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We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance 
pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. 
Model-independent conditions on such parametrizations are derived, which are shown to guarantee the 
correct functional form of the leading quark-mass corrections to the resonance pole positions. Some 
model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties 
from results of lattice simulations, are tested explicitly with respect to these conditions.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Chiral Perturbation Theory (ChPT) and ab-initio lattice QCD 
(LQCD) simulations are currently the state of the art approaches 
for the exploration of low-energy QCD. The specifically beneficial 
overlap between these approaches arises from the fact that LQCD 
simulations can be (and usually are) performed at unphysical quark 
masses. Thus, the results of those cover the full quark mass vs. en-
ergy plane. At the same time ChPT relies on the expansion of QCD 
Green’s functions in small momenta and quark masses, and allows 
for interpolations and extrapolations of the measured results in the 
low-energy region of that plane.

The simplest non-trivial hadronic system in this regime is the 
ππ system, which has been studied very extensively in the context 
of ChPT, see e.g. [1]. Recently, high precision LQCD data became 
available in both I = 0 and I = 1 channels, see e.g. [2–5,8–10,
6,7]. Usually such discrete data are extrapolated in energy and 
quark masses to e.g. determine properties of the (isovector) ρ and 
(isoscalar) σ resonances in these channels at the physical point, 
see [11–16] for some recent examples. Obviously, such inter-, ex-
trapolations require a well-founded theoretical control over the 
scattering amplitude in these channels. When the quark mass is 
fixed, the scattering amplitude is constrained by analyticity and 
unitarity requirements, and crossing symmetry. Many parametriza-
tions, used in the literature, fulfill these requirements to some ex-
tent, such as the Inverse Amplitude Method, Bethe–Salpeter Equa-
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tion, Breit–Wigner or Chew–Mandelstam parametrizations. The de-
pendence on the quark masses goes beyond these requirements, 
and the dynamics of the underlying field theory (QCD) has to be 
specified in more detail, yielding additional constraints. These con-
straints are mainly given by chiral symmetry, and the particular 
way it is broken in the real world. Close to the two-flavor chiral 
limit (mu = md = 0) ChPT exactly implements all these constraints, 
order by order in a low-energy expansion, and fixes the functional 
form of the quark-mass corrections to the chiral limit quantities. It 
is the purpose of this letter to introduce model-independent con-
ditions on the parametrizations of the ππ scattering amplitude, 
which assure that the leading quark-mass corrections in the chi-
ral extrapolations of the resonance properties, such as mass and 
width, are consistent with the chiral behavior of QCD. We find that 
these conditions are violated in some currently used approaches.

2. Chiral symmetry constraints

The effective degrees of freedom of ChPT are pseudo-Goldstone 
bosons (pions) of spontaneously broken chiral SU(2) × SU(2) sym-
metry. Resonance fields can be included as explicit (massive) fields 
in the effective theory, see e.g. [17]. The corresponding Lagrangians 
contain bare quantities such as the bare resonance mass and cou-
plings to pion fields, which are renormalized order-by-order in the 
usual sense of perturbation theory. The latter requires a proper 
power counting scheme, which is more subtle when massive fields 
are involved. The reason is that the mass and width of the me-
son resonances do not vanish in the chiral limit, thus introducing a 
new (“heavy”) mass scale not small compared to the hadronic scale 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Pion loop graph contributing to G P (q). The crossed circles denote insertions 
of pseudoscalar quark currents P j(x).

of ∼ 1 GeV. Fortunately, one can employ tailor-made subtraction 
schemes which make these extended versions of the effective field 
theory well-defined, so that quark-mass corrections to resonance 
properties can be computed unambiguously, see e.g. [18–22]. In 
this letter, we focus on the purely mesonic sector of the strong 
interaction (in particular, ππ scattering), and work in the isospin-
symmetric limit where mu = md =: m� .

