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Engineering effective p-wave superconductors hosting Majorana quasiparticles (MQPs) is nowadays of
particular interest, also in view of the possible utilization of MQPs in fault-tolerant topological quantum
computation. In quasi-one-dimensional systems, the parameter space for topological superconductivity is
significantly reduced by the coupling between transverse modes. Together with the requirement of achieving the
topological phase under experimentally feasible conditions, this strongly restricts in practice the choice of systems
which can host MQPs. Here, we demonstrate that semiconducting carbon nanotubes (CNTs) in proximity with
ultrathin s-wave superconductors, e.g., exfoliated NbSe,, satisfy these needs. By precise numerical tight-binding
calculations in the real space, we show the emergence of localized zero-energy states at the CNT ends above a
critical value of the applied magnetic field, of which we show the spatial evolution. Knowing the microscopic
wave functions, we unequivocally demonstrate the Majorana nature of the localized states. An effective four-band
model in the k-space, with parameters determined from the numerical spectrum, is used to calculate the topological
phase diagram and its phase boundaries in analytic form. Finally, the impact of symmetry breaking contributions,
like disorder and an axial component of the magnetic field, is investigated.
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I. INTRODUCTION

Majorana fermions, particles being their own antiparticle
predicted already eighty years ago [1], have remained elusive
to experimental observation so far. Hence recent proposals to
observe quasiparticles with the Majorana property—the so-
called Majorana quasiparticles (MQPs)—in one-dimensional
(1D) hybrid systems containing superconducting elements [2]
have raised big attention. The most popular implementations
are based on semiconducting nanowires with large spin-orbit
interaction and large g-factor, proximity coupled to a conven-
tional superconductor [3,4]. When a magnetic field is applied
to the nanowire in the direction perpendicular to the effective
spin-orbit field, a topologically nontrivial phase is expected
when the induced Zeeman splitting is large enough to overcome
the superconducting gap. Signatures of MQP behavior include,
e.g., a quantized zero-bias peak emerging in transport spectra
while sweeping the magnetic field. Setups with epitaxially
grown superconductor-semiconducting nanowires are by now
the most advanced experimentally, and the emergence of a zero
bias transport peak at finite magnetic field has been reported
by various groups [5-8].

Zero-bias peaks can, however, also emerge due to the
coalescence of Andreev bound states [8,9]—naturally occur-
ring in confined normal conductor-superconductor systems—
or due to the development of Kondo correlations [10]. An
unambiguous theoretical confirmation of the experimental
observation of MQPs would require an accurate microscopic
modeling of the nanowires. However, diameters of many tens
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of nanometers and lengths of several micrometers hinder truly
microscopic calculations of the electronic spectrum of finite
systems. The real space models of semiconductor nanowires
are usually constructed in a top-down approach, starting with
an effective model and quantizing it on a chosen crystal lattice
[11]. Without accurate modeling of experimental setups, one
can make only qualitative, rather than quantitative predic-
tions of the boundaries of the topological phase. Recently,
MQP signatures have also been observed in Kitaev chains of
magnetic adatoms on superconducting substrates [12,13]. The
microscopic modeling of ferromagnetic chains is, however,
still in development [14,15]. In this work, we consider carbon
nanotubes (CNTs) as host for MQPs. Due to their small
diameter, they can be considered as truly 1D conductors
with one relevant transverse mode for each valley and spin.
The low-energy spectrum of the CNTs is well described in
terms of tight-binding models for carbon atoms on a rolled
graphene lattice [ 16]. Experimental advances in the preparation
of ultraclean CNTs have allowed to measure their transport
spectra in various transport regimes [17], and hence to gain
confidence in the accuracy of the theoretical modeling. Two
proposals to observe MQPs in carbon nanotubes have been
based on spiral magnetic fields [18], induced, e.g., by magnetic
domains [19], or on large electrical fields [20]. Despite their
appeal due to the possibility of inducing large extrinsic spin-
orbit coupling, these setups are quite sophisticated and either
hard to realize experimentally or to model microscopically.
The setup, which we describe here is, similar to Ref. [21],
based solely on the intrinsic curvature-induced spin-orbit
coupling of CNTs. The physical setup is shown in Fig. 1(a)
and consists of a CNT placed on an ultrathin superconducting
film, with a gating layer beneath and the magnetic field applied
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FIG. 1. Setup and bulk properties of a proximitized nanotube.
(a) Schematic of the system, the CNT with its proximal supercon-
ductor and a gating layer. A magnetic field is applied in parallel to
the substrate and perpendicular to the nanotube. We find Majorana
quasiparticles at the ends of the CNT/superconductor hybrid. The
ingredients of our model are shown in the inset. The nearest-neighbor
hopping #; ;s is spin-dependent because of spin-orbit coupling. The
superconducting substrate (i) breaks the rotational symmetry of the
nanotube, as shown by the darker strip with finite electrostatic on-site
potential, and (ii) induces superconducting pairing in the nanotube,
with on-site (A) and nearest-neighbor (A;) pairing correlations.
(b) The energy bands of a (12,4) nanotube in the vicinity of the Dirac
points are shown in the leftmost plot, with red/blue corresponding to
spin up/down (quantized along the nanotube axis) bands. Our region of
interest here is the neighborhood of the I" point in the conduction band.
The enlarged plots show the spectrum in this region, obtained both in
the real-space tight-binding calculation and in an analytical effective
model. The spin-orbit splitting between the Kramers doublets at
k=0,B;, =0 is Ago (here equal 2 meV), and the width of the
anticrossing opening between different valley states is Agg: (here
2.5meV). Grey lines shown in the plot correspond to subbands without
the valley mixing. There we can assign spin and valley quantum
number to each band. With the valley mixing, B, is able to open
agapatk = 0.

parallel to the film and perpendicular to the nanotube. The
subband degeneracies at k = 0 are broken by the valley mixing,
caused by the interaction with the substrate, and a magnetic
field applied perpendicular to the CNT axis. In contrast to
[21], we consider semiconducting rather than metallic CNTs,
since the Fermi velocity in the former is lower by a factor of
~1073 than in the latter. Because the Fermi velocity controls
the localization properties of Majorana bound states, semicon-
ducting CNTs can host Majorana end states at a thousand times
smaller length than the metallic ones. As we shall show, MQPs
indeed arise at the end of proximitized CNTs with a length of
only a few micrometers (instead of millimeters in the case of
a metallic CNT), easily handled in the device synthesis.

The core of Ref. [21] is an effective four-band model
including valley mixing, a perpendicular magnetic field and
superconducting pairing terms. By analyzing the Pfaffian topo-
logical invariant, they show that without mixing the valleys, the
Bogoliubov-de Gennes spectrum is always gapless, and show
by a numerical calculation that the BdG spectrum of these
systems contains zero-energy states in the region where the
Pfaffian invariant is nontrivial. Hence they provide the first
indication that the proposed setup can indeed host MQPs.
Unlike in Ref. [21], the starting point for our investigation
is a microscopic, tight-binding model of the CNT lattice, with
external influences such as the substrate potential, supercon-
ducting pairings, magnetic field (perpendicular B, and axial
B)) or disorder added in the real space. We find numeri-
cally, using sparse matrix algorithms, the energetically lowest
Bogoliubov-de Gennes levels and their corresponding wave
functions, for an infinitely long as well as for a finite (6 um
long) (12,4) CNT. The emergence of localized zero-energy
states above a critical magnetic field strength is demonstrated
in the real space. Using the knowledge of the components of the
wave functions, we prove the Majorana nature of the localized
states. Furthermore, the full three-dimensional spatial profile
of the Majorana bound states is provided.

