pressure compared to controls (ETARfl/fl). In addition, all animals developed 

normal renin producing JG cells as in controls. During nephrogenesis renin producing cells 

have been shown to originate from the metanephric mesenchyme and accumulate 

afterwards at the vascular wall (Sequeira Lopez et al., 2001). Although, we could detect 

ETAR on mesenchymal renin producing cells during kidney development (data not shown), 

the receptor seems to be not of major relevance for the development of renin producing cells.  

During further procedure one tried to understand the potential role of ETAR on the 

physiological regulation of the renin system. Ren1d+/Cre- ETARfl/fl mice displayed after a low 

salt/enalapril diet a significant increase in renin mRNA levels and PRC with no change to 

controls. Conversely, feeding high salt diet lowered renin mRNA abundance and PRC 

values, again without difference between the two genotypes. Although, renin producing cells 

and recruited renin positive cells of the kidney express ETAR isoform, it appears not to be of 

major relevance for the physiological regulation of renin synthesis by the rate of salt intake.  

The isolated perfused kidney of Ren1d+/Cre- ETARfl/fl displayed an inhibition of renin secretion 

after ET-1 was given to the ex situ system in increasing concentrations, whereas this effect is 

mainly mediated through a reduction of the renal blood flow. These results indicate that the 

ETA receptor isoform located on renin producing cells has no essential direct effect on the 

inhibition of renin secretion and synthesis. 

It should be noted, that the main concept concerning renal ET biology is based on the 

context of local microenvironment (Schneider et al., 2007; Kohan et al., 2011b). ET receptors 

localized in different parts within the kidney are meant to show opposing actions, e.g. in the 

vasculature, where ETAR activation causes primarily vasoconstriction whereas ETBR 

activation causes, at least initially, vasodilatation mediated by nitric oxide (NO) produced 

from endothelial cells (Kohan et al., 2011b). However it has also been shown, that ETB 

shows vasoconstrictive effects mediated on vascular smooth muscle cells (Schneider et al., 

2007) primarily on afferent arterioles whereas ETBR provide a vasodilatory influence on 

normal efferent arterial vascular tone (Kohan et al., 2011b). In addition, under normal 

conditions i.e. low concentrations of ET-1 most of the vasoconstriction is ETA-dependent. 

However it has been shown after additional infusion of ET-1 in rats that ETA-independent 
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vasoconstriction was present (Pollock and Opgenorth, 1993, 1994b; Kohan et al., 2011a, 

2011b), suggesting these results rather promote ETB-mediated actions in situations where 

concentration of ET-1 is strongly increased (e.g. chronic salt diet, renal fibrosis). 

With respect to present deletion of ETAR on renin cells, our results rather promote theory of 

potential compensational effects of ETB-receptor and possible ET-receptor interaction. 

Besides binding to ETAR, ET-1 has also been investigated to display vasoconstrictor effects 

through binding to ETBR (Davenport, 2002) showing a potential compensatory mechanism 

equilibrating physiological homeostasis. In addition, the treatment of selective ETAR 

antagonist BQ-123 did not change arterial blood pressure as well (Kaasjager 1997, Maguire 

Davenport 2015). In the last few years, several studies promote a potential ETA-ETB 

receptor crosstalk in the mediation of responses to ET-1 (Rapoport and Zuccarello, 2011; 

Harada et al., 2002). For example, ETB receptors in the anterior pituitary gland appeared to 

bind only ET-1 during blockade of ETA receptors in vitro (Harada et al., 2002; Schneider et 

al., 2007). 

These results seem to support the theory, that both receptors are able to function in a similar 

manner depending on which receptor is activated (Harada et al., 2002). 

If expression of ETAR is declined or the activation is somehow ceased on renin producing 

cells, ET-1 appears to bind primarily on ETBR. There are several findings in the work at hand 

which support hypothesis of ETBR activation while ETA receptor isoform expression is 

decreased in different renal cells. All used Ren1d+/Cre- ETARfl/fl and FOXD1Cre/+-ETARfl/fl kidneys 

displayed for instance an increase in ETBR mRNA abundance compared to control animals 

(data not shown).  

With respect to present findings in the isolated perfused kidney model, the inhibition of renin 

secretion via ET-1 is not essential mediated via ETAR isoform but rather ETB-receptor 

seems to be able to compensate present deletion or “inactivation” of ETAR on renin 

producing JG cells while displaying similar vasoconstrictive effects as in controls. To support 

or exclude this hypothesis it was necessary to generate further an ETBR renin cell-specific 

animal model and in addition an ETAR and ETBR double knockout renin cell-specific animal 

model. 

However it should be concluded at this juncture that the role of ETA receptor isoform 

expressed on renin producing JG cells due to present findings is of less relevance for the 

physiological regulation of renin synthesis and secretion in vivo and seems to become more 

relevant in terms of pathophysiology.  
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Recent studies suggest that the ET system, i.e. ETAR, plays an active role in progression of 

renal failure (Kedzierski and Yanagisawa, 2001). Several ETAR antagonist administration 

studies support this hypothesis. The usage of BQ-123 in rats with acute renal failure 

improved for example glomerular filtration rate (GFR) and net tubular reabsorption, two 

important parameters for kidney function (Chan et al., 1994). In addition, treatment with 

FR139317 in partially nephrectomized rats lowered proteinuria and prolonged animal survival 

(Benigni et al., 1993). 