Due to pion loops, any amplitude involving the strong interac-
tion will in general depend in a non-analytic fashion on the pion 
mass in an expansion around the SU(2) × SU(2) chiral-symmetric 
limit (m� → 0), as first noted in [23]. Denoting M2 := 2Bm� , so 
that M2

π = M2 + O(M4 log M) [24,25], the mass of a “heavy” de-
gree of freedom in the sense explained above, denoted hereafter 
by H , depends on the light-quark mass as

mH = ◦
mH + cH

1 M2 + cH
2 M3 + cH

3 M4 log M +O(M4) , (1)

where “◦” henceforth denotes the quantity (here the mass) in the 
chiral limit. Examples are the mass of the nucleon [26], vector 
meson masses [27–29,19–21] and also the mass of the kaon in a 
two-flavor framework where the strange-quark mass is considered 
as heavy compared to m� [30]. An expression of the same form 
holds for the widths of heavy meson resonances, see e.g. [20,31]. 
We note that the non-analytic cH

2 -term ∼ m3/2
� is somewhat ex-

ceptional: it exists only if there is a vertex for H → π H ′ in the 
effective theory, where H ′ is mass-degenerate with H (possibly 
identical to H , or belonging to the same isospin multiplet), and 
is related to the threshold production of a pseudo-Goldstone bo-
son. In the following, we will exclude this exceptional case (which 
is permissible in the meson sector), but we shall add some perti-
nent comments in the course of the investigation.

Let us now sketch an argument showing that the quark-
mass expansion of the on-shell ππ scattering amplitude at fixed 
Mandelstam variables s, t �= 0 contains only quark-mass loga-
rithms with a prefactor of order M4 or higher, to all orders 
in the low-energy expansion. For this purpose, we use a mod-
ified version of the general argument presented in [23]. The 
πa(qa)π

b(qb) → π c(qc)π
d(qd) scattering amplitude can be read off 

from the residue of the quadruple pion pole in the Fourier trans-
form G P (q) of the correlator 〈0|T P a(x)P b(y)P c(z)P d(w)|0〉 with 
respect to the space–time arguments x, y, z, w [25]. Here q col-
lectively denotes the pion four-momenta qa, . . . , qd . Moreover, let 
G̃ef

P (q, pe, p f ) denote the analogous Fourier transform of the ma-
trix element 〈π f (p f )|T P a(x)P b(y)P c(z)P d(w)|π e(pe)〉. Following 
the argument of [23], the leading quark-mass logarithm of G P (q)

is generated by soft Goldstone bosons circulating in the loop indi-
cated by the dashed line in Fig. 1, and can therefore be inferred 
from the integral
I log(q) := 1

2

∫
d4 p

(2π)4

iδef G̃ef
P (q, p, p)

p2 − M2
.

Here G̃ef
P (q, p, p) can be taken in the (pμ → 0, M → 0) limit, since 

terms in G̃ef
P linear in pμ vanish in the integral, while terms of or-

der p2, M2 will generate terms ∼ M4 log M2. In this limit, this ma-
trix element can be expressed through four-point functions of the 
type of G P (q) in the chiral limit (and terms without a quadruple 
pion pole, which we can neglect here) by virtue of current algebra 
and PCAC techniques. Thus, the leading logarithm in the integral 
can be computed in terms of 

◦
G P (q), employing dimensional reg-

ularization for definiteness, and scales as ∼ M2 log M2. However, 
these logarithmic terms are exactly absorbed by the renormaliza-
tion of the matrix elements 〈0|P a|πb〉 = δab Gπ [25], with

Gπ = 2B F

(
1 − M2

32π2 F 2
log M2 + . . .

)
,

at the four operator insertions, and so no term ∼ M2 log M2 is 
left as a correction to the remaining part of the quadruple pole 
term in G P (q), which is exactly the ππ scattering amplitude. We 
point out that this in general requires a complicated cancella-
tion among the Feynman graphs in the scattering amplitude, and 
can not be assured by power-counting arguments for individual 
graphs. There are some exceptions to the simple argument just 
given, corresponding to special cases where some combination of 
energy-invariants of the ππ process also approach zero, so that 
the momentum of an internal pion in G̃ef

P (q, p, p) is forced to be 
also “soft” (of order ∼ Mπ ) when pμ → 0. In the generic case, 
however, the light-quark-mass derivative of the ππ amplitude ex-
ists in the chiral limit (the same is also true for the scattering 
of pions off heavy mesons1). We have explicitly verified this con-
straint for the available two-loop representation for the ππ scat-
tering amplitude [32] (and also for the explicit one-loop expres-
sions for pion–kaon-scattering given in [33,34] and [30]): Fixing 
generic non-zero energy variables s, t, u = 4M2

π − s − t away from 
the s, t-and u-channel thresholds, the expansion in the light-quark 
mass shows only logarithmic terms with at least a prefactor ∼ M4, 
as a consequence of the general argument referred to above. Note 
that this quark-mass expansion is different from the chiral low-
energy expansion, where one assumes s, t ∼ O(M2

π ). This is why 
the mentioned result is not in conflict with the corresponding one 
from [35], where small s, t, u are presumed. We will see examples 
of the quark-mass expansion at fixed energy in the next section 
(see Eqs. (5), (6)).