While the microscopic approach allows a more accurate
description of the proximitized CNT, effective models in the
k space are useful for analytical estimates of the topological
phase diagram and give a better understanding of the under-
lying physics. Thus, in our work, we construct an effective
Hamiltonian in the reciprocal space which well reproduces the
numerically calculated low-energy spectrum and its evolution
across the topological phase transition. The effective model
allows us to gain the knowledge of the system’s symmetries
and topological invariants. We have performed a full analysis of
our system’s symmetries, revealing its membership of the BDI
instead of the D symmetry class. We discuss the relationship
between the Pfaffian invariant (natural in class D and used, e.g.,
in Ref. [21]) and the winding number topological invariant
appropriate for class BDI, and identify the presence of two
different topologically nontrivial phases in the (i, B ) phase
diagram. The boundaries of the topological phase in the (i, B, )
plane are given in an analytic form and provide a guideline
for the experimental investigation of Majorana bound states in
carbon nanotubes.

The paper is structured as follows. Section II contains
a description of the microscopic model and Sec. III the
description of the four-band effective model and of the na-
ture of the superconducting pairing between different bands.
The discussion of the system’s symmetries and topological
invariants can be found in Sec. IV, while Sec. V holds the
analysis of the zero-energy eigenstates, in particular proving
them to be true MQPs. In Sec. VI, we study the stability of MQP
states against disorder and misalignment of the magnetic field.
The last section contains a short summary of our paper and
concluding remarks.

Finally, Appendix A contains a description of the valley
mixing arising from the presence of a substrate, Appendix B
an extended discussion of the system’s symmetries, and Ap-
pendix C the description of the method by which the boundaries
of the topological phases were calculated analytically. In
Appendix D, we derive an effective two-band model valid
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at low magnetic fields, and in Appendix E, we shortly dis-
cuss the influence of the nearest-neighbor superconducting
pairing.

II. MICROSCOPIC MODEL

Carbon nanotubes can be regarded as graphene sheets rolled
into seamless cylinders. The rolling direction is described
by the so-called chiral indices of the CNT, (n,m) [16]. The
bulk spectrum of the CNT consists of 1D subbands created
by cutting graphene’s dispersion by lines of constant angular
momentum, determined by the periodic boundary conditions
around the circumference. The electronic properties of the
nanotube depend strongly on the rolling direction, which
decides whether the subbands cross the Dirac points or not.
If they do, i.e., when (n — m)|/mod 3 = 0, the nanotubes are
metallic and the lowest 1D conduction bands descend deeply
towards the apex of graphene’s Dirac cones, reaching Fermi
velocities of the order of 10° m/s. If (n — m)|mod 3 # 0, the
CNT is semiconducting and the lowest bands lie higher up
on the Dirac cones and are much flatter, with Fermi velocities
dependent on the chemical potential, but typically not higher
than ~10° m/s. In the following, we shall use for illustration a
finite (12,4) CNT, although we find the same topological phases
in semiconducting nanotubes of other chiralities, in different
parameter regimes.

The microscopic model of the nanotube that we use, with
one p, orbital per atomic site, is shown schematically in
Fig. 1(a). The model is constructed for one p, orbital per
atomic site. The hopping matrix elements, taking into account
the hybridization between o and 7 orbitals and the spin-orbit
coupling induced by the curvature, are given by the formulas in
Refs. [22,23]. In our calculations, we chose V[‘,’p = 6.38¢eV and
VIZJ = —2.66¢V after Ref. [24], and we set the small parameter
controlling nanotube’s spin-orbit coupling to §so = 3 x 1073,
similar to 2.8 x 1073 measured in Ref. [25].

The tiny spin-orbit coupling of graphene becomes signifi-
cantly enhanced in carbon nanotubes due to the curvature of
their atomic lattice [22,26-28]. It defines a quantization axis
for the spin, along the CNT axis, and induces a band splitting
Aso, which is reported to reach values larger than 3 meV [29].
The resulting low-energy band structure for a (12,4) semicon-
ducting nanotube is shown in the small panel of Fig. 1(b) and,
zoomed up around the I" point, with the grey lines in the larger
panel. The band crossing at k = 0 is protected by symmetry
since the crossing bands belong to different valleys K and K’,
i.e., in this CNT to different angular momenta [30,31], and
the magnetic field cannot hybridize them. The presence of a
superconducting substrate plays here a double role. On the one
hand, it serves as a source of superconducting correlations in
the nanotube, acquired by the proximity effect. On the other
hand, it breaks the rotational symmetry of the nanotube and
is the cause of valley mixing Akg-. In combination with the
perpendicular magnetic field B, this allows the bands at the
I point to hybridize. The increased electrostatic potential in
the vicinity of the substrate atoms is shown as a darker stripe
across the inset in Fig. 1(a). The real space CNT Hamiltonian
in the presence of perpendicular magnetic field B, is then

given by
Hy = Z tij.,ss’CiTscjs’ + Z V((pi)cjscis
(ioj).ss’ “

+upBL Y cle . (1)
i,s

where i indexes the atomic positions, s is the spin, f;; s
is the spin-dependent nearest-neighbor hopping [22], (i,j)
denotes a sum over the nearest-neighbor atoms, and V(¢;)
is the potential induced by the substrate at the ith nanotube
atom. It depends on the atom’s height above the substrate,
i.e., on its angular coordinate ¢;. Further details can be found
in Appendix A. The resulting band structure is shown in
the left large panel of Fig. 1(b), featuring both the helical,
spin-momentum locked modes and two energy ranges with
odd number of Fermi surfaces. We have also constructed a
four-band effective model in the reciprocal space, discussed in
the next section, with the band structure shown also in Fig. 1(b).
A very good agreement with the spectrum obtained from the
full tight-binding calculation is achieved, which is crucial in
the studies of topological matter.

When the substrate turns superconducting, it induces
Cooper pairing in the nearby normal system. We propose to
use the two-dimensional (2D) gate-tunable superconductor
NbSe,, where superconductivity can survive up to 30 T in
magnetic fields applied in-plane [32]. Hence in our setup the
magnetic field is applied in the direction perpendicular to the
nanotube axis but, crucially, parallel to the substrate. We treat
the superconducting correlations in the spirit of Ref. [33],
admitting both the on-site and nearest-neighbor pairing A and
A. With the superconducting pairing the system is described
by

H=Hy—pu chscis + Z(Aocizcjis + H.c.)
i,s i,s
+ Y (Al +He), 2)
(i,))ss

where energies are measured from the chemical potential u,
controlled, e.g., by a gating layer beneath the substrate. The
A contribution is not necessary for the MQPs to arise and we
shall discuss its effects further only in Appendix E, here assum-
ing Ag € R and A; = 0. In our calculation, Ay = 0.4 meV,
consistent with the value of the gap reported in proximitized
CNT quantum dots [34]. In order to find the spectrum of a
superconducting CNT, we express the Hamiltonian (2) in a
particle-hole symmetric form by introducing a Nambu spinor,
U=l v, \Ilj = (ch,cL,c,-T,cil), where @ is the direct
sum over the N atomic positions [35]. This procedure effec-
tively doubles the number of degrees of freedom of the system.
The full Hamiltonian becomes H = %\I”LHBdG\IJ, where the
field operators are contained in W, W and Hgqg is an ordinary
matrix, the Bogoliubov-de Gennes Hamiltonian of our system.
Its eigenvectors, defining the quasiparticle eigenstates with a
set of quantum numbers 7, have the structure

N T
x"=0Lixi, () = (ufy.uf o), 3)
where n is a generic collective index, which may contain,
e.g., the valley and, in a system with translational invariance,
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FIG. 2. The Bogoliubov-de Gennes spectra of the superconduct-
ing nanotube in three different topological phases, which can be
accessed by tuning B, for the chemical potential u = 334.6 meV.
The color scale shows the weight of the particle part of the corre-
sponding CNT’s eigenstate; gold color indicates equal particle and
hole contributions. The superconducting pairing is Ag = 0.4 meV,
A] = 0

k quantum numbers. The particle components with spin s
on atom i are denoted by u}; and the corresponding hole
components by v . The quantum eigenstates of the system
have the form |y") = @f\':lllff - %" 10)pcs, where |0)pcs is the
BCS ground state in the CNT. The low-energy bands obtained
for our proximitized infinite (12,4) nanotube are shown in
Fig. 2, for the three topologically distinct phases encountered
by increasing the magnetic field. The color scale shows the
overall weight of particle component in the given energy
eigenstate, |u|*> = D i lu;s)?. The solutions, which have a
predominantly particle character, trace the original single-
particle bands, while the predominantly hole-type solutions
are mirror-reflected around the chemical potential.