4.2.2 The potential role of ETBR located on the renin cell lineage for renin 

synthesis and secretion in vivo 

As mentioned above, ETBR has similar affinities for all three endothelin peptides (Davenport, 

2002) and has been shown to display crucial interplays regarding renal function (Kohan et 

al., 2011a, Kohan et al., 2011b) e.g. the role in renal sodium excretion, vasopressin 

regulation and acid base status (Ohuchi et al., 1999; Gariepy et al., 1998; Edwards et al., 

1993). However, its potential role on renin producing cells for renin synthesis and secretion in 

vivo has yet to be resolved. 

All Ren1d+/Cre- ETBRfl/fl kidneys showed normal renin mRNA and PRC levels under basal 

conditions. Moreover, animal kidney sections displayed normal developed renin cells at the 

juxtaglomerular cell apparatus with ISH assay and had normal systolic blood pressure 

compared to controls. These results indicate that ETB receptor isoform expressed on renin 

positive cells is suggested to mediate rather no crucial direct effect on the renin synthesis 

and secretion. Moreover, experiments with Ren1d+/Cre- ETBRfl/fl kidneys in isolated perfused 

kidney model reveal an inhibition of renin secretion while adding ET-1 in increasing 

concentrations whereas effect is primarily dependent on the decline of the renal blood flow 

suggesting rather ETA-mediated constrictor effects through ET-1.  

Compare to investigations discussed in 4.2.1, both groups (Ren1d+/Cre- ETARfl/fl, Ren1d+/Cre- 

ETBRfl/fl) displayed similar results regarding effects on renin system compared to control 

littermates regardless of which receptor isoform is deleted on renin JG cells. These results 

promote hypothesis that both receptor isoforms can show similar biological function (Kohan, 

2010; Kohan et al., 2011a) and in addition, they support theory mentioned above of potential 

ETA-ETB receptor cross talk (Kohan et al., 2011b; Kohan et al., 2011a; Yoon et al., 2016)   

Under basal conditions ETBR is suggested to mediate vasodilatation by the release of 

endothelin derived factors (NO, prostacyclin and/or endothelium-derived hyperpolarizing 

factor) acting as a feedback mechanism to limit the vasoconstrictive effect of ET-1 (Maguire 

and Davenport, 2015).  
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Regarding the role of ETB receptor on the physiological regulation of the renin system, 

Ren1d+/Cre- ETBRfl/fl mice showed a significant increase in renin mRNA abundance and PRC 

with no change to control animals after a low salt/enalapril diet. In contrast, feeding high salt 

lowered renin mRNA significantly compared to controls. With respect to present deletion of 

ETBR on renin cells, ET-1 seems to solely bind to ETAR rather promoting the inhibition of 

renin secretion and synthesis in vivo, as already concluded in vitro (Scholz et al., 1995; 

Ritthaler et al., 1995; Ritthaler et al., 1996).  

In theory, it is suggested that renin release is inhibited by high Na+-intake due to high renal 

ET-1 production, whereas Na+-transport mechanisms are inhibited in the proximal tubules, 

thick ascending limb and collecting duct cells in order to reduce Na+ reabsorption (Kohan et 

al., 2011a). Johnston et al., could determine ET-1 as a crucial regulator of sodium balance by 

promoting natriuresis through ETB-receptor in response to chronic salt intake (Johnston et 

al., 2016). Activated renal ETBR appears to promote these effects, at least in the medulla, 

via NO release (Plato et al., 2000; Jesus Ferreira and Bailly, 1997; Schneider et al., 2007). 

Moreover, our results showed high renal ET-1 expression in control kidneys after a low salt 

diet with ongoing enalapril intake as well as increased expression of ETBR (data not shown) 

in contrast ET-1 and ETBR production was unaffected by high salt diet (data not shown). 

Therefore, present results rather indicate an ETB-receptor mediated regulation during low 

salt diet whereas the involvement of ETB-receptor isoform during a high salt diet seems to be 

not of major relevance in vivo. 