Since the on-shell scattering amplitude shows no terms ∼ f (s,
t)M2 log M in this expansion, except for t = 0 or u = 0, we ex-
pect that the quark-mass expansion of the partial-wave amplitudes 
for ππ scattering will also be free of terms ∼ f̃ (s)M2 log M , and 
we find that this is indeed the case. The complex-energy posi-
tion sH of a resonance H appearing in a partial wave of angular 
momentum l, tl(s), given by solving (tl(sH ))−1 != 0 on the second 
Riemann sheet in the Mandelstam variable s, is therefore expected 
to show a non-analytic quark mass dependence of ∼ M4 log M or 

1 A consideration very similar to the one of the previous paragraph applies for 
matrix elements 〈H(p′)|Pa(x)P b(y)|H(p)〉, where H is a heavy meson, under the 
qualification mentioned below Eq. (1). In the general case, one has to carefully an-
alyze the Born graphs of the process ππ H → ππ H , which is beyond the scope of 
this study. However, Eq. (1) is generally valid for heavy resonances (denoted by R) 
due to chiral symmetry and a simple power-counting argument. The considerations 
outlined above just serve to make plausible how this chiral-symmetry constraint is 
realized in resonant amplitudes ππ → ππ or π H → π H , which do not contain the 
resonance degree of freedom R explicitly.



P.C. Bruns, M. Mai / Physics Letters B 778 (2018) 43–47 45
higher. This is nicely consistent with the chiral prediction of Eq. (1)
in the common case where cH

2 = 0. Should there exist an exactly 
mass-degenerate resonance H ′ , with possible transitions H → π H ′
for Mπ → 0, the above argument must be modified, to take into 
account the additional π H ′ branch point, and the general expecta-
tion is spoilt in this case, which makes the cH

2 -term necessary. But 
even in this case, terms ∼ M2 log M , which are the main concern 
of this study, are never present in Eq. (1) as a consequence of chi-
ral symmetry and chiral power-counting applied to the resonance 
self-energy, compare [18–21,27–29,31]. The vanishing of f̃ (s), mo-
tivated above, will guarantee that the quark-mass dependence of 
the resonance position, encoded in the partial-wave amplitude, is 
consistent with the absence of “forbidden logarithms” ∼ M2 log M
in Eq. (1). This constraint can be seen as a consistency condi-
tion between two different approaches to resonances in effective 
field theories (explicit inclusion of resonances, and dynamical gen-
eration of resonance poles). Thus, if a given model for the ππ
scattering amplitude leads to such “forbidden logarithms”, one will 
have to conclude that the predicted quark-mass dependence of this 
model is in conflict with QCD.

Following these considerations, we propose a simple test for the 
partial-wave amplitudes generated by a given model to fulfill the 
model-independent requirement, demanded by chiral symmetry – 
the vanishing of terms of the form f̃ (s)M2 log M in the quark-mass 
expansion for fixed s �= 0. Note that: 1) In the standard low-energy 
expansion of ChPT, this vanishing of the “forbidden logarithms” can 
only be verified up to a certain order sn in f̃ (s); 2) The coefficient 
functions, such as f̃ (s), in this expansion are chiral-limit quantities 
without quark-mass dependence, but may contain energy loga-
rithms ∼ log s; 3) the sigma terms pertaining to the resonances, 
which were recently addressed as important clues to the nature of 
these states [36], would diverge in the chiral limit if the forbidden 
logarithmic terms were present in the mass formula (1).