III. EFFECTIVE FOUR-BAND MODEL

Approximate models in the reciprocal space can be helpful
to get a better physical insight regarding the underlying sym-

metries and processes driving the topological phase transitions;
furthermore, they enable us to calculate the topological phase
diagram analytically. In this section, an effective four-band
model is obtained starting from Eq. (2), with parameters fitted
against the numerically calculated spectrum. We advance the
analysis in Ref. [21] by discussing in detail the discrete sym-
metries of our model and the associated topological invariants.
Furthermore, an analytical expression for the boundaries of the
topological phase is provided and the p-wave character of the
relevant intraband coupling is checked.

The Hamiltonian of a CNT in the reciprocal space is
obtained using a zone folding technique. The spectrum of the
CNT follows from that of graphene by imposing the periodic
boundary conditions on the value of transverse momentum,
turning the 2D dispersion of graphene into a series of 1D cuts,
which are the CNTs one-dimensional subbands [16]. When
the curvature of the CNT’s lattice is included, it results in
both spin-dependent and spin-independent modifications of
graphene’s dispersion. They are most significant near the Dirac
points of the spectrum. In models treating one p, orbital per
atomic site, their effects can be incorporated in the dispersion
as shifts in both transverse and longitudinal momentum. The
low-energy electronic spectrum of a CNT in the conduction
band for given transverse momentum k; and longitudinal
momentum k is then given by

Ero(ky k) = hUF{(k — TK” =+ ‘L'Ak )2
+ (kL — TKL + 1AL + AR ()

where K | , K| are the transverse and longitudinal component of
momentum at the Dirac point K. The quantum numbers t and
s stand for the valley (K : T =1, K’': t = —1) and the spin
component along the CNT axis s = 1. All quantities in this
dispersion are directly related to the hopping integrals across
7 (V,,) and o bonds (V) in graphene, to nanotube geometry,
and to carbon’s intrinsic spin-orbit coupling [22,23], and their
values and signs may vary, depending on which set of tight-
binding parameters is used. The numerical values of those mo-
mentum shifts in our calculations are Ak] = —22.83 um™!,
Akf = 66.62 um~', and Akso = —2.917 um™~". In the case
of our (12,4) semiconducting nanotube, K = 0 and the lowest
energy subbands shown in Fig. 1(b) have k;, — 7K, = t/3R.
In the following, we shorten the notation by settingk; = K, +
1/3R and omitting it from the argument of e;4(k,,k). The
spin-orbit splitting Agg is defined as Agg = £x4(0) — ek (0).
Note that the single-particle energies satisfy the time-reversal
conjugation, &.4(k) = e_,_s(—k).

With added valley-mixing induced by the superconducting
substrate and in an external perpendicular magnetic field, the
CNT is described by the following effective Hamiltonian:

H = Hcnr + Hayy + Hz. Q)
The effective Hamiltonian in second quantization for the CNT
including a reference chemical potential w is given by
Hent — pN =Y Eei(k)c) Crss 6)
k,t,s

where &.,(k) is the single-particle energy measured with
respect to the chemical potential, &;,(k) = e¢5(k) —
We model the k dependence of the valley mixing
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potential (see Appendix A for details) by modifying the
longitudinal curvature shift and fitting an appropriate
constant Agg to the band structure obtained from
the real space calculation. In our case, &.4(k)=
hvpv (k 4+ 0.8T Ak)? + (1/3R) + Ak + tsAKS)?.  The
valley-mixing term Hj,,,, couples two electron states at
opposite valleys but with the same spin s and becomes

i * i
Hp,,, = E AggCrgsCrk's + D g CogrsCikss (1)
k,s

with Agg € C. In our calculations Agg is real and equal
to 2.5 meV. The Zeeman energy Hy due to the perpendicular
magnetic field B, induces a coupling of electrons with opposite
spins and in the same valley

H; = ugB, ZC}:TTC’krl +Cltrlcka’ (®)
k.t

i.e., we assume B to be applied in the x direction, while the
z direction runs along the CNT axis. The eigenstates of the
resulting Hamiltonian are then in general linear combinations
of all 7,s eigenstates of the original Hcnr. We denote them by
®,®,0,®, shown in Fig. 1(b).

The superconducting correlations induced by proximity are
treated in a mean-field approximation according to Eq. (2). We
only consider the case of an on-site pairing potential which is
described by the superconducting gap Ag. Since A is isotropic
in momentum space, our mean-field pairing Hamiltonian has
an s-wave gap symmetry. The mean-field Hamiltonian reads

Hse =Y Aolelgrclip, +elgncl i, +Hed, 9
k
where we are coupling the corresponding Kramers partners.
Introducing the Nambu spinor defined as
W = (ChipsChi s ChiroChkr sC—kK L CkK 5 CokK L Ok 1)

we obtain the Bogoliubov-de Gennes (BdG) Hamiltonian

_(HK A
with
txy(k)  upBL  Agx 0
wpBy &g (k) 0 Akk
Hk) = 11
*) Akg 0 Exp(k)  upBL (n
0 Ak wpB &gy (k)
and
—Ao
_ Ao
A= — Ay
Ay

The single-particle energies are defined with respect to the
chemical potential 1, as in (6). When expressed in the eigenba-
sis of the single-particle Hamiltonian (5), the superconducting
pairing couples all four bands, though not with equal strength.
The most important are the intraband pairing and interband
pairing within the same pair. Reflecting the same spin direction
s, between k and —k states in the same band, the intraband
pairing is odd in k, thus we call it A ,. The interband pairing is

even in k and we call it A;. Analytical expressions for A and
A, derived with the assumption that the two band pairs are
decoupled (valid in low fields), are given in Appendix D. The
pairings with the members of the other band pair are weaker,
and we call them A’ and A’. The different pairings coupling
a band O state with positive k to the states with negative k are
illustrated in Fig. 3(a), and their k dependence at B; = 10 T
is plotted in Fig. 3(b).

The dependence of those different pairings on k and B, is
plotted in Fig. 3(c). Initially, with increasing field strength, the
spins become polarized in the x direction, thus the terms A ,, A
pairing the same s, states become on average weaker, while
Ay, A’ pairing opposite s, states gain in strength. Beyond the
field strength of ~20 T, the amplitude of the Zeeman term
wp B, becomes comparable to that of the spin-orbit splitting
and the pairing A/ mixes the two band pairs. This effect will
be visible in the topological phase diagram discussed in the
next section.

The region that holds greatest interest for the experimental
realizations is that of lower magnetic fields, in the neighbor-
hood of B,, i.e., the lowest field for which the energy gap closes
at the I" point (given by up B, = 2A0Ax g /N Ao + 4A% ).
In this regime, the two band pairs can be considered indepen-
dent, and we show in the next section that near the critical
field they give the largest contribution to the topological phase.
The construction of this further simplified model is described
in Appendix D, allowing us to find analytically the energy
spectrum.

IV. SYMMETRIES AND TOPOLOGICAL INVARIANTS

The Hamiltonian Hpqg, like all Bogoliubov-de Gennes
Hamiltonians, is by construction invariant under a particle-
hole operation. That is, we can define an antiunitary operator
P, such that PHpqgP~! = — Hpag. The action of P on the
original electron operators and on doubled Hilbert space states
is

Peis = ¢l Py = Wy vf, uly.uf)T (12)

The particle-hole operation maps the positive energy solutions
onto their Nambu partners with negative energy. If the particle-
hole symmetric Hamiltonian of a finite system has zero-energy
modes, they can be cast in the form of eigenstates of P,

Py = . (13)

Inspecting the first relation of (12) shows that (13) is only an
equivalent definition of the Majorana property, usually stated
as y, (r) = yl(r), where y is the operator creating a particle
with spin o at position r.