Concentrating on the inhibition of renin release regulated by Ca2+-dependent mechanism, it 

should be noted that ET-1 maybe also potent for reducing renin release stimulated by 

different factors such as isoproterenol or cAMP (Kurtz et al., 1991; Moe et al., 1991; Kohan 

et al., 2011a), most likely via ETBR-dependent NO release (Ackermann et al., 1995; Ritthaler 

et al., 1995; Scholz et al., 1995; Kohan et al., 2011a, 2011b). However, the physiological 

connection between ET-1 and NO to control renin release need to be clarified first because 

opposing roles proposed for NO have been published. NO has been demonstrated to directly 

stimulate the release of renin from isolated JG preparations, although NO-dependent 

vascular relaxation can increase the pressure reaching the glomerulus, which would inhibit 

the exocytosis of renin through the intrarenal baroreceptor (Schweda et al., 2007; Kohan et 

al., 2011a, 2011b) whereas the inhibition of NO synthase reduces renin release in isolated 

afferent arterioles (Tharaux et al., 1997) 

With respect to present findings, ETB receptor isoform located on renin producing cells 

seems to be of less relevance for the physiological regulation of the renin system moreover 

for renin synthesis and secretion. The ETBR is suggested to be of crucial relevance for 

additional renal parameters mentioned above located on other renal cells. In contrast, in 
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order to examine, if the effect of ET-receptor isoform and the combination of both ET-

receptors for renin synthesis and secretion is based on systemic factors or stroma derived 

cells, additional experiments were performed. 

4.2.3 The potential indirect effects of ETA and ETB-receptor on renin synthesis 

and secretion in vivo 

Besides renin producing cells, both ET receptors are widely expressed in the kidney. After 

IHC and ISH co-localization analyzing studies, both ET-receptors could be determined on 

renin JG-cells indicating the functional role of each specific isoform seem to have no 

essential direct role for renin synthesis and secretion in vivo. Therefore, it was inevitable to 

further characterize potential indirect effects of renal ETA or ETB receptor isoforms 

expressed on additional renal cells than the renin cell lineage on the renin system in vivo.  

As mentioned in 4.1 renal ETA-receptor could be additionally localized on vascular smooth 

muscle cells, mesangial cells, collecting duct and distal tubular structures. Therefore different 

animal models were generated, where ETAR was cell-specific deleted in order to examine if 

the functional role on RAAS is regulated by ETAR expression on stroma derived cells or if 

the effect is systemic (FOXD1Cre/+-ETARfl/fl , SMMHC-Cre-ERT2-ETARfl/fl). Moreover, in order to 

characterize the general role of ETAR expression for renin synthesis and secretion, ETAR 

loxP animals were paired with conditional knockout CAGG-Cre-ERT2 animals (CAGG-Cre-

ERT2-ETARfl/fl). After activation of Cre recombinase through induction with tamoxifen chow for 

three weeks, ETAR expression was significantly decreased in the kidney down to 38 % 

compared to controls. The efficacy of each single deletion (FOXD1Cre/+-ETARfl/fl, SMMHC-Cre-

ERT2-ETARfl/fl, CAGG-Cre-ERT2-ETARfl/fl) was verified by IHC staining whereby ETAR 

exclusively lacked on specific cell types only.  

After in vivo investigation studies, all Cre+ animals mentioned above showed normal 

developed renin positive JG cells, renin mRNA abundance, PRC levels and systolic blood 

pressure values compared to controls. Only in CAGG-Cre-ERT2-ETARfl/fl mice renin mRNA 

abundance was slightly diminished. However these results indicate that general renal ETA 

receptor isoform seems to be of less relevance for renin synthesis and secretion. Moreover, 

it should be mentioned that induced CAGG-Cre-ERT2-ETARfl/fl mice showed no specific 

phenotype, had the ability of fertility and developed apparently completely normal. In 

contrast, different studies postulated that general deletion of either ETA-receptor isoform or 

ET-1 knockout mice were neonatal lethal due to developmental defects in cardiac and 

craniofacial structures (Clouthier et al., 1998; Kurihara et al., 1994) rather promoting that 

both ETAR and ET-1 are crucial for embryonic development whereas the inducible decline of 

receptor isoform expression showed no severe phenotype in the adulthood. In addition, 

general ETBR knockout mice die before adulthood because they develop aganglionic 
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megacolon and white spotting on the coat suggesting ETBR signaling is crucial for 

generating enteric neurons and melanocytes (Akashi et al., 2016; Baynash et al., 1994). 

In addition, isolated perfused kidney experiments were performed with all Cre+-genotypes, 

resulting in an inhibition of renin secretion after adding ET-1 to the ex situ system as shown 

in control littermates. It should be noted that the inhibition is primarily mediated by the 

reduction of the renal blood flow and not by an alteration of the renin concentration. With 

respect to present renal ETA receptor isoform deletion in different cell types, one can 

suggest that ETB-mediated effects are responsible for displaying mentioned results. It should 

be noted, that all Cre+ animal models showed increased ETBR mRNA abundance compare 

to controls supporting present hypothesis (data not shown).  

Focusing on ET receptors on smooth muscle cells, ETA receptor has been shown to be 

mainly expressed on those cells (Davenport and Maguire, 2011), which support present 

findings. However, recent studies confirm that the usage of ETAR-selective antagonists fully 

block these vasoconstrictor responses (Davenport and Maguire, 2011), which could not be 

confirmed in present thesis. All used SMMHC-Cre-ERT2-ETARfl/fl, and in addition all 

FOXD1Cre/+-ETARfl/fl as well as CAGG-Cre-ERT2-ETARfl/fl animals displayed an inhibition of 

renin secretion in the isolated perfused kidney through ET-1 and therefore suggesting ETB-

mediated vasoconstrictor effects. 