3. Critical examination of model amplitudes

Practically all currently used model amplitudes for ππ scatter-
ing are of the general form

tl(s)−1 = 16π(K −1
l (s) + I(s)) , (2)

where Kl(s) is a real-valued function for 0 < s < 16M2
π , usually 

referred to as K -matrix in cases with more channels, or gener-
alized potential, and I(s) is the two-pion loop function. Note that 
the requirement of elastic unitarity fixes Im(16π I(s)) = −2q(s)/

√
s

for real s > 4M2, where q(s) = √
s/4 − M2, such that the form of 

the loop function is fixed (requiring the appropriate analytic prop-
erties) up to a real constant, which can be absorbed in Kl(s). In 
dimensional regularization with M̃ S subtraction (also employed in 
[25]) the loop function reads

16π2 I(s) = log

(
M2

μ2

)
− 1 − 4q(s)√

s
artanh

( −√
s

2q(s)

)
. (3)

In any channel the resonance-pole positions s∗
l on the second Rie-

mann sheet are determined as the solutions of the equation

K −1
l (s∗

l ) + I I I (s∗
l ) = 0 (4)

for I I I (s) = I(s) − iq(s)/(4π
√

s). Expanding I I I (s) in powers of M
for 0 ≤ 4M2 < |s|, one finds

16π2 I I I (s) = −
(

2π i + 1 + log

(
−μ2

s

))
(5)

+2M2

s

(
2π i − 1 + log

(
− M2

s

))
+O

(
M4/s2

)
.
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The generalized potential Kl(s) parametrizes the interaction of 
wo pions in the corresponding channel, and can be chosen in 
arious ways. Frequently utilized examples are contact interac-
ions from the next-to-leading chiral Lagrangian [37,12,13], full 
ncluding u and t-channel loops) chiral amplitude of the next-to-
ading order [14,38,16], or phenomenological Chew–Mandelstam 
rms [3,39]. The most general form of the expansion of such a 

arametrization in powers of M , for fixed s �= 0, reads

−1
l (s) = ω

(0)

l (s) + ω
(1)

l (s)M2 (6)

+ ω
(2)

l (s)M2 log
(

M2/μ2
)

+O(M4 log M) .

he scale dependence may partly cancel with ω1
l (s) and the first 

rm of Eq. (3). The following condition,

(2)

l (s)
!=−(8π2s)−1 , (7)

nsures the exact cancellation of the “forbidden logarithms” in 
q. (2).

An alternative approach, not limited to models of the form of 
q. (2), is given as follows. Insert an ansatz sH = (mH − i�H/2)2, 
ith

H (M) = ◦
mH + cH

1m M2 + dH
m M2 log M2 +O(M3) ,

H (M) = ◦
�H + cH

1�M2 + dH
� M2 log M2 +O(M3) (8)

r the resonance pole position s∗
l in Eq. (4). The resulting equa-

ion must hold separately in every order in M , since it is nothing 
han the resonance pole condition at any given quark mass. Now 
xpand this resulting equation in M , truncate the expansion after 
he terms quadratic in M , and solve (e.g. numerically) the obtained 
et of equations (two for each order M0, M2, M2 log M2) for the 
nknowns 

◦
mH , 

◦
�H , cH

1m, cH
1�, dH

m, dH
� . This procedure was also em-

loyed in [31] for the propagator of the σ resonance. Should the 
olution return non-vanishing dH

m, dH
� (the coefficients of the “for-

idden logarithms” in sH ), the assumed model for the partial-wave 
mplitudes is in conflict with the strictures of chiral symmetry en-
oded in Eq. (1). In all cases examined below, we find that both 
ersions of the test for “forbidden logarithms” are equivalent, i.e.

H
m,dH

� �= 0 ⇐⇒ ω
(2)

l (s) �= −(8π2s)−1 . (9)

hus, using one or another approach for the test might be a mat-
r of technical advantages. However, when any of those fails, the 
odel should not be used to predict the quark-mass variation of 

he resonance parameters, even if it describes the experimentally 
easured energy-dependence of the ππ scattering process rea-

onably well. This is the main point we want to make in this 
ontribution.

As a first explicit demonstration let us adopt a “unitarized 
einberg term”, which leads to

I=0
0 = 2s − M2

π

2F 2
π

, K I=1
1 = s − 4M2

π

6F 2
π

r the channels of different isospin I . Taking into account the 
nown quark-mass dependencies of Fπ and Mπ [25], one notes 
hat only the isoscalar s-wave described by this model fulfills the 
ondition (7), while the other partial waves violate this condition, 
ven though these amplitudes are in accord with chiral symmetry 
n tree level. The pertaining resonance poles can therefore not be 
xpected to vary as prescribed by Eq. (1) and its analogue for the 
idth �H .
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Another typical example, frequently used for chiral extrapola-
tions, is the Bethe–Salpeter-like approach with driving term from 
a local chiral potential, see e.g. [37,40]. As it is used for the analy-
sis of the isovector p-wave amplitude [12,9,13], the expression for 
K1(s) in Eq. (2) reads