The presence or absence of Majorana solutions can be
predicted from a topological phase diagram, where different
phases correspond to different values of a topological invariant.
In a system with translational symmetry, such as the bulk
of the CNT, the basic quantity determining the topological
invariant in 1D is y~, the sum of the Berry phases carried
by all occupied (negative energy) bands, integrated over the
Brillouin zone. Since y~ is gauge-dependent and defined
only up to an integer, another invariant is commonly used,
W = exp(i2my ), which is gauge-independent. The particle-
hole symmetry in a system with translational invariance is
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FIG. 3. (a) The lowest four bands of a (12,4) semiconducting CNT with valley mixing and in B, = 10 T, obtained with the effective
four-band model. The color scale shows the expectation value of the s, (left panel) or s, (right panel) component of an eigenstate’s spin. The
pairings between a positive & state in band @ and the four states with opposite k are indicated in the right panel. (b) Pairing strength as a function
of k for By = 10T, in A, units. (c) The four pairing terms as functions of k and B, in A, units. Note the increase in A, which couples the

upper and lower band pairs, beyond ~20 T.

expressed as P Hpyg(k)P~' = — Hpag(—k) [36,37], i.e., the
positive energy solutions at momentum k are related to negative
energy solutions at momentum —k, as sketched in Fig. 4(a).
This constrains the values which W can take to =+1, i.e.,
W is of a Z, type, associated with the Altland-Zirnbauer
D class systems [36,37]. W = +1 corresponds to the trivial
topological phase, while W = —1 implies the presence of
MQPs at the system boundaries. The phase diagram calculated
for our model nanotube, using the standard Pfaffian technique
[21,36] and the effective model for the bulk bands, is shown in
Fig. 4(b). The borders between different phases in the diagram
correspond to (B , 1) such that the gap is closed atk = 0. From
our effective four-band model, we find that this occurs at

i* = A3 /4 + (Ak g + (upB1)* — Af)

£ 105 (e BLP — A7) — A3AY (4)

where fi is the chemical potential measured from the center of
either the ©,® or ®,® pair in Fig. 1(b). The critical magnetic
field is given by p, B = Ao /4A% ¢ + Ado/QAk k). If we
assume that the band pair ©,® is independent of ®,® (i.e., A
can be neglected), we can expand (14) around B,, obtaining
a simpler formula i’ = A(Z)((B 1/ B.)?> — 1). The red lines in
Fig. 4(b) follow (14), the dashed lines mark the borders of
the nontrivial phase obtained with the simpler approximated
formula. The coupling between the band pairs changes visibly
the phase diagram—when the Zeeman energy reaches the
magnitude of the original spin-orbit splitting, it destroys the
topological phase. The same phenomenon occurs in multiband
semiconducting nanowires, where the mixing between various
transverse modes caused by the Rashba spin-orbit coupling
strongly reduces the nontrivial topological regions in the phase
diagram [11,38,39].

As can be seen in Fig. 2, the Hamiltonian Hggg is highly
symmetric. In particular, a unitary operation C can be defined,
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FIG. 4. Symmetries and topological invariants. (a) Sketch of a
spectrum with particle-hole symmetry. Bands of the same color are
related by the symmetry. (b) The phase diagram calculated using
the effective model and the Pfaffian formulation of the topological
invariant, typical for particle-hole symmetric systems. The topologi-
cally nontrivial regions are shown in yellow, the red line at the border
between the phases is the contour of £ = 0 at the I' point. The dot
in the lower W = —1 area marks the u and B, used in Fig. 6. The
dashed lines trace the borders of nontrivial phase calculated from a
model which contains only one single-particle band pair, either ©
and @ (lower region) or ® and ® (higher region) from Fig. 1(b).
(c) Sketch of a spectrum with chiral symmetry. The Bogoliubov-de
Gennes spectrum in Fig. 2 has both particle-hole and chiral symmetry.
(d) The phase diagram calculated using the winding number invariant,
defined for chiral symmetric systems. The values v = %1 in the lower
and upper nontrivial area indicate that these regions correspond to
different topological phases, with one zero-energy mode in each.

such that C Hgag(k)C ™! = —Hpyg(k). The operation C is a
so-called chiral symmetry, connecting positive and negative
energy solutions at the same momentum k, as sketched in
Fig. 4(c). The MQPs in our system are also eigenstates of
C. In systems with this symmetry, the topological invariant
y~ has a clear interpretation as a winding number, y~ = v/2
[40]. The winding number is an integer, i.e., it belongs to Z.
That apparent contradiction with W € Z; is solved when we
recall that W was constructed with an extra exponentiation
step, which obliterates the difference between the phases with
v = 1. The phase diagram calculated using the winding
number is shown in Fig. 4(d), with exactly the same phase
boundaries, but showing clearly that the lower nontrivial region
and the upper nontrivial region in fact correspond to different
nontrivial phases. Further discussion of the symmetries and
both invariants can be found in Appendix B.

With both the particle-hole P and the chiral C symmetries,
the Hamiltonian is also invariant under a product of both,
i.e., 7 = CP~'. This symmetry is antiunitary and commutes
with the Hamiltonian, 7 Hgag (k)7 ~' = Hgag(—k), similar to
the time-reversal. Contrary to the true time-reversal operation
which in systems with half-integer spin squares to —1, here

®)

0.5

jul (a.u)

-

0.5

BL(T) X (Hm)

FIG. 5. Topological phase transition. (a) The quasiparticle spec-
trum of a finite (12,4) nanotube with 4000 unit cells (L = 6.03 um), at
the chemical potential © = 334.6 meV for varying magnetic field. The
topological phase transition occurs at B, = 8.5 T, beyond which the
lowest energy eigenstate becomes a zero-energy mode. (b) The wave
function of the lowest energy mode undergoes a gradual localization
with increasing magnetic field. Here only the amplitude |u4(x))| of
the spin up particle component, projected onto the direction along
the CNT’s axis, is shown. The shape of the remaining components is
indistinguishable from that of |u(x))| at this scale, which comprises
the data points from N = 8.32 x 10° atoms. The units are arbitrary
and the same for all wave function plots in this figure.

T2 = +1, placing our nanotube not in the D, but in the
BDI class with the winding number as an integer topological
invariant. Physically, 7 represents the rotation of the system
by 7 around the axis perpendicular to both the CNT and the
substrate.

V. EMERGENCE OF MQPS IN FINITE NANOTUBES

Changing the chemical potential or the strength of the
magnetic field can drive the proximitized nanotube across a
topological phase transition, into a regime in which it becomes
a topological superconductor. An example of the changes in
the Bogoliubov-de Gennes spectrum during such a transition
is shown in Fig. 5(a), for a 6-pum-long (12,4) CNT at a fixed
chemical potential © = 334.6 meV and varying magnetic field
B, . The energy of the lowest quasiparticle states is further
lowered with increasing B, until they become a doubly
degenerate zero-energy mode. The degeneracy is artificial,
caused by the doubling of degrees of freedom introduced
with the Nambu spinor, and the nanotube de facto hosts only
one eigenstate at zero energy. The change in the shape of
the quasiparticle wave function associated with the lowest
energy eigenstate is illustrated in Fig. 5(b), showing clearly
its increasing localization at the ends of the proximitized
CNT. In the figure only the amplitude |u4(r)| of the particle
component with spin up is shown, the remaining components
u,(r),v4(r),v,(r) have profiles which are indistinguishable
from |u4(r)| at this scale. Having a direct access to the particle
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FIG. 6. Majorana bound states. (a) The full spatial profile of the
spin up and spin down particle components, |u4(r)| and |u (r)|. The
amplitude of the electronic wave function is shown through both
the distance from the nanotube’s surface (light grey) and through
the color scale. The wavelength of the oscillations is given by the
value of kr at the chosen chemical potential. (b) Spatially resolved
amplitude of the difference between the particle and conjugated hole
components for the same spin, [u,(r) — v}‘(r)| and |u(r) — vj(r)|.
The distance from the CNT’s surface is scaled in the same way as in
(a), and the color scale is greatly enhanced. Only faint differences are
visible, of the order of 1073, which shows the Majorana nature of the
zero-energy mode.

and hole components of the zero-energy mode, we can prove
that it indeed has Majorana nature according to (13).