It has been shown that ET-1 via ETB-receptor is able to demonstrate vasoconstriction in the 

vascular system (Maguire and Davenport, 2015) especially in the afferent arteriole (Kohan et 

al., 2011a). Moreover, in humans, results of ET-1 infusion in the brachial artery show at low 

concentration an ETB-mediated vasodilatation. However, as the concentration increases to 

higher pathological concentrations, vasodilatation is overwhelmed by ETAR-mediated 

constrictor responses or involve non-ETAR receptor mediation (Maguire and Davenport, 

2015; Pollock and Opgenorth, 1994a). If ETAR expression is deleted on vascular smooth 

muscle cells, it is suggested, that our findings perchance support theory of ETB-mediated 

vasoconstrictor effect and hypothesis of ETA-ETB receptor cross link.  

Similar results were determined in SMMHC-Cre-ERT2-ETBRfl/fl (data not shown) and 

FOXD1Cre/+-ETBRfl/fl animals in the isolated perfused kidney model. As mentioned in 4.1 ETB-

receptor isoform is additionally expressed on interstitial cells, mesangial cells and vascular 

smooth muscle cells. All Cre+ animals displayed an inhibition of renin secretion via ET-1 

mainly mediated by renal blood flow. Therefore, it is rather ETAR-mediated vasoconstrictor 

effects through ET-1 during present ETBR-isoform deletion.  

In summary these results support theory that each receptor isoform seems to be able to 

compensate function of the other receptor isoform. Therefore, ETA and ETB-receptor 
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isoforms expressed in the kidney seem to have solely no indirect effect on the renin system 

and to be of less relevance for the physiological regulation of renin synthesis and secretion. 

The deletion of each single receptor is suggested to be compensated by the other receptor 

isoform to maintain physiological homeostasis. Both receptors’ function in terms of 

pathophysiology is suggested to be of more importance.  

4.3 The role of both ET-receptors expressed on the renin cell lineage for 

renin synthesis and secretion in vivo 

Expression of a single ET-receptor isoform on renin producing JG cells seems apparently not 

to be involved in mediating renin synthesis or secretion. In order to characterize potential 

compensational receptor effects or possible ET receptor interaction, it was necessary to 

further study the functional role of both ET receptors expressed on renin positive cells via 

ET-1. Although a great number of pharmacological agents have been used to analyze ET 

receptor isoform function, recent studies suggest an ET-receptor dimerization leading to 

substantial uncertainty about single receptor function (Boesen, 2008; Kohan et al., 2011a; 

Schneider et al., 2007).  

Perhaps characterization of single ET receptor function in the field of endothelin system is 

limited because in vitro studies showed ET receptors are able to form homo- and 

heterodimers (Gregan et al., 2004a; Gregan et al., 2004b) suggesting the process is 

regulated by a PDZ finger (Evans and Walker, 2008). Evans et al., could demonstrate that 

mutation of PDZ domain leads to delayed ET receptor internalization and prolonged increase 

in intracellular Ca2+-concentration in response to ET-1, suggesting that ET receptor 

heterodimerization affects receptor function (Evans and Walker, 2008; Kohan et al., 2011a). 

In order to investigate potential effects of receptor dimers on ET receptor isoform function on 

the renin system and to exclude potential compensational effects of ET receptor isoforms, it 

was inevitable to generate an animal model where ETA- and ETB-receptor are both deleted 

exclusively on renin producing cells (Ren1d+/Cre-ETARfl/fl-ETBRfl/fl). 

All Ren1d+/Cre-ETARfl/fl-ETBRfl/fl animals showed normal renin mRNA abundance and 

unchanged systolic blood pressure values compared to control littermates. Only PRC levels 

were slightly diminished in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl as in controls. These results were 

surprising because one would rather assume an increase of PRC through inhibitory effects of 

ET-1 in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl mice. 

However, present results support theory that both ET receptors seem to show no important 

direct effect via ET-1 on mediating renin synthesis and secretion expressed on renin 

producing cells in vivo.  
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Moreover, it has been shown, that alongside ET-1 other vasoconstrictive hormones such as 

ANG II, arginine vasopressin are also known as negative regulators of renin synthesis. The 

work at hand promote theories that these hormones mediate renin inhibition independently of 

ET system or ET-receptors located on other cells than renin cell lineage are more involved in 

regulating renin synthesis and secretion in vivo. The isolated perfused kidney experiments 

with Ren1d+/Cre-ETARfl/fl-ETBRfl/fl animals showed an inhibition of renin secretion mainly 

mediated by the reduction of renal blood flow after adding ET-1 to the ex situ system as in 

controls. After comparing current in vivo and in vitro results, one could assume that the ET-

system maybe more involved in short-term regulation of renin secretion and synthesis but 

seems of less relevance on a long-term basis.  

These results indicate the hypothesis that additional renal ET receptors than ETAR or ETBR 

are present on renin producing cells, although Maguire and Davenport concluded in 2015 

that there are still no evidences for this theory (Maguire and Davenport, 2015).  