K BSE
1 (s) = 32πq(s)2

48π(F 2 − 8M2
π l̂1 + 4sl̂2) + 2q(s)2(a(μ) + 1)

,

where a(μ) is a real-valued subtraction constant, and l̂i are some 
linear combinations of SU(3) low-energy constants (see e.g. App. B 
of [9]). Similar to the result for K I=1

1 (s) in the first model stud-
ied above, we find that Eq. (7) is not obeyed here (whether one 
takes into account the running of Fπ = F +O(M2 log M) with the 
quark mass or not), and that the ρ mass and width in this model 
show “forbidden logarithms”. We conclude that this kind of mod-
els can be useful when they are applied at a fixed pion mass, with 
their free parameters fitted at each pion mass data point sepa-
rately, since the energy-dependence in the low-energy region is 
expected to be described reasonably well by such models. How-
ever, the quark-mass dependence of the resonance position close 
to the chiral limit is incompatible with the one demanded by chiral 
symmetry as verified by the proposed test. Therefore, ambiguities 
will arise when such models are used for the purpose of chiral ex-
trapolation and the corresponding uncertainty estimates.

Finally, we consider the Inverse Amplitude Method (IAM) in the 
one channel version [41], see also [42]. It can be re-written in the 
form of Eq. (2), such that

K IAM
l (s) = (16π t(2)

l (s))2

(16π t(2)

l (s)) − (16π t̃ (4)

l )(s)
,

where t̃ (4)

l (s) := t(4)

l (s) + 16π(t(2)

l (s))2 I(s), and t(n)

l is the partial-
wave scattering amplitude of the nth chiral order. As we have 
already anticipated in the previous section that there are no “for-
bidden logarithms” in t(4)

l (s), it is evident that condition (7) is 
fulfilled here. Thus, the quark-mass variation of the resonance po-
sition agrees with Eq. (1) with cH

2 = 0. In that respect, the use 
of the IAM for the purpose of studying the quark-mass depen-
dence of resonance properties in a non-perturbative framework is 
preferable. Even though it disagrees with ChPT amplitudes above a 
certain chiral order, the fact that the IAM uses only well-behaved, 
complete chiral amplitudes of a fixed order as building blocks 
turns out as an advantage over other “unitarization procedures”.

There are two additional remarks we wish to make. First, some 
resonances become stable at high pion masses. In this regime, the 
quark-mass variation of the resonance position could still be de-
scribed satisfyingly, since the unitarity-loop effects dominate over 
the variation of the quark-mass logarithms there, see e.g. [43] for a 
discussion of such effects. Second, in the case of the ρ resonance, 
there is an additional difficulty due to the ρ → πω vertex. The 
ω mass is very close to the ρ mass (while the difference in the 
widths is O(Mphys

π )), and the quark mass expansion around the ρ
pole in the chiral limit might have a radius of convergence smaller 
than the physical pion mass. If one takes the ρ and ω to be mass-
degenerate in the chiral limit (as is e.g. done in [20]) to avoid this 
problem, one arrives at an exceptional case cρ

2 �= 0 in Eq. (1). It is 
hard to see how such a behavior could be accounted for in a sim-
ple unitarized model for the I = 1 ππ scattering amplitude. For 
the σ , however, there is no such nearly mass-degenerate state σ ′
with a σ → πσ ′ vertex, so in this case the use of such models 
is justified, given the model in question satisfies the constraint of 
Eq. (7).
Concluding, we propose a simple test for the scattering ampli-
tude parametrizations used for chiral extrapolations of the isovec-
tor and isoscalar ππ resonances. It is formulated as a model-
independent condition for amplitude parametrizations of a rather 
general form, consistent with elastic unitarity. This condition is an 
implication of the chiral symmetry breaking pattern of QCD, im-
plemented in ChPT, and ensures the correct form of the leading 
quark-mass correction to the resonance pole positions. We have 
tested two models frequently used for chiral extrapolations of the 
σ and ρ resonance poles, and found that only one is consistent 
with this condition. To select those parametrizations which pass 
our proposed tests will clearly reduce the model-dependence af-
flicting the extraction of those resonance properties from results 
of lattice QCD simulations.
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