The spatially resolved wave function of the zero-energy
mode at B; = 9.5 T is shown in Fig. 6(a). The amplitude of
spin-up and -down particle components, |u4(r)| and |u (r)|, is
shown both as the distance from the CNT’s surface (grey) at
each atomic position and via the color scale. The wavelength of
the oscillations is set by the value of kr at the chosen chemical
potential. The decay length is field-dependent, and at B, =
9.5, it is ~0.4 um. The Majorana nature of the zero-energy
mode becomes evident in the Fig. 6(b), where the differences
between particle and (complex conjugated) hole component of
the wave function for each spin, |u4(r) — v?(r)| and |u(r) —
vf(r)l are shown. They are identical up to the order of 10~ of
the maximum amplitude, which constitutes a numerical proof
that the zero-energy mode fulfills the Majorana condition (13).

Both the Pfaffian and the winding number invariants predict
correctly whether the system is in a trivial or nontrivial topolog-
ical phase, but the winding number also distinguishes between
different nontrivial phases. This could be seen from Fig. 4(d),
where the upper and lower nontrivial regions are characterized
by different values of the winding number. In consequence, if
the chemical potential of the CNT is tuned in such a way that a
part of the tube resides in the phase with v = —1 and another in
the v = +1 phase, two MQP modes arise, localized at the ends
of the CNT and back-to-back at the boundary between the two
phases. This situation is shown in Figs. 7(a) and 7(b), where
the left half of the CNT is at i, = 334.6 meV, the right half
at ug = 340.7 meV, the crossover region where the potential
varies smoothly from s, to j1x has the length of ~20 A and
the magnetic fieldis B; = 14 T.

(a)

340
s .
[ “\
M D
3.058 3.062
R SR O e T T
(b) X|| (um)

iddy,
(ke

E~1018mevV | & ¢
MMF‘/ / \
e .

E ~ 0.001 meV ¥ i

b

fmm yy,,,,%%

Sl

/ &
4 ) \ jul (au)
0 _J
CH =
340
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[0}
E
£l 3.058 M 3.062
L 1 I I L 1
0 1 2 3 4 5 6

(d) X)) (m)

i,
E~1018meV | 3" %

/5 i = =
s e S 2 4
w
lul (au.)
0 W 0.25

E ~ 0.1 meV

FIG. 7. (a) The profile of the chemical potential where the left and
right half of the CNT are in different nontrivial topological phases.
The magnetic field is By = 14 T and the length of the crossover
region is ~20 A. The grey lines show for reference the energy bands.
(b) The amplitude |u4(r)| of spin up component of the two lowest
energy eigenstates. Remaining components have almost identical
profiles. The state localized at the ends is a true MQP. Note different
wave function profile at the left and right end, which are in different
phases. The eigenstate in the center is composed of the partners of
the left and right parts of the Majorana mode, which overlap and
slightly hybridize, pushing the state’s energy to roughly 1% of the
bulk gap. (c¢) The chemical potential profile for a CNT whose two
halves are in the same phase, but separated by a narrow region of
the trivial phase, also with the length of ~20 A. (d) The amplitude
|4 (r)| of spin-up component of the two lowest energy eigenstates.
Remaining components have almost identical profiles. The lower
energy eigenstate is a Majorana mode, the next one belongs already
to the bulk, extending over the whole CNT.
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The lowest energy mode, localized at the CNT ends, is a
true Majorana mode with the energy equal zero within the
machine precision. Since it is composed of two parts from
different topological phases, its wave function has different
profile at the left and at the right end. Its left part is characterized
by a single characteristic oscillation period, corresponding to
the kr of band @, which is the single one contributing to the
zero-energy mode in the lower nontrivial region. The right
part of the Majorana mode shows clear beating behavior, due
to the interference of contributions from @,®, and ® bands.
The other low-energy state is composed of the partners of the
left and right part, located at the phase boundary. There the
two modes overlap and slightly hybridize, moving the energy
of the resulting state to ~1% of the band gap, and skewing
them from the true Majorana nature. The overlap between the
two modes has however much more dramatic consequences
if the two halves of the CNT are in the same phase, with an
equally narrow region of trivial phase in the center, as shown
in Figs. 7(c) and 7(d). There the end state remains a Majorana
state, but the center state hybridizes fully and moves into the
bulk.

VI. MQP STABILITY AND EXPERIMENTAL FEASIBILITY

A. Disorder

The stability of the MQPs against perturbations is crucial
for their experimental realization. The techniques for growing
carbon nanotubes are now so advanced that their atomic lattices
are nearly perfect [41,42]. Nevertheless, some atoms may be
adsorbed on the nanotube during the device production. We
simulate their effect through a random on-site electrostatic po-
tential, with varying impurity concentration ng = Nimp/N, and
potential strength chosen randomly from a range [— W, Wy].
The evolution of the quasiparticle spectra with magnetic
field for two impurity concentrations and varying disorder
strength is shown in Fig. 8. The nanotube and other parameters
(Ao, V(¢;)) remain unchanged.

At realistically low concentrations increasing W, delays
the onset of the zero-energy mode, as can be seen from
Figs. 8(a) and 8(c), and perturbs the bulk bands [cf. Fig. 8(c) at
Wy = 0.6 and 0.9 eV]. It also decreases the gap between the
zero-energy mode and the bulk states [cf. Fig. 8(b)], but the
Majorana mode is clearly present and protected, albeit it forms
at higher B, than in the clean system.

Increasing the impurity concentration beyond the realistic
values, to ng = 1%, as illustrated in Figs. 8(d)-8(f), is more
effective at destroying the nontrivial topological phase than the
increase in the disorder strength. For intermediate and large
disorder strength Wy > 0.5 eV the formation of the zero mode
occurs at much higher B , as can be seen from Figs. 8(d) and
8(f). Even when the zero-energy mode forms, it is mixed with
the bulk bands [cf. Figs. 8(e) and 8(f)], resulting in several
ordinary localized states.

B. Magnetic field misalignment

Another factor which has to be taken into account is the
precision of alignment of the magnetic field. The presence
of a field component parallel to the nanotube axis gives rise
to the Aharonov-Bohm effect. In nanotubes this causes a

(a) lowest mode energy (b) gap to bulk states

(Asw) 03 - 13

D
i 10 12 14

B (M

L

(Asw) 03 - 13

B (T B, (M B,(M

FIG. 8. (a) The energy of the lowest positive mode E of the (12,4)
nanotube with L >~ 6 um discussed in the main text. The chemical
potential is fixed at u© = 334.6 meV, both the magnetic field B, and
the maximum disorder strength W, vary. The latter increases in steps
of 0.1 eV. In this magnetic field range, the clean system is in the
nontrivial topological phase. The concentration of impurities in (a)—
(c) is 0.1%, which corresponds to 832 impurities. In all plots of this
figure,each value of W, corresponds to one realization of disorder.
(b) The gap between the lowest energy mode E, and the next, E;. For
Ey ~ 0, alarge value of E; — E( means wide gap between the MQP
and the bulk states, indicating a stable MQP mode. (c) Three examples
of the quasiparticle spectra near £ = 0. (d) Similar to (a), with a
tenfold increase in the impurity concentration, i.e., 8320 impurities in
the CNT. The concentration is the same in (d)—(f). (¢) Similar to (b).
(f) Similar to (c).