However, it should be mentioned at this juncture that potential ET receptor heterodimers are 

still present in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl animals unaffected by present Cre-recombinase 

activation. Perhaps, these heterodimers are able to bind ET-1 resulting in present in vivo 

data. In addition, Inscho et al., postulated in 2005, that either an ETA receptor selective or 

ETB-selective antagonist was able to abolish afferent arteriole vasoconstrictor responses to 

low concentrations of ET-1, which support given results of isolated perfused kidney data 

(Inscho et al., 2005; Boesen, 2008). Several findings promote given hypothesis of 

heterodimerization but the functional consequences in vivo remains an open field of future 

inquiry (Boesen, 2008).  

Nonetheless, present findings support previous results on ET receptors isoforms. Both 

receptors expressed on renin producing cells suggest no essential direct effect on renin 

synthesis and secretion. The role of both receptors expressed on renin cell lineage is 

additionally rather more important in terms of pathophysiology. Bosentan and macitentan are 

both approved mixed antagonists in the clinic (Davenport et al., 2016; Palmer, 2009; Patel 

and McKeage, 2014; Sidharta et al., 2015) and used for a variety of diseases including 

scleroderma renal crisis and pulmonary hypertension. 

However, present results indicate that both ET-receptors located on renin cell lineage are not 

able to promote this inhibiting effect on renin synthesis and secretion by themselves. 

Following chapter discusses if a combination of several renal cell types more likely display 

the inhibiting effect of endothelins through ETAR and ETBR. 
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4.4 The role of both ET-receptors expressed on stroma derived cells on 

renin synthesis and secretion in vivo 

Previous shown results indicate no essential direct effect of ET receptors localized on the 

renin cell lineage for renin synthesis and secretion in vivo. Since the RenCre-promotor is 

active in other renal cell types e.g. collecting duct cells during nephrogenesis (Castrop et al., 

2006) the question arises, if the renin cell lineage is not able to promote this effect by itself. 

Therefore the question must be, if other renal cell types, expressing both receptors, regulate 

the inhibiting effect of endothelins on renin synthesis and secretion in vivo. In order to 

characterize the role of ET-receptor on stroma derived cell lineage, animals with Cre 

activation under the control of FoxD1 promotor were paired with ETAR and ETBR loxP mice.  

In FoxD1Cre/+-ETARfl/fl-ETBRfl/fl animals both receptor isoforms were deleted not only on renin 

producing cells but also on mesangial cells, smooth muscle cells and interstitial cells 

(Sequeira-Lopez et al., 2015; Kobayashi et al., 2014). 

All Cre+ animals showed normal renin mRNA levels as in control littermates and developed 

normal renin producing cells at the juxtaglomerular cell apparatus. In addition, the plasma 

renin concentration was not significantly changed in FoxD1Cre/+-ETARfl/fl-ETBRfl/fl than in 

control littermates. Although levels were slightly diminished in knockout mice compared to 

controls but it should be noted that present results were not expected. One would estimate 

an increase during inhibitory effects of ET-1. 

Moreover, these results were supported by systolic blood pressure measurements. All 

FoxD1Cre/+-ETARfl/fl-ETBRfl/fl animals as well as the ET receptor isoform knockouts (FoxD1Cre/+-

ETARfl/fl [as shown in 3.2.4] and FoxD1Cre/+-ETBRfl/fl [data not shown]) revealed normal blood 

pressure values as in control animals. These results indicate that the potential indirect 

stroma derived cell-specific effect of endothelins via both ET-receptors on the renin system 

seems of less relevance for renin synthesis and secretion in vivo.  

In contrast, isolated perfused kidney experiments with FoxD1Cre/+-ETARfl/fl-ETBRfl/fl revealed 

no inhibition of renin secretion rate compared to controls (FoxD1Cre/+-ETARfl/fl, FoxD1Cre/+-

ETBRfl/fl) through ET-1. Moreover, the decline of the renal blood flow was abolished and 

revealed no clear drop as in controls after adding ET-1 in increasing concentrations.  

With respect to previous results regarding renin cell lineage, the isolated perfused mouse 

kidney technique is an ex vivo/in vitro model where one can study kidney function in the 

absence of systemic influences such as the blood pressure, autonomic nervous system or 

different hormones. After comparing obtained in vivo and ex vivo/in vitro data, one can 

assume that systemic effects might explain current in vivo results.  
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It should also be noted, that changes in the renal blood flow are mainly based on the 

vasoconstriction of the renal vasculature (i.e. afferent arteriole) but also on the 

vasoconstriction of mesangial cells. Besides renin producing cells, both receptors are 

present on vascular smooth muscle cells but also on mesangial cells in the stroma derived 

cell lineage. Therefore, additional studies in the future need to distinguish between those cell 

types to investigate further the inhibiting effect of endothelins on renin synthesis and 

secretion in vivo.  
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4.5. Outlook 

As mentioned above present results indicate that both ET receptors located on renin 

producing cell lineage seem to be of less relevance for the renin synthesis and secretion 

moreover for the physiological regulation of the renin system in vivo. The ETA and ETB-

receptor are also expressed on tubular structures (distal tubular structures and collecting 

duct cells) and maybe these cells are somehow involved in homeostasis of the extracellular 

volume and perhaps in ET-1 mediated inhibition of renin secretion and synthesis. Therefore, 

it would be a stringent approach to investigate the role of ET-receptors in mice with ETAR 

and/or ETBR deletion especially in tubular renal segments.  

ET-1 is suggested to primarily act through its ET-receptors in a Ca2+ dependent mechanism 

to inhibit renin release in vitro whereas studies indicate that the action is rather ETB-

mediated (Ritthaler et al., 1995). Recent experiments showed an increase in Ca2+ 

concentration when ET-1 was added to isolated renin positive cells of Ren1d+/Cre-ETARfl/fl 

kidneys loaded with Fura-2 suggesting that ETBR is able to compensate function when 

ETAR is deleted on renin producing cells (data not shown). More experiments need to be 

performed further to better understand the mechanism beyond. Moreover, the specific role of 

both ET receptors on the Ca2+-dependent mechanism of renin inhibition located on renin 

producing cells needs to be evaluated prospectively (Ren1d+/Cre-ETARfl/fl-ETBRfl/fl).  

Over the years, a number of studies focused on renal interstitial cells and their possible 

physiological functions. With respect to present findings, it is ETBR as part of the endothelin 

system which could be localized on renal interstitial cells. With the help of co-localization 

studies, one could reveal that PDGFRβ+ cells also express ETBR. However this 

phenomenon does not occur continuously in the kidney. In order to study a potential role of 

renal ETBR expressed on interstitial cells for renin synthesis and secretion in vivo, additional 

experiments are planned for the future (PDGFRβ+-Cre-ERT2-ETBRfl/fl). 

In terms of possible ET receptor dimerization and its effects on the renin system, Zeng and 

colleagues reported a possible ETB-Angiotensin type 1-receptor interaction in vitro (Zeng et 

al., 2005). Further in vivo investigations can examine possible renal physiological 

consequences located on renin producing cells with the help of an animal model (Ren1d+/Cre-

ETBRfl/fl-AT1afl/fl). Riggelmann et al., concluded that ET receptors antagonists are able to 

abolish acute and chronic effects of ANG II (Riggleman et al., 2001). Perhaps this receptor 

interaction can reveal more details about the influence of endothelin system on renal 

physiology and RAAS in general.  

The question arises, what is the function of the strong ET-receptors expression on renin 

producing cells. It is therefore possible to consider that both ET receptors seem to become 
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more relevant in terms of pathophysiology. Different studies indicate an involvement of the 

ET-system in sepsis, chronic kidney disease or cardiovascular diseases (Barton and 

Yanagisawa, 2008). In order to get a better understanding how and to what extend renal ET-

receptors located on renin producing cells are involved in situations of pathophysiology, it 

would be interesting to investigate the role of ET-receptors in renal disease models. In this 

context, recent data of our group showed a dramatic increase of ET-1 and ET-receptor 

mRNA levels during the progression of renal fibrosis. A future approach is to perform 

unilateral ureter obstruction (UUO) inducing renal fibrosis in Ren1d+/Cre-ETARfl/fl, Ren1d+/Cre-

ETBRfl/fl as well as in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl animals. 
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5 Summary 

The protease renin is known as the central regulatory factor of the Renin-Angiotensin-

Aldosterone system. It is primarily synthesized in the kidney from juxtaglomerular epitheloid 

cells and is stored in secretory vesicles until release. The release of renin has been shown to 

be stimulated by cAMP signaling pathway and inhibited by an increase of cytosolic Ca2+ 

concentration. Several local and systemic factors including different vasoconstrictor 

hormones such as ANG II and arginine vasopressin have been shown to inhibit renin release 

from juxtaglomerular cells in the kidney. 

Moreover, endothelins have been demonstrated to attribute as inhibiting regulators of renin 

synthesis and secretion in vitro (Berthold et al., 1999; Scholz et al., 1995; Ritthaler et al., 

1995; Ritthaler et al., 1996; Ackermann et al., 1995). The endothelin system consists of three 

peptide hormones Endothelin-1, Endothelin-2 and Endothelin-3 and their G-protein coupled 

receptors Endothelin-A and Endothelin-B receptor. The endothelin system could be detected 

in different parts of the human body, including lung, heart, central nervous system and the 

kidney. Previous studies displayed Endothelin-1 as one of the potent vasoconstrictors in the 

renal vasculature whereas ET-1/ETAR signaling pathway is suggested to act as the main 

vasoconstrictor (Kaasjager et al., 1997; Bohm et al., 2003) while ETB-receptor, at least 

initially, causes vasodilation (Kohan et al., 2011a).  