different orbital response in the two valleys, resulting in a
removal of the valley degeneracy [43] and breaking of the
chiral symmetry. When the parallel component of the magnetic
field reaches a threshold value, the electrons on opposite sides
of the I' point no longer have matching momenta and the
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FIG. 9. Stability of MQPs with respect to magnetic field alignment. The thirty two lowest quasiparticle energies as a function of varying
angle of the magnetic field, with its amplitude fixed at B = 12 T. The bulk Hamiltonian is gapped only within the area marked in yellow,
85° < 0 < 95°. In a finite system a zero-energy mode appears throughout this range of 6, with maximum distance to the other eigenstates at

0 =90°.

superconducting correlations become ineffective, yielding a
gapless spectrum. The lowest thirty two eigenvalues of the
Bogoliubov-de Gennes spectrum in magnetic field of 12 T
amplitude and varying angle 6 with respect to the nanotube
axis are plotted in Fig. 9. At this chosen field amplitude, the
finite system supports a Majorana mode within a range of
£5° deviation of the field from the perpendicular. Increasing
the field amplitude widens the maximum gap at 90°, but the
higher value of the parallel component decreases the 6 range in
which the spectrum is gapped. Maximizing the stability of the
MQP in the experiment will then necessarily involve a trade-off
between protection against angle fluctuations and protection
against scattering into the bulk.

The two major experimental challenges in achieving the
formation of MQPs in this setup are the necessity of controlling
the chemical potential of the CNT and of applying a large mag-
netic field without destroying superconducting correlations.
Both may be accomplished with the use of 2D transition metal
dichalcogenide (TMDC) superconductors, such as NbSe,, with
its larger superconducting gap of 1.26 meV [44]. The supercon-
ducting pairing was demonstrated to survive in fields up to 30 T
[32], and the thinness of the 2D layer allows the superconductor
itself to be gated, together with the CNT in its proximity.

VII. CONCLUSIONS

In this work, we have shown in a combination of numerical
modeling and analytical calculations that proximitized
semiconducting carbon nanotubes are predestined hosts
for Majorana bound states. While the numerical approach
has allowed us to test the robustness of the topological
phase against disorder or field misalignement, the analytical
model has given us the possibility to clearly identify the
phase boundaries of the topological phase transition, all
issues crucial for an experimental observation. The use of
semiconducting nanotubes instead of metallic ones as proposed
in Refs. [18,20,21] has the crucial advantage that—due to the
much smaller Fermi velocity—the Majorana modes already
emerge in CNTs of few micrometers in length, routinely
accessible in experiments. In our setup, perpendicular
magnetic fields of around 10 T are required to reach the
topological phase. Thus, besides involving semiconducting
CNTs, we propose the use of a thin layer of superconducting
NbSe, to induce the proximity effect. In fact, this material
is known to sustain very large in plane magnetic fields
before superconductivity is destroyed. With all experimental

requirements being in the reach of state-of-the-art technology,
we are confident that our work will stimulate experimental
research to engineer Majorana modes in CNTs. Preliminary
investigations in this direction have already been started [45].
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APPENDIX A: VALLEY MIXING

The possibility of tunneling between the two components
of a normal-superconducting (N-S) hybrid system, which
generates the pairing correlations in the normal part implies
close contact between the N and S systems. With this close
contact, the N wave functions are affected by the S substrate
lattice potential, registering an increased electrostatic potential
in the vicinity of the N-S contact area. In order to preserve
the translational symmetry of the system, which allows us
to construct Bloch bands of the bulk nanotube, we treat the
electrostatic potential of the substrate as a continuous ridge,
adding an on-site potential term to the Hamiltonian of the CNT
at the atomic sites in the proximity of the superconducting
substrate. We have tested several shapes of this ridge with
similar values of the resulting valley mixing energy scale,
Ak k. For all calculations presented here, we chose a Gaussian
form of V(¢), shown in Fig. 10(a) and given by

V(p) = Vo exp(—(9 — 90)*/ Ag?),

where ¢ is the angular coordinate of the nanotube atom, V; is an
arbitrarily chosen maximum height of the substrate’s potential,
@o is the shift between nanotube coordinates and the CNT-S
contact line, and Ag controls the sharpness of the potential. The
influence of the substrate potential for three different nanotube
chiralities is illustrated in Fig. 10(b), where the atoms of
the respective CNT’s unit cell are colored according to the
value of V(¢) at this position. In the numerical calculations,
we assumed Vp = 0.4 eV, g9 = 90°, and Ap = 2.5°.

We shall now assess the hybridization between different
momentum states in the normal CNT, |k) and |k’). First, we

(AD)
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FIG. 10. (a) The substrate potential V(¢) in the Gaussian form.
The inset shows the nanotube coordinates in relation to the substrate.
(b) Examples of unit cells of nanotubes with different chiralities, with
the atoms along the contact area colored by their value of V (¢).

introduce the basis of LCAO plane waves,

k,p) = ¢ R R, p), (A2)

1
Y% N, c N L p
with

(rIR,p) = p.(r — (R +48R))),

where N is the number of CNT unit cells and N, is the number
of lattice sites (graphene’s unit cells) in the CNT’s unit cell.
The index p = A, B denotes the sublattice, R are the Bravais
lattice vectors, and SR, denote the shift of the p atom from
the center of graphene’s unit cell. The CNT lattice and the
relevant spatial quantities (coordinates, lattice vectors, atomic
positions) are illustrated in Fig. 11. We approximate the wave
functions of electronic p, orbitals by Dirac deltas.

This means that our V (¢), which is diagonal in position and
hence diagonal in sublattice, will only yield nonzero coupling
between LCAO plane waves on the same sublattice,

V,(k,k") := (k,p|V(p)Kk', p)
1 o
— Vv i(k—k')-R
N.N,. ER (‘pR,p) e

N

1
Np

i(k—K')na

n=1

| &

X D Vg T (a3)
C ]:1

FIG. 11. (a) Fragment of a (6,2) CNT lattice. The white area
marks the translational unit cell of the CNT. (b) The unit cell of
graphene, with the A and B sublattice atoms and their shifts R 4,5
from the center of the unit cell. (¢) Unrolled nanotube lattice and the
quantities used in Egs. (A2) and (A3).

where in the last step we split the sum over lattice sites R into
a sum over nanotube unit cells indexed by n and a sum over all
atoms in one unit cell, indexed by j. The lattice constant a is
the length of the CNT’s unit cell, ¢; is the angular coordinate
of the lattice site R;, and ¢,; the angular coordinate of the
p sublattice atom belonging to this site. The quantities [,/
are the angular momentum components of k and k', respec-
tively. The summation over the unit cells in an infinite CNT
yields the selection rule for the longitudinal momentum,
k = k', while the summation over lattice sites determines
the strength with which different angular momentum states
at the same k are coupled. The angular momenta in the K
and K’ valley have opposite signs, [y = —Igx. When the Ig
appropriate for a given chirality is inserted into (A3), we obtain
the k-independent coupling between LCAQO plane waves from
K and K’ valley,

N,
R o
Vkk.p = 2 > Vigpet e (Ad)
c =1

This quantity is in general complex, with different phases on
the A and B sublattice, but with the same absolute value,
|V](1(f,,4| = |V[([(/’B| =: |V](](/|, shown in Fig. 12. The value
of |Vk /| is not sensitive to the precise placement of the CNT
on the substrate, i.e., to the value of ¢y, provided the decay
angle Ag is large enough (>2—-4°).