The work at hand aimed to characterize the relevance of endothelins focusing on ET-1/ETA-

receptor and/or ETB-receptor signaling pathway for the physiological regulation of renin 

synthesis and secretion in vivo. Moreover, we addressed the question if the proven inhibiting 

effect on the renin system via ETAR and/or ETBR signaling pathway is accompanied by a 

direct effect located on the level of renin producing juxtaglomerular cells or through indirect 

effects based on renal stroma derived cells or on systemic or general effects. The first part 

concentrates on the potential effect of ET-1/ETAR signaling pathway on the renin system in 

vivo. For this purpose, a renin cell-specific ETAR animal model was generated (Ren1d+/Cre-

ETARfl/fl). More precisely, with the help of the Cre/loxP system, ETA-receptor could be 

deleted exclusively on renin producing cells to examine further its possible effects on the 

level of JG cells for renin synthesis and secretion in vivo. Due to a widely distribution of 

ETAR receptor expression in the kidney, it was ineluctable to further investigate if ETA-

receptors located on other renal cells display a potential indirect effect on the renin synthesis 

and secretion. In order to study, if the effect is based on stroma derived cells including renin 

producing cells, mesangial cells, vascular smooth muscle cells and interstitial cells 

(FOXD1Cre/+-ETARfl/fl) or through systemic (SMMHC-Cre-ERT2-ETARfl/fl) or general effects 

(CAGG-Cre-ERT2-ETARfl/fl) additional animal models were provided.  
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The second part of present thesis concentrates on the potential effects of ET-1/ETBR 

isoform signaling pathway on the renin system in vivo. Therefore, the generation of a renin 

cell-specific ETBR animal model was necessary (Ren1d+/Cre-ETBRfl/fl) which was verified by in 

situ hybridization assay. In addition, further experiments aimed to characterize, if the possible 

inhibitory effect of ETBR isoform on renin synthesis and secretion is regulated by stroma 

derived cells (FOXD1Cre/+-ETBRfl/fl). 

With respect to present results of the first and second chapter, the renal ET-receptor 

isoforms seem to be of less relevance for the renin synthesis and secretion in vivo. All used 

animals showed normal developed renin positive cells, renin mRNA abundance, PRC values 

and unchanged systolic blood pressures compared to controls. In addition, all animals 

displayed an inhibition of renin secretion mainly mediated by a decline of the renal blood flow 

in the isolated perfused kidney model after adding ET-1 in increasing concentration to the ex 

vivo system. 

In order to exclude potential ET-receptors interactions on renin positive cells in vivo, a renin 

cell-specific ETAR and ETBR “double knockout” animal model (Ren1d+/Cre-ETARfl/fl-ETBRfl/fl) 

was generated in the last part of the present study. Several functional in vivo experiments 

were administered subsequently. All Cre+ animals showed normal renin mRNA abundance 

and unchanged systolic blood pressure values compared to controls. Only plasma renin 

concentration was slightly diminished in Ren1d+/Cre-ETARfl/fl-ETBRfl/fl compared to controls. In 

addition, all animals developed normal renin positive cells at the juxtaglomerular cell 

apparatus as in controls. The isolated perfused kidneys of Ren1d+/Cre-ETARfl/fl-ETBRfl/fl-mice 

revealed an inhibition of renin secretion rate mediated by the decline of the renal blood flow 

through ET-1 similar to control animals. All mentioned results indicate that both ET-receptors 

on renin producing cells seem to be of less importance for the renin synthesis and secretion 

moreover for the renin system in vivo and in vitro. It was assumed that renal ET-receptors 

expressed on other renal specific cells maybe more important for this regulation. Therefore, 

to further examine a potential indirect effect of ET-receptors on the renin system a stroma 

derived cell-specific “double knockout” animal model was generated (FOXD1Cre/+- ETARfl/fl-

ETBRfl/fl).  

All FOXD1Cre/+- ETARfl/fl-ETBRfl/fl animals displayed normal levels of renin mRNA and no 

significant changes in plasma renin concentrations compared to controls. These results were 

supported by systolic blood pressure measurements. Via the tail cuff method, one could 

detect that FOXD1Cre/+- ETARfl/fl-ETBRfl/fl mice had normal levels of blood pressure as shown 

in control littermates.  
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In the absence of systemic influences, the isolated perfused kidney model displayed in 

FOXD1Cre/+- ETARfl/fl-ETBRfl/fl no inhibition of renin secretion and a nearly steady renal blood 

flow compared to controls. These results support theory that systemic effects such as the 

blood pressure, the autonomic nervous system or different hormones are maybe involved in 

present situation. Moreover, those effects seem to interact in current ET receptor deletion 

equilibrating homeostasis.  

In summary, present thesis indicate for the very first time that both ET-receptors are markers 

for renin producing cells. Moreover both ET-receptor isoforms seem to be not of major 

relevance for renin synthesis and secretion. There are findings which support theory of 

receptor interaction and that each single receptor isoform is able to take over functional role 

of the other receptor. Besides the potential direct effect, present thesis also focused on 

hypothesis that the inhibiting effect of endothelins on renin synthesis and secretion is 

regulated by ET receptors located on stroma derived cells (FOXD1Cre/+- ETARfl/fl-ETBRfl/fl). 