Upon conversion to the conduction/valence band basis (i.e.,
the basis of the CNT Bloch states), we obtain the valley mixing
Ak (k), which is proportional to |V | but depends on the
value of k. As a result, the minimum of the bands is displaced
from the curvature-shifted Dirac points, as can be seen by
comparing the colored and grey lines in Fig. 1(b). For the
sake of simplicity in the effective model, we accommodate this
displacement through a modification of the curvature shift Ak,
defined in Sec. III, and take the value of Ak to be constant
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FIG. 12. Calculated plane-wave coupling | Vx| as a function of the substrate potential parameters ¢, Ag. It is most effective in nanotubes
with shorter unit cells, and in all of them the dependence on ¢, vanishes beyond some value of Ag.

in k, fitted from the width of the K /K’ anticrossing in the
numerically obtained band structure. This simplification eases
greatly the analytical calculation, while keeping the agreement
between our numerical and effective model results, as the
following sections will show.

APPENDIX B: TOPOLOGICAL INVARIANTS

The symmetries of the BdG Hamiltonian (10) can be
expressed in terms of Pauli matrices, denoted by 7 in the
particle-hole (Nambu) subspace, by 7 in the valley subspace,
and by s in the spin subspace. The particle-hole symmetry
operator P, such that PHpag(k)P~' = —Hpag(—k), is given
by P =m, ® 7. ® s, K, where 7j and s are the identities in
their respective subspaces and X denotes the operator of the
complex conjugation. The Hamiltonian Hgqg has also a chiral
symmetry, i.e., it fulfills CHpyg(k)C ™' = —Hpag(k) with a
unitary operator C. The operatoris givenby C = 7, ® 19 ® So.
The presence of those two symmetries implies that there exists
a third one, which we call 7 = CP~! and which fulfills
THpag k)T ' = Hpag(—k). Its expression in this basis is
T = —in. ® 7. ® s, K. The operation 7 squares to 41, hence
itis clear that it is not the time reversal symmetry of a spin-1,/2
system. The fact that it is diagonal in the Nambu space implies
that already the nonsuperconducting Hamiltonian H (k) (11) is
invariant under a restricted Treq = 7, ® 5, &, which is indeed
the case and reflects a physical symmetry of the system. It is
the symmetry of rotation with respect to an axis perpendicular
to the CNT, which exchanges both the valley, longitudinal
momentum and spin. It also exchanges the sublattices, which
accounts for its IC component. If, and only if, the magnetic
field is also applied perpendicular to the CNT axis, the
nonsuperconducting Hamiltonian is invariant under Tred.

Pfaffian (Z,) invariant. In systems with particle-hole sym-
metry, the topological invariant W can be evaluated using
the representation of the Hamiltonian in the Majorana ba-
sis, i.e., the basis of eigenstates of P [36], obtained by a
transformation Uy, H (k) = UMHBdG(k)U]\T,[. We can define
a matrix X by i X(k) = Hy (k). At the time reversal invariant
momenta k = 0,7 /a, X(k) is a real and skew symmetric
matrix, X(k) = —[X(k)]7. The topological invariant W can
then be expressed through the Pfaffian of X atk = 0,77 /a [36],
W = sgn{Pf[X (7 /a)] Pf[X(0)]} = £1, whichis of a Z, type.
For our system, the unitary matrix Uy, is given by

(

o ® So

Ty @ Sy
iTo®s0)"

Uy=— .
M _lfx®sx

At time reversal invariant momenta k = 0,7 /a, X (k) has the
particularly simple form,

where Ay = UMAUL. Then the Pfaffian is calculated as
Pf[X (k)] = det[H (k) + Aj]. We calculated the topological
phase diagrams with the W invariant numerically, assuming
sgnPf[X(;r/a)] = +1 thus checking only for the band inver-
sion at k = 0.

Winding number (Z) invariant. Since the BAG Hamiltonian
has the chiral symmetry {C,Hpqg} = 0, one can introduce the
winding number v = — ;L [ Tr[CHy46(k) 3 Hpac(k)] as a
1D topological invariant [46,47]. The identity with another
definition of the winding number, which uses a flat band
Hamiltonian [48], is proven in Appendix C1 in Ref. [40]. Let
us consider the unitary transformation

d
U ==
which rotates the Pauli matrices for the particle-hole basis

2
as Ujrrx U =m,, anyUc =, anZUL. = m,. Correspond-
ingly, the Hamiltonian in Eq. (10) takes an off-diagonal form,

0 )

(H(k) —in)f
Because the chiral operator is transformed as C. =
UCT CU. = m,, the winding number is written as v =
% fBz dkoy argdet(H (k) — i A). The topological invariant v;
for the band/ canbe showntobe Z > v; = 2y, if y; is calculated
in the basis of chiral symmetry eigenstates. Therefore W =
exp(im ), v) = £1.

0
—(H (k) + Awm)

Hk) + Ay

X(k) = ( 0

1+
1—i

141

14 )®T0®S0,

Hk) —iA

mw=@%mmw=( 0

APPENDIX C: GAP CLOSING CONDITION

In the basis in which the operator C is diagonal, discussed
above, the BdG Hamiltonian is given by

D(k)
O 9
where D(k) = H(k) — i A. In order to obtain the gap closing

condition, we square the BAG Hamiltonian in chiral basis,
which yields

(HgdG(k))2 = <

0

HgdG(k) = (DT(k)

0

D(k)D (k)
D)D) )

0
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This matrix has zero-energy eigenvalues at the I' point
if det (D(k = 0)D'(k = 0)) = det (D'(k = 0)D(k = 0)) = 0.
From this, we obtain the exact gap closing condition at the I"
point, given by Eq. (14).

APPENDIX D: TWO-BAND EFFECTIVE MODEL

The four-band model, while approximating very well the
numerical results, is rather intractable analytically. We can
simplify it, using the knowledge of the energy scales in
our system. The largest relevant energy scales are Ago and
Ak, similar in magnitude, with Ago =2 meV and Agg =
2.5 meV. Two smaller energy scales are the superconducting
gap Ay = 0.4 meV, and the Zeeman energy E ;. The latter can
be tuned continuously, but near the boundaries of the nontrivial
topological phase has similar magnitude as Ag. Our strategy is
therefore to diagonalize the initial single-particle Hamiltonian
of the CNT (6) together with the valley-mixing term (7)
exactly, express the Zeeman term (8) in this basis, and omit
the terms coupling the lower and upper band pairs. The two
resulting subspaces contain only one band pair each, halving
the dimensions of the Hamiltonians under our treatment.

1. Construction of the single-particle Hamiltonian

The CNT Hamiltonian Hent — uN + Ha,,, can be
brought to a diagonal form by employing the unitary trans-

formation
CkKs ag(k) by (k) Qs
= , D1
(way) <—b;(k> a;(k)) (zm) ®n
with |a,(k)|? + |bs(k)|* = 1.Itis diagonalized by the following
values of a,(k) and b, (k):

o = 1(1 ) ks (k) — £y () )
2 V(Exs (k) — Exrs () + 4| Ak |? )
1 SKs(k) - éK’s(k)

Ibs())* = {1+ :
2 ( V(Exs(k) — Exrg(ks))® + 4|AKK/|2>

and arg (a,(k)) = arg (bs(k)) = % with ¢ = arg (Agg/). With
these we obtain

Hent = uN + Hag = EyoBlBis + E—sorl i, (D3)
k,s

where the eigenvalues are defined in the following way:

Es(k) = 5(Exs (k) + Exr5(k))

1 L) — Ex (0P + 41 Ak .

Due to the time-reversal conjugation of &.,(k) = &_,_;(—k),

it can be shown that |a,(k)| = |b_s(—k)| and Ei (k) =

Ey_s(—k). These four eigenvalues are shown in Fig. 13(a).
Now we will express the Zeeman term (8) in this basis,

Hy =Y usBiafo s+ Bl pr-)
ks

+supBl) B s — Blou o),

where B, and B are the renormalized magnetic field compo-
nents. Using Eqs. (D2), we can express them as

Bi = Bi(lay(®)llay (k)] + by (016, (k)
B = B (lay(b)[|b ()] — |by(O)llay (). (D4)