However after investigation, present results seem to refute given postulation because there 

were no significant changes in FOXD1Cre/+- ETARfl/fl-ETBRfl/fl mice regarding in vivo 

parameters compared to controls. All animals developed normal renin producing cells as in 

controls.  

The inhibiting effect of endothelins on renin synthesis and secretion is therefore not primarily 

mediated by either renin cell lineage or stroma derived cells. Present results indicate that 

systemic effects are more involved in the regulation of the renin system or other expression 

sites as for example mesangial cells or tubular structures are possible to regulate the 

inhibition of renin secretion and synthesis through endothelins. Further investigations need to 

evaluate prospectively, if ET-receptors located on renin producing cells are more involved in 

terms of situations of pathophysiology.  
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7 Supplement 

7.1 List of abbreviations 

°C  degree Celsius 

µl  microliter 

µm  micrometer 

∞  unlimited 

A  ampere 

a  adenine 

aa  afferent arteriole 

ANG-I  angiotensin-I 

ANG-II  angiotensin-II 

AQP2  aquaporine-2 

ca.  circa 

CAGG  

(C) cytomegalovirus (CMV) early 
enhancer element 
(A) the promoter, first exon and 
the intron of chicken beta-actin 
(G) the splice acceptor of the 
rabbot beta globin gene 

CD31  
cluster of differentiation 31 
(PECAM-1) 

cDNA  complementary DNA 

ch  chicken 

Cre/loxP   

Cre-ERT2  
fusion protein consisting of Cre-
recombinase and modified 
estrogen binding site 

d  days 

dH2O  distilled water 

dk  donkey 

DMEM  
Dulbecco’s Modified Eagle 
Medium 

ECE  endothelin-converting enzyme 

ECE  endothelin-converting enzymes 

ELISA  
enzyme-linked immunosorbent 
assay 

et al. 
 

 
and others 
 

ET-1  endothelin-1 

ET-2  endothelin-2 

ET-3  endothelin-3 

ETAR 
 

 
endothelin-A receptor 
 

ETBR  endothelin-B receptor 

Fig.  Figure 

FOXD1  forkhead box D1 

GAPDH  
Glycerinaldehyd-3-phosphat-
Dehydrogenase 

GFP  green fluorescent protein 

gt  goat 
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h  hours, human 

i.e  for example 

IPMK  isolated perfused kidney model 

ISH  in situ hybridization 

iso  isoproterenol 

JG  juxtaglomerular 

L  liter 

LD  loading dye 

M  molar (mol/L) 

mA  milliampere 

min  minute 

ml  milliliter 

mRNA  messenger ribonucleic acid 

ms  mouse 

ng  nanogram 

nm  nanometer 

ON  over night 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PE  polyethylene 

PFA  paraformaldehyde 

prepro-ET  prepro-endothelins 

RAAS  
Renin-Angiotensin-Aldosterone 
system 

rb  rabbit 

rpcs  renin producing cells 

RPL32  ribosomal protein L32 

rpm  revolutions per minute 

RS  renin system 

RT  
reverse transcription,  
room temperature 

SMMHC  
Smooth muscle myosin, heavy 
chain (myosin-11 or SMMHC) 

TAE  Tris acetate EDTA buffer 

Taq Polymerase 
 

 
thermostable DNA polymerase 
named after Thermus aquaticus 
 

Tris  tris hydroxymethyl aminomethan 

TRITC  
Tetramethylrhodamine 
isothiocyanate 

V  volt 

W  watt 

WT  wildtype 

α  anti or alpha 

α-sma  α-smooth muscle actin 

β  beta 

μ  micro (10^-6) 

 

The knowledge of the chemical elements and SI units as well as usually used abbreviations 

in science or medicine was assumed. 
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7.2 Congress contributions 

95th Annual Meeting of the German Physiological Society, 02.03.-05.03.2016, Lübeck, 

Germany – poster 

“The endothelin-A receptor is expressed by renin cells of the kidney but is of less relevance 

for the physiological control of renin synthesis and secretion” 

 

8th Annual Meeting of the “Deutschen Gesellschaft für Nephrologie”, 10.09.-13.09.2016, 

Berlin, Germany – poster  

“Die Rolle des Endothelin-1/Endothelin-A-Rezeptor Signalweges für die Regulation des 

Reninsystems in der Mausniere” 

 

96th Annual Meeting of the German Physiological Society, 16.03.-18.03.2017, Greifswald, 

Germany – poster 

“The endothelin-A and endothelin-B receptor are expressed by renin cells of the kidney but 

seem to be of less relevance for the physiological control of renin synthesis and secretion in 

vivo 

 

The Fifteenth International Conference on Endothelin, 4.10.-7.10.2017, Prague, Czech 

Republic - talk 

“Is the inhibiting effect of endothelins on renin synthesis and secretion a direct effect on renin 

producing cells?” 

 

7.3 Publications 

Role of ET-receptors in the renin cell lineage for renin synthesis and secretion in vivo and in 

vitro  

Neder TH, Neubauer B, Epstein M, Gomez RA, Yanagisawa M, Kurtz A, Wagner C: (in prep) 
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