The magnetic field B, couples the spins within the lower
and upper band pair, while B} couples the spins between
band pairs. As long as the energy difference between the
lower and upper band pairs is larger than the Zeeman energy,
AE =|E;; — E__| > ugpB,, we can omit the terms with
B7 . The upper and lower pairs of bands can now be treated
separately. We shall proceed to find the solutions for the lower
band pair only, assuming that the chemical potential p is
tuned into the gap between the two energy bands £, and E,.
Therefore we will neglect the influence of the bands E; and
E, because those bands are not occupied. Similar calculation
can be performed for the upper pair, neglecting the lower. The
Hamiltonian for the two lowest energy bands is given by

H = Z E,sa,isaks + MBELai‘yak,,s. (D5)
k,s

This Hamiltonian can be diagonalized by the transformation

ar\ _ (st (k) (fua D6
(au) <—f(k) s(k) )\ fiz2)’ (D6)
where the coefficients must satisfy s(k)? 4 ¢(k)*> = 1. The new
quantum number in (D6) i € {1,2} just reflects the ordering of

the energy bands E; < E;. The coefficients s(k) and #(k) are
defined as

o1 E_+(k) — E_ (k)
S (k) = E 1 - — s
JE 0 = B (0 +4up BL)?
(D7)
Pt =5 Er® - 2,0

+
JE () — E_ () +4(up BL)?
(D8)

The coefficients satisfy the following time-reversal conjuga-
tion s(k) = t(—k). Then, the full Hamiltonian with decoupled
band pairs in its diagonal basis is given by

2
Aext =YY Eifl fi (D9)
k i=1

with the corresponding single-particle energies
Ei(k) = 5(E_4(k) + E_ (k)

+ (=D W E_ () — E_ (0 + 4(up B,
(D10)

The single-particle energies have the property E;(k) = E;(—k)
with i € {1,2} because B, (k) = B, (—k). The renormalized
magnetic field opens a band gap at the I" point. Figure 13(a)
shows the four bands £, /2,34 for magnetic field strengths
B, =0,10,50 T. At B, = 10 T, the energies obtained in the
two-band model still agree very well with those of the full
four-band model.
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FIG. 13. (a) The two pairs of bands 8 and o with black lines showing the energies E.,, respectively, at B, = 0, and E, 12734 at B =10
and 50 T. The grey lines show the corresponding solutions of the four-band model. The approximation decoupling the upper pair from the lower
holds at small fields, until B} becomes too large to be neglected and the two-band model becomes unreliable. Only the superconducting pairings
in the same band pair are retained, with A p acting within band and A, pairing each member of the pair with its partner. (b) The dependence
on k of the two pairing terms at B, = 10 T, in A units. (c) The two pairing terms as functions of k and B, . Note that the amplitude of A, at
k = 0 remains high throughout the whole B, range, unlike in the four-band model.

2. Superconducting pairings

Using the transformation (D1) the pairing Hamiltonian (9)
becomes

Hsc = ) Ac(OB 8Ly, —ayaly, +He)
k

+A_()B el +al Bl +He), (DI

where we introduce the following definition:
Ay (k) = Ao(lar(R)[Iby (=K + [br()llay (=)D, (D12)
A_(k) = Ao(lar(b)llay (=k)| — |by(K)[|by (=k)]).  (D13)

For simplifications, we can use the time-reversal conjugation
las(k)| = |b_s(—k)| and by using the condition lay(k)> +
|bs(k)|> = 1 we obtain that A (k) = Ao and A_(k) = 0, also
if B; # 0. Only B% # 0 would induce a finite A_(k). Since
we omit B}, A_(k) is vanishing and we have again two

separate pairings in the Hamiltonian. We can express the
pairing Hamiltonian in the eigenbasis of the CNT with the
transformation (D6) and by omitting the pairing with the upper
bands we obtain

Asc = Y AP RVl 1 = PR o 11)
k

+ Aos((K)fh £ — £l ) + He. (D14

The Bogoliubov-de Gennes (BdG) Hamiltonian can be de-
fined by Hi = 1 ", WIHpec ¥ with the Nambu spinor W' =

( f,jl, f,jz, f—k1,f-k2). The corresponding BAG Hamiltonian for
our system is given by

| o Bm A® Ak
Moo=\ A Ak -Ew o |0 ®Y
AR A 0 —Ea
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with the pairing terms

A (k) = Ao(s*(k) — 12(k)) = —A ,(—k), (D16)

As(k) = 2A0s(k)t (k) = Ag(—k). (D17)
We see that the pairing term A, (k) has an even and A p(k) an
odd parity, as shown in Fig. 13(b). We notice that these pairings
depend on the magnetic field in a similar way as A (k) and
A (k) in the four-band model, with differences visible only
at high magnetic fields where the amplitude of A (k) around
k = 0 remains large, as can be seen in Fig. 13(c). From the
conservation of energy it follows that A (k) + AZ(k) = AG.

Since A p(k =0) =0, the gap closing condition can be
expressed directly as

Ex(k=0)=0, (D18)

where

EL(b) = S(E1(0) — Ex(0) £ 3\ (1K) + Eak)? +4A2(0).

This condition, neglecting the mixing between the band pairs,
is shown with dashed lines in Figs. 4(b) and 4(d).

APPENDIX E: INFLUENCE OF THE
NEAREST-NEIGHBOR PAIRING A,

The spin-singlet superconducting correlations can act both
on-site and between nearest-neighbor sites [33]. When the
nearest-neighbor pairing is stronger than the on-site pairing,
Ay > Ay, a CNT can enter a nontrivial topological phase even
in the absence of magnetic field [40], although the presence
of time-reversal symmetry causes the zero-energy modes to
be Dirac, rather than Majorana fermions [49]. We present
here the topological phase diagrams obtained with the Pfaffian
technique, for the range of A;/Ay < 10. We keep the overall
superconducting gap constant, v/ A(Z) + A? = 0.4 meV.

In the basis of Bloch states, the pairing A; becomes
dependent on k in a way similar to Agg (cf. Appendix A),
i.e., it becomes modulated by | Zi’:l exp(ik - AR;)|, where
AR; are lattice vectors between unit cells to which those
nearest neighbors belong. That modulation for our (12,4) CNT
is plotted in Fig. 14(a). The A term remains constant in the
momentum space, with its relative strength of 1 also plotted for

(a) R (b) .
W=-1
340 . -
< 338 -
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336 (iAo RS S e S SR -
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1]
g g
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/10 334 35
0 T 0 1 . T T
20 40 334 336 338 340
B, (T) 1 (meV)

FIG. 14. (a) The Ay and A;(k) pairing strength, in the units
of the appropriate pairing type, bare A, and bare A, respectively.
(b) Topological phase diagram constructed with the Pfaffian invariant,
with bare A = 2A,. Here and in (c) and (d) the value of /A2 + A?
is kept constant and equal 0.4 meV. The red lines show the phase
boundaries with A; = 0. The inclusion of nearest-neighbor pairing
has extended the nontrivial region towards lower magnetic field, but
otherwise its influence is invisible. (c) Topological phase diagram at
constant 4 = 334.6 meV. Here too the increasing contribution of A,
with respect to A extends the lower border of the nontrivial phase.
(d) Topological phase diagram at B; = 12 T. Again, the inclusion of
A slightly extends the borders of the nontrivial phase.

comparison. The topological phase diagram with A} = 2A is
shown in Fig. 14(b). The nontrivial regions are extended farther
towards low magnetic field, but at high B, the presence of A
has no discernible influence.

The topological phase diagram in the B, ,A;/A( plane at
constant i = 334.6 meV is shown in Fig. 14(c). Again, the
visible variations occur only in the low-field ranges, and for
low Aj/Agratios. Beyond A /A = 4, the low-field boundary
of the topological phase does not extend any further. Also when
B, is kept constant, as shown in Fig. 14(d) at B, = 12 T, the
boundaries of nontrivial phase vary only slightly and mostly
for Ay/Ap < 2.In conclusion, the only relevant effect of A is
that it allows the MQP to form at lower magnetic field, which
is a bonus for experimentalists.